Compare commits

..

1 Commits

Author SHA1 Message Date
Eduardo Chiarotti
c061252de7 fix: repository public issue 2025-10-01 11:37:06 -03:00
2002 changed files with 89449 additions and 229428 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

161
.env.test
View File

@@ -1,161 +0,0 @@
# =============================================================================
# Test Environment Variables
# =============================================================================
# This file contains all environment variables needed to run tests locally
# in a way that mimics the GitHub Actions CI environment.
# =============================================================================
# -----------------------------------------------------------------------------
# LLM Provider API Keys
# -----------------------------------------------------------------------------
OPENAI_API_KEY=fake-api-key
ANTHROPIC_API_KEY=fake-anthropic-key
GEMINI_API_KEY=fake-gemini-key
AZURE_API_KEY=fake-azure-key
OPENROUTER_API_KEY=fake-openrouter-key
# -----------------------------------------------------------------------------
# AWS Credentials
# -----------------------------------------------------------------------------
AWS_ACCESS_KEY_ID=fake-aws-access-key
AWS_SECRET_ACCESS_KEY=fake-aws-secret-key
AWS_DEFAULT_REGION=us-east-1
AWS_REGION_NAME=us-east-1
# -----------------------------------------------------------------------------
# Azure OpenAI Configuration
# -----------------------------------------------------------------------------
AZURE_ENDPOINT=https://fake-azure-endpoint.openai.azure.com
AZURE_OPENAI_ENDPOINT=https://fake-azure-endpoint.openai.azure.com
AZURE_OPENAI_API_KEY=fake-azure-openai-key
AZURE_API_VERSION=2024-02-15-preview
OPENAI_API_VERSION=2024-02-15-preview
# -----------------------------------------------------------------------------
# Google Cloud Configuration
# -----------------------------------------------------------------------------
#GOOGLE_CLOUD_PROJECT=fake-gcp-project
#GOOGLE_CLOUD_LOCATION=us-central1
# -----------------------------------------------------------------------------
# OpenAI Configuration
# -----------------------------------------------------------------------------
OPENAI_BASE_URL=https://api.openai.com/v1
OPENAI_API_BASE=https://api.openai.com/v1
# -----------------------------------------------------------------------------
# Search & Scraping Tool API Keys
# -----------------------------------------------------------------------------
SERPER_API_KEY=fake-serper-key
EXA_API_KEY=fake-exa-key
BRAVE_API_KEY=fake-brave-key
FIRECRAWL_API_KEY=fake-firecrawl-key
TAVILY_API_KEY=fake-tavily-key
SERPAPI_API_KEY=fake-serpapi-key
SERPLY_API_KEY=fake-serply-key
LINKUP_API_KEY=fake-linkup-key
PARALLEL_API_KEY=fake-parallel-key
# -----------------------------------------------------------------------------
# Exa Configuration
# -----------------------------------------------------------------------------
EXA_BASE_URL=https://api.exa.ai
# -----------------------------------------------------------------------------
# Web Scraping & Automation
# -----------------------------------------------------------------------------
BRIGHT_DATA_API_KEY=fake-brightdata-key
BRIGHT_DATA_ZONE=fake-zone
BRIGHTDATA_API_URL=https://api.brightdata.com
BRIGHTDATA_DEFAULT_TIMEOUT=600
BRIGHTDATA_DEFAULT_POLLING_INTERVAL=1
OXYLABS_USERNAME=fake-oxylabs-user
OXYLABS_PASSWORD=fake-oxylabs-pass
SCRAPFLY_API_KEY=fake-scrapfly-key
SCRAPEGRAPH_API_KEY=fake-scrapegraph-key
BROWSERBASE_API_KEY=fake-browserbase-key
BROWSERBASE_PROJECT_ID=fake-browserbase-project
HYPERBROWSER_API_KEY=fake-hyperbrowser-key
MULTION_API_KEY=fake-multion-key
APIFY_API_TOKEN=fake-apify-token
# -----------------------------------------------------------------------------
# Database & Vector Store Credentials
# -----------------------------------------------------------------------------
SINGLESTOREDB_URL=mysql://fake:fake@localhost:3306/fake
SINGLESTOREDB_HOST=localhost
SINGLESTOREDB_PORT=3306
SINGLESTOREDB_USER=fake-user
SINGLESTOREDB_PASSWORD=fake-password
SINGLESTOREDB_DATABASE=fake-database
SINGLESTOREDB_CONNECT_TIMEOUT=30
SNOWFLAKE_USER=fake-snowflake-user
SNOWFLAKE_PASSWORD=fake-snowflake-password
SNOWFLAKE_ACCOUNT=fake-snowflake-account
SNOWFLAKE_WAREHOUSE=fake-snowflake-warehouse
SNOWFLAKE_DATABASE=fake-snowflake-database
SNOWFLAKE_SCHEMA=fake-snowflake-schema
WEAVIATE_URL=http://localhost:8080
WEAVIATE_API_KEY=fake-weaviate-key
EMBEDCHAIN_DB_URI=sqlite:///test.db
# Databricks Credentials
DATABRICKS_HOST=https://fake-databricks.cloud.databricks.com
DATABRICKS_TOKEN=fake-databricks-token
DATABRICKS_CONFIG_PROFILE=fake-profile
# MongoDB Credentials
MONGODB_URI=mongodb://fake:fake@localhost:27017/fake
# -----------------------------------------------------------------------------
# CrewAI Platform & Enterprise
# -----------------------------------------------------------------------------
# setting CREWAI_PLATFORM_INTEGRATION_TOKEN causes these test to fail:
#=========================== short test summary info ============================
#FAILED tests/test_context.py::TestPlatformIntegrationToken::test_platform_context_manager_basic_usage - AssertionError: assert 'fake-platform-token' is None
# + where 'fake-platform-token' = get_platform_integration_token()
#FAILED tests/test_context.py::TestPlatformIntegrationToken::test_context_var_isolation_between_tests - AssertionError: assert 'fake-platform-token' is None
# + where 'fake-platform-token' = get_platform_integration_token()
#FAILED tests/test_context.py::TestPlatformIntegrationToken::test_multiple_sequential_context_managers - AssertionError: assert 'fake-platform-token' is None
# + where 'fake-platform-token' = get_platform_integration_token()
#CREWAI_PLATFORM_INTEGRATION_TOKEN=fake-platform-token
CREWAI_PERSONAL_ACCESS_TOKEN=fake-personal-token
CREWAI_PLUS_URL=https://fake.crewai.com
# -----------------------------------------------------------------------------
# Other Service API Keys
# -----------------------------------------------------------------------------
ZAPIER_API_KEY=fake-zapier-key
PATRONUS_API_KEY=fake-patronus-key
MINDS_API_KEY=fake-minds-key
HF_TOKEN=fake-hf-token
# -----------------------------------------------------------------------------
# Feature Flags/Testing Modes
# -----------------------------------------------------------------------------
CREWAI_DISABLE_TELEMETRY=true
OTEL_SDK_DISABLED=true
CREWAI_TESTING=true
CREWAI_TRACING_ENABLED=false
# -----------------------------------------------------------------------------
# Testing/CI Configuration
# -----------------------------------------------------------------------------
# VCR recording mode: "none" (default), "new_episodes", "all", "once"
PYTEST_VCR_RECORD_MODE=none
# Set to "true" by GitHub when running in GitHub Actions
# GITHUB_ACTIONS=false
# -----------------------------------------------------------------------------
# Python Configuration
# -----------------------------------------------------------------------------
PYTHONUNBUFFERED=1

View File

@@ -1,28 +0,0 @@
name: "CodeQL Config"
paths-ignore:
# Ignore template files - these are boilerplate code that shouldn't be analyzed
- "lib/crewai/src/crewai/cli/templates/**"
# Ignore test cassettes - these are test fixtures/recordings
- "lib/crewai/tests/cassettes/**"
- "lib/crewai-tools/tests/cassettes/**"
# Ignore cache and build artifacts
- ".cache/**"
# Ignore documentation build artifacts
- "docs/.cache/**"
# Ignore experimental code
- "lib/crewai/src/crewai/experimental/a2a/**"
paths:
# Include all Python source code from workspace packages
- "lib/crewai/src/**"
- "lib/crewai-tools/src/**"
- "lib/devtools/src/**"
# Include tests (but exclude cassettes via paths-ignore)
- "lib/crewai/tests/**"
- "lib/crewai-tools/tests/**"
- "lib/devtools/tests/**"
# Configure specific queries or packs if needed
# queries:
# - uses: security-and-quality

View File

@@ -1,11 +0,0 @@
# To get started with Dependabot version updates, you'll need to specify which
# package ecosystems to update and where the package manifests are located.
# Please see the documentation for all configuration options:
# https://docs.github.com/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
version: 2
updates:
- package-ecosystem: uv # See documentation for possible values
directory: "/" # Location of package manifests
schedule:
interval: "weekly"

63
.github/security.md vendored
View File

@@ -1,50 +1,27 @@
## CrewAI Security Policy
## CrewAI Security Vulnerability Reporting Policy
We are committed to protecting the confidentiality, integrity, and availability of the CrewAI ecosystem. This policy explains how to report potential vulnerabilities and what you can expect from us when you do.
CrewAI prioritizes the security of our software products, services, and GitHub repositories. To promptly address vulnerabilities, follow these steps for reporting security issues:
### Scope
### Reporting Process
Do **not** report vulnerabilities via public GitHub issues.
We welcome reports for vulnerabilities that could impact:
Email all vulnerability reports directly to:
**security@crewai.com**
- CrewAI-maintained source code and repositories
- CrewAI-operated infrastructure and services
- Official CrewAI releases, packages, and distributions
### Required Information
To help us quickly validate and remediate the issue, your report must include:
Issues affecting clearly unaffiliated third-party services or user-generated content are out of scope, unless you can demonstrate a direct impact on CrewAI systems or customers.
- **Vulnerability Type:** Clearly state the vulnerability type (e.g., SQL injection, XSS, privilege escalation).
- **Affected Source Code:** Provide full file paths and direct URLs (branch, tag, or commit).
- **Reproduction Steps:** Include detailed, step-by-step instructions. Screenshots are recommended.
- **Special Configuration:** Document any special settings or configurations required to reproduce.
- **Proof-of-Concept (PoC):** Provide exploit or PoC code (if available).
- **Impact Assessment:** Clearly explain the severity and potential exploitation scenarios.
### How to Report
### Our Response
- We will acknowledge receipt of your report promptly via your provided email.
- Confirmed vulnerabilities will receive priority remediation based on severity.
- Patches will be released as swiftly as possible following verification.
- **Please do not** disclose vulnerabilities via public GitHub issues, pull requests, or social media.
- Email detailed reports to **security@crewai.com** with the subject line `Security Report`.
- If you need to share large files or sensitive artifacts, mention it in your email and we will coordinate a secure transfer method.
### What to Include
Providing comprehensive information enables us to validate the issue quickly:
- **Vulnerability overview** — a concise description and classification (e.g., RCE, privilege escalation)
- **Affected components** — repository, branch, tag, or deployed service along with relevant file paths or endpoints
- **Reproduction steps** — detailed, step-by-step instructions; include logs, screenshots, or screen recordings when helpful
- **Proof-of-concept** — exploit details or code that demonstrates the impact (if available)
- **Impact analysis** — severity assessment, potential exploitation scenarios, and any prerequisites or special configurations
### Our Commitment
- **Acknowledgement:** We aim to acknowledge your report within two business days.
- **Communication:** We will keep you informed about triage results, remediation progress, and planned release timelines.
- **Resolution:** Confirmed vulnerabilities will be prioritized based on severity and fixed as quickly as possible.
- **Recognition:** We currently do not run a bug bounty program; any rewards or recognition are issued at CrewAI's discretion.
### Coordinated Disclosure
We ask that you allow us a reasonable window to investigate and remediate confirmed issues before any public disclosure. We will coordinate publication timelines with you whenever possible.
### Safe Harbor
We will not pursue or support legal action against individuals who, in good faith:
- Follow this policy and refrain from violating any applicable laws
- Avoid privacy violations, data destruction, or service disruption
- Limit testing to systems in scope and respect rate limits and terms of service
If you are unsure whether your testing is covered, please contact us at **security@crewai.com** before proceeding.
### Reward Notice
Currently, we do not offer a bug bounty program. Rewards, if issued, are discretionary.

View File

@@ -7,8 +7,6 @@ on:
paths:
- "uv.lock"
- "pyproject.toml"
schedule:
- cron: "0 0 */5 * *" # Run every 5 days at midnight UTC to prevent cache expiration
workflow_dispatch:
permissions:

View File

@@ -15,11 +15,11 @@ on:
push:
branches: [ "main" ]
paths-ignore:
- "lib/crewai/src/crewai/cli/templates/**"
- "src/crewai/cli/templates/**"
pull_request:
branches: [ "main" ]
paths-ignore:
- "lib/crewai/src/crewai/cli/templates/**"
- "src/crewai/cli/templates/**"
jobs:
analyze:
@@ -73,7 +73,6 @@ jobs:
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
config-file: ./.github/codeql/codeql-config.yml
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.

View File

@@ -1,35 +0,0 @@
name: Check Documentation Broken Links
on:
pull_request:
paths:
- "docs/**"
- "docs.json"
push:
branches:
- main
paths:
- "docs/**"
- "docs.json"
workflow_dispatch:
jobs:
check-links:
name: Check broken links
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Node
uses: actions/setup-node@v4
with:
node-version: "latest"
- name: Install Mintlify CLI
run: npm i -g mintlify
- name: Run broken link checker
run: |
# Auto-answer the prompt with yes command
yes "" | mintlify broken-links || test $? -eq 141
working-directory: ./docs

View File

@@ -52,11 +52,10 @@ jobs:
- name: Run Ruff on Changed Files
if: ${{ steps.changed-files.outputs.files != '' }}
run: |
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| grep -v '/tests/' \
| xargs -I{} uv run ruff check "{}"
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'

View File

@@ -1,100 +0,0 @@
name: Publish to PyPI
on:
repository_dispatch:
types: [deployment-tests-passed]
workflow_dispatch:
inputs:
release_tag:
description: 'Release tag to publish'
required: false
type: string
jobs:
build:
name: Build packages
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- name: Determine release tag
id: release
run: |
# Priority: workflow_dispatch input > repository_dispatch payload > default branch
if [ -n "${{ inputs.release_tag }}" ]; then
echo "tag=${{ inputs.release_tag }}" >> $GITHUB_OUTPUT
elif [ -n "${{ github.event.client_payload.release_tag }}" ]; then
echo "tag=${{ github.event.client_payload.release_tag }}" >> $GITHUB_OUTPUT
else
echo "tag=" >> $GITHUB_OUTPUT
fi
- uses: actions/checkout@v4
with:
ref: ${{ steps.release.outputs.tag || github.ref }}
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Build packages
run: |
uv build --all-packages
rm dist/.gitignore
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: dist
path: dist/
publish:
name: Publish to PyPI
needs: build
runs-on: ubuntu-latest
environment:
name: pypi
url: https://pypi.org/p/crewai
permissions:
id-token: write
contents: read
steps:
- uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: "3.12"
enable-cache: false
- name: Download artifacts
uses: actions/download-artifact@v4
with:
name: dist
path: dist
- name: Publish to PyPI
env:
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_API_TOKEN }}
run: |
failed=0
for package in dist/*; do
if [[ "$package" == *"crewai_devtools"* ]]; then
echo "Skipping private package: $package"
continue
fi
echo "Publishing $package"
if ! uv publish "$package"; then
echo "Failed to publish $package"
failed=1
fi
done
if [ $failed -eq 1 ]; then
echo "Some packages failed to publish"
exit 1
fi

View File

@@ -5,6 +5,10 @@ on: [pull_request]
permissions:
contents: read
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
jobs:
tests:
name: tests (${{ matrix.python-version }})
@@ -52,13 +56,13 @@ jobs:
- name: Run tests (group ${{ matrix.group }} of 8)
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
DURATION_FILE="../../.test_durations_py${PYTHON_VERSION_SAFE}"
DURATION_FILE=".test_durations_py${PYTHON_VERSION_SAFE}"
# Temporarily always skip cached durations to fix test splitting
# When durations don't match, pytest-split runs duplicate tests instead of splitting
echo "Using even test splitting (duration cache disabled until fix merged)"
DURATIONS_ARG=""
# Original logic (disabled temporarily):
# if [ ! -f "$DURATION_FILE" ]; then
# echo "No cached durations found, tests will be split evenly"
@@ -70,25 +74,18 @@ jobs:
# echo "No test changes detected, using cached test durations for optimal splitting"
# DURATIONS_ARG="--durations-path=${DURATION_FILE}"
# fi
cd lib/crewai && uv run pytest \
uv run pytest \
--block-network \
--timeout=30 \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
$DURATIONS_ARG \
--durations=10 \
-n auto \
--maxfail=3
- name: Run tool tests (group ${{ matrix.group }} of 8)
run: |
cd lib/crewai-tools && uv run pytest \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
--durations=10 \
--maxfail=3
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4

View File

@@ -1,18 +0,0 @@
name: Trigger Deployment Tests
on:
release:
types: [published]
jobs:
trigger:
name: Trigger deployment tests
runs-on: ubuntu-latest
steps:
- name: Trigger deployment tests
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.CREWAI_DEPLOYMENTS_PAT }}
repository: ${{ secrets.CREWAI_DEPLOYMENTS_REPOSITORY }}
event-type: crewai-release
client-payload: '{"release_tag": "${{ github.event.release.tag_name }}", "release_name": "${{ github.event.release.name }}"}'

1
.gitignore vendored
View File

@@ -2,6 +2,7 @@
.pytest_cache
__pycache__
dist/
lib/
.env
assets/*
.idea

View File

@@ -3,31 +3,17 @@ repos:
hooks:
- id: ruff
name: ruff
entry: bash -c 'source .venv/bin/activate && uv run ruff check --config pyproject.toml "$@"' --
entry: uv run ruff check
language: system
pass_filenames: true
types: [python]
- id: ruff-format
name: ruff-format
entry: bash -c 'source .venv/bin/activate && uv run ruff format --config pyproject.toml "$@"' --
entry: uv run ruff format
language: system
pass_filenames: true
types: [python]
- id: mypy
name: mypy
entry: bash -c 'source .venv/bin/activate && uv run mypy --config-file pyproject.toml "$@"' --
entry: uv run mypy
language: system
pass_filenames: true
types: [python]
exclude: ^(lib/crewai/src/crewai/cli/templates/|lib/crewai/tests/|lib/crewai-tools/tests/)
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.9.3
hooks:
- id: uv-lock
- repo: https://github.com/commitizen-tools/commitizen
rev: v4.10.1
hooks:
- id: commitizen
- id: commitizen-branch
stages: [ pre-push ]
exclude: ^tests/

View File

@@ -62,9 +62,9 @@
With over 100,000 developers certified through our community courses at [learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
standard for enterprise-ready AI automation.
# CrewAI AOP Suite
# CrewAI Enterprise Suite
CrewAI AOP Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
CrewAI Enterprise Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
You can try one part of the suite the [Crew Control Plane for free](https://app.crewai.com)
@@ -76,9 +76,9 @@ You can try one part of the suite the [Crew Control Plane for free](https://app.
- **Advanced Security**: Built-in robust security and compliance measures ensuring safe deployment and management.
- **Actionable Insights**: Real-time analytics and reporting to optimize performance and decision-making.
- **24/7 Support**: Dedicated enterprise support to ensure uninterrupted operation and quick resolution of issues.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI AOP on-premise or in the cloud, depending on your security and compliance requirements.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI Enterprise on-premise or in the cloud, depending on your security and compliance requirements.
CrewAI AOP is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
CrewAI Enterprise is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
intelligent automations.
## Table of contents
@@ -674,9 +674,9 @@ CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/b
### Enterprise Features
- [What additional features does CrewAI AOP offer?](#q-what-additional-features-does-crewai-amp-offer)
- [Is CrewAI AOP available for cloud and on-premise deployments?](#q-is-crewai-amp-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI AOP for free?](#q-can-i-try-crewai-amp-for-free)
- [What additional features does CrewAI Enterprise offer?](#q-what-additional-features-does-crewai-enterprise-offer)
- [Is CrewAI Enterprise available for cloud and on-premise deployments?](#q-is-crewai-enterprise-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI Enterprise for free?](#q-can-i-try-crewai-enterprise-for-free)
### Q: What exactly is CrewAI?
@@ -732,17 +732,17 @@ A: Check out practical examples in the [CrewAI-examples repository](https://gith
A: Contributions are warmly welcomed! Fork the repository, create your branch, implement your changes, and submit a pull request. See the Contribution section of the README for detailed guidelines.
### Q: What additional features does CrewAI AOP offer?
### Q: What additional features does CrewAI Enterprise offer?
A: CrewAI AOP provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
A: CrewAI Enterprise provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
### Q: Is CrewAI AOP available for cloud and on-premise deployments?
### Q: Is CrewAI Enterprise available for cloud and on-premise deployments?
A: Yes, CrewAI AOP supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
A: Yes, CrewAI Enterprise supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
### Q: Can I try CrewAI AOP for free?
### Q: Can I try CrewAI Enterprise for free?
A: Yes, you can explore part of the CrewAI AOP Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
A: Yes, you can explore part of the CrewAI Enterprise Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
### Q: Does CrewAI support fine-tuning or training custom models?
@@ -762,7 +762,7 @@ A: CrewAI is highly scalable, supporting simple automations and large-scale ente
### Q: Does CrewAI offer debugging and monitoring tools?
A: Yes, CrewAI AOP includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
A: Yes, CrewAI Enterprise includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
### Q: What programming languages does CrewAI support?

View File

@@ -1,197 +0,0 @@
"""Pytest configuration for crewAI workspace."""
from collections.abc import Generator
import os
from pathlib import Path
import tempfile
from typing import Any
from dotenv import load_dotenv
import pytest
from vcr.request import Request # type: ignore[import-untyped]
env_test_path = Path(__file__).parent / ".env.test"
load_dotenv(env_test_path, override=True)
load_dotenv(override=True)
@pytest.fixture(autouse=True, scope="function")
def cleanup_event_handlers() -> Generator[None, Any, None]:
"""Clean up event bus handlers after each test to prevent test pollution."""
yield
try:
from crewai.events.event_bus import crewai_event_bus
with crewai_event_bus._rwlock.w_locked():
crewai_event_bus._sync_handlers.clear()
crewai_event_bus._async_handlers.clear()
except Exception: # noqa: S110
pass
@pytest.fixture(autouse=True, scope="function")
def setup_test_environment() -> Generator[None, Any, None]:
"""Setup test environment for crewAI workspace."""
with tempfile.TemporaryDirectory() as temp_dir:
storage_dir = Path(temp_dir) / "crewai_test_storage"
storage_dir.mkdir(parents=True, exist_ok=True)
if not storage_dir.exists() or not storage_dir.is_dir():
raise RuntimeError(
f"Failed to create test storage directory: {storage_dir}"
)
try:
test_file = storage_dir / ".permissions_test"
test_file.touch()
test_file.unlink()
except (OSError, IOError) as e:
raise RuntimeError(
f"Test storage directory {storage_dir} is not writable: {e}"
) from e
os.environ["CREWAI_STORAGE_DIR"] = str(storage_dir)
os.environ["CREWAI_TESTING"] = "true"
try:
yield
finally:
os.environ.pop("CREWAI_TESTING", "true")
os.environ.pop("CREWAI_STORAGE_DIR", None)
os.environ.pop("CREWAI_DISABLE_TELEMETRY", "true")
os.environ.pop("OTEL_SDK_DISABLED", "true")
os.environ.pop("OPENAI_BASE_URL", "https://api.openai.com/v1")
os.environ.pop("OPENAI_API_BASE", "https://api.openai.com/v1")
HEADERS_TO_FILTER = {
"authorization": "AUTHORIZATION-XXX",
"content-security-policy": "CSP-FILTERED",
"cookie": "COOKIE-XXX",
"set-cookie": "SET-COOKIE-XXX",
"permissions-policy": "PERMISSIONS-POLICY-XXX",
"referrer-policy": "REFERRER-POLICY-XXX",
"strict-transport-security": "STS-XXX",
"x-content-type-options": "X-CONTENT-TYPE-XXX",
"x-frame-options": "X-FRAME-OPTIONS-XXX",
"x-permitted-cross-domain-policies": "X-PERMITTED-XXX",
"x-request-id": "X-REQUEST-ID-XXX",
"x-runtime": "X-RUNTIME-XXX",
"x-xss-protection": "X-XSS-PROTECTION-XXX",
"x-stainless-arch": "X-STAINLESS-ARCH-XXX",
"x-stainless-os": "X-STAINLESS-OS-XXX",
"x-stainless-read-timeout": "X-STAINLESS-READ-TIMEOUT-XXX",
"cf-ray": "CF-RAY-XXX",
"etag": "ETAG-XXX",
"Strict-Transport-Security": "STS-XXX",
"access-control-expose-headers": "ACCESS-CONTROL-XXX",
"openai-organization": "OPENAI-ORG-XXX",
"openai-project": "OPENAI-PROJECT-XXX",
"x-ratelimit-limit-requests": "X-RATELIMIT-LIMIT-REQUESTS-XXX",
"x-ratelimit-limit-tokens": "X-RATELIMIT-LIMIT-TOKENS-XXX",
"x-ratelimit-remaining-requests": "X-RATELIMIT-REMAINING-REQUESTS-XXX",
"x-ratelimit-remaining-tokens": "X-RATELIMIT-REMAINING-TOKENS-XXX",
"x-ratelimit-reset-requests": "X-RATELIMIT-RESET-REQUESTS-XXX",
"x-ratelimit-reset-tokens": "X-RATELIMIT-RESET-TOKENS-XXX",
"x-goog-api-key": "X-GOOG-API-KEY-XXX",
"api-key": "X-API-KEY-XXX",
"User-Agent": "X-USER-AGENT-XXX",
"apim-request-id:": "X-API-CLIENT-REQUEST-ID-XXX",
"azureml-model-session": "AZUREML-MODEL-SESSION-XXX",
"x-ms-client-request-id": "X-MS-CLIENT-REQUEST-ID-XXX",
"x-ms-region": "X-MS-REGION-XXX",
"apim-request-id": "APIM-REQUEST-ID-XXX",
"x-api-key": "X-API-KEY-XXX",
"anthropic-organization-id": "ANTHROPIC-ORGANIZATION-ID-XXX",
"request-id": "REQUEST-ID-XXX",
"anthropic-ratelimit-input-tokens-limit": "ANTHROPIC-RATELIMIT-INPUT-TOKENS-LIMIT-XXX",
"anthropic-ratelimit-input-tokens-remaining": "ANTHROPIC-RATELIMIT-INPUT-TOKENS-REMAINING-XXX",
"anthropic-ratelimit-input-tokens-reset": "ANTHROPIC-RATELIMIT-INPUT-TOKENS-RESET-XXX",
"anthropic-ratelimit-output-tokens-limit": "ANTHROPIC-RATELIMIT-OUTPUT-TOKENS-LIMIT-XXX",
"anthropic-ratelimit-output-tokens-remaining": "ANTHROPIC-RATELIMIT-OUTPUT-TOKENS-REMAINING-XXX",
"anthropic-ratelimit-output-tokens-reset": "ANTHROPIC-RATELIMIT-OUTPUT-TOKENS-RESET-XXX",
"anthropic-ratelimit-tokens-limit": "ANTHROPIC-RATELIMIT-TOKENS-LIMIT-XXX",
"anthropic-ratelimit-tokens-remaining": "ANTHROPIC-RATELIMIT-TOKENS-REMAINING-XXX",
"anthropic-ratelimit-tokens-reset": "ANTHROPIC-RATELIMIT-TOKENS-RESET-XXX",
"x-amz-date": "X-AMZ-DATE-XXX",
"amz-sdk-invocation-id": "AMZ-SDK-INVOCATION-ID-XXX",
"accept-encoding": "ACCEPT-ENCODING-XXX",
"x-amzn-requestid": "X-AMZN-REQUESTID-XXX",
"x-amzn-RequestId": "X-AMZN-REQUESTID-XXX",
}
def _filter_request_headers(request: Request) -> Request: # type: ignore[no-any-unimported]
"""Filter sensitive headers from request before recording."""
for header_name, replacement in HEADERS_TO_FILTER.items():
for variant in [header_name, header_name.upper(), header_name.title()]:
if variant in request.headers:
request.headers[variant] = [replacement]
request.method = request.method.upper()
return request
def _filter_response_headers(response: dict[str, Any]) -> dict[str, Any]:
"""Filter sensitive headers from response before recording."""
# Remove Content-Encoding to prevent decompression issues on replay
for encoding_header in ["Content-Encoding", "content-encoding"]:
response["headers"].pop(encoding_header, None)
for header_name, replacement in HEADERS_TO_FILTER.items():
for variant in [header_name, header_name.upper(), header_name.title()]:
if variant in response["headers"]:
response["headers"][variant] = [replacement]
return response
@pytest.fixture(scope="module")
def vcr_cassette_dir(request: Any) -> str:
"""Generate cassette directory path based on test module location.
Organizes cassettes to mirror test directory structure within each package:
lib/crewai/tests/llms/google/test_google.py -> lib/crewai/tests/cassettes/llms/google/
lib/crewai-tools/tests/tools/test_search.py -> lib/crewai-tools/tests/cassettes/tools/
"""
test_file = Path(request.fspath)
for parent in test_file.parents:
if parent.name in ("crewai", "crewai-tools") and parent.parent.name == "lib":
package_root = parent
break
else:
package_root = test_file.parent
tests_root = package_root / "tests"
test_dir = test_file.parent
if test_dir != tests_root:
relative_path = test_dir.relative_to(tests_root)
cassette_dir = tests_root / "cassettes" / relative_path
else:
cassette_dir = tests_root / "cassettes"
cassette_dir.mkdir(parents=True, exist_ok=True)
return str(cassette_dir)
@pytest.fixture(scope="module")
def vcr_config(vcr_cassette_dir: str) -> dict[str, Any]:
"""Configure VCR with organized cassette storage."""
config = {
"cassette_library_dir": vcr_cassette_dir,
"record_mode": os.getenv("PYTEST_VCR_RECORD_MODE", "once"),
"filter_headers": [(k, v) for k, v in HEADERS_TO_FILTER.items()],
"before_record_request": _filter_request_headers,
"before_record_response": _filter_response_headers,
"filter_query_parameters": ["key"],
"match_on": ["method", "scheme", "host", "port", "path"],
}
if os.getenv("GITHUB_ACTIONS") == "true":
config["record_mode"] = "none"
return config

1737
crewAI.excalidraw Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -9,22 +9,7 @@
},
"favicon": "/images/favicon.svg",
"contextual": {
"options": [
"copy",
"view",
"chatgpt",
"claude",
"perplexity",
"mcp",
"cursor",
"vscode",
{
"title": "Request a feature",
"description": "Join the discussion on GitHub to request a new feature",
"icon": "plus",
"href": "https://github.com/crewAIInc/crewAI/issues/new/choose"
}
]
"options": ["copy", "view", "chatgpt", "claude"]
},
"navigation": {
"languages": [
@@ -55,16 +40,6 @@
]
},
"tabs": [
{
"tab": "Home",
"icon": "house",
"groups": [
{
"group": "Welcome",
"pages": ["index"]
}
]
},
{
"tab": "Documentation",
"icon": "book-open",
@@ -134,7 +109,6 @@
"group": "MCP Integration",
"pages": [
"en/mcp/overview",
"en/mcp/dsl-integration",
"en/mcp/stdio",
"en/mcp/sse",
"en/mcp/streamable-http",
@@ -251,10 +225,9 @@
"group": "Integrations",
"icon": "plug",
"pages": [
"en/tools/integration/overview",
"en/tools/integration/bedrockinvokeagenttool",
"en/tools/integration/crewaiautomationtool",
"en/tools/integration/mergeagenthandlertool"
"en/tools/tool-integrations/overview",
"en/tools/tool-integrations/bedrockinvokeagenttool",
"en/tools/tool-integrations/crewaiautomationtool"
]
},
{
@@ -273,11 +246,8 @@
{
"group": "Observability",
"pages": [
"en/observability/tracing",
"en/observability/overview",
"en/observability/arize-phoenix",
"en/observability/braintrust",
"en/observability/datadog",
"en/observability/langdb",
"en/observability/langfuse",
"en/observability/langtrace",
@@ -307,17 +277,13 @@
"en/learn/force-tool-output-as-result",
"en/learn/hierarchical-process",
"en/learn/human-input-on-execution",
"en/learn/human-in-the-loop",
"en/learn/kickoff-async",
"en/learn/kickoff-for-each",
"en/learn/llm-connections",
"en/learn/multimodal-agents",
"en/learn/replay-tasks-from-latest-crew-kickoff",
"en/learn/sequential-process",
"en/learn/using-annotations",
"en/learn/execution-hooks",
"en/learn/llm-hooks",
"en/learn/tool-hooks"
"en/learn/using-annotations"
]
},
{
@@ -327,7 +293,7 @@
]
},
{
"tab": "AOP",
"tab": "Enterprise",
"icon": "briefcase",
"groups": [
{
@@ -335,27 +301,15 @@
"pages": ["en/enterprise/introduction"]
},
{
"group": "Build",
"group": "Features",
"pages": [
"en/enterprise/features/automations",
"en/enterprise/features/crew-studio",
"en/enterprise/features/marketplace",
"en/enterprise/features/agent-repositories",
"en/enterprise/features/tools-and-integrations"
]
},
{
"group": "Operate",
"pages": [
"en/enterprise/features/traces",
"en/enterprise/features/rbac",
"en/enterprise/features/tool-repository",
"en/enterprise/features/webhook-streaming",
"en/enterprise/features/hallucination-guardrail"
]
},
{
"group": "Manage",
"pages": [
"en/enterprise/features/rbac"
"en/enterprise/features/traces",
"en/enterprise/features/hallucination-guardrail",
"en/enterprise/features/integrations",
"en/enterprise/features/agent-repositories"
]
},
{
@@ -367,20 +321,10 @@
"en/enterprise/integrations/github",
"en/enterprise/integrations/gmail",
"en/enterprise/integrations/google_calendar",
"en/enterprise/integrations/google_contacts",
"en/enterprise/integrations/google_docs",
"en/enterprise/integrations/google_drive",
"en/enterprise/integrations/google_sheets",
"en/enterprise/integrations/google_slides",
"en/enterprise/integrations/hubspot",
"en/enterprise/integrations/jira",
"en/enterprise/integrations/linear",
"en/enterprise/integrations/microsoft_excel",
"en/enterprise/integrations/microsoft_onedrive",
"en/enterprise/integrations/microsoft_outlook",
"en/enterprise/integrations/microsoft_sharepoint",
"en/enterprise/integrations/microsoft_teams",
"en/enterprise/integrations/microsoft_word",
"en/enterprise/integrations/notion",
"en/enterprise/integrations/salesforce",
"en/enterprise/integrations/shopify",
@@ -389,22 +333,6 @@
"en/enterprise/integrations/zendesk"
]
},
{
"group": "Triggers",
"pages": [
"en/enterprise/guides/automation-triggers",
"en/enterprise/guides/gmail-trigger",
"en/enterprise/guides/google-calendar-trigger",
"en/enterprise/guides/google-drive-trigger",
"en/enterprise/guides/outlook-trigger",
"en/enterprise/guides/onedrive-trigger",
"en/enterprise/guides/microsoft-teams-trigger",
"en/enterprise/guides/slack-trigger",
"en/enterprise/guides/hubspot-trigger",
"en/enterprise/guides/salesforce-trigger",
"en/enterprise/guides/zapier-trigger"
]
},
{
"group": "How-To Guides",
"pages": [
@@ -413,13 +341,16 @@
"en/enterprise/guides/kickoff-crew",
"en/enterprise/guides/update-crew",
"en/enterprise/guides/enable-crew-studio",
"en/enterprise/guides/capture_telemetry_logs",
"en/enterprise/guides/azure-openai-setup",
"en/enterprise/guides/tool-repository",
"en/enterprise/guides/automation-triggers",
"en/enterprise/guides/hubspot-trigger",
"en/enterprise/guides/react-component-export",
"en/enterprise/guides/salesforce-trigger",
"en/enterprise/guides/slack-trigger",
"en/enterprise/guides/team-management",
"en/enterprise/guides/webhook-automation",
"en/enterprise/guides/human-in-the-loop",
"en/enterprise/guides/webhook-automation"
"en/enterprise/guides/zapier-trigger"
]
},
{
@@ -438,7 +369,6 @@
"en/api-reference/introduction",
"en/api-reference/inputs",
"en/api-reference/kickoff",
"en/api-reference/resume",
"en/api-reference/status"
]
}
@@ -493,16 +423,6 @@
]
},
"tabs": [
{
"tab": "Início",
"icon": "house",
"groups": [
{
"group": "Bem-vindo",
"pages": ["pt-BR/index"]
}
]
},
{
"tab": "Documentação",
"icon": "book-open",
@@ -576,7 +496,6 @@
"group": "Integração MCP",
"pages": [
"pt-BR/mcp/overview",
"pt-BR/mcp/dsl-integration",
"pt-BR/mcp/stdio",
"pt-BR/mcp/sse",
"pt-BR/mcp/streamable-http",
@@ -679,12 +598,12 @@
]
},
{
"group": "Integrations",
"group": "Integrações",
"icon": "plug",
"pages": [
"pt-BR/tools/integration/overview",
"pt-BR/tools/integration/bedrockinvokeagenttool",
"pt-BR/tools/integration/crewaiautomationtool"
"pt-BR/tools/tool-integrations/overview",
"pt-BR/tools/tool-integrations/bedrockinvokeagenttool",
"pt-BR/tools/tool-integrations/crewaiautomationtool"
]
},
{
@@ -704,8 +623,6 @@
"pages": [
"pt-BR/observability/overview",
"pt-BR/observability/arize-phoenix",
"pt-BR/observability/braintrust",
"pt-BR/observability/datadog",
"pt-BR/observability/langdb",
"pt-BR/observability/langfuse",
"pt-BR/observability/langtrace",
@@ -734,17 +651,13 @@
"pt-BR/learn/force-tool-output-as-result",
"pt-BR/learn/hierarchical-process",
"pt-BR/learn/human-input-on-execution",
"pt-BR/learn/human-in-the-loop",
"pt-BR/learn/kickoff-async",
"pt-BR/learn/kickoff-for-each",
"pt-BR/learn/llm-connections",
"pt-BR/learn/multimodal-agents",
"pt-BR/learn/replay-tasks-from-latest-crew-kickoff",
"pt-BR/learn/sequential-process",
"pt-BR/learn/using-annotations",
"pt-BR/learn/execution-hooks",
"pt-BR/learn/llm-hooks",
"pt-BR/learn/tool-hooks"
"pt-BR/learn/using-annotations"
]
},
{
@@ -754,7 +667,7 @@
]
},
{
"tab": "AOP",
"tab": "Enterprise",
"icon": "briefcase",
"groups": [
{
@@ -762,27 +675,14 @@
"pages": ["pt-BR/enterprise/introduction"]
},
{
"group": "Construir",
"group": "Funcionalidades",
"pages": [
"pt-BR/enterprise/features/automations",
"pt-BR/enterprise/features/crew-studio",
"pt-BR/enterprise/features/marketplace",
"pt-BR/enterprise/features/agent-repositories",
"pt-BR/enterprise/features/tools-and-integrations"
]
},
{
"group": "Operar",
"pages": [
"pt-BR/enterprise/features/traces",
"pt-BR/enterprise/features/rbac",
"pt-BR/enterprise/features/tool-repository",
"pt-BR/enterprise/features/webhook-streaming",
"pt-BR/enterprise/features/hallucination-guardrail"
]
},
{
"group": "Gerenciar",
"pages": [
"pt-BR/enterprise/features/rbac"
"pt-BR/enterprise/features/traces",
"pt-BR/enterprise/features/hallucination-guardrail",
"pt-BR/enterprise/features/integrations"
]
},
{
@@ -794,20 +694,10 @@
"pt-BR/enterprise/integrations/github",
"pt-BR/enterprise/integrations/gmail",
"pt-BR/enterprise/integrations/google_calendar",
"pt-BR/enterprise/integrations/google_contacts",
"pt-BR/enterprise/integrations/google_docs",
"pt-BR/enterprise/integrations/google_drive",
"pt-BR/enterprise/integrations/google_sheets",
"pt-BR/enterprise/integrations/google_slides",
"pt-BR/enterprise/integrations/hubspot",
"pt-BR/enterprise/integrations/jira",
"pt-BR/enterprise/integrations/linear",
"pt-BR/enterprise/integrations/microsoft_excel",
"pt-BR/enterprise/integrations/microsoft_onedrive",
"pt-BR/enterprise/integrations/microsoft_outlook",
"pt-BR/enterprise/integrations/microsoft_sharepoint",
"pt-BR/enterprise/integrations/microsoft_teams",
"pt-BR/enterprise/integrations/microsoft_word",
"pt-BR/enterprise/integrations/notion",
"pt-BR/enterprise/integrations/salesforce",
"pt-BR/enterprise/integrations/shopify",
@@ -825,26 +715,14 @@
"pt-BR/enterprise/guides/update-crew",
"pt-BR/enterprise/guides/enable-crew-studio",
"pt-BR/enterprise/guides/azure-openai-setup",
"pt-BR/enterprise/guides/tool-repository",
"pt-BR/enterprise/guides/react-component-export",
"pt-BR/enterprise/guides/team-management",
"pt-BR/enterprise/guides/human-in-the-loop",
"pt-BR/enterprise/guides/webhook-automation"
]
},
{
"group": "Triggers",
"pages": [
"pt-BR/enterprise/guides/automation-triggers",
"pt-BR/enterprise/guides/gmail-trigger",
"pt-BR/enterprise/guides/google-calendar-trigger",
"pt-BR/enterprise/guides/google-drive-trigger",
"pt-BR/enterprise/guides/outlook-trigger",
"pt-BR/enterprise/guides/onedrive-trigger",
"pt-BR/enterprise/guides/microsoft-teams-trigger",
"pt-BR/enterprise/guides/slack-trigger",
"pt-BR/enterprise/guides/hubspot-trigger",
"pt-BR/enterprise/guides/react-component-export",
"pt-BR/enterprise/guides/salesforce-trigger",
"pt-BR/enterprise/guides/slack-trigger",
"pt-BR/enterprise/guides/team-management",
"pt-BR/enterprise/guides/webhook-automation",
"pt-BR/enterprise/guides/human-in-the-loop",
"pt-BR/enterprise/guides/zapier-trigger"
]
},
@@ -866,7 +744,6 @@
"pt-BR/api-reference/introduction",
"pt-BR/api-reference/inputs",
"pt-BR/api-reference/kickoff",
"pt-BR/api-reference/resume",
"pt-BR/api-reference/status"
]
}
@@ -921,16 +798,6 @@
]
},
"tabs": [
{
"tab": "홈",
"icon": "house",
"groups": [
{
"group": "환영합니다",
"pages": ["ko/index"]
}
]
},
{
"tab": "기술 문서",
"icon": "book-open",
@@ -1000,7 +867,6 @@
"group": "MCP 통합",
"pages": [
"ko/mcp/overview",
"ko/mcp/dsl-integration",
"ko/mcp/stdio",
"ko/mcp/sse",
"ko/mcp/streamable-http",
@@ -1110,16 +976,17 @@
"ko/tools/cloud-storage/overview",
"ko/tools/cloud-storage/s3readertool",
"ko/tools/cloud-storage/s3writertool",
"ko/tools/cloud-storage/bedrockinvokeagenttool",
"ko/tools/cloud-storage/bedrockkbretriever"
]
},
{
"group": "Integrations",
"group": "통합",
"icon": "plug",
"pages": [
"ko/tools/integration/overview",
"ko/tools/integration/bedrockinvokeagenttool",
"ko/tools/integration/crewaiautomationtool"
"ko/tools/tool-integrations/overview",
"ko/tools/tool-integrations/bedrockinvokeagenttool",
"ko/tools/tool-integrations/crewaiautomationtool"
]
},
{
@@ -1140,8 +1007,6 @@
"pages": [
"ko/observability/overview",
"ko/observability/arize-phoenix",
"ko/observability/braintrust",
"ko/observability/datadog",
"ko/observability/langdb",
"ko/observability/langfuse",
"ko/observability/langtrace",
@@ -1170,17 +1035,13 @@
"ko/learn/force-tool-output-as-result",
"ko/learn/hierarchical-process",
"ko/learn/human-input-on-execution",
"ko/learn/human-in-the-loop",
"ko/learn/kickoff-async",
"ko/learn/kickoff-for-each",
"ko/learn/llm-connections",
"ko/learn/multimodal-agents",
"ko/learn/replay-tasks-from-latest-crew-kickoff",
"ko/learn/sequential-process",
"ko/learn/using-annotations",
"ko/learn/execution-hooks",
"ko/learn/llm-hooks",
"ko/learn/tool-hooks"
"ko/learn/using-annotations"
]
},
{
@@ -1198,27 +1059,15 @@
"pages": ["ko/enterprise/introduction"]
},
{
"group": "빌드",
"group": "특징",
"pages": [
"ko/enterprise/features/automations",
"ko/enterprise/features/crew-studio",
"ko/enterprise/features/marketplace",
"ko/enterprise/features/agent-repositories",
"ko/enterprise/features/tools-and-integrations"
]
},
{
"group": "운영",
"pages": [
"ko/enterprise/features/traces",
"ko/enterprise/features/rbac",
"ko/enterprise/features/tool-repository",
"ko/enterprise/features/webhook-streaming",
"ko/enterprise/features/hallucination-guardrail"
]
},
{
"group": "관리",
"pages": [
"ko/enterprise/features/rbac"
"ko/enterprise/features/traces",
"ko/enterprise/features/hallucination-guardrail",
"ko/enterprise/features/integrations",
"ko/enterprise/features/agent-repositories"
]
},
{
@@ -1230,20 +1079,10 @@
"ko/enterprise/integrations/github",
"ko/enterprise/integrations/gmail",
"ko/enterprise/integrations/google_calendar",
"ko/enterprise/integrations/google_contacts",
"ko/enterprise/integrations/google_docs",
"ko/enterprise/integrations/google_drive",
"ko/enterprise/integrations/google_sheets",
"ko/enterprise/integrations/google_slides",
"ko/enterprise/integrations/hubspot",
"ko/enterprise/integrations/jira",
"ko/enterprise/integrations/linear",
"ko/enterprise/integrations/microsoft_excel",
"ko/enterprise/integrations/microsoft_onedrive",
"ko/enterprise/integrations/microsoft_outlook",
"ko/enterprise/integrations/microsoft_sharepoint",
"ko/enterprise/integrations/microsoft_teams",
"ko/enterprise/integrations/microsoft_word",
"ko/enterprise/integrations/notion",
"ko/enterprise/integrations/salesforce",
"ko/enterprise/integrations/shopify",
@@ -1261,26 +1100,14 @@
"ko/enterprise/guides/update-crew",
"ko/enterprise/guides/enable-crew-studio",
"ko/enterprise/guides/azure-openai-setup",
"ko/enterprise/guides/tool-repository",
"ko/enterprise/guides/react-component-export",
"ko/enterprise/guides/team-management",
"ko/enterprise/guides/human-in-the-loop",
"ko/enterprise/guides/webhook-automation"
]
},
{
"group": "트리거",
"pages": [
"ko/enterprise/guides/automation-triggers",
"ko/enterprise/guides/gmail-trigger",
"ko/enterprise/guides/google-calendar-trigger",
"ko/enterprise/guides/google-drive-trigger",
"ko/enterprise/guides/outlook-trigger",
"ko/enterprise/guides/onedrive-trigger",
"ko/enterprise/guides/microsoft-teams-trigger",
"ko/enterprise/guides/slack-trigger",
"ko/enterprise/guides/hubspot-trigger",
"ko/enterprise/guides/react-component-export",
"ko/enterprise/guides/salesforce-trigger",
"ko/enterprise/guides/slack-trigger",
"ko/enterprise/guides/team-management",
"ko/enterprise/guides/webhook-automation",
"ko/enterprise/guides/human-in-the-loop",
"ko/enterprise/guides/zapier-trigger"
]
},
@@ -1300,7 +1127,6 @@
"ko/api-reference/introduction",
"ko/api-reference/inputs",
"ko/api-reference/kickoff",
"ko/api-reference/resume",
"ko/api-reference/status"
]
}

View File

@@ -1,32 +1,31 @@
---
title: "Introduction"
description: "Complete reference for the CrewAI AOP REST API"
description: "Complete reference for the CrewAI Enterprise REST API"
icon: "code"
mode: "wide"
---
# CrewAI AOP API
# CrewAI Enterprise API
Welcome to the CrewAI AOP API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
Welcome to the CrewAI Enterprise API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
## Quick Start
<Steps>
<Step title="Get Your API Credentials">
Navigate to your crew's detail page in the CrewAI AOP dashboard and copy your Bearer Token from the Status tab.
Navigate to your crew's detail page in the CrewAI Enterprise dashboard and copy your Bearer Token from the Status tab.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive
a `kickoff_id`.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
</Step>
<Step title="Monitor Progress">
Use `GET /{kickoff_id}/status` to check execution status and retrieve results.
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
</Step>
</Steps>
@@ -41,14 +40,13 @@ curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
### Token Types
| Token Type | Scope | Use Case |
| :-------------------- | :------------------------ | :----------------------------------------------------------- |
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
| Token Type | Scope | Use Case |
|:-----------|:--------|:----------|
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
<Tip>
You can find both token types in the Status tab of your crew's detail page in
the CrewAI AOP dashboard.
You can find both token types in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
</Tip>
## Base URL
@@ -64,36 +62,32 @@ Replace `your-crew-name` with your actual crew's URL from the dashboard.
## Typical Workflow
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
3. **Monitoring**: Poll `GET /{kickoff_id}/status` until completion
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
4. **Results**: Extract the final output from the completed response
## Error Handling
The API uses standard HTTP status codes:
| Code | Meaning |
| ----- | :----------------------------------------- |
| `200` | Success |
| `400` | Bad Request - Invalid input format |
| `401` | Unauthorized - Invalid bearer token |
| `404` | Not Found - Resource doesn't exist |
| Code | Meaning |
|------|:--------|
| `200` | Success |
| `400` | Bad Request - Invalid input format |
| `401` | Unauthorized - Invalid bearer token |
| `404` | Not Found - Resource doesn't exist |
| `422` | Validation Error - Missing required inputs |
| `500` | Server Error - Contact support |
| `500` | Server Error - Contact support |
## Interactive Testing
<Info>
**Why no "Send" button?** Since each CrewAI AOP user has their own unique crew
URL, we use **reference mode** instead of an interactive playground to avoid
confusion. This shows you exactly what the requests should look like without
non-functional send buttons.
**Why no "Send" button?** Since each CrewAI Enterprise user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
</Info>
Each endpoint page shows you:
- ✅ **Exact request format** with all parameters
- ✅ **Response examples** for success and error cases
- ✅ **Response examples** for success and error cases
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
- ✅ **Authentication examples** with proper Bearer token format
@@ -109,27 +103,18 @@ Each endpoint page shows you:
</CardGroup>
**Example workflow:**
1. **Copy this cURL example** from any endpoint page
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
3. **Replace the Bearer token** with your real token from the dashboard
4. **Run the request** in your terminal or API client
## Need Help?
<CardGroup cols={2}>
<Card
title="Enterprise Support"
icon="headset"
href="mailto:support@crewai.com"
>
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
Get help with API integration and troubleshooting
</Card>
<Card
title="Enterprise Dashboard"
icon="chart-line"
href="https://app.crewai.com"
>
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
Manage your crews and view execution logs
</Card>
</CardGroup>

View File

@@ -1,6 +0,0 @@
---
title: "POST /resume"
description: "Resume crew execution with human feedback"
openapi: "/enterprise-api.en.yaml POST /resume"
mode: "wide"
---

View File

@@ -1,6 +1,8 @@
---
title: "GET /{kickoff_id}/status"
title: "GET /status/{kickoff_id}"
description: "Get execution status"
openapi: "/enterprise-api.en.yaml GET /{kickoff_id}/status"
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
mode: "wide"
---

File diff suppressed because it is too large Load Diff

View File

@@ -20,7 +20,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
</Tip>
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
CrewAI AOP includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
CrewAI Enterprise includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
![Visual Agent Builder Screenshot](/images/enterprise/crew-studio-interface.png)

View File

@@ -5,7 +5,7 @@ icon: terminal
mode: "wide"
---
<Warning>Since release 0.140.0, CrewAI AOP started a process of migrating their login provider. As such, the authentication flow via CLI was updated. Users that use Google to login, or that created their account after July 3rd, 2025 will be unable to log in with older versions of the `crewai` library.</Warning>
<Warning>Since release 0.140.0, CrewAI Enterprise started a process of migrating their login provider. As such, the authentication flow via CLI was updated. Users that use Google to login, or that created their account after July 3rd, 2025 will be unable to log in with older versions of the `crewai` library.</Warning>
## Overview
@@ -186,9 +186,9 @@ def crew(self) -> Crew:
### 10. Deploy
Deploy the crew or flow to [CrewAI AOP](https://app.crewai.com).
Deploy the crew or flow to [CrewAI Enterprise](https://app.crewai.com).
- **Authentication**: You need to be authenticated to deploy to CrewAI AOP.
- **Authentication**: You need to be authenticated to deploy to CrewAI Enterprise.
You can login or create an account with:
```shell Terminal
crewai login
@@ -203,7 +203,7 @@ Deploy the crew or flow to [CrewAI AOP](https://app.crewai.com).
### 11. Organization Management
Manage your CrewAI AOP organizations.
Manage your CrewAI Enterprise organizations.
```shell Terminal
crewai org [COMMAND] [OPTIONS]
@@ -227,17 +227,17 @@ crewai org switch <organization_id>
```
<Note>
You must be authenticated to CrewAI AOP to use these organization management commands.
You must be authenticated to CrewAI Enterprise to use these organization management commands.
</Note>
- **Create a deployment** (continued):
- Links the deployment to the corresponding remote GitHub repository (it usually detects this automatically).
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI AOP.
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI Enterprise.
```shell Terminal
crewai deploy push
```
- Initiates the deployment process on the CrewAI AOP platform.
- Initiates the deployment process on the CrewAI Enterprise platform.
- Upon successful initiation, it will output the Deployment created successfully! message along with the Deployment Name and a unique Deployment ID (UUID).
- **Deployment Status**: You can check the status of your deployment with:
@@ -262,7 +262,7 @@ You must be authenticated to CrewAI AOP to use these organization management com
```shell Terminal
crewai deploy remove
```
This deletes the deployment from the CrewAI AOP platform.
This deletes the deployment from the CrewAI Enterprise platform.
- **Help Command**: You can get help with the CLI with:
```shell Terminal
@@ -270,20 +270,22 @@ You must be authenticated to CrewAI AOP to use these organization management com
```
This shows the help message for the CrewAI Deploy CLI.
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI AOP](http://app.crewai.com) using the CLI.
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI Enterprise](http://app.crewai.com) using the CLI.
<iframe
className="w-full aspect-video rounded-xl"
width="100%"
height="400"
src="https://www.youtube.com/embed/3EqSV-CYDZA"
title="CrewAI Deployment Guide"
frameBorder="0"
frameborder="0"
style={{ borderRadius: '10px' }}
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowFullScreen
allowfullscreen
></iframe>
### 11. Login
Authenticate with CrewAI AOP using a secure device code flow (no email entry required).
Authenticate with CrewAI Enterprise using a secure device code flow (no email entry required).
```shell Terminal
crewai login
@@ -354,7 +356,7 @@ crewai config reset
#### Available Configuration Parameters
- `enterprise_base_url`: Base URL of the CrewAI AOP instance
- `enterprise_base_url`: Base URL of the CrewAI Enterprise instance
- `oauth2_provider`: OAuth2 provider used for authentication (e.g., workos, okta, auth0)
- `oauth2_audience`: OAuth2 audience value, typically used to identify the target API or resource
- `oauth2_client_id`: OAuth2 client ID issued by the provider, used during authentication requests
@@ -370,7 +372,7 @@ crewai config list
Example output:
| Setting | Value | Description |
| :------------------ | :----------------------- | :---------------------------------------------------------- |
| enterprise_base_url | https://app.crewai.com | Base URL of the CrewAI AOP instance |
| enterprise_base_url | https://app.crewai.com | Base URL of the CrewAI Enterprise instance |
| org_name | Not set | Name of the currently active organization |
| org_uuid | Not set | UUID of the currently active organization |
| oauth2_provider | workos | OAuth2 provider (e.g., workos, okta, auth0) |
@@ -402,77 +404,6 @@ crewai config reset
After resetting configuration, re-run `crewai login` to authenticate again.
</Tip>
### 14. Trace Management
Manage trace collection preferences for your Crew and Flow executions.
```shell Terminal
crewai traces [COMMAND]
```
#### Commands:
- `enable`: Enable trace collection for crew/flow executions
```shell Terminal
crewai traces enable
```
- `disable`: Disable trace collection for crew/flow executions
```shell Terminal
crewai traces disable
```
- `status`: Show current trace collection status
```shell Terminal
crewai traces status
```
#### How Tracing Works
Trace collection is controlled by checking three settings in priority order:
1. **Explicit flag in code** (highest priority - can enable OR disable):
```python
crew = Crew(agents=[...], tasks=[...], tracing=True) # Always enable
crew = Crew(agents=[...], tasks=[...], tracing=False) # Always disable
crew = Crew(agents=[...], tasks=[...]) # Check lower priorities (default)
```
- `tracing=True` will **always enable** tracing (overrides everything)
- `tracing=False` will **always disable** tracing (overrides everything)
- `tracing=None` or omitted will check lower priority settings
2. **Environment variable** (second priority):
```env
CREWAI_TRACING_ENABLED=true
```
- Checked only if `tracing` is not explicitly set to `True` or `False` in code
- Set to `true` or `1` to enable tracing
3. **User preference** (lowest priority):
```shell Terminal
crewai traces enable
```
- Checked only if `tracing` is not set in code and `CREWAI_TRACING_ENABLED` is not set to `true`
- Running `crewai traces enable` is sufficient to enable tracing by itself
<Note>
**To enable tracing**, use any one of these methods:
- Set `tracing=True` in your Crew/Flow code, OR
- Add `CREWAI_TRACING_ENABLED=true` to your `.env` file, OR
- Run `crewai traces enable`
**To disable tracing**, use any ONE of these methods:
- Set `tracing=False` in your Crew/Flow code (overrides everything), OR
- Remove or set to `false` the `CREWAI_TRACING_ENABLED` env var, OR
- Run `crewai traces disable`
Higher priority settings override lower ones.
</Note>
<Tip>
For more information about tracing, see the [Tracing documentation](/observability/tracing).
</Tip>
<Tip>
CrewAI CLI handles authentication to the Tool Repository automatically when adding packages to your project. Just append `crewai` before any `uv` command to use it. E.g. `crewai uv add requests`. For more information, see [Tool Repository](https://docs.crewai.com/enterprise/features/tool-repository) docs.
</Tip>

View File

@@ -33,7 +33,6 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | Knowledge sources available at the crew level, accessible to all the agents. |
| **Stream** _(optional)_ | `stream` | Enable streaming output to receive real-time updates during crew execution. Returns a `CrewStreamingOutput` object that can be iterated for chunks. Defaults to `False`. |
<Tip>
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
@@ -307,27 +306,12 @@ print(result)
### Different Ways to Kick Off a Crew
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process.
#### Synchronous Methods
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
- `kickoff()`: Starts the execution process according to the defined process flow.
- `kickoff_for_each()`: Executes tasks sequentially for each provided input event or item in the collection.
#### Asynchronous Methods
CrewAI offers two approaches for async execution:
| Method | Type | Description |
|--------|------|-------------|
| `akickoff()` | Native async | True async/await throughout the entire execution chain |
| `akickoff_for_each()` | Native async | Native async execution for each input in a list |
| `kickoff_async()` | Thread-based | Wraps synchronous execution in `asyncio.to_thread` |
| `kickoff_for_each_async()` | Thread-based | Thread-based async for each input in a list |
<Note>
For high-concurrency workloads, `akickoff()` and `akickoff_for_each()` are recommended as they use native async for task execution, memory operations, and knowledge retrieval.
</Note>
- `kickoff_async()`: Initiates the workflow asynchronously.
- `kickoff_for_each_async()`: Executes tasks concurrently for each provided input event or item, leveraging asynchronous processing.
```python Code
# Start the crew's task execution
@@ -340,53 +324,19 @@ results = my_crew.kickoff_for_each(inputs=inputs_array)
for result in results:
print(result)
# Example of using native async with akickoff
inputs = {'topic': 'AI in healthcare'}
async_result = await my_crew.akickoff(inputs=inputs)
print(async_result)
# Example of using native async with akickoff_for_each
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
async_results = await my_crew.akickoff_for_each(inputs=inputs_array)
for async_result in async_results:
print(async_result)
# Example of using thread-based kickoff_async
# Example of using kickoff_async
inputs = {'topic': 'AI in healthcare'}
async_result = await my_crew.kickoff_async(inputs=inputs)
print(async_result)
# Example of using thread-based kickoff_for_each_async
# Example of using kickoff_for_each_async
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
async_results = await my_crew.kickoff_for_each_async(inputs=inputs_array)
for async_result in async_results:
print(async_result)
```
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs. For detailed async examples, see the [Kickoff Crew Asynchronously](/en/learn/kickoff-async) guide.
### Streaming Crew Execution
For real-time visibility into crew execution, you can enable streaming to receive output as it's generated:
```python Code
# Enable streaming
crew = Crew(
agents=[researcher],
tasks=[task],
stream=True
)
# Iterate over streaming output
streaming = crew.kickoff(inputs={"topic": "AI"})
for chunk in streaming:
print(chunk.content, end="", flush=True)
# Access final result
result = streaming.result
```
Learn more about streaming in the [Streaming Crew Execution](/en/learn/streaming-crew-execution) guide.
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs.
### Replaying from a Specific Task

View File

@@ -20,7 +20,7 @@ CrewAI uses an event bus architecture to emit events throughout the execution li
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
<Note type="info" title="Enterprise Enhancement: Prompt Tracing">
CrewAI AOP provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
CrewAI Enterprise provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
![Prompt Tracing Dashboard](/images/enterprise/traces-overview.png)

View File

@@ -875,13 +875,14 @@ By exploring these examples, you can gain insights into how to leverage CrewAI F
Also, check out our YouTube video on how to use flows in CrewAI below!
<iframe
className="w-full aspect-video rounded-xl"
width="560"
height="315"
src="https://www.youtube.com/embed/MTb5my6VOT8"
title="CrewAI Flows overview"
frameBorder="0"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerPolicy="strict-origin-when-cross-origin"
allowFullScreen
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Running Flows
@@ -897,31 +898,6 @@ flow = ExampleFlow()
result = flow.kickoff()
```
### Streaming Flow Execution
For real-time visibility into flow execution, you can enable streaming to receive output as it's generated:
```python
class StreamingFlow(Flow):
stream = True # Enable streaming
@start()
def research(self):
# Your flow implementation
pass
# Iterate over streaming output
flow = StreamingFlow()
streaming = flow.kickoff()
for chunk in streaming:
print(chunk.content, end="", flush=True)
# Access final result
result = streaming.result
```
Learn more about streaming in the [Streaming Flow Execution](/en/learn/streaming-flow-execution) guide.
### Using the CLI
Starting from version 0.103.0, you can run flows using the `crewai run` command:

View File

@@ -388,8 +388,8 @@ crew = Crew(
agents=[sales_agent, tech_agent, support_agent],
tasks=[...],
embedder={ # Fallback embedder for agents without their own
"provider": "google-generativeai",
"config": {"model_name": "gemini-embedding-001"}
"provider": "google",
"config": {"model": "text-embedding-004"}
}
)
@@ -629,9 +629,9 @@ agent = Agent(
backstory="Expert researcher",
knowledge_sources=[knowledge_source],
embedder={
"provider": "google-generativeai",
"provider": "google",
"config": {
"model_name": "gemini-embedding-001",
"model": "models/text-embedding-004",
"api_key": "your-google-key"
}
}
@@ -739,7 +739,7 @@ class KnowledgeMonitorListener(BaseEventListener):
knowledge_monitor = KnowledgeMonitorListener()
```
For more information on using events, see the [Event Listeners](/en/concepts/event-listener) documentation.
For more information on using events, see the [Event Listeners](https://docs.crewai.com/concepts/event-listener) documentation.
### Custom Knowledge Sources

View File

@@ -7,7 +7,7 @@ mode: "wide"
## Overview
CrewAI integrates with multiple LLM providers through providers native sdks, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
## What are LLMs?
@@ -113,104 +113,44 @@ In this section, you'll find detailed examples that help you select, configure,
<AccordionGroup>
<Accordion title="OpenAI">
CrewAI provides native integration with OpenAI through the OpenAI Python SDK.
Set the following environment variables in your `.env` file:
```toml Code
# Required
OPENAI_API_KEY=sk-...
# Optional
OPENAI_BASE_URL=<custom-base-url>
OPENAI_API_BASE=<custom-base-url>
OPENAI_ORGANIZATION=<your-org-id>
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="openai/gpt-4o",
api_key="your-api-key", # Or set OPENAI_API_KEY
temperature=0.7,
max_tokens=4000
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="openai/gpt-4o",
api_key="your-api-key",
base_url="https://api.openai.com/v1", # Optional custom endpoint
organization="org-...", # Optional organization ID
project="proj_...", # Optional project ID
temperature=0.7,
max_tokens=4000,
max_completion_tokens=4000, # For newer models
model="openai/gpt-4", # call model by provider/model_name
temperature=0.8,
max_tokens=150,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42, # For reproducible outputs
stream=True, # Enable streaming
timeout=60.0, # Request timeout in seconds
max_retries=3, # Maximum retry attempts
logprobs=True, # Return log probabilities
top_logprobs=5, # Number of most likely tokens
reasoning_effort="medium" # For o1 models: low, medium, high
seed=42
)
```
**Structured Outputs:**
```python Code
from pydantic import BaseModel
from crewai import LLM
class ResponseFormat(BaseModel):
name: str
age: int
summary: str
llm = LLM(
model="openai/gpt-4o",
)
```
**Supported Environment Variables:**
- `OPENAI_API_KEY`: Your OpenAI API key (required)
- `OPENAI_BASE_URL`: Custom base URL for OpenAI API (optional)
**Features:**
- Native function calling support (except o1 models)
- Structured outputs with JSON schema
- Streaming support for real-time responses
- Token usage tracking
- Stop sequences support (except o1 models)
- Log probabilities for token-level insights
- Reasoning effort control for o1 models
**Supported Models:**
OpenAI is one of the leading providers of LLMs with a wide range of models and features.
| Model | Context Window | Best For |
|---------------------|------------------|-----------------------------------------------|
| gpt-4.1 | 1M tokens | Latest model with enhanced capabilities |
| gpt-4.1-mini | 1M tokens | Efficient version with large context |
| gpt-4.1-nano | 1M tokens | Ultra-efficient variant |
| gpt-4o | 128,000 tokens | Optimized for speed and intelligence |
| gpt-4o-mini | 200,000 tokens | Cost-effective with large context |
| gpt-4-turbo | 128,000 tokens | Long-form content, document analysis |
| gpt-4 | 8,192 tokens | High-accuracy tasks, complex reasoning |
| o1 | 200,000 tokens | Advanced reasoning, complex problem-solving |
| o1-preview | 128,000 tokens | Preview of reasoning capabilities |
| o1-mini | 128,000 tokens | Efficient reasoning model |
| o3-mini | 200,000 tokens | Lightweight reasoning model |
| o4-mini | 200,000 tokens | Next-gen efficient reasoning |
**Note:** To use OpenAI, install the required dependencies:
```bash
uv add "crewai[openai]"
```
| GPT-4 | 8,192 tokens | High-accuracy tasks, complex reasoning |
| GPT-4 Turbo | 128,000 tokens | Long-form content, document analysis |
| GPT-4o & GPT-4o-mini | 128,000 tokens | Cost-effective large context processing |
| o3-mini | 200,000 tokens | Fast reasoning, complex reasoning |
| o1-mini | 128,000 tokens | Fast reasoning, complex reasoning |
| o1-preview | 128,000 tokens | Fast reasoning, complex reasoning |
| o1 | 200,000 tokens | Fast reasoning, complex reasoning |
</Accordion>
<Accordion title="Meta-Llama">
@@ -247,230 +187,69 @@ In this section, you'll find detailed examples that help you select, configure,
</Accordion>
<Accordion title="Anthropic">
CrewAI provides native integration with Anthropic through the Anthropic Python SDK.
```toml Code
# Required
ANTHROPIC_API_KEY=sk-ant-...
# Optional
ANTHROPIC_API_BASE=<custom-base-url>
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="your-api-key", # Or set ANTHROPIC_API_KEY
max_tokens=4096 # Required for Anthropic
model="anthropic/claude-3-sonnet-20240229-v1:0",
temperature=0.7
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="your-api-key",
base_url="https://api.anthropic.com", # Optional custom endpoint
temperature=0.7,
max_tokens=4096, # Required parameter
top_p=0.9,
stop_sequences=["END", "STOP"], # Anthropic uses stop_sequences
stream=True, # Enable streaming
timeout=60.0, # Request timeout in seconds
max_retries=3 # Maximum retry attempts
)
```
**Extended Thinking (Claude Sonnet 4 and Beyond):**
CrewAI supports Anthropic's Extended Thinking feature, which allows Claude to think through problems in a more human-like way before responding. This is particularly useful for complex reasoning, analysis, and problem-solving tasks.
```python Code
from crewai import LLM
# Enable extended thinking with default settings
llm = LLM(
model="anthropic/claude-sonnet-4",
thinking={"type": "enabled"},
max_tokens=10000
)
# Configure thinking with budget control
llm = LLM(
model="anthropic/claude-sonnet-4",
thinking={
"type": "enabled",
"budget_tokens": 5000 # Limit thinking tokens
},
max_tokens=10000
)
```
**Thinking Configuration Options:**
- `type`: Set to `"enabled"` to activate extended thinking mode
- `budget_tokens` (optional): Maximum tokens to use for thinking (helps control costs)
**Models Supporting Extended Thinking:**
- `claude-sonnet-4` and newer models
- `claude-3-7-sonnet` (with extended thinking capabilities)
**When to Use Extended Thinking:**
- Complex reasoning and multi-step problem solving
- Mathematical calculations and proofs
- Code analysis and debugging
- Strategic planning and decision making
- Research and analytical tasks
**Note:** Extended thinking consumes additional tokens but can significantly improve response quality for complex tasks.
**Supported Environment Variables:**
- `ANTHROPIC_API_KEY`: Your Anthropic API key (required)
**Features:**
- Native tool use support for Claude 3+ models
- Extended Thinking support for Claude Sonnet 4+
- Streaming support for real-time responses
- Automatic system message handling
- Stop sequences for controlled output
- Token usage tracking
- Multi-turn tool use conversations
**Important Notes:**
- `max_tokens` is a **required** parameter for all Anthropic models
- Claude uses `stop_sequences` instead of `stop`
- System messages are handled separately from conversation messages
- First message must be from the user (automatically handled)
- Messages must alternate between user and assistant
**Supported Models:**
| Model | Context Window | Best For |
|------------------------------|----------------|-----------------------------------------------|
| claude-sonnet-4 | 200,000 tokens | Latest with extended thinking capabilities |
| claude-3-7-sonnet | 200,000 tokens | Advanced reasoning and agentic tasks |
| claude-3-5-sonnet-20241022 | 200,000 tokens | Latest Sonnet with best performance |
| claude-3-5-haiku | 200,000 tokens | Fast, compact model for quick responses |
| claude-3-opus | 200,000 tokens | Most capable for complex tasks |
| claude-3-sonnet | 200,000 tokens | Balanced intelligence and speed |
| claude-3-haiku | 200,000 tokens | Fastest for simple tasks |
| claude-2.1 | 200,000 tokens | Extended context, reduced hallucinations |
| claude-2 | 100,000 tokens | Versatile model for various tasks |
| claude-instant | 100,000 tokens | Fast, cost-effective for everyday tasks |
**Note:** To use Anthropic, install the required dependencies:
```bash
uv add "crewai[anthropic]"
```
</Accordion>
<Accordion title="Google (Gemini API)">
CrewAI provides native integration with Google Gemini through the Google Gen AI Python SDK.
Set your API key in your `.env` file. If you need a key, check [AI Studio](https://aistudio.google.com/apikey).
Set your API key in your `.env` file. If you need a key, or need to find an
existing key, check [AI Studio](https://aistudio.google.com/apikey).
```toml .env
# Required (one of the following)
GOOGLE_API_KEY=<your-api-key>
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Optional - for Vertex AI
GOOGLE_CLOUD_PROJECT=<your-project-id>
GOOGLE_CLOUD_LOCATION=<location> # Defaults to us-central1
GOOGLE_GENAI_USE_VERTEXAI=true # Set to use Vertex AI
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
api_key="your-api-key", # Or set GOOGLE_API_KEY/GEMINI_API_KEY
temperature=0.7
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.5-flash",
api_key="your-api-key",
temperature=0.7,
top_p=0.9,
top_k=40, # Top-k sampling parameter
max_output_tokens=8192,
stop_sequences=["END", "STOP"],
stream=True, # Enable streaming
safety_settings={
"HARM_CATEGORY_HARASSMENT": "BLOCK_NONE",
"HARM_CATEGORY_HATE_SPEECH": "BLOCK_NONE"
}
)
```
**Vertex AI Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-1.5-pro",
project="your-gcp-project-id",
location="us-central1" # GCP region
)
```
**Supported Environment Variables:**
- `GOOGLE_API_KEY` or `GEMINI_API_KEY`: Your Google API key (required for Gemini API)
- `GOOGLE_CLOUD_PROJECT`: Google Cloud project ID (for Vertex AI)
- `GOOGLE_CLOUD_LOCATION`: GCP location (defaults to `us-central1`)
- `GOOGLE_GENAI_USE_VERTEXAI`: Set to `true` to use Vertex AI
**Features:**
- Native function calling support for Gemini 1.5+ and 2.x models
- Streaming support for real-time responses
- Multimodal capabilities (text, images, video)
- Safety settings configuration
- Support for both Gemini API and Vertex AI
- Automatic system instruction handling
- Token usage tracking
**Gemini Models:**
### Gemini models
Google offers a range of powerful models optimized for different use cases.
| Model | Context Window | Best For |
|--------------------------------|----------------|-------------------------------------------------------------------|
| gemini-2.5-flash | 1M tokens | Adaptive thinking, cost efficiency |
| gemini-2.5-pro | 1M tokens | Enhanced thinking and reasoning, multimodal understanding |
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking |
| gemini-2.0-flash-thinking | 32,768 tokens | Advanced reasoning with thinking process |
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
| gemini-1.5-pro | 2M tokens | Best performing, logical reasoning, coding |
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
| gemini-1.5-flash-8b | 1M tokens | Fastest, most cost-efficient |
| gemini-1.0-pro | 32,768 tokens | Earlier generation model |
**Gemma Models:**
The Gemini API also supports [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
| Model | Context Window | Best For |
|----------------|----------------|------------------------------------|
| gemma-3-1b | 32,000 tokens | Ultra-lightweight tasks |
| gemma-3-4b | 128,000 tokens | Efficient general-purpose tasks |
| gemma-3-12b | 128,000 tokens | Balanced performance and efficiency|
| gemma-3-27b | 128,000 tokens | High-performance tasks |
**Note:** To use Google Gemini, install the required dependencies:
```bash
uv add "crewai[google-genai]"
```
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
The full list of models is available in the [Gemini model docs](https://ai.google.dev/gemini-api/docs/models).
### Gemma
The Gemini API also allows you to use your API key to access [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
| Model | Context Window |
|----------------|----------------|
| gemma-3-1b-it | 32k tokens |
| gemma-3-4b-it | 32k tokens |
| gemma-3-12b-it | 32k tokens |
| gemma-3-27b-it | 128k tokens |
</Accordion>
<Accordion title="Google (Vertex AI)">
Get credentials from your Google Cloud Console and save it to a JSON file, then load it with the following code:
@@ -512,146 +291,43 @@ In this section, you'll find detailed examples that help you select, configure,
</Accordion>
<Accordion title="Azure">
CrewAI provides native integration with Azure AI Inference and Azure OpenAI through the Azure AI Inference Python SDK.
```toml Code
# Required
AZURE_API_KEY=<your-api-key>
AZURE_ENDPOINT=<your-endpoint-url>
AZURE_API_BASE=<your-resource-url>
AZURE_API_VERSION=<api-version>
# Optional
AZURE_API_VERSION=<api-version> # Defaults to 2024-06-01
AZURE_AD_TOKEN=<your-azure-ad-token>
AZURE_API_TYPE=<your-azure-api-type>
```
**Endpoint URL Formats:**
For Azure OpenAI deployments:
```
https://<resource-name>.openai.azure.com/openai/deployments/<deployment-name>
```
For Azure AI Inference endpoints:
```
https://<resource-name>.inference.azure.com
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
llm = LLM(
model="azure/gpt-4",
api_key="<your-api-key>", # Or set AZURE_API_KEY
endpoint="<your-endpoint-url>",
api_version="2024-06-01"
api_version="2023-05-15"
)
```
**Advanced Configuration:**
```python Code
llm = LLM(
model="azure/gpt-4o",
temperature=0.7,
max_tokens=4000,
top_p=0.9,
frequency_penalty=0.0,
presence_penalty=0.0,
stop=["END"],
stream=True,
timeout=60.0,
max_retries=3
)
```
**Supported Environment Variables:**
- `AZURE_API_KEY`: Your Azure API key (required)
- `AZURE_ENDPOINT`: Your Azure endpoint URL (required, also checks `AZURE_OPENAI_ENDPOINT` and `AZURE_API_BASE`)
- `AZURE_API_VERSION`: API version (optional, defaults to `2024-06-01`)
**Features:**
- Native function calling support for Azure OpenAI models (gpt-4, gpt-4o, gpt-3.5-turbo, etc.)
- Streaming support for real-time responses
- Automatic endpoint URL validation and correction
- Comprehensive error handling with retry logic
- Token usage tracking
**Note:** To use Azure AI Inference, install the required dependencies:
```bash
uv add "crewai[azure-ai-inference]"
```
</Accordion>
<Accordion title="AWS Bedrock">
CrewAI provides native integration with AWS Bedrock through the boto3 SDK using the Converse API.
```toml Code
# Required
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
# Optional
AWS_SESSION_TOKEN=<your-session-token> # For temporary credentials
AWS_DEFAULT_REGION=<your-region> # Defaults to us-east-1
AWS_DEFAULT_REGION=<your-region>
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
region_name="us-east-1"
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
Before using Amazon Bedrock, make sure you have boto3 installed in your environment
llm = LLM(
model="bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
aws_access_key_id="your-access-key", # Or set AWS_ACCESS_KEY_ID
aws_secret_access_key="your-secret-key", # Or set AWS_SECRET_ACCESS_KEY
aws_session_token="your-session-token", # For temporary credentials
region_name="us-east-1",
temperature=0.7,
max_tokens=4096,
top_p=0.9,
top_k=250, # For Claude models
stop_sequences=["END", "STOP"],
stream=True, # Enable streaming
guardrail_config={ # Optional content filtering
"guardrailIdentifier": "your-guardrail-id",
"guardrailVersion": "1"
},
additional_model_request_fields={ # Model-specific parameters
"top_k": 250
}
)
```
**Supported Environment Variables:**
- `AWS_ACCESS_KEY_ID`: AWS access key (required)
- `AWS_SECRET_ACCESS_KEY`: AWS secret key (required)
- `AWS_SESSION_TOKEN`: AWS session token for temporary credentials (optional)
- `AWS_DEFAULT_REGION`: AWS region (defaults to `us-east-1`)
**Features:**
- Native tool calling support via Converse API
- Streaming and non-streaming responses
- Comprehensive error handling with retry logic
- Guardrail configuration for content filtering
- Model-specific parameters via `additional_model_request_fields`
- Token usage tracking and stop reason logging
- Support for all Bedrock foundation models
- Automatic conversation format handling
**Important Notes:**
- Uses the modern Converse API for unified model access
- Automatic handling of model-specific conversation requirements
- System messages are handled separately from conversation
- First message must be from user (automatically handled)
- Some models (like Cohere) require conversation to end with user message
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API.
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API, enabling secure and responsible AI application development.
| Model | Context Window | Best For |
|-------------------------|----------------------|-------------------------------------------------------------------|
@@ -681,12 +357,7 @@ In this section, you'll find detailed examples that help you select, configure,
| Jamba-Instruct | Up to 256k tokens | Model with extended context window optimized for cost-effective text generation, summarization, and Q&A. |
| Mistral 7B Instruct | Up to 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| Mistral 8x7B Instruct | Up to 32k tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
| DeepSeek R1 | 32,768 tokens | Advanced reasoning model |
**Note:** To use AWS Bedrock, install the required dependencies:
```bash
uv add "crewai[bedrock]"
```
</Accordion>
<Accordion title="Amazon SageMaker">
@@ -1079,7 +750,7 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
```
<Tip>
[Click here](/en/concepts/event-listener#event-listeners) for more details
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
</Tip>
</Tab>
@@ -1133,50 +804,6 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
</Tab>
</Tabs>
## Async LLM Calls
CrewAI supports asynchronous LLM calls for improved performance and concurrency in your AI workflows. Async calls allow you to run multiple LLM requests concurrently without blocking, making them ideal for high-throughput applications and parallel agent operations.
<Tabs>
<Tab title="Basic Usage">
Use the `acall` method for asynchronous LLM requests:
```python
import asyncio
from crewai import LLM
async def main():
llm = LLM(model="openai/gpt-4o")
# Single async call
response = await llm.acall("What is the capital of France?")
print(response)
asyncio.run(main())
```
The `acall` method supports all the same parameters as the synchronous `call` method, including messages, tools, and callbacks.
</Tab>
<Tab title="With Streaming">
Combine async calls with streaming for real-time concurrent responses:
```python
import asyncio
from crewai import LLM
async def stream_async():
llm = LLM(model="openai/gpt-4o", stream=True)
response = await llm.acall("Write a short story about AI")
print(response)
asyncio.run(stream_async())
```
</Tab>
</Tabs>
## Structured LLM Calls
CrewAI supports structured responses from LLM calls by allowing you to define a `response_format` using a Pydantic model. This enables the framework to automatically parse and validate the output, making it easier to integrate the response into your application without manual post-processing.
@@ -1272,7 +899,7 @@ Learn how to get the most out of your LLM configuration:
</Accordion>
<Accordion title="Drop Additional Parameters">
CrewAI internally uses native sdks for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
CrewAI internally uses Litellm for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
For example, if you don't need to send the <code>stop</code> parameter, you can simply omit it from your LLM call:
```python
@@ -1288,52 +915,6 @@ Learn how to get the most out of your LLM configuration:
)
```
</Accordion>
<Accordion title="Transport Interceptors">
CrewAI provides message interceptors for several providers, allowing you to hook into request/response cycles at the transport layer.
**Supported Providers:**
- ✅ OpenAI
- ✅ Anthropic
**Basic Usage:**
```python
import httpx
from crewai import LLM
from crewai.llms.hooks import BaseInterceptor
class CustomInterceptor(BaseInterceptor[httpx.Request, httpx.Response]):
"""Custom interceptor to modify requests and responses."""
def on_outbound(self, request: httpx.Request) -> httpx.Request:
"""Print request before sending to the LLM provider."""
print(request)
return request
def on_inbound(self, response: httpx.Response) -> httpx.Response:
"""Process response after receiving from the LLM provider."""
print(f"Status: {response.status_code}")
print(f"Response time: {response.elapsed}")
return response
# Use the interceptor with an LLM
llm = LLM(
model="openai/gpt-4o",
interceptor=CustomInterceptor()
)
```
**Important Notes:**
- Both methods must return the received object or type of object.
- Modifying received objects may result in unexpected behavior or application crashes.
- Not all providers support interceptors - check the supported providers list above
<Info>
Interceptors operate at the transport layer. This is particularly useful for:
- Message transformation and filtering
- Debugging API interactions
</Info>
</Accordion>
</AccordionGroup>
## Common Issues and Solutions

View File

@@ -341,7 +341,7 @@ crew = Crew(
embedder={
"provider": "openai",
"config": {
"model_name": "text-embedding-3-small" # or "text-embedding-3-large"
"model": "text-embedding-3-small" # or "text-embedding-3-large"
}
}
)
@@ -353,7 +353,7 @@ crew = Crew(
"provider": "openai",
"config": {
"api_key": "your-openai-api-key", # Optional: override env var
"model_name": "text-embedding-3-large",
"model": "text-embedding-3-large",
"dimensions": 1536, # Optional: reduce dimensions for smaller storage
"organization_id": "your-org-id" # Optional: for organization accounts
}
@@ -375,7 +375,7 @@ crew = Crew(
"api_base": "https://your-resource.openai.azure.com/",
"api_type": "azure",
"api_version": "2023-05-15",
"model_name": "text-embedding-3-small",
"model": "text-embedding-3-small",
"deployment_id": "your-deployment-name" # Azure deployment name
}
}
@@ -390,10 +390,10 @@ Use Google's text embedding models for integration with Google Cloud services.
crew = Crew(
memory=True,
embedder={
"provider": "google-generativeai",
"provider": "google",
"config": {
"api_key": "your-google-api-key",
"model_name": "gemini-embedding-001" # or "text-embedding-005", "text-multilingual-embedding-002"
"model": "text-embedding-004" # or "text-embedding-preview-0409"
}
}
)
@@ -461,7 +461,7 @@ crew = Crew(
"provider": "cohere",
"config": {
"api_key": "your-cohere-api-key",
"model_name": "embed-english-v3.0" # or "embed-multilingual-v3.0"
"model": "embed-english-v3.0" # or "embed-multilingual-v3.0"
}
}
)
@@ -478,7 +478,7 @@ crew = Crew(
"provider": "voyageai",
"config": {
"api_key": "your-voyage-api-key",
"model": "voyage-3", # or "voyage-3-lite", "voyage-code-3"
"model": "voyage-large-2", # or "voyage-code-2" for code
"input_type": "document" # or "query"
}
}
@@ -515,7 +515,8 @@ crew = Crew(
"provider": "huggingface",
"config": {
"api_key": "your-hf-token", # Optional for public models
"model": "sentence-transformers/all-MiniLM-L6-v2"
"model": "sentence-transformers/all-MiniLM-L6-v2",
"api_url": "https://api-inference.huggingface.co" # or your custom endpoint
}
}
)
@@ -911,10 +912,10 @@ crew = Crew(
crew = Crew(
memory=True,
embedder={
"provider": "google-generativeai",
"provider": "google",
"config": {
"api_key": "your-api-key",
"model_name": "gemini-embedding-001"
"model": "text-embedding-004"
}
}
)

View File

@@ -14,7 +14,7 @@ Tasks provide all necessary details for execution, such as a description, the ag
Tasks within CrewAI can be collaborative, requiring multiple agents to work together. This is managed through the task properties and orchestrated by the Crew's process, enhancing teamwork and efficiency.
<Note type="info" title="Enterprise Enhancement: Visual Task Builder">
CrewAI AOP includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
CrewAI Enterprise includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
![Task Builder Screenshot](/images/enterprise/crew-studio-interface.png)
@@ -60,7 +60,6 @@ crew = Crew(
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
| **Guardrails** _(optional)_ | `guardrails` | `Optional[List[Callable] | List[str]]` | List of guardrails to validate task output before proceeding to next task. |
| **Guardrail Max Retries** _(optional)_ | `guardrail_max_retries` | `Optional[int]` | Maximum number of retries when guardrail validation fails. Defaults to 3. |
<Note type="warning" title="Deprecated: max_retries">
@@ -224,7 +223,6 @@ By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput`
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
| **Agent** | `agent` | `str` | The agent that executed the task. |
| **Output Format** | `output_format` | `OutputFormat` | The format of the task output, with options including RAW, JSON, and Pydantic. The default is RAW. |
| **Messages** | `messages` | `list[LLMMessage]` | The messages from the last task execution. |
### Task Methods and Properties
@@ -343,11 +341,7 @@ Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
feedback to agents when their output doesn't meet specific criteria.
CrewAI supports two types of guardrails:
1. **Function-based guardrails**: Python functions with custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
2. **LLM-based guardrails**: String descriptions that use the agent's LLM to validate outputs based on natural language criteria. These are ideal for complex or subjective validation requirements.
Guardrails are implemented as Python functions that contain custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
### Function-Based Guardrails
@@ -361,12 +355,12 @@ def validate_blog_content(result: TaskOutput) -> Tuple[bool, Any]:
"""Validate blog content meets requirements."""
try:
# Check word count
word_count = len(result.raw.split())
word_count = len(result.split())
if word_count > 200:
return (False, "Blog content exceeds 200 words")
# Additional validation logic here
return (True, result.raw.strip())
return (True, result.strip())
except Exception as e:
return (False, "Unexpected error during validation")
@@ -378,147 +372,6 @@ blog_task = Task(
)
```
### LLM-Based Guardrails (String Descriptions)
Instead of writing custom validation functions, you can use string descriptions that leverage LLM-based validation. When you provide a string to the `guardrail` or `guardrails` parameter, CrewAI automatically creates an `LLMGuardrail` that uses the agent's LLM to validate the output based on your description.
**Requirements**:
- The task must have an `agent` assigned (the guardrail uses the agent's LLM)
- Provide a clear, descriptive string explaining the validation criteria
```python Code
from crewai import Task
# Single LLM-based guardrail
blog_task = Task(
description="Write a blog post about AI",
expected_output="A blog post under 200 words",
agent=blog_agent,
guardrail="The blog post must be under 200 words and contain no technical jargon"
)
```
LLM-based guardrails are particularly useful for:
- **Complex validation logic** that's difficult to express programmatically
- **Subjective criteria** like tone, style, or quality assessments
- **Natural language requirements** that are easier to describe than code
The LLM guardrail will:
1. Analyze the task output against your description
2. Return `(True, output)` if the output complies with the criteria
3. Return `(False, feedback)` with specific feedback if validation fails
**Example with detailed validation criteria**:
```python Code
research_task = Task(
description="Research the latest developments in quantum computing",
expected_output="A comprehensive research report",
agent=researcher_agent,
guardrail="""
The research report must:
- Be at least 1000 words long
- Include at least 5 credible sources
- Cover both technical and practical applications
- Be written in a professional, academic tone
- Avoid speculation or unverified claims
"""
)
```
### Multiple Guardrails
You can apply multiple guardrails to a task using the `guardrails` parameter. Multiple guardrails are executed sequentially, with each guardrail receiving the output from the previous one. This allows you to chain validation and transformation steps.
The `guardrails` parameter accepts:
- A list of guardrail functions or string descriptions
- A single guardrail function or string (same as `guardrail`)
**Note**: If `guardrails` is provided, it takes precedence over `guardrail`. The `guardrail` parameter will be ignored when `guardrails` is set.
```python Code
from typing import Tuple, Any
from crewai import TaskOutput, Task
def validate_word_count(result: TaskOutput) -> Tuple[bool, Any]:
"""Validate word count is within limits."""
word_count = len(result.raw.split())
if word_count < 100:
return (False, f"Content too short: {word_count} words. Need at least 100 words.")
if word_count > 500:
return (False, f"Content too long: {word_count} words. Maximum is 500 words.")
return (True, result.raw)
def validate_no_profanity(result: TaskOutput) -> Tuple[bool, Any]:
"""Check for inappropriate language."""
profanity_words = ["badword1", "badword2"] # Example list
content_lower = result.raw.lower()
for word in profanity_words:
if word in content_lower:
return (False, f"Inappropriate language detected: {word}")
return (True, result.raw)
def format_output(result: TaskOutput) -> Tuple[bool, Any]:
"""Format and clean the output."""
formatted = result.raw.strip()
# Capitalize first letter
formatted = formatted[0].upper() + formatted[1:] if formatted else formatted
return (True, formatted)
# Apply multiple guardrails sequentially
blog_task = Task(
description="Write a blog post about AI",
expected_output="A well-formatted blog post between 100-500 words",
agent=blog_agent,
guardrails=[
validate_word_count, # First: validate length
validate_no_profanity, # Second: check content
format_output # Third: format the result
],
guardrail_max_retries=3
)
```
In this example, the guardrails execute in order:
1. `validate_word_count` checks the word count
2. `validate_no_profanity` checks for inappropriate language (using the output from step 1)
3. `format_output` formats the final result (using the output from step 2)
If any guardrail fails, the error is sent back to the agent, and the task is retried up to `guardrail_max_retries` times.
**Mixing function-based and LLM-based guardrails**:
You can combine both function-based and string-based guardrails in the same list:
```python Code
from typing import Tuple, Any
from crewai import TaskOutput, Task
def validate_word_count(result: TaskOutput) -> Tuple[bool, Any]:
"""Validate word count is within limits."""
word_count = len(result.raw.split())
if word_count < 100:
return (False, f"Content too short: {word_count} words. Need at least 100 words.")
if word_count > 500:
return (False, f"Content too long: {word_count} words. Maximum is 500 words.")
return (True, result.raw)
# Mix function-based and LLM-based guardrails
blog_task = Task(
description="Write a blog post about AI",
expected_output="A well-formatted blog post between 100-500 words",
agent=blog_agent,
guardrails=[
validate_word_count, # Function-based: precise word count check
"The content must be engaging and suitable for a general audience", # LLM-based: subjective quality check
"The writing style should be clear, concise, and free of technical jargon" # LLM-based: style validation
],
guardrail_max_retries=3
)
```
This approach combines the precision of programmatic validation with the flexibility of LLM-based assessment for subjective criteria.
### Guardrail Function Requirements
1. **Function Signature**:
@@ -1044,13 +897,14 @@ except RuntimeError as e:
Check out the video below to see how to use structured outputs in CrewAI:
<iframe
className="w-full aspect-video rounded-xl"
width="560"
height="315"
src="https://www.youtube.com/embed/dNpKQk5uxHw"
title="Structured outputs in CrewAI"
frameBorder="0"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerPolicy="strict-origin-when-cross-origin"
allowFullScreen
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Conclusion

View File

@@ -17,7 +17,7 @@ This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/cre
enabling everything from simple searches to complex interactions and effective teamwork among agents.
<Note type="info" title="Enterprise Enhancement: Tools Repository">
CrewAI AOP provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
CrewAI Enterprise provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
The Enterprise Tools Repository includes:
- Pre-built connectors for popular enterprise systems
@@ -208,7 +208,7 @@ from crewai.tools import BaseTool
class AsyncCustomTool(BaseTool):
name: str = "async_custom_tool"
description: str = "An asynchronous custom tool"
async def _run(self, query: str = "") -> str:
"""Asynchronously run the tool"""
# Your async implementation here

View File

@@ -1,16 +1,12 @@
---
title: 'Agent Repositories'
description: 'Learn how to use Agent Repositories to share and reuse your agents across teams and projects'
icon: 'people-group'
icon: 'database'
mode: "wide"
---
Agent Repositories allow enterprise users to store, share, and reuse agent definitions across teams and projects. This feature enables organizations to maintain a centralized library of standardized agents, promoting consistency and reducing duplication of effort.
<Frame>
![Agent Repositories](/images/enterprise/agent-repositories.png)
</Frame>
## Benefits of Agent Repositories
- **Standardization**: Maintain consistent agent definitions across your organization
@@ -18,21 +14,25 @@ Agent Repositories allow enterprise users to store, share, and reuse agent defin
- **Governance**: Implement organization-wide policies for agent configurations
- **Collaboration**: Enable teams to share and build upon each other's work
## Creating and Use Agent Repositories
## Using Agent Repositories
### Prerequisites
1. You must have an account at CrewAI, try the [free plan](https://app.crewai.com).
2. Create agents with specific roles and goals for your workflows.
3. Configure tools and capabilities for each specialized assistant.
4. Deploy agents across projects via visual interface or API integration.
2. You need to be authenticated using the CrewAI CLI.
3. If you have more than one organization, make sure you are switched to the correct organization using the CLI command:
<Frame>
![Agent Repositories](/images/enterprise/create-agent-repository.png)
</Frame>
```bash
crewai org switch <org_id>
```
### Creating and Managing Agents in Repositories
To create and manage agents in repositories,Enterprise Dashboard.
### Loading Agents from Repositories
You can load agents from repositories in your code using the `from_repository` parameter to run locally:
You can load agents from repositories in your code using the `from_repository` parameter:
```python
from crewai import Agent
@@ -42,6 +42,7 @@ from crewai import Agent
researcher = Agent(
from_repository="market-research-agent"
)
```
### Overriding Repository Settings

View File

@@ -1,104 +0,0 @@
---
title: Automations
description: "Manage, deploy, and monitor your live crews (automations) in one place."
icon: "rocket"
mode: "wide"
---
## Overview
Automations is the live operations hub for your deployed crews. Use it to deploy from GitHub or a ZIP file, manage environment variables, redeploy when needed, and monitor the status of each automation.
<Frame>
![Automations Overview](/images/enterprise/automations-overview.png)
</Frame>
## Deployment Methods
### Deploy from GitHub
Use this for versioncontrolled projects and continuous deployment.
<Steps>
<Step title="Connect GitHub">
Click <b>Configure GitHub</b> and authorize access.
</Step>
<Step title="Select Repository & Branch">
Choose the <b>Repository</b> and <b>Branch</b> you want to deploy from.
</Step>
<Step title="Enable Autodeploy (optional)">
Turn on <b>Automatically deploy new commits</b> to ship updates on every push.
</Step>
<Step title="Add Environment Variables">
Add secrets individually or use <b>Bulk View</b> for multiple variables.
</Step>
<Step title="Deploy">
Click <b>Deploy</b> to create your live automation.
</Step>
</Steps>
<Frame>
![GitHub Deployment](/images/enterprise/deploy-from-github.png)
</Frame>
### Deploy from ZIP
Ship quickly without Git—upload a compressed package of your project.
<Steps>
<Step title="Choose File">
Select the ZIP archive from your computer.
</Step>
<Step title="Add Environment Variables">
Provide any required variables or keys.
</Step>
<Step title="Deploy">
Click <b>Deploy</b> to create your live automation.
</Step>
</Steps>
<Frame>
![ZIP Deployment](/images/enterprise/deploy-from-zip.png)
</Frame>
## Automations Dashboard
The table lists all live automations with key details:
- **CREW**: Automation name
- **STATUS**: Online / Failed / In Progress
- **URL**: Endpoint for kickoff/status
- **TOKEN**: Automation token
- **ACTIONS**: Redeploy, delete, and more
Use the topright controls to filter and search:
- Search by name
- Filter by <b>Status</b>
- Filter by <b>Source</b> (GitHub / Studio / ZIP)
Once deployed, you can view the automation details and have the **Options** dropdown menu to `chat with this crew`, `Export React Component` and `Export as MCP`.
<Frame>
![Automations Table](/images/enterprise/automations-table.png)
</Frame>
## Best Practices
- Prefer GitHub deployments for version control and CI/CD
- Use redeploy to roll forward after code or config updates or set it to auto-deploy on every push
## Related
<CardGroup cols={3}>
<Card title="Deploy a Crew" href="/en/enterprise/guides/deploy-crew" icon="rocket">
Deploy a Crew from GitHub or ZIP file.
</Card>
<Card title="Automation Triggers" href="/en/enterprise/guides/automation-triggers" icon="trigger">
Trigger automations via webhooks or API.
</Card>
<Card title="Webhook Automation" href="/en/enterprise/guides/webhook-automation" icon="webhook">
Stream real-time events and updates to your systems.
</Card>
</CardGroup>

View File

@@ -1,88 +0,0 @@
---
title: Crew Studio
description: "Build new automations with AI assistance, a visual editor, and integrated testing."
icon: "pencil"
mode: "wide"
---
## Overview
Crew Studio is an interactive, AIassisted workspace for creating new automations from scratch using natural language and a visual workflow editor.
<Frame>
![Crew Studio Overview](/images/enterprise/crew-studio-overview.png)
</Frame>
## Promptbased Creation
- Describe the automation you want; the AI generates agents, tasks, and tools.
- Use voice input via the microphone icon if preferred.
- Start from builtin prompts for common use cases.
<Frame>
![Prompt Builder](/images/enterprise/crew-studio-prompt.png)
</Frame>
## Visual Editor
The canvas reflects the workflow as nodes and edges with three supporting panels that allow you to configure the workflow easily without writing code; a.k.a. "**vibe coding AI Agents**".
You can use the drag-and-drop functionality to add agents, tasks, and tools to the canvas or you can use the chat section to build the agents. Both approaches share state and can be used interchangeably.
- **AI Thoughts (left)**: streaming reasoning as the workflow is designed
- **Canvas (center)**: agents and tasks as connected nodes
- **Resources (right)**: draganddrop components (agents, tasks, tools)
<Frame>
![Visual Canvas](/images/enterprise/crew-studio-canvas.png)
</Frame>
## Execution & Debugging
Switch to the <b>Execution</b> view to run and observe the workflow:
- Event timeline
- Detailed logs (Details, Messages, Raw Data)
- Local test runs before publishing
<Frame>
![Execution View](/images/enterprise/crew-studio-execution.png)
</Frame>
## Publish & Export
- <b>Publish</b> to deploy a live automation
- <b>Download</b> source as a ZIP for local development or customization
<Frame>
![Publish & Download](/images/enterprise/crew-studio-publish.png)
</Frame>
Once published, you can view the automation details and have the **Options** dropdown menu to `chat with this crew`, `Export React Component` and `Export as MCP`.
<Frame>
![Published Automation](/images/enterprise/crew-studio-published.png)
</Frame>
## Best Practices
- Iterate quickly in Studio; publish only when stable
- Keep tools constrained to minimum permissions needed
- Use Traces to validate behavior and performance
## Related
<CardGroup cols={4}>
<Card title="Enable Crew Studio" href="/en/enterprise/guides/enable-crew-studio" icon="palette">
Enable Crew Studio.
</Card>
<Card title="Build a Crew" href="/en/enterprise/guides/build-crew" icon="paintbrush">
Build a Crew.
</Card>
<Card title="Deploy a Crew" href="/en/enterprise/guides/deploy-crew" icon="rocket">
Deploy a Crew from GitHub or ZIP file.
</Card>
<Card title="Export a React Component" href="/en/enterprise/guides/react-component-export" icon="download">
Export a React Component.
</Card>
</CardGroup>

View File

@@ -0,0 +1,186 @@
---
title: Integrations
description: "Connected applications for your agents to take actions."
icon: "plug"
mode: "wide"
---
## Overview
Enable your agents to authenticate with any OAuth enabled provider and take actions. From Salesforce and HubSpot to Google and GitHub, we've got you covered with 16+ integrated services.
<Frame>
![Integrations](/images/enterprise/crew_connectors.png)
</Frame>
## Supported Integrations
### **Communication & Collaboration**
- **Gmail** - Manage emails and drafts
- **Slack** - Workspace notifications and alerts
- **Microsoft** - Office 365 and Teams integration
### **Project Management**
- **Jira** - Issue tracking and project management
- **ClickUp** - Task and productivity management
- **Asana** - Team task and project coordination
- **Notion** - Page and database management
- **Linear** - Software project and bug tracking
- **GitHub** - Repository and issue management
### **Customer Relationship Management**
- **Salesforce** - CRM account and opportunity management
- **HubSpot** - Sales pipeline and contact management
- **Zendesk** - Customer support ticket management
### **Business & Finance**
- **Stripe** - Payment processing and customer management
- **Shopify** - E-commerce store and product management
### **Productivity & Storage**
- **Google Sheets** - Spreadsheet data synchronization
- **Google Calendar** - Event and schedule management
- **Box** - File storage and document management
and more to come!
## Prerequisites
Before using Authentication Integrations, ensure you have:
- A [CrewAI Enterprise](https://app.crewai.com) account. You can get started with a free trial.
## Setting Up Integrations
### 1. Connect Your Account
1. Navigate to [CrewAI Enterprise](https://app.crewai.com)
2. Go to **Integrations** tab - https://app.crewai.com/crewai_plus/connectors
3. Click **Connect** on your desired service from the Authentication Integrations section
4. Complete the OAuth authentication flow
5. Grant necessary permissions for your use case
6. All set! Get your Enterprise Token from your [CrewAI Enterprise](https://app.crewai.com) in **Integration** tab
<Frame>
![Integrations](/images/enterprise/enterprise_action_auth_token.png)
</Frame>
### 2. Install Integration Tools
All you need is the latest version of `crewai-tools` package.
```bash
uv add crewai-tools
```
## Usage Examples
### Basic Usage
<Tip>
All the services you are authenticated into will be available as tools. So all you need to do is add the `CrewaiEnterpriseTools` to your agent and you are good to go.
</Tip>
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Gmail tool will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# print the tools
print(enterprise_tools)
# Create an agent with Gmail capabilities
email_agent = Agent(
role="Email Manager",
goal="Manage and organize email communications",
backstory="An AI assistant specialized in email management and communication.",
tools=enterprise_tools
)
# Task to send an email
email_task = Task(
description="Draft and send a follow-up email to john@example.com about the project update",
agent=email_agent,
expected_output="Confirmation that email was sent successfully"
)
# Run the task
crew = Crew(
agents=[email_agent],
tasks=[email_task]
)
# Run the crew
crew.kickoff()
```
### Filtering Tools
```python
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
actions_list=["gmail_find_email"] # only gmail_find_email tool will be available
)
gmail_tool = enterprise_tools["gmail_find_email"]
gmail_agent = Agent(
role="Gmail Manager",
goal="Manage gmail communications and notifications",
backstory="An AI assistant that helps coordinate gmail communications.",
tools=[gmail_tool]
)
notification_task = Task(
description="Find the email from john@example.com",
agent=gmail_agent,
expected_output="Email found from john@example.com"
)
# Run the task
crew = Crew(
agents=[slack_agent],
tasks=[notification_task]
)
```
## Best Practices
### Security
- **Principle of Least Privilege**: Only grant the minimum permissions required for your agents' tasks
- **Regular Audits**: Periodically review connected integrations and their permissions
- **Secure Credentials**: Never hardcode credentials; use CrewAI's secure authentication flow
### Filtering Tools
On a deployed crew, you can specify which actions are avialbel for each integration from the settings page of the service you connected to.
<Frame>
![Integrations](/images/enterprise/filtering_enterprise_action_tools.png)
</Frame>
### Scoped Deployments for multi user organizations
You can deploy your crew and scope each integration to a specific user. For example, a crew that connects to google can use a specific user's gmail account.
<Tip>
This is useful for multi user organizations where you want to scope the integration to a specific user.
</Tip>
Use the `user_bearer_token` to scope the integration to a specific user so that when the crew is kicked off, it will use the user's bearer token to authenticate with the integration. If user is not logged in, then the crew will not use any connected integrations. Use the default bearer token to authenticate with the integrations thats deployed with the crew.
<Frame>
![Integrations](/images/enterprise/user_bearer_token.png)
</Frame>
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with integration setup or troubleshooting.
</Card>

View File

@@ -1,46 +0,0 @@
---
title: Marketplace
description: "Discover, install, and govern reusable assets for your enterprise crews."
icon: "store"
mode: "wide"
---
## Overview
The Marketplace provides a curated surface for discovering integrations, internal tools, and reusable assets that accelerate crew development.
<Frame>
![Marketplace Overview](/images/enterprise/marketplace-overview.png)
</Frame>
## Discoverability
- Browse by category and capability
- Search for assets by name or keyword
## Install & Enable
- Oneclick install for approved assets
- Enable or disable per crew as needed
- Configure required environment variables and scopes
<Frame>
![Install & Configure](/images/enterprise/marketplace-install.png)
</Frame>
You can also download the templates directly from the marketplace by clicking on the `Download` button so
you can use them locally or refine them to your needs.
## Related
<CardGroup cols={3}>
<Card title="Tools & Integrations" href="/en/enterprise/features/tools-and-integrations" icon="wrench">
Connect external apps and manage internal tools your agents can use.
</Card>
<Card title="Tool Repository" href="/en/enterprise/guides/tool-repository#tool-repository" icon="toolbox">
Publish and install tools to enhance your crews' capabilities.
</Card>
<Card title="Agents Repository" href="/en/enterprise/features/agent-repositories" icon="people-group">
Store, share, and reuse agent definitions across teams and projects.
</Card>
</CardGroup>

View File

@@ -7,16 +7,16 @@ mode: "wide"
## Overview
RBAC in CrewAI AOP enables secure, scalable access management through a combination of organizationlevel roles and automationlevel visibility controls.
RBAC in CrewAI Enterprise enables secure, scalable access management through a combination of organizationlevel roles and automationlevel visibility controls.
<Frame>
<img src="/images/enterprise/users_and_roles.png" alt="RBAC overview in CrewAI AOP" />
<img src="/images/enterprise/users_and_roles.png" alt="RBAC overview in CrewAI Enterprise" />
</Frame>
## Users and Roles
Each member in your CrewAI workspace is assigned a role, which determines their access across various features.
Each member in your CrewAI workspace is assigned a role, which determines their access across various features.
You can:
@@ -28,7 +28,7 @@ You can configure users and roles in Settings → Roles.
<Steps>
<Step title="Open Roles settings">
Go to <b>Settings → Roles</b> in CrewAI AOP.
Go to <b>Settings → Roles</b> in CrewAI Enterprise.
</Step>
<Step title="Choose a role type">
Use a predefined role (<b>Owner</b>, <b>Member</b>) or click <b>Create role</b> to define a custom one.
@@ -93,10 +93,12 @@ The organization owner always has access. In private mode, only whitelisted user
</Tip>
<Frame>
<img src="/images/enterprise/visibility.png" alt="Automation Visibility settings in CrewAI AOP" />
<img src="/images/enterprise/visibility.png" alt="Automation Visibility settings in CrewAI Enterprise" />
</Frame>
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with RBAC questions.
</Card>

View File

@@ -20,11 +20,11 @@ The repository is not a version control system. Use Git to track code changes an
Before using the Tool Repository, ensure you have:
- A [CrewAI AOP](https://app.crewai.com) account
- [CrewAI CLI](/en/concepts/cli#cli) installed
- A [CrewAI Enterprise](https://app.crewai.com) account
- [CrewAI CLI](https://docs.crewai.com/concepts/cli#cli) installed
- uv>=0.5.0 installed. Check out [how to upgrade](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv)
- [Git](https://git-scm.com) installed and configured
- Access permissions to publish or install tools in your CrewAI AOP organization
- Access permissions to publish or install tools in your CrewAI Enterprise organization
## Installing Tools
@@ -54,11 +54,11 @@ researcher = Agent(
## Adding other packages after installing a tool
After installing a tool from the CrewAI AOP Tool Repository, you need to use the `crewai uv` command to add other packages to your project.
After installing a tool from the CrewAI Enterprise Tool Repository, you need to use the `crewai uv` command to add other packages to your project.
Using pure `uv` commands will fail due to authentication to tool repository being handled by the CLI. By using the `crewai uv` command, you can add other packages to your project without having to worry about authentication.
Any `uv` command can be used with the `crewai uv` command, making it a powerful tool for managing your project's dependencies without the hassle of managing authentication through environment variables or other methods.
Say that you have installed a custom tool from the CrewAI AOP Tool Repository called "my-tool":
Say that you have installed a custom tool from the CrewAI Enterprise Tool Repository called "my-tool":
```bash
crewai tool install my-tool
@@ -112,7 +112,7 @@ By default, tools are published as private. To make a tool public:
crewai tool publish --public
```
For more details on how to build tools, see [Creating your own tools](/en/concepts/tools#creating-your-own-tools).
For more details on how to build tools, see [Creating your own tools](https://docs.crewai.com/concepts/tools#creating-your-own-tools).
## Updating Tools
@@ -131,7 +131,7 @@ crewai tool publish
To delete a tool:
1. Go to [CrewAI AOP](https://app.crewai.com)
1. Go to [CrewAI Enterprise](https://app.crewai.com)
2. Navigate to **Tools**
3. Select the tool
4. Click **Delete**
@@ -142,11 +142,12 @@ Deletion is permanent. Deleted tools cannot be restored or re-installed.
## Security Checks
Every published version undergoes automated security checks, and are only available to install after they pass.
Every published version undergoes automated security checks, and are only available to install after they pass.
You can check the security check status of a tool at:
`CrewAI AOP > Tools > Your Tool > Versions`
`CrewAI Enterprise > Tools > Your Tool > Versions`
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with API integration or troubleshooting.

Some files were not shown because too many files have changed in this diff Show More