Compare commits

..

4 Commits

Author SHA1 Message Date
Lucas Gomide
2fccd5f8bc wip 2026-02-09 15:54:52 -03:00
Lucas Gomide
89556605cd feat: improve JSON schema handling for MCP tools
- Convert enum constraints to Literal types
- Handle format constraints (date, date-time)
- Preserve original MCP tool names for server calls
2026-02-05 12:06:50 -03:00
Lucas Gomide
ff00055e2c feat: use original tool name instead of the normalized one 2026-02-05 12:01:15 -03:00
Lucas Gomide
507aec7a48 wip 2026-02-05 11:39:55 -03:00
89 changed files with 1795 additions and 10693 deletions

View File

@@ -14,7 +14,7 @@ dependencies = [
"instructor>=1.3.3",
# Text Processing
"pdfplumber~=0.11.4",
"regex~=2026.1.15",
"regex~=2024.9.11",
# Telemetry and Monitoring
"opentelemetry-api~=1.34.0",
"opentelemetry-sdk~=1.34.0",
@@ -36,7 +36,7 @@ dependencies = [
"json5~=0.10.0",
"portalocker~=2.7.0",
"pydantic-settings~=2.10.1",
"mcp~=1.26.0",
"mcp~=1.23.1",
"uv~=0.9.13",
"aiosqlite~=0.21.0",
]

View File

@@ -4,7 +4,6 @@ import urllib.request
import warnings
from crewai.agent.core import Agent
from crewai.agent.planning_config import PlanningConfig
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.flow.flow import Flow
@@ -81,7 +80,6 @@ __all__ = [
"Flow",
"Knowledge",
"LLMGuardrail",
"PlanningConfig",
"Process",
"Task",
"TaskOutput",

View File

@@ -24,7 +24,7 @@ from pydantic import (
)
from typing_extensions import Self
from crewai.agent.planning_config import PlanningConfig
from crewai.agent.json_schema_converter import JSONSchemaConverter
from crewai.agent.utils import (
ahandle_knowledge_retrieval,
apply_training_data,
@@ -213,23 +213,13 @@ class Agent(BaseAgent):
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
planning_config: PlanningConfig | None = Field(
default=None,
description="Configuration for agent planning before task execution.",
)
planning: bool = Field(
reasoning: bool = Field(
default=False,
description="Whether the agent should reflect and create a plan before executing a task.",
)
reasoning: bool = Field(
default=False,
description="[DEPRECATED: Use planning_config instead] Whether the agent should reflect and create a plan before executing a task.",
deprecated=True,
)
max_reasoning_attempts: int | None = Field(
default=None,
description="[DEPRECATED: Use planning_config.max_attempts instead] Maximum number of reasoning attempts before executing the task. If None, will try until ready.",
deprecated=True,
description="Maximum number of reasoning attempts before executing the task. If None, will try until ready.",
)
embedder: EmbedderConfig | None = Field(
default=None,
@@ -296,26 +286,8 @@ class Agent(BaseAgent):
if self.allow_code_execution:
self._validate_docker_installation()
# Handle backward compatibility: convert reasoning=True to planning_config
if self.reasoning and self.planning_config is None:
import warnings
warnings.warn(
"The 'reasoning' parameter is deprecated. Use 'planning_config=PlanningConfig()' instead.",
DeprecationWarning,
stacklevel=2,
)
self.planning_config = PlanningConfig(
max_attempts=self.max_reasoning_attempts,
)
return self
@property
def planning_enabled(self) -> bool:
"""Check if planning is enabled for this agent."""
return self.planning_config is not None or self.planning
def _setup_agent_executor(self) -> None:
if not self.cache_handler:
self.cache_handler = CacheHandler()
@@ -391,11 +363,7 @@ class Agent(BaseAgent):
ValueError: If the max execution time is not a positive integer.
RuntimeError: If the agent execution fails for other reasons.
"""
# Only call handle_reasoning for legacy CrewAgentExecutor
# For AgentExecutor, planning is handled in AgentExecutor.generate_plan()
if self.executor_class is not AgentExecutor:
handle_reasoning(self, task)
handle_reasoning(self, task)
self._inject_date_to_task(task)
if self.tools_handler:
@@ -632,10 +600,7 @@ class Agent(BaseAgent):
ValueError: If the max execution time is not a positive integer.
RuntimeError: If the agent execution fails for other reasons.
"""
if self.executor_class is not AgentExecutor:
handle_reasoning(
self, task
) # we need this till CrewAgentExecutor migrates to AgentExecutor
handle_reasoning(self, task)
self._inject_date_to_task(task)
if self.tools_handler:
@@ -1214,6 +1179,7 @@ class Agent(BaseAgent):
tools = []
for tool_def in tools_list:
tool_name = tool_def.get("name", "")
original_tool_name = tool_def.get("original_name", tool_name)
if not tool_name:
continue
@@ -1235,6 +1201,7 @@ class Agent(BaseAgent):
tool_name=tool_name,
tool_schema=tool_schema,
server_name=server_name,
original_tool_name=original_tool_name,
)
tools.append(native_tool)
except Exception as e:
@@ -1249,26 +1216,63 @@ class Agent(BaseAgent):
raise RuntimeError(f"Failed to get native MCP tools: {e}") from e
def _get_amp_mcp_tools(self, amp_ref: str) -> list[BaseTool]:
"""Get tools from CrewAI AMP MCP marketplace."""
# Parse: "crewai-amp:mcp-name" or "crewai-amp:mcp-name#tool_name"
"""Get tools from CrewAI AMP MCP via crewai-oauth service.
Fetches MCP server configuration with tokens injected from crewai-oauth,
then uses _get_native_mcp_tools to connect and discover tools.
"""
# Parse: "crewai-amp:mcp-slug" or "crewai-amp:mcp-slug#tool_name"
amp_part = amp_ref.replace("crewai-amp:", "")
if "#" in amp_part:
mcp_name, specific_tool = amp_part.split("#", 1)
mcp_slug, specific_tool = amp_part.split("#", 1)
else:
mcp_name, specific_tool = amp_part, None
mcp_slug, specific_tool = amp_part, None
# Call AMP API to get MCP server URLs
mcp_servers = self._fetch_amp_mcp_servers(mcp_name)
# Fetch MCP config from crewai-oauth (with tokens injected)
mcp_config_dict = self._fetch_amp_mcp_config(mcp_slug)
tools = []
for server_config in mcp_servers:
server_ref = server_config["url"]
if specific_tool:
server_ref += f"#{specific_tool}"
server_tools = self._get_external_mcp_tools(server_ref)
tools.extend(server_tools)
if not mcp_config_dict:
self._logger.log(
"warning", f"Failed to fetch MCP config for '{mcp_slug}' from crewai-oauth"
)
return []
return tools
# Convert dict to MCPServerConfig (MCPServerHTTP or MCPServerSSE)
config_type = mcp_config_dict.get("type", "http")
if config_type == "sse":
mcp_config = MCPServerSSE(
url=mcp_config_dict["url"],
headers=mcp_config_dict.get("headers"),
cache_tools_list=mcp_config_dict.get("cache_tools_list", False),
)
else:
mcp_config = MCPServerHTTP(
url=mcp_config_dict["url"],
headers=mcp_config_dict.get("headers"),
streamable=mcp_config_dict.get("streamable", True),
cache_tools_list=mcp_config_dict.get("cache_tools_list", False),
)
# Apply tool filter if specific tool requested
if specific_tool:
from crewai.mcp.filters import create_static_tool_filter
mcp_config.tool_filter = create_static_tool_filter(
allowed_tool_names=[specific_tool]
)
# Use native MCP tools to connect and discover tools
try:
tools, client = self._get_native_mcp_tools(mcp_config)
if client:
self._mcp_clients.append(client)
return tools
except Exception as e:
self._logger.log(
"warning", f"Failed to get MCP tools from '{mcp_slug}': {e}"
)
return []
@staticmethod
def _extract_server_name(server_url: str) -> str:
@@ -1425,6 +1429,9 @@ class Agent(BaseAgent):
}
return schemas
# Shared JSON Schema converter instance
_schema_converter: JSONSchemaConverter = JSONSchemaConverter()
def _json_schema_to_pydantic(
self, tool_name: str, json_schema: dict[str, Any]
) -> type:
@@ -1437,77 +1444,62 @@ class Agent(BaseAgent):
Returns:
Pydantic BaseModel class
"""
from pydantic import Field, create_model
return self._schema_converter.json_schema_to_pydantic(tool_name, json_schema)
properties = json_schema.get("properties", {})
required_fields = json_schema.get("required", [])
def _fetch_amp_mcp_config(self, mcp_slug: str) -> dict[str, Any] | None:
"""Fetch MCP server configuration from crewai-oauth service.
field_definitions: dict[str, Any] = {}
Returns MCPServerConfig dict with tokens injected, ready for use with
_get_native_mcp_tools.
for field_name, field_schema in properties.items():
field_type = self._json_type_to_python(field_schema)
field_description = field_schema.get("description", "")
is_required = field_name in required_fields
if is_required:
field_definitions[field_name] = (
field_type,
Field(..., description=field_description),
)
else:
field_definitions[field_name] = (
field_type | None,
Field(default=None, description=field_description),
)
model_name = f"{tool_name.replace('-', '_').replace(' ', '_')}Schema"
return create_model(model_name, **field_definitions) # type: ignore[no-any-return]
def _json_type_to_python(self, field_schema: dict[str, Any]) -> type:
"""Convert JSON Schema type to Python type.
Environment variables:
CREWAI_OAUTH_URL: Base URL of crewai-oauth service
CREWAI_OAUTH_API_KEY: API key for authenticating with crewai-oauth
Args:
field_schema: JSON Schema field definition
mcp_slug: The MCP server slug (e.g., "notion-mcp-abc123")
Returns:
Python type
Dict with type, url, headers, streamable, cache_tools_list, or None if failed.
"""
import os
json_type = field_schema.get("type")
import requests
if "anyOf" in field_schema:
types: list[type] = []
for option in field_schema["anyOf"]:
if "const" in option:
types.append(str)
else:
types.append(self._json_type_to_python(option))
unique_types = list(set(types))
if len(unique_types) > 1:
result: Any = unique_types[0]
for t in unique_types[1:]:
result = result | t
return result # type: ignore[no-any-return]
return unique_types[0]
try:
endpoint = f"http://localhost:8787/mcps/{mcp_slug}/config"
response = requests.get(
endpoint,
headers={"Authorization": "Bearer 6b327f9ebe62726590f8de8f624cf018ad4765fecb7373f9db475a940ad546d0"},
timeout=30,
)
type_mapping: dict[str | None, type] = {
"string": str,
"number": float,
"integer": int,
"boolean": bool,
"array": list,
"object": dict,
}
if response.status_code == 200:
return response.json()
elif response.status_code == 400:
error_data = response.json()
self._logger.log(
"warning",
f"MCP '{mcp_slug}' is not connected: {error_data.get('error_description', 'Unknown error')}",
)
return None
elif response.status_code == 404:
self._logger.log(
"warning", f"MCP server '{mcp_slug}' not found in crewai-oauth"
)
return None
else:
self._logger.log(
"warning",
f"Failed to fetch MCP config from crewai-oauth: HTTP {response.status_code}",
)
return None
return type_mapping.get(json_type, Any)
@staticmethod
def _fetch_amp_mcp_servers(mcp_name: str) -> list[dict[str, Any]]:
"""Fetch MCP server configurations from CrewAI AMP API."""
# TODO: Implement AMP API call to "integrations/mcps" endpoint
# Should return list of server configs with URLs
return []
except requests.exceptions.RequestException as e:
self._logger.log(
"warning", f"Failed to connect to crewai-oauth: {e}"
)
return None
@staticmethod
def get_multimodal_tools() -> Sequence[BaseTool]:

View File

@@ -0,0 +1,399 @@
from typing import Any, Literal, Type, Union, get_args
from pydantic import Field, create_model
from pydantic.fields import FieldInfo
import datetime
import uuid
class JSONSchemaConverter:
"""Converts JSON Schema definitions to Python/Pydantic types."""
def json_schema_to_pydantic(
self, tool_name: str, json_schema: dict[str, Any]
) -> Type[Any]:
"""Convert JSON Schema to Pydantic model for tool arguments.
Args:
tool_name: Name of the tool (used for model naming)
json_schema: JSON Schema dict with 'properties', 'required', etc.
Returns:
Pydantic BaseModel class
"""
properties = json_schema.get("properties", {})
required_fields = json_schema.get("required", [])
model_name = f"{tool_name.replace('-', '_').replace(' ', '_')}Schema"
return self._create_pydantic_model(model_name, properties, required_fields)
def _json_type_to_python(
self, field_schema: dict[str, Any], field_name: str = "Field"
) -> Type[Any]:
"""Convert JSON Schema type to Python type, handling nested structures.
Args:
field_schema: JSON Schema field definition
field_name: Name of the field (used for nested model naming)
Returns:
Python type (may be a dynamically created Pydantic model for objects/arrays)
"""
if not field_schema:
return Any
# Handle $ref if needed
if "$ref" in field_schema:
# You might want to implement reference resolution here
return Any
# Handle enum constraint - create Literal type
if "enum" in field_schema:
return self._handle_enum(field_schema)
# Handle different schema constructs in order of precedence
if "allOf" in field_schema:
return self._handle_allof(field_schema, field_name)
if "anyOf" in field_schema or "oneOf" in field_schema:
return self._handle_union_schemas(field_schema, field_name)
json_type = field_schema.get("type")
if isinstance(json_type, list):
return self._handle_type_union(json_type)
if json_type == "array":
return self._handle_array_type(field_schema, field_name)
if json_type == "object":
return self._handle_object_type(field_schema, field_name)
# Handle format for string types
if json_type == "string" and "format" in field_schema:
return self._get_formatted_type(field_schema["format"])
return self._get_simple_type(json_type)
def _get_formatted_type(self, format_type: str) -> Type[Any]:
"""Get Python type for JSON Schema format constraint.
Args:
format_type: JSON Schema format string (date, date-time, email, etc.)
Returns:
Appropriate Python type for the format
"""
format_mapping: dict[str, Type[Any]] = {
"date": datetime.date,
"date-time": datetime.datetime,
"time": datetime.time,
"email": str, # Could use EmailStr from pydantic
"uri": str,
"uuid": str, # Could use UUID
"hostname": str,
"ipv4": str,
"ipv6": str,
}
return format_mapping.get(format_type, str)
def _handle_enum(self, field_schema: dict[str, Any]) -> Type[Any]:
"""Handle enum constraint by creating a Literal type.
Args:
field_schema: Schema containing enum values
Returns:
Literal type with enum values
"""
enum_values = field_schema.get("enum", [])
if not enum_values:
return str
# Filter out None values for the Literal type
non_null_values = [v for v in enum_values if v is not None]
if not non_null_values:
return type(None)
# Create Literal type with enum values
# For strings, create Literal["value1", "value2", ...]
if all(isinstance(v, str) for v in non_null_values):
literal_type = Literal[tuple(non_null_values)] # type: ignore[valid-type]
# If null is in enum, make it optional
if None in enum_values:
return literal_type | None # type: ignore[return-value]
return literal_type # type: ignore[return-value]
# For mixed types or non-strings, fall back to the base type
json_type = field_schema.get("type", "string")
return self._get_simple_type(json_type)
def _handle_allof(
self, field_schema: dict[str, Any], field_name: str
) -> Type[Any]:
"""Handle allOf schema composition by merging all schemas.
Args:
field_schema: Schema containing allOf
field_name: Name for the generated model
Returns:
Merged Pydantic model or basic type
"""
merged_properties: dict[str, Any] = {}
merged_required: list[str] = []
found_type: str | None = None
for sub_schema in field_schema["allOf"]:
# Collect type information
if sub_schema.get("type"):
found_type = sub_schema.get("type")
# Merge properties
if sub_schema.get("properties"):
merged_properties.update(sub_schema["properties"])
# Merge required fields
if sub_schema.get("required"):
merged_required.extend(sub_schema["required"])
# Handle nested anyOf/oneOf - merge properties from all variants
for union_key in ("anyOf", "oneOf"):
if union_key in sub_schema:
for variant in sub_schema[union_key]:
if variant.get("properties"):
# Merge variant properties (will be optional)
for prop_name, prop_schema in variant["properties"].items():
if prop_name not in merged_properties:
merged_properties[prop_name] = prop_schema
# If we found properties, create a merged object model
if merged_properties:
return self._create_pydantic_model(
field_name, merged_properties, merged_required
)
# Fallback: return the found type or dict
if found_type == "object":
return dict
elif found_type == "array":
return list
return dict # Default for complex allOf
def _handle_union_schemas(
self, field_schema: dict[str, Any], field_name: str
) -> Type[Any]:
"""Handle anyOf/oneOf union schemas.
Args:
field_schema: Schema containing anyOf or oneOf
field_name: Name for nested types
Returns:
Union type combining all options
"""
key = "anyOf" if "anyOf" in field_schema else "oneOf"
types: list[Type[Any]] = []
for option in field_schema[key]:
if "const" in option:
# For const values, use string type
# Could use Literal[option["const"]] for more precision
types.append(str)
else:
types.append(self._json_type_to_python(option, field_name))
return self._build_union_type(types)
def _handle_type_union(self, json_types: list[str]) -> Type[Any]:
"""Handle union types from type arrays.
Args:
json_types: List of JSON Schema type strings
Returns:
Union of corresponding Python types
"""
type_mapping: dict[str, Type[Any]] = {
"string": str,
"number": float,
"integer": int,
"boolean": bool,
"null": type(None),
"array": list,
"object": dict,
}
types = [type_mapping.get(t, Any) for t in json_types]
return self._build_union_type(types)
def _handle_array_type(
self, field_schema: dict[str, Any], field_name: str
) -> Type[Any]:
"""Handle array type with typed items.
Args:
field_schema: Schema with type="array"
field_name: Name for item types
Returns:
list or list[ItemType]
"""
items_schema = field_schema.get("items")
if items_schema:
item_type = self._json_type_to_python(items_schema, f"{field_name}Item")
return list[item_type] # type: ignore[valid-type]
return list
def _handle_object_type(
self, field_schema: dict[str, Any], field_name: str
) -> Type[Any]:
"""Handle object type with properties.
Args:
field_schema: Schema with type="object"
field_name: Name for the generated model
Returns:
Pydantic model or dict
"""
properties = field_schema.get("properties")
if properties:
required_fields = field_schema.get("required", [])
return self._create_pydantic_model(field_name, properties, required_fields)
# Object without properties (e.g., additionalProperties only)
return dict
def _create_pydantic_model(
self,
field_name: str,
properties: dict[str, Any],
required_fields: list[str],
) -> Type[Any]:
"""Create a Pydantic model from properties.
Args:
field_name: Base name for the model
properties: Property schemas
required_fields: List of required property names
Returns:
Dynamically created Pydantic model
"""
model_name = f"Generated_{field_name}_{uuid.uuid4().hex[:8]}"
field_definitions: dict[str, Any] = {}
for prop_name, prop_schema in properties.items():
prop_type = self._json_type_to_python(prop_schema, prop_name.title())
prop_description = self._build_field_description(prop_schema)
is_required = prop_name in required_fields
if is_required:
field_definitions[prop_name] = (
prop_type,
Field(..., description=prop_description),
)
else:
field_definitions[prop_name] = (
prop_type | None,
Field(default=None, description=prop_description),
)
return create_model(model_name, **field_definitions) # type: ignore[return-value]
def _build_field_description(self, prop_schema: dict[str, Any]) -> str:
"""Build a comprehensive field description including constraints.
Args:
prop_schema: Property schema with description and constraints
Returns:
Enhanced description with format, enum, and other constraints
"""
parts: list[str] = []
# Start with the original description
description = prop_schema.get("description", "")
if description:
parts.append(description)
# Add format constraint
format_type = prop_schema.get("format")
if format_type:
parts.append(f"Format: {format_type}")
# Add enum constraint (if not already handled by Literal type)
enum_values = prop_schema.get("enum")
if enum_values:
enum_str = ", ".join(repr(v) for v in enum_values)
parts.append(f"Allowed values: [{enum_str}]")
# Add pattern constraint
pattern = prop_schema.get("pattern")
if pattern:
parts.append(f"Pattern: {pattern}")
# Add min/max constraints
minimum = prop_schema.get("minimum")
maximum = prop_schema.get("maximum")
if minimum is not None:
parts.append(f"Minimum: {minimum}")
if maximum is not None:
parts.append(f"Maximum: {maximum}")
min_length = prop_schema.get("minLength")
max_length = prop_schema.get("maxLength")
if min_length is not None:
parts.append(f"Min length: {min_length}")
if max_length is not None:
parts.append(f"Max length: {max_length}")
# Add examples if available
examples = prop_schema.get("examples")
if examples:
examples_str = ", ".join(repr(e) for e in examples[:3]) # Limit to 3
parts.append(f"Examples: {examples_str}")
return ". ".join(parts) if parts else ""
def _get_simple_type(self, json_type: str | None) -> Type[Any]:
"""Map simple JSON Schema types to Python types.
Args:
json_type: JSON Schema type string
Returns:
Corresponding Python type
"""
simple_type_mapping: dict[str | None, Type[Any]] = {
"string": str,
"number": float,
"integer": int,
"boolean": bool,
"null": type(None),
}
return simple_type_mapping.get(json_type, Any)
def _build_union_type(self, types: list[Type[Any]]) -> Type[Any]:
"""Build a union type from a list of types.
Args:
types: List of Python types to combine
Returns:
Union type or single type if only one unique type
"""
# Remove duplicates while preserving order
unique_types = list(dict.fromkeys(types))
if len(unique_types) == 1:
return unique_types[0]
# Build union using | operator
result = unique_types[0]
for t in unique_types[1:]:
result = result | t
return result # type: ignore[no-any-return]

View File

@@ -1,83 +0,0 @@
from __future__ import annotations
from typing import Any
from pydantic import BaseModel, Field
class PlanningConfig(BaseModel):
"""Configuration for agent planning/reasoning before task execution.
This allows users to customize the planning behavior including prompts,
iteration limits, and the LLM used for planning.
Note: To disable planning, don't pass a planning_config or set planning=False
on the Agent. The presence of a PlanningConfig enables planning.
Attributes:
max_attempts: Maximum number of planning refinement attempts.
If None, will continue until the agent indicates readiness.
max_steps: Maximum number of steps in the generated plan.
system_prompt: Custom system prompt for planning. Uses default if None.
plan_prompt: Custom prompt for creating the initial plan.
refine_prompt: Custom prompt for refining the plan.
llm: LLM to use for planning. Uses agent's LLM if None.
Example:
```python
from crewai import Agent
from crewai.agent.planning_config import PlanningConfig
# Simple usage
agent = Agent(
role="Researcher",
goal="Research topics",
backstory="Expert researcher",
planning_config=PlanningConfig(),
)
# Customized planning
agent = Agent(
role="Researcher",
goal="Research topics",
backstory="Expert researcher",
planning_config=PlanningConfig(
max_attempts=3,
max_steps=10,
plan_prompt="Create a focused plan for: {description}",
llm="gpt-4o-mini", # Use cheaper model for planning
),
)
```
"""
max_attempts: int | None = Field(
default=None,
description=(
"Maximum number of planning refinement attempts. "
"If None, will continue until the agent indicates readiness."
),
)
max_steps: int = Field(
default=20,
description="Maximum number of steps in the generated plan.",
ge=1,
)
system_prompt: str | None = Field(
default=None,
description="Custom system prompt for planning. Uses default if None.",
)
plan_prompt: str | None = Field(
default=None,
description="Custom prompt for creating the initial plan.",
)
refine_prompt: str | None = Field(
default=None,
description="Custom prompt for refining the plan.",
)
llm: str | Any | None = Field(
default=None,
description="LLM to use for planning. Uses agent's LLM if None.",
)
model_config = {"arbitrary_types_allowed": True}

View File

@@ -28,20 +28,13 @@ if TYPE_CHECKING:
def handle_reasoning(agent: Agent, task: Task) -> None:
"""Handle the reasoning/planning process for an agent before task execution.
This function checks if planning is enabled for the agent and, if so,
creates a plan that gets appended to the task description.
Note: This function is used by CrewAgentExecutor (legacy path).
For AgentExecutor, planning is handled in AgentExecutor.generate_plan().
"""Handle the reasoning process for an agent before task execution.
Args:
agent: The agent performing the task.
task: The task to execute.
"""
# Check if planning is enabled using the planning_enabled property
if not getattr(agent, "planning_enabled", False):
if not agent.reasoning:
return
try:
@@ -50,13 +43,13 @@ def handle_reasoning(agent: Agent, task: Task) -> None:
AgentReasoningOutput,
)
planning_handler = AgentReasoning(agent=agent, task=task)
planning_output: AgentReasoningOutput = (
planning_handler.handle_agent_reasoning()
reasoning_handler = AgentReasoning(task=task, agent=agent)
reasoning_output: AgentReasoningOutput = (
reasoning_handler.handle_agent_reasoning()
)
task.description += f"\n\nPlanning:\n{planning_output.plan.plan}"
task.description += f"\n\nReasoning Plan:\n{reasoning_output.plan.plan}"
except Exception as e:
agent._logger.log("error", f"Error during planning: {e!s}")
agent._logger.log("error", f"Error during reasoning process: {e!s}")
def build_task_prompt_with_schema(task: Task, task_prompt: str, i18n: I18N) -> str:

View File

@@ -37,10 +37,9 @@ class BaseAgentAdapter(BaseAgent, ABC):
tools: Optional list of BaseTool instances to be configured
"""
@abstractmethod
def configure_structured_output(self, task: Any) -> None:
def configure_structured_output(self, structured_output: Any) -> None:
"""Configure the structured output for the specific agent implementation.
Args:
task: The task object containing output format specifications.
structured_output: The structured output to be configured
"""

View File

@@ -814,7 +814,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent_key=agent_key,
),
)
error_event_emitted = False
track_delegation_if_needed(func_name, args_dict, self.task)
@@ -897,7 +896,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
error=e,
),
)
error_event_emitted = True
elif max_usage_reached and original_tool:
# Return error message when max usage limit is reached
result = f"Tool '{func_name}' has reached its usage limit of {original_tool.max_usage_count} times and cannot be used anymore."
@@ -925,20 +923,20 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
color="red",
)
if not error_event_emitted:
crewai_event_bus.emit(
self,
event=ToolUsageFinishedEvent(
output=result,
tool_name=func_name,
tool_args=args_dict,
from_agent=self.agent,
from_task=self.task,
agent_key=agent_key,
started_at=started_at,
finished_at=datetime.now(),
),
)
# Emit tool usage finished event
crewai_event_bus.emit(
self,
event=ToolUsageFinishedEvent(
output=result,
tool_name=func_name,
tool_args=args_dict,
from_agent=self.agent,
from_task=self.task,
agent_key=agent_key,
started_at=started_at,
finished_at=datetime.now(),
),
)
# Append tool result message
tool_message: LLMMessage = {
@@ -1009,7 +1007,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
raise
if self.ask_for_human_input:
formatted_answer = await self._ahandle_human_feedback(formatted_answer)
formatted_answer = self._handle_human_feedback(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
@@ -1508,20 +1506,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
provider = get_provider()
return provider.handle_feedback(formatted_answer, self)
async def _ahandle_human_feedback(
self, formatted_answer: AgentFinish
) -> AgentFinish:
"""Process human feedback asynchronously via the configured provider.
Args:
formatted_answer: Initial agent result.
Returns:
Final answer after feedback.
"""
provider = get_provider()
return await provider.handle_feedback_async(formatted_answer, self)
def _is_training_mode(self) -> bool:
"""Check if training mode is active.

View File

@@ -1,8 +1,6 @@
import os
from typing import Any
from urllib.parse import urljoin
import httpx
import os
import requests
from crewai.cli.config import Settings
@@ -35,11 +33,7 @@ class PlusAPI:
if settings.org_uuid:
self.headers["X-Crewai-Organization-Id"] = settings.org_uuid
self.base_url = (
os.getenv("CREWAI_PLUS_URL")
or str(settings.enterprise_base_url)
or DEFAULT_CREWAI_ENTERPRISE_URL
)
self.base_url = os.getenv("CREWAI_PLUS_URL") or str(settings.enterprise_base_url) or DEFAULT_CREWAI_ENTERPRISE_URL
def _make_request(
self, method: str, endpoint: str, **kwargs: Any
@@ -55,10 +49,8 @@ class PlusAPI:
def get_tool(self, handle: str) -> requests.Response:
return self._make_request("GET", f"{self.TOOLS_RESOURCE}/{handle}")
async def get_agent(self, handle: str) -> httpx.Response:
url = urljoin(self.base_url, f"{self.AGENTS_RESOURCE}/{handle}")
async with httpx.AsyncClient() as client:
return await client.get(url, headers=self.headers)
def get_agent(self, handle: str) -> requests.Response:
return self._make_request("GET", f"{self.AGENTS_RESOURCE}/{handle}")
def publish_tool(
self,

View File

@@ -43,23 +43,3 @@ def platform_context(integration_token: str) -> Generator[None, Any, None]:
yield
finally:
_platform_integration_token.reset(token)
_current_task_id: contextvars.ContextVar[str | None] = contextvars.ContextVar(
"current_task_id", default=None
)
def set_current_task_id(task_id: str | None) -> contextvars.Token[str | None]:
"""Set the current task ID in the context. Returns a token for reset."""
return _current_task_id.set(task_id)
def reset_current_task_id(token: contextvars.Token[str | None]) -> None:
"""Reset the current task ID to its previous value."""
_current_task_id.reset(token)
def get_current_task_id() -> str | None:
"""Get the current task ID from the context."""
return _current_task_id.get()

View File

@@ -2,9 +2,7 @@
from __future__ import annotations
import asyncio
from contextvars import ContextVar, Token
import sys
from typing import TYPE_CHECKING, Protocol, runtime_checkable
@@ -48,21 +46,13 @@ class ExecutorContext(Protocol):
...
class AsyncExecutorContext(ExecutorContext, Protocol):
"""Extended context for executors that support async invocation."""
async def _ainvoke_loop(self) -> AgentFinish:
"""Invoke the agent loop asynchronously and return the result."""
...
@runtime_checkable
class HumanInputProvider(Protocol):
"""Protocol for human input handling.
Implementations handle the full feedback flow:
- Sync: prompt user, loop until satisfied
- Async: use non-blocking I/O and async invoke loop
- Async: raise exception for external handling
"""
def setup_messages(self, context: ExecutorContext) -> bool:
@@ -96,7 +86,7 @@ class HumanInputProvider(Protocol):
formatted_answer: AgentFinish,
context: ExecutorContext,
) -> AgentFinish:
"""Handle the full human feedback flow synchronously.
"""Handle the full human feedback flow.
Args:
formatted_answer: The agent's current answer.
@@ -110,25 +100,6 @@ class HumanInputProvider(Protocol):
"""
...
async def handle_feedback_async(
self,
formatted_answer: AgentFinish,
context: AsyncExecutorContext,
) -> AgentFinish:
"""Handle the full human feedback flow asynchronously.
Uses non-blocking I/O for user prompts and async invoke loop
for agent re-execution.
Args:
formatted_answer: The agent's current answer.
context: Async executor context for callbacks.
Returns:
The final answer after feedback processing.
"""
...
@staticmethod
def _get_output_string(answer: AgentFinish) -> str:
"""Extract output string from answer.
@@ -145,7 +116,7 @@ class HumanInputProvider(Protocol):
class SyncHumanInputProvider(HumanInputProvider):
"""Default human input provider with sync and async support."""
"""Default synchronous human input via terminal."""
def setup_messages(self, context: ExecutorContext) -> bool:
"""Use standard message setup.
@@ -186,33 +157,6 @@ class SyncHumanInputProvider(HumanInputProvider):
return self._handle_regular_feedback(formatted_answer, feedback, context)
async def handle_feedback_async(
self,
formatted_answer: AgentFinish,
context: AsyncExecutorContext,
) -> AgentFinish:
"""Handle feedback asynchronously without blocking the event loop.
Args:
formatted_answer: The agent's current answer.
context: Async executor context for callbacks.
Returns:
The final answer after feedback processing.
"""
feedback = await self._prompt_input_async(context.crew)
if context._is_training_mode():
return await self._handle_training_feedback_async(
formatted_answer, feedback, context
)
return await self._handle_regular_feedback_async(
formatted_answer, feedback, context
)
# ── Sync helpers ──────────────────────────────────────────────────
@staticmethod
def _handle_training_feedback(
initial_answer: AgentFinish,
@@ -265,62 +209,6 @@ class SyncHumanInputProvider(HumanInputProvider):
return answer
# ── Async helpers ─────────────────────────────────────────────────
@staticmethod
async def _handle_training_feedback_async(
initial_answer: AgentFinish,
feedback: str,
context: AsyncExecutorContext,
) -> AgentFinish:
"""Process training feedback asynchronously (single iteration).
Args:
initial_answer: The agent's initial answer.
feedback: Human feedback string.
context: Async executor context for callbacks.
Returns:
Improved answer after processing feedback.
"""
context._handle_crew_training_output(initial_answer, feedback)
context.messages.append(context._format_feedback_message(feedback))
improved_answer = await context._ainvoke_loop()
context._handle_crew_training_output(improved_answer)
context.ask_for_human_input = False
return improved_answer
async def _handle_regular_feedback_async(
self,
current_answer: AgentFinish,
initial_feedback: str,
context: AsyncExecutorContext,
) -> AgentFinish:
"""Process regular feedback with async iteration loop.
Args:
current_answer: The agent's current answer.
initial_feedback: Initial human feedback string.
context: Async executor context for callbacks.
Returns:
Final answer after all feedback iterations.
"""
feedback = initial_feedback
answer = current_answer
while context.ask_for_human_input:
if feedback.strip() == "":
context.ask_for_human_input = False
else:
context.messages.append(context._format_feedback_message(feedback))
answer = await context._ainvoke_loop()
feedback = await self._prompt_input_async(context.crew)
return answer
# ── I/O ───────────────────────────────────────────────────────────
@staticmethod
def _prompt_input(crew: Crew | None) -> str:
"""Show rich panel and prompt for input.
@@ -374,79 +262,6 @@ class SyncHumanInputProvider(HumanInputProvider):
finally:
formatter.resume_live_updates()
@staticmethod
async def _prompt_input_async(crew: Crew | None) -> str:
"""Show rich panel and prompt for input without blocking the event loop.
Args:
crew: The crew instance for context.
Returns:
User input string from terminal.
"""
from rich.panel import Panel
from rich.text import Text
from crewai.events.event_listener import event_listener
formatter = event_listener.formatter
formatter.pause_live_updates()
try:
if crew and getattr(crew, "_train", False):
prompt_text = (
"TRAINING MODE: Provide feedback to improve the agent's performance.\n\n"
"This will be used to train better versions of the agent.\n"
"Please provide detailed feedback about the result quality and reasoning process."
)
title = "🎓 Training Feedback Required"
else:
prompt_text = (
"Provide feedback on the Final Result above.\n\n"
"• If you are happy with the result, simply hit Enter without typing anything.\n"
"• Otherwise, provide specific improvement requests.\n"
"• You can provide multiple rounds of feedback until satisfied."
)
title = "💬 Human Feedback Required"
content = Text()
content.append(prompt_text, style="yellow")
prompt_panel = Panel(
content,
title=title,
border_style="yellow",
padding=(1, 2),
)
formatter.console.print(prompt_panel)
response = await _async_readline()
if response.strip() != "":
formatter.console.print("\n[cyan]Processing your feedback...[/cyan]")
return response
finally:
formatter.resume_live_updates()
async def _async_readline() -> str:
"""Read a line from stdin using the event loop's native I/O.
Falls back to asyncio.to_thread on platforms where piping stdin
is unsupported.
Returns:
The line read from stdin, with trailing newline stripped.
"""
loop = asyncio.get_running_loop()
try:
reader = asyncio.StreamReader()
protocol = asyncio.StreamReaderProtocol(reader)
await loop.connect_read_pipe(lambda: protocol, sys.stdin)
raw = await reader.readline()
return raw.decode().rstrip("\n")
except (OSError, NotImplementedError, ValueError):
return await asyncio.to_thread(input)
_provider: ContextVar[HumanInputProvider | None] = ContextVar(
"human_input_provider",

View File

@@ -751,8 +751,6 @@ class Crew(FlowTrackable, BaseModel):
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
result = self._post_kickoff(result)
self.usage_metrics = self.calculate_usage_metrics()
return result
@@ -766,9 +764,6 @@ class Crew(FlowTrackable, BaseModel):
clear_files(self.id)
detach(token)
def _post_kickoff(self, result: CrewOutput) -> CrewOutput:
return result
def kickoff_for_each(
self,
inputs: list[dict[str, Any]],
@@ -941,8 +936,6 @@ class Crew(FlowTrackable, BaseModel):
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
result = self._post_kickoff(result)
self.usage_metrics = self.calculate_usage_metrics()
return result
@@ -1188,9 +1181,6 @@ class Crew(FlowTrackable, BaseModel):
self.manager_agent = manager
manager.crew = self
def _get_execution_start_index(self, tasks: list[Task]) -> int | None:
return None
def _execute_tasks(
self,
tasks: list[Task],
@@ -1207,9 +1197,6 @@ class Crew(FlowTrackable, BaseModel):
Returns:
CrewOutput: Final output of the crew
"""
custom_start = self._get_execution_start_index(tasks)
if custom_start is not None:
start_index = custom_start
task_outputs: list[TaskOutput] = []
futures: list[tuple[Task, Future[TaskOutput], int]] = []
@@ -1318,10 +1305,8 @@ class Crew(FlowTrackable, BaseModel):
if files:
supported_types: list[str] = []
if agent and agent.llm and agent.llm.supports_multimodal():
provider = (
getattr(agent.llm, "provider", None)
or getattr(agent.llm, "model", None)
or "openai"
provider = getattr(agent.llm, "provider", None) or getattr(
agent.llm, "model", "openai"
)
api = getattr(agent.llm, "api", None)
supported_types = get_supported_content_types(provider, api)
@@ -1517,7 +1502,6 @@ class Crew(FlowTrackable, BaseModel):
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
self.token_usage = self.calculate_usage_metrics()
crewai_event_bus.flush()
crewai_event_bus.emit(
self,
CrewKickoffCompletedEvent(
@@ -2027,13 +2011,7 @@ class Crew(FlowTrackable, BaseModel):
@staticmethod
def _show_tracing_disabled_message() -> None:
"""Show a message when tracing is disabled."""
from crewai.events.listeners.tracing.utils import (
has_user_declined_tracing,
should_suppress_tracing_messages,
)
if should_suppress_tracing_messages():
return
from crewai.events.listeners.tracing.utils import has_user_declined_tracing
console = Console()

View File

@@ -195,7 +195,6 @@ __all__ = [
"ToolUsageFinishedEvent",
"ToolUsageStartedEvent",
"ToolValidateInputErrorEvent",
"_extension_exports",
"crewai_event_bus",
]
@@ -211,29 +210,14 @@ _AGENT_EVENT_MAPPING = {
"LiteAgentExecutionStartedEvent": "crewai.events.types.agent_events",
}
_extension_exports: dict[str, Any] = {}
def __getattr__(name: str) -> Any:
"""Lazy import for agent events and registered extensions."""
"""Lazy import for agent events to avoid circular imports."""
if name in _AGENT_EVENT_MAPPING:
import importlib
module_path = _AGENT_EVENT_MAPPING[name]
module = importlib.import_module(module_path)
return getattr(module, name)
if name in _extension_exports:
import importlib
value = _extension_exports[name]
if isinstance(value, str):
module_path, _, attr_name = value.rpartition(".")
if module_path:
module = importlib.import_module(module_path)
return getattr(module, attr_name)
return importlib.import_module(value)
return value
msg = f"module {__name__!r} has no attribute {name!r}"
raise AttributeError(msg)

View File

@@ -63,7 +63,6 @@ class BaseEvent(BaseModel):
parent_event_id: str | None = None
previous_event_id: str | None = None
triggered_by_event_id: str | None = None
started_event_id: str | None = None
emission_sequence: int | None = None
def to_json(self, exclude: set[str] | None = None) -> Serializable:

View File

@@ -227,39 +227,6 @@ class CrewAIEventsBus:
return decorator
def off(
self,
event_type: type[BaseEvent],
handler: Callable[..., Any],
) -> None:
"""Unregister an event handler for a specific event type.
Args:
event_type: The event class to stop listening for
handler: The handler function to unregister
"""
with self._rwlock.w_locked():
if event_type in self._sync_handlers:
existing_sync = self._sync_handlers[event_type]
if handler in existing_sync:
self._sync_handlers[event_type] = existing_sync - {handler}
if not self._sync_handlers[event_type]:
del self._sync_handlers[event_type]
if event_type in self._async_handlers:
existing_async = self._async_handlers[event_type]
if handler in existing_async:
self._async_handlers[event_type] = existing_async - {handler}
if not self._async_handlers[event_type]:
del self._async_handlers[event_type]
if event_type in self._handler_dependencies:
self._handler_dependencies[event_type].pop(handler, None)
if not self._handler_dependencies[event_type]:
del self._handler_dependencies[event_type]
self._execution_plan_cache.pop(event_type, None)
def _call_handlers(
self,
source: Any,
@@ -407,8 +374,7 @@ class CrewAIEventsBus:
if popped is None:
handle_empty_pop(event_type_name)
else:
popped_event_id, popped_type = popped
event.started_event_id = popped_event_id
_, popped_type = popped
expected_start = VALID_EVENT_PAIRS.get(event_type_name)
if expected_start and popped_type and popped_type != expected_start:
handle_mismatch(event_type_name, popped_type, expected_start)
@@ -570,52 +536,24 @@ class CrewAIEventsBus:
... # Do stuff...
... # Handlers are cleared after the context
"""
with self._rwlock.r_locked():
saved_sync: dict[type[BaseEvent], frozenset[SyncHandler]] = dict(
self._sync_handlers
)
saved_async: dict[type[BaseEvent], frozenset[AsyncHandler]] = dict(
self._async_handlers
)
saved_deps: dict[type[BaseEvent], dict[Handler, list[Depends[Any]]]] = {
event_type: dict(handlers)
for event_type, handlers in self._handler_dependencies.items()
}
for event_type, sync_handlers in saved_sync.items():
for sync_handler in sync_handlers:
self.off(event_type, sync_handler)
for event_type, async_handlers in saved_async.items():
for async_handler in async_handlers:
self.off(event_type, async_handler)
with self._rwlock.w_locked():
prev_sync = self._sync_handlers
prev_async = self._async_handlers
prev_deps = self._handler_dependencies
prev_cache = self._execution_plan_cache
self._sync_handlers = {}
self._async_handlers = {}
self._handler_dependencies = {}
self._execution_plan_cache = {}
try:
yield
finally:
with self._rwlock.r_locked():
current_sync = dict(self._sync_handlers)
current_async = dict(self._async_handlers)
for event_type, cur_sync in current_sync.items():
orig_sync = saved_sync.get(event_type, frozenset())
for new_handler in cur_sync - orig_sync:
self.off(event_type, new_handler)
for event_type, cur_async in current_async.items():
orig_async = saved_async.get(event_type, frozenset())
for new_async_handler in cur_async - orig_async:
self.off(event_type, new_async_handler)
for event_type, sync_handlers in saved_sync.items():
for sync_handler in sync_handlers:
deps = saved_deps.get(event_type, {}).get(sync_handler)
self._register_handler(event_type, sync_handler, deps)
for event_type, async_handlers in saved_async.items():
for async_handler in async_handlers:
deps = saved_deps.get(event_type, {}).get(async_handler)
self._register_handler(event_type, async_handler, deps)
with self._rwlock.w_locked():
self._sync_handlers = prev_sync
self._async_handlers = prev_async
self._handler_dependencies = prev_deps
self._execution_plan_cache = prev_cache
def shutdown(self, wait: bool = True) -> None:
"""Gracefully shutdown the event loop and wait for all tasks to finish.

View File

@@ -797,13 +797,7 @@ class TraceCollectionListener(BaseEventListener):
from rich.console import Console
from rich.panel import Panel
from crewai.events.listeners.tracing.utils import (
has_user_declined_tracing,
should_suppress_tracing_messages,
)
if should_suppress_tracing_messages():
return
from crewai.events.listeners.tracing.utils import has_user_declined_tracing
console = Console()

View File

@@ -1,4 +1,3 @@
from collections.abc import Callable
from contextvars import ContextVar, Token
from datetime import datetime
import getpass
@@ -27,35 +26,6 @@ logger = logging.getLogger(__name__)
_tracing_enabled: ContextVar[bool | None] = ContextVar("_tracing_enabled", default=None)
_first_time_trace_hook: ContextVar[Callable[[], bool] | None] = ContextVar(
"_first_time_trace_hook", default=None
)
_suppress_tracing_messages: ContextVar[bool] = ContextVar(
"_suppress_tracing_messages", default=False
)
def set_suppress_tracing_messages(suppress: bool) -> object:
"""Set whether to suppress tracing-related console messages.
Args:
suppress: True to suppress messages, False to show them.
Returns:
A token that can be used to restore the previous value.
"""
return _suppress_tracing_messages.set(suppress)
def should_suppress_tracing_messages() -> bool:
"""Check if tracing messages should be suppressed.
Returns:
True if messages should be suppressed, False otherwise.
"""
return _suppress_tracing_messages.get()
def should_enable_tracing(*, override: bool | None = None) -> bool:
"""Determine if tracing should be enabled.
@@ -437,13 +407,10 @@ def truncate_messages(
def should_auto_collect_first_time_traces() -> bool:
"""True if we should auto-collect traces for first-time user.
Returns:
True if first-time user AND telemetry not disabled AND tracing not explicitly enabled, False otherwise.
"""
hook = _first_time_trace_hook.get()
if hook is not None:
return hook()
if _is_test_environment():
return False
@@ -465,9 +432,6 @@ def prompt_user_for_trace_viewing(timeout_seconds: int = 20) -> bool:
if _is_test_environment():
return False
if should_suppress_tracing_messages():
return False
try:
import threading

View File

@@ -9,7 +9,7 @@ class ReasoningEvent(BaseEvent):
type: str
attempt: int = 1
agent_role: str
task_id: str | None = None
task_id: str
task_name: str | None = None
from_task: Any | None = None
agent_id: str | None = None

View File

@@ -16,7 +16,7 @@ class ToolUsageEvent(BaseEvent):
tool_name: str
tool_args: dict[str, Any] | str
tool_class: str | None = None
run_attempts: int = 0
run_attempts: int | None = None
delegations: int | None = None
agent: Any | None = None
task_name: str | None = None
@@ -26,7 +26,7 @@ class ToolUsageEvent(BaseEvent):
model_config = ConfigDict(arbitrary_types_allowed=True)
def __init__(self, **data: Any) -> None:
def __init__(self, **data):
if data.get("from_task"):
task = data["from_task"]
data["task_id"] = str(task.id)
@@ -96,10 +96,10 @@ class ToolExecutionErrorEvent(BaseEvent):
type: str = "tool_execution_error"
tool_name: str
tool_args: dict[str, Any]
tool_class: Callable[..., Any]
tool_class: Callable
agent: Any | None = None
def __init__(self, **data: Any) -> None:
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the agent
if self.agent and hasattr(self.agent, "fingerprint") and self.agent.fingerprint:

View File

@@ -1,4 +1,3 @@
from contextvars import ContextVar
import os
import threading
from typing import Any, ClassVar, cast
@@ -11,36 +10,6 @@ from rich.text import Text
from crewai.cli.version import is_newer_version_available
_disable_version_check: ContextVar[bool] = ContextVar(
"_disable_version_check", default=False
)
_suppress_console_output: ContextVar[bool] = ContextVar(
"_suppress_console_output", default=False
)
def set_suppress_console_output(suppress: bool) -> object:
"""Set whether to suppress all console output.
Args:
suppress: True to suppress output, False to show it.
Returns:
A token that can be used to restore the previous value.
"""
return _suppress_console_output.set(suppress)
def should_suppress_console_output() -> bool:
"""Check if console output should be suppressed.
Returns:
True if output should be suppressed, False otherwise.
"""
return _suppress_console_output.get()
class ConsoleFormatter:
tool_usage_counts: ClassVar[dict[str, int]] = {}
@@ -77,15 +46,9 @@ class ConsoleFormatter:
if not self.verbose:
return
if _disable_version_check.get():
return
if os.getenv("CI", "").lower() in ("true", "1"):
return
if os.getenv("CREWAI_DISABLE_VERSION_CHECK", "").lower() in ("true", "1"):
return
try:
is_newer, current, latest = is_newer_version_available()
if is_newer and latest:
@@ -113,12 +76,8 @@ To update, run: uv sync --upgrade-package crewai"""
from crewai.events.listeners.tracing.utils import (
has_user_declined_tracing,
is_tracing_enabled_in_context,
should_suppress_tracing_messages,
)
if should_suppress_tracing_messages():
return
if not is_tracing_enabled_in_context():
if has_user_declined_tracing():
message = """Info: Tracing is disabled.
@@ -170,8 +129,6 @@ To enable tracing, do any one of these:
def print(self, *args: Any, **kwargs: Any) -> None:
"""Print to console. Simplified to only handle panel-based output."""
if should_suppress_console_output():
return
# Skip blank lines during streaming
if len(args) == 0 and self._is_streaming:
return
@@ -528,9 +485,6 @@ To enable tracing, do any one of these:
if not self.verbose:
return
if should_suppress_console_output():
return
self._is_streaming = True
self._last_stream_call_type = call_type

View File

@@ -18,7 +18,6 @@ from crewai.agents.parser import (
AgentFinish,
OutputParserError,
)
from crewai.core.providers.human_input import get_provider
from crewai.events.event_bus import crewai_event_bus
from crewai.events.listeners.tracing.utils import (
is_tracing_enabled_in_context,
@@ -32,8 +31,7 @@ from crewai.events.types.tool_usage_events import (
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
)
from crewai.flow.flow import Flow, StateProxy, listen, or_, router, start
from crewai.flow.types import FlowMethodName
from crewai.flow.flow import Flow, listen, or_, router, start
from crewai.hooks.llm_hooks import (
get_after_llm_call_hooks,
get_before_llm_call_hooks,
@@ -43,12 +41,7 @@ from crewai.hooks.tool_hooks import (
get_after_tool_call_hooks,
get_before_tool_call_hooks,
)
from crewai.hooks.types import (
AfterLLMCallHookCallable,
AfterLLMCallHookType,
BeforeLLMCallHookCallable,
BeforeLLMCallHookType,
)
from crewai.hooks.types import AfterLLMCallHookType, BeforeLLMCallHookType
from crewai.utilities.agent_utils import (
convert_tools_to_openai_schema,
enforce_rpm_limit,
@@ -68,7 +61,6 @@ from crewai.utilities.agent_utils import (
)
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.i18n import I18N, get_i18n
from crewai.utilities.planning_types import PlanStep, TodoItem, TodoList
from crewai.utilities.printer import Printer
from crewai.utilities.string_utils import sanitize_tool_name
from crewai.utilities.tool_utils import execute_tool_and_check_finality
@@ -102,13 +94,6 @@ class AgentReActState(BaseModel):
ask_for_human_input: bool = Field(default=False)
use_native_tools: bool = Field(default=False)
pending_tool_calls: list[Any] = Field(default_factory=list)
plan: str | None = Field(default=None, description="Generated execution plan")
plan_ready: bool = Field(
default=False, description="Whether agent is ready to execute"
)
todos: TodoList = Field(
default_factory=TodoList, description="Todo list for tracking plan execution"
)
class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
@@ -206,12 +191,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
self._instance_id = str(uuid4())[:8]
self.before_llm_call_hooks: list[
BeforeLLMCallHookType | BeforeLLMCallHookCallable
] = []
self.after_llm_call_hooks: list[
AfterLLMCallHookType | AfterLLMCallHookCallable
] = []
self.before_llm_call_hooks: list[BeforeLLMCallHookType] = []
self.after_llm_call_hooks: list[AfterLLMCallHookType] = []
self.before_llm_call_hooks.extend(get_before_llm_call_hooks())
self.after_llm_call_hooks.extend(get_after_llm_call_hooks())
@@ -226,71 +207,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
)
self._state = AgentReActState()
@property
def messages(self) -> list[LLMMessage]:
"""Delegate to state for ExecutorContext conformance."""
return self._state.messages
@messages.setter
def messages(self, value: list[LLMMessage]) -> None:
"""Delegate to state for ExecutorContext conformance."""
if self._flow_initialized and hasattr(self, "_state_lock"):
with self._state_lock:
self._state.messages = value
else:
self._state.messages = value
@property
def ask_for_human_input(self) -> bool:
"""Delegate to state for ExecutorContext conformance."""
return self._state.ask_for_human_input
@ask_for_human_input.setter
def ask_for_human_input(self, value: bool) -> None:
"""Delegate to state for ExecutorContext conformance."""
self._state.ask_for_human_input = value
def _invoke_loop(self) -> AgentFinish:
"""Invoke the agent loop and return the result.
Required by ExecutorContext protocol.
"""
self._state.iterations = 0
self._state.is_finished = False
self._state.current_answer = None
self.kickoff()
answer = self._state.current_answer
if not isinstance(answer, AgentFinish):
raise RuntimeError("Agent loop did not produce a final answer")
return answer
async def _ainvoke_loop(self) -> AgentFinish:
"""Invoke the agent loop asynchronously and return the result.
Required by AsyncExecutorContext protocol.
"""
self._state.iterations = 0
self._state.is_finished = False
self._state.current_answer = None
await self.akickoff()
answer = self._state.current_answer
if not isinstance(answer, AgentFinish):
raise RuntimeError("Agent loop did not produce a final answer")
return answer
def _format_feedback_message(self, feedback: str) -> LLMMessage:
"""Format feedback as a message for the LLM.
Required by ExecutorContext protocol.
"""
return format_message_for_llm(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
def _ensure_flow_initialized(self) -> None:
"""Ensure Flow.__init__() has been called.
@@ -382,10 +298,18 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
Flow initialization is deferred to prevent event emission during agent setup.
Returns the temporary state until invoke() is called.
"""
if self._flow_initialized and hasattr(self, "_state_lock"):
return StateProxy(self._state, self._state_lock) # type: ignore[return-value]
return self._state
@property
def messages(self) -> list[LLMMessage]:
"""Compatibility property for mixin - returns state messages."""
return self._state.messages
@messages.setter
def messages(self, value: list[LLMMessage]) -> None:
"""Set state messages."""
self._state.messages = value
@property
def iterations(self) -> int:
"""Compatibility property for mixin - returns state iterations."""
@@ -397,67 +321,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
self._state.iterations = value
@start()
def generate_plan(self) -> None:
"""Generate execution plan if planning is enabled.
This is the entry point for the agent execution flow. If planning is
enabled on the agent, it generates a plan before execution begins.
The plan is stored in state and todos are created from the steps.
"""
if not getattr(self.agent, "planning_enabled", False):
return
try:
from crewai.utilities.reasoning_handler import AgentReasoning
if self.task:
planning_handler = AgentReasoning(agent=self.agent, task=self.task)
else:
# For kickoff() path - use input text directly, no Task needed
input_text = getattr(self, "_kickoff_input", "")
planning_handler = AgentReasoning(
agent=self.agent,
description=input_text or "Complete the requested task",
expected_output="Complete the task successfully",
)
output = planning_handler.handle_agent_reasoning()
self.state.plan = output.plan.plan
self.state.plan_ready = output.plan.ready
if self.state.plan_ready and output.plan.steps:
self._create_todos_from_plan(output.plan.steps)
# Backward compatibility: append plan to task description
# This can be removed in Phase 2 when plan execution is implemented
if self.task and self.state.plan:
self.task.description += f"\n\nPlanning:\n{self.state.plan}"
except Exception as e:
if hasattr(self.agent, "_logger"):
self.agent._logger.log("error", f"Error during planning: {e!s}")
def _create_todos_from_plan(self, steps: list[PlanStep]) -> None:
"""Convert plan steps into trackable todo items.
Args:
steps: List of PlanStep objects from the reasoning handler.
"""
todos: list[TodoItem] = []
for step in steps:
todo = TodoItem(
step_number=step.step_number,
description=step.description,
tool_to_use=step.tool_to_use,
depends_on=step.depends_on,
status="pending",
)
todos.append(todo)
self.state.todos = TodoList(items=todos)
@listen(generate_plan)
def initialize_reasoning(self) -> Literal["initialized"]:
"""Initialize the reasoning flow and emit agent start logs."""
self._show_start_logs()
@@ -553,14 +416,15 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
raise
@listen("continue_reasoning_native")
def call_llm_native_tools(self) -> None:
def call_llm_native_tools(
self,
) -> Literal["native_tool_calls", "native_finished", "context_error"]:
"""Execute LLM call with native function calling.
Always calls the LLM so it can read reflection prompts and decide
whether to provide a final answer or request more tools.
Note: This is a listener, not a router. The route_native_tool_result
router fires after this to determine the next step based on state.
Returns routing decision based on whether tool calls or final answer.
"""
try:
# Clear pending tools - LLM will decide what to do next after reading
@@ -590,7 +454,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
if isinstance(answer, list) and answer and self._is_tool_call_list(answer):
# Store tool calls for sequential processing
self.state.pending_tool_calls = list(answer)
return # Router will check pending_tool_calls
return "native_tool_calls"
if isinstance(answer, BaseModel):
self.state.current_answer = AgentFinish(
@@ -600,7 +465,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
)
self._invoke_step_callback(self.state.current_answer)
self._append_message_to_state(answer.model_dump_json())
return # Router will check current_answer
return "native_finished"
# Text response - this is the final answer
if isinstance(answer, str):
@@ -611,7 +476,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
)
self._invoke_step_callback(self.state.current_answer)
self._append_message_to_state(answer)
return # Router will check current_answer
return "native_finished"
# Unexpected response type, treat as final answer
self.state.current_answer = AgentFinish(
@@ -621,12 +487,13 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
)
self._invoke_step_callback(self.state.current_answer)
self._append_message_to_state(str(answer))
# Router will check current_answer
return "native_finished"
except Exception as e:
if is_context_length_exceeded(e):
self._last_context_error = e
return # Router will check _last_context_error
return "context_error"
if e.__class__.__module__.startswith("litellm"):
raise e
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
@@ -639,22 +506,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
return "execute_tool"
return "agent_finished"
@router(call_llm_native_tools)
def route_native_tool_result(
self,
) -> Literal["native_tool_calls", "native_finished", "context_error"]:
"""Route based on LLM response for native tool calling.
Checks state set by call_llm_native_tools to determine next step.
This router is needed because only router return values trigger
downstream listeners.
"""
if self._last_context_error is not None:
return "context_error"
if self.state.pending_tool_calls:
return "native_tool_calls"
return "native_finished"
@listen("execute_tool")
def execute_tool_action(self) -> Literal["tool_completed", "tool_result_is_final"]:
"""Execute the tool action and handle the result."""
@@ -838,7 +689,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
agent_key=agent_key,
),
)
error_event_emitted = False
track_delegation_if_needed(func_name, args_dict, self.task)
@@ -914,7 +764,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
error=e,
),
)
error_event_emitted = True
elif max_usage_reached and original_tool:
# Return error message when max usage limit is reached
result = f"Tool '{func_name}' has reached its usage limit of {original_tool.max_usage_count} times and cannot be used anymore."
@@ -943,20 +792,20 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
color="red",
)
if not error_event_emitted:
crewai_event_bus.emit(
self,
event=ToolUsageFinishedEvent(
output=result,
tool_name=func_name,
tool_args=args_dict,
from_agent=self.agent,
from_task=self.task,
agent_key=agent_key,
started_at=started_at,
finished_at=datetime.now(),
),
)
# Emit tool usage finished event
crewai_event_bus.emit(
self,
event=ToolUsageFinishedEvent(
output=result,
tool_name=func_name,
tool_args=args_dict,
from_agent=self.agent,
from_task=self.task,
agent_key=agent_key,
started_at=started_at,
finished_at=datetime.now(),
),
)
# Append tool result message
tool_message: LLMMessage = {
@@ -1012,11 +861,9 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
self.state.iterations += 1
return "initialized"
@listen(or_("initialized", "tool_completed", "native_tool_completed"))
@listen("initialized")
def continue_iteration(self) -> Literal["check_iteration"]:
"""Bridge listener that connects iteration loop back to iteration check."""
if self._flow_initialized:
self._discard_or_listener(FlowMethodName("continue_iteration"))
return "check_iteration"
@router(or_(initialize_reasoning, continue_iteration))
@@ -1144,10 +991,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
self.state.is_finished = False
self.state.use_native_tools = False
self.state.pending_tool_calls = []
self.state.plan = None
self.state.plan_ready = False
self._kickoff_input = inputs.get("input", "")
if "system" in self.prompt:
prompt = cast("SystemPromptResult", self.prompt)
@@ -1232,10 +1075,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
self.state.is_finished = False
self.state.use_native_tools = False
self.state.pending_tool_calls = []
self.state.plan = None
self.state.plan_ready = False
self._kickoff_input = inputs.get("input", "")
if "system" in self.prompt:
prompt = cast("SystemPromptResult", self.prompt)
@@ -1266,7 +1105,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
)
if self.state.ask_for_human_input:
formatted_answer = await self._ahandle_human_feedback(formatted_answer)
formatted_answer = self._handle_human_feedback(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
@@ -1480,22 +1319,17 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
Returns:
Final answer after feedback.
"""
provider = get_provider()
return provider.handle_feedback(formatted_answer, self)
output_str = (
str(formatted_answer.output)
if isinstance(formatted_answer.output, BaseModel)
else formatted_answer.output
)
human_feedback = self._ask_human_input(output_str)
async def _ahandle_human_feedback(
self, formatted_answer: AgentFinish
) -> AgentFinish:
"""Process human feedback asynchronously and refine answer.
if self._is_training_mode():
return self._handle_training_feedback(formatted_answer, human_feedback)
Args:
formatted_answer: Initial agent result.
Returns:
Final answer after feedback.
"""
provider = get_provider()
return await provider.handle_feedback_async(formatted_answer, self)
return self._handle_regular_feedback(formatted_answer, human_feedback)
def _is_training_mode(self) -> bool:
"""Check if training mode is active.
@@ -1505,6 +1339,101 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
"""
return bool(self.crew and self.crew._train)
def _handle_training_feedback(
self, initial_answer: AgentFinish, feedback: str
) -> AgentFinish:
"""Process training feedback and generate improved answer.
Args:
initial_answer: Initial agent output.
feedback: Training feedback.
Returns:
Improved answer.
"""
self._handle_crew_training_output(initial_answer, feedback)
self.state.messages.append(
format_message_for_llm(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
# Re-run flow for improved answer
self.state.iterations = 0
self.state.is_finished = False
self.state.current_answer = None
self.kickoff()
# Get improved answer from state
improved_answer = self.state.current_answer
if not isinstance(improved_answer, AgentFinish):
raise RuntimeError(
"Training feedback iteration did not produce final answer"
)
self._handle_crew_training_output(improved_answer)
self.state.ask_for_human_input = False
return improved_answer
def _handle_regular_feedback(
self, current_answer: AgentFinish, initial_feedback: str
) -> AgentFinish:
"""Process regular feedback iteratively until user is satisfied.
Args:
current_answer: Current agent output.
initial_feedback: Initial user feedback.
Returns:
Final answer after iterations.
"""
feedback = initial_feedback
answer = current_answer
while self.state.ask_for_human_input:
if feedback.strip() == "":
self.state.ask_for_human_input = False
else:
answer = self._process_feedback_iteration(feedback)
output_str = (
str(answer.output)
if isinstance(answer.output, BaseModel)
else answer.output
)
feedback = self._ask_human_input(output_str)
return answer
def _process_feedback_iteration(self, feedback: str) -> AgentFinish:
"""Process a single feedback iteration and generate updated response.
Args:
feedback: User feedback.
Returns:
Updated agent response.
"""
self.state.messages.append(
format_message_for_llm(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
# Re-run flow
self.state.iterations = 0
self.state.is_finished = False
self.state.current_answer = None
self.kickoff()
# Get answer from state
answer = self.state.current_answer
if not isinstance(answer, AgentFinish):
raise RuntimeError("Feedback iteration did not produce final answer")
return answer
@classmethod
def __get_pydantic_core_schema__(
cls, _source_type: Any, _handler: GetCoreSchemaHandler

View File

@@ -28,8 +28,6 @@ Example:
```
"""
from typing import Any
from crewai.flow.async_feedback.providers import ConsoleProvider
from crewai.flow.async_feedback.types import (
HumanFeedbackPending,
@@ -43,15 +41,4 @@ __all__ = [
"HumanFeedbackPending",
"HumanFeedbackProvider",
"PendingFeedbackContext",
"_extension_exports",
]
_extension_exports: dict[str, Any] = {}
def __getattr__(name: str) -> Any:
"""Support extensions via dynamic attribute lookup."""
if name in _extension_exports:
return _extension_exports[name]
msg = f"module {__name__!r} has no attribute {name!r}"
raise AttributeError(msg)

View File

@@ -7,14 +7,7 @@ for building event-driven workflows with conditional execution and routing.
from __future__ import annotations
import asyncio
from collections.abc import (
Callable,
ItemsView,
Iterator,
KeysView,
Sequence,
ValuesView,
)
from collections.abc import Callable, Sequence
from concurrent.futures import Future
import copy
import inspect
@@ -52,7 +45,6 @@ from crewai.events.listeners.tracing.utils import (
has_user_declined_tracing,
set_tracing_enabled,
should_enable_tracing,
should_suppress_tracing_messages,
)
from crewai.events.types.flow_events import (
FlowCreatedEvent,
@@ -416,132 +408,6 @@ def and_(*conditions: str | FlowCondition | Callable[..., Any]) -> FlowCondition
return {"type": AND_CONDITION, "conditions": processed_conditions}
class LockedListProxy(Generic[T]):
"""Thread-safe proxy for list operations.
Wraps a list and uses a lock for all mutating operations.
"""
def __init__(self, lst: list[T], lock: threading.Lock) -> None:
self._list = lst
self._lock = lock
def append(self, item: T) -> None:
with self._lock:
self._list.append(item)
def extend(self, items: list[T]) -> None:
with self._lock:
self._list.extend(items)
def insert(self, index: int, item: T) -> None:
with self._lock:
self._list.insert(index, item)
def remove(self, item: T) -> None:
with self._lock:
self._list.remove(item)
def pop(self, index: int = -1) -> T:
with self._lock:
return self._list.pop(index)
def clear(self) -> None:
with self._lock:
self._list.clear()
def __setitem__(self, index: int, value: T) -> None:
with self._lock:
self._list[index] = value
def __delitem__(self, index: int) -> None:
with self._lock:
del self._list[index]
def __getitem__(self, index: int) -> T:
return self._list[index]
def __len__(self) -> int:
return len(self._list)
def __iter__(self) -> Iterator[T]:
return iter(self._list)
def __contains__(self, item: object) -> bool:
return item in self._list
def __repr__(self) -> str:
return repr(self._list)
def __bool__(self) -> bool:
return bool(self._list)
class LockedDictProxy(Generic[T]):
"""Thread-safe proxy for dict operations.
Wraps a dict and uses a lock for all mutating operations.
"""
def __init__(self, d: dict[str, T], lock: threading.Lock) -> None:
self._dict = d
self._lock = lock
def __setitem__(self, key: str, value: T) -> None:
with self._lock:
self._dict[key] = value
def __delitem__(self, key: str) -> None:
with self._lock:
del self._dict[key]
def pop(self, key: str, *default: T) -> T:
with self._lock:
return self._dict.pop(key, *default)
def update(self, other: dict[str, T]) -> None:
with self._lock:
self._dict.update(other)
def clear(self) -> None:
with self._lock:
self._dict.clear()
def setdefault(self, key: str, default: T) -> T:
with self._lock:
return self._dict.setdefault(key, default)
def __getitem__(self, key: str) -> T:
return self._dict[key]
def __len__(self) -> int:
return len(self._dict)
def __iter__(self) -> Iterator[str]:
return iter(self._dict)
def __contains__(self, key: object) -> bool:
return key in self._dict
def keys(self) -> KeysView[str]:
return self._dict.keys()
def values(self) -> ValuesView[T]:
return self._dict.values()
def items(self) -> ItemsView[str, T]:
return self._dict.items()
def get(self, key: str, default: T | None = None) -> T | None:
return self._dict.get(key, default)
def __repr__(self) -> str:
return repr(self._dict)
def __bool__(self) -> bool:
return bool(self._dict)
class StateProxy(Generic[T]):
"""Proxy that provides thread-safe access to flow state.
@@ -556,13 +422,7 @@ class StateProxy(Generic[T]):
object.__setattr__(self, "_proxy_lock", lock)
def __getattr__(self, name: str) -> Any:
value = getattr(object.__getattribute__(self, "_proxy_state"), name)
lock = object.__getattribute__(self, "_proxy_lock")
if isinstance(value, list):
return LockedListProxy(value, lock)
if isinstance(value, dict):
return LockedDictProxy(value, lock)
return value
return getattr(object.__getattribute__(self, "_proxy_state"), name)
def __setattr__(self, name: str, value: Any) -> None:
if name in ("_proxy_state", "_proxy_lock"):
@@ -1732,6 +1592,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
reset_emission_counter()
reset_last_event_id()
# Emit FlowStartedEvent and log the start of the flow.
if not self.suppress_flow_events:
future = crewai_event_bus.emit(
self,
@@ -1742,10 +1603,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
),
)
if future:
try:
await asyncio.wrap_future(future)
except Exception:
logger.warning("FlowStartedEvent handler failed", exc_info=True)
self._event_futures.append(future)
self._log_flow_event(
f"Flow started with ID: {self.flow_id}", color="bold magenta"
)
@@ -1837,12 +1695,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
final_output = self._method_outputs[-1] if self._method_outputs else None
if self._event_futures:
await asyncio.gather(
*[asyncio.wrap_future(f) for f in self._event_futures]
)
self._event_futures.clear()
if not self.suppress_flow_events:
future = crewai_event_bus.emit(
self,
@@ -1854,12 +1706,13 @@ class Flow(Generic[T], metaclass=FlowMeta):
),
)
if future:
try:
await asyncio.wrap_future(future)
except Exception:
logger.warning(
"FlowFinishedEvent handler failed", exc_info=True
)
self._event_futures.append(future)
if self._event_futures:
await asyncio.gather(
*[asyncio.wrap_future(f) for f in self._event_futures]
)
self._event_futures.clear()
if not self.suppress_flow_events:
trace_listener = TraceCollectionListener()
@@ -1934,14 +1787,40 @@ class Flow(Generic[T], metaclass=FlowMeta):
await self._execute_listeners(start_method_name, result, finished_event_id)
# Then execute listeners for the router result (e.g., "approved")
router_result_trigger = FlowMethodName(str(result))
listener_result = (
self.last_human_feedback
if self.last_human_feedback is not None
else result
)
await self._execute_listeners(
router_result_trigger, listener_result, finished_event_id
listeners_for_result = self._find_triggered_methods(
router_result_trigger, router_only=False
)
if listeners_for_result:
# Pass the HumanFeedbackResult if available
listener_result = (
self.last_human_feedback
if self.last_human_feedback is not None
else result
)
racing_group = self._get_racing_group_for_listeners(
listeners_for_result
)
if racing_group:
racing_members, _ = racing_group
other_listeners = [
name
for name in listeners_for_result
if name not in racing_members
]
await self._execute_racing_listeners(
racing_members,
other_listeners,
listener_result,
finished_event_id,
)
else:
tasks = [
self._execute_single_listener(
listener_name, listener_result, finished_event_id
)
for listener_name in listeners_for_result
]
await asyncio.gather(*tasks)
else:
await self._execute_listeners(start_method_name, result, finished_event_id)
@@ -2147,14 +2026,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
router_input = router_result_to_feedback.get(
str(current_trigger), current_result
)
(
router_result,
current_triggering_event_id,
) = await self._execute_single_listener(
current_triggering_event_id = await self._execute_single_listener(
router_name, router_input, current_triggering_event_id
)
# After executing router, the router's result is the path
router_result = (
self._method_outputs[-1] if self._method_outputs else None
)
if router_result: # Only add non-None results
router_results.append(FlowMethodName(str(router_result)))
router_results.append(router_result)
# If this was a human_feedback router, map the outcome to the feedback
if self.last_human_feedback is not None:
router_result_to_feedback[str(router_result)] = (
@@ -2194,14 +2074,12 @@ class Flow(Generic[T], metaclass=FlowMeta):
racing_members,
other_listeners,
listener_result,
current_triggering_event_id,
triggering_event_id,
)
else:
tasks = [
self._execute_single_listener(
listener_name,
listener_result,
current_triggering_event_id,
listener_name, listener_result, triggering_event_id
)
for listener_name in listeners_triggered
]
@@ -2384,7 +2262,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
listener_name: FlowMethodName,
result: Any,
triggering_event_id: str | None = None,
) -> tuple[Any, str | None]:
) -> str | None:
"""Executes a single listener method with proper event handling.
This internal method manages the execution of an individual listener,
@@ -2397,9 +2275,8 @@ class Flow(Generic[T], metaclass=FlowMeta):
used for causal chain tracking.
Returns:
A tuple of (listener_result, event_id) where listener_result is the return
value of the listener method and event_id is the MethodExecutionFinishedEvent
id, or (None, None) if skipped during resumption.
The event_id of the MethodExecutionFinishedEvent emitted by this listener,
or None if events are suppressed.
Note:
- Inspects method signature to determine if it accepts the trigger result
@@ -2425,7 +2302,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
):
# This conditional start was executed, continue its chain
await self._execute_start_method(start_method_name)
return (None, None)
return None
# For cyclic flows, clear from completed to allow re-execution
self._completed_methods.discard(listener_name)
# Also clear from fired OR listeners for cyclic flows
@@ -2463,7 +2340,46 @@ class Flow(Generic[T], metaclass=FlowMeta):
listener_name, listener_result, finished_event_id
)
return (listener_result, finished_event_id)
# If this listener is also a router (e.g., has @human_feedback with emit),
# we need to trigger listeners for the router result as well
if listener_name in self._routers and listener_result is not None:
router_result_trigger = FlowMethodName(str(listener_result))
listeners_for_result = self._find_triggered_methods(
router_result_trigger, router_only=False
)
if listeners_for_result:
# Pass the HumanFeedbackResult if available
feedback_result = (
self.last_human_feedback
if self.last_human_feedback is not None
else listener_result
)
racing_group = self._get_racing_group_for_listeners(
listeners_for_result
)
if racing_group:
racing_members, _ = racing_group
other_listeners = [
name
for name in listeners_for_result
if name not in racing_members
]
await self._execute_racing_listeners(
racing_members,
other_listeners,
feedback_result,
finished_event_id,
)
else:
tasks = [
self._execute_single_listener(
name, feedback_result, finished_event_id
)
for name in listeners_for_result
]
await asyncio.gather(*tasks)
return finished_event_id
except Exception as e:
# Don't log HumanFeedbackPending as an error - it's expected control flow
@@ -2710,8 +2626,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
@staticmethod
def _show_tracing_disabled_message() -> None:
"""Show a message when tracing is disabled."""
if should_suppress_tracing_messages():
return
console = Console()

View File

@@ -3,12 +3,7 @@ from __future__ import annotations
from typing import TYPE_CHECKING, Any, cast
from crewai.events.event_listener import event_listener
from crewai.hooks.types import (
AfterLLMCallHookCallable,
AfterLLMCallHookType,
BeforeLLMCallHookCallable,
BeforeLLMCallHookType,
)
from crewai.hooks.types import AfterLLMCallHookType, BeforeLLMCallHookType
from crewai.utilities.printer import Printer
@@ -154,12 +149,12 @@ class LLMCallHookContext:
event_listener.formatter.resume_live_updates()
_before_llm_call_hooks: list[BeforeLLMCallHookType | BeforeLLMCallHookCallable] = []
_after_llm_call_hooks: list[AfterLLMCallHookType | AfterLLMCallHookCallable] = []
_before_llm_call_hooks: list[BeforeLLMCallHookType] = []
_after_llm_call_hooks: list[AfterLLMCallHookType] = []
def register_before_llm_call_hook(
hook: BeforeLLMCallHookType | BeforeLLMCallHookCallable,
hook: BeforeLLMCallHookType,
) -> None:
"""Register a global before_llm_call hook.
@@ -195,7 +190,7 @@ def register_before_llm_call_hook(
def register_after_llm_call_hook(
hook: AfterLLMCallHookType | AfterLLMCallHookCallable,
hook: AfterLLMCallHookType,
) -> None:
"""Register a global after_llm_call hook.
@@ -222,9 +217,7 @@ def register_after_llm_call_hook(
_after_llm_call_hooks.append(hook)
def get_before_llm_call_hooks() -> list[
BeforeLLMCallHookType | BeforeLLMCallHookCallable
]:
def get_before_llm_call_hooks() -> list[BeforeLLMCallHookType]:
"""Get all registered global before_llm_call hooks.
Returns:
@@ -233,7 +226,7 @@ def get_before_llm_call_hooks() -> list[
return _before_llm_call_hooks.copy()
def get_after_llm_call_hooks() -> list[AfterLLMCallHookType | AfterLLMCallHookCallable]:
def get_after_llm_call_hooks() -> list[AfterLLMCallHookType]:
"""Get all registered global after_llm_call hooks.
Returns:
@@ -243,7 +236,7 @@ def get_after_llm_call_hooks() -> list[AfterLLMCallHookType | AfterLLMCallHookCa
def unregister_before_llm_call_hook(
hook: BeforeLLMCallHookType | BeforeLLMCallHookCallable,
hook: BeforeLLMCallHookType,
) -> bool:
"""Unregister a specific global before_llm_call hook.
@@ -269,7 +262,7 @@ def unregister_before_llm_call_hook(
def unregister_after_llm_call_hook(
hook: AfterLLMCallHookType | AfterLLMCallHookCallable,
hook: AfterLLMCallHookType,
) -> bool:
"""Unregister a specific global after_llm_call hook.

View File

@@ -3,12 +3,7 @@ from __future__ import annotations
from typing import TYPE_CHECKING, Any
from crewai.events.event_listener import event_listener
from crewai.hooks.types import (
AfterToolCallHookCallable,
AfterToolCallHookType,
BeforeToolCallHookCallable,
BeforeToolCallHookType,
)
from crewai.hooks.types import AfterToolCallHookType, BeforeToolCallHookType
from crewai.utilities.printer import Printer
@@ -117,12 +112,12 @@ class ToolCallHookContext:
# Global hook registries
_before_tool_call_hooks: list[BeforeToolCallHookType | BeforeToolCallHookCallable] = []
_after_tool_call_hooks: list[AfterToolCallHookType | AfterToolCallHookCallable] = []
_before_tool_call_hooks: list[BeforeToolCallHookType] = []
_after_tool_call_hooks: list[AfterToolCallHookType] = []
def register_before_tool_call_hook(
hook: BeforeToolCallHookType | BeforeToolCallHookCallable,
hook: BeforeToolCallHookType,
) -> None:
"""Register a global before_tool_call hook.
@@ -159,7 +154,7 @@ def register_before_tool_call_hook(
def register_after_tool_call_hook(
hook: AfterToolCallHookType | AfterToolCallHookCallable,
hook: AfterToolCallHookType,
) -> None:
"""Register a global after_tool_call hook.
@@ -189,9 +184,7 @@ def register_after_tool_call_hook(
_after_tool_call_hooks.append(hook)
def get_before_tool_call_hooks() -> list[
BeforeToolCallHookType | BeforeToolCallHookCallable
]:
def get_before_tool_call_hooks() -> list[BeforeToolCallHookType]:
"""Get all registered global before_tool_call hooks.
Returns:
@@ -200,9 +193,7 @@ def get_before_tool_call_hooks() -> list[
return _before_tool_call_hooks.copy()
def get_after_tool_call_hooks() -> list[
AfterToolCallHookType | AfterToolCallHookCallable
]:
def get_after_tool_call_hooks() -> list[AfterToolCallHookType]:
"""Get all registered global after_tool_call hooks.
Returns:
@@ -212,7 +203,7 @@ def get_after_tool_call_hooks() -> list[
def unregister_before_tool_call_hook(
hook: BeforeToolCallHookType | BeforeToolCallHookCallable,
hook: BeforeToolCallHookType,
) -> bool:
"""Unregister a specific global before_tool_call hook.
@@ -238,7 +229,7 @@ def unregister_before_tool_call_hook(
def unregister_after_tool_call_hook(
hook: AfterToolCallHookType | AfterToolCallHookCallable,
hook: AfterToolCallHookType,
) -> bool:
"""Unregister a specific global after_tool_call hook.

View File

@@ -1 +0,0 @@
"""Knowledge source utilities."""

View File

@@ -1,70 +0,0 @@
"""Helper utilities for knowledge sources."""
from typing import Any, ClassVar
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.source.csv_knowledge_source import CSVKnowledgeSource
from crewai.knowledge.source.excel_knowledge_source import ExcelKnowledgeSource
from crewai.knowledge.source.json_knowledge_source import JSONKnowledgeSource
from crewai.knowledge.source.pdf_knowledge_source import PDFKnowledgeSource
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
class SourceHelper:
"""Helper class for creating and managing knowledge sources."""
SUPPORTED_FILE_TYPES: ClassVar[list[str]] = [
".csv",
".pdf",
".json",
".txt",
".xlsx",
".xls",
]
_FILE_TYPE_MAP: ClassVar[dict[str, type[BaseKnowledgeSource]]] = {
".csv": CSVKnowledgeSource,
".pdf": PDFKnowledgeSource,
".json": JSONKnowledgeSource,
".txt": TextFileKnowledgeSource,
".xlsx": ExcelKnowledgeSource,
".xls": ExcelKnowledgeSource,
}
@classmethod
def is_supported_file(cls, file_path: str) -> bool:
"""Check if a file type is supported.
Args:
file_path: Path to the file.
Returns:
True if the file type is supported.
"""
return file_path.lower().endswith(tuple(cls.SUPPORTED_FILE_TYPES))
@classmethod
def get_source(
cls, file_path: str, metadata: dict[str, Any] | None = None
) -> BaseKnowledgeSource:
"""Create appropriate KnowledgeSource based on file extension.
Args:
file_path: Path to the file.
metadata: Optional metadata to attach to the source.
Returns:
The appropriate KnowledgeSource instance.
Raises:
ValueError: If the file type is not supported.
"""
if not cls.is_supported_file(file_path):
raise ValueError(f"Unsupported file type: {file_path}")
lower_path = file_path.lower()
for ext, source_cls in cls._FILE_TYPE_MAP.items():
if lower_path.endswith(ext):
return source_cls(file_path=[file_path], metadata=metadata)
raise ValueError(f"Unsupported file type: {file_path}")

View File

@@ -420,6 +420,7 @@ class MCPClient:
return [
{
"name": sanitize_tool_name(tool.name),
"original_name": tool.name,
"description": getattr(tool, "description", ""),
"inputSchema": getattr(tool, "inputSchema", {}),
}

View File

@@ -27,8 +27,6 @@ if TYPE_CHECKING:
from crewai import Agent, Task
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.crews.crew_output import CrewOutput
from crewai.hooks.llm_hooks import LLMCallHookContext
from crewai.hooks.tool_hooks import ToolCallHookContext
from crewai.project.wrappers import (
CrewInstance,
OutputJsonClass,
@@ -36,8 +34,6 @@ if TYPE_CHECKING:
)
from crewai.tasks.task_output import TaskOutput
_post_initialize_crew_hooks: list[Callable[[Any], None]] = []
class AgentConfig(TypedDict, total=False):
"""Type definition for agent configuration dictionary.
@@ -270,9 +266,6 @@ class CrewBaseMeta(type):
instance.map_all_agent_variables()
instance.map_all_task_variables()
for hook in _post_initialize_crew_hooks:
hook(instance)
original_methods = {
name: method
for name, method in cls.__dict__.items()
@@ -492,61 +485,47 @@ def _register_crew_hooks(instance: CrewInstance, cls: type) -> None:
if has_agent_filter:
agents_filter = hook_method._filter_agents
def make_filtered_before_llm(
bound_fn: Callable[[LLMCallHookContext], bool | None],
agents_list: list[str],
) -> Callable[[LLMCallHookContext], bool | None]:
def filtered(context: LLMCallHookContext) -> bool | None:
def make_filtered_before_llm(bound_fn, agents_list):
def filtered(context):
if context.agent and context.agent.role not in agents_list:
return None
return bound_fn(context)
return filtered
before_llm_hook = make_filtered_before_llm(bound_hook, agents_filter)
final_hook = make_filtered_before_llm(bound_hook, agents_filter)
else:
before_llm_hook = bound_hook
final_hook = bound_hook
register_before_llm_call_hook(before_llm_hook)
instance._registered_hook_functions.append(
("before_llm_call", before_llm_hook)
)
register_before_llm_call_hook(final_hook)
instance._registered_hook_functions.append(("before_llm_call", final_hook))
if hasattr(hook_method, "is_after_llm_call_hook"):
if has_agent_filter:
agents_filter = hook_method._filter_agents
def make_filtered_after_llm(
bound_fn: Callable[[LLMCallHookContext], str | None],
agents_list: list[str],
) -> Callable[[LLMCallHookContext], str | None]:
def filtered(context: LLMCallHookContext) -> str | None:
def make_filtered_after_llm(bound_fn, agents_list):
def filtered(context):
if context.agent and context.agent.role not in agents_list:
return None
return bound_fn(context)
return filtered
after_llm_hook = make_filtered_after_llm(bound_hook, agents_filter)
final_hook = make_filtered_after_llm(bound_hook, agents_filter)
else:
after_llm_hook = bound_hook
final_hook = bound_hook
register_after_llm_call_hook(after_llm_hook)
instance._registered_hook_functions.append(
("after_llm_call", after_llm_hook)
)
register_after_llm_call_hook(final_hook)
instance._registered_hook_functions.append(("after_llm_call", final_hook))
if hasattr(hook_method, "is_before_tool_call_hook"):
if has_tool_filter or has_agent_filter:
tools_filter = getattr(hook_method, "_filter_tools", None)
agents_filter = getattr(hook_method, "_filter_agents", None)
def make_filtered_before_tool(
bound_fn: Callable[[ToolCallHookContext], bool | None],
tools_list: list[str] | None,
agents_list: list[str] | None,
) -> Callable[[ToolCallHookContext], bool | None]:
def filtered(context: ToolCallHookContext) -> bool | None:
def make_filtered_before_tool(bound_fn, tools_list, agents_list):
def filtered(context):
if tools_list and context.tool_name not in tools_list:
return None
if (
@@ -559,28 +538,22 @@ def _register_crew_hooks(instance: CrewInstance, cls: type) -> None:
return filtered
before_tool_hook = make_filtered_before_tool(
final_hook = make_filtered_before_tool(
bound_hook, tools_filter, agents_filter
)
else:
before_tool_hook = bound_hook
final_hook = bound_hook
register_before_tool_call_hook(before_tool_hook)
instance._registered_hook_functions.append(
("before_tool_call", before_tool_hook)
)
register_before_tool_call_hook(final_hook)
instance._registered_hook_functions.append(("before_tool_call", final_hook))
if hasattr(hook_method, "is_after_tool_call_hook"):
if has_tool_filter or has_agent_filter:
tools_filter = getattr(hook_method, "_filter_tools", None)
agents_filter = getattr(hook_method, "_filter_agents", None)
def make_filtered_after_tool(
bound_fn: Callable[[ToolCallHookContext], str | None],
tools_list: list[str] | None,
agents_list: list[str] | None,
) -> Callable[[ToolCallHookContext], str | None]:
def filtered(context: ToolCallHookContext) -> str | None:
def make_filtered_after_tool(bound_fn, tools_list, agents_list):
def filtered(context):
if tools_list and context.tool_name not in tools_list:
return None
if (
@@ -593,16 +566,14 @@ def _register_crew_hooks(instance: CrewInstance, cls: type) -> None:
return filtered
after_tool_hook = make_filtered_after_tool(
final_hook = make_filtered_after_tool(
bound_hook, tools_filter, agents_filter
)
else:
after_tool_hook = bound_hook
final_hook = bound_hook
register_after_tool_call_hook(after_tool_hook)
instance._registered_hook_functions.append(
("after_tool_call", after_tool_hook)
)
register_after_tool_call_hook(final_hook)
instance._registered_hook_functions.append(("after_tool_call", final_hook))
instance._hooks_being_registered = False

View File

@@ -72,8 +72,6 @@ class CrewInstance(Protocol):
__crew_metadata__: CrewMetadata
_mcp_server_adapter: Any
_all_methods: dict[str, Callable[..., Any]]
_registered_hook_functions: list[tuple[str, Callable[..., Any]]]
_hooks_being_registered: bool
agents: list[Agent]
tasks: list[Task]
base_directory: Path

View File

@@ -31,7 +31,6 @@ from pydantic_core import PydanticCustomError
from typing_extensions import Self
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.context import reset_current_task_id, set_current_task_id
from crewai.core.providers.content_processor import process_content
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.task_events import (
@@ -562,7 +561,6 @@ class Task(BaseModel):
tools: list[Any] | None,
) -> TaskOutput:
"""Run the core execution logic of the task asynchronously."""
task_id_token = set_current_task_id(str(self.id))
self._store_input_files()
try:
agent = agent or self.agent
@@ -650,7 +648,6 @@ class Task(BaseModel):
raise e # Re-raise the exception after emitting the event
finally:
clear_task_files(self.id)
reset_current_task_id(task_id_token)
def _execute_core(
self,
@@ -659,7 +656,6 @@ class Task(BaseModel):
tools: list[Any] | None,
) -> TaskOutput:
"""Run the core execution logic of the task."""
task_id_token = set_current_task_id(str(self.id))
self._store_input_files()
try:
agent = agent or self.agent
@@ -748,7 +744,6 @@ class Task(BaseModel):
raise e # Re-raise the exception after emitting the event
finally:
clear_task_files(self.id)
reset_current_task_id(task_id_token)
def _post_agent_execution(self, agent: BaseAgent) -> None:
pass

View File

@@ -6,7 +6,6 @@ Classes:
HallucinationGuardrail: Placeholder guardrail that validates task outputs.
"""
from collections.abc import Callable
from typing import Any
from crewai.llm import LLM
@@ -14,36 +13,32 @@ from crewai.tasks.task_output import TaskOutput
from crewai.utilities.logger import Logger
_validate_output_hook: Callable[..., tuple[bool, Any]] | None = None
class HallucinationGuardrail:
"""Placeholder for the HallucinationGuardrail feature.
Attributes:
context: Optional reference context that outputs would be checked against.
context: The reference context that outputs would be checked against.
llm: The language model that would be used for evaluation.
threshold: Optional minimum faithfulness score that would be required to pass.
tool_response: Optional tool response information that would be used in evaluation.
Examples:
>>> # Basic usage without context (uses task expected_output as context)
>>> guardrail = HallucinationGuardrail(llm=agent.llm)
>>> # With context for reference
>>> # Basic usage with default verdict logic
>>> guardrail = HallucinationGuardrail(
... llm=agent.llm,
... context="AI helps with various tasks including analysis and generation.",
... llm=agent.llm,
... )
>>> # With custom threshold for stricter validation
>>> strict_guardrail = HallucinationGuardrail(
... context="Quantum computing uses qubits in superposition.",
... llm=agent.llm,
... threshold=8.0, # Require score >= 8 to pass
... threshold=8.0, # Would require score >= 8 to pass in enterprise version
... )
>>> # With tool response for additional context
>>> guardrail_with_tools = HallucinationGuardrail(
... context="The current weather data",
... llm=agent.llm,
... tool_response="Weather API returned: Temperature 22°C, Humidity 65%",
... )
@@ -51,17 +46,16 @@ class HallucinationGuardrail:
def __init__(
self,
context: str,
llm: LLM,
context: str | None = None,
threshold: float | None = None,
tool_response: str = "",
):
"""Initialize the HallucinationGuardrail placeholder.
Args:
context: The reference context that outputs would be checked against.
llm: The language model that would be used for evaluation.
context: Optional reference context that outputs would be checked against.
If not provided, the task's expected_output will be used as context.
threshold: Optional minimum faithfulness score that would be required to pass.
tool_response: Optional tool response information that would be used in evaluation.
"""
@@ -84,17 +78,16 @@ class HallucinationGuardrail:
def __call__(self, task_output: TaskOutput) -> tuple[bool, Any]:
"""Validate a task output against hallucination criteria.
In the open source, this method always returns that the output is valid.
Args:
task_output: The output to be validated.
Returns:
A tuple containing:
- True if validation passed, False otherwise
- The raw task output if valid, or error feedback if invalid
- True
- The raw task output
"""
if callable(_validate_output_hook):
return _validate_output_hook(self, task_output)
self._logger.log(
"warning",
"Premium hallucination detection skipped (use for free at https://app.crewai.com)\n",

View File

@@ -1,10 +1,6 @@
import asyncio
from collections.abc import Coroutine
import inspect
from typing import Any
from pydantic import BaseModel, Field
from typing_extensions import TypeIs
from crewai.agent import Agent
from crewai.lite_agent_output import LiteAgentOutput
@@ -12,13 +8,6 @@ from crewai.llms.base_llm import BaseLLM
from crewai.tasks.task_output import TaskOutput
def _is_coroutine(
obj: LiteAgentOutput | Coroutine[Any, Any, LiteAgentOutput],
) -> TypeIs[Coroutine[Any, Any, LiteAgentOutput]]:
"""Check if obj is a coroutine for type narrowing."""
return inspect.iscoroutine(obj)
class LLMGuardrailResult(BaseModel):
valid: bool = Field(
description="Whether the task output complies with the guardrail"
@@ -73,10 +62,7 @@ class LLMGuardrail:
- If the Task result complies with the guardrail, saying that is valid
"""
kickoff_result = agent.kickoff(query, response_format=LLMGuardrailResult)
if _is_coroutine(kickoff_result):
return asyncio.run(kickoff_result)
return kickoff_result
return agent.kickoff(query, response_format=LLMGuardrailResult)
def __call__(self, task_output: TaskOutput) -> tuple[bool, Any]:
"""Validates the output of a task based on specified criteria.

View File

@@ -903,7 +903,7 @@ class Telemetry:
{
"id": str(task.id),
"description": task.description,
"output": task.output.raw if task.output else "",
"output": task.output.raw_output,
}
for task in crew.tasks
]
@@ -923,9 +923,6 @@ class Telemetry:
value: The attribute value.
"""
if span is None:
return
def _operation() -> None:
return span.set_attribute(key, value)

View File

@@ -27,14 +27,16 @@ class MCPNativeTool(BaseTool):
tool_name: str,
tool_schema: dict[str, Any],
server_name: str,
original_tool_name: str | None = None,
) -> None:
"""Initialize native MCP tool.
Args:
mcp_client: MCPClient instance with active session.
tool_name: Original name of the tool on the MCP server.
tool_name: Name of the tool (may be prefixed).
tool_schema: Schema information for the tool.
server_name: Name of the MCP server for prefixing.
original_tool_name: Original name of the tool on the MCP server.
"""
# Create tool name with server prefix to avoid conflicts
prefixed_name = f"{server_name}_{tool_name}"
@@ -57,7 +59,7 @@ class MCPNativeTool(BaseTool):
# Set instance attributes after super().__init__
self._mcp_client = mcp_client
self._original_tool_name = tool_name
self._original_tool_name = original_tool_name or tool_name
self._server_name = server_name
# self._logger = logging.getLogger(__name__)

View File

@@ -270,7 +270,6 @@ class ToolUsage:
result = None # type: ignore
should_retry = False
available_tool = None
error_event_emitted = False
try:
if self.tools_handler and self.tools_handler.cache:
@@ -409,7 +408,6 @@ class ToolUsage:
except Exception as e:
self.on_tool_error(tool=tool, tool_calling=calling, e=e)
error_event_emitted = True
self._run_attempts += 1
if self._run_attempts > self._max_parsing_attempts:
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
@@ -437,7 +435,7 @@ class ToolUsage:
result = self._format_result(result=result)
finally:
if started_event_emitted and not error_event_emitted:
if started_event_emitted:
self.on_tool_use_finished(
tool=tool,
tool_calling=calling,
@@ -502,7 +500,6 @@ class ToolUsage:
result = None # type: ignore
should_retry = False
available_tool = None
error_event_emitted = False
try:
if self.tools_handler and self.tools_handler.cache:
@@ -641,7 +638,6 @@ class ToolUsage:
except Exception as e:
self.on_tool_error(tool=tool, tool_calling=calling, e=e)
error_event_emitted = True
self._run_attempts += 1
if self._run_attempts > self._max_parsing_attempts:
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
@@ -669,7 +665,7 @@ class ToolUsage:
result = self._format_result(result=result)
finally:
if started_event_emitted and not error_event_emitted:
if started_event_emitted:
self.on_tool_use_finished(
tool=tool,
tool_calling=calling,

View File

@@ -58,14 +58,9 @@
}
},
"reasoning": {
"initial_plan": "You are {role}. Create a focused execution plan using only the essential steps needed.",
"refine_plan": "You are {role}. Refine your plan to address the specific gap while keeping it minimal.",
"create_plan_prompt": "You are {role}.\n\nTask: {description}\n\nExpected output: {expected_output}\n\nAvailable tools: {tools}\n\nCreate a focused plan with ONLY the essential steps needed. Most tasks require just 2-5 steps. Do NOT pad with unnecessary steps like \"review\", \"verify\", \"document\", or \"finalize\" unless explicitly required.\n\nFor each step, specify the action and which tool to use (if any).\n\nConclude with:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan because [specific reason].\"",
"refine_plan_prompt": "Your plan:\n{current_plan}\n\nYou indicated you're not ready. Address the specific gap while keeping the plan minimal.\n\nConclude with READY or NOT READY."
},
"planning": {
"system_prompt": "You are a strategic planning assistant. Create minimal, effective execution plans. Prefer fewer steps over more.",
"create_plan_prompt": "Create a focused execution plan for the following task:\n\n## Task\n{description}\n\n## Expected Output\n{expected_output}\n\n## Available Tools\n{tools}\n\n## Planning Principles\nFocus on WHAT needs to be accomplished, not HOW. Group related actions into logical units. Fewer steps = better. Most tasks need 3-6 steps. Hard limit: {max_steps} steps.\n\n## Step Types (only these are valid):\n1. **Tool Step**: Uses a tool to gather information or take action\n2. **Output Step**: Synthesizes prior results into the final deliverable (usually the last step)\n\n## Rules:\n- Each step must either USE A TOOL or PRODUCE THE FINAL OUTPUT\n- Combine related tool calls: \"Research A, B, and C\" = ONE step, not three\n- Combine all synthesis into ONE final output step\n- NO standalone \"thinking\" steps (review, verify, confirm, refine, analyze) - these happen naturally between steps\n\nFor each step: State the action, specify the tool (if any), and note dependencies.\n\nAfter your plan, state READY or NOT READY.",
"refine_plan_prompt": "Your previous plan:\n{current_plan}\n\nYou indicated you weren't ready. Refine your plan to address the specific gap.\n\nKeep the plan minimal - only add steps that directly address the issue.\n\nConclude with READY or NOT READY as before."
"initial_plan": "You are {role}, a professional with the following background: {backstory}\n\nYour primary goal is: {goal}\n\nAs {role}, you are creating a strategic plan for a task that requires your expertise and unique perspective.",
"refine_plan": "You are {role}, a professional with the following background: {backstory}\n\nYour primary goal is: {goal}\n\nAs {role}, you are refining a strategic plan for a task that requires your expertise and unique perspective.",
"create_plan_prompt": "You are {role} with this background: {backstory}\n\nYour primary goal is: {goal}\n\nYou have been assigned the following task:\n{description}\n\nExpected output:\n{expected_output}\n\nAvailable tools: {tools}\n\nBefore executing this task, create a detailed plan that leverages your expertise as {role} and outlines:\n1. Your understanding of the task from your professional perspective\n2. The key steps you'll take to complete it, drawing on your background and skills\n3. How you'll approach any challenges that might arise, considering your expertise\n4. How you'll strategically use the available tools based on your experience, exactly what tools to use and how to use them\n5. The expected outcome and how it aligns with your goal\n\nAfter creating your plan, assess whether you feel ready to execute the task or if you could do better.\nConclude with one of these statements:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan because [specific reason].\"",
"refine_plan_prompt": "You are {role} with this background: {backstory}\n\nYour primary goal is: {goal}\n\nYou created the following plan for this task:\n{current_plan}\n\nHowever, you indicated that you're not ready to execute the task yet.\n\nPlease refine your plan further, drawing on your expertise as {role} to address any gaps or uncertainties. As you refine your plan, be specific about which available tools you will use, how you will use them, and why they are the best choices for each step. Clearly outline your tool usage strategy as part of your improved plan.\n\nAfter refining your plan, assess whether you feel ready to execute the task.\nConclude with one of these statements:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan further because [specific reason].\""
}
}

View File

@@ -0,0 +1,37 @@
"""Human-in-the-loop (HITL) type definitions.
This module provides type definitions for human-in-the-loop interactions
in crew executions.
"""
from typing import TypedDict
class HITLResumeInfo(TypedDict, total=False):
"""HITL resume information passed from flow to crew.
Attributes:
task_id: Unique identifier for the task.
crew_execution_id: Unique identifier for the crew execution.
task_key: Key identifying the specific task.
task_output: Output from the task before human intervention.
human_feedback: Feedback provided by the human.
previous_messages: History of messages in the conversation.
"""
task_id: str
crew_execution_id: str
task_key: str
task_output: str
human_feedback: str
previous_messages: list[dict[str, str]]
class CrewInputsWithHITL(TypedDict, total=False):
"""Crew inputs that may contain HITL resume information.
Attributes:
_hitl_resume: Optional HITL resume information for continuing execution.
"""
_hitl_resume: HITLResumeInfo

View File

@@ -42,8 +42,6 @@ if TYPE_CHECKING:
from crewai.llm import LLM
from crewai.task import Task
_create_plus_client_hook: Callable[[], Any] | None = None
class SummaryContent(TypedDict):
"""Structure for summary content entries.
@@ -93,11 +91,7 @@ def parse_tools(tools: list[BaseTool]) -> list[CrewStructuredTool]:
for tool in tools:
if isinstance(tool, CrewAITool):
structured_tool = tool.to_structured_tool()
structured_tool.current_usage_count = 0
if structured_tool._original_tool:
structured_tool._original_tool.current_usage_count = 0
tools_list.append(structured_tool)
tools_list.append(tool.to_structured_tool())
else:
raise ValueError("Tool is not a CrewStructuredTool or BaseTool")
@@ -824,15 +818,12 @@ def load_agent_from_repository(from_repository: str) -> dict[str, Any]:
if from_repository:
import importlib
if callable(_create_plus_client_hook):
client = _create_plus_client_hook()
else:
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.plus_api import PlusAPI
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.plus_api import PlusAPI
client = PlusAPI(api_key=get_auth_token())
client = PlusAPI(api_key=get_auth_token())
_print_current_organization()
response = asyncio.run(client.get_agent(from_repository))
response = client.get_agent(from_repository)
if response.status_code == 404:
raise AgentRepositoryError(
f"Agent {from_repository} does not exist, make sure the name is correct or the agent is available on your organization."

View File

@@ -1,7 +1,7 @@
from __future__ import annotations
from collections import defaultdict
from typing import TYPE_CHECKING, Any
from typing import TYPE_CHECKING
from pydantic import BaseModel, Field, InstanceOf
from rich.box import HEAVY_EDGE
@@ -36,13 +36,7 @@ class CrewEvaluator:
iteration: The current iteration of the evaluation.
"""
def __init__(
self,
crew: Crew,
eval_llm: InstanceOf[BaseLLM] | str | None = None,
openai_model_name: str | None = None,
llm: InstanceOf[BaseLLM] | str | None = None,
) -> None:
def __init__(self, crew: Crew, eval_llm: InstanceOf[BaseLLM]) -> None:
self.crew = crew
self.llm = eval_llm
self.tasks_scores: defaultdict[int, list[float]] = defaultdict(list)
@@ -92,9 +86,7 @@ class CrewEvaluator:
"""
self.iteration = iteration
def print_crew_evaluation_result(
self, token_usage: list[dict[str, Any]] | None = None
) -> None:
def print_crew_evaluation_result(self) -> None:
"""
Prints the evaluation result of the crew in a table.
A Crew with 2 tasks using the command crewai test -n 3
@@ -212,7 +204,7 @@ class CrewEvaluator:
CrewTestResultEvent(
quality=quality_score,
execution_duration=current_task.execution_duration,
model=getattr(self.llm, "model", str(self.llm)),
model=self.llm.model,
crew_name=self.crew.name,
crew=self.crew,
),

View File

@@ -1,103 +0,0 @@
"""Types for agent planning and todo tracking."""
from __future__ import annotations
from typing import Literal
from uuid import uuid4
from pydantic import BaseModel, Field
# Todo status type
TodoStatus = Literal["pending", "running", "completed"]
class PlanStep(BaseModel):
"""A single step in the reasoning plan."""
step_number: int = Field(description="Step number (1-based)")
description: str = Field(description="What to do in this step")
tool_to_use: str | None = Field(
default=None, description="Tool to use for this step, if any"
)
depends_on: list[int] = Field(
default_factory=list, description="Step numbers this step depends on"
)
class TodoItem(BaseModel):
"""A single todo item representing a step in the execution plan."""
id: str = Field(default_factory=lambda: str(uuid4()))
step_number: int = Field(description="Order of this step in the plan (1-based)")
description: str = Field(description="What needs to be done")
tool_to_use: str | None = Field(
default=None, description="Tool to use for this step, if any"
)
status: TodoStatus = Field(default="pending", description="Current status")
depends_on: list[int] = Field(
default_factory=list, description="Step numbers this depends on"
)
result: str | None = Field(
default=None, description="Result after completion, if any"
)
class TodoList(BaseModel):
"""Collection of todos for tracking plan execution."""
items: list[TodoItem] = Field(default_factory=list)
@property
def current_todo(self) -> TodoItem | None:
"""Get the currently running todo item."""
for item in self.items:
if item.status == "running":
return item
return None
@property
def next_pending(self) -> TodoItem | None:
"""Get the next pending todo item."""
for item in self.items:
if item.status == "pending":
return item
return None
@property
def is_complete(self) -> bool:
"""Check if all todos are completed."""
return len(self.items) > 0 and all(
item.status == "completed" for item in self.items
)
@property
def pending_count(self) -> int:
"""Count of pending todos."""
return sum(1 for item in self.items if item.status == "pending")
@property
def completed_count(self) -> int:
"""Count of completed todos."""
return sum(1 for item in self.items if item.status == "completed")
def get_by_step_number(self, step_number: int) -> TodoItem | None:
"""Get a todo by its step number."""
for item in self.items:
if item.step_number == step_number:
return item
return None
def mark_running(self, step_number: int) -> None:
"""Mark a todo as running by step number."""
item = self.get_by_step_number(step_number)
if item:
item.status = "running"
def mark_completed(self, step_number: int, result: str | None = None) -> None:
"""Mark a todo as completed by step number."""
item = self.get_by_step_number(step_number)
if item:
item.status = "completed"
if result:
item.result = result

View File

@@ -4,8 +4,6 @@ from __future__ import annotations
from typing import TYPE_CHECKING, Final, Literal, NamedTuple
from crewai.events.utils.console_formatter import should_suppress_console_output
if TYPE_CHECKING:
from _typeshed import SupportsWrite
@@ -79,8 +77,6 @@ class Printer:
file: A file-like object (stream); defaults to the current sys.stdout.
flush: Whether to forcibly flush the stream.
"""
if should_suppress_console_output():
return
if isinstance(content, str):
content = [ColoredText(content, color)]
print(

View File

@@ -1,13 +1,10 @@
"""Handles planning/reasoning for agents before task execution."""
from __future__ import annotations
import json
import logging
from typing import TYPE_CHECKING, Any, Final, Literal, cast
from typing import Any, Final, Literal, cast
from pydantic import BaseModel, Field
from crewai.agent import Agent
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.reasoning_events import (
AgentReasoningCompletedEvent,
@@ -15,30 +12,14 @@ from crewai.events.types.reasoning_events import (
AgentReasoningStartedEvent,
)
from crewai.llm import LLM
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.planning_types import PlanStep
from crewai.task import Task
from crewai.utilities.string_utils import sanitize_tool_name
if TYPE_CHECKING:
from crewai.agent import Agent
from crewai.agent.planning_config import PlanningConfig
from crewai.task import Task
if TYPE_CHECKING:
from crewai.agent import Agent
from crewai.agent.planning_config import PlanningConfig
from crewai.task import Task
class ReasoningPlan(BaseModel):
"""Model representing a reasoning plan for a task."""
plan: str = Field(description="The detailed reasoning plan for the task.")
steps: list[PlanStep] = Field(
default_factory=list, description="Structured steps to execute"
)
ready: bool = Field(description="Whether the agent is ready to execute the task.")
@@ -48,63 +29,24 @@ class AgentReasoningOutput(BaseModel):
plan: ReasoningPlan = Field(description="The reasoning plan for the task.")
# Aliases for backward compatibility
PlanningPlan = ReasoningPlan
AgentPlanningOutput = AgentReasoningOutput
FUNCTION_SCHEMA: Final[dict[str, Any]] = {
"type": "function",
"function": {
"name": "create_reasoning_plan",
"description": "Create or refine a reasoning plan for a task with structured steps",
"description": "Create or refine a reasoning plan for a task",
"parameters": {
"type": "object",
"properties": {
"plan": {
"type": "string",
"description": "A brief summary of the overall plan.",
},
"steps": {
"type": "array",
"description": "List of discrete steps to execute the plan",
"items": {
"type": "object",
"properties": {
"step_number": {
"type": "integer",
"description": "Step number (1-based)",
},
"description": {
"type": "string",
"description": "What to do in this step",
},
"tool_to_use": {
"type": ["string", "null"],
"description": "Tool to use for this step, or null if no tool needed",
},
"depends_on": {
"type": "array",
"items": {"type": "integer"},
"description": "Step numbers this step depends on (empty array if none)",
},
},
"required": [
"step_number",
"description",
"tool_to_use",
"depends_on",
],
"additionalProperties": False,
},
"description": "The detailed reasoning plan for the task.",
},
"ready": {
"type": "boolean",
"description": "Whether the agent is ready to execute the task.",
},
},
"required": ["plan", "steps", "ready"],
"additionalProperties": False,
"required": ["plan", "ready"],
},
},
}
@@ -112,101 +54,41 @@ FUNCTION_SCHEMA: Final[dict[str, Any]] = {
class AgentReasoning:
"""
Handles the agent planning/reasoning process, enabling an agent to reflect
and create a plan before executing a task.
Handles the agent reasoning process, enabling an agent to reflect and create a plan
before executing a task.
Attributes:
task: The task for which the agent is planning (optional).
agent: The agent performing the planning.
config: The planning configuration.
llm: The language model used for planning.
task: The task for which the agent is reasoning.
agent: The agent performing the reasoning.
llm: The language model used for reasoning.
logger: Logger for logging events and errors.
description: Task description or input text for planning.
expected_output: Expected output description.
"""
def __init__(
self,
agent: Agent,
task: Task | None = None,
*,
description: str | None = None,
expected_output: str | None = None,
) -> None:
"""Initialize the AgentReasoning with an agent and optional task.
def __init__(self, task: Task, agent: Agent) -> None:
"""Initialize the AgentReasoning with a task and an agent.
Args:
agent: The agent performing the planning.
task: The task for which the agent is planning (optional).
description: Task description or input text (used if task is None).
expected_output: Expected output (used if task is None).
task: The task for which the agent is reasoning.
agent: The agent performing the reasoning.
"""
self.agent = agent
self.task = task
# Use task attributes if available, otherwise use provided values
self._description = description or (
task.description if task else "Complete the requested task"
)
self._expected_output = expected_output or (
task.expected_output if task else "Complete the task successfully"
)
self.config = self._get_planning_config()
self.llm = self._resolve_llm()
self.agent = agent
self.llm = cast(LLM, agent.llm)
self.logger = logging.getLogger(__name__)
@property
def description(self) -> str:
"""Get the task/input description."""
return self._description
@property
def expected_output(self) -> str:
"""Get the expected output."""
return self._expected_output
def _get_planning_config(self) -> PlanningConfig:
"""Get the planning configuration from the agent.
Returns:
The planning configuration, using defaults if not set.
"""
from crewai.agent.planning_config import PlanningConfig
if self.agent.planning_config is not None:
return self.agent.planning_config
# Fallback for backward compatibility
return PlanningConfig(
max_attempts=getattr(self.agent, "max_reasoning_attempts", None),
)
def _resolve_llm(self) -> LLM:
"""Resolve which LLM to use for planning.
Returns:
The LLM to use - either from config or the agent's LLM.
"""
if self.config.llm is not None:
if isinstance(self.config.llm, LLM):
return self.config.llm
return create_llm(self.config.llm)
return cast(LLM, self.agent.llm)
def handle_agent_reasoning(self) -> AgentReasoningOutput:
"""Public method for the planning process that creates and refines a plan
for the task until the agent is ready to execute it.
"""Public method for the reasoning process that creates and refines a plan for the task until the agent is ready to execute it.
Returns:
AgentReasoningOutput: The output of the agent planning process.
AgentReasoningOutput: The output of the agent reasoning process.
"""
task_id = str(self.task.id) if self.task else "kickoff"
# Emit a planning started event (attempt 1)
# Emit a reasoning started event (attempt 1)
try:
crewai_event_bus.emit(
self.agent,
AgentReasoningStartedEvent(
agent_role=self.agent.role,
task_id=task_id,
task_id=str(self.task.id),
attempt=1,
from_task=self.task,
),
@@ -216,13 +98,13 @@ class AgentReasoning:
pass
try:
output = self._execute_planning()
output = self.__handle_agent_reasoning()
crewai_event_bus.emit(
self.agent,
AgentReasoningCompletedEvent(
agent_role=self.agent.role,
task_id=task_id,
task_id=str(self.task.id),
plan=output.plan.plan,
ready=output.plan.ready,
attempt=1,
@@ -233,77 +115,71 @@ class AgentReasoning:
return output
except Exception as e:
# Emit planning failed event
# Emit reasoning failed event
try:
crewai_event_bus.emit(
self.agent,
AgentReasoningFailedEvent(
agent_role=self.agent.role,
task_id=task_id,
task_id=str(self.task.id),
error=str(e),
attempt=1,
from_task=self.task,
from_agent=self.agent,
),
)
except Exception as event_error:
logging.error(f"Error emitting planning failed event: {event_error}")
except Exception as e:
logging.error(f"Error emitting reasoning failed event: {e}")
raise
def _execute_planning(self) -> AgentReasoningOutput:
"""Execute the planning process.
def __handle_agent_reasoning(self) -> AgentReasoningOutput:
"""Private method that handles the agent reasoning process.
Returns:
The output of the agent planning process.
The output of the agent reasoning process.
"""
plan, steps, ready = self._create_initial_plan()
plan, steps, ready = self._refine_plan_if_needed(plan, steps, ready)
plan, ready = self.__create_initial_plan()
reasoning_plan = ReasoningPlan(plan=plan, steps=steps, ready=ready)
plan, ready = self.__refine_plan_if_needed(plan, ready)
reasoning_plan = ReasoningPlan(plan=plan, ready=ready)
return AgentReasoningOutput(plan=reasoning_plan)
def _create_initial_plan(self) -> tuple[str, list[PlanStep], bool]:
"""Creates the initial plan for the task.
def __create_initial_plan(self) -> tuple[str, bool]:
"""Creates the initial reasoning plan for the task.
Returns:
A tuple of the plan summary, list of steps, and whether the agent is ready.
The initial plan and whether the agent is ready to execute the task.
"""
planning_prompt = self._create_planning_prompt()
planning_prompt = self._create_planning_prompt()
reasoning_prompt = self.__create_reasoning_prompt()
if self.llm.supports_function_calling():
plan, steps, ready = self._call_with_function(
planning_prompt, "create_plan"
)
return plan, steps, ready
response = self._call_llm_with_prompt(
prompt=planning_prompt,
plan_type="create_plan",
plan, ready = self.__call_with_function(reasoning_prompt, "initial_plan")
return plan, ready
response = _call_llm_with_reasoning_prompt(
llm=self.llm,
prompt=reasoning_prompt,
task=self.task,
reasoning_agent=self.agent,
backstory=self.__get_agent_backstory(),
plan_type="initial_plan",
)
plan, ready = self._parse_planning_response(str(response))
return plan, [], ready # No structured steps from text parsing
return self.__parse_reasoning_response(str(response))
def _refine_plan_if_needed(
self, plan: str, steps: list[PlanStep], ready: bool
) -> tuple[str, list[PlanStep], bool]:
"""Refines the plan if the agent is not ready to execute the task.
def __refine_plan_if_needed(self, plan: str, ready: bool) -> tuple[str, bool]:
"""Refines the reasoning plan if the agent is not ready to execute the task.
Args:
plan: The current plan.
steps: The current list of steps.
plan: The current reasoning plan.
ready: Whether the agent is ready to execute the task.
Returns:
The refined plan, steps, and whether the agent is ready to execute.
The refined plan and whether the agent is ready to execute the task.
"""
attempt = 1
max_attempts = self.config.max_attempts
task_id = str(self.task.id) if self.task else "kickoff"
current_attempt = attempt + 1
max_attempts = self.agent.max_reasoning_attempts
while not ready and (max_attempts is None or attempt < max_attempts):
# Emit event for each refinement attempt
@@ -312,82 +188,62 @@ class AgentReasoning:
self.agent,
AgentReasoningStartedEvent(
agent_role=self.agent.role,
task_id=task_id,
attempt=current_attempt,
task_id=str(self.task.id),
attempt=attempt + 1,
from_task=self.task,
),
)
except Exception: # noqa: S110
pass
refine_prompt = self._create_refine_prompt(plan)
refine_prompt = self._create_refine_prompt(plan)
refine_prompt = self.__create_refine_prompt(plan)
if self.llm.supports_function_calling():
plan, steps, ready = self._call_with_function(
refine_prompt, "refine_plan"
)
plan, ready = self.__call_with_function(refine_prompt, "refine_plan")
else:
response = self._call_llm_with_prompt(
response = _call_llm_with_reasoning_prompt(
llm=self.llm,
prompt=refine_prompt,
task=self.task,
reasoning_agent=self.agent,
backstory=self.__get_agent_backstory(),
plan_type="refine_plan",
)
plan, ready = self._parse_planning_response(str(response))
steps = [] # No structured steps from text parsing
# Emit completed event for this refinement attempt
try:
crewai_event_bus.emit(
self.agent,
AgentReasoningCompletedEvent(
agent_role=self.agent.role,
task_id=task_id,
plan=plan,
ready=ready,
attempt=current_attempt,
from_task=self.task,
from_agent=self.agent,
),
)
except Exception: # noqa: S110
pass
plan, ready = self.__parse_reasoning_response(str(response))
attempt += 1
if max_attempts is not None and attempt >= max_attempts:
self.logger.warning(
f"Agent planning reached maximum attempts ({max_attempts}) "
"without being ready. Proceeding with current plan."
f"Agent reasoning reached maximum attempts ({max_attempts}) without being ready. Proceeding with current plan."
)
break
return plan, steps, ready
return plan, ready
def _call_with_function(
self, prompt: str, plan_type: Literal["create_plan", "refine_plan"]
) -> tuple[str, list[PlanStep], bool]:
"""Calls the LLM with function calling to get a plan.
def __call_with_function(self, prompt: str, prompt_type: str) -> tuple[str, bool]:
"""Calls the LLM with function calling to get a reasoning plan.
Args:
prompt: The prompt to send to the LLM.
plan_type: The type of plan being created.
prompt_type: The type of prompt (initial_plan or refine_plan).
Returns:
A tuple containing the plan summary, list of steps, and whether the agent is ready.
A tuple containing the plan and whether the agent is ready.
"""
self.logger.debug(f"Using function calling for {plan_type} planning")
self.logger.debug(f"Using function calling for {prompt_type} reasoning")
try:
system_prompt = self._get_system_prompt()
system_prompt = self.agent.i18n.retrieve("reasoning", prompt_type).format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory(),
)
# Prepare a simple callable that just returns the tool arguments as JSON
def _create_reasoning_plan(
plan: str,
steps: list[dict[str, Any]] | None = None,
ready: bool = True,
) -> str:
"""Return the planning result in JSON string form."""
return json.dumps({"plan": plan, "steps": steps or [], "ready": ready})
def _create_reasoning_plan(plan: str, ready: bool = True) -> str:
"""Return the reasoning plan result in JSON string form."""
return json.dumps({"plan": plan, "ready": ready})
response = self.llm.call(
[
@@ -399,33 +255,19 @@ class AgentReasoning:
from_task=self.task,
from_agent=self.agent,
)
self.logger.debug(f"Function calling response: {response[:100]}...")
try:
result = json.loads(response)
if "plan" in result and "ready" in result:
# Parse steps from the response
steps: list[PlanStep] = []
raw_steps = result.get("steps", [])
try:
for step_data in raw_steps:
step = PlanStep(
step_number=step_data.get("step_number", 0),
description=step_data.get("description", ""),
tool_to_use=step_data.get("tool_to_use"),
depends_on=step_data.get("depends_on", []),
)
steps.append(step)
except Exception as step_error:
self.logger.warning(
f"Failed to parse step: {step_data}, error: {step_error}"
)
return result["plan"], steps, result["ready"]
return result["plan"], result["ready"]
except (json.JSONDecodeError, KeyError):
pass
response_str = str(response)
return (
response_str,
[],
"READY: I am ready to execute the task." in response_str,
)
@@ -435,7 +277,13 @@ class AgentReasoning:
)
try:
system_prompt = self._get_system_prompt()
system_prompt = self.agent.i18n.retrieve(
"reasoning", prompt_type
).format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory(),
)
fallback_response = self.llm.call(
[
@@ -449,165 +297,78 @@ class AgentReasoning:
fallback_str = str(fallback_response)
return (
fallback_str,
[],
"READY: I am ready to execute the task." in fallback_str,
)
except Exception as inner_e:
self.logger.error(f"Error during fallback text parsing: {inner_e!s}")
return (
"Failed to generate a plan due to an error.",
[],
True,
) # Default to ready to avoid getting stuck
def _call_llm_with_prompt(
self,
prompt: str,
plan_type: Literal["create_plan", "refine_plan"],
) -> str:
"""Calls the LLM with the planning prompt.
Args:
prompt: The prompt to send to the LLM.
plan_type: The type of plan being created.
Returns:
The LLM response.
def __get_agent_backstory(self) -> str:
"""
system_prompt = self._get_system_prompt()
response = self.llm.call(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
from_task=self.task,
from_agent=self.agent,
)
return str(response)
def _get_system_prompt(self) -> str:
"""Get the system prompt for planning.
Safely gets the agent's backstory, providing a default if not available.
Returns:
The system prompt, either custom or from i18n.
"""
if self.config.system_prompt is not None:
return self.config.system_prompt
# Try new "planning" section first, fall back to "reasoning" for compatibility
try:
return self.agent.i18n.retrieve("planning", "system_prompt")
except (KeyError, AttributeError):
# Fallback to reasoning section for backward compatibility
return self.agent.i18n.retrieve("reasoning", "initial_plan").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self._get_agent_backstory(),
)
def _get_agent_backstory(self) -> str:
"""Safely gets the agent's backstory, providing a default if not available.
Returns:
The agent's backstory or a default value.
str: The agent's backstory or a default value.
"""
return getattr(self.agent, "backstory", "No backstory provided")
def _create_planning_prompt(self) -> str:
"""Creates a prompt for the agent to plan the task.
def __create_reasoning_prompt(self) -> str:
"""
Creates a prompt for the agent to reason about the task.
Returns:
The planning prompt.
str: The reasoning prompt.
"""
available_tools = self._format_available_tools()
available_tools = self.__format_available_tools()
# Use custom prompt if provided
if self.config.plan_prompt is not None:
return self.config.plan_prompt.format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self._get_agent_backstory(),
description=self.description,
expected_output=self.expected_output,
tools=available_tools,
max_steps=self.config.max_steps,
)
return self.agent.i18n.retrieve("reasoning", "create_plan_prompt").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory(),
description=self.task.description,
expected_output=self.task.expected_output,
tools=available_tools,
)
# Try new "planning" section first
try:
return self.agent.i18n.retrieve("planning", "create_plan_prompt").format(
description=self.description,
expected_output=self.expected_output,
tools=available_tools,
max_steps=self.config.max_steps,
)
except (KeyError, AttributeError):
# Fallback to reasoning section for backward compatibility
return self.agent.i18n.retrieve("reasoning", "create_plan_prompt").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self._get_agent_backstory(),
description=self.description,
expected_output=self.expected_output,
tools=available_tools,
)
def _format_available_tools(self) -> str:
"""Formats the available tools for inclusion in the prompt.
def __format_available_tools(self) -> str:
"""
Formats the available tools for inclusion in the prompt.
Returns:
Comma-separated list of tool names.
str: Comma-separated list of tool names.
"""
try:
# Try task tools first, then agent tools
tools = []
if self.task:
tools = self.task.tools or []
if not tools:
tools = getattr(self.agent, "tools", []) or []
if not tools:
return "No tools available"
return ", ".join([sanitize_tool_name(tool.name) for tool in tools])
return ", ".join(
[sanitize_tool_name(tool.name) for tool in (self.task.tools or [])]
)
except (AttributeError, TypeError):
return "No tools available"
def _create_refine_prompt(self, current_plan: str) -> str:
"""Creates a prompt for the agent to refine its plan.
def __create_refine_prompt(self, current_plan: str) -> str:
"""
Creates a prompt for the agent to refine its reasoning plan.
Args:
current_plan: The current plan.
current_plan: The current reasoning plan.
Returns:
The refine prompt.
str: The refine prompt.
"""
# Use custom prompt if provided
if self.config.refine_prompt is not None:
return self.config.refine_prompt.format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self._get_agent_backstory(),
current_plan=current_plan,
max_steps=self.config.max_steps,
)
# Try new "planning" section first
try:
return self.agent.i18n.retrieve("planning", "refine_plan_prompt").format(
current_plan=current_plan,
)
except (KeyError, AttributeError):
# Fallback to reasoning section for backward compatibility
return self.agent.i18n.retrieve("reasoning", "refine_plan_prompt").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self._get_agent_backstory(),
current_plan=current_plan,
)
return self.agent.i18n.retrieve("reasoning", "refine_plan_prompt").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory(),
current_plan=current_plan,
)
@staticmethod
def _parse_planning_response(response: str) -> tuple[str, bool]:
"""Parses the planning response to extract the plan and readiness.
def __parse_reasoning_response(response: str) -> tuple[str, bool]:
"""
Parses the reasoning response to extract the plan and whether
the agent is ready to execute the task.
Args:
response: The LLM response.
@@ -619,13 +380,25 @@ class AgentReasoning:
return "No plan was generated.", False
plan = response
ready = "READY: I am ready to execute the task." in response
ready = False
if "READY: I am ready to execute the task." in response:
ready = True
return plan, ready
def _handle_agent_reasoning(self) -> AgentReasoningOutput:
"""
Deprecated method for backward compatibility.
Use handle_agent_reasoning() instead.
# Alias for backward compatibility
AgentPlanning = AgentReasoning
Returns:
AgentReasoningOutput: The output of the agent reasoning process.
"""
self.logger.warning(
"The _handle_agent_reasoning method is deprecated. Use handle_agent_reasoning instead."
)
return self.handle_agent_reasoning()
def _call_llm_with_reasoning_prompt(
@@ -636,9 +409,7 @@ def _call_llm_with_reasoning_prompt(
backstory: str,
plan_type: Literal["initial_plan", "refine_plan"],
) -> str:
"""Deprecated: Calls the LLM with the reasoning prompt.
This function is kept for backward compatibility.
"""Calls the LLM with the reasoning prompt.
Args:
llm: The language model to use.
@@ -646,7 +417,7 @@ def _call_llm_with_reasoning_prompt(
task: The task for which the agent is reasoning.
reasoning_agent: The agent performing the reasoning.
backstory: The agent's backstory.
plan_type: The type of plan being created.
plan_type: The type of plan being created ("initial_plan" or "refine_plan").
Returns:
The LLM response.

View File

@@ -19,7 +19,6 @@ def to_serializable(
exclude: set[str] | None = None,
max_depth: int = 5,
_current_depth: int = 0,
_ancestors: set[int] | None = None,
) -> Serializable:
"""Converts a Python object into a JSON-compatible representation.
@@ -32,7 +31,6 @@ def to_serializable(
exclude: Set of keys to exclude from the result.
max_depth: Maximum recursion depth. Defaults to 5.
_current_depth: Current recursion depth (for internal use).
_ancestors: Set of ancestor object ids for cycle detection (for internal use).
Returns:
Serializable: A JSON-compatible structure.
@@ -43,29 +41,16 @@ def to_serializable(
if exclude is None:
exclude = set()
if _ancestors is None:
_ancestors = set()
if isinstance(obj, (str, int, float, bool, type(None))):
return obj
if isinstance(obj, uuid.UUID):
return str(obj)
if isinstance(obj, (date, datetime)):
return obj.isoformat()
object_id = id(obj)
if object_id in _ancestors:
return f"<circular_ref:{type(obj).__name__}>"
new_ancestors = _ancestors | {object_id}
if isinstance(obj, (list, tuple, set)):
return [
to_serializable(
item,
exclude=exclude,
max_depth=max_depth,
_current_depth=_current_depth + 1,
_ancestors=new_ancestors,
item, max_depth=max_depth, _current_depth=_current_depth + 1
)
for item in obj
]
@@ -76,7 +61,6 @@ def to_serializable(
exclude=exclude,
max_depth=max_depth,
_current_depth=_current_depth + 1,
_ancestors=new_ancestors,
)
for key, value in obj.items()
if key not in exclude
@@ -87,16 +71,12 @@ def to_serializable(
obj=obj.model_dump(exclude=exclude),
max_depth=max_depth,
_current_depth=_current_depth + 1,
_ancestors=new_ancestors,
)
except Exception:
try:
return {
_to_serializable_key(k): to_serializable(
v,
max_depth=max_depth,
_current_depth=_current_depth + 1,
_ancestors=new_ancestors,
v, max_depth=max_depth, _current_depth=_current_depth + 1
)
for k, v in obj.__dict__.items()
if k not in (exclude or set())

View File

@@ -51,10 +51,6 @@ class ConcreteAgentAdapter(BaseAgentAdapter):
# Dummy implementation for MCP tools
return []
def configure_structured_output(self, task: Any) -> None:
# Dummy implementation for structured output
pass
async def aexecute_task(
self,
task: Any,

View File

@@ -1456,7 +1456,7 @@ def test_agent_execute_task_with_tool():
)
result = agent.execute_task(task)
assert "test query" in result
assert "you should always think about what to do" in result
@pytest.mark.vcr()
@@ -1475,9 +1475,9 @@ def test_agent_execute_task_with_custom_llm():
)
result = agent.execute_task(task)
assert "Artificial minds" in result
assert "Code and circuits" in result
assert "Future undefined" in result
assert "In circuits they thrive" in result
assert "Artificial minds awake" in result
assert "Future's coded drive" in result
@pytest.mark.vcr()

View File

@@ -25,18 +25,6 @@ class TestAgentReActState:
assert state.current_answer is None
assert state.is_finished is False
assert state.ask_for_human_input is False
# Planning state fields
assert state.plan is None
assert state.plan_ready is False
def test_state_with_plan(self):
"""Test AgentReActState initialization with planning fields."""
state = AgentReActState(
plan="Step 1: Do X\nStep 2: Do Y",
plan_ready=True,
)
assert state.plan == "Step 1: Do X\nStep 2: Do Y"
assert state.plan_ready is True
def test_state_with_values(self):
"""Test AgentReActState initialization with values."""
@@ -489,249 +477,3 @@ class TestFlowInvoke:
assert result == {"output": "Done"}
assert len(executor.state.messages) >= 2
class TestAgentExecutorPlanning:
"""Test planning functionality in AgentExecutor with real agent kickoff."""
@pytest.mark.vcr()
def test_agent_kickoff_with_planning_stores_plan_in_state(self):
"""Test that Agent.kickoff() with planning enabled stores plan in executor state."""
from crewai import Agent, PlanningConfig
from crewai.llm import LLM
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Assistant",
goal="Help solve simple math problems",
backstory="A helpful assistant that solves math problems step by step",
llm=llm,
planning_config=PlanningConfig(max_attempts=1),
verbose=False,
)
# Execute kickoff with a simple task
result = agent.kickoff("What is 2 + 2?")
# Verify result
assert result is not None
assert "4" in str(result)
@pytest.mark.vcr()
def test_agent_kickoff_without_planning_skips_plan_generation(self):
"""Test that Agent.kickoff() without planning skips planning phase."""
from crewai import Agent
from crewai.llm import LLM
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Assistant",
goal="Help solve simple math problems",
backstory="A helpful assistant",
llm=llm,
# No planning_config = no planning
verbose=False,
)
# Execute kickoff
result = agent.kickoff("What is 3 + 3?")
# Verify we get a result
assert result is not None
assert "6" in str(result)
@pytest.mark.vcr()
def test_planning_disabled_skips_planning(self):
"""Test that planning=False skips planning."""
from crewai import Agent
from crewai.llm import LLM
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Assistant",
goal="Help solve simple math problems",
backstory="A helpful assistant",
llm=llm,
planning=False, # Explicitly disable planning
verbose=False,
)
result = agent.kickoff("What is 5 + 5?")
# Should still complete successfully
assert result is not None
assert "10" in str(result)
def test_backward_compat_reasoning_true_enables_planning(self):
"""Test that reasoning=True (deprecated) still enables planning."""
import warnings
from crewai import Agent
from crewai.llm import LLM
llm = LLM("gpt-4o-mini")
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
agent = Agent(
role="Test Agent",
goal="Complete tasks",
backstory="A helpful agent",
llm=llm,
reasoning=True, # Deprecated but should still work
verbose=False,
)
# Should have planning_config created from reasoning=True
assert agent.planning_config is not None
assert agent.planning_enabled is True
@pytest.mark.vcr()
def test_executor_state_contains_plan_after_planning(self):
"""Test that executor state contains plan after planning phase."""
from crewai import Agent, PlanningConfig
from crewai.llm import LLM
from crewai.experimental.agent_executor import AgentExecutor
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Assistant",
goal="Help solve simple math problems",
backstory="A helpful assistant that solves math problems step by step",
llm=llm,
planning_config=PlanningConfig(max_attempts=1),
verbose=False,
)
# Track executor for inspection
executor_ref = [None]
original_invoke = AgentExecutor.invoke
def capture_executor(self, inputs):
executor_ref[0] = self
return original_invoke(self, inputs)
with patch.object(AgentExecutor, "invoke", capture_executor):
result = agent.kickoff("What is 7 + 7?")
# Verify result
assert result is not None
# If we captured an executor, check its state
if executor_ref[0] is not None:
# After planning, state should have plan info
assert hasattr(executor_ref[0].state, "plan")
assert hasattr(executor_ref[0].state, "plan_ready")
@pytest.mark.vcr()
def test_planning_creates_minimal_steps_for_multi_step_task(self):
"""Test that planning creates only necessary steps for a multi-step task.
This task requires exactly 3 dependent steps:
1. Identify the first 3 prime numbers (2, 3, 5)
2. Sum them (2 + 3 + 5 = 10)
3. Multiply by 2 (10 * 2 = 20)
The plan should reflect these dependencies without unnecessary padding.
"""
from crewai import Agent, PlanningConfig
from crewai.llm import LLM
from crewai.experimental.agent_executor import AgentExecutor
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Tutor",
goal="Solve multi-step math problems accurately",
backstory="An expert math tutor who breaks down problems step by step",
llm=llm,
planning_config=PlanningConfig(max_attempts=1, max_steps=10),
verbose=False,
)
# Track the plan that gets generated
captured_plan = [None]
original_invoke = AgentExecutor.invoke
def capture_plan(self, inputs):
result = original_invoke(self, inputs)
captured_plan[0] = self.state.plan
return result
with patch.object(AgentExecutor, "invoke", capture_plan):
result = agent.kickoff(
"Calculate the sum of the first 3 prime numbers, then multiply that result by 2. "
"Show your work for each step."
)
# Verify result contains the correct answer (20)
assert result is not None
assert "20" in str(result)
# Verify a plan was generated
assert captured_plan[0] is not None
# The plan should be concise - this task needs ~3 steps, not 10+
plan_text = captured_plan[0]
# Count steps by looking for numbered items or bullet points
import re
step_pattern = r"^\s*\d+[\.\):]|\n\s*-\s+"
steps = re.findall(step_pattern, plan_text, re.MULTILINE)
# Plan should have roughly 3-5 steps, not fill up to max_steps
assert len(steps) <= 6, f"Plan has too many steps ({len(steps)}): {plan_text}"
@pytest.mark.vcr()
def test_planning_handles_sequential_dependency_task(self):
"""Test planning for a task where step N depends on step N-1.
Task: Convert 100 Celsius to Fahrenheit, then round to nearest 10.
Step 1: Apply formula (C * 9/5 + 32) = 212
Step 2: Round 212 to nearest 10 = 210
This tests that the planner recognizes sequential dependencies.
"""
from crewai import Agent, PlanningConfig
from crewai.llm import LLM
from crewai.experimental.agent_executor import AgentExecutor
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Unit Converter",
goal="Accurately convert between units and apply transformations",
backstory="A precise unit conversion specialist",
llm=llm,
planning_config=PlanningConfig(max_attempts=1, max_steps=10),
verbose=False,
)
captured_plan = [None]
original_invoke = AgentExecutor.invoke
def capture_plan(self, inputs):
result = original_invoke(self, inputs)
captured_plan[0] = self.state.plan
return result
with patch.object(AgentExecutor, "invoke", capture_plan):
result = agent.kickoff(
"Convert 100 degrees Celsius to Fahrenheit, then round the result to the nearest 10."
)
assert result is not None
# 100C = 212F, rounded to nearest 10 = 210
assert "210" in str(result) or "212" in str(result)
# Plan should exist and be minimal (2-3 steps for this task)
assert captured_plan[0] is not None
plan_text = captured_plan[0]
import re
step_pattern = r"^\s*\d+[\.\):]|\n\s*-\s+"
steps = re.findall(step_pattern, plan_text, re.MULTILINE)
assert len(steps) <= 5, f"Plan should be minimal ({len(steps)} steps): {plan_text}"

View File

@@ -1,345 +1,240 @@
"""Tests for planning/reasoning in agents."""
"""Tests for reasoning in agents."""
import warnings
import json
import pytest
from crewai import Agent, PlanningConfig, Task
from crewai import Agent, Task
from crewai.llm import LLM
# =============================================================================
# Tests for PlanningConfig configuration (no LLM calls needed)
# =============================================================================
@pytest.fixture
def mock_llm_responses():
"""Fixture for mock LLM responses."""
return {
"ready": "I'll solve this simple math problem.\n\nREADY: I am ready to execute the task.\n\n",
"not_ready": "I need to think about derivatives.\n\nNOT READY: I need to refine my plan because I'm not sure about the derivative rules.",
"ready_after_refine": "I'll use the power rule for derivatives where d/dx(x^n) = n*x^(n-1).\n\nREADY: I am ready to execute the task.",
"execution": "4",
}
def test_planning_config_default_values():
"""Test PlanningConfig default values."""
config = PlanningConfig()
assert config.max_attempts is None
assert config.max_steps == 20
assert config.system_prompt is None
assert config.plan_prompt is None
assert config.refine_prompt is None
assert config.llm is None
def test_planning_config_custom_values():
"""Test PlanningConfig with custom values."""
config = PlanningConfig(
max_attempts=5,
max_steps=15,
system_prompt="Custom system",
plan_prompt="Custom plan: {description}",
refine_prompt="Custom refine: {current_plan}",
llm="gpt-4",
)
assert config.max_attempts == 5
assert config.max_steps == 15
assert config.system_prompt == "Custom system"
assert config.plan_prompt == "Custom plan: {description}"
assert config.refine_prompt == "Custom refine: {current_plan}"
assert config.llm == "gpt-4"
def test_agent_with_planning_config_custom_prompts():
"""Test agent with PlanningConfig using custom prompts."""
llm = LLM("gpt-4o-mini")
custom_system_prompt = "You are a specialized planner."
custom_plan_prompt = "Plan this task: {description}"
agent = Agent(
role="Test Agent",
goal="To test custom prompts",
backstory="I am a test agent.",
llm=llm,
planning_config=PlanningConfig(
system_prompt=custom_system_prompt,
plan_prompt=custom_plan_prompt,
max_steps=10,
),
verbose=False,
)
# Just test that the agent is created properly
assert agent.planning_config is not None
assert agent.planning_config.system_prompt == custom_system_prompt
assert agent.planning_config.plan_prompt == custom_plan_prompt
assert agent.planning_config.max_steps == 10
def test_agent_with_planning_config_disabled():
"""Test agent with PlanningConfig disabled."""
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Test Agent",
goal="To test disabled planning",
backstory="I am a test agent.",
llm=llm,
planning=False,
verbose=False,
)
# Planning should be disabled
assert agent.planning_enabled is False
def test_planning_enabled_property():
"""Test the planning_enabled property on Agent."""
llm = LLM("gpt-4o-mini")
# With planning_config enabled
agent_with_planning = Agent(
role="Test Agent",
goal="Test",
backstory="Test",
llm=llm,
planning=True,
)
assert agent_with_planning.planning_enabled is True
# With planning_config disabled
agent_disabled = Agent(
role="Test Agent",
goal="Test",
backstory="Test",
llm=llm,
planning=False,
)
assert agent_disabled.planning_enabled is False
# Without planning_config
agent_no_planning = Agent(
role="Test Agent",
goal="Test",
backstory="Test",
llm=llm,
)
assert agent_no_planning.planning_enabled is False
# =============================================================================
# Tests for backward compatibility with reasoning=True (no LLM calls)
# =============================================================================
def test_agent_with_reasoning_backward_compat():
"""Test agent with reasoning=True (backward compatibility)."""
llm = LLM("gpt-4o-mini")
# This should emit a deprecation warning
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=False,
)
# Should have created a PlanningConfig internally
assert agent.planning_config is not None
assert agent.planning_enabled is True
def test_agent_with_reasoning_and_max_attempts_backward_compat():
"""Test agent with reasoning=True and max_reasoning_attempts (backward compatibility)."""
llm = LLM("gpt-4o-mini")
def test_agent_with_reasoning(mock_llm_responses):
"""Test agent with reasoning."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent.",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
max_reasoning_attempts=5,
verbose=False,
)
# Should have created a PlanningConfig with max_attempts
assert agent.planning_config is not None
assert agent.planning_config.max_attempts == 5
# =============================================================================
# Tests for Agent.kickoff() with planning (uses AgentExecutor)
# =============================================================================
@pytest.mark.vcr()
def test_agent_kickoff_with_planning():
"""Test Agent.kickoff() with planning enabled generates a plan."""
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Assistant",
goal="Help solve math problems step by step",
backstory="A helpful math tutor",
llm=llm,
planning_config=PlanningConfig(max_attempts=1),
verbose=False,
)
result = agent.kickoff("What is 15 + 27?")
assert result is not None
assert "42" in str(result)
@pytest.mark.vcr()
def test_agent_kickoff_without_planning():
"""Test Agent.kickoff() without planning skips plan generation."""
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Assistant",
goal="Help solve math problems",
backstory="A helpful assistant",
llm=llm,
# No planning_config = no planning
verbose=False,
)
result = agent.kickoff("What is 8 * 7?")
assert result is not None
assert "56" in str(result)
@pytest.mark.vcr()
def test_agent_kickoff_with_planning_disabled():
"""Test Agent.kickoff() with planning explicitly disabled via planning=False."""
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Assistant",
goal="Help solve math problems",
backstory="A helpful assistant",
llm=llm,
planning=False, # Explicitly disable planning
verbose=False,
)
result = agent.kickoff("What is 100 / 4?")
assert result is not None
assert "25" in str(result)
@pytest.mark.vcr()
def test_agent_kickoff_multi_step_task_with_planning():
"""Test Agent.kickoff() with a multi-step task that benefits from planning."""
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Tutor",
goal="Solve multi-step math problems",
backstory="An expert tutor who explains step by step",
llm=llm,
planning_config=PlanningConfig(max_attempts=1, max_steps=5),
verbose=False,
)
# Task requires: find primes, sum them, then double
result = agent.kickoff(
"Find the first 3 prime numbers, add them together, then multiply by 2."
)
assert result is not None
# First 3 primes: 2, 3, 5 -> sum = 10 -> doubled = 20
assert "20" in str(result)
# =============================================================================
# Tests for Agent.execute_task() with planning (uses CrewAgentExecutor)
# These test the legacy path via handle_reasoning()
# =============================================================================
@pytest.mark.vcr()
def test_agent_execute_task_with_planning():
"""Test Agent.execute_task() with planning via CrewAgentExecutor."""
llm = LLM("gpt-4o-mini")
agent = Agent(
role="Math Assistant",
goal="Help solve math problems",
backstory="A helpful math tutor",
llm=llm,
planning_config=PlanningConfig(max_attempts=1),
verbose=False,
verbose=True,
)
task = Task(
description="What is 9 + 11?",
expected_output="A number",
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent,
)
agent.llm.call = lambda messages, *args, **kwargs: (
mock_llm_responses["ready"]
if any("create a detailed plan" in msg.get("content", "") for msg in messages)
else mock_llm_responses["execution"]
)
result = agent.execute_task(task)
assert result is not None
assert "20" in str(result)
# Planning should be appended to task description
assert "Planning:" in task.description
assert result == mock_llm_responses["execution"]
assert "Reasoning Plan:" in task.description
@pytest.mark.vcr()
def test_agent_execute_task_without_planning():
"""Test Agent.execute_task() without planning."""
llm = LLM("gpt-4o-mini")
def test_agent_with_reasoning_not_ready_initially(mock_llm_responses):
"""Test agent with reasoning that requires refinement."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Math Assistant",
goal="Help solve math problems",
backstory="A helpful assistant",
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
verbose=False,
reasoning=True,
max_reasoning_attempts=2,
verbose=True,
)
task = Task(
description="What is 12 * 3?",
expected_output="A number",
description="Complex math task: What's the derivative of x²?",
expected_output="The answer should be a mathematical expression.",
agent=agent,
)
call_count = [0]
def mock_llm_call(messages, *args, **kwargs):
if any(
"create a detailed plan" in msg.get("content", "") for msg in messages
) or any("refine your plan" in msg.get("content", "") for msg in messages):
call_count[0] += 1
if call_count[0] == 1:
return mock_llm_responses["not_ready"]
return mock_llm_responses["ready_after_refine"]
return "2x"
agent.llm.call = mock_llm_call
result = agent.execute_task(task)
assert result is not None
assert "36" in str(result)
# No planning should be added
assert "Planning:" not in task.description
assert result == "2x"
assert call_count[0] == 2 # Should have made 2 reasoning calls
assert "Reasoning Plan:" in task.description
@pytest.mark.vcr()
def test_agent_execute_task_with_planning_refine():
"""Test Agent.execute_task() with planning that requires refinement."""
llm = LLM("gpt-4o-mini")
def test_agent_with_reasoning_max_attempts_reached():
"""Test agent with reasoning that reaches max attempts without being ready."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Math Tutor",
goal="Solve complex math problems step by step",
backstory="An expert tutor",
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
planning_config=PlanningConfig(max_attempts=2),
verbose=False,
reasoning=True,
max_reasoning_attempts=2,
verbose=True,
)
task = Task(
description="Calculate the area of a circle with radius 5 (use pi = 3.14)",
expected_output="The area as a number",
description="Complex math task: Solve the Riemann hypothesis.",
expected_output="A proof or disproof of the hypothesis.",
agent=agent,
)
call_count = [0]
def mock_llm_call(messages, *args, **kwargs):
if any(
"create a detailed plan" in msg.get("content", "") for msg in messages
) or any("refine your plan" in msg.get("content", "") for msg in messages):
call_count[0] += 1
return f"Attempt {call_count[0]}: I need more time to think.\n\nNOT READY: I need to refine my plan further."
return "This is an unsolved problem in mathematics."
agent.llm.call = mock_llm_call
result = agent.execute_task(task)
assert result is not None
# Area = pi * r^2 = 3.14 * 25 = 78.5
assert "78" in str(result) or "79" in str(result)
assert "Planning:" in task.description
assert result == "This is an unsolved problem in mathematics."
assert (
call_count[0] == 2
) # Should have made exactly 2 reasoning calls (max_attempts)
assert "Reasoning Plan:" in task.description
def test_agent_reasoning_error_handling():
"""Test error handling during the reasoning process."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
)
task = Task(
description="Task that will cause an error",
expected_output="Output that will never be generated",
agent=agent,
)
call_count = [0]
def mock_llm_call_error(*args, **kwargs):
call_count[0] += 1
if call_count[0] <= 2: # First calls are for reasoning
raise Exception("LLM error during reasoning")
return "Fallback execution result" # Return a value for task execution
agent.llm.call = mock_llm_call_error
result = agent.execute_task(task)
assert result == "Fallback execution result"
assert call_count[0] > 2 # Ensure we called the mock multiple times
@pytest.mark.skip(reason="Test requires updates for native tool calling changes")
def test_agent_with_function_calling():
"""Test agent with reasoning using function calling."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=True,
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent,
)
agent.llm.supports_function_calling = lambda: True
def mock_function_call(messages, *args, **kwargs):
if "tools" in kwargs:
return json.dumps(
{"plan": "I'll solve this simple math problem: 2+2=4.", "ready": True}
)
return "4"
agent.llm.call = mock_function_call
result = agent.execute_task(task)
assert result == "4"
assert "Reasoning Plan:" in task.description
assert "I'll solve this simple math problem: 2+2=4." in task.description
@pytest.mark.skip(reason="Test requires updates for native tool calling changes")
def test_agent_with_function_calling_fallback():
"""Test agent with reasoning using function calling that falls back to text parsing."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=True,
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent,
)
agent.llm.supports_function_calling = lambda: True
def mock_function_call(messages, *args, **kwargs):
if "tools" in kwargs:
return "Invalid JSON that will trigger fallback. READY: I am ready to execute the task."
return "4"
agent.llm.call = mock_function_call
result = agent.execute_task(task)
assert result == "4"
assert "Reasoning Plan:" in task.description
assert "Invalid JSON that will trigger fallback" in task.description

View File

@@ -606,10 +606,9 @@ def test_lite_agent_with_invalid_llm():
@patch.dict("os.environ", {"CREWAI_PLATFORM_INTEGRATION_TOKEN": "test_token"})
@patch("crewai_tools.tools.crewai_platform_tools.crewai_platform_action_tool.requests.post")
@patch("crewai_tools.tools.crewai_platform_tools.crewai_platform_tool_builder.requests.get")
@pytest.mark.vcr()
def test_agent_kickoff_with_platform_tools(mock_get, mock_post):
def test_agent_kickoff_with_platform_tools(mock_get):
"""Test that Agent.kickoff() properly integrates platform tools with LiteAgent"""
mock_response = Mock()
mock_response.raise_for_status.return_value = None
@@ -633,15 +632,6 @@ def test_agent_kickoff_with_platform_tools(mock_get, mock_post):
}
mock_get.return_value = mock_response
# Mock the platform tool execution
mock_post_response = Mock()
mock_post_response.ok = True
mock_post_response.json.return_value = {
"success": True,
"issue_url": "https://github.com/test/repo/issues/1"
}
mock_post.return_value = mock_post_response
agent = Agent(
role="Test Agent",
goal="Test goal",

View File

@@ -1,234 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nWhat is 2 + 2?\n\n##
Expected Output\nComplete the task successfully\n\n## Available Tools\nNo tools
available\n\n## Instructions\nCreate ONLY the essential steps needed to complete
this task. Use the MINIMUM number of steps required - do NOT pad your plan with
unnecessary steps. Most tasks need only 2-5 steps.\n\nFor each step:\n- State
the specific action to take\n- Specify which tool to use (if any)\n\nDo NOT
include:\n- Setup or preparation steps that are obvious\n- Verification steps
unless critical\n- Documentation or cleanup steps unless explicitly required\n-
Generic steps like \"review results\" or \"finalize output\"\n\nAfter your plan,
state:\n- \"READY: I am ready to execute the task.\" if the plan is complete\n-
\"NOT READY: I need to refine my plan because [reason].\" if you need more thinking"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"The
detailed reasoning plan for the task."},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1541'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTTAh68P65LybtqkwNI3p2HXcRv\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078147,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"## Execution Plan\\n\\n1. **Action:**
Perform the addition operation. \\n **Tool:** None (manually calculate).\\n\\n2.
**Action:** State the result. \\n **Tool:** None (manually output).\\n\\nREADY:
I am ready to execute the task.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 281,\n \"completion_tokens\":
56,\n \"total_tokens\": 337,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:28 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1165'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
assistant that solves math problems step by step\nYour personal goal is: Help
solve simple math problems"},{"role":"user","content":"\nCurrent Task: What
is 2 + 2?\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '299'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTVB9mdtq1YZrUVf1aSb6dVVQ8G\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078149,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"To solve the problem of 2 + 2, we simply
perform the addition:\\n\\n1. Start with the first number: 2\\n2. Add the
second number: + 2\\n3. Combine the two: 2 + 2 = 4\\n\\nTherefore, the answer
is 4.\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 54,\n \"completion_tokens\": 62,\n
\ \"total_tokens\": 116,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:30 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1300'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,108 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
assistant\nYour personal goal is: Help solve simple math problems"},{"role":"user","content":"\nCurrent
Task: What is 3 + 3?\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '260'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTTFxQ75llVmJv0ee902FIjXE8p\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078147,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"3 + 3 equals 6.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
47,\n \"completion_tokens\": 8,\n \"total_tokens\": 55,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:27 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '401'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,230 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nWhat is 7 + 7?\n\n##
Expected Output\nComplete the task successfully\n\n## Available Tools\nNo tools
available\n\n## Instructions\nCreate ONLY the essential steps needed to complete
this task. Use the MINIMUM number of steps required - do NOT pad your plan with
unnecessary steps. Most tasks need only 2-5 steps.\n\nFor each step:\n- State
the specific action to take\n- Specify which tool to use (if any)\n\nDo NOT
include:\n- Setup or preparation steps that are obvious\n- Verification steps
unless critical\n- Documentation or cleanup steps unless explicitly required\n-
Generic steps like \"review results\" or \"finalize output\"\n\nAfter your plan,
state:\n- \"READY: I am ready to execute the task.\" if the plan is complete\n-
\"NOT READY: I need to refine my plan because [reason].\" if you need more thinking"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"The
detailed reasoning plan for the task."},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1541'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTdqlxwWowSdLncBERFrCgxTvVj\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078157,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"## Execution Plan\\n\\n1. Calculate
the sum of 7 and 7.\\n \\nREADY: I am ready to execute the task.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
281,\n \"completion_tokens\": 28,\n \"total_tokens\": 309,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:38 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '709'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
assistant that solves math problems step by step\nYour personal goal is: Help
solve simple math problems"},{"role":"user","content":"\nCurrent Task: What
is 7 + 7?\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '299'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTeB6Miecallw9SjSfLAXPjX2XD\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078158,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"To find the sum of 7 and 7, you simply
add the two numbers together:\\n\\n7 + 7 = 14\\n\\nSo, the answer is 14.\",\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
54,\n \"completion_tokens\": 35,\n \"total_tokens\": 89,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:38 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '733'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,108 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
assistant\nYour personal goal is: Help solve simple math problems"},{"role":"user","content":"\nCurrent
Task: What is 5 + 5?\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '260'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTf8T2iADffpPCJBZhntLlaoaSy\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078159,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"5 + 5 equals 10.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
47,\n \"completion_tokens\": 8,\n \"total_tokens\": 55,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:40 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '515'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,247 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nCalculate the sum
of the first 3 prime numbers, then multiply that result by 2. Show your work
for each step.\n\n## Expected Output\nComplete the task successfully\n\n## Available
Tools\nNo tools available\n\n## Instructions\nCreate ONLY the essential steps
needed to complete this task. Use the MINIMUM number of steps required - do
NOT pad your plan with unnecessary steps. Most tasks need only 2-5 steps.\n\nFor
each step:\n- State the specific action to take\n- Specify which tool to use
(if any)\n\nDo NOT include:\n- Setup or preparation steps that are obvious\n-
Verification steps unless critical\n- Documentation or cleanup steps unless
explicitly required\n- Generic steps like \"review results\" or \"finalize output\"\n\nAfter
your plan, state:\n- \"READY: I am ready to execute the task.\" if the plan
is complete\n- \"NOT READY: I need to refine my plan because [reason].\" if
you need more thinking"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"The
detailed reasoning plan for the task."},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1636'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTWa7FxCHkHwHF25AYXXeJDBOuY\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078150,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"## Execution Plan\\n\\n1. Identify
the first 3 prime numbers: 2, 3, and 5.\\n2. Calculate the sum: \\\\(2 + 3
+ 5 = 10\\\\).\\n3. Multiply the sum by 2: \\\\(10 \\\\times 2 = 20\\\\).\\n\\nREADY:
I am ready to execute the task.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 299,\n \"completion_tokens\":
74,\n \"total_tokens\": 373,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:32 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1716'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Math Tutor. An expert
math tutor who breaks down problems step by step\nYour personal goal is: Solve
multi-step math problems accurately"},{"role":"user","content":"\nCurrent Task:
Calculate the sum of the first 3 prime numbers, then multiply that result by
2. Show your work for each step.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '400'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTYJgCZf2oY7wiPMZmN4QEQhHb5\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078152,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"To solve the problem, let's break it
down into two main steps: \\n\\n1. Calculate the sum of the first 3 prime
numbers.\\n2. Multiply the result of that sum by 2.\\n\\n### Step 1: Identify
the first 3 prime numbers\\nPrime numbers are natural numbers greater than
1 that have no positive divisors other than 1 and themselves. \\n\\nThe first
three prime numbers are:\\n- 2\\n- 3\\n- 5\\n\\n### Step 2: Calculate the
sum of the first 3 prime numbers\\nNow, we add these prime numbers together:\\n\\n\\\\[\\n2
+ 3 + 5\\n\\\\]\\n\\nCalculating this step-by-step:\\n- First, add 2 and 3:\\n
\ \\\\[\\n 2 + 3 = 5\\n \\\\]\\n \\n- Next, add this result to 5:\\n \\\\[\\n
\ 5 + 5 = 10\\n \\\\]\\n\\nSo, the sum of the first 3 prime numbers is \\\\(10\\\\).\\n\\n###
Step 3: Multiply the sum by 2\\nNext, we take the sum we calculated and multiply
it by 2:\\n\\n\\\\[\\n10 \\\\times 2\\n\\\\]\\n\\nCalculating this:\\n\\\\[\\n10
\\\\times 2 = 20\\n\\\\]\\n\\n### Final Answer\\nThus, the final result obtained
after performing all the steps is:\\n\\n\\\\[\\n\\\\boxed{20}\\n\\\\]\",\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
74,\n \"completion_tokens\": 288,\n \"total_tokens\": 362,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:37 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '4751'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,108 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
assistant\nYour personal goal is: Help solve simple math problems"},{"role":"user","content":"\nCurrent
Task: What is 5 + 5?\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '260'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yXGD5IrieoUDSK5hDmJyA2gJtDc\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078382,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"5 + 5 equals 10.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
47,\n \"completion_tokens\": 8,\n \"total_tokens\": 55,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:26:23 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '363'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,242 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nConvert 100 degrees
Celsius to Fahrenheit, then round the result to the nearest 10.\n\n## Expected
Output\nComplete the task successfully\n\n## Available Tools\nNo tools available\n\n##
Instructions\nCreate ONLY the essential steps needed to complete this task.
Use the MINIMUM number of steps required - do NOT pad your plan with unnecessary
steps. Most tasks need only 2-5 steps.\n\nFor each step:\n- State the specific
action to take\n- Specify which tool to use (if any)\n\nDo NOT include:\n- Setup
or preparation steps that are obvious\n- Verification steps unless critical\n-
Documentation or cleanup steps unless explicitly required\n- Generic steps like
\"review results\" or \"finalize output\"\n\nAfter your plan, state:\n- \"READY:
I am ready to execute the task.\" if the plan is complete\n- \"NOT READY: I
need to refine my plan because [reason].\" if you need more thinking"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"The
detailed reasoning plan for the task."},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1610'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTN8fHOefyzzhvdUOHjxdFDR2HW\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078141,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"## Execution Plan\\n\\n1. Convert 100
degrees Celsius to Fahrenheit using the formula: \\\\( F = C \\\\times \\\\frac{9}{5}
+ 32 \\\\).\\n2. Round the Fahrenheit result to the nearest 10.\\n\\nREADY:
I am ready to execute the task.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 291,\n \"completion_tokens\":
58,\n \"total_tokens\": 349,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:22 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1089'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Unit Converter. A precise
unit conversion specialist\nYour personal goal is: Accurately convert between
units and apply transformations"},{"role":"user","content":"\nCurrent Task:
Convert 100 degrees Celsius to Fahrenheit, then round the result to the nearest
10.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '373'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTPQewXDyPdYHI4dHPH7YGHcRge\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078143,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"To convert degrees Celsius to Fahrenheit,
you can use the formula:\\n\\n\\\\[ F = \\\\left( C \\\\times \\\\frac{9}{5}
\\\\right) + 32 \\\\]\\n\\nPlugging in 100 degrees Celsius:\\n\\n\\\\[ F =
\\\\left( 100 \\\\times \\\\frac{9}{5} \\\\right) + 32 \\\\]\\n\\nCalculating
that step-by-step:\\n\\n1. Multiply 100 by 9: \\n \\\\[ 100 \\\\times 9
= 900 \\\\]\\n\\n2. Divide by 5:\\n \\\\[ 900 \\\\div 5 = 180 \\\\]\\n\\n3.
Add 32:\\n \\\\[ 180 + 32 = 212 \\\\]\\n\\nSo, 100 degrees Celsius is equal
to 212 degrees Fahrenheit.\\n\\nNow, rounding 212 to the nearest 10:\\n\\nThe
nearest multiple of 10 to 212 is 210.\\n\\nTherefore, the final result is
**210 degrees Fahrenheit**.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 63,\n \"completion_tokens\":
191,\n \"total_tokens\": 254,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:26 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '3736'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,10 +1,6 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour
personal goal is: test goal"},{"role":"user","content":"\nCurrent Task: Calculate
2 + 2\n\nThis is the expected criteria for your final answer: The result of
the calculation\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour personal goal is: test goal\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task: Calculate 2 + 2\n\nThis is the expected criteria for your final answer: The result of the calculation\nyou MUST return the actual complete content as the final answer, not a summary.\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -17,7 +13,7 @@ interactions:
connection:
- keep-alive
content-length:
- '396'
- '797'
content-type:
- application/json
host:
@@ -39,23 +35,13 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
- 3.12.10
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5DTjYe6n92Rjo4Ox6NiZpAAdBLF0\",\n \"object\":
\"chat.completion\",\n \"created\": 1770135823,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"The result of the calculation 2 + 2
is 4.\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 75,\n \"completion_tokens\": 14,\n
\ \"total_tokens\": 89,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
string: "{\n \"id\": \"chatcmpl-CjDsYJQa2tIYBbNloukSWecpsTvdK\",\n \"object\": \"chat.completion\",\n \"created\": 1764894146,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"I now can give a great answer \\nFinal Answer: The result of the calculation 2 + 2 is 4.\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 161,\n \"completion_tokens\": 25,\n \"total_tokens\": 186,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_11f3029f6b\"\
\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -64,7 +50,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 16:23:43 GMT
- Fri, 05 Dec 2025 00:22:27 GMT
Server:
- cloudflare
Set-Cookie:
@@ -84,11 +70,13 @@ interactions:
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '636'
- '516'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '529'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -1,12 +1,6 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour
personal goal is: test goal"},{"role":"user","content":"\nCurrent Task: Summarize
the given context in one sentence\n\nThis is the expected criteria for your
final answer: A one-sentence summary\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nThis is the context you''re working with:\nThe
quick brown fox jumps over the lazy dog. This sentence contains every letter
of the alphabet.\n\nProvide your complete response:"}],"model":"gpt-3.5-turbo"}'
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour personal goal is: test goal\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task: Summarize the given context in one sentence\n\nThis is the expected criteria for your final answer: A one-sentence summary\nyou MUST return the actual complete content as the final answer, not a summary.\n\nThis is the context you''re working with:\nThe quick brown fox jumps over the lazy dog. This sentence contains every letter of the alphabet.\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-3.5-turbo"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -19,7 +13,7 @@ interactions:
connection:
- keep-alive
content-length:
- '562'
- '963'
content-type:
- application/json
host:
@@ -41,23 +35,13 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
- 3.12.10
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5DTn6yIQ7HpIn5j5Bsbag1efzXPa\",\n \"object\":
\"chat.completion\",\n \"created\": 1770135827,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"The quick brown fox jumps over the
lazy dog. This sentence contains every letter of the alphabet.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
105,\n \"completion_tokens\": 19,\n \"total_tokens\": 124,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": null\n}\n"
string: "{\n \"id\": \"chatcmpl-CjDtsaX0LJ0dzZz02KwKeRGYgazv1\",\n \"object\": \"chat.completion\",\n \"created\": 1764894228,\n \"model\": \"gpt-3.5-turbo-0125\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"I now can give a great answer\\n\\nFinal Answer: The quick brown fox jumps over the lazy dog. This sentence contains every letter of the alphabet.\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 191,\n \"completion_tokens\": 30,\n \"total_tokens\": 221,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\"\
: \"default\",\n \"system_fingerprint\": null\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -66,7 +50,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 16:23:48 GMT
- Fri, 05 Dec 2025 00:23:49 GMT
Server:
- cloudflare
Set-Cookie:
@@ -86,11 +70,13 @@ interactions:
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '606'
- '506'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '559'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -1,10 +1,6 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour
personal goal is: test goal"},{"role":"user","content":"\nCurrent Task: Write
a haiku about AI\n\nThis is the expected criteria for your final answer: A haiku
(3 lines, 5-7-5 syllable pattern) about AI\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nProvide your complete response:"}],"model":"gpt-3.5-turbo","max_tokens":50,"temperature":0.7}'
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour personal goal is: test goal\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task: Write a haiku about AI\n\nThis is the expected criteria for your final answer: A haiku (3 lines, 5-7-5 syllable pattern) about AI\nyou MUST return the actual complete content as the final answer, not a summary.\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-3.5-turbo","max_tokens":50,"temperature":0.7}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -17,7 +13,7 @@ interactions:
connection:
- keep-alive
content-length:
- '460'
- '861'
content-type:
- application/json
host:
@@ -39,23 +35,13 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
- 3.12.10
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5DTgAqxaC8RmEvikXK0UDaxmVmf9\",\n \"object\":
\"chat.completion\",\n \"created\": 1770135820,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Artificial minds,\\nCode and circuits
intertwine,\\nFuture undefined.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 88,\n \"completion_tokens\":
13,\n \"total_tokens\": 101,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": null\n}\n"
string: "{\n \"id\": \"chatcmpl-CjDqr2BmEXQ08QzZKslTZJZ5vV9lo\",\n \"object\": \"chat.completion\",\n \"created\": 1764894041,\n \"model\": \"gpt-3.5-turbo-0125\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"I now can give a great answer\\n\\nFinal Answer: \\nIn circuits they thrive, \\nArtificial minds awake, \\nFuture's coded drive.\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 174,\n \"completion_tokens\": 29,\n \"total_tokens\": 203,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\"\
,\n \"system_fingerprint\": null\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -64,7 +50,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 16:23:40 GMT
- Fri, 05 Dec 2025 00:20:41 GMT
Server:
- cloudflare
Set-Cookie:
@@ -84,11 +70,13 @@ interactions:
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '277'
- '434'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '456'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -1,231 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nWhat is 9 + 11?\n\n##
Expected Output\nA number\n\n## Available Tools\nNo tools available\n\n## Instructions\nCreate
ONLY the essential steps needed to complete this task. Use the MINIMUM number
of steps required - do NOT pad your plan with unnecessary steps. Most tasks
need only 2-5 steps.\n\nFor each step:\n- State the specific action to take\n-
Specify which tool to use (if any)\n\nDo NOT include:\n- Setup or preparation
steps that are obvious\n- Verification steps unless critical\n- Documentation
or cleanup steps unless explicitly required\n- Generic steps like \"review results\"
or \"finalize output\"\n\nAfter your plan, state:\n- \"READY: I am ready to
execute the task.\" if the plan is complete\n- \"NOT READY: I need to refine
my plan because [reason].\" if you need more thinking"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"The
detailed reasoning plan for the task."},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1520'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yVACNTzZcghQRwt5kFYQ4HAvbgI\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078252,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"## Execution Plan\\n1. Calculate the
sum of 9 and 11.\\n \\nREADY: I am ready to execute the task.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
279,\n \"completion_tokens\": 28,\n \"total_tokens\": 307,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:24:13 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '951'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
math tutor\nYour personal goal is: Help solve math problems"},{"role":"user","content":"\nCurrent
Task: What is 9 + 11?\n\nPlanning:\n## Execution Plan\n1. Calculate the sum
of 9 and 11.\n \nREADY: I am ready to execute the task.\n\nThis is the expected
criteria for your final answer: A number\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '513'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yVBdTCKSdfcJYlIOX9BbzrObgFI\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078253,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"9 + 11 = 20\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
105,\n \"completion_tokens\": 7,\n \"total_tokens\": 112,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:24:13 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '477'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,243 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nCalculate the area
of a circle with radius 5 (use pi = 3.14)\n\n## Expected Output\nThe area as
a number\n\n## Available Tools\nNo tools available\n\n## Instructions\nCreate
ONLY the essential steps needed to complete this task. Use the MINIMUM number
of steps required - do NOT pad your plan with unnecessary steps. Most tasks
need only 2-5 steps.\n\nFor each step:\n- State the specific action to take\n-
Specify which tool to use (if any)\n\nDo NOT include:\n- Setup or preparation
steps that are obvious\n- Verification steps unless critical\n- Documentation
or cleanup steps unless explicitly required\n- Generic steps like \"review results\"
or \"finalize output\"\n\nAfter your plan, state:\n- \"READY: I am ready to
execute the task.\" if the plan is complete\n- \"NOT READY: I need to refine
my plan because [reason].\" if you need more thinking"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"The
detailed reasoning plan for the task."},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1577'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yVCdA1csIzfoHSQvxkfrA4gDn4z\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078254,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"## Execution Plan\\n1. Multiply the
radius (5) by itself (5) to get the square of the radius.\\n2. Multiply the
squared radius by pi (3.14) to calculate the area.\\n\\nREADY: I am ready
to execute the task.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 293,\n \"completion_tokens\":
54,\n \"total_tokens\": 347,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:24:15 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '845'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Math Tutor. An expert
tutor\nYour personal goal is: Solve complex math problems step by step"},{"role":"user","content":"\nCurrent
Task: Calculate the area of a circle with radius 5 (use pi = 3.14)\n\nPlanning:\n##
Execution Plan\n1. Multiply the radius (5) by itself (5) to get the square of
the radius.\n2. Multiply the squared radius by pi (3.14) to calculate the area.\n\nREADY:
I am ready to execute the task.\n\nThis is the expected criteria for your final
answer: The area as a number\nyou MUST return the actual complete content as
the final answer, not a summary.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '682'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yVDh2U2xx3qeYHcDQvbetOmVCxb\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078255,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"To calculate the area of a circle with
a radius of 5, we will follow the steps outlined in the execution plan.\\n\\n1.
**Square the radius**:\\n \\\\[\\n 5 \\\\times 5 = 25\\n \\\\]\\n\\n2.
**Multiply the squared radius by pi (using \\\\(\\\\pi \\\\approx 3.14\\\\))**:\\n
\ \\\\[\\n \\\\text{Area} = \\\\pi \\\\times (\\\\text{radius})^2 = 3.14
\\\\times 25\\n \\\\]\\n\\n Now, let's perform the multiplication:\\n
\ \\\\[\\n 3.14 \\\\times 25 = 78.5\\n \\\\]\\n\\nThus, the area of the
circle is \\\\( \\\\boxed{78.5} \\\\).\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 147,\n \"completion_tokens\":
155,\n \"total_tokens\": 302,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:24:18 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '2228'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,11 +1,7 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour
personal goal is: test goal"},{"role":"user","content":"\nCurrent Task: Use
the dummy tool to get a result for ''test query''\n\nThis is the expected criteria
for your final answer: The result from the dummy tool\nyou MUST return the actual
complete content as the final answer, not a summary."}],"model":"gpt-3.5-turbo","tool_choice":"auto","tools":[{"type":"function","function":{"name":"dummy_tool","description":"Useful
for when you need to get a dummy result for a query.","strict":true,"parameters":{"properties":{"query":{"title":"Query","type":"string"}},"required":["query"],"type":"object","additionalProperties":false}}}]}'
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour personal goal is: test goal\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\nTool Name: dummy_tool\nTool Arguments: {''query'': {''description'': None, ''type'': ''str''}}\nTool Description: Useful for when you need to get a dummy result for a query.\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [dummy_tool], just the name, exactly as it''s written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
Task: Use the dummy tool to get a result for ''test query''\n\nThis is the expected criteria for your final answer: The result from the dummy tool\nyou MUST return the actual complete content as the final answer, not a summary.\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-3.5-turbo"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -18,7 +14,7 @@ interactions:
connection:
- keep-alive
content-length:
- '712'
- '1381'
content-type:
- application/json
host:
@@ -40,26 +36,12 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
- 3.12.10
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5DTlUmKYee1DaS5AqnaUCZ6B14xV\",\n \"object\":
\"chat.completion\",\n \"created\": 1770135825,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_tBCgelchfQjXXJrrM15MxqGJ\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"dummy_tool\",\n
\ \"arguments\": \"{\\\"query\\\":\\\"test query\\\"}\"\n }\n
\ }\n ],\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 122,\n \"completion_tokens\":
16,\n \"total_tokens\": 138,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": null\n}\n"
string: "{\n \"id\": \"chatcmpl-CjDrE1Z8bFQjjxI2vDPPKgtOTm28p\",\n \"object\": \"chat.completion\",\n \"created\": 1764894064,\n \"model\": \"gpt-3.5-turbo-0125\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"you should always think about what to do\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 289,\n \"completion_tokens\": 8,\n \"total_tokens\": 297,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": null\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -68,7 +50,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 16:23:46 GMT
- Fri, 05 Dec 2025 00:21:05 GMT
Server:
- cloudflare
Set-Cookie:
@@ -88,124 +70,13 @@ interactions:
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '694'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are test role. test backstory\nYour
personal goal is: test goal"},{"role":"user","content":"\nCurrent Task: Use
the dummy tool to get a result for ''test query''\n\nThis is the expected criteria
for your final answer: The result from the dummy tool\nyou MUST return the actual
complete content as the final answer, not a summary."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_tBCgelchfQjXXJrrM15MxqGJ","type":"function","function":{"name":"dummy_tool","arguments":"{\"query\":\"test
query\"}"}}]},{"role":"tool","tool_call_id":"call_tBCgelchfQjXXJrrM15MxqGJ","name":"dummy_tool","content":"Dummy
result for: test query"},{"role":"user","content":"Analyze the tool result.
If requirements are met, provide the Final Answer. Otherwise, call the next
tool. Deliver only the answer without meta-commentary."}],"model":"gpt-3.5-turbo","tool_choice":"auto","tools":[{"type":"function","function":{"name":"dummy_tool","description":"Useful
for when you need to get a dummy result for a query.","strict":true,"parameters":{"properties":{"query":{"title":"Query","type":"string"}},"required":["query"],"type":"object","additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1202'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5DTmxZJI2Ee7fHNc9dYtQkD7sIY2\",\n \"object\":
\"chat.completion\",\n \"created\": 1770135826,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Dummy result for: test query\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
188,\n \"completion_tokens\": 7,\n \"total_tokens\": 195,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": null\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 16:23:47 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '416'
- '379'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '399'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -1,110 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
assistant\nYour personal goal is: Help solve math problems"},{"role":"user","content":"\nCurrent
Task: What is 12 * 3?\n\nThis is the expected criteria for your final answer:
A number\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '400'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yVCw0CGLFmcVvniplwCCt8avtRb\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078254,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"12 * 3 = 36\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
75,\n \"completion_tokens\": 7,\n \"total_tokens\": 82,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:24:14 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '331'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,243 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nFind the first
3 prime numbers, add them together, then multiply by 2.\n\n## Expected Output\nComplete
the task successfully\n\n## Available Tools\nNo tools available\n\n## Instructions\nCreate
ONLY the essential steps needed to complete this task. Use the MINIMUM number
of steps required - do NOT pad your plan with unnecessary steps. Most tasks
need only 2-5 steps.\n\nFor each step:\n- State the specific action to take\n-
Specify which tool to use (if any)\n\nDo NOT include:\n- Setup or preparation
steps that are obvious\n- Verification steps unless critical\n- Documentation
or cleanup steps unless explicitly required\n- Generic steps like \"review results\"
or \"finalize output\"\n\nAfter your plan, state:\n- \"READY: I am ready to
execute the task.\" if the plan is complete\n- \"NOT READY: I need to refine
my plan because [reason].\" if you need more thinking"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"The
detailed reasoning plan for the task."},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1597'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yU0MD5GfSUjRW0R4cBmFJ6Hcjbi\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078180,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"### Execution Plan\\n1. Identify the
first 3 prime numbers: 2, 3, and 5.\\n2. Add the prime numbers together: 2
+ 3 + 5 = 10.\\n3. Multiply the sum by 2: 10 * 2 = 20.\\n\\nREADY: I am ready
to execute the task.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 291,\n \"completion_tokens\":
73,\n \"total_tokens\": 364,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:23:02 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1253'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Math Tutor. An expert
tutor who explains step by step\nYour personal goal is: Solve multi-step math
problems"},{"role":"user","content":"\nCurrent Task: Find the first 3 prime
numbers, add them together, then multiply by 2.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '333'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yU2qY6Xqpkz2D5yVAwagQzuPpen\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078182,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"To solve the problem, let\u2019s go
through each step methodically.\\n\\n1. **Identify the first three prime numbers**:\\n
\ - **Prime numbers** are numbers greater than 1 that have no positive divisors
other than 1 and themselves.\\n - The first three prime numbers are:\\n
\ - 2\\n - 3\\n - 5\\n\\n2. **Add these prime numbers together**:\\n
\ - We add them together:\\n \\\\[\\n 2 + 3 + 5\\n \\\\]\\n -
Performing the addition step-by-step:\\n - First, add 2 and 3:\\n \\\\[\\n
\ 2 + 3 = 5\\n \\\\]\\n - Then add 5 to this result:\\n \\\\[\\n
\ 5 + 5 = 10\\n \\\\]\\n - So, the sum of the first three prime
numbers is **10**.\\n\\n3. **Multiply the sum by 2**:\\n - Now we multiply
the result by 2:\\n \\\\[\\n 10 \\\\times 2 = 20\\n \\\\]\\n \\nTherefore,
the final answer is **20**.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 62,\n \"completion_tokens\":
236,\n \"total_tokens\": 298,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:23:06 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '3846'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,238 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nWhat is 15 + 27?\n\n##
Expected Output\nComplete the task successfully\n\n## Available Tools\nNo tools
available\n\n## Instructions\nCreate ONLY the essential steps needed to complete
this task. Use the MINIMUM number of steps required - do NOT pad your plan with
unnecessary steps. Most tasks need only 2-5 steps.\n\nFor each step:\n- State
the specific action to take\n- Specify which tool to use (if any)\n\nDo NOT
include:\n- Setup or preparation steps that are obvious\n- Verification steps
unless critical\n- Documentation or cleanup steps unless explicitly required\n-
Generic steps like \"review results\" or \"finalize output\"\n\nAfter your plan,
state:\n- \"READY: I am ready to execute the task.\" if the plan is complete\n-
\"NOT READY: I need to refine my plan because [reason].\" if you need more thinking"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"The
detailed reasoning plan for the task."},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1543'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTrm3GkzDX47DIcce9uA3iF8kFE\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078171,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"## Execution Plan\\n\\n1. Calculate
the sum of 15 and 27.\\n\\nREADY: I am ready to execute the task.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
281,\n \"completion_tokens\": 27,\n \"total_tokens\": 308,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:51 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '691'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
math tutor\nYour personal goal is: Help solve math problems step by step"},{"role":"user","content":"\nCurrent
Task: What is 15 + 27?\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '269'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTrUOvExA9fTFDwYxvG4xEgRP6L\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078171,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"To solve the problem \\\\( 15 + 27
\\\\), we can follow these steps:\\n\\n1. **Align the numbers**: Write them
one on top of the other, aligned by their rightmost digits:\\n\\n ```\\n
\ 15\\n + 27\\n ```\\n\\n2. **Add the units place**: Start from the
rightmost digits (units place):\\n - \\\\( 5 + 7 = 12 \\\\)\\n - Write
down 2 and carry over 1.\\n\\n3. **Add the tens place**: Now, move to the
next column (tens place):\\n - \\\\( 1 + 2 + 1 \\\\) (the 1 is from the
carry) \\\\( = 4 \\\\)\\n\\n4. **Combine the results**: Now, combine the results
from the tens and units places:\\n - The result in the tens place is 4 and
in the units place is 2, giving us \\\\( 42 \\\\).\\n\\nTherefore, \\\\( 15
+ 27 = 42 \\\\).\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 50,\n \"completion_tokens\":
209,\n \"total_tokens\": 259,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:55 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '3263'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,110 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
assistant\nYour personal goal is: Help solve math problems"},{"role":"user","content":"\nCurrent
Task: What is 100 / 4?\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '255'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yU6mFapBLuCx4fJtYBup52dwwrs\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078186,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"To solve the problem 100 divided by
4, you can perform the division as follows:\\n\\n100 \xF7 4 = 25\\n\\nSo,
the answer is 25.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 46,\n \"completion_tokens\":
36,\n \"total_tokens\": 82,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:23:07 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1098'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,227 +1,98 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
personal goal is: Test goal"},{"role":"user","content":"\nCurrent Task: Create
a GitHub issue"}],"model":"gpt-3.5-turbo","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_issue","description":"Create
a GitHub issue","strict":true,"parameters":{"additionalProperties":false,"properties":{"title":{"description":"Issue
title","title":"Title","type":"string"},"body":{"default":null,"description":"Issue
body","title":"Body","type":"string"}},"required":["title","body"],"type":"object"}}}]}'
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour personal goal is: Test goal\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\nTool Name: create_issue\nTool Arguments: {''title'': {''description'': ''Issue title'', ''type'': ''str''}, ''body'': {''description'': ''Issue body'', ''type'': ''Union[str, NoneType]''}}\nTool Description: Create a GitHub issue\nDetailed Parameter Structure:\nObject with properties:\n - title: Issue title (required)\n - body: Issue body (optional)\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [create_issue], just the name, exactly as it''s written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information
is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n```"}, {"role": "user", "content": "Create a GitHub issue"}], "model": "gpt-3.5-turbo", "stream": false}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
- gzip, deflate
connection:
- keep-alive
content-length:
- '596'
- '1233'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
- MacOS
x-stainless-package-version:
- 1.83.0
- 1.109.1
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L3fqygkUIZ3bN4wvSpAhdaSk7MF\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403287,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_RuWuYzjzgRL3byVGhLlPi0rq\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"create_issue\",\n
\ \"arguments\": \"{\\\"title\\\":\\\"Test issue\\\",\\\"body\\\":\\\"This
is a test issue created for testing purposes.\\\"}\"\n }\n }\n
\ ],\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 93,\n \"completion_tokens\":
28,\n \"total_tokens\": 121,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": null\n}\n"
string: "{\n \"id\": \"chatcmpl-CULxKTEIB85AVItcEQ09z4Xi0JCID\",\n \"object\": \"chat.completion\",\n \"created\": 1761350274,\n \"model\": \"gpt-3.5-turbo-0125\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"I will need more specific information to create a GitHub issue. Could you please provide more details such as the title and body of the issue you would like to create?\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 255,\n \"completion_tokens\": 33,\n \"total_tokens\": 288,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n \
\ }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": null\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
- 993d6b4be9862379-SJC
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:28 GMT
- Fri, 24 Oct 2025 23:57:54 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
- __cf_bm=WY9bgemMDI_hUYISAPlQ2a.DBGeZfM6AjVEa3SKNg1c-1761350274-1.0.1.1-K3Qm2cl6IlDAgmocoKZ8IMUTmue6Q81hH9stECprUq_SM8LF8rR9d1sHktvRCN3.jEM.twEuFFYDNpBnN8NBRJFZcea1yvpm8Uo0G_UhyDs; path=/; expires=Sat, 25-Oct-25 00:27:54 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
- _cfuvid=JklLS4i3hBGELpS9cz1KMpTbj72hCwP41LyXDSxWIv8-1761350274521-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- STS-XXX
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
- nosniff
access-control-expose-headers:
- ACCESS-CONTROL-XXX
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
- crewai-iuxna1
openai-processing-ms:
- '1406'
- '487'
openai-project:
- OPENAI-PROJECT-XXX
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '526'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
- '10000'
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
- '50000000'
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
- '9999'
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
- '49999727'
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
- 6ms
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
- 0s
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
personal goal is: Test goal"},{"role":"user","content":"\nCurrent Task: Create
a GitHub issue"},{"role":"assistant","content":null,"tool_calls":[{"id":"call_RuWuYzjzgRL3byVGhLlPi0rq","type":"function","function":{"name":"create_issue","arguments":"{\"title\":\"Test
issue\",\"body\":\"This is a test issue created for testing purposes.\"}"}}]},{"role":"tool","tool_call_id":"call_RuWuYzjzgRL3byVGhLlPi0rq","name":"create_issue","content":"{\n \"success\":
true,\n \"issue_url\": \"https://github.com/test/repo/issues/1\"\n}"}],"model":"gpt-3.5-turbo","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_issue","description":"Create
a GitHub issue","strict":true,"parameters":{"additionalProperties":false,"properties":{"title":{"description":"Issue
title","title":"Title","type":"string"},"body":{"default":null,"description":"Issue
body","title":"Body","type":"string"}},"required":["title","body"],"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1028'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L3hfuBxk36LIb3ekD1IVwFD5VVL\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403289,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I have successfully created a GitHub
issue for testing purposes. You can view the issue at this URL: [Test issue](https://github.com/test/repo/issues/1)\",\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
154,\n \"completion_tokens\": 36,\n \"total_tokens\": 190,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": null\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:29 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '888'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
- req_1708dc0928c64882aaa5bc2c168c140f
status:
code: 200
message: OK

View File

@@ -1,108 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. A helpful
assistant\nYour personal goal is: Help solve math problems"},{"role":"user","content":"\nCurrent
Task: What is 8 * 7?\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '253'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D4yTqLFhGtfq2CyS2aPPhiZL4GjtQ\",\n \"object\":
\"chat.completion\",\n \"created\": 1770078170,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"8 * 7 equals 56.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
46,\n \"completion_tokens\": 8,\n \"total_tokens\": 54,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_1590f93f9d\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 00:22:50 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '443'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,428 +1,400 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Sports Analyst. You are
an expert at gathering and organizing information. You carefully collect details
and present them in a structured way.\nYour personal goal is: Gather information
about the best soccer players"},{"role":"user","content":"\nCurrent Task: Top
10 best players in the world?\n\nProvide your complete response:"}],"model":"gpt-4.1-mini"}'
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.\nYour personal goal is: Gather information about the best soccer players\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '404'
- '694'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
- MacOS
x-stainless-package-version:
- 1.83.0
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L3hzoRVVEa07HZsM9wpi2RVRKQp\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403289,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Here is a structured list of the top
10 best soccer players in the world as of 2024, based on recent performances,
awards, and overall impact on the game:\\n\\n1. **Kylian Mbapp\xE9** \\n
\ - Nationality: French \\n - Club: Paris Saint-Germain (PSG) \\n -
Position: Forward \\n - Key Highlights: Multiple Ligue 1 titles, World
Cup winner (2018), known for speed, dribbling, and scoring prowess.\\n\\n2.
**Erling Haaland** \\n - Nationality: Norwegian \\n - Club: Manchester
City \\n - Position: Striker \\n - Key Highlights: Premier League Golden
Boot winner, incredible goal-scoring record, physical presence, and finishing
skills.\\n\\n3. **Lionel Messi** \\n - Nationality: Argentine \\n -
Club: Inter Miami \\n - Position: Forward/Attacking Midfielder \\n -
Key Highlights: Seven Ballon d\u2019Or awards, World Cup winner (2022), exceptional
playmaking and dribbling ability.\\n\\n4. **Kevin De Bruyne** \\n - Nationality:
Belgian \\n - Club: Manchester City \\n - Position: Midfielder \\n
\ - Key Highlights: One of the best playmakers globally, assists leader,
consistent high-level performance in the Premier League.\\n\\n5. **Robert
Lewandowski** \\n - Nationality: Polish \\n - Club: FC Barcelona \\n
\ - Position: Striker \\n - Key Highlights: Exceptional goal-scoring record,
multiple Bundesliga top scorer awards, key figure in Bayern Munich\u2019s
dominance before transferring.\\n\\n6. **Karim Benzema** \\n - Nationality:
French \\n - Club: Al-Ittihad \\n - Position: Striker \\n - Key Highlights:
Ballon d\u2019Or winner (2022), excellent technical skills, leadership at
Real Madrid before recent transfer.\\n\\n7. **Mohamed Salah** \\n - Nationality:
Egyptian \\n - Club: Liverpool \\n - Position: Forward \\n - Key
Highlights: Premier League Golden Boot winner, known for speed, dribbling,
and goal-scoring consistency.\\n\\n8. **Vin\xEDcius J\xFAnior** \\n - Nationality:
Brazilian \\n - Club: Real Madrid \\n - Position: Winger \\n - Key
Highlights: Key player for Real Madrid, exceptional dribbling and pace, rising
star in world football.\\n\\n9. **Jude Bellingham** \\n - Nationality:
English \\n - Club: Real Madrid \\n - Position: Midfielder \\n -
Key Highlights: Young talent with maturity beyond years, influential midfielder
with great vision and work rate.\\n\\n10. **Thibaut Courtois** \\n - Nationality:
Belgian \\n - Club: Real Madrid \\n - Position: Goalkeeper \\n -
Key Highlights: One of the best goalkeepers globally, crucial performances
in La Liga and Champions League.\\n\\nThese rankings consider individual talent,
recent achievements, influence on matches, and overall contribution to club
and country.\",\n \"refusal\": null,\n \"annotations\": []\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 68,\n \"completion_tokens\":
621,\n \"total_tokens\": 689,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_75546bd1a7\"\n}\n"
string: "{\n \"id\": \"chatcmpl-BgufUtDqGzvqPZx2NmkqqxdW4G8rQ\",\n \"object\": \"chat.completion\",\n \"created\": 1749567308,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Thought: I now can give a great answer \\nFinal Answer: The top 10 best soccer players in the world, as of October 2023, can be identified based on their recent performances, skills, impact on games, and overall contributions to their teams. Here is the structured list:\\n\\n1. **Lionel Messi (Inter Miami CF)**\\n - Position: Forward\\n - Key Attributes: Dribbling, vision, goal-scoring ability.\\n - Achievements: Multiple Ballon d'Or winner, Copa America champion, World Cup champion (2022).\\n\\n2. **Kylian Mbappé (Paris Saint-Germain)**\\n - Position: Forward\\n - Key Attributes: Speed, technique, finishing.\\n - Achievements: FIFA World Cup champion (2018), Ligue 1 titles, multiple\
\ domestic cups.\\n\\n3. **Erling Haaland (Manchester City)**\\n - Position: Forward\\n - Key Attributes: Power, speed, goal-scoring instinct.\\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\\n\\n4. **Kevin De Bruyne (Manchester City)**\\n - Position: Midfielder\\n - Key Attributes: Passing, vision, creativity.\\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\\n\\n5. **Karim Benzema (Al-Ittihad)**\\n - Position: Forward\\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\\n - Achievements: 2022 Ballon d'Or winner, multiple Champions Leagues with Real Madrid.\\n\\n6. **Neymar Jr. (Al Hilal)**\\n - Position: Forward\\n - Key Attributes: Flair, dribbling, creativity.\\n - Achievements: Multiple domestic league titles, Champions League runner-up.\\n\\n7. **Robert Lewandowski (FC Barcelona)**\\n - Position: Forward\\n - Key Attributes: Finishing,\
\ positioning, aerial ability.\\n - Achievements: FIFA Best Men's Player, multiple Bundesliga titles, La Liga champion (2023).\\n\\n8. **Mohamed Salah (Liverpool)**\\n - Position: Forward\\n - Key Attributes: Speed, finishing, dribbling.\\n - Achievements: Premier League champion, FA Cup, UEFA Champions League winner.\\n\\n9. **Vinícius Júnior (Real Madrid)**\\n - Position: Forward\\n - Key Attributes: Speed, dribbling, creativity.\\n - Achievements: UEFA Champions League winner (2022), La Liga champion (2023).\\n\\n10. **Luka Modrić (Real Madrid)**\\n - Position: Midfielder\\n - Key Attributes: Passing, vision, tactical intelligence.\\n - Achievements: Multiple Champions League titles, Ballon d'Or winner (2018).\\n\\nThis list is compiled based on their current form, past performances, and contributions to their respective teams in both domestic and international competitions. Player rankings can vary based on personal opinion and specific criteria used for\
\ evaluation, but these players have consistently been regarded as some of the best in the world as of October 2023.\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 122,\n \"completion_tokens\": 643,\n \"total_tokens\": 765,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_34a54ae93c\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
- 94d9b5400dcd624b-GRU
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:40 GMT
- Tue, 10 Jun 2025 14:55:42 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU; path=/; expires=Tue, 10-Jun-25 15:25:42 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
- _cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
- nosniff
access-control-expose-headers:
- ACCESS-CONTROL-XXX
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
- crewai-iuxna1
openai-processing-ms:
- '10634'
openai-project:
- OPENAI-PROJECT-XXX
- '33288'
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '33292'
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
- '30000'
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
- '150000000'
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
- '29999'
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
- '149999859'
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
- 2ms
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
- 0s
x-request-id:
- X-REQUEST-ID-XXX
- req_6a587ea22edef774ecdada790a320cab
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Sports Analyst. You are
an expert at gathering and organizing information. You carefully collect details
and present them in a structured way.\nYour personal goal is: Gather information
about the best soccer players"},{"role":"user","content":"\nCurrent Task: Top
10 best players in the world?\n\nProvide your complete response:"}],"model":"gpt-4.1-mini"}'
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.\nYour personal goal is: Gather information about the best soccer players\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players in the world?"}, {"role": "assistant", "content": "Thought: I now can give a great answer \nFinal Answer: The top 10 best soccer players in the world, as of October 2023, can be identified based on their recent performances, skills, impact on games, and overall contributions to their teams. Here is the structured list:\n\n1. **Lionel Messi (Inter Miami CF)**\n -
Position: Forward\n - Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements: Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2. **Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland (Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed, goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6. **Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair, dribbling, creativity.\n - Achievements: Multiple domestic league titles, Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n - Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion (2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision,
tactical intelligence.\n - Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis list is compiled based on their current form, past performances, and contributions to their respective teams in both domestic and international competitions. Player rankings can vary based on personal opinion and specific criteria used for evaluation, but these players have consistently been regarded as some of the best in the world as of October 2023."}, {"role": "user", "content": "You are not allowed to include Brazilian players"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '404'
- '3594'
content-type:
- application/json
cookie:
- COOKIE-XXX
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU; _cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
- MacOS
x-stainless-package-version:
- 1.83.0
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L3sn9nSnGGOMKrS88avliVF7XTv\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403300,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Certainly! Here's a structured list
of the top 10 best soccer players in the world as of 2024, considering their
performance, skills, achievements, and impact in recent seasons:\\n\\n###
Top 10 Best Soccer Players in the World (2024)\\n\\n| Rank | Player Name |
Nationality | Club (2023/24 Season) | Position | Key Attributes
\ | Recent Achievements |\\n|-------|---------------------|-------------|----------------------------|------------------|---------------------------------|------------------------------------|\\n|
1 | Lionel Messi | Argentina | Paris Saint-Germain (PSG) |
Forward/Playmaker| Dribbling, Vision, Free kicks | 2023 World Cup Golden
Ball, Club Successes |\\n| 2 | Kylian Mbapp\xE9 | France |
Paris Saint-Germain (PSG) | Forward | Speed, Finishing, Dribbling
\ | Ligue 1 Top Scorer, World Cup Winner 2018|\\n| 3 | Erling Haaland
\ | Norway | Manchester City | Striker | Strength,
Finishing, Positioning| Premier League Golden Boot, Champions League Impact|\\n|
4 | Kevin De Bruyne | Belgium | Manchester City |
Midfielder | Passing, Vision, Creativity | Premier League Titles,
Key Playmaker|\\n| 5 | Robert Lewandowski | Poland | FC Barcelona
\ | Striker | Finishing, Positioning, Composure| La
Liga Top Scorer, Consistent Scorer|\\n| 6 | Neymar Jr. | Brazil
\ | Al-Hilal | Forward/Winger | Dribbling, Creativity,
Flair | Copa America Titles, Club Success |\\n| 7 | Mohamed Salah |
Egypt | Liverpool | Forward/Winger | Pace, Finishing,
Work Rate | Premier League Golden Boot, Champions League Winner|\\n|
8 | Vin\xEDcius Jr. | Brazil | Real Madrid |
Winger | Speed, Dribbling, Crossing | La Liga Titles, UEFA Champions
League Winner|\\n| 9 | Luka Modri\u0107 | Croatia | Real Madrid
\ | Midfielder | Passing, Control, Experience | Ballon
d\u2019Or 2018, Multiple Champions League Titles|\\n| 10 | Karim Benzema
\ | France | Al-Ittihad | Striker | Finishing,
Link-up Play, Movements| Ballon d\u2019Or 2022, UEFA Champions League Top
Scorer |\\n\\n### Notes:\\n- The rankings reflect a combination of individual
skill, recent performance, consistency, and influence on the game.\\n- Players\u2019
clubs are based on the 2023/24 season affiliations.\\n- Achievements highlight
recent titles, awards, or standout contributions.\\n\\nIf you would like me
to focus on specific leagues, historical players, or emerging talents, just
let me know!\",\n \"refusal\": null,\n \"annotations\": []\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 68,\n \"completion_tokens\":
605,\n \"total_tokens\": 673,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_75546bd1a7\"\n}\n"
string: "{\n \"id\": \"chatcmpl-BgugJkCDtB2EfvAMiIFK0reeLKFBl\",\n \"object\": \"chat.completion\",\n \"created\": 1749567359,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Thought: I now can give a great answer \\nFinal Answer: Here is an updated list of the top 10 best soccer players in the world as of October 2023, excluding Brazilian players:\\n\\n1. **Lionel Messi (Inter Miami CF)**\\n - Position: Forward\\n - Key Attributes: Dribbling, vision, goal-scoring ability.\\n - Achievements: Multiple Ballon d'Or winner, Copa America champion, World Cup champion (2022).\\n\\n2. **Kylian Mbappé (Paris Saint-Germain)**\\n - Position: Forward\\n - Key Attributes: Speed, technique, finishing.\\n - Achievements: FIFA World Cup champion (2018), Ligue 1 titles, multiple domestic cups.\\n\\n3. **Erling Haaland (Manchester City)**\\n - Position: Forward\\\
n - Key Attributes: Power, speed, goal-scoring instinct.\\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\\n\\n4. **Kevin De Bruyne (Manchester City)**\\n - Position: Midfielder\\n - Key Attributes: Passing, vision, creativity.\\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\\n\\n5. **Karim Benzema (Al-Ittihad)**\\n - Position: Forward\\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\\n - Achievements: 2022 Ballon d'Or winner, multiple Champions Leagues with Real Madrid.\\n\\n6. **Robert Lewandowski (FC Barcelona)**\\n - Position: Forward\\n - Key Attributes: Finishing, positioning, aerial ability.\\n - Achievements: FIFA Best Men's Player, multiple Bundesliga titles, La Liga champion (2023).\\n\\n7. **Mohamed Salah (Liverpool)**\\n - Position: Forward\\n - Key Attributes: Speed, finishing, dribbling.\\n - Achievements: Premier League\
\ champion, FA Cup, UEFA Champions League winner.\\n\\n8. **Vinícius Júnior (Real Madrid)**\\n - Position: Forward\\n - Key Attributes: Speed, dribbling, creativity.\\n - Achievements: UEFA Champions League winner (2022), La Liga champion (2023).\\n\\n9. **Luka Modrić (Real Madrid)**\\n - Position: Midfielder\\n - Key Attributes: Passing, vision, tactical intelligence.\\n - Achievements: Multiple Champions League titles, Ballon d'Or winner (2018).\\n\\n10. **Harry Kane (Bayern Munich)**\\n - Position: Forward\\n - Key Attributes: Goal-scoring, technique, playmaking.\\n - Achievements: Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\\n\\nThis list has been adjusted to exclude Brazilian players and focuses on those who have made significant impacts in their clubs and on the international stage as of October 2023. Each player is recognized for their exceptional skills, performances, and achievements.\",\n \"refusal\": null,\n\
\ \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 781,\n \"completion_tokens\": 610,\n \"total_tokens\": 1391,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_34a54ae93c\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
- 94d9b6782db84d3b-GRU
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:49 GMT
- Tue, 10 Jun 2025 14:56:30 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
- nosniff
access-control-expose-headers:
- ACCESS-CONTROL-XXX
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
- crewai-iuxna1
openai-processing-ms:
- '9044'
openai-project:
- OPENAI-PROJECT-XXX
- '31484'
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '31490'
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
- '30000'
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
- '150000000'
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
- '29999'
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
- '149999166'
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
- 2ms
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
- 0s
x-request-id:
- X-REQUEST-ID-XXX
- req_aa737cf40bb76af9f458bfd35f7a77a1
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Sports Analyst. You are
an expert at gathering and organizing information. You carefully collect details
and present them in a structured way.\nYour personal goal is: Gather information
about the best soccer players"},{"role":"user","content":"\nCurrent Task: Top
10 best players in the world?\n\nProvide your complete response:"}],"model":"gpt-4.1-mini"}'
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.\nYour personal goal is: Gather information about the best soccer players\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players in the world?"}, {"role": "assistant", "content": "Thought: I now can give a great answer \nFinal Answer: The top 10 best soccer players in the world, as of October 2023, can be identified based on their recent performances, skills, impact on games, and overall contributions to their teams. Here is the structured list:\n\n1. **Lionel Messi (Inter Miami CF)**\n -
Position: Forward\n - Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements: Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2. **Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland (Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed, goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6. **Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair, dribbling, creativity.\n - Achievements: Multiple domestic league titles, Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n - Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion (2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision,
tactical intelligence.\n - Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis list is compiled based on their current form, past performances, and contributions to their respective teams in both domestic and international competitions. Player rankings can vary based on personal opinion and specific criteria used for evaluation, but these players have consistently been regarded as some of the best in the world as of October 2023."}, {"role": "user", "content": "You are not allowed to include Brazilian players"}, {"role": "assistant", "content": "Thought: I now can give a great answer \nFinal Answer: Here is an updated list of the top 10 best soccer players in the world as of October 2023, excluding Brazilian players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n - Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements: Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland (Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed, goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements: 2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6. **Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes: Finishing, positioning,
aerial ability.\n - Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions League winner.\n\n8. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga champion (2023).\n\n9. **Luka Modri\u0107 (Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n - Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\n10. **Harry Kane (Bayern Munich)**\n - Position: Forward\n - Key Attributes: Goal-scoring, technique, playmaking.\n - Achievements: Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\n\nThis list has been adjusted to exclude Brazilian
players and focuses on those who have made significant impacts in their clubs and on the international stage as of October 2023. Each player is recognized for their exceptional skills, performances, and achievements."}, {"role": "user", "content": "You are not allowed to include Brazilian players"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '404'
- '6337'
content-type:
- application/json
cookie:
- COOKIE-XXX
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU; _cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
- MacOS
x-stainless-package-version:
- 1.83.0
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L4102eMwTEPeHxfyN9Kh7rjBoX6\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403309,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Certainly! Here is a list of the top
10 best soccer players in the world as of 2024, considering their recent performances,
skills, impact, and accolades:\\n\\n1. **Lionel Messi** \\n - Nationality:
Argentine \\n - Position: Forward \\n - Key Achievements: 7 Ballon d'Or
awards, led Argentina to 2021 Copa Am\xE9rica victory and 2022 FIFA World
Cup triumph, exceptional dribbling and playmaking skills.\\n\\n2. **Kylian
Mbapp\xE9** \\n - Nationality: French \\n - Position: Forward \\n -
Key Achievements: FIFA World Cup winner (2018), multiple Ligue 1 titles, known
for incredible speed, finishing, and consistency.\\n\\n3. **Erling Haaland**
\ \\n - Nationality: Norwegian \\n - Position: Striker \\n - Key Achievements:
Premier League Golden Boot winner (2022-23), prolific goal scorer, physical
presence, and finishing ability.\\n\\n4. **Karim Benzema** \\n - Nationality:
French \\n - Position: Forward \\n - Key Achievements: 2022 Ballon d'Or
winner, key player for Real Madrid\u2019s recent Champions League victories,
excellent technical skills and leadership.\\n\\n5. **Kevin De Bruyne** \\n
\ - Nationality: Belgian \\n - Position: Midfielder \\n - Key Achievements:
Premier League playmaker, known for vision, passing accuracy, and creativity.\\n\\n6.
**Robert Lewandowski** \\n - Nationality: Polish \\n - Position: Striker
\ \\n - Key Achievements: Multiple Bundesliga top scorer titles, consistent
goal scorer, known for positioning and finishing.\\n\\n7. **Neymar Jr.** \\n
\ - Nationality: Brazilian \\n - Position: Forward \\n - Key Achievements:
Exceptional dribbling, creativity, and flair; multiple domestic titles and
Copa Libertadores winner.\\n\\n8. **Mohamed Salah** \\n - Nationality:
Egyptian \\n - Position: Forward \\n - Key Achievements: Premier League
Golden Boot, consistent goal scoring with Liverpool, known for speed and finishing.\\n\\n9.
**Luka Modri\u0107** \\n - Nationality: Croatian \\n - Position: Midfielder
\ \\n - Key Achievements: 2018 Ballon d\u2019Or winner, pivotal midfield
maestro, excellent passing and control.\\n\\n10. **Thibaut Courtois** \\n
\ - Nationality: Belgian \\n - Position: Goalkeeper \\n - Key Achievements:
Exceptional shot-stopper, key player in Real Madrid's recent successes.\\n\\nThis
list includes a blend of forwards, midfielders, and a goalkeeper, showcasing
the best talents in various positions worldwide. The rankings may vary slightly
depending on current form and opinions, but these players consistently rank
among the best globally.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 68,\n \"completion_tokens\":
575,\n \"total_tokens\": 643,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_75546bd1a7\"\n}\n"
string: "{\n \"id\": \"chatcmpl-BgugsAmyI50uQ6SpCp89ZZY4eD1Pz\",\n \"object\": \"chat.completion\",\n \"created\": 1749567394,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Thought: I now can give a great answer \\nFinal Answer: Here is the revised list of the top 10 best soccer players in the world as of October 2023, explicitly excluding Brazilian players:\\n\\n1. **Lionel Messi (Inter Miami CF)**\\n - Position: Forward\\n - Key Attributes: Dribbling, vision, goal-scoring ability.\\n - Achievements: Multiple Ballon d'Or winner, Copa America champion, World Cup champion (2022).\\n\\n2. **Kylian Mbappé (Paris Saint-Germain)**\\n - Position: Forward\\n - Key Attributes: Speed, technique, finishing.\\n - Achievements: FIFA World Cup champion (2018), multiple Ligue 1 titles, and various domestic cups.\\n\\n3. **Erling Haaland (Manchester City)**\\n\
\ - Position: Forward\\n - Key Attributes: Power, speed, goal-scoring instinct.\\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\\n\\n4. **Kevin De Bruyne (Manchester City)**\\n - Position: Midfielder\\n - Key Attributes: Passing, vision, creativity.\\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\\n\\n5. **Karim Benzema (Al-Ittihad)**\\n - Position: Forward\\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\\n - Achievements: 2022 Ballon d'Or winner, multiple Champions Leagues with Real Madrid.\\n\\n6. **Robert Lewandowski (FC Barcelona)**\\n - Position: Forward\\n - Key Attributes: Finishing, positioning, aerial ability.\\n - Achievements: FIFA Best Men's Player, multiple Bundesliga titles, La Liga champion (2023).\\n\\n7. **Mohamed Salah (Liverpool)**\\n - Position: Forward\\n - Key Attributes: Speed, finishing, dribbling.\\n -\
\ Achievements: Premier League champion, FA Cup, UEFA Champions League winner.\\n\\n8. **Luka Modrić (Real Madrid)**\\n - Position: Midfielder\\n - Key Attributes: Passing, vision, tactical intelligence.\\n - Achievements: Multiple Champions League titles, Ballon d'Or winner (2018).\\n\\n9. **Harry Kane (Bayern Munich)**\\n - Position: Forward\\n - Key Attributes: Goal-scoring, technique, playmaking.\\n - Achievements: Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\\n\\n10. **Rodri (Manchester City)**\\n - Position: Midfielder\\n - Key Attributes: Defensive skills, passing, positional awareness.\\n - Achievements: Premier League titles, UEFA Champions League winner (2023).\\n\\nThis list is curated while adhering to the restriction of excluding Brazilian players. Each player included has demonstrated exceptional skills and remarkable performances, solidifying their status as some of the best in the world as of October 2023.\"\
,\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 1407,\n \"completion_tokens\": 605,\n \"total_tokens\": 2012,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_62a23a81ef\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
- 94d9b7561f204d3b-GRU
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:57 GMT
- Tue, 10 Jun 2025 14:56:46 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
- nosniff
access-control-expose-headers:
- ACCESS-CONTROL-XXX
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
- crewai-iuxna1
openai-processing-ms:
- '7948'
openai-project:
- OPENAI-PROJECT-XXX
- '12189'
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '12193'
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
- '30000'
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
- '150000000'
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
- '29999'
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
- '149998513'
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
- 2ms
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
- 0s
x-request-id:
- X-REQUEST-ID-XXX
- req_1098f5a5384f4a26aecf0c9e4e4d1fc0
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.\nYour personal goal is: Gather information about the best soccer players\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players in the world?"}, {"role": "assistant", "content": "Thought: I now can give a great answer \nFinal Answer: The top 10 best soccer players in the world, as of October 2023, can be identified based on their recent performances, skills, impact on games, and overall contributions to their teams. Here is the structured list:\n\n1. **Lionel Messi (Inter Miami CF)**\n -
Position: Forward\n - Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements: Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2. **Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland (Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed, goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6. **Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair, dribbling, creativity.\n - Achievements: Multiple domestic league titles, Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n - Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion (2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision,
tactical intelligence.\n - Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis list is compiled based on their current form, past performances, and contributions to their respective teams in both domestic and international competitions. Player rankings can vary based on personal opinion and specific criteria used for evaluation, but these players have consistently been regarded as some of the best in the world as of October 2023."}, {"role": "user", "content": "You are not allowed to include Brazilian players"}, {"role": "assistant", "content": "Thought: I now can give a great answer \nFinal Answer: Here is an updated list of the top 10 best soccer players in the world as of October 2023, excluding Brazilian players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n - Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements: Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland (Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed, goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements: 2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6. **Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes: Finishing, positioning,
aerial ability.\n - Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions League winner.\n\n8. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga champion (2023).\n\n9. **Luka Modri\u0107 (Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n - Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\n10. **Harry Kane (Bayern Munich)**\n - Position: Forward\n - Key Attributes: Goal-scoring, technique, playmaking.\n - Achievements: Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\n\nThis list has been adjusted to exclude Brazilian
players and focuses on those who have made significant impacts in their clubs and on the international stage as of October 2023. Each player is recognized for their exceptional skills, performances, and achievements."}, {"role": "user", "content": "You are not allowed to include Brazilian players"}, {"role": "assistant", "content": "Thought: I now can give a great answer \nFinal Answer: Here is the revised list of the top 10 best soccer players in the world as of October 2023, explicitly excluding Brazilian players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n - Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements: Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2. **Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup champion (2018), multiple Ligue 1 titles, and various domestic cups.\n\n3. **Erling Haaland
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed, goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements: 2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6. **Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n - Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing, dribbling.\n - Achievements:
Premier League champion, FA Cup, UEFA Champions League winner.\n\n8. **Luka Modri\u0107 (Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n - Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\n9. **Harry Kane (Bayern Munich)**\n - Position: Forward\n - Key Attributes: Goal-scoring, technique, playmaking.\n - Achievements: Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\n\n10. **Rodri (Manchester City)**\n - Position: Midfielder\n - Key Attributes: Defensive skills, passing, positional awareness.\n - Achievements: Premier League titles, UEFA Champions League winner (2023).\n\nThis list is curated while adhering to the restriction of excluding Brazilian players. Each player included has demonstrated exceptional skills and remarkable performances, solidifying their status as some of the best in the world as of October 2023."}, {"role": "user", "content":
"You are not allowed to include Brazilian players"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '9093'
content-type:
- application/json
cookie:
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU; _cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-BguhCefN1bN2OeYRo5ChhUqNBLUda\",\n \"object\": \"chat.completion\",\n \"created\": 1749567414,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Thought: I now can give a great answer \\nFinal Answer: Here is a refined list of the top 10 best soccer players in the world as of October 2023, ensuring that no Brazilian players are included:\\n\\n1. **Lionel Messi (Inter Miami CF)**\\n - Position: Forward\\n - Key Attributes: Dribbling, vision, goal-scoring ability.\\n - Achievements: Multiple Ballon d'Or winner, Copa America champion, World Cup champion (2022).\\n\\n2. **Kylian Mbappé (Paris Saint-Germain)**\\n - Position: Forward\\n - Key Attributes: Speed, technique, finishing.\\n - Achievements: FIFA World Cup champion (2018), multiple Ligue 1 titles, various domestic cups.\\n\\n3. **Erling Haaland (Manchester City)**\\\
n - Position: Forward\\n - Key Attributes: Power, speed, goal-scoring instinct.\\n - Achievements: Bundesliga top scorer, UEFA Champions League winner (2023), Premier League titles.\\n\\n4. **Kevin De Bruyne (Manchester City)**\\n - Position: Midfielder\\n - Key Attributes: Passing, vision, creativity.\\n - Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League winner (2023).\\n\\n5. **Karim Benzema (Al-Ittihad)**\\n - Position: Forward\\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\\n - Achievements: 2022 Ballon d'Or winner, multiple Champions Leagues with Real Madrid.\\n\\n6. **Robert Lewandowski (FC Barcelona)**\\n - Position: Forward\\n - Key Attributes: Finishing, positioning, aerial ability.\\n - Achievements: FIFA Best Men's Player, multiple Bundesliga titles, La Liga champion (2023).\\n\\n7. **Mohamed Salah (Liverpool)**\\n - Position: Forward\\n - Key Attributes: Speed, finishing, dribbling.\\n -\
\ Achievements: Premier League champion, FA Cup, UEFA Champions League winner.\\n\\n8. **Luka Modrić (Real Madrid)**\\n - Position: Midfielder\\n - Key Attributes: Passing, vision, tactical intelligence.\\n - Achievements: Multiple Champions League titles, Ballon d'Or winner (2018).\\n\\n9. **Harry Kane (Bayern Munich)**\\n - Position: Forward\\n - Key Attributes: Goal-scoring, technique, playmaking.\\n - Achievements: Golden Boot winner, multiple Premier League titles, UEFA European Championship runner-up.\\n\\n10. **Son Heung-min (Tottenham Hotspur)**\\n - Position: Forward\\n - Key Attributes: Speed, finishing, playmaking.\\n - Achievements: Premier League Golden Boot winner, multiple domestic cup titles.\\n\\nThis list has been carefully revised to exclude all Brazilian players while highlighting some of the most talented individuals in soccer as of October 2023. Each player has showcased remarkable effectiveness and skill, contributing significantly to their\
\ teams on both domestic and international stages.\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 2028,\n \"completion_tokens\": 614,\n \"total_tokens\": 2642,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 1280,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_34a54ae93c\"\n}\n"
headers:
CF-RAY:
- 94d9b7d24d991d2c-GRU
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:57:29 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '35291'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '35294'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149997855'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4676152d4227ac1825d1240ddef231d6
status:
code: 200
message: OK

View File

@@ -1,8 +1,14 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. A helpful
test assistant\nYour personal goal is: Answer questions"},{"role":"user","content":"\nCurrent
Task: What is 2+2? Reply with just the number.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
test assistant\nYour personal goal is: Answer questions\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
What is 2+2? Reply with just the number.\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -15,7 +21,7 @@ interactions:
connection:
- keep-alive
content-length:
- '272'
- '673'
content-type:
- application/json
host:
@@ -37,22 +43,23 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L4AzMHXLXDfyclWS6fJSwS0cvOl\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403318,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
string: "{\n \"id\": \"chatcmpl-Cy7b0HjL79y39EkUcMLrRhPFe3XGj\",\n \"object\":
\"chat.completion\",\n \"created\": 1768444914,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"4\",\n \"refusal\": null,\n
\ \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 50,\n \"completion_tokens\":
1,\n \"total_tokens\": 51,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: 4\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 136,\n \"completion_tokens\": 13,\n
\ \"total_tokens\": 149,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_f4ae844694\"\n}\n"
\"default\",\n \"system_fingerprint\": \"fp_8bbc38b4db\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -61,7 +68,7 @@ interactions:
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:58 GMT
- Thu, 15 Jan 2026 02:41:55 GMT
Server:
- cloudflare
Set-Cookie:
@@ -78,14 +85,18 @@ interactions:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '857'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '264'
- '341'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '358'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -1,8 +1,14 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Standalone Agent. A helpful
assistant\nYour personal goal is: Answer questions"},{"role":"user","content":"\nCurrent
Task: What is 5+5? Reply with just the number.\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
assistant\nYour personal goal is: Answer questions\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
What is 5+5? Reply with just the number.\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -15,7 +21,7 @@ interactions:
connection:
- keep-alive
content-length:
- '273'
- '674'
content-type:
- application/json
host:
@@ -37,22 +43,23 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L3cLs2ndBaXV2wnqYCdi6X1ykvv\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403284,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
string: "{\n \"id\": \"chatcmpl-Cy7azhPwUHQ0p5tdhxSAmLPoE8UgC\",\n \"object\":
\"chat.completion\",\n \"created\": 1768444913,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"10\",\n \"refusal\": null,\n
\ \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 50,\n \"completion_tokens\":
1,\n \"total_tokens\": 51,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: 10\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 136,\n \"completion_tokens\": 13,\n
\ \"total_tokens\": 149,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_f4ae844694\"\n}\n"
\"default\",\n \"system_fingerprint\": \"fp_29330a9688\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -61,7 +68,7 @@ interactions:
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:25 GMT
- Thu, 15 Jan 2026 02:41:54 GMT
Server:
- cloudflare
Set-Cookie:
@@ -78,14 +85,18 @@ interactions:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '858'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '270'
- '455'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '583'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -1,8 +1,13 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are First Agent. A friendly
greeter\nYour personal goal is: Greet users"},{"role":"user","content":"\nCurrent
Task: Say hello\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
greeter\nYour personal goal is: Greet users\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task: Say
hello\n\nBegin! This is VERY important to you, use the tools available and give
your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -15,7 +20,7 @@ interactions:
connection:
- keep-alive
content-length:
- '231'
- '632'
content-type:
- application/json
host:
@@ -37,22 +42,24 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L4A8Aad6P1YUxWjQpvyltn8GaKT\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403318,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
string: "{\n \"id\": \"chatcmpl-CyRKzgODZ9yn3F9OkaXsscLk2Ln3N\",\n \"object\":
\"chat.completion\",\n \"created\": 1768520801,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! \U0001F60A How are you today?\",\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
41,\n \"completion_tokens\": 8,\n \"total_tokens\": 49,\n \"prompt_tokens_details\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Hello! Welcome! I'm so glad to see you here. If you need any assistance
or have any questions, feel free to ask. Have a wonderful day!\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
127,\n \"completion_tokens\": 43,\n \"total_tokens\": 170,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_f4ae844694\"\n}\n"
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -61,7 +68,7 @@ interactions:
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:58 GMT
- Thu, 15 Jan 2026 23:46:42 GMT
Server:
- cloudflare
Set-Cookie:
@@ -78,14 +85,18 @@ interactions:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '990'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '325'
- '880'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1160'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
@@ -107,8 +118,13 @@ interactions:
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Second Agent. A polite
farewell agent\nYour personal goal is: Say goodbye"},{"role":"user","content":"\nCurrent
Task: Say goodbye\n\nProvide your complete response:"}],"model":"gpt-4o-mini"}'
farewell agent\nYour personal goal is: Say goodbye\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
Say goodbye\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -121,7 +137,7 @@ interactions:
connection:
- keep-alive
content-length:
- '239'
- '640'
content-type:
- application/json
host:
@@ -143,24 +159,27 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L4BLMYC3ODccwbKfBIdtrEyd3no\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403319,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
string: "{\n \"id\": \"chatcmpl-CyRL1Ua2PkK5xXPp3KeF0AnGAk3JP\",\n \"object\":
\"chat.completion\",\n \"created\": 1768520803,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thank you for the time we've spent
together! I wish you all the best in your future endeavors. Take care, and
until we meet again, goodbye!\",\n \"refusal\": null,\n \"annotations\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: As we reach the end of our conversation, I want to express my gratitude
for the time we've shared. It's been a pleasure assisting you, and I hope
you found our interaction helpful and enjoyable. Remember, whenever you need
assistance, I'm just a message away. Wishing you all the best in your future
endeavors. Goodbye and take care!\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 40,\n \"completion_tokens\":
31,\n \"total_tokens\": 71,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 126,\n \"completion_tokens\":
79,\n \"total_tokens\": 205,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_f4ae844694\"\n}\n"
\"default\",\n \"system_fingerprint\": \"fp_29330a9688\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -169,7 +188,7 @@ interactions:
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:59 GMT
- Thu, 15 Jan 2026 23:46:44 GMT
Server:
- cloudflare
Set-Cookie:
@@ -186,14 +205,18 @@ interactions:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '1189'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '726'
- '1363'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1605'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -2,8 +2,9 @@ interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator. You calculate
things.\nYour personal goal is: Perform calculations efficiently"},{"role":"user","content":"\nCurrent
Task: Use the failing_tool to do something."}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"failing_tool","description":"This
tool always fails","strict":true,"parameters":{"properties":{},"type":"object","additionalProperties":false,"required":[]}}}]}'
Task: Use the failing_tool to do something.\n\nThis is VERY important to you,
your job depends on it!"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"failing_tool","description":"This
tool always fails","parameters":{"properties":{},"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -16,7 +17,7 @@ interactions:
connection:
- keep-alive
content-length:
- '476'
- '477'
content-type:
- application/json
host:
@@ -38,26 +39,26 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L3dV6acwapgRyxmnzGfuOXemtjJ\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403285,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
string: "{\n \"id\": \"chatcmpl-D0vm2JDsOmy0czXPAr4vnw3wvuqYZ\",\n \"object\":
\"chat.completion\",\n \"created\": 1769114454,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_GCdaOdo32pr1sSk4RzO0tiB9\",\n \"type\":
\ \"id\": \"call_8xr8rPUDWzLfQ3LOWPHtBUjK\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"failing_tool\",\n
\ \"arguments\": \"{}\"\n }\n }\n ],\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"tool_calls\"\n }\n ],\n \"usage\":
{\n \"prompt_tokens\": 65,\n \"completion_tokens\": 11,\n \"total_tokens\":
76,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\":
{\n \"prompt_tokens\": 78,\n \"completion_tokens\": 11,\n \"total_tokens\":
89,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\":
0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n
\ \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_6c0d1490cb\"\n}\n"
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -66,7 +67,7 @@ interactions:
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:25 GMT
- Thu, 22 Jan 2026 20:40:54 GMT
Server:
- cloudflare
Set-Cookie:
@@ -86,11 +87,13 @@ interactions:
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '436'
- '593'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '621'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
@@ -113,9 +116,12 @@ interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator. You calculate
things.\nYour personal goal is: Perform calculations efficiently"},{"role":"user","content":"\nCurrent
Task: Use the failing_tool to do something."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_GCdaOdo32pr1sSk4RzO0tiB9","type":"function","function":{"name":"failing_tool","arguments":"{}"}}]},{"role":"tool","tool_call_id":"call_GCdaOdo32pr1sSk4RzO0tiB9","name":"failing_tool","content":"Error
executing tool: This tool always fails"}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"failing_tool","description":"This
tool always fails","strict":true,"parameters":{"properties":{},"type":"object","additionalProperties":false,"required":[]}}}]}'
Task: Use the failing_tool to do something.\n\nThis is VERY important to you,
your job depends on it!"},{"role":"assistant","content":null,"tool_calls":[{"id":"call_8xr8rPUDWzLfQ3LOWPHtBUjK","type":"function","function":{"name":"failing_tool","arguments":"{}"}}]},{"role":"tool","tool_call_id":"call_8xr8rPUDWzLfQ3LOWPHtBUjK","content":"Error
executing tool: This tool always fails"},{"role":"user","content":"Analyze the
tool result. If requirements are met, provide the Final Answer. Otherwise, call
the next tool. Deliver only the answer without meta-commentary."}],"model":"gpt-4o-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"failing_tool","description":"This
tool always fails","parameters":{"properties":{},"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -128,7 +134,7 @@ interactions:
connection:
- keep-alive
content-length:
- '778'
- '941'
content-type:
- application/json
cookie:
@@ -152,25 +158,22 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D6L3dhjDZOoihHvXvRpbJD3ReGu0z\",\n \"object\":
\"chat.completion\",\n \"created\": 1770403285,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
string: "{\n \"id\": \"chatcmpl-D0vm3xcywoKBW75bhBXfkGJNim6Th\",\n \"object\":
\"chat.completion\",\n \"created\": 1769114455,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"The attempt to use the failing tool
resulted in an error, as expected since it is designed to always fail. If
there's anything else you would like to calculate or explore, please let me
know!\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 93,\n \"completion_tokens\": 40,\n
\ \"total_tokens\": 133,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
\"assistant\",\n \"content\": \"Error: This tool always fails.\",\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
141,\n \"completion_tokens\": 8,\n \"total_tokens\": 149,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_6c0d1490cb\"\n}\n"
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -179,7 +182,7 @@ interactions:
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:26 GMT
- Thu, 22 Jan 2026 20:40:55 GMT
Server:
- cloudflare
Strict-Transport-Security:
@@ -197,11 +200,13 @@ interactions:
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '776'
- '420'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '436'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -43,15 +43,15 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
x-stainless-timeout:
- NOT_GIVEN
method: POST
uri: https://api.anthropic.com/v1/messages
response:
body:
string: '{"model":"claude-3-5-haiku-20241022","id":"msg_01A41GpDoJbZLUhR8dQzUcUX","type":"message","role":"assistant","content":[{"type":"tool_use","id":"toolu_01UNPdzpayoWyqDYVE7fR5oA","name":"structured_output","input":{"operation":"Addition","result":42,"explanation":"Added
15 and 27 together"}}],"stop_reason":"tool_use","stop_sequence":null,"usage":{"input_tokens":573,"cache_creation_input_tokens":0,"cache_read_input_tokens":0,"cache_creation":{"ephemeral_5m_input_tokens":0,"ephemeral_1h_input_tokens":0},"output_tokens":75,"service_tier":"standard","inference_geo":"not_available"}}'
string: '{"model":"claude-3-5-haiku-20241022","id":"msg_0149zKBgM47utdBdrfJjM6YZ","type":"message","role":"assistant","content":[{"type":"tool_use","id":"toolu_011jnBYLgtzXqdmSi7JDyQHj","name":"structured_output","input":{"operation":"Addition","result":42,"explanation":"Adding
15 and 27 together results in 42"}}],"stop_reason":"tool_use","stop_sequence":null,"usage":{"input_tokens":573,"cache_creation_input_tokens":0,"cache_read_input_tokens":0,"cache_creation":{"ephemeral_5m_input_tokens":0,"ephemeral_1h_input_tokens":0},"output_tokens":79,"service_tier":"standard"}}'
headers:
CF-RAY:
- CF-RAY-XXX
@@ -62,7 +62,7 @@ interactions:
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:25 GMT
- Fri, 30 Jan 2026 18:56:15 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -88,7 +88,7 @@ interactions:
anthropic-ratelimit-requests-remaining:
- '3999'
anthropic-ratelimit-requests-reset:
- '2026-02-06T18:41:24Z'
- '2026-01-30T18:56:14Z'
anthropic-ratelimit-tokens-limit:
- ANTHROPIC-RATELIMIT-TOKENS-LIMIT-XXX
anthropic-ratelimit-tokens-remaining:
@@ -102,7 +102,7 @@ interactions:
strict-transport-security:
- STS-XXX
x-envoy-upstream-service-time:
- '1247'
- '1473'
status:
code: 200
message: OK

View File

@@ -44,20 +44,21 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.5
- 3.13.3
x-stainless-timeout:
- NOT_GIVEN
method: POST
uri: https://api.anthropic.com/v1/messages
response:
body:
string: '{"model":"claude-3-5-haiku-20241022","id":"msg_016wrV83wm3FLYD4JoTy2Piw","type":"message","role":"assistant","content":[{"type":"tool_use","id":"toolu_01V6Pzr7eGfuG4Q3mc25ZXwN","name":"structured_output","input":{"topic":"Benefits
string: '{"model":"claude-3-5-haiku-20241022","id":"msg_013iHkpmto99iyH5kDvn8uER","type":"message","role":"assistant","content":[{"type":"tool_use","id":"toolu_01Kpda2DzHBqWq9a2FS2Bdw6","name":"structured_output","input":{"topic":"Benefits
of Remote Work","summary":"Remote work offers significant advantages for both
employees and employers, transforming traditional workplace dynamics.","key_points":["Increased
flexibility in work schedule","Reduced commute time and transportation costs","Improved
work-life balance","Higher productivity for many employees","Cost savings
for companies on office infrastructure","Expanded talent pool for hiring","Enhanced
employee job satisfaction"]}}],"stop_reason":"tool_use","stop_sequence":null,"usage":{"input_tokens":589,"cache_creation_input_tokens":0,"cache_read_input_tokens":0,"cache_creation":{"ephemeral_5m_input_tokens":0,"ephemeral_1h_input_tokens":0},"output_tokens":142,"service_tier":"standard","inference_geo":"not_available"}}'
employees and employers, transforming traditional work paradigms by providing
flexibility, increased productivity, and cost savings.","key_points":["Increased
employee flexibility and work-life balance","Reduced commuting time and associated
stress","Cost savings for companies on office infrastructure","Access to a
global talent pool","Higher employee productivity and job satisfaction","Lower
carbon footprint due to reduced travel"]}}],"stop_reason":"tool_use","stop_sequence":null,"usage":{"input_tokens":589,"cache_creation_input_tokens":0,"cache_read_input_tokens":0,"cache_creation":{"ephemeral_5m_input_tokens":0,"ephemeral_1h_input_tokens":0},"output_tokens":153,"service_tier":"standard"}}'
headers:
CF-RAY:
- CF-RAY-XXX
@@ -68,7 +69,7 @@ interactions:
Content-Type:
- application/json
Date:
- Fri, 06 Feb 2026 18:41:28 GMT
- Fri, 30 Jan 2026 18:56:19 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -94,7 +95,7 @@ interactions:
anthropic-ratelimit-requests-remaining:
- '3999'
anthropic-ratelimit-requests-reset:
- '2026-02-06T18:41:26Z'
- '2026-01-30T18:56:16Z'
anthropic-ratelimit-tokens-limit:
- ANTHROPIC-RATELIMIT-TOKENS-LIMIT-XXX
anthropic-ratelimit-tokens-remaining:
@@ -108,7 +109,7 @@ interactions:
strict-transport-security:
- STS-XXX
x-envoy-upstream-service-time:
- '2650'
- '3107'
status:
code: 200
message: OK

View File

@@ -1,548 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are a strategic planning
assistant. Create minimal, effective execution plans. Prefer fewer steps over
more."}, {"role": "user", "content": "Create a focused execution plan for the
following task:\n\n## Task\nResearch the current state of the AI agent market:\n1.
Search for recent information about AI agents and their market trends\n2. Read
detailed content from a relevant industry source\n3. Generate a brief report
summarizing the key findings\n\nUse the available tools for each step.\n\n##
Expected Output\nComplete the task successfully\n\n## Available Tools\nweb_search,
read_website, generate_report\n\n## Instructions\nCreate ONLY the essential
steps needed to complete this task. Use the MINIMUM number of steps required
- do NOT pad your plan with unnecessary steps. Most tasks need only 2-5 steps.\n\nFor
each step:\n- State the specific action to take\n- Specify which tool to use
(if any)\n- Note dependencies on previous steps if this step requires their
output\n- If a step involves multiple items (e.g., research 3 competitors),
note this explicitly\n\nDo NOT include:\n- Setup or preparation steps that are
obvious\n- Verification steps unless critical\n- Documentation or cleanup steps
unless explicitly required\n- Generic steps like \"review results\" or \"finalize
output\"\n\nAfter your plan, state:\n- \"READY: I am ready to execute the task.\"
if the plan is complete\n- \"NOT READY: I need to refine my plan because [reason].\"
if you need more thinking"}], "stream": false, "stop": ["\nObservation:"], "tool_choice":
"auto", "tools": [{"function": {"name": "create_reasoning_plan", "description":
"Create or refine a reasoning plan for a task with structured steps", "parameters":
{"type": "object", "properties": {"plan": {"type": "string", "description":
"A brief summary of the overall plan."}, "steps": {"type": "array", "description":
"List of discrete steps to execute the plan", "items": {"type": "object", "properties":
{"step_number": {"type": "integer", "description": "Step number (1-based)"},
"description": {"type": "string", "description": "What to do in this step"},
"tool_to_use": {"type": ["string", "null"], "description": "Tool to use for
this step, or null if no tool needed"}, "depends_on": {"type": "array", "items":
{"type": "integer"}, "description": "Step numbers this step depends on (empty
array if none)"}}, "required": ["step_number", "description", "tool_to_use",
"depends_on"], "additionalProperties": false}}, "ready": {"type": "boolean",
"description": "Whether the agent is ready to execute the task."}}, "required":
["plan", "steps", "ready"], "additionalProperties": false}}, "type": "function"}]}'
headers:
Accept:
- application/json
Connection:
- keep-alive
Content-Length:
- '2711'
Content-Type:
- application/json
User-Agent:
- X-USER-AGENT-XXX
accept-encoding:
- ACCEPT-ENCODING-XXX
api-key:
- X-API-KEY-XXX
authorization:
- AUTHORIZATION-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
method: POST
uri: https://fake-azure-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-12-01-preview
response:
body:
string: '{"choices":[{"content_filter_results":{},"finish_reason":"tool_calls","index":0,"logprobs":null,"message":{"annotations":[],"content":null,"refusal":null,"role":"assistant","tool_calls":[{"function":{"arguments":"{\"plan\":\"Research
the current state of the AI agent market and summarize the key findings.\",\"steps\":[{\"step_number\":1,\"description\":\"Search
for recent information about AI agents and their market trends using web_search.\",\"tool_to_use\":\"web_search\",\"depends_on\":[]},{\"step_number\":2,\"description\":\"Read
detailed content from a relevant industry source using read_website, gathering
insights on trends and competitive analysis.\",\"tool_to_use\":\"read_website\",\"depends_on\":[1]},{\"step_number\":3,\"description\":\"Using
the knowledge from steps 1 and 2, generate a brief report summarizing the
AI agent market findings.\",\"tool_to_use\":\"generate_report\",\"depends_on\":[1,2]}],\"ready\":true}","name":"create_reasoning_plan"},"id":"call_TPmou69xLfxPqApRnPwI6zYV","type":"function"}]}}],"created":1770145131,"id":"chatcmpl-D5Ftr1QP6lTPXIemws2EtuKaWeSxt","model":"gpt-4o-2024-11-20","object":"chat.completion","prompt_filter_results":[{"prompt_index":0,"content_filter_results":{"hate":{"filtered":false,"severity":"safe"},"jailbreak":{"detected":false,"filtered":false},"self_harm":{"filtered":false,"severity":"safe"},"sexual":{"filtered":false,"severity":"safe"},"violence":{"filtered":false,"severity":"safe"}}}],"system_fingerprint":"fp_b54fe76834","usage":{"completion_tokens":157,"completion_tokens_details":{"accepted_prediction_tokens":0,"audio_tokens":0,"reasoning_tokens":0,"rejected_prediction_tokens":0},"prompt_tokens":480,"prompt_tokens_details":{"audio_tokens":0,"cached_tokens":0},"total_tokens":637}}
'
headers:
Content-Length:
- '1762'
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:58:54 GMT
Strict-Transport-Security:
- STS-XXX
apim-request-id:
- APIM-REQUEST-ID-XXX
azureml-model-session:
- AZUREML-MODEL-SESSION-XXX
x-accel-buffering:
- 'no'
x-content-type-options:
- X-CONTENT-TYPE-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
x-ms-deployment-name:
- gpt-4o
x-ms-rai-invoked:
- 'true'
x-ms-region:
- X-MS-REGION-XXX
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Research Analyst.
An experienced analyst skilled at gathering information and synthesizing findings
into actionable insights.\nYour personal goal is: Conduct thorough research
and produce insightful reports"}, {"role": "user", "content": "\nCurrent Task:
Research the current state of the AI agent market:\n1. Search for recent information
about AI agents and their market trends\n2. Read detailed content from a relevant
industry source\n3. Generate a brief report summarizing the key findings\n\nUse
the available tools for each step."}], "stream": false, "stop": ["\nObservation:"],
"tool_choice": "auto", "tools": [{"function": {"name": "web_search", "description":
"Search the web for information on a given topic.\n\nArgs:\n query: The search
query to look up.\n\nReturns:\n Search results as a string.", "parameters":
{"properties": {"query": {"title": "Query", "type": "string"}}, "required":
["query"], "type": "object", "additionalProperties": false}}, "type": "function"},
{"function": {"name": "read_website", "description": "Read and extract content
from a website URL.\n\nArgs:\n url: The URL of the website to read.\n\nReturns:\n The
extracted content from the website.", "parameters": {"properties": {"url": {"title":
"Url", "type": "string"}}, "required": ["url"], "type": "object", "additionalProperties":
false}}, "type": "function"}, {"function": {"name": "generate_report", "description":
"Generate a structured report based on research findings.\n\nArgs:\n title:
The title of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.", "parameters": {"properties": {"title": {"title":
"Title", "type": "string"}, "findings": {"title": "Findings", "type": "string"}},
"required": ["title", "findings"], "type": "object", "additionalProperties":
false}}, "type": "function"}]}'
headers:
Accept:
- application/json
Connection:
- keep-alive
Content-Length:
- '1912'
Content-Type:
- application/json
User-Agent:
- X-USER-AGENT-XXX
accept-encoding:
- ACCEPT-ENCODING-XXX
api-key:
- X-API-KEY-XXX
authorization:
- AUTHORIZATION-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
method: POST
uri: https://fake-azure-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-12-01-preview
response:
body:
string: '{"choices":[{"content_filter_results":{},"finish_reason":"tool_calls","index":0,"logprobs":null,"message":{"annotations":[],"content":null,"refusal":null,"role":"assistant","tool_calls":[{"function":{"arguments":"{\"query\":\"current
state of AI agent market 2023\"}","name":"web_search"},"id":"call_6RDgkQSr8S7luEHqqOaI734w","type":"function"}]}}],"created":1770145136,"id":"chatcmpl-D5FtwVvV3KE10L2JIOd7n8Ph1Iu3Q","model":"gpt-4o-2024-11-20","object":"chat.completion","prompt_filter_results":[{"prompt_index":0,"content_filter_results":{"hate":{"filtered":false,"severity":"safe"},"jailbreak":{"detected":false,"filtered":false},"self_harm":{"filtered":false,"severity":"safe"},"sexual":{"filtered":false,"severity":"safe"},"violence":{"filtered":false,"severity":"safe"}}}],"system_fingerprint":"fp_b54fe76834","usage":{"completion_tokens":23,"completion_tokens_details":{"accepted_prediction_tokens":0,"audio_tokens":0,"reasoning_tokens":0,"rejected_prediction_tokens":0},"prompt_tokens":267,"prompt_tokens_details":{"audio_tokens":0,"cached_tokens":0},"total_tokens":290}}
'
headers:
Content-Length:
- '1079'
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:58:55 GMT
Strict-Transport-Security:
- STS-XXX
apim-request-id:
- APIM-REQUEST-ID-XXX
azureml-model-session:
- AZUREML-MODEL-SESSION-XXX
x-accel-buffering:
- 'no'
x-content-type-options:
- X-CONTENT-TYPE-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
x-ms-deployment-name:
- gpt-4o
x-ms-rai-invoked:
- 'true'
x-ms-region:
- X-MS-REGION-XXX
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Research Analyst.
An experienced analyst skilled at gathering information and synthesizing findings
into actionable insights.\nYour personal goal is: Conduct thorough research
and produce insightful reports"}, {"role": "user", "content": "\nCurrent Task:
Research the current state of the AI agent market:\n1. Search for recent information
about AI agents and their market trends\n2. Read detailed content from a relevant
industry source\n3. Generate a brief report summarizing the key findings\n\nUse
the available tools for each step."}, {"role": "assistant", "content": "", "tool_calls":
[{"id": "call_6RDgkQSr8S7luEHqqOaI734w", "type": "function", "function": {"name":
"web_search", "arguments": "{\"query\":\"current state of AI agent market 2023\"}"}}]},
{"role": "tool", "tool_call_id": "call_6RDgkQSr8S7luEHqqOaI734w", "content":
"Search results for ''current state of AI agent market 2023'': Found 3 relevant
articles about the topic including market analysis, competitor data, and industry
trends."}], "stream": false, "stop": ["\nObservation:"], "tool_choice": "auto",
"tools": [{"function": {"name": "web_search", "description": "Search the web
for information on a given topic.\n\nArgs:\n query: The search query to look
up.\n\nReturns:\n Search results as a string.", "parameters": {"properties":
{"query": {"title": "Query", "type": "string"}}, "required": ["query"], "type":
"object", "additionalProperties": false}}, "type": "function"}, {"function":
{"name": "read_website", "description": "Read and extract content from a website
URL.\n\nArgs:\n url: The URL of the website to read.\n\nReturns:\n The
extracted content from the website.", "parameters": {"properties": {"url": {"title":
"Url", "type": "string"}}, "required": ["url"], "type": "object", "additionalProperties":
false}}, "type": "function"}, {"function": {"name": "generate_report", "description":
"Generate a structured report based on research findings.\n\nArgs:\n title:
The title of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.", "parameters": {"properties": {"title": {"title":
"Title", "type": "string"}, "findings": {"title": "Findings", "type": "string"}},
"required": ["title", "findings"], "type": "object", "additionalProperties":
false}}, "type": "function"}]}'
headers:
Accept:
- application/json
Connection:
- keep-alive
Content-Length:
- '2381'
Content-Type:
- application/json
User-Agent:
- X-USER-AGENT-XXX
accept-encoding:
- ACCEPT-ENCODING-XXX
api-key:
- X-API-KEY-XXX
authorization:
- AUTHORIZATION-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
method: POST
uri: https://fake-azure-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-12-01-preview
response:
body:
string: '{"choices":[{"content_filter_results":{},"finish_reason":"tool_calls","index":0,"logprobs":null,"message":{"annotations":[],"content":null,"refusal":null,"role":"assistant","tool_calls":[{"function":{"arguments":"{\"url\":
\"https://example.com/article1\"}","name":"read_website"},"id":"call_ie6tNHSbW9TWIqoXD9CN3MNZ","type":"function"},{"function":{"arguments":"{\"url\":
\"https://example.com/article2\"}","name":"read_website"},"id":"call_qxn4V4mMMpOnYSAwVuwarFkB","type":"function"},{"function":{"arguments":"{\"url\":
\"https://example.com/article3\"}","name":"read_website"},"id":"call_7ElzUIHHJvuciFWj6eIF5RhF","type":"function"}]}}],"created":1770145137,"id":"chatcmpl-D5Ftxnr2VyEYZd6zSpTJavdxSoE18","model":"gpt-4o-2024-11-20","object":"chat.completion","prompt_filter_results":[{"prompt_index":0,"content_filter_results":{"hate":{"filtered":false,"severity":"safe"},"jailbreak":{"detected":false,"filtered":false},"self_harm":{"filtered":false,"severity":"safe"},"sexual":{"filtered":false,"severity":"safe"},"violence":{"filtered":false,"severity":"safe"}}}],"system_fingerprint":"fp_b54fe76834","usage":{"completion_tokens":77,"completion_tokens_details":{"accepted_prediction_tokens":0,"audio_tokens":0,"reasoning_tokens":0,"rejected_prediction_tokens":0},"prompt_tokens":330,"prompt_tokens_details":{"audio_tokens":0,"cached_tokens":0},"total_tokens":407}}
'
headers:
Content-Length:
- '1371'
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:58:57 GMT
Strict-Transport-Security:
- STS-XXX
apim-request-id:
- APIM-REQUEST-ID-XXX
azureml-model-session:
- AZUREML-MODEL-SESSION-XXX
x-accel-buffering:
- 'no'
x-content-type-options:
- X-CONTENT-TYPE-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
x-ms-deployment-name:
- gpt-4o
x-ms-rai-invoked:
- 'true'
x-ms-region:
- X-MS-REGION-XXX
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Research Analyst.
An experienced analyst skilled at gathering information and synthesizing findings
into actionable insights.\nYour personal goal is: Conduct thorough research
and produce insightful reports"}, {"role": "user", "content": "\nCurrent Task:
Research the current state of the AI agent market:\n1. Search for recent information
about AI agents and their market trends\n2. Read detailed content from a relevant
industry source\n3. Generate a brief report summarizing the key findings\n\nUse
the available tools for each step."}, {"role": "assistant", "content": "", "tool_calls":
[{"id": "call_6RDgkQSr8S7luEHqqOaI734w", "type": "function", "function": {"name":
"web_search", "arguments": "{\"query\":\"current state of AI agent market 2023\"}"}}]},
{"role": "tool", "tool_call_id": "call_6RDgkQSr8S7luEHqqOaI734w", "content":
"Search results for ''current state of AI agent market 2023'': Found 3 relevant
articles about the topic including market analysis, competitor data, and industry
trends."}, {"role": "assistant", "content": "", "tool_calls": [{"id": "call_ie6tNHSbW9TWIqoXD9CN3MNZ",
"type": "function", "function": {"name": "read_website", "arguments": "{\"url\":
\"https://example.com/article1\"}"}}, {"id": "call_qxn4V4mMMpOnYSAwVuwarFkB",
"type": "function", "function": {"name": "read_website", "arguments": "{\"url\":
\"https://example.com/article2\"}"}}, {"id": "call_7ElzUIHHJvuciFWj6eIF5RhF",
"type": "function", "function": {"name": "read_website", "arguments": "{\"url\":
\"https://example.com/article3\"}"}}]}, {"role": "tool", "tool_call_id": "call_ie6tNHSbW9TWIqoXD9CN3MNZ",
"content": "Content from https://example.com/article1: This article discusses
key insights about the topic including market size ($50B), growth rate (15%
YoY), and major players in the industry."}, {"role": "tool", "tool_call_id":
"call_qxn4V4mMMpOnYSAwVuwarFkB", "content": "Content from https://example.com/article2:
This article discusses key insights about the topic including market size ($50B),
growth rate (15% YoY), and major players in the industry."}, {"role": "tool",
"tool_call_id": "call_7ElzUIHHJvuciFWj6eIF5RhF", "content": "Content from https://example.com/article3:
This article discusses key insights about the topic including market size ($50B),
growth rate (15% YoY), and major players in the industry."}], "stream": false,
"stop": ["\nObservation:"], "tool_choice": "auto", "tools": [{"function": {"name":
"web_search", "description": "Search the web for information on a given topic.\n\nArgs:\n query:
The search query to look up.\n\nReturns:\n Search results as a string.",
"parameters": {"properties": {"query": {"title": "Query", "type": "string"}},
"required": ["query"], "type": "object", "additionalProperties": false}}, "type":
"function"}, {"function": {"name": "read_website", "description": "Read and
extract content from a website URL.\n\nArgs:\n url: The URL of the website
to read.\n\nReturns:\n The extracted content from the website.", "parameters":
{"properties": {"url": {"title": "Url", "type": "string"}}, "required": ["url"],
"type": "object", "additionalProperties": false}}, "type": "function"}, {"function":
{"name": "generate_report", "description": "Generate a structured report based
on research findings.\n\nArgs:\n title: The title of the report.\n findings:
The research findings to include.\n\nReturns:\n A formatted report string.",
"parameters": {"properties": {"title": {"title": "Title", "type": "string"},
"findings": {"title": "Findings", "type": "string"}}, "required": ["title",
"findings"], "type": "object", "additionalProperties": false}}, "type": "function"}]}'
headers:
Accept:
- application/json
Connection:
- keep-alive
Content-Length:
- '3704'
Content-Type:
- application/json
User-Agent:
- X-USER-AGENT-XXX
accept-encoding:
- ACCEPT-ENCODING-XXX
api-key:
- X-API-KEY-XXX
authorization:
- AUTHORIZATION-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
method: POST
uri: https://fake-azure-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-12-01-preview
response:
body:
string: '{"choices":[{"content_filter_results":{},"finish_reason":"tool_calls","index":0,"logprobs":null,"message":{"annotations":[],"content":null,"refusal":null,"role":"assistant","tool_calls":[{"function":{"arguments":"{\"title\":\"Current
State of the AI Agent Market\",\"findings\":\"The AI agent market in 2023
is valued at $50 billion, with a growth rate of 15% YoY. Major players in
the market have been identified as contributing to the expansion of industry
capabilities. Trends point to increasing adoption across industries such as
healthcare and finance, where automation and intelligence are becoming central
to operations. Emerging competitive forces are influencing pricing and technological
advancements in AI agents. Existing and new entrants focus on innovation to
differentiate their offerings and capture market share.\"}","name":"generate_report"},"id":"call_7eE0bJbpvO6YYQNs87iTifQ3","type":"function"}]}}],"created":1770145138,"id":"chatcmpl-D5Ftys4PE1B1dkTuv6EPOQyqk0xuv","model":"gpt-4o-2024-11-20","object":"chat.completion","prompt_filter_results":[{"prompt_index":0,"content_filter_results":{"hate":{"filtered":false,"severity":"safe"},"jailbreak":{"detected":false,"filtered":false},"self_harm":{"filtered":false,"severity":"safe"},"sexual":{"filtered":false,"severity":"safe"},"violence":{"filtered":false,"severity":"safe"}}}],"system_fingerprint":"fp_b54fe76834","usage":{"completion_tokens":120,"completion_tokens_details":{"accepted_prediction_tokens":0,"audio_tokens":0,"reasoning_tokens":0,"rejected_prediction_tokens":0},"prompt_tokens":537,"prompt_tokens_details":{"audio_tokens":0,"cached_tokens":0},"total_tokens":657}}
'
headers:
Content-Length:
- '1652'
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:58:59 GMT
Strict-Transport-Security:
- STS-XXX
apim-request-id:
- APIM-REQUEST-ID-XXX
azureml-model-session:
- AZUREML-MODEL-SESSION-XXX
x-accel-buffering:
- 'no'
x-content-type-options:
- X-CONTENT-TYPE-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
x-ms-deployment-name:
- gpt-4o
x-ms-rai-invoked:
- 'true'
x-ms-region:
- X-MS-REGION-XXX
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Research Analyst.
An experienced analyst skilled at gathering information and synthesizing findings
into actionable insights.\nYour personal goal is: Conduct thorough research
and produce insightful reports"}, {"role": "user", "content": "\nCurrent Task:
Research the current state of the AI agent market:\n1. Search for recent information
about AI agents and their market trends\n2. Read detailed content from a relevant
industry source\n3. Generate a brief report summarizing the key findings\n\nUse
the available tools for each step."}, {"role": "assistant", "content": "", "tool_calls":
[{"id": "call_6RDgkQSr8S7luEHqqOaI734w", "type": "function", "function": {"name":
"web_search", "arguments": "{\"query\":\"current state of AI agent market 2023\"}"}}]},
{"role": "tool", "tool_call_id": "call_6RDgkQSr8S7luEHqqOaI734w", "content":
"Search results for ''current state of AI agent market 2023'': Found 3 relevant
articles about the topic including market analysis, competitor data, and industry
trends."}, {"role": "assistant", "content": "", "tool_calls": [{"id": "call_ie6tNHSbW9TWIqoXD9CN3MNZ",
"type": "function", "function": {"name": "read_website", "arguments": "{\"url\":
\"https://example.com/article1\"}"}}, {"id": "call_qxn4V4mMMpOnYSAwVuwarFkB",
"type": "function", "function": {"name": "read_website", "arguments": "{\"url\":
\"https://example.com/article2\"}"}}, {"id": "call_7ElzUIHHJvuciFWj6eIF5RhF",
"type": "function", "function": {"name": "read_website", "arguments": "{\"url\":
\"https://example.com/article3\"}"}}]}, {"role": "tool", "tool_call_id": "call_ie6tNHSbW9TWIqoXD9CN3MNZ",
"content": "Content from https://example.com/article1: This article discusses
key insights about the topic including market size ($50B), growth rate (15%
YoY), and major players in the industry."}, {"role": "tool", "tool_call_id":
"call_qxn4V4mMMpOnYSAwVuwarFkB", "content": "Content from https://example.com/article2:
This article discusses key insights about the topic including market size ($50B),
growth rate (15% YoY), and major players in the industry."}, {"role": "tool",
"tool_call_id": "call_7ElzUIHHJvuciFWj6eIF5RhF", "content": "Content from https://example.com/article3:
This article discusses key insights about the topic including market size ($50B),
growth rate (15% YoY), and major players in the industry."}, {"role": "assistant",
"content": "", "tool_calls": [{"id": "call_7eE0bJbpvO6YYQNs87iTifQ3", "type":
"function", "function": {"name": "generate_report", "arguments": "{\"title\":\"Current
State of the AI Agent Market\",\"findings\":\"The AI agent market in 2023 is
valued at $50 billion, with a growth rate of 15% YoY. Major players in the market
have been identified as contributing to the expansion of industry capabilities.
Trends point to increasing adoption across industries such as healthcare and
finance, where automation and intelligence are becoming central to operations.
Emerging competitive forces are influencing pricing and technological advancements
in AI agents. Existing and new entrants focus on innovation to differentiate
their offerings and capture market share.\"}"}}]}, {"role": "tool", "tool_call_id":
"call_7eE0bJbpvO6YYQNs87iTifQ3", "content": "# Current State of the AI Agent
Market\n\n## Executive Summary\nThe AI agent market in 2023 is valued at $50
billion, with a growth rate of 15% YoY. Major players in the market have been
identified as contributing to the expansion of industry capabilities. Trends
point to increasing adoption across industries such as healthcare and finance,
where automation and intelligence are becoming central to operations. Emerging
competitive forces are influencing pricing and technological advancements in
AI agents. Existing and new entrants focus on innovation to differentiate their
offerings and capture market share.\n\n## Conclusion\nBased on the analysis,
the market shows strong growth potential."}], "stream": false, "stop": ["\nObservation:"],
"tool_choice": "auto", "tools": [{"function": {"name": "web_search", "description":
"Search the web for information on a given topic.\n\nArgs:\n query: The search
query to look up.\n\nReturns:\n Search results as a string.", "parameters":
{"properties": {"query": {"title": "Query", "type": "string"}}, "required":
["query"], "type": "object", "additionalProperties": false}}, "type": "function"},
{"function": {"name": "read_website", "description": "Read and extract content
from a website URL.\n\nArgs:\n url: The URL of the website to read.\n\nReturns:\n The
extracted content from the website.", "parameters": {"properties": {"url": {"title":
"Url", "type": "string"}}, "required": ["url"], "type": "object", "additionalProperties":
false}}, "type": "function"}, {"function": {"name": "generate_report", "description":
"Generate a structured report based on research findings.\n\nArgs:\n title:
The title of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.", "parameters": {"properties": {"title": {"title":
"Title", "type": "string"}, "findings": {"title": "Findings", "type": "string"}},
"required": ["title", "findings"], "type": "object", "additionalProperties":
false}}, "type": "function"}]}'
headers:
Accept:
- application/json
Connection:
- keep-alive
Content-Length:
- '5276'
Content-Type:
- application/json
User-Agent:
- X-USER-AGENT-XXX
accept-encoding:
- ACCEPT-ENCODING-XXX
api-key:
- X-API-KEY-XXX
authorization:
- AUTHORIZATION-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
method: POST
uri: https://fake-azure-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-12-01-preview
response:
body:
string: '{"choices":[{"content_filter_results":{"hate":{"filtered":false,"severity":"safe"},"protected_material_code":{"detected":false,"filtered":false},"protected_material_text":{"detected":false,"filtered":false},"self_harm":{"filtered":false,"severity":"safe"},"sexual":{"filtered":false,"severity":"safe"},"violence":{"filtered":false,"severity":"safe"}},"finish_reason":"stop","index":0,"logprobs":null,"message":{"annotations":[],"content":"The
report detailing the current state of the AI agent market has been generated
successfully. It highlights the market''s $50 billion valuation in 2023, with
a consistent annual growth rate of 15%. Key findings identify the role of
major players, impactful trends like sector adoption (healthcare and finance),
and the competitive dynamic driving innovation and technological advancements.","refusal":null,"role":"assistant"}}],"created":1770145141,"id":"chatcmpl-D5Fu18JFkDPGsKf10eiS2e2uI04MU","model":"gpt-4o-2024-11-20","object":"chat.completion","prompt_filter_results":[{"prompt_index":0,"content_filter_results":{"hate":{"filtered":false,"severity":"safe"},"jailbreak":{"detected":false,"filtered":false},"self_harm":{"filtered":false,"severity":"safe"},"sexual":{"filtered":false,"severity":"safe"},"violence":{"filtered":false,"severity":"safe"}}}],"system_fingerprint":"fp_b54fe76834","usage":{"completion_tokens":72,"completion_tokens_details":{"accepted_prediction_tokens":0,"audio_tokens":0,"reasoning_tokens":0,"rejected_prediction_tokens":0},"prompt_tokens":787,"prompt_tokens_details":{"audio_tokens":0,"cached_tokens":0},"total_tokens":859}}
'
headers:
Content-Length:
- '1597'
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:59:01 GMT
Strict-Transport-Security:
- STS-XXX
apim-request-id:
- APIM-REQUEST-ID-XXX
azureml-model-session:
- AZUREML-MODEL-SESSION-XXX
x-accel-buffering:
- 'no'
x-content-type-options:
- X-CONTENT-TYPE-XXX
x-ms-client-request-id:
- X-MS-CLIENT-REQUEST-ID-XXX
x-ms-deployment-name:
- gpt-4o
x-ms-rai-invoked:
- 'true'
x-ms-region:
- X-MS-REGION-XXX
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,613 +0,0 @@
interactions:
- request:
body: '{"contents": [{"parts": [{"text": "Create a focused execution plan for
the following task:\n\n## Task\nResearch the current state of the AI agent market:\n1.
Search for recent information about AI agents and their market trends\n2. Read
detailed content from a relevant industry source\n3. Generate a brief report
summarizing the key findings\n\nUse the available tools for each step.\n\n##
Expected Output\nComplete the task successfully\n\n## Available Tools\nweb_search,
read_website, generate_report\n\n## Instructions\nCreate ONLY the essential
steps needed to complete this task. Use the MINIMUM number of steps required
- do NOT pad your plan with unnecessary steps. Most tasks need only 2-5 steps.\n\nFor
each step:\n- State the specific action to take\n- Specify which tool to use
(if any)\n- Note dependencies on previous steps if this step requires their
output\n- If a step involves multiple items (e.g., research 3 competitors),
note this explicitly\n\nDo NOT include:\n- Setup or preparation steps that are
obvious\n- Verification steps unless critical\n- Documentation or cleanup steps
unless explicitly required\n- Generic steps like \"review results\" or \"finalize
output\"\n\nAfter your plan, state:\n- \"READY: I am ready to execute the task.\"
if the plan is complete\n- \"NOT READY: I need to refine my plan because [reason].\"
if you need more thinking"}], "role": "user"}], "systemInstruction": {"parts":
[{"text": "You are a strategic planning assistant. Create minimal, effective
execution plans. Prefer fewer steps over more."}], "role": "user"}, "tools":
[{"functionDeclarations": [{"description": "Create or refine a reasoning plan
for a task with structured steps", "name": "create_reasoning_plan", "parameters_json_schema":
{"type": "object", "properties": {"plan": {"type": "string", "description":
"A brief summary of the overall plan."}, "steps": {"type": "array", "description":
"List of discrete steps to execute the plan", "items": {"type": "object", "properties":
{"step_number": {"type": "integer", "description": "Step number (1-based)"},
"description": {"type": "string", "description": "What to do in this step"},
"tool_to_use": {"type": ["string", "null"], "description": "Tool to use for
this step, or null if no tool needed"}, "depends_on": {"type": "array", "items":
{"type": "integer"}, "description": "Step numbers this step depends on (empty
array if none)"}}, "required": ["step_number", "description", "tool_to_use",
"depends_on"], "additionalProperties": false}}, "ready": {"type": "boolean",
"description": "Whether the agent is ready to execute the task."}}, "required":
["plan", "steps", "ready"], "additionalProperties": false}}]}], "generationConfig":
{"stopSequences": ["\nObservation:"]}}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- '*/*'
accept-encoding:
- ACCEPT-ENCODING-XXX
connection:
- keep-alive
content-length:
- '2747'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
x-goog-api-client:
- google-genai-sdk/1.49.0 gl-python/3.13.3
x-goog-api-key:
- X-GOOG-API-KEY-XXX
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent
response:
body:
string: "{\n \"candidates\": [\n {\n \"content\": {\n \"parts\":
[\n {\n \"functionCall\": {\n \"name\": \"create_reasoning_plan\",\n
\ \"args\": {\n \"steps\": [\n {\n
\ \"step_number\": 1,\n \"tool_to_use\":
\"web_search\",\n \"depends_on\": [],\n \"description\":
\"Search for recent information on AI agent market trends.\"\n },\n
\ {\n \"description\": \"Read detailed
content from a relevant industry source found in the search results.\",\n
\ \"depends_on\": [\n 1\n ],\n
\ \"step_number\": 2,\n \"tool_to_use\":
\"read_website\"\n },\n {\n \"depends_on\":
[\n 2\n ],\n \"step_number\":
3,\n \"tool_to_use\": \"generate_report\",\n \"description\":
\"Generate a brief report summarizing the key findings from the researched
content.\"\n }\n ],\n \"plan\":
\"Research the current state of the AI agent market and generate a summary
report.\",\n \"ready\": true\n }\n },\n
\ \"thoughtSignature\": \"CsIIAXLI2nztq0xBScBM9fsnIBhVvD6CWKYYyj3khtIYTNl4oRbOYnH8LQBzET8fRrxiWqnxib7Nn/UVK29pvsHX7TacFxm0ieHb5gmb2lgqo4GpG0P2+HI4xo4vnibPl3OM+bl4M39/JOdBNBmYGUJETnzV++m8INVLIlOuRPGTXRDUOKLNfkyktsJRdNuO68OMu5WXDqrlbuppG1dsK+Y8cyvzDRoMTsYU1arFOZuyLisuhDQ7nTbdXQ8AO0Oc43MdYrSFmfeDBbsnrxDKBMPYtFVadggz4RwKIFvg3Fb9ORho2GkBUum8PNWHZCBXuAoU9FaVdDFVReduuTfZuBwy/Y6MS+8mnLqcQ1wADlg7DnzaOXmALxgfApTEL6YUvwVjVYI1dpCR5ACkFgNq6ecYYumrlZHuHE59p+XOHMhrzu9c99A0mtRvpkz1yu75dMACliSf/2fu4gCPRRLsgez7llp92g7+GzVkbwkRVlMcYQ+0l28sBsfBQd01lQR0vNNbK3JHf/chtCtrRIcgqqnUbTTqm5n8iPHFBWMdEa0L4I1WfPbiUSC9OGwwaoP+Ro6h/gPH9o96gjZQpCft1myrKtgl7dpOaSharMuDfulk2Wd5wJoZ9XR/fxVYQos8sNEIZq8O1cjOW9L74ryKMtw6hF8A4kxGLhOSgXwszNqHoLCLoX6Cz5vb2hZVkCWxq8yn5k3IrTcw/16Jdkx6oNWjHZJmJMz8vl85sUH1ZwZocWHWcUUMo33ZlsBnqPZxwnAj5CW+vQS/xCC7Kq1FciqosYyHgN43bm8JqnHL4qgBAEtDPVrFfaWBpzWWVfXQkX/EVApU/Jr3t9D3gz10CFPsV7d0lx0P7jur8u8Q9n8r2HEi320kNf1EX4YnDioX+nWmHPN203OCOHpDEcEQ89gECMk5M9Xu6EZ94rXmrZJtP5kc0k37fvMexlxIZPuUmV7RpoCTrMVqMyP93eIq9FY/9WsqHVlydumTfEMPI1WY5ObNeHJFhyu2Y6dGB3ONQL1bQ0oboNZujX/AhnauV0A8OS2wsA3yLVk0GFZpTISU+WQ2/Gm7t8CUIgKT3BV4JkYuyNBTONQPLitpfO+TEMcuNZlodinLvkBtBA8B0W55kOAK7y21I9znnNKONo87jg9kfoZMvYlb2DrO9YovQDDhdCZjxXr5VZqbhMH4tb8t5kP/1auCv1GfzV6RVSgyNVYnruqJKEtqgNbLid1FB9EH3Qu0A92HLqdGsuC3qRm2qfyMEmz7iYJ5n/WA5BertGZ/O0SGLEBftgEjQOJhj7flGTEio3yyCHyvw/yGP6S8F3+mPvVLO6/eWMCGm7ig/mG8pjnysRTQTjDv966XhU9SYpinoxTd5mEuWdIHKMZxtBK7qeKY369njKJOP2K220Rk9/Ii+KyzNvbzyobK6oMNcwXgHjO+ssbH+blVUbLai3UblQ==\"\n
\ }\n ],\n \"role\": \"model\"\n },\n \"finishReason\":
\"STOP\",\n \"index\": 0,\n \"finishMessage\": \"Model generated
function call(s).\"\n }\n ],\n \"usageMetadata\": {\n \"promptTokenCount\":
529,\n \"candidatesTokenCount\": 169,\n \"totalTokenCount\": 955,\n
\ \"promptTokensDetails\": [\n {\n \"modality\": \"TEXT\",\n
\ \"tokenCount\": 529\n }\n ],\n \"thoughtsTokenCount\":
257\n },\n \"modelVersion\": \"gemini-2.5-flash\",\n \"responseId\": \"h0WCacqWA6WM_PUPl-niyQ0\"\n}\n"
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 03 Feb 2026 18:59:19 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=2345
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
X-Frame-Options:
- X-FRAME-OPTIONS-XXX
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
- request:
body: '{"contents": [{"parts": [{"text": "\nCurrent Task: Research the current
state of the AI agent market:\n1. Search for recent information about AI agents
and their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."}], "role": "user"}], "systemInstruction": {"parts": [{"text":
"You are Research Analyst. An experienced analyst skilled at gathering information
and synthesizing findings into actionable insights.\nYour personal goal is:
Conduct thorough research and produce insightful reports"}], "role": "user"},
"tools": [{"functionDeclarations": [{"description": "Search the web for information
on a given topic.\n\nArgs:\n query: The search query to look up.\n\nReturns:\n Search
results as a string.", "name": "web_search", "parameters_json_schema": {"properties":
{"query": {"title": "Query", "type": "string"}}, "required": ["query"], "type":
"object", "additionalProperties": false}}, {"description": "Read and extract
content from a website URL.\n\nArgs:\n url: The URL of the website to read.\n\nReturns:\n The
extracted content from the website.", "name": "read_website", "parameters_json_schema":
{"properties": {"url": {"title": "Url", "type": "string"}}, "required": ["url"],
"type": "object", "additionalProperties": false}}, {"description": "Generate
a structured report based on research findings.\n\nArgs:\n title: The title
of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.", "name": "generate_report", "parameters_json_schema":
{"properties": {"title": {"title": "Title", "type": "string"}, "findings": {"title":
"Findings", "type": "string"}}, "required": ["title", "findings"], "type": "object",
"additionalProperties": false}}]}], "generationConfig": {"stopSequences": ["\nObservation:"]}}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- '*/*'
accept-encoding:
- ACCEPT-ENCODING-XXX
connection:
- keep-alive
content-length:
- '1904'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
x-goog-api-client:
- google-genai-sdk/1.49.0 gl-python/3.13.3
x-goog-api-key:
- X-GOOG-API-KEY-XXX
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent
response:
body:
string: "{\n \"candidates\": [\n {\n \"content\": {\n \"parts\":
[\n {\n \"functionCall\": {\n \"name\": \"web_search\",\n
\ \"args\": {\n \"query\": \"AI agent market trends
2023-2024\"\n }\n },\n \"thoughtSignature\":
\"CoYEAXLI2nzmyDix3/QA+tMOiUwpDVoA5+RJoRW7kw3okJaVYCa5Usx7eBn4xowP7oXNynS4NfawCYqboufBXjHinq13UTcYg0Y74qIrza4KuctliGmf8G7S4QoS0Y3gqCHQKsxTdShQOg8wirnr8Rdu1eyrrhWE0XKk0HPA0Ssj7zUVoJBqHPqwyvkFyXkMtpcmtq9qXmZYfMFuSKRQnYLVLllL/BpOIL3w7MuofpviO85bvYk9gX0vsDjYWS6EdVEfC9k2BWGjhHaILXT9A1iwNPdDAg33SOC+BlPrGox0ghCr5qEKnBMZhUszqaUCykczFCq+xMIA3xDGNbTjicWb53sL/PXBYLsNty1giW3nKFe8+8eRpUsHUx7oQ82m4AUxKqk99mZjaLp8bHk+rERjFZErcw/pe/3190K0WGHH5ecB4amJCzZtVrQJ1oAZhb7/P1VZ57xmt1z/c1pQgjuvnV+cWE9blh5o6mNNFbFuzJDIO2k8qrFeeDwlCF8OOrxo8F+z1evg4yjZ1+9TLCVFTmZ0S0PI54FS5afb0RdPol2/ISNw7H/dtnO4z6LhT2NmlYqYZr8qfVoUD21rmI08NFs+f/6JW5+7eSQbax76SW+6A2IqqPPyF66MCpqtEzC+hpzVsCBcIQyRQWsdm+RNAs50gmqF6W3CcTPryWkeS7w9ORqxdiU=\"\n
\ }\n ],\n \"role\": \"model\"\n },\n \"finishReason\":
\"STOP\",\n \"index\": 0,\n \"finishMessage\": \"Model generated
function call(s).\"\n }\n ],\n \"usageMetadata\": {\n \"promptTokenCount\":
319,\n \"candidatesTokenCount\": 28,\n \"totalTokenCount\": 461,\n \"promptTokensDetails\":
[\n {\n \"modality\": \"TEXT\",\n \"tokenCount\": 319\n
\ }\n ],\n \"thoughtsTokenCount\": 114\n },\n \"modelVersion\":
\"gemini-2.5-flash\",\n \"responseId\": \"iEWCaYyJENDn_uMP4q3N8QE\"\n}\n"
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 03 Feb 2026 18:59:20 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=1193
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
X-Frame-Options:
- X-FRAME-OPTIONS-XXX
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
- request:
body: '{"contents": [{"parts": [{"text": "\nCurrent Task: Research the current
state of the AI agent market:\n1. Search for recent information about AI agents
and their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."}], "role": "user"}, {"parts": [{"functionCall": {"args": {"query":
"AI agent market trends 2023-2024"}, "name": "web_search"}, "thoughtSignature":
"CoYEAXLI2nzmyDix3_QA-tMOiUwpDVoA5-RJoRW7kw3okJaVYCa5Usx7eBn4xowP7oXNynS4NfawCYqboufBXjHinq13UTcYg0Y74qIrza4KuctliGmf8G7S4QoS0Y3gqCHQKsxTdShQOg8wirnr8Rdu1eyrrhWE0XKk0HPA0Ssj7zUVoJBqHPqwyvkFyXkMtpcmtq9qXmZYfMFuSKRQnYLVLllL_BpOIL3w7MuofpviO85bvYk9gX0vsDjYWS6EdVEfC9k2BWGjhHaILXT9A1iwNPdDAg33SOC-BlPrGox0ghCr5qEKnBMZhUszqaUCykczFCq-xMIA3xDGNbTjicWb53sL_PXBYLsNty1giW3nKFe8-8eRpUsHUx7oQ82m4AUxKqk99mZjaLp8bHk-rERjFZErcw_pe_3190K0WGHH5ecB4amJCzZtVrQJ1oAZhb7_P1VZ57xmt1z_c1pQgjuvnV-cWE9blh5o6mNNFbFuzJDIO2k8qrFeeDwlCF8OOrxo8F-z1evg4yjZ1-9TLCVFTmZ0S0PI54FS5afb0RdPol2_ISNw7H_dtnO4z6LhT2NmlYqYZr8qfVoUD21rmI08NFs-f_6JW5-7eSQbax76SW-6A2IqqPPyF66MCpqtEzC-hpzVsCBcIQyRQWsdm-RNAs50gmqF6W3CcTPryWkeS7w9ORqxdiU="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "web_search", "response":
{"result": "Search results for ''AI agent market trends 2023-2024'': Found 3
relevant articles about the topic including market analysis, competitor data,
and industry trends."}}}], "role": "user"}], "systemInstruction": {"parts":
[{"text": "You are Research Analyst. An experienced analyst skilled at gathering
information and synthesizing findings into actionable insights.\nYour personal
goal is: Conduct thorough research and produce insightful reports"}], "role":
"user"}, "tools": [{"functionDeclarations": [{"description": "Search the web
for information on a given topic.\n\nArgs:\n query: The search query to look
up.\n\nReturns:\n Search results as a string.", "name": "web_search", "parameters_json_schema":
{"properties": {"query": {"title": "Query", "type": "string"}}, "required":
["query"], "type": "object", "additionalProperties": false}}, {"description":
"Read and extract content from a website URL.\n\nArgs:\n url: The URL of
the website to read.\n\nReturns:\n The extracted content from the website.",
"name": "read_website", "parameters_json_schema": {"properties": {"url": {"title":
"Url", "type": "string"}}, "required": ["url"], "type": "object", "additionalProperties":
false}}, {"description": "Generate a structured report based on research findings.\n\nArgs:\n title:
The title of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.", "name": "generate_report", "parameters_json_schema":
{"properties": {"title": {"title": "Title", "type": "string"}, "findings": {"title":
"Findings", "type": "string"}}, "required": ["title", "findings"], "type": "object",
"additionalProperties": false}}]}], "generationConfig": {"stopSequences": ["\nObservation:"]}}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- '*/*'
accept-encoding:
- ACCEPT-ENCODING-XXX
connection:
- keep-alive
content-length:
- '3015'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
x-goog-api-client:
- google-genai-sdk/1.49.0 gl-python/3.13.3
x-goog-api-key:
- X-GOOG-API-KEY-XXX
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent
response:
body:
string: "{\n \"candidates\": [\n {\n \"content\": {\n \"parts\":
[\n {\n \"functionCall\": {\n \"name\": \"web_search\",\n
\ \"args\": {\n \"query\": \"latest reports AI
agent market analysis\"\n }\n },\n \"thoughtSignature\":
\"CpwGAXLI2nybmVGffIN1k+T5M2HmQNlvybZRPoo/ysgNARa+9nrPdRoBZ9RC+Dee9KSk1o7O+IU9l0sWCTirQYcroEhXon+JIQUVTed/L0s//sBOR+hJnZWoaG5ucsfJQvovAQba2Wb7uViEkdySvHfRApF0atewbC+TCKZrxDAQ6Naby8nwUTauJPKlgsBsZVnlViRfIbF7pom1zvXD+d5htjMiuJr1nOuSH0EGQWC4TUiuJD23hgockzhmIpbU/bStn8PFIQNsySEzl6H5sZdlD4auwCMCD2Q+Ur05w1uLv7n8GoSZn5dkdXLR5R7dZ+kkX+xP4w841Ih2gc6rBKT5tSedN01AuJsK65NSfOXZBwakxs58WZXDQXnIQe4d2QThAX3nPdUmhvVI6sHX+ZdtQZIrhE7hRf9j/T/wvvrUao5VDv+mxXd9bcPEV2BzSXkvkAB1SbJ+5wN7Qb2j31lkiUu5uRnZOiVxL5iCS+8Z/jEl4NjpGithbcPoNpFIDOeiE/f8kf7tQJDX+YNquPbYZRJHvIfLalVQndVGNlZVN2jXT3Wwo8So3vmzIDFVjV+pj7tSRNK8hTITm6bfHS+XUZqJdm7eHCzhonyJ7/tl7LbsstPXoZU3ZN50tNpXYOK+NzgzU7iwd9SaHVXgzQRdujWgHuBmSiSd9qNHvdaNwgARVTnMj3VYpehgIuaYMzQmgM99TdC/zmzcqHa5VZSnHKHqMIVc9gjRvVwz4DUm6VLLnKnVYFClM6gofmUI6s9fThiR5EdfimaDTlRlzh6Df33jAbRA9rUTDH6uE+DjiopCvXuHjmQqK9Smyxt2vTao9H7AYIRN7yWmdVoaG0tUSL2XQ31wIW3cEyhz7ihQwFYKJnOkQ3/CiU6KV+4ldk9UY/vKWSgItVTTE6G8Di0iviiCAkmL59Uj7vnIp80+U9rDIK7WhxpAWlrDA6cGQT2LGAXQ2liXtLa31nXyfvCezhtSS8jSVm4SHaiU+INvYtpq2Q7nXPTFbjjZooyC5FePGqAH1T+sRYbR02jaa572/NuwFgBCObTfqO8G5A==\"\n
\ }\n ],\n \"role\": \"model\"\n },\n \"finishReason\":
\"STOP\",\n \"index\": 0,\n \"finishMessage\": \"Model generated
function call(s).\"\n }\n ],\n \"usageMetadata\": {\n \"promptTokenCount\":
400,\n \"candidatesTokenCount\": 20,\n \"totalTokenCount\": 589,\n \"promptTokensDetails\":
[\n {\n \"modality\": \"TEXT\",\n \"tokenCount\": 400\n
\ }\n ],\n \"thoughtsTokenCount\": 169\n },\n \"modelVersion\":
\"gemini-2.5-flash\",\n \"responseId\": \"ikWCacqBG8ve_uMPj4KFyAY\"\n}\n"
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 03 Feb 2026 18:59:22 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=2125
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
X-Frame-Options:
- X-FRAME-OPTIONS-XXX
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
- request:
body: '{"contents": [{"parts": [{"text": "\nCurrent Task: Research the current
state of the AI agent market:\n1. Search for recent information about AI agents
and their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."}], "role": "user"}, {"parts": [{"functionCall": {"args": {"query":
"AI agent market trends 2023-2024"}, "name": "web_search"}, "thoughtSignature":
"CoYEAXLI2nzmyDix3_QA-tMOiUwpDVoA5-RJoRW7kw3okJaVYCa5Usx7eBn4xowP7oXNynS4NfawCYqboufBXjHinq13UTcYg0Y74qIrza4KuctliGmf8G7S4QoS0Y3gqCHQKsxTdShQOg8wirnr8Rdu1eyrrhWE0XKk0HPA0Ssj7zUVoJBqHPqwyvkFyXkMtpcmtq9qXmZYfMFuSKRQnYLVLllL_BpOIL3w7MuofpviO85bvYk9gX0vsDjYWS6EdVEfC9k2BWGjhHaILXT9A1iwNPdDAg33SOC-BlPrGox0ghCr5qEKnBMZhUszqaUCykczFCq-xMIA3xDGNbTjicWb53sL_PXBYLsNty1giW3nKFe8-8eRpUsHUx7oQ82m4AUxKqk99mZjaLp8bHk-rERjFZErcw_pe_3190K0WGHH5ecB4amJCzZtVrQJ1oAZhb7_P1VZ57xmt1z_c1pQgjuvnV-cWE9blh5o6mNNFbFuzJDIO2k8qrFeeDwlCF8OOrxo8F-z1evg4yjZ1-9TLCVFTmZ0S0PI54FS5afb0RdPol2_ISNw7H_dtnO4z6LhT2NmlYqYZr8qfVoUD21rmI08NFs-f_6JW5-7eSQbax76SW-6A2IqqPPyF66MCpqtEzC-hpzVsCBcIQyRQWsdm-RNAs50gmqF6W3CcTPryWkeS7w9ORqxdiU="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "web_search", "response":
{"result": "Search results for ''AI agent market trends 2023-2024'': Found 3
relevant articles about the topic including market analysis, competitor data,
and industry trends."}}}], "role": "user"}, {"parts": [{"functionCall": {"args":
{"query": "latest reports AI agent market analysis"}, "name": "web_search"},
"thoughtSignature": "CpwGAXLI2nybmVGffIN1k-T5M2HmQNlvybZRPoo_ysgNARa-9nrPdRoBZ9RC-Dee9KSk1o7O-IU9l0sWCTirQYcroEhXon-JIQUVTed_L0s__sBOR-hJnZWoaG5ucsfJQvovAQba2Wb7uViEkdySvHfRApF0atewbC-TCKZrxDAQ6Naby8nwUTauJPKlgsBsZVnlViRfIbF7pom1zvXD-d5htjMiuJr1nOuSH0EGQWC4TUiuJD23hgockzhmIpbU_bStn8PFIQNsySEzl6H5sZdlD4auwCMCD2Q-Ur05w1uLv7n8GoSZn5dkdXLR5R7dZ-kkX-xP4w841Ih2gc6rBKT5tSedN01AuJsK65NSfOXZBwakxs58WZXDQXnIQe4d2QThAX3nPdUmhvVI6sHX-ZdtQZIrhE7hRf9j_T_wvvrUao5VDv-mxXd9bcPEV2BzSXkvkAB1SbJ-5wN7Qb2j31lkiUu5uRnZOiVxL5iCS-8Z_jEl4NjpGithbcPoNpFIDOeiE_f8kf7tQJDX-YNquPbYZRJHvIfLalVQndVGNlZVN2jXT3Wwo8So3vmzIDFVjV-pj7tSRNK8hTITm6bfHS-XUZqJdm7eHCzhonyJ7_tl7LbsstPXoZU3ZN50tNpXYOK-NzgzU7iwd9SaHVXgzQRdujWgHuBmSiSd9qNHvdaNwgARVTnMj3VYpehgIuaYMzQmgM99TdC_zmzcqHa5VZSnHKHqMIVc9gjRvVwz4DUm6VLLnKnVYFClM6gofmUI6s9fThiR5EdfimaDTlRlzh6Df33jAbRA9rUTDH6uE-DjiopCvXuHjmQqK9Smyxt2vTao9H7AYIRN7yWmdVoaG0tUSL2XQ31wIW3cEyhz7ihQwFYKJnOkQ3_CiU6KV-4ldk9UY_vKWSgItVTTE6G8Di0iviiCAkmL59Uj7vnIp80-U9rDIK7WhxpAWlrDA6cGQT2LGAXQ2liXtLa31nXyfvCezhtSS8jSVm4SHaiU-INvYtpq2Q7nXPTFbjjZooyC5FePGqAH1T-sRYbR02jaa572_NuwFgBCObTfqO8G5A=="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "web_search", "response":
{"result": "Search results for ''latest reports AI agent market analysis'':
Found 3 relevant articles about the topic including market analysis, competitor
data, and industry trends."}}}], "role": "user"}], "systemInstruction": {"parts":
[{"text": "You are Research Analyst. An experienced analyst skilled at gathering
information and synthesizing findings into actionable insights.\nYour personal
goal is: Conduct thorough research and produce insightful reports"}], "role":
"user"}, "tools": [{"functionDeclarations": [{"description": "Search the web
for information on a given topic.\n\nArgs:\n query: The search query to look
up.\n\nReturns:\n Search results as a string.", "name": "web_search", "parameters_json_schema":
{"properties": {"query": {"title": "Query", "type": "string"}}, "required":
["query"], "type": "object", "additionalProperties": false}}, {"description":
"Read and extract content from a website URL.\n\nArgs:\n url: The URL of
the website to read.\n\nReturns:\n The extracted content from the website.",
"name": "read_website", "parameters_json_schema": {"properties": {"url": {"title":
"Url", "type": "string"}}, "required": ["url"], "type": "object", "additionalProperties":
false}}, {"description": "Generate a structured report based on research findings.\n\nArgs:\n title:
The title of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.", "name": "generate_report", "parameters_json_schema":
{"properties": {"title": {"title": "Title", "type": "string"}, "findings": {"title":
"Findings", "type": "string"}}, "required": ["title", "findings"], "type": "object",
"additionalProperties": false}}]}], "generationConfig": {"stopSequences": ["\nObservation:"]}}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- '*/*'
accept-encoding:
- ACCEPT-ENCODING-XXX
connection:
- keep-alive
content-length:
- '4512'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
x-goog-api-client:
- google-genai-sdk/1.49.0 gl-python/3.13.3
x-goog-api-key:
- X-GOOG-API-KEY-XXX
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent
response:
body:
string: "{\n \"candidates\": [\n {\n \"content\": {\n \"parts\":
[\n {\n \"functionCall\": {\n \"name\": \"read_website\",\n
\ \"args\": {\n \"url\": \"https://www.example.com/ai-agent-market-report\"\n
\ }\n },\n \"thoughtSignature\": \"CooPAXLI2nzYy6ki8YJo4RDDzryK6qtkbIEWXCh0ZjpoRX2fgNghUrxXZUwrsrbrwEpccdvWCDpb5ZkwYMNuzMi4yRUsjfcebfd2VCwQgvWnWmitj3taAcLCUDIJX5pGt0L2O8V6ehWmrANQHGw6Qc/QVx5dMlSFeFKHtfc1M95CJz2BxZd3lnuKLCEu7LCCiqIDdd1o1y/EcGsl7OHai6WyQJg49Cvcww//Z+kfSVoAPGNedTYPIf4ImttMyofV8+yczI0IGjhFzE0Qk1Pvo84O9NyOufpPELeKY8l1yfZgSZEL0sUA6weqf1P/xzNKt6h96Rh1KpAx5iTGFtqOWJrJ8OP+ZdGJ+rA+xZQuTRtKbW/e60rC5kPgJnkhWCp1p7HTLgTGwpzzxztqL0ggURaWw8GJw8S41BcM5mFEA+a7ivMWPMLdMk6h5gr/Y8JTnLSRZFoZYHkY9bTcAFPc9gapyFlKkQDciYet/MHe2zfE7ycx0e8c0W7ISoYPHpXW/WxNekMiNdfx1eg/mEX/Y0Vjc70p+HtbnEGaBoZWJSo+cJtZdA4sNJaIuEnnVTtAdAtnoxJUOyr2jrKDAsSjHmVoeLARZO2/DuJKsEVNHzsNPMw4SrBq1DkG52Aof7KcskOfW2OyoZEUnIf23IRabKflUG/7dHGqYfLtkWRApWZYBy2eQILwsmXJ4xx27S7/02Jl0D8rX3vOQhjS7lTjrXvy8wU3biUFvbnqJuLj3ACLn7Hn1axe4dB7zIpYC1di63DDs1fQp79d2VaGRC+tVMKiQu/+yC6nCM4j8JSnpBNgvyhq3ilAr/iDHD6GkbxdBBChFbZl0KY+WkrcZpPp2g2m/beiQuzF+cM6RuaqF2W0TEjVT+OZ1ivObreXFVFWa9T5qFsTjV3E/SFlmrXdx6Kf8d0i9QeEwbzBIvvX3VNUdW1DJ95WylaUXFtljk/cqylri2j2WTPMTSV9fcM/a8UWoayUAuLzq8zgxd2Wvrm8uvGcaewAQT+yK+u5FsLFoKxaMkoakb2/1tjWfhn+MrbIoYOBIebUapUhADUJgGDTG7byEEQlbwNaa8rOZ5ZpdBrDXjtj1tsz6cqaEiCbtZWqei0myuMa0J6Z3FHoceSUgOACD/bHWSkzdW7LdKBKLxB25fKfD1hCLscE1skZ7nAEZWmrUzKz9yCiqAPfatQhHqnr3EchEB/dxbNXxCCT6IFxemhb9AsaQWjcTrlQJiuz8t4VMmu1slgEcrhweZ/PpxI/E74qvV9ljcFLcziW0BZaqepJMeBe2cLfVVki5R5kudQVuAcCEdkrwBDWAwZlO9aWTmiZ9+ggfl3F/63JzZXSM/NDc/2rJ1k65e+O+vyTzkrUwnSPnh4RPK6jeIul4SSLPgyZBwp0qHyTl4As8jpMe9Rbt0NRli6Z5eAr/IYdbicKo/pzqiupdxvu4u+jKt+F4KojU9avgWFAB01isHHO5Z1vzVJ6XDilWeah5DvHc1lkcPCXtbBGvykfFqJIBhthnFi0f/S4HV+IlOKwvKbfmL5GplD7H+DjUA5UdHjw8HoJa6uQxhbERy5dZlYqxN918aL147Afq4LuPoWUJULEsYULwUuA6HspemIKUltHacOAxZgP4OLVkB3zwssj8E6rMtU1puupHiL7J66fFaR3co71gzzlvl8R2Xi3xEQdpigxxCUAsZWMrSrITRBnKPKGF1CrFEhU6FP6bQAQ6UuhAdqLoJihwVnMTyY9fGUriwCkrQu5gK7ZQlnXyluV0J/5xWh4sOaPmwmeiUXMBPN0iGb7z24lyHaI3QXz3kGlJBnIFhseJTJo3ed66Z/LAf8I/hFC6s/sIioEmRgd4tm3Q1U05ETKrptnzo8Ac4AOTdJtbQv0uDQSkoefUbebu7x6L9Dns04VSvDPKLwlFQd81sl9DYmi9SPDxKT7S6gfG6WjJ9z35eNSR01QW1QIgAAhMU8UX4o7QQaXnUZxfZeYRMXlzu/xb4KSREvc/FeLJ+IvnPFgzryAgLi/Sipl//Eul0sjrREPYJE1GxBOIoURGa+Bsmc3yy8aWArxv/HGpbLzwjmH8TaMvB3P/4tkvT+5IjJlpe0UrR1ssqasUtwfH9yWv5+4i+EdJrJ/SJ4Hl1Vlj9zi9lEFr33Zs96kn8ZOkBHp0m7Sxr5xP+krSxQkROIpu0d02kIqQ3nob+kGbnAf0zkmH6pS3H4mG2Zksu8KcGvghx7XTl3qBOJ+ZY4vlev2cSMBfMmnbUHKvMlz4YsmTGR1JPntDguA8UJJ1UZCex4E/W3KcHwd4qvzqgMZNjdarIvGjlmnKmoL1RV7EqUsBkpk+jauY0SqoWsIIf4b6O9Y3fQRRJURLeIfGCTmlxl+df+4yjqUhxUXTaQsX2KlEJ3tZK+ZI9FdKMzqPip2oMFwf2XfLIyIuRA0NU5fDRIxqPUzYv6RQ+zhXXB1QscsAtyf1t+LsaVw//1Vfj6V3Ups4pNyiwMAZg1z9DaIHht++VfgCdqT4RLcaGI8eEDrjkOc9G/iLkLBCfOB7EZkcXT20Lc1Silxa++dZsaYp5Tni8dz6f5YWg==\"\n
\ }\n ],\n \"role\": \"model\"\n },\n \"finishReason\":
\"STOP\",\n \"index\": 0,\n \"finishMessage\": \"Model generated
function call(s).\"\n }\n ],\n \"usageMetadata\": {\n \"promptTokenCount\":
465,\n \"candidatesTokenCount\": 29,\n \"totalTokenCount\": 916,\n \"promptTokensDetails\":
[\n {\n \"modality\": \"TEXT\",\n \"tokenCount\": 465\n
\ }\n ],\n \"thoughtsTokenCount\": 422\n },\n \"modelVersion\":
\"gemini-2.5-flash\",\n \"responseId\": \"jUWCadDOIdi8_uMPxuOu4Ak\"\n}\n"
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 03 Feb 2026 18:59:25 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=3079
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
X-Frame-Options:
- X-FRAME-OPTIONS-XXX
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
- request:
body: '{"contents": [{"parts": [{"text": "\nCurrent Task: Research the current
state of the AI agent market:\n1. Search for recent information about AI agents
and their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."}], "role": "user"}, {"parts": [{"functionCall": {"args": {"query":
"AI agent market trends 2023-2024"}, "name": "web_search"}, "thoughtSignature":
"CoYEAXLI2nzmyDix3_QA-tMOiUwpDVoA5-RJoRW7kw3okJaVYCa5Usx7eBn4xowP7oXNynS4NfawCYqboufBXjHinq13UTcYg0Y74qIrza4KuctliGmf8G7S4QoS0Y3gqCHQKsxTdShQOg8wirnr8Rdu1eyrrhWE0XKk0HPA0Ssj7zUVoJBqHPqwyvkFyXkMtpcmtq9qXmZYfMFuSKRQnYLVLllL_BpOIL3w7MuofpviO85bvYk9gX0vsDjYWS6EdVEfC9k2BWGjhHaILXT9A1iwNPdDAg33SOC-BlPrGox0ghCr5qEKnBMZhUszqaUCykczFCq-xMIA3xDGNbTjicWb53sL_PXBYLsNty1giW3nKFe8-8eRpUsHUx7oQ82m4AUxKqk99mZjaLp8bHk-rERjFZErcw_pe_3190K0WGHH5ecB4amJCzZtVrQJ1oAZhb7_P1VZ57xmt1z_c1pQgjuvnV-cWE9blh5o6mNNFbFuzJDIO2k8qrFeeDwlCF8OOrxo8F-z1evg4yjZ1-9TLCVFTmZ0S0PI54FS5afb0RdPol2_ISNw7H_dtnO4z6LhT2NmlYqYZr8qfVoUD21rmI08NFs-f_6JW5-7eSQbax76SW-6A2IqqPPyF66MCpqtEzC-hpzVsCBcIQyRQWsdm-RNAs50gmqF6W3CcTPryWkeS7w9ORqxdiU="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "web_search", "response":
{"result": "Search results for ''AI agent market trends 2023-2024'': Found 3
relevant articles about the topic including market analysis, competitor data,
and industry trends."}}}], "role": "user"}, {"parts": [{"functionCall": {"args":
{"query": "latest reports AI agent market analysis"}, "name": "web_search"},
"thoughtSignature": "CpwGAXLI2nybmVGffIN1k-T5M2HmQNlvybZRPoo_ysgNARa-9nrPdRoBZ9RC-Dee9KSk1o7O-IU9l0sWCTirQYcroEhXon-JIQUVTed_L0s__sBOR-hJnZWoaG5ucsfJQvovAQba2Wb7uViEkdySvHfRApF0atewbC-TCKZrxDAQ6Naby8nwUTauJPKlgsBsZVnlViRfIbF7pom1zvXD-d5htjMiuJr1nOuSH0EGQWC4TUiuJD23hgockzhmIpbU_bStn8PFIQNsySEzl6H5sZdlD4auwCMCD2Q-Ur05w1uLv7n8GoSZn5dkdXLR5R7dZ-kkX-xP4w841Ih2gc6rBKT5tSedN01AuJsK65NSfOXZBwakxs58WZXDQXnIQe4d2QThAX3nPdUmhvVI6sHX-ZdtQZIrhE7hRf9j_T_wvvrUao5VDv-mxXd9bcPEV2BzSXkvkAB1SbJ-5wN7Qb2j31lkiUu5uRnZOiVxL5iCS-8Z_jEl4NjpGithbcPoNpFIDOeiE_f8kf7tQJDX-YNquPbYZRJHvIfLalVQndVGNlZVN2jXT3Wwo8So3vmzIDFVjV-pj7tSRNK8hTITm6bfHS-XUZqJdm7eHCzhonyJ7_tl7LbsstPXoZU3ZN50tNpXYOK-NzgzU7iwd9SaHVXgzQRdujWgHuBmSiSd9qNHvdaNwgARVTnMj3VYpehgIuaYMzQmgM99TdC_zmzcqHa5VZSnHKHqMIVc9gjRvVwz4DUm6VLLnKnVYFClM6gofmUI6s9fThiR5EdfimaDTlRlzh6Df33jAbRA9rUTDH6uE-DjiopCvXuHjmQqK9Smyxt2vTao9H7AYIRN7yWmdVoaG0tUSL2XQ31wIW3cEyhz7ihQwFYKJnOkQ3_CiU6KV-4ldk9UY_vKWSgItVTTE6G8Di0iviiCAkmL59Uj7vnIp80-U9rDIK7WhxpAWlrDA6cGQT2LGAXQ2liXtLa31nXyfvCezhtSS8jSVm4SHaiU-INvYtpq2Q7nXPTFbjjZooyC5FePGqAH1T-sRYbR02jaa572_NuwFgBCObTfqO8G5A=="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "web_search", "response":
{"result": "Search results for ''latest reports AI agent market analysis'':
Found 3 relevant articles about the topic including market analysis, competitor
data, and industry trends."}}}], "role": "user"}, {"parts": [{"functionCall":
{"args": {"url": "https://www.example.com/ai-agent-market-report"}, "name":
"read_website"}, "thoughtSignature": "CooPAXLI2nzYy6ki8YJo4RDDzryK6qtkbIEWXCh0ZjpoRX2fgNghUrxXZUwrsrbrwEpccdvWCDpb5ZkwYMNuzMi4yRUsjfcebfd2VCwQgvWnWmitj3taAcLCUDIJX5pGt0L2O8V6ehWmrANQHGw6Qc_QVx5dMlSFeFKHtfc1M95CJz2BxZd3lnuKLCEu7LCCiqIDdd1o1y_EcGsl7OHai6WyQJg49Cvcww__Z-kfSVoAPGNedTYPIf4ImttMyofV8-yczI0IGjhFzE0Qk1Pvo84O9NyOufpPELeKY8l1yfZgSZEL0sUA6weqf1P_xzNKt6h96Rh1KpAx5iTGFtqOWJrJ8OP-ZdGJ-rA-xZQuTRtKbW_e60rC5kPgJnkhWCp1p7HTLgTGwpzzxztqL0ggURaWw8GJw8S41BcM5mFEA-a7ivMWPMLdMk6h5gr_Y8JTnLSRZFoZYHkY9bTcAFPc9gapyFlKkQDciYet_MHe2zfE7ycx0e8c0W7ISoYPHpXW_WxNekMiNdfx1eg_mEX_Y0Vjc70p-HtbnEGaBoZWJSo-cJtZdA4sNJaIuEnnVTtAdAtnoxJUOyr2jrKDAsSjHmVoeLARZO2_DuJKsEVNHzsNPMw4SrBq1DkG52Aof7KcskOfW2OyoZEUnIf23IRabKflUG_7dHGqYfLtkWRApWZYBy2eQILwsmXJ4xx27S7_02Jl0D8rX3vOQhjS7lTjrXvy8wU3biUFvbnqJuLj3ACLn7Hn1axe4dB7zIpYC1di63DDs1fQp79d2VaGRC-tVMKiQu_-yC6nCM4j8JSnpBNgvyhq3ilAr_iDHD6GkbxdBBChFbZl0KY-WkrcZpPp2g2m_beiQuzF-cM6RuaqF2W0TEjVT-OZ1ivObreXFVFWa9T5qFsTjV3E_SFlmrXdx6Kf8d0i9QeEwbzBIvvX3VNUdW1DJ95WylaUXFtljk_cqylri2j2WTPMTSV9fcM_a8UWoayUAuLzq8zgxd2Wvrm8uvGcaewAQT-yK-u5FsLFoKxaMkoakb2_1tjWfhn-MrbIoYOBIebUapUhADUJgGDTG7byEEQlbwNaa8rOZ5ZpdBrDXjtj1tsz6cqaEiCbtZWqei0myuMa0J6Z3FHoceSUgOACD_bHWSkzdW7LdKBKLxB25fKfD1hCLscE1skZ7nAEZWmrUzKz9yCiqAPfatQhHqnr3EchEB_dxbNXxCCT6IFxemhb9AsaQWjcTrlQJiuz8t4VMmu1slgEcrhweZ_PpxI_E74qvV9ljcFLcziW0BZaqepJMeBe2cLfVVki5R5kudQVuAcCEdkrwBDWAwZlO9aWTmiZ9-ggfl3F_63JzZXSM_NDc_2rJ1k65e-O-vyTzkrUwnSPnh4RPK6jeIul4SSLPgyZBwp0qHyTl4As8jpMe9Rbt0NRli6Z5eAr_IYdbicKo_pzqiupdxvu4u-jKt-F4KojU9avgWFAB01isHHO5Z1vzVJ6XDilWeah5DvHc1lkcPCXtbBGvykfFqJIBhthnFi0f_S4HV-IlOKwvKbfmL5GplD7H-DjUA5UdHjw8HoJa6uQxhbERy5dZlYqxN918aL147Afq4LuPoWUJULEsYULwUuA6HspemIKUltHacOAxZgP4OLVkB3zwssj8E6rMtU1puupHiL7J66fFaR3co71gzzlvl8R2Xi3xEQdpigxxCUAsZWMrSrITRBnKPKGF1CrFEhU6FP6bQAQ6UuhAdqLoJihwVnMTyY9fGUriwCkrQu5gK7ZQlnXyluV0J_5xWh4sOaPmwmeiUXMBPN0iGb7z24lyHaI3QXz3kGlJBnIFhseJTJo3ed66Z_LAf8I_hFC6s_sIioEmRgd4tm3Q1U05ETKrptnzo8Ac4AOTdJtbQv0uDQSkoefUbebu7x6L9Dns04VSvDPKLwlFQd81sl9DYmi9SPDxKT7S6gfG6WjJ9z35eNSR01QW1QIgAAhMU8UX4o7QQaXnUZxfZeYRMXlzu_xb4KSREvc_FeLJ-IvnPFgzryAgLi_Sipl__Eul0sjrREPYJE1GxBOIoURGa-Bsmc3yy8aWArxv_HGpbLzwjmH8TaMvB3P_4tkvT-5IjJlpe0UrR1ssqasUtwfH9yWv5-4i-EdJrJ_SJ4Hl1Vlj9zi9lEFr33Zs96kn8ZOkBHp0m7Sxr5xP-krSxQkROIpu0d02kIqQ3nob-kGbnAf0zkmH6pS3H4mG2Zksu8KcGvghx7XTl3qBOJ-ZY4vlev2cSMBfMmnbUHKvMlz4YsmTGR1JPntDguA8UJJ1UZCex4E_W3KcHwd4qvzqgMZNjdarIvGjlmnKmoL1RV7EqUsBkpk-jauY0SqoWsIIf4b6O9Y3fQRRJURLeIfGCTmlxl-df-4yjqUhxUXTaQsX2KlEJ3tZK-ZI9FdKMzqPip2oMFwf2XfLIyIuRA0NU5fDRIxqPUzYv6RQ-zhXXB1QscsAtyf1t-LsaVw__1Vfj6V3Ups4pNyiwMAZg1z9DaIHht--VfgCdqT4RLcaGI8eEDrjkOc9G_iLkLBCfOB7EZkcXT20Lc1Silxa--dZsaYp5Tni8dz6f5YWg=="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "read_website", "response":
{"result": "Content from https://www.example.com/ai-agent-market-report: This
article discusses key insights about the topic including market size ($50B),
growth rate (15% YoY), and major players in the industry."}}}], "role": "user"}],
"systemInstruction": {"parts": [{"text": "You are Research Analyst. An experienced
analyst skilled at gathering information and synthesizing findings into actionable
insights.\nYour personal goal is: Conduct thorough research and produce insightful
reports"}], "role": "user"}, "tools": [{"functionDeclarations": [{"description":
"Search the web for information on a given topic.\n\nArgs:\n query: The search
query to look up.\n\nReturns:\n Search results as a string.", "name": "web_search",
"parameters_json_schema": {"properties": {"query": {"title": "Query", "type":
"string"}}, "required": ["query"], "type": "object", "additionalProperties":
false}}, {"description": "Read and extract content from a website URL.\n\nArgs:\n url:
The URL of the website to read.\n\nReturns:\n The extracted content from
the website.", "name": "read_website", "parameters_json_schema": {"properties":
{"url": {"title": "Url", "type": "string"}}, "required": ["url"], "type": "object",
"additionalProperties": false}}, {"description": "Generate a structured report
based on research findings.\n\nArgs:\n title: The title of the report.\n findings:
The research findings to include.\n\nReturns:\n A formatted report string.",
"name": "generate_report", "parameters_json_schema": {"properties": {"title":
{"title": "Title", "type": "string"}, "findings": {"title": "Findings", "type":
"string"}}, "required": ["title", "findings"], "type": "object", "additionalProperties":
false}}]}], "generationConfig": {"stopSequences": ["\nObservation:"]}}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- '*/*'
accept-encoding:
- ACCEPT-ENCODING-XXX
connection:
- keep-alive
content-length:
- '7562'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
x-goog-api-client:
- google-genai-sdk/1.49.0 gl-python/3.13.3
x-goog-api-key:
- X-GOOG-API-KEY-XXX
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent
response:
body:
string: "{\n \"candidates\": [\n {\n \"content\": {\n \"parts\":
[\n {\n \"functionCall\": {\n \"name\": \"generate_report\",\n
\ \"args\": {\n \"findings\": \"The AI agent market
is currently valued at $50 billion and is experiencing a strong growth rate
of 15% year-over-year. Key players in the industry are contributing to this
expansion, driven by increasing adoption across various sectors.\",\n \"title\":
\"Current State of the AI Agent Market\"\n }\n },\n
\ \"thoughtSignature\": \"CuACAXLI2nzhub94iTgphfrBnaQV13Wv0+kRJj+l9jEDfxsyNg9eGnhxRfj4cued3Mgvv1CR9vkpfDV/V9x57TVWLNwPsVvsTgZKI0pwmV355sUCRKqAyfRBwDWhn0UAl9+sYNFCKUJCp8G5QBGfrar1lYLltX/z83d4O13Wn5Ugvxco9o4CdxnnPJOWkTPETRgXA/1HSdEiwGNqt0A3lKYkGRXQx+XyK54lDwmOBg+Yx4ZVgUxANXLK1z91NF/6cpmSVgoE2sL0VrIHISYs4XdUCj1fL3R7DpnZdrrZhmqnTjEgkeR1C3BR5GJeSUmg+kmqjPSPnP0NYiZo9H9SGL/ewGz3wg+GKcILAa4nD7/tfdqIMbAff8PJemwJE4ONT5zAmJ69/NFj0i1X01v04E8f2NdHewPSsKO5mptk5qzWxoW3G3uUhXccxk62EydTsESf6WRwolsmphaGgVE9AwuhzQ==\"\n
\ }\n ],\n \"role\": \"model\"\n },\n \"finishReason\":
\"STOP\",\n \"index\": 0,\n \"finishMessage\": \"Model generated
function call(s).\"\n }\n ],\n \"usageMetadata\": {\n \"promptTokenCount\":
557,\n \"candidatesTokenCount\": 73,\n \"totalTokenCount\": 700,\n \"cachedContentTokenCount\":
330,\n \"promptTokensDetails\": [\n {\n \"modality\": \"TEXT\",\n
\ \"tokenCount\": 557\n }\n ],\n \"cacheTokensDetails\":
[\n {\n \"modality\": \"TEXT\",\n \"tokenCount\": 330\n
\ }\n ],\n \"thoughtsTokenCount\": 70\n },\n \"modelVersion\":
\"gemini-2.5-flash\",\n \"responseId\": \"jkWCacGZMLrv_uMPibCHmQU\"\n}\n"
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 03 Feb 2026 18:59:26 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=1224
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
X-Frame-Options:
- X-FRAME-OPTIONS-XXX
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
- request:
body: '{"contents": [{"parts": [{"text": "\nCurrent Task: Research the current
state of the AI agent market:\n1. Search for recent information about AI agents
and their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."}], "role": "user"}, {"parts": [{"functionCall": {"args": {"query":
"AI agent market trends 2023-2024"}, "name": "web_search"}, "thoughtSignature":
"CoYEAXLI2nzmyDix3_QA-tMOiUwpDVoA5-RJoRW7kw3okJaVYCa5Usx7eBn4xowP7oXNynS4NfawCYqboufBXjHinq13UTcYg0Y74qIrza4KuctliGmf8G7S4QoS0Y3gqCHQKsxTdShQOg8wirnr8Rdu1eyrrhWE0XKk0HPA0Ssj7zUVoJBqHPqwyvkFyXkMtpcmtq9qXmZYfMFuSKRQnYLVLllL_BpOIL3w7MuofpviO85bvYk9gX0vsDjYWS6EdVEfC9k2BWGjhHaILXT9A1iwNPdDAg33SOC-BlPrGox0ghCr5qEKnBMZhUszqaUCykczFCq-xMIA3xDGNbTjicWb53sL_PXBYLsNty1giW3nKFe8-8eRpUsHUx7oQ82m4AUxKqk99mZjaLp8bHk-rERjFZErcw_pe_3190K0WGHH5ecB4amJCzZtVrQJ1oAZhb7_P1VZ57xmt1z_c1pQgjuvnV-cWE9blh5o6mNNFbFuzJDIO2k8qrFeeDwlCF8OOrxo8F-z1evg4yjZ1-9TLCVFTmZ0S0PI54FS5afb0RdPol2_ISNw7H_dtnO4z6LhT2NmlYqYZr8qfVoUD21rmI08NFs-f_6JW5-7eSQbax76SW-6A2IqqPPyF66MCpqtEzC-hpzVsCBcIQyRQWsdm-RNAs50gmqF6W3CcTPryWkeS7w9ORqxdiU="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "web_search", "response":
{"result": "Search results for ''AI agent market trends 2023-2024'': Found 3
relevant articles about the topic including market analysis, competitor data,
and industry trends."}}}], "role": "user"}, {"parts": [{"functionCall": {"args":
{"query": "latest reports AI agent market analysis"}, "name": "web_search"},
"thoughtSignature": "CpwGAXLI2nybmVGffIN1k-T5M2HmQNlvybZRPoo_ysgNARa-9nrPdRoBZ9RC-Dee9KSk1o7O-IU9l0sWCTirQYcroEhXon-JIQUVTed_L0s__sBOR-hJnZWoaG5ucsfJQvovAQba2Wb7uViEkdySvHfRApF0atewbC-TCKZrxDAQ6Naby8nwUTauJPKlgsBsZVnlViRfIbF7pom1zvXD-d5htjMiuJr1nOuSH0EGQWC4TUiuJD23hgockzhmIpbU_bStn8PFIQNsySEzl6H5sZdlD4auwCMCD2Q-Ur05w1uLv7n8GoSZn5dkdXLR5R7dZ-kkX-xP4w841Ih2gc6rBKT5tSedN01AuJsK65NSfOXZBwakxs58WZXDQXnIQe4d2QThAX3nPdUmhvVI6sHX-ZdtQZIrhE7hRf9j_T_wvvrUao5VDv-mxXd9bcPEV2BzSXkvkAB1SbJ-5wN7Qb2j31lkiUu5uRnZOiVxL5iCS-8Z_jEl4NjpGithbcPoNpFIDOeiE_f8kf7tQJDX-YNquPbYZRJHvIfLalVQndVGNlZVN2jXT3Wwo8So3vmzIDFVjV-pj7tSRNK8hTITm6bfHS-XUZqJdm7eHCzhonyJ7_tl7LbsstPXoZU3ZN50tNpXYOK-NzgzU7iwd9SaHVXgzQRdujWgHuBmSiSd9qNHvdaNwgARVTnMj3VYpehgIuaYMzQmgM99TdC_zmzcqHa5VZSnHKHqMIVc9gjRvVwz4DUm6VLLnKnVYFClM6gofmUI6s9fThiR5EdfimaDTlRlzh6Df33jAbRA9rUTDH6uE-DjiopCvXuHjmQqK9Smyxt2vTao9H7AYIRN7yWmdVoaG0tUSL2XQ31wIW3cEyhz7ihQwFYKJnOkQ3_CiU6KV-4ldk9UY_vKWSgItVTTE6G8Di0iviiCAkmL59Uj7vnIp80-U9rDIK7WhxpAWlrDA6cGQT2LGAXQ2liXtLa31nXyfvCezhtSS8jSVm4SHaiU-INvYtpq2Q7nXPTFbjjZooyC5FePGqAH1T-sRYbR02jaa572_NuwFgBCObTfqO8G5A=="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "web_search", "response":
{"result": "Search results for ''latest reports AI agent market analysis'':
Found 3 relevant articles about the topic including market analysis, competitor
data, and industry trends."}}}], "role": "user"}, {"parts": [{"functionCall":
{"args": {"url": "https://www.example.com/ai-agent-market-report"}, "name":
"read_website"}, "thoughtSignature": "CooPAXLI2nzYy6ki8YJo4RDDzryK6qtkbIEWXCh0ZjpoRX2fgNghUrxXZUwrsrbrwEpccdvWCDpb5ZkwYMNuzMi4yRUsjfcebfd2VCwQgvWnWmitj3taAcLCUDIJX5pGt0L2O8V6ehWmrANQHGw6Qc_QVx5dMlSFeFKHtfc1M95CJz2BxZd3lnuKLCEu7LCCiqIDdd1o1y_EcGsl7OHai6WyQJg49Cvcww__Z-kfSVoAPGNedTYPIf4ImttMyofV8-yczI0IGjhFzE0Qk1Pvo84O9NyOufpPELeKY8l1yfZgSZEL0sUA6weqf1P_xzNKt6h96Rh1KpAx5iTGFtqOWJrJ8OP-ZdGJ-rA-xZQuTRtKbW_e60rC5kPgJnkhWCp1p7HTLgTGwpzzxztqL0ggURaWw8GJw8S41BcM5mFEA-a7ivMWPMLdMk6h5gr_Y8JTnLSRZFoZYHkY9bTcAFPc9gapyFlKkQDciYet_MHe2zfE7ycx0e8c0W7ISoYPHpXW_WxNekMiNdfx1eg_mEX_Y0Vjc70p-HtbnEGaBoZWJSo-cJtZdA4sNJaIuEnnVTtAdAtnoxJUOyr2jrKDAsSjHmVoeLARZO2_DuJKsEVNHzsNPMw4SrBq1DkG52Aof7KcskOfW2OyoZEUnIf23IRabKflUG_7dHGqYfLtkWRApWZYBy2eQILwsmXJ4xx27S7_02Jl0D8rX3vOQhjS7lTjrXvy8wU3biUFvbnqJuLj3ACLn7Hn1axe4dB7zIpYC1di63DDs1fQp79d2VaGRC-tVMKiQu_-yC6nCM4j8JSnpBNgvyhq3ilAr_iDHD6GkbxdBBChFbZl0KY-WkrcZpPp2g2m_beiQuzF-cM6RuaqF2W0TEjVT-OZ1ivObreXFVFWa9T5qFsTjV3E_SFlmrXdx6Kf8d0i9QeEwbzBIvvX3VNUdW1DJ95WylaUXFtljk_cqylri2j2WTPMTSV9fcM_a8UWoayUAuLzq8zgxd2Wvrm8uvGcaewAQT-yK-u5FsLFoKxaMkoakb2_1tjWfhn-MrbIoYOBIebUapUhADUJgGDTG7byEEQlbwNaa8rOZ5ZpdBrDXjtj1tsz6cqaEiCbtZWqei0myuMa0J6Z3FHoceSUgOACD_bHWSkzdW7LdKBKLxB25fKfD1hCLscE1skZ7nAEZWmrUzKz9yCiqAPfatQhHqnr3EchEB_dxbNXxCCT6IFxemhb9AsaQWjcTrlQJiuz8t4VMmu1slgEcrhweZ_PpxI_E74qvV9ljcFLcziW0BZaqepJMeBe2cLfVVki5R5kudQVuAcCEdkrwBDWAwZlO9aWTmiZ9-ggfl3F_63JzZXSM_NDc_2rJ1k65e-O-vyTzkrUwnSPnh4RPK6jeIul4SSLPgyZBwp0qHyTl4As8jpMe9Rbt0NRli6Z5eAr_IYdbicKo_pzqiupdxvu4u-jKt-F4KojU9avgWFAB01isHHO5Z1vzVJ6XDilWeah5DvHc1lkcPCXtbBGvykfFqJIBhthnFi0f_S4HV-IlOKwvKbfmL5GplD7H-DjUA5UdHjw8HoJa6uQxhbERy5dZlYqxN918aL147Afq4LuPoWUJULEsYULwUuA6HspemIKUltHacOAxZgP4OLVkB3zwssj8E6rMtU1puupHiL7J66fFaR3co71gzzlvl8R2Xi3xEQdpigxxCUAsZWMrSrITRBnKPKGF1CrFEhU6FP6bQAQ6UuhAdqLoJihwVnMTyY9fGUriwCkrQu5gK7ZQlnXyluV0J_5xWh4sOaPmwmeiUXMBPN0iGb7z24lyHaI3QXz3kGlJBnIFhseJTJo3ed66Z_LAf8I_hFC6s_sIioEmRgd4tm3Q1U05ETKrptnzo8Ac4AOTdJtbQv0uDQSkoefUbebu7x6L9Dns04VSvDPKLwlFQd81sl9DYmi9SPDxKT7S6gfG6WjJ9z35eNSR01QW1QIgAAhMU8UX4o7QQaXnUZxfZeYRMXlzu_xb4KSREvc_FeLJ-IvnPFgzryAgLi_Sipl__Eul0sjrREPYJE1GxBOIoURGa-Bsmc3yy8aWArxv_HGpbLzwjmH8TaMvB3P_4tkvT-5IjJlpe0UrR1ssqasUtwfH9yWv5-4i-EdJrJ_SJ4Hl1Vlj9zi9lEFr33Zs96kn8ZOkBHp0m7Sxr5xP-krSxQkROIpu0d02kIqQ3nob-kGbnAf0zkmH6pS3H4mG2Zksu8KcGvghx7XTl3qBOJ-ZY4vlev2cSMBfMmnbUHKvMlz4YsmTGR1JPntDguA8UJJ1UZCex4E_W3KcHwd4qvzqgMZNjdarIvGjlmnKmoL1RV7EqUsBkpk-jauY0SqoWsIIf4b6O9Y3fQRRJURLeIfGCTmlxl-df-4yjqUhxUXTaQsX2KlEJ3tZK-ZI9FdKMzqPip2oMFwf2XfLIyIuRA0NU5fDRIxqPUzYv6RQ-zhXXB1QscsAtyf1t-LsaVw__1Vfj6V3Ups4pNyiwMAZg1z9DaIHht--VfgCdqT4RLcaGI8eEDrjkOc9G_iLkLBCfOB7EZkcXT20Lc1Silxa--dZsaYp5Tni8dz6f5YWg=="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "read_website", "response":
{"result": "Content from https://www.example.com/ai-agent-market-report: This
article discusses key insights about the topic including market size ($50B),
growth rate (15% YoY), and major players in the industry."}}}], "role": "user"},
{"parts": [{"functionCall": {"args": {"findings": "The AI agent market is currently
valued at $50 billion and is experiencing a strong growth rate of 15% year-over-year.
Key players in the industry are contributing to this expansion, driven by increasing
adoption across various sectors.", "title": "Current State of the AI Agent Market"},
"name": "generate_report"}, "thoughtSignature": "CuACAXLI2nzhub94iTgphfrBnaQV13Wv0-kRJj-l9jEDfxsyNg9eGnhxRfj4cued3Mgvv1CR9vkpfDV_V9x57TVWLNwPsVvsTgZKI0pwmV355sUCRKqAyfRBwDWhn0UAl9-sYNFCKUJCp8G5QBGfrar1lYLltX_z83d4O13Wn5Ugvxco9o4CdxnnPJOWkTPETRgXA_1HSdEiwGNqt0A3lKYkGRXQx-XyK54lDwmOBg-Yx4ZVgUxANXLK1z91NF_6cpmSVgoE2sL0VrIHISYs4XdUCj1fL3R7DpnZdrrZhmqnTjEgkeR1C3BR5GJeSUmg-kmqjPSPnP0NYiZo9H9SGL_ewGz3wg-GKcILAa4nD7_tfdqIMbAff8PJemwJE4ONT5zAmJ69_NFj0i1X01v04E8f2NdHewPSsKO5mptk5qzWxoW3G3uUhXccxk62EydTsESf6WRwolsmphaGgVE9AwuhzQ=="}],
"role": "model"}, {"parts": [{"functionResponse": {"name": "generate_report",
"response": {"result": "# Current State of the AI Agent Market\n\n## Executive
Summary\nThe AI agent market is currently valued at $50 billion and is experiencing
a strong growth rate of 15% year-over-year. Key players in the industry are
contributing to this expansion, driven by increasing adoption across various
sectors.\n\n## Conclusion\nBased on the analysis, the market shows strong growth
potential."}}}], "role": "user"}], "systemInstruction": {"parts": [{"text":
"You are Research Analyst. An experienced analyst skilled at gathering information
and synthesizing findings into actionable insights.\nYour personal goal is:
Conduct thorough research and produce insightful reports"}], "role": "user"},
"tools": [{"functionDeclarations": [{"description": "Search the web for information
on a given topic.\n\nArgs:\n query: The search query to look up.\n\nReturns:\n Search
results as a string.", "name": "web_search", "parameters_json_schema": {"properties":
{"query": {"title": "Query", "type": "string"}}, "required": ["query"], "type":
"object", "additionalProperties": false}}, {"description": "Read and extract
content from a website URL.\n\nArgs:\n url: The URL of the website to read.\n\nReturns:\n The
extracted content from the website.", "name": "read_website", "parameters_json_schema":
{"properties": {"url": {"title": "Url", "type": "string"}}, "required": ["url"],
"type": "object", "additionalProperties": false}}, {"description": "Generate
a structured report based on research findings.\n\nArgs:\n title: The title
of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.", "name": "generate_report", "parameters_json_schema":
{"properties": {"title": {"title": "Title", "type": "string"}, "findings": {"title":
"Findings", "type": "string"}}, "required": ["title", "findings"], "type": "object",
"additionalProperties": false}}]}], "generationConfig": {"stopSequences": ["\nObservation:"]}}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- '*/*'
accept-encoding:
- ACCEPT-ENCODING-XXX
connection:
- keep-alive
content-length:
- '8941'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
x-goog-api-client:
- google-genai-sdk/1.49.0 gl-python/3.13.3
x-goog-api-key:
- X-GOOG-API-KEY-XXX
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent
response:
body:
string: "{\n \"candidates\": [\n {\n \"content\": {\n \"parts\":
[\n {\n \"text\": \"The research on the current state
of the AI agent market has been completed. A report has been generated with
the following key findings:\\n\\n**Current State of the AI Agent Market**\\n\\n**Executive
Summary**\\nThe AI agent market is currently valued at $50 billion and is
experiencing a strong growth rate of 15% year-over-year. Key players in the
industry are contributing to this expansion, driven by increasing adoption
across various sectors.\\n\\n**Conclusion**\\nBased on the analysis, the market
shows strong growth potential.\",\n \"thoughtSignature\": \"CpIDAXLI2nwVVOjjKtAsnvvRhuJU79oCZksDIi1i7PcIr+FkXVHX8sS8kM0optXLnRQWDRKKxUDKA9C1myhIfnDfc3ef44xc4UaczwM80/TbYanden25qpZRA2kztBz9HiWEPyGjeX8M/8BGAj7mh3q6hwPtTFtmhFTzlw190YQoZLELqOyQzTSECt8roXPdWN1XhU/NbHg4x+H3IFSQ2HZKxbY/JC6tx5FYYh444tIT4798iVHI5HOUVb1pfdLfV45ju/DOD+pTONuqVcTX+jgusjoaH32pdu4Q19atg5BR6zanqwv93vkYPXx0hF4rI8FHtV9jrqwtjLqzXvh7LANtNpCvO3HG++lIoeRTy5RzfYQRkLkrfuLWW+xkGDYQh+CQ7jbeurx344pHBjzZTVDaSNTA0QMTYwDH7YUkxIsyw5Hv1F8tpVvjgoKqvJnar1d/EvrbiOwygpiEZOrmPEn/DKp4qPk2+hhFS4JpcnNGva9cFM22ObwHydIQdoXHOX3wci0nhshAZ0e8hd5u820gfrya\"\n
\ }\n ],\n \"role\": \"model\"\n },\n \"finishReason\":
\"STOP\",\n \"index\": 0\n }\n ],\n \"usageMetadata\": {\n \"promptTokenCount\":
727,\n \"candidatesTokenCount\": 108,\n \"totalTokenCount\": 910,\n
\ \"cachedContentTokenCount\": 375,\n \"promptTokensDetails\": [\n {\n
\ \"modality\": \"TEXT\",\n \"tokenCount\": 727\n }\n ],\n
\ \"cacheTokensDetails\": [\n {\n \"modality\": \"TEXT\",\n
\ \"tokenCount\": 375\n }\n ],\n \"thoughtsTokenCount\":
75\n },\n \"modelVersion\": \"gemini-2.5-flash\",\n \"responseId\": \"kUWCabvgOafg_uMP06Ga0QI\"\n}\n"
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 03 Feb 2026 18:59:30 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=3125
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
X-Frame-Options:
- X-FRAME-OPTIONS-XXX
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
version: 1

View File

@@ -1,708 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are a strategic planning assistant.
Create minimal, effective execution plans. Prefer fewer steps over more."},{"role":"user","content":"Create
a focused execution plan for the following task:\n\n## Task\nResearch the current
state of the AI agent market:\n1. Search for recent information about AI agents
and their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step.\n\n## Expected Output\nComplete the task successfully\n\n## Available
Tools\nweb_search, read_website, generate_report\n\n## Instructions\nCreate
ONLY the essential steps needed to complete this task. Use the MINIMUM number
of steps required - do NOT pad your plan with unnecessary steps. Most tasks
need only 2-5 steps.\n\nFor each step:\n- State the specific action to take\n-
Specify which tool to use (if any)\n- Note dependencies on previous steps if
this step requires their output\n- If a step involves multiple items (e.g.,
research 3 competitors), note this explicitly\n\nDo NOT include:\n- Setup or
preparation steps that are obvious\n- Verification steps unless critical\n-
Documentation or cleanup steps unless explicitly required\n- Generic steps like
\"review results\" or \"finalize output\"\n\nAfter your plan, state:\n- \"READY:
I am ready to execute the task.\" if the plan is complete\n- \"NOT READY: I
need to refine my plan because [reason].\" if you need more thinking"}],"model":"gpt-4o","tool_choice":"auto","tools":[{"type":"function","function":{"name":"create_reasoning_plan","description":"Create
or refine a reasoning plan for a task with structured steps","strict":true,"parameters":{"type":"object","properties":{"plan":{"type":"string","description":"A
brief summary of the overall plan."},"steps":{"type":"array","description":"List
of discrete steps to execute the plan","items":{"type":"object","properties":{"step_number":{"type":"integer","description":"Step
number (1-based)"},"description":{"type":"string","description":"What to do
in this step"},"tool_to_use":{"type":["string","null"],"description":"Tool to
use for this step, or null if no tool needed"},"depends_on":{"type":"array","items":{"type":"integer"},"description":"Step
numbers this step depends on (empty array if none)"}},"required":["step_number","description","tool_to_use","depends_on"],"additionalProperties":false}},"ready":{"type":"boolean","description":"Whether
the agent is ready to execute the task."}},"required":["plan","steps","ready"],"additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '2619'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5Fu3HzCCoZJXtY9WqBmBv4QA4PS8\",\n \"object\":
\"chat.completion\",\n \"created\": 1770145143,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_bVEiQHpiVX9FEfuWVwTe8XGj\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"create_reasoning_plan\",\n
\ \"arguments\": \"{\\\"plan\\\":\\\"Research the current state
of the AI agent market by gathering recent market trend data, reading in-depth
content from a reliable industry source, and generating a concise report.\\\",\\\"steps\\\":[{\\\"step_number\\\":1,\\\"description\\\":\\\"Search
for recent information about AI agents and their market trends.\\\",\\\"tool_to_use\\\":\\\"web_search\\\",\\\"depends_on\\\":[]},{\\\"step_number\\\":2,\\\"description\\\":\\\"Read
detailed content from a relevant industry source found during the search.\\\",\\\"tool_to_use\\\":\\\"read_website\\\",\\\"depends_on\\\":[1]},{\\\"step_number\\\":3,\\\"description\\\":\\\"Generate
a brief report summarizing the key findings from the gathered information.\\\",\\\"tool_to_use\\\":\\\"generate_report\\\",\\\"depends_on\\\":[1,2]}],\\\"ready\\\":true}\"\n
\ }\n }\n ],\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 480,\n \"completion_tokens\":
153,\n \"total_tokens\": 633,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_fa7f5b168b\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:59:05 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '2629'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Research Analyst. An experienced
analyst skilled at gathering information and synthesizing findings into actionable
insights.\nYour personal goal is: Conduct thorough research and produce insightful
reports"},{"role":"user","content":"\nCurrent Task: Research the current state
of the AI agent market:\n1. Search for recent information about AI agents and
their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."}],"model":"gpt-4o","tool_choice":"auto","tools":[{"type":"function","function":{"name":"web_search","description":"Search
the web for information on a given topic.\n\nArgs:\n query: The search query
to look up.\n\nReturns:\n Search results as a string.","strict":true,"parameters":{"properties":{"query":{"title":"Query","type":"string"}},"required":["query"],"type":"object","additionalProperties":false}}},{"type":"function","function":{"name":"read_website","description":"Read
and extract content from a website URL.\n\nArgs:\n url: The URL of the website
to read.\n\nReturns:\n The extracted content from the website.","strict":true,"parameters":{"properties":{"url":{"title":"Url","type":"string"}},"required":["url"],"type":"object","additionalProperties":false}}},{"type":"function","function":{"name":"generate_report","description":"Generate
a structured report based on research findings.\n\nArgs:\n title: The title
of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.","strict":true,"parameters":{"properties":{"title":{"title":"Title","type":"string"},"findings":{"title":"Findings","type":"string"}},"required":["title","findings"],"type":"object","additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1849'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5Fu6H5Oz7CA6xtmPwoBDIAr59nyJ\",\n \"object\":
\"chat.completion\",\n \"created\": 1770145146,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_QlnPEA94TbaFA83eRDhOHXRY\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"web_search\",\n
\ \"arguments\": \"{\\\"query\\\":\\\"current state of AI agent
market 2023\\\"}\"\n }\n }\n ],\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"tool_calls\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
267,\n \"completion_tokens\": 22,\n \"total_tokens\": 289,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_fa7f5b168b\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:59:07 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '752'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Research Analyst. An experienced
analyst skilled at gathering information and synthesizing findings into actionable
insights.\nYour personal goal is: Conduct thorough research and produce insightful
reports"},{"role":"user","content":"\nCurrent Task: Research the current state
of the AI agent market:\n1. Search for recent information about AI agents and
their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_QlnPEA94TbaFA83eRDhOHXRY","type":"function","function":{"name":"web_search","arguments":"{\"query\":\"current
state of AI agent market 2023\"}"}}]},{"role":"tool","tool_call_id":"call_QlnPEA94TbaFA83eRDhOHXRY","name":"web_search","content":"Search
results for ''current state of AI agent market 2023'': Found 3 relevant articles
about the topic including market analysis, competitor data, and industry trends."}],"model":"gpt-4o","tool_choice":"auto","tools":[{"type":"function","function":{"name":"web_search","description":"Search
the web for information on a given topic.\n\nArgs:\n query: The search query
to look up.\n\nReturns:\n Search results as a string.","strict":true,"parameters":{"properties":{"query":{"title":"Query","type":"string"}},"required":["query"],"type":"object","additionalProperties":false}}},{"type":"function","function":{"name":"read_website","description":"Read
and extract content from a website URL.\n\nArgs:\n url: The URL of the website
to read.\n\nReturns:\n The extracted content from the website.","strict":true,"parameters":{"properties":{"url":{"title":"Url","type":"string"}},"required":["url"],"type":"object","additionalProperties":false}}},{"type":"function","function":{"name":"generate_report","description":"Generate
a structured report based on research findings.\n\nArgs:\n title: The title
of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.","strict":true,"parameters":{"properties":{"title":{"title":"Title","type":"string"},"findings":{"title":"Findings","type":"string"}},"required":["title","findings"],"type":"object","additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '2320'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5Fu7QFl2h9pGJ0uhX6g4Fi4MMzMX\",\n \"object\":
\"chat.completion\",\n \"created\": 1770145147,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_sOaxpAdq5dvpRhUJMAct2oNP\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"read_website\",\n
\ \"arguments\": \"{\\\"url\\\": \\\"https://www.example.com/ai-agent-market-analysis-2023\\\"}\"\n
\ }\n },\n {\n \"id\": \"call_1GRSbggp4SYHg5WqAUQx5Dce\",\n
\ \"type\": \"function\",\n \"function\": {\n \"name\":
\"read_website\",\n \"arguments\": \"{\\\"url\\\": \\\"https://www.example.com/ai-agent-competitor-data-2023\\\"}\"\n
\ }\n },\n {\n \"id\": \"call_43s9ebATowN3hA5piPjL2z5N\",\n
\ \"type\": \"function\",\n \"function\": {\n \"name\":
\"read_website\",\n \"arguments\": \"{\\\"url\\\": \\\"https://www.example.com/ai-agent-industry-trends-2023\\\"}\"\n
\ }\n }\n ],\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 330,\n \"completion_tokens\":
101,\n \"total_tokens\": 431,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_fa7f5b168b\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:59:09 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1885'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Research Analyst. An experienced
analyst skilled at gathering information and synthesizing findings into actionable
insights.\nYour personal goal is: Conduct thorough research and produce insightful
reports"},{"role":"user","content":"\nCurrent Task: Research the current state
of the AI agent market:\n1. Search for recent information about AI agents and
their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_QlnPEA94TbaFA83eRDhOHXRY","type":"function","function":{"name":"web_search","arguments":"{\"query\":\"current
state of AI agent market 2023\"}"}}]},{"role":"tool","tool_call_id":"call_QlnPEA94TbaFA83eRDhOHXRY","name":"web_search","content":"Search
results for ''current state of AI agent market 2023'': Found 3 relevant articles
about the topic including market analysis, competitor data, and industry trends."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_sOaxpAdq5dvpRhUJMAct2oNP","type":"function","function":{"name":"read_website","arguments":"{\"url\":
\"https://www.example.com/ai-agent-market-analysis-2023\"}"}},{"id":"call_1GRSbggp4SYHg5WqAUQx5Dce","type":"function","function":{"name":"read_website","arguments":"{\"url\":
\"https://www.example.com/ai-agent-competitor-data-2023\"}"}},{"id":"call_43s9ebATowN3hA5piPjL2z5N","type":"function","function":{"name":"read_website","arguments":"{\"url\":
\"https://www.example.com/ai-agent-industry-trends-2023\"}"}}]},{"role":"tool","tool_call_id":"call_sOaxpAdq5dvpRhUJMAct2oNP","name":"read_website","content":"Content
from https://www.example.com/ai-agent-market-analysis-2023: This article discusses
key insights about the topic including market size ($50B), growth rate (15%
YoY), and major players in the industry."},{"role":"tool","tool_call_id":"call_1GRSbggp4SYHg5WqAUQx5Dce","name":"read_website","content":"Content
from https://www.example.com/ai-agent-competitor-data-2023: This article discusses
key insights about the topic including market size ($50B), growth rate (15%
YoY), and major players in the industry."},{"role":"tool","tool_call_id":"call_43s9ebATowN3hA5piPjL2z5N","name":"read_website","content":"Content
from https://www.example.com/ai-agent-industry-trends-2023: This article discusses
key insights about the topic including market size ($50B), growth rate (15%
YoY), and major players in the industry."}],"model":"gpt-4o","tool_choice":"auto","tools":[{"type":"function","function":{"name":"web_search","description":"Search
the web for information on a given topic.\n\nArgs:\n query: The search query
to look up.\n\nReturns:\n Search results as a string.","strict":true,"parameters":{"properties":{"query":{"title":"Query","type":"string"}},"required":["query"],"type":"object","additionalProperties":false}}},{"type":"function","function":{"name":"read_website","description":"Read
and extract content from a website URL.\n\nArgs:\n url: The URL of the website
to read.\n\nReturns:\n The extracted content from the website.","strict":true,"parameters":{"properties":{"url":{"title":"Url","type":"string"}},"required":["url"],"type":"object","additionalProperties":false}}},{"type":"function","function":{"name":"generate_report","description":"Generate
a structured report based on research findings.\n\nArgs:\n title: The title
of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.","strict":true,"parameters":{"properties":{"title":{"title":"Title","type":"string"},"findings":{"title":"Findings","type":"string"}},"required":["title","findings"],"type":"object","additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '3811'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5Fu95gX9R1zxpiJUa1wSOzIGA9CL\",\n \"object\":
\"chat.completion\",\n \"created\": 1770145149,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_QjEKbvT6OnKkCOTvwTu0TmAK\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"generate_report\",\n
\ \"arguments\": \"{\\\"title\\\":\\\"Current State of the AI
Agent Market 2023\\\",\\\"findings\\\":\\\"1. Market Size: The AI agent market
is currently valued at $50 billion.\\\\n2. Growth Rate: The industry is experiencing
a growth rate of 15% year-over-year.\\\\n3. Major Players: Significant companies
in this space include tech giants and specialized AI startups.\\\\n4. Market
Trends: The demand for AI agents is being driven by improvements in machine
learning algorithms and increasing adoption in customer service and automation
processes.\\\\n5. Competitive Landscape: The market is competitive with ongoing
innovation and investment in developing more advanced AI capabilities.\\\\n6.
Future Prospects: Continued growth is expected as businesses further integrate
AI agents into their operations for efficiency gains and customer engagement.\\\"}\"\n
\ }\n }\n ],\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 587,\n \"completion_tokens\":
163,\n \"total_tokens\": 750,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_fa7f5b168b\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:59:12 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '3444'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Research Analyst. An experienced
analyst skilled at gathering information and synthesizing findings into actionable
insights.\nYour personal goal is: Conduct thorough research and produce insightful
reports"},{"role":"user","content":"\nCurrent Task: Research the current state
of the AI agent market:\n1. Search for recent information about AI agents and
their market trends\n2. Read detailed content from a relevant industry source\n3.
Generate a brief report summarizing the key findings\n\nUse the available tools
for each step."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_QlnPEA94TbaFA83eRDhOHXRY","type":"function","function":{"name":"web_search","arguments":"{\"query\":\"current
state of AI agent market 2023\"}"}}]},{"role":"tool","tool_call_id":"call_QlnPEA94TbaFA83eRDhOHXRY","name":"web_search","content":"Search
results for ''current state of AI agent market 2023'': Found 3 relevant articles
about the topic including market analysis, competitor data, and industry trends."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_sOaxpAdq5dvpRhUJMAct2oNP","type":"function","function":{"name":"read_website","arguments":"{\"url\":
\"https://www.example.com/ai-agent-market-analysis-2023\"}"}},{"id":"call_1GRSbggp4SYHg5WqAUQx5Dce","type":"function","function":{"name":"read_website","arguments":"{\"url\":
\"https://www.example.com/ai-agent-competitor-data-2023\"}"}},{"id":"call_43s9ebATowN3hA5piPjL2z5N","type":"function","function":{"name":"read_website","arguments":"{\"url\":
\"https://www.example.com/ai-agent-industry-trends-2023\"}"}}]},{"role":"tool","tool_call_id":"call_sOaxpAdq5dvpRhUJMAct2oNP","name":"read_website","content":"Content
from https://www.example.com/ai-agent-market-analysis-2023: This article discusses
key insights about the topic including market size ($50B), growth rate (15%
YoY), and major players in the industry."},{"role":"tool","tool_call_id":"call_1GRSbggp4SYHg5WqAUQx5Dce","name":"read_website","content":"Content
from https://www.example.com/ai-agent-competitor-data-2023: This article discusses
key insights about the topic including market size ($50B), growth rate (15%
YoY), and major players in the industry."},{"role":"tool","tool_call_id":"call_43s9ebATowN3hA5piPjL2z5N","name":"read_website","content":"Content
from https://www.example.com/ai-agent-industry-trends-2023: This article discusses
key insights about the topic including market size ($50B), growth rate (15%
YoY), and major players in the industry."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_QjEKbvT6OnKkCOTvwTu0TmAK","type":"function","function":{"name":"generate_report","arguments":"{\"title\":\"Current
State of the AI Agent Market 2023\",\"findings\":\"1. Market Size: The AI agent
market is currently valued at $50 billion.\\n2. Growth Rate: The industry is
experiencing a growth rate of 15% year-over-year.\\n3. Major Players: Significant
companies in this space include tech giants and specialized AI startups.\\n4.
Market Trends: The demand for AI agents is being driven by improvements in machine
learning algorithms and increasing adoption in customer service and automation
processes.\\n5. Competitive Landscape: The market is competitive with ongoing
innovation and investment in developing more advanced AI capabilities.\\n6.
Future Prospects: Continued growth is expected as businesses further integrate
AI agents into their operations for efficiency gains and customer engagement.\"}"}}]},{"role":"tool","tool_call_id":"call_QjEKbvT6OnKkCOTvwTu0TmAK","name":"generate_report","content":"#
Current State of the AI Agent Market 2023\n\n## Executive Summary\n1. Market
Size: The AI agent market is currently valued at $50 billion.\n2. Growth Rate:
The industry is experiencing a growth rate of 15% year-over-year.\n3. Major
Players: Significant companies in this space include tech giants and specialized
AI startups.\n4. Market Trends: The demand for AI agents is being driven by
improvements in machine learning algorithms and increasing adoption in customer
service and automation processes.\n5. Competitive Landscape: The market is competitive
with ongoing innovation and investment in developing more advanced AI capabilities.\n6.
Future Prospects: Continued growth is expected as businesses further integrate
AI agents into their operations for efficiency gains and customer engagement.\n\n##
Conclusion\nBased on the analysis, the market shows strong growth potential."}],"model":"gpt-4o","tool_choice":"auto","tools":[{"type":"function","function":{"name":"web_search","description":"Search
the web for information on a given topic.\n\nArgs:\n query: The search query
to look up.\n\nReturns:\n Search results as a string.","strict":true,"parameters":{"properties":{"query":{"title":"Query","type":"string"}},"required":["query"],"type":"object","additionalProperties":false}}},{"type":"function","function":{"name":"read_website","description":"Read
and extract content from a website URL.\n\nArgs:\n url: The URL of the website
to read.\n\nReturns:\n The extracted content from the website.","strict":true,"parameters":{"properties":{"url":{"title":"Url","type":"string"}},"required":["url"],"type":"object","additionalProperties":false}}},{"type":"function","function":{"name":"generate_report","description":"Generate
a structured report based on research findings.\n\nArgs:\n title: The title
of the report.\n findings: The research findings to include.\n\nReturns:\n A
formatted report string.","strict":true,"parameters":{"properties":{"title":{"title":"Title","type":"string"},"findings":{"title":"Findings","type":"string"}},"required":["title","findings"],"type":"object","additionalProperties":false}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '5771'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D5FuCTJhAII96iBV05ECT71cV6QmJ\",\n \"object\":
\"chat.completion\",\n \"created\": 1770145152,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"The research on the current state of
the AI agent market indicates a robust and rapidly growing industry. Here\u2019s
a summary of the findings:\\n\\n1. **Market Size**: The AI agent market is
currently valued at $50 billion.\\n2. **Growth Rate**: It is experiencing
a significant growth rate of 15% year-over-year.\\n3. **Major Players**: The
market is dominated by tech giants and specialized AI startups.\\n4. **Market
Trends**: The increasing adoption of machine learning algorithms and the integration
of AI in customer service and automation are key drivers.\\n5. **Competitive
Landscape**: There is substantial competition and continuous innovation in
AI capabilities.\\n6. **Future Prospects**: The sector is expected to keep
growing as businesses increasingly use AI agents for efficiency and improved
customer engagement.\\n\\nThis analysis highlights significant opportunities
in the AI agent sector, underlining its importance in future technological
advancements.\",\n \"refusal\": null,\n \"annotations\": []\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 920,\n \"completion_tokens\":
182,\n \"total_tokens\": 1102,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_fa7f5b168b\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 03 Feb 2026 18:59:16 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '3456'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,8 +1,6 @@
import os
import unittest
from unittest.mock import ANY, AsyncMock, MagicMock, patch
import pytest
from unittest.mock import ANY, MagicMock, patch
from crewai.cli.plus_api import PlusAPI
@@ -70,6 +68,37 @@ class TestPlusAPI(unittest.TestCase):
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.PlusAPI._make_request")
def test_get_agent(self, mock_make_request):
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.get_agent("test_agent_handle")
mock_make_request.assert_called_once_with(
"GET", "/crewai_plus/api/v1/agents/test_agent_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_get_agent_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings.enterprise_base_url = os.getenv('CREWAI_PLUS_URL')
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.get_agent("test_agent_handle")
self.assert_request_with_org_id(
mock_make_request, "GET", "/crewai_plus/api/v1/agents/test_agent_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.PlusAPI._make_request")
def test_get_tool(self, mock_make_request):
mock_response = MagicMock()
@@ -309,49 +338,3 @@ class TestPlusAPI(unittest.TestCase):
custom_api.base_url,
"https://custom-url-from-env.com",
)
@pytest.mark.asyncio
@patch("httpx.AsyncClient")
async def test_get_agent(mock_async_client_class):
api = PlusAPI("test_api_key")
mock_response = MagicMock()
mock_client_instance = AsyncMock()
mock_client_instance.get.return_value = mock_response
mock_async_client_class.return_value.__aenter__.return_value = mock_client_instance
response = await api.get_agent("test_agent_handle")
mock_client_instance.get.assert_called_once_with(
f"{api.base_url}/crewai_plus/api/v1/agents/test_agent_handle",
headers=api.headers,
)
assert response == mock_response
@pytest.mark.asyncio
@patch("httpx.AsyncClient")
@patch("crewai.cli.plus_api.Settings")
async def test_get_agent_with_org_uuid(mock_settings_class, mock_async_client_class):
org_uuid = "test-org-uuid"
mock_settings = MagicMock()
mock_settings.org_uuid = org_uuid
mock_settings.enterprise_base_url = os.getenv("CREWAI_PLUS_URL")
mock_settings_class.return_value = mock_settings
api = PlusAPI("test_api_key")
mock_response = MagicMock()
mock_client_instance = AsyncMock()
mock_client_instance.get.return_value = mock_response
mock_async_client_class.return_value.__aenter__.return_value = mock_client_instance
response = await api.get_agent("test_agent_handle")
mock_client_instance.get.assert_called_once_with(
f"{api.base_url}/crewai_plus/api/v1/agents/test_agent_handle",
headers=api.headers,
)
assert "X-Crewai-Organization-Id" in api.headers
assert api.headers["X-Crewai-Organization-Id"] == org_uuid
assert response == mock_response

View File

@@ -177,40 +177,4 @@ class TestTriggeredByScope:
raise ValueError("test error")
except ValueError:
pass
assert get_triggering_event_id() is None
def test_agent_scope_preserved_after_tool_error_event() -> None:
from crewai.events import crewai_event_bus
from crewai.events.types.tool_usage_events import (
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
push_event_scope("crew-1", "crew_kickoff_started")
push_event_scope("task-1", "task_started")
push_event_scope("agent-1", "agent_execution_started")
crewai_event_bus.emit(
None,
ToolUsageStartedEvent(
tool_name="test_tool",
tool_args={},
agent_key="test_agent",
)
)
crewai_event_bus.emit(
None,
ToolUsageErrorEvent(
tool_name="test_tool",
tool_args={},
agent_key="test_agent",
error=ValueError("test error"),
)
)
crewai_event_bus.flush()
assert get_current_parent_id() == "agent-1"
assert get_triggering_event_id() is None

View File

@@ -308,7 +308,6 @@ def test_external_memory_search_events(
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"query": "test value",
"limit": 3,
@@ -331,7 +330,6 @@ def test_external_memory_search_events(
"parent_event_id": ANY,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"query": "test value",
"results": [],
@@ -392,7 +390,6 @@ def test_external_memory_save_events(
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"value": "saving value",
"metadata": {"task": "test_task"},
@@ -414,7 +411,6 @@ def test_external_memory_save_events(
"parent_event_id": ANY,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"value": "saving value",
"metadata": {"task": "test_task"},

View File

@@ -74,7 +74,6 @@ def test_long_term_memory_save_events(long_term_memory):
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"value": "test_task",
"metadata": {"task": "test_task", "quality": 0.5},
@@ -95,7 +94,6 @@ def test_long_term_memory_save_events(long_term_memory):
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"value": "test_task",
"metadata": {
@@ -155,7 +153,6 @@ def test_long_term_memory_search_events(long_term_memory):
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"query": "test query",
"limit": 5,
@@ -178,7 +175,6 @@ def test_long_term_memory_search_events(long_term_memory):
"parent_event_id": ANY,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"query": "test query",
"results": None,

View File

@@ -85,7 +85,6 @@ def test_short_term_memory_search_events(short_term_memory):
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"query": "test value",
"limit": 3,
@@ -108,7 +107,6 @@ def test_short_term_memory_search_events(short_term_memory):
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"query": "test value",
"results": [],
@@ -166,7 +164,6 @@ def test_short_term_memory_save_events(short_term_memory):
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"value": "test value",
"metadata": {"task": "test_task"},
@@ -188,7 +185,6 @@ def test_short_term_memory_save_events(short_term_memory):
"parent_event_id": None,
"previous_event_id": ANY,
"triggered_by_event_id": None,
"started_event_id": ANY,
"emission_sequence": ANY,
"value": "test value",
"metadata": {"task": "test_task"},

View File

@@ -157,176 +157,6 @@ class TestMultiStepFlows:
assert execution_order == ["generate", "review", "finalize"]
def test_chained_router_feedback_steps(self):
"""Test that a router outcome can trigger another router method.
Regression test: @listen("outcome") combined with @human_feedback(emit=...)
creates a method that is both a listener and a router. The flow must find
and execute it when the upstream router emits the matching outcome.
"""
execution_order: list[str] = []
class ChainedRouterFlow(Flow):
@start()
@human_feedback(
message="First review:",
emit=["approved", "rejected"],
llm="gpt-4o-mini",
)
def draft(self):
execution_order.append("draft")
return "draft content"
@listen("approved")
@human_feedback(
message="Final review:",
emit=["publish", "revise"],
llm="gpt-4o-mini",
)
def final_review(self, prev: HumanFeedbackResult):
execution_order.append("final_review")
return "final content"
@listen("rejected")
def on_rejected(self, prev: HumanFeedbackResult):
execution_order.append("on_rejected")
return "rejected"
@listen("publish")
def on_publish(self, prev: HumanFeedbackResult):
execution_order.append("on_publish")
return "published"
@listen("revise")
def on_revise(self, prev: HumanFeedbackResult):
execution_order.append("on_revise")
return "revised"
flow = ChainedRouterFlow()
with (
patch.object(
flow,
"_request_human_feedback",
side_effect=["looks good", "ship it"],
),
patch.object(
flow,
"_collapse_to_outcome",
side_effect=["approved", "publish"],
),
):
result = flow.kickoff()
assert execution_order == ["draft", "final_review", "on_publish"]
assert result == "published"
assert len(flow.human_feedback_history) == 2
assert flow.human_feedback_history[0].outcome == "approved"
assert flow.human_feedback_history[1].outcome == "publish"
def test_chained_router_rejected_path(self):
"""Test that a start-router outcome routes to a non-router listener."""
execution_order: list[str] = []
class ChainedRouterFlow(Flow):
@start()
@human_feedback(
message="Review:",
emit=["approved", "rejected"],
llm="gpt-4o-mini",
)
def draft(self):
execution_order.append("draft")
return "draft"
@listen("approved")
@human_feedback(
message="Final:",
emit=["publish", "revise"],
llm="gpt-4o-mini",
)
def final_review(self, prev: HumanFeedbackResult):
execution_order.append("final_review")
return "final"
@listen("rejected")
def on_rejected(self, prev: HumanFeedbackResult):
execution_order.append("on_rejected")
return "rejected"
flow = ChainedRouterFlow()
with (
patch.object(
flow, "_request_human_feedback", return_value="bad"
),
patch.object(
flow, "_collapse_to_outcome", return_value="rejected"
),
):
result = flow.kickoff()
assert execution_order == ["draft", "on_rejected"]
assert result == "rejected"
assert len(flow.human_feedback_history) == 1
assert flow.human_feedback_history[0].outcome == "rejected"
def test_router_and_non_router_listeners_for_same_outcome(self):
"""Test that both router and non-router listeners fire for the same outcome."""
execution_order: list[str] = []
class MixedListenerFlow(Flow):
@start()
@human_feedback(
message="Review:",
emit=["approved", "rejected"],
llm="gpt-4o-mini",
)
def draft(self):
execution_order.append("draft")
return "draft"
@listen("approved")
@human_feedback(
message="Final:",
emit=["publish", "revise"],
llm="gpt-4o-mini",
)
def router_listener(self, prev: HumanFeedbackResult):
execution_order.append("router_listener")
return "final"
@listen("approved")
def plain_listener(self, prev: HumanFeedbackResult):
execution_order.append("plain_listener")
return "logged"
@listen("publish")
def on_publish(self, prev: HumanFeedbackResult):
execution_order.append("on_publish")
return "published"
flow = MixedListenerFlow()
with (
patch.object(
flow,
"_request_human_feedback",
side_effect=["approve it", "publish it"],
),
patch.object(
flow,
"_collapse_to_outcome",
side_effect=["approved", "publish"],
),
):
flow.kickoff()
assert "draft" in execution_order
assert "router_listener" in execution_order
assert "plain_listener" in execution_order
assert "on_publish" in execution_order
class TestStateManagement:
"""Tests for state management with human feedback."""

View File

@@ -10,9 +10,7 @@ from crewai import Agent, Task
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.tool_usage_events import (
ToolSelectionErrorEvent,
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
ToolValidateInputErrorEvent,
)
from crewai.tools import BaseTool
@@ -746,78 +744,3 @@ def test_tool_usage_finished_event_with_cached_result():
assert isinstance(event.started_at, datetime.datetime)
assert isinstance(event.finished_at, datetime.datetime)
assert event.type == "tool_usage_finished"
def test_tool_error_does_not_emit_finished_event():
from crewai.tools.tool_calling import ToolCalling
class FailingTool(BaseTool):
name: str = "Failing Tool"
description: str = "A tool that always fails"
def _run(self, **kwargs) -> str:
raise ValueError("Intentional failure")
failing_tool = FailingTool().to_structured_tool()
mock_agent = MagicMock()
mock_agent.key = "test_agent_key"
mock_agent.role = "test_agent_role"
mock_agent._original_role = "test_agent_role"
mock_agent.verbose = False
mock_agent.fingerprint = None
mock_agent.i18n.tools.return_value = {"name": "Add Image"}
mock_agent.i18n.errors.return_value = "Error: {error}"
mock_agent.i18n.slice.return_value = "Available tools: {tool_names}"
mock_task = MagicMock()
mock_task.delegations = 0
mock_task.name = "Test Task"
mock_task.description = "A test task"
mock_task.id = "test-task-id"
mock_action = MagicMock()
mock_action.tool = "failing_tool"
mock_action.tool_input = "{}"
tool_usage = ToolUsage(
tools_handler=MagicMock(cache=None, last_used_tool=None),
tools=[failing_tool],
task=mock_task,
function_calling_llm=None,
agent=mock_agent,
action=mock_action,
)
started_events = []
error_events = []
finished_events = []
error_received = threading.Event()
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_started(source, event):
if event.tool_name == "failing_tool":
started_events.append(event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_error(source, event):
if event.tool_name == "failing_tool":
error_events.append(event)
error_received.set()
@crewai_event_bus.on(ToolUsageFinishedEvent)
def on_finished(source, event):
if event.tool_name == "failing_tool":
finished_events.append(event)
tool_calling = ToolCalling(tool_name="failing_tool", arguments={})
tool_usage.use(calling=tool_calling, tool_string="Action: failing_tool")
assert error_received.wait(timeout=5), "Timeout waiting for error event"
crewai_event_bus.flush()
assert len(started_events) >= 1, "Expected at least one ToolUsageStartedEvent"
assert len(error_events) >= 1, "Expected at least one ToolUsageErrorEvent"
assert len(finished_events) == 0, (
"ToolUsageFinishedEvent should NOT be emitted after ToolUsageErrorEvent"
)

View File

@@ -1,389 +0,0 @@
"""Tests for planning types (PlanStep, TodoItem, TodoList)."""
import pytest
from uuid import UUID
from crewai.utilities.planning_types import (
PlanStep,
TodoItem,
TodoList,
TodoStatus,
)
class TestPlanStep:
"""Tests for the PlanStep model."""
def test_plan_step_with_required_fields(self):
"""Test PlanStep creation with only required fields."""
step = PlanStep(
step_number=1,
description="Research the topic",
)
assert step.step_number == 1
assert step.description == "Research the topic"
assert step.tool_to_use is None
assert step.depends_on == []
def test_plan_step_with_all_fields(self):
"""Test PlanStep creation with all fields."""
step = PlanStep(
step_number=2,
description="Search for information",
tool_to_use="search_tool",
depends_on=[1],
)
assert step.step_number == 2
assert step.description == "Search for information"
assert step.tool_to_use == "search_tool"
assert step.depends_on == [1]
def test_plan_step_with_multiple_dependencies(self):
"""Test PlanStep with multiple dependencies."""
step = PlanStep(
step_number=4,
description="Synthesize results",
depends_on=[1, 2, 3],
)
assert step.depends_on == [1, 2, 3]
def test_plan_step_requires_step_number(self):
"""Test that step_number is required."""
with pytest.raises(ValueError):
PlanStep(description="Missing step number")
def test_plan_step_requires_description(self):
"""Test that description is required."""
with pytest.raises(ValueError):
PlanStep(step_number=1)
def test_plan_step_serialization(self):
"""Test PlanStep can be serialized to dict."""
step = PlanStep(
step_number=1,
description="Test step",
tool_to_use="test_tool",
depends_on=[],
)
data = step.model_dump()
assert data["step_number"] == 1
assert data["description"] == "Test step"
assert data["tool_to_use"] == "test_tool"
assert data["depends_on"] == []
class TestTodoItem:
"""Tests for the TodoItem model."""
def test_todo_item_with_required_fields(self):
"""Test TodoItem creation with only required fields."""
todo = TodoItem(
step_number=1,
description="First task",
)
assert todo.step_number == 1
assert todo.description == "First task"
assert todo.status == "pending"
assert todo.tool_to_use is None
assert todo.depends_on == []
assert todo.result is None
# ID should be auto-generated
assert todo.id is not None
# Verify it's a valid UUID
UUID(todo.id)
def test_todo_item_with_all_fields(self):
"""Test TodoItem creation with all fields."""
todo = TodoItem(
id="custom-id-123",
step_number=2,
description="Second task",
tool_to_use="search_tool",
status="running",
depends_on=[1],
result="Task completed",
)
assert todo.id == "custom-id-123"
assert todo.step_number == 2
assert todo.description == "Second task"
assert todo.tool_to_use == "search_tool"
assert todo.status == "running"
assert todo.depends_on == [1]
assert todo.result == "Task completed"
def test_todo_item_status_values(self):
"""Test all valid status values."""
for status in ["pending", "running", "completed"]:
todo = TodoItem(
step_number=1,
description="Test",
status=status,
)
assert todo.status == status
def test_todo_item_auto_generates_unique_ids(self):
"""Test that each TodoItem gets a unique auto-generated ID."""
todo1 = TodoItem(step_number=1, description="Task 1")
todo2 = TodoItem(step_number=2, description="Task 2")
assert todo1.id != todo2.id
def test_todo_item_serialization(self):
"""Test TodoItem can be serialized to dict."""
todo = TodoItem(
step_number=1,
description="Test task",
status="pending",
)
data = todo.model_dump()
assert "id" in data
assert data["step_number"] == 1
assert data["description"] == "Test task"
assert data["status"] == "pending"
class TestTodoList:
"""Tests for the TodoList model."""
@pytest.fixture
def empty_todo_list(self):
"""Create an empty TodoList."""
return TodoList()
@pytest.fixture
def sample_todo_list(self):
"""Create a TodoList with sample items."""
return TodoList(
items=[
TodoItem(step_number=1, description="Step 1", status="completed"),
TodoItem(step_number=2, description="Step 2", status="running"),
TodoItem(step_number=3, description="Step 3", status="pending"),
TodoItem(step_number=4, description="Step 4", status="pending"),
]
)
def test_empty_todo_list(self, empty_todo_list):
"""Test empty TodoList properties."""
assert empty_todo_list.items == []
assert empty_todo_list.current_todo is None
assert empty_todo_list.next_pending is None
assert empty_todo_list.is_complete is False
assert empty_todo_list.pending_count == 0
assert empty_todo_list.completed_count == 0
def test_current_todo_property(self, sample_todo_list):
"""Test current_todo returns the running item."""
current = sample_todo_list.current_todo
assert current is not None
assert current.step_number == 2
assert current.status == "running"
def test_current_todo_returns_none_when_no_running(self):
"""Test current_todo returns None when no running items."""
todo_list = TodoList(
items=[
TodoItem(step_number=1, description="Step 1", status="completed"),
TodoItem(step_number=2, description="Step 2", status="pending"),
]
)
assert todo_list.current_todo is None
def test_next_pending_property(self, sample_todo_list):
"""Test next_pending returns the first pending item."""
next_item = sample_todo_list.next_pending
assert next_item is not None
assert next_item.step_number == 3
assert next_item.status == "pending"
def test_next_pending_returns_none_when_no_pending(self):
"""Test next_pending returns None when no pending items."""
todo_list = TodoList(
items=[
TodoItem(step_number=1, description="Step 1", status="completed"),
TodoItem(step_number=2, description="Step 2", status="completed"),
]
)
assert todo_list.next_pending is None
def test_is_complete_property_when_complete(self):
"""Test is_complete returns True when all items completed."""
todo_list = TodoList(
items=[
TodoItem(step_number=1, description="Step 1", status="completed"),
TodoItem(step_number=2, description="Step 2", status="completed"),
]
)
assert todo_list.is_complete is True
def test_is_complete_property_when_not_complete(self, sample_todo_list):
"""Test is_complete returns False when items are pending."""
assert sample_todo_list.is_complete is False
def test_is_complete_false_for_empty_list(self, empty_todo_list):
"""Test is_complete returns False for empty list."""
assert empty_todo_list.is_complete is False
def test_pending_count(self, sample_todo_list):
"""Test pending_count returns correct count."""
assert sample_todo_list.pending_count == 2
def test_completed_count(self, sample_todo_list):
"""Test completed_count returns correct count."""
assert sample_todo_list.completed_count == 1
def test_get_by_step_number(self, sample_todo_list):
"""Test get_by_step_number returns correct item."""
item = sample_todo_list.get_by_step_number(3)
assert item is not None
assert item.step_number == 3
assert item.description == "Step 3"
def test_get_by_step_number_returns_none_for_missing(self, sample_todo_list):
"""Test get_by_step_number returns None for non-existent step."""
item = sample_todo_list.get_by_step_number(99)
assert item is None
def test_mark_running(self, sample_todo_list):
"""Test mark_running changes status correctly."""
sample_todo_list.mark_running(3)
item = sample_todo_list.get_by_step_number(3)
assert item.status == "running"
def test_mark_running_does_nothing_for_missing(self, sample_todo_list):
"""Test mark_running handles missing step gracefully."""
# Should not raise an error
sample_todo_list.mark_running(99)
def test_mark_completed(self, sample_todo_list):
"""Test mark_completed changes status correctly."""
sample_todo_list.mark_completed(3)
item = sample_todo_list.get_by_step_number(3)
assert item.status == "completed"
assert item.result is None
def test_mark_completed_with_result(self, sample_todo_list):
"""Test mark_completed with result."""
sample_todo_list.mark_completed(3, result="Task output")
item = sample_todo_list.get_by_step_number(3)
assert item.status == "completed"
assert item.result == "Task output"
def test_mark_completed_does_nothing_for_missing(self, sample_todo_list):
"""Test mark_completed handles missing step gracefully."""
# Should not raise an error
sample_todo_list.mark_completed(99, result="Some result")
def test_todo_list_workflow(self):
"""Test a complete workflow through TodoList."""
# Create a todo list with 3 items
todo_list = TodoList(
items=[
TodoItem(
step_number=1,
description="Research",
tool_to_use="search_tool",
),
TodoItem(
step_number=2,
description="Analyze",
depends_on=[1],
),
TodoItem(
step_number=3,
description="Report",
depends_on=[1, 2],
),
]
)
# Initial state
assert todo_list.pending_count == 3
assert todo_list.completed_count == 0
assert todo_list.is_complete is False
# Start first task
todo_list.mark_running(1)
assert todo_list.current_todo.step_number == 1
assert todo_list.next_pending.step_number == 2
# Complete first task
todo_list.mark_completed(1, result="Research done")
assert todo_list.current_todo is None
assert todo_list.completed_count == 1
# Start and complete second task
todo_list.mark_running(2)
todo_list.mark_completed(2, result="Analysis complete")
assert todo_list.completed_count == 2
# Start and complete third task
todo_list.mark_running(3)
todo_list.mark_completed(3, result="Report generated")
# Final state
assert todo_list.is_complete is True
assert todo_list.pending_count == 0
assert todo_list.completed_count == 3
assert todo_list.current_todo is None
assert todo_list.next_pending is None
class TestTodoFromPlanStep:
"""Tests for converting PlanStep to TodoItem."""
def test_convert_plan_step_to_todo_item(self):
"""Test converting a PlanStep to TodoItem."""
step = PlanStep(
step_number=1,
description="Search for information",
tool_to_use="search_tool",
depends_on=[],
)
todo = TodoItem(
step_number=step.step_number,
description=step.description,
tool_to_use=step.tool_to_use,
depends_on=step.depends_on,
status="pending",
)
assert todo.step_number == step.step_number
assert todo.description == step.description
assert todo.tool_to_use == step.tool_to_use
assert todo.depends_on == step.depends_on
assert todo.status == "pending"
def test_convert_multiple_plan_steps_to_todo_list(self):
"""Test converting multiple PlanSteps to a TodoList."""
steps = [
PlanStep(step_number=1, description="Step 1", tool_to_use="tool1"),
PlanStep(step_number=2, description="Step 2", depends_on=[1]),
PlanStep(step_number=3, description="Step 3", depends_on=[1, 2]),
]
todos = []
for step in steps:
todo = TodoItem(
step_number=step.step_number,
description=step.description,
tool_to_use=step.tool_to_use,
depends_on=step.depends_on,
status="pending",
)
todos.append(todo)
todo_list = TodoList(items=todos)
assert len(todo_list.items) == 3
assert todo_list.pending_count == 3
assert todo_list.items[0].tool_to_use == "tool1"
assert todo_list.items[1].depends_on == [1]
assert todo_list.items[2].depends_on == [1, 2]

View File

@@ -1,698 +0,0 @@
"""Tests for structured planning with steps and todo generation.
These tests verify that the planning system correctly generates structured
PlanStep objects and converts them to TodoItems across different LLM providers.
"""
import json
import os
from unittest.mock import MagicMock, Mock, patch
import pytest
from crewai import Agent, PlanningConfig, Task
from crewai.llm import LLM
from crewai.utilities.planning_types import PlanStep, TodoItem, TodoList
from crewai.utilities.reasoning_handler import (
FUNCTION_SCHEMA,
AgentReasoning,
ReasoningPlan,
)
class TestFunctionSchema:
"""Tests for the FUNCTION_SCHEMA used in structured planning."""
def test_schema_has_required_structure(self):
"""Test that FUNCTION_SCHEMA has the correct structure."""
assert FUNCTION_SCHEMA["type"] == "function"
assert "function" in FUNCTION_SCHEMA
assert FUNCTION_SCHEMA["function"]["name"] == "create_reasoning_plan"
def test_schema_parameters_structure(self):
"""Test that parameters have correct structure."""
params = FUNCTION_SCHEMA["function"]["parameters"]
assert params["type"] == "object"
assert "properties" in params
assert "required" in params
def test_schema_has_plan_property(self):
"""Test that schema includes plan property."""
props = FUNCTION_SCHEMA["function"]["parameters"]["properties"]
assert "plan" in props
assert props["plan"]["type"] == "string"
def test_schema_has_steps_property(self):
"""Test that schema includes steps array property."""
props = FUNCTION_SCHEMA["function"]["parameters"]["properties"]
assert "steps" in props
assert props["steps"]["type"] == "array"
def test_schema_steps_items_structure(self):
"""Test that steps items have correct structure."""
items = FUNCTION_SCHEMA["function"]["parameters"]["properties"]["steps"]["items"]
assert items["type"] == "object"
assert "properties" in items
assert "required" in items
assert "additionalProperties" in items
assert items["additionalProperties"] is False
def test_schema_step_properties(self):
"""Test that step items have all required properties."""
step_props = FUNCTION_SCHEMA["function"]["parameters"]["properties"]["steps"]["items"]["properties"]
assert "step_number" in step_props
assert step_props["step_number"]["type"] == "integer"
assert "description" in step_props
assert step_props["description"]["type"] == "string"
assert "tool_to_use" in step_props
# tool_to_use should be nullable
assert step_props["tool_to_use"]["type"] == ["string", "null"]
assert "depends_on" in step_props
assert step_props["depends_on"]["type"] == "array"
def test_schema_step_required_fields(self):
"""Test that step required fields are correct."""
required = FUNCTION_SCHEMA["function"]["parameters"]["properties"]["steps"]["items"]["required"]
assert "step_number" in required
assert "description" in required
assert "tool_to_use" in required
assert "depends_on" in required
def test_schema_has_ready_property(self):
"""Test that schema includes ready property."""
props = FUNCTION_SCHEMA["function"]["parameters"]["properties"]
assert "ready" in props
assert props["ready"]["type"] == "boolean"
def test_schema_top_level_required(self):
"""Test that top-level required fields are correct."""
required = FUNCTION_SCHEMA["function"]["parameters"]["required"]
assert "plan" in required
assert "steps" in required
assert "ready" in required
def test_schema_top_level_additional_properties(self):
"""Test that additionalProperties is False at top level."""
params = FUNCTION_SCHEMA["function"]["parameters"]
assert params["additionalProperties"] is False
class TestReasoningPlan:
"""Tests for the ReasoningPlan model with structured steps."""
def test_reasoning_plan_with_empty_steps(self):
"""Test ReasoningPlan can be created with empty steps."""
plan = ReasoningPlan(
plan="Simple plan",
steps=[],
ready=True,
)
assert plan.plan == "Simple plan"
assert plan.steps == []
assert plan.ready is True
def test_reasoning_plan_with_steps(self):
"""Test ReasoningPlan with structured steps."""
steps = [
PlanStep(step_number=1, description="First step", tool_to_use="tool1"),
PlanStep(step_number=2, description="Second step", depends_on=[1]),
]
plan = ReasoningPlan(
plan="Multi-step plan",
steps=steps,
ready=True,
)
assert plan.plan == "Multi-step plan"
assert len(plan.steps) == 2
assert plan.steps[0].step_number == 1
assert plan.steps[1].depends_on == [1]
class TestAgentReasoningWithMockedLLM:
"""Tests for AgentReasoning with mocked LLM responses."""
@pytest.fixture
def mock_agent(self):
"""Create a mock agent for testing."""
agent = MagicMock()
agent.role = "Test Agent"
agent.goal = "Test goal"
agent.backstory = "Test backstory"
agent.verbose = False
agent.planning_config = PlanningConfig()
agent.i18n = MagicMock()
agent.i18n.retrieve.return_value = "Test prompt: {description}"
# Mock the llm attribute
agent.llm = MagicMock()
agent.llm.supports_function_calling.return_value = True
return agent
def test_parse_steps_from_function_response(self, mock_agent):
"""Test that steps are correctly parsed from LLM function response."""
# Mock the LLM response with structured steps
mock_response = json.dumps({
"plan": "Research and analyze",
"steps": [
{
"step_number": 1,
"description": "Search for information",
"tool_to_use": "search_tool",
"depends_on": [],
},
{
"step_number": 2,
"description": "Analyze results",
"tool_to_use": None,
"depends_on": [1],
},
],
"ready": True,
})
mock_agent.llm.call.return_value = mock_response
handler = AgentReasoning(
agent=mock_agent,
task=None,
description="Test task",
expected_output="Test output",
)
# Call the function parsing method
plan, steps, ready = handler._call_with_function(
prompt="Test prompt",
plan_type="create_plan",
)
assert plan == "Research and analyze"
assert len(steps) == 2
assert steps[0].step_number == 1
assert steps[0].tool_to_use == "search_tool"
assert steps[1].depends_on == [1]
assert ready is True
def test_parse_steps_handles_missing_optional_fields(self, mock_agent):
"""Test that missing optional fields are handled correctly."""
mock_response = json.dumps({
"plan": "Simple plan",
"steps": [
{
"step_number": 1,
"description": "Do something",
"tool_to_use": None,
"depends_on": [],
},
],
"ready": True,
})
mock_agent.llm.call.return_value = mock_response
handler = AgentReasoning(
agent=mock_agent,
task=None,
description="Test task",
expected_output="Test output",
)
plan, steps, ready = handler._call_with_function(
prompt="Test prompt",
plan_type="create_plan",
)
assert len(steps) == 1
assert steps[0].tool_to_use is None
assert steps[0].depends_on == []
def test_parse_steps_with_missing_fields_uses_defaults(self, mock_agent):
"""Test that steps with missing fields get default values."""
mock_response = json.dumps({
"plan": "Plan with step missing fields",
"steps": [
{"step_number": 1, "description": "Valid step", "tool_to_use": None, "depends_on": []},
{"step_number": 2}, # Missing description, tool_to_use, depends_on
{"step_number": 3, "description": "Another valid", "tool_to_use": None, "depends_on": []},
],
"ready": True,
})
mock_agent.llm.call.return_value = mock_response
handler = AgentReasoning(
agent=mock_agent,
task=None,
description="Test task",
expected_output="Test output",
)
plan, steps, ready = handler._call_with_function(
prompt="Test prompt",
plan_type="create_plan",
)
# All 3 steps should be parsed, with defaults for missing fields
assert len(steps) == 3
assert steps[0].step_number == 1
assert steps[0].description == "Valid step"
assert steps[1].step_number == 2
assert steps[1].description == "" # Default value
assert steps[2].step_number == 3
class TestTodoCreationFromPlan:
"""Tests for converting plan steps to todo items."""
def test_create_todos_from_plan_steps(self):
"""Test creating TodoList from PlanSteps."""
steps = [
PlanStep(
step_number=1,
description="Research competitors",
tool_to_use="search_tool",
depends_on=[],
),
PlanStep(
step_number=2,
description="Analyze data",
tool_to_use=None,
depends_on=[1],
),
PlanStep(
step_number=3,
description="Generate report",
tool_to_use="write_tool",
depends_on=[1, 2],
),
]
# Convert steps to todos (mirroring agent_executor._create_todos_from_plan)
todos = []
for step in steps:
todo = TodoItem(
step_number=step.step_number,
description=step.description,
tool_to_use=step.tool_to_use,
depends_on=step.depends_on,
status="pending",
)
todos.append(todo)
todo_list = TodoList(items=todos)
assert len(todo_list.items) == 3
assert todo_list.pending_count == 3
assert todo_list.completed_count == 0
# Verify todo properties match step properties
assert todo_list.items[0].description == "Research competitors"
assert todo_list.items[0].tool_to_use == "search_tool"
assert todo_list.items[1].depends_on == [1]
assert todo_list.items[2].depends_on == [1, 2]
# =============================================================================
# Provider-Specific Integration Tests (VCR recorded)
# =============================================================================
# Common test tools used across provider tests
def create_research_tools():
"""Create research tools for testing structured planning."""
from crewai.tools import tool
@tool
def web_search(query: str) -> str:
"""Search the web for information on a given topic.
Args:
query: The search query to look up.
Returns:
Search results as a string.
"""
# Simulated search results for testing
return f"Search results for '{query}': Found 3 relevant articles about the topic including market analysis, competitor data, and industry trends."
@tool
def read_website(url: str) -> str:
"""Read and extract content from a website URL.
Args:
url: The URL of the website to read.
Returns:
The extracted content from the website.
"""
# Simulated website content for testing
return f"Content from {url}: This article discusses key insights about the topic including market size ($50B), growth rate (15% YoY), and major players in the industry."
@tool
def generate_report(title: str, findings: str) -> str:
"""Generate a structured report based on research findings.
Args:
title: The title of the report.
findings: The research findings to include.
Returns:
A formatted report string.
"""
return f"# {title}\n\n## Executive Summary\n{findings}\n\n## Conclusion\nBased on the analysis, the market shows strong growth potential."
return web_search, read_website, generate_report
RESEARCH_TASK = """Research the current state of the AI agent market:
1. Search for recent information about AI agents and their market trends
2. Read detailed content from a relevant industry source
3. Generate a brief report summarizing the key findings
Use the available tools for each step."""
class TestOpenAIStructuredPlanning:
"""Integration tests for OpenAI structured planning with research workflow."""
@pytest.mark.vcr()
def test_openai_research_workflow_generates_steps(self):
"""Test that OpenAI generates structured plan steps for a research task."""
web_search, read_website, generate_report = create_research_tools()
llm = LLM(model="gpt-4o")
agent = Agent(
role="Research Analyst",
goal="Conduct thorough research and produce insightful reports",
backstory="An experienced analyst skilled at gathering information and synthesizing findings into actionable insights.",
llm=llm,
tools=[web_search, read_website, generate_report],
planning_config=PlanningConfig(max_attempts=1),
verbose=False,
)
result = agent.kickoff(RESEARCH_TASK)
# Verify result exists
assert result is not None
assert result.raw is not None
# The result should contain some report-like content
assert len(str(result.raw)) > 50
class TestAnthropicStructuredPlanning:
"""Integration tests for Anthropic structured planning with research workflow."""
@pytest.fixture(autouse=True)
def mock_anthropic_api_key(self):
"""Mock API key if not set."""
if "ANTHROPIC_API_KEY" not in os.environ:
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
yield
else:
yield
@pytest.mark.vcr()
def test_anthropic_research_workflow_generates_steps(self):
"""Test that Anthropic generates structured plan steps for a research task."""
web_search, read_website, generate_report = create_research_tools()
llm = LLM(model="anthropic/claude-sonnet-4-20250514")
agent = Agent(
role="Research Analyst",
goal="Conduct thorough research and produce insightful reports",
backstory="An experienced analyst skilled at gathering information and synthesizing findings into actionable insights.",
llm=llm,
tools=[web_search, read_website, generate_report],
planning_config=PlanningConfig(max_attempts=1),
verbose=False,
)
result = agent.kickoff(RESEARCH_TASK)
# Verify result exists
assert result is not None
assert result.raw is not None
# The result should contain some report-like content
assert len(str(result.raw)) > 50
class TestGeminiStructuredPlanning:
"""Integration tests for Google Gemini structured planning with research workflow."""
@pytest.fixture(autouse=True)
def mock_google_api_key(self):
"""Mock API key if not set."""
if "GOOGLE_API_KEY" not in os.environ and "GEMINI_API_KEY" not in os.environ:
with patch.dict(os.environ, {"GOOGLE_API_KEY": "test-key"}):
yield
else:
yield
@pytest.mark.vcr()
def test_gemini_research_workflow_generates_steps(self):
"""Test that Gemini generates structured plan steps for a research task."""
web_search, read_website, generate_report = create_research_tools()
llm = LLM(model="gemini/gemini-2.5-flash")
agent = Agent(
role="Research Analyst",
goal="Conduct thorough research and produce insightful reports",
backstory="An experienced analyst skilled at gathering information and synthesizing findings into actionable insights.",
llm=llm,
tools=[web_search, read_website, generate_report],
planning_config=PlanningConfig(max_attempts=1),
verbose=False,
)
result = agent.kickoff(RESEARCH_TASK)
# Verify result exists
assert result is not None
assert result.raw is not None
# The result should contain some report-like content
assert len(str(result.raw)) > 50
class TestAzureStructuredPlanning:
"""Integration tests for Azure OpenAI structured planning with research workflow."""
@pytest.fixture(autouse=True)
def mock_azure_credentials(self):
"""Mock Azure credentials for tests."""
if "AZURE_API_KEY" not in os.environ:
with patch.dict(os.environ, {
"AZURE_API_KEY": "test-key",
"AZURE_ENDPOINT": "https://test.openai.azure.com"
}):
yield
else:
yield
@pytest.mark.vcr()
def test_azure_research_workflow_generates_steps(self):
"""Test that Azure OpenAI generates structured plan steps for a research task."""
web_search, read_website, generate_report = create_research_tools()
llm = LLM(model="azure/gpt-4o")
agent = Agent(
role="Research Analyst",
goal="Conduct thorough research and produce insightful reports",
backstory="An experienced analyst skilled at gathering information and synthesizing findings into actionable insights.",
llm=llm,
tools=[web_search, read_website, generate_report],
planning_config=PlanningConfig(max_attempts=1),
verbose=False,
)
result = agent.kickoff(RESEARCH_TASK)
# Verify result exists
assert result is not None
assert result.raw is not None
# The result should contain some report-like content
assert len(str(result.raw)) > 50
# =============================================================================
# Unit Tests with Mocked LLM Providers
# =============================================================================
class TestStructuredPlanningWithMockedProviders:
"""Unit tests with mocked LLM providers for faster execution."""
def _create_mock_plan_response(self, steps_data):
"""Helper to create mock plan response."""
return json.dumps({
"plan": "Test plan",
"steps": steps_data,
"ready": True,
})
def test_openai_mock_structured_response(self):
"""Test parsing OpenAI structured response."""
steps_data = [
{"step_number": 1, "description": "Search", "tool_to_use": "search", "depends_on": []},
{"step_number": 2, "description": "Analyze", "tool_to_use": None, "depends_on": [1]},
]
response = self._create_mock_plan_response(steps_data)
parsed = json.loads(response)
assert len(parsed["steps"]) == 2
assert parsed["steps"][0]["tool_to_use"] == "search"
assert parsed["steps"][1]["depends_on"] == [1]
def test_anthropic_mock_structured_response(self):
"""Test parsing Anthropic structured response (same format)."""
steps_data = [
{"step_number": 1, "description": "Research", "tool_to_use": "web_search", "depends_on": []},
{"step_number": 2, "description": "Summarize", "tool_to_use": None, "depends_on": [1]},
{"step_number": 3, "description": "Report", "tool_to_use": "write_file", "depends_on": [1, 2]},
]
response = self._create_mock_plan_response(steps_data)
parsed = json.loads(response)
assert len(parsed["steps"]) == 3
assert parsed["steps"][2]["depends_on"] == [1, 2]
def test_gemini_mock_structured_response(self):
"""Test parsing Gemini structured response (same format)."""
steps_data = [
{"step_number": 1, "description": "Gather data", "tool_to_use": "data_tool", "depends_on": []},
{"step_number": 2, "description": "Process", "tool_to_use": None, "depends_on": [1]},
]
response = self._create_mock_plan_response(steps_data)
parsed = json.loads(response)
assert len(parsed["steps"]) == 2
assert parsed["ready"] is True
def test_azure_mock_structured_response(self):
"""Test parsing Azure OpenAI structured response (same format as OpenAI)."""
steps_data = [
{"step_number": 1, "description": "Initialize", "tool_to_use": None, "depends_on": []},
{"step_number": 2, "description": "Execute", "tool_to_use": "executor", "depends_on": [1]},
{"step_number": 3, "description": "Finalize", "tool_to_use": None, "depends_on": [1, 2]},
]
response = self._create_mock_plan_response(steps_data)
parsed = json.loads(response)
assert len(parsed["steps"]) == 3
assert parsed["steps"][0]["tool_to_use"] is None
class TestTodoListIntegration:
"""Integration tests for TodoList with plan execution simulation."""
def test_full_plan_execution_workflow(self):
"""Test complete workflow from plan to todos to execution."""
# Simulate plan steps from LLM
plan_steps = [
PlanStep(
step_number=1,
description="Research the topic",
tool_to_use="search_tool",
depends_on=[],
),
PlanStep(
step_number=2,
description="Compile findings",
tool_to_use=None,
depends_on=[1],
),
PlanStep(
step_number=3,
description="Generate summary",
tool_to_use="summarize_tool",
depends_on=[1, 2],
),
]
# Convert to todos (like agent_executor._create_todos_from_plan)
todos = [
TodoItem(
step_number=step.step_number,
description=step.description,
tool_to_use=step.tool_to_use,
depends_on=step.depends_on,
status="pending",
)
for step in plan_steps
]
todo_list = TodoList(items=todos)
# Verify initial state
assert todo_list.pending_count == 3
assert todo_list.is_complete is False
# Simulate execution
for i in range(1, 4):
todo_list.mark_running(i)
assert todo_list.current_todo.step_number == i
todo_list.mark_completed(i, result=f"Step {i} completed")
# Verify final state
assert todo_list.is_complete is True
assert todo_list.completed_count == 3
assert all(item.result is not None for item in todo_list.items)
def test_dependency_aware_execution(self):
"""Test that dependencies are respected in execution order."""
steps = [
PlanStep(step_number=1, description="Base step", depends_on=[]),
PlanStep(step_number=2, description="Depends on 1", depends_on=[1]),
PlanStep(step_number=3, description="Depends on 1", depends_on=[1]),
PlanStep(step_number=4, description="Depends on 2 and 3", depends_on=[2, 3]),
]
todos = [
TodoItem(
step_number=s.step_number,
description=s.description,
depends_on=s.depends_on,
)
for s in steps
]
todo_list = TodoList(items=todos)
# Helper to check if dependencies are satisfied
def can_execute(todo: TodoItem) -> bool:
for dep in todo.depends_on:
dep_todo = todo_list.get_by_step_number(dep)
if dep_todo and dep_todo.status != "completed":
return False
return True
# Step 1 has no dependencies
assert can_execute(todo_list.items[0]) is True
# Steps 2 and 3 depend on 1 (not yet done)
assert can_execute(todo_list.items[1]) is False
assert can_execute(todo_list.items[2]) is False
# Complete step 1
todo_list.mark_completed(1)
# Now steps 2 and 3 can execute
assert can_execute(todo_list.items[1]) is True
assert can_execute(todo_list.items[2]) is True
# Step 4 still can't (depends on 2 and 3)
assert can_execute(todo_list.items[3]) is False
# Complete steps 2 and 3
todo_list.mark_completed(2)
todo_list.mark_completed(3)
# Now step 4 can execute
assert can_execute(todo_list.items[3]) is True

156
uv.lock generated
View File

@@ -1295,7 +1295,7 @@ requires-dist = [
{ name = "json5", specifier = "~=0.10.0" },
{ name = "jsonref", specifier = "~=1.1.0" },
{ name = "litellm", marker = "extra == 'litellm'", specifier = ">=1.74.9,<3" },
{ name = "mcp", specifier = "~=1.26.0" },
{ name = "mcp", specifier = "~=1.23.1" },
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = "~=0.1.94" },
{ name = "openai", specifier = ">=1.83.0,<3" },
{ name = "openpyxl", specifier = "~=3.1.5" },
@@ -1311,7 +1311,7 @@ requires-dist = [
{ name = "pyjwt", specifier = ">=2.9.0,<3" },
{ name = "python-dotenv", specifier = "~=1.1.1" },
{ name = "qdrant-client", extras = ["fastembed"], marker = "extra == 'qdrant'", specifier = "~=1.14.3" },
{ name = "regex", specifier = "~=2026.1.15" },
{ name = "regex", specifier = "~=2024.9.11" },
{ name = "tiktoken", marker = "extra == 'embeddings'", specifier = "~=0.8.0" },
{ name = "tokenizers", specifier = "~=0.20.3" },
{ name = "tomli", specifier = "~=2.0.2" },
@@ -3777,7 +3777,7 @@ wheels = [
[[package]]
name = "mcp"
version = "1.26.0"
version = "1.23.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "anyio" },
@@ -3795,9 +3795,9 @@ dependencies = [
{ name = "typing-inspection" },
{ name = "uvicorn", marker = "sys_platform != 'emscripten'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/fc/6d/62e76bbb8144d6ed86e202b5edd8a4cb631e7c8130f3f4893c3f90262b10/mcp-1.26.0.tar.gz", hash = "sha256:db6e2ef491eecc1a0d93711a76f28dec2e05999f93afd48795da1c1137142c66", size = 608005, upload-time = "2026-01-24T19:40:32.468Z" }
sdist = { url = "https://files.pythonhosted.org/packages/a7/a4/d06a303f45997e266f2c228081abe299bbcba216cb806128e2e49095d25f/mcp-1.23.3.tar.gz", hash = "sha256:b3b0da2cc949950ce1259c7bfc1b081905a51916fcd7c8182125b85e70825201", size = 600697, upload-time = "2025-12-09T16:04:37.351Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fd/d9/eaa1f80170d2b7c5ba23f3b59f766f3a0bb41155fbc32a69adfa1adaaef9/mcp-1.26.0-py3-none-any.whl", hash = "sha256:904a21c33c25aa98ddbeb47273033c435e595bbacfdb177f4bd87f6dceebe1ca", size = 233615, upload-time = "2026-01-24T19:40:30.652Z" },
{ url = "https://files.pythonhosted.org/packages/32/c6/13c1a26b47b3f3a3b480783001ada4268917c9f42d78a079c336da2e75e5/mcp-1.23.3-py3-none-any.whl", hash = "sha256:32768af4b46a1b4f7df34e2bfdf5c6011e7b63d7f1b0e321d0fdef4cd6082031", size = 231570, upload-time = "2025-12-09T16:04:35.56Z" },
]
[[package]]
@@ -6792,91 +6792,71 @@ wheels = [
[[package]]
name = "regex"
version = "2026.1.15"
version = "2024.9.11"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/0b/86/07d5056945f9ec4590b518171c4254a5925832eb727b56d3c38a7476f316/regex-2026.1.15.tar.gz", hash = "sha256:164759aa25575cbc0651bef59a0b18353e54300d79ace8084c818ad8ac72b7d5", size = 414811, upload-time = "2026-01-14T23:18:02.775Z" }
sdist = { url = "https://files.pythonhosted.org/packages/f9/38/148df33b4dbca3bd069b963acab5e0fa1a9dbd6820f8c322d0dd6faeff96/regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd", size = 399403, upload-time = "2024-09-11T19:00:09.814Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ea/d2/e6ee96b7dff201a83f650241c52db8e5bd080967cb93211f57aa448dc9d6/regex-2026.1.15-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4e3dd93c8f9abe8aa4b6c652016da9a3afa190df5ad822907efe6b206c09896e", size = 488166, upload-time = "2026-01-14T23:13:46.408Z" },
{ url = "https://files.pythonhosted.org/packages/23/8a/819e9ce14c9f87af026d0690901b3931f3101160833e5d4c8061fa3a1b67/regex-2026.1.15-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:97499ff7862e868b1977107873dd1a06e151467129159a6ffd07b66706ba3a9f", size = 290632, upload-time = "2026-01-14T23:13:48.688Z" },
{ url = "https://files.pythonhosted.org/packages/d5/c3/23dfe15af25d1d45b07dfd4caa6003ad710dcdcb4c4b279909bdfe7a2de8/regex-2026.1.15-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0bda75ebcac38d884240914c6c43d8ab5fb82e74cde6da94b43b17c411aa4c2b", size = 288500, upload-time = "2026-01-14T23:13:50.503Z" },
{ url = "https://files.pythonhosted.org/packages/c6/31/1adc33e2f717df30d2f4d973f8776d2ba6ecf939301efab29fca57505c95/regex-2026.1.15-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7dcc02368585334f5bc81fc73a2a6a0bbade60e7d83da21cead622faf408f32c", size = 781670, upload-time = "2026-01-14T23:13:52.453Z" },
{ url = "https://files.pythonhosted.org/packages/23/ce/21a8a22d13bc4adcb927c27b840c948f15fc973e21ed2346c1bd0eae22dc/regex-2026.1.15-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:693b465171707bbe882a7a05de5e866f33c76aa449750bee94a8d90463533cc9", size = 850820, upload-time = "2026-01-14T23:13:54.894Z" },
{ url = "https://files.pythonhosted.org/packages/6c/4f/3eeacdf587a4705a44484cd0b30e9230a0e602811fb3e2cc32268c70d509/regex-2026.1.15-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:b0d190e6f013ea938623a58706d1469a62103fb2a241ce2873a9906e0386582c", size = 898777, upload-time = "2026-01-14T23:13:56.908Z" },
{ url = "https://files.pythonhosted.org/packages/79/a9/1898a077e2965c35fc22796488141a22676eed2d73701e37c73ad7c0b459/regex-2026.1.15-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5ff818702440a5878a81886f127b80127f5d50563753a28211482867f8318106", size = 791750, upload-time = "2026-01-14T23:13:58.527Z" },
{ url = "https://files.pythonhosted.org/packages/4c/84/e31f9d149a178889b3817212827f5e0e8c827a049ff31b4b381e76b26e2d/regex-2026.1.15-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f052d1be37ef35a54e394de66136e30fa1191fab64f71fc06ac7bc98c9a84618", size = 782674, upload-time = "2026-01-14T23:13:59.874Z" },
{ url = "https://files.pythonhosted.org/packages/d2/ff/adf60063db24532add6a1676943754a5654dcac8237af024ede38244fd12/regex-2026.1.15-cp310-cp310-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:6bfc31a37fd1592f0c4fc4bfc674b5c42e52efe45b4b7a6a14f334cca4bcebe4", size = 767906, upload-time = "2026-01-14T23:14:01.298Z" },
{ url = "https://files.pythonhosted.org/packages/af/3e/e6a216cee1e2780fec11afe7fc47b6f3925d7264e8149c607ac389fd9b1a/regex-2026.1.15-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3d6ce5ae80066b319ae3bc62fd55a557c9491baa5efd0d355f0de08c4ba54e79", size = 774798, upload-time = "2026-01-14T23:14:02.715Z" },
{ url = "https://files.pythonhosted.org/packages/0f/98/23a4a8378a9208514ed3efc7e7850c27fa01e00ed8557c958df0335edc4a/regex-2026.1.15-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:1704d204bd42b6bb80167df0e4554f35c255b579ba99616def38f69e14a5ccb9", size = 845861, upload-time = "2026-01-14T23:14:04.824Z" },
{ url = "https://files.pythonhosted.org/packages/f8/57/d7605a9d53bd07421a8785d349cd29677fe660e13674fa4c6cbd624ae354/regex-2026.1.15-cp310-cp310-musllinux_1_2_riscv64.whl", hash = "sha256:e3174a5ed4171570dc8318afada56373aa9289eb6dc0d96cceb48e7358b0e220", size = 755648, upload-time = "2026-01-14T23:14:06.371Z" },
{ url = "https://files.pythonhosted.org/packages/6f/76/6f2e24aa192da1e299cc1101674a60579d3912391867ce0b946ba83e2194/regex-2026.1.15-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:87adf5bd6d72e3e17c9cb59ac4096b1faaf84b7eb3037a5ffa61c4b4370f0f13", size = 836250, upload-time = "2026-01-14T23:14:08.343Z" },
{ url = "https://files.pythonhosted.org/packages/11/3a/1f2a1d29453299a7858eab7759045fc3d9d1b429b088dec2dc85b6fa16a2/regex-2026.1.15-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e85dc94595f4d766bd7d872a9de5ede1ca8d3063f3bdf1e2c725f5eb411159e3", size = 779919, upload-time = "2026-01-14T23:14:09.954Z" },
{ url = "https://files.pythonhosted.org/packages/c0/67/eab9bc955c9dcc58e9b222c801e39cff7ca0b04261792a2149166ce7e792/regex-2026.1.15-cp310-cp310-win32.whl", hash = "sha256:21ca32c28c30d5d65fc9886ff576fc9b59bbca08933e844fa2363e530f4c8218", size = 265888, upload-time = "2026-01-14T23:14:11.35Z" },
{ url = "https://files.pythonhosted.org/packages/1d/62/31d16ae24e1f8803bddb0885508acecaec997fcdcde9c243787103119ae4/regex-2026.1.15-cp310-cp310-win_amd64.whl", hash = "sha256:3038a62fc7d6e5547b8915a3d927a0fbeef84cdbe0b1deb8c99bbd4a8961b52a", size = 277830, upload-time = "2026-01-14T23:14:12.908Z" },
{ url = "https://files.pythonhosted.org/packages/e5/36/5d9972bccd6417ecd5a8be319cebfd80b296875e7f116c37fb2a2deecebf/regex-2026.1.15-cp310-cp310-win_arm64.whl", hash = "sha256:505831646c945e3e63552cc1b1b9b514f0e93232972a2d5bedbcc32f15bc82e3", size = 270376, upload-time = "2026-01-14T23:14:14.782Z" },
{ url = "https://files.pythonhosted.org/packages/d0/c9/0c80c96eab96948363d270143138d671d5731c3a692b417629bf3492a9d6/regex-2026.1.15-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:1ae6020fb311f68d753b7efa9d4b9a5d47a5d6466ea0d5e3b5a471a960ea6e4a", size = 488168, upload-time = "2026-01-14T23:14:16.129Z" },
{ url = "https://files.pythonhosted.org/packages/17/f0/271c92f5389a552494c429e5cc38d76d1322eb142fb5db3c8ccc47751468/regex-2026.1.15-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:eddf73f41225942c1f994914742afa53dc0d01a6e20fe14b878a1b1edc74151f", size = 290636, upload-time = "2026-01-14T23:14:17.715Z" },
{ url = "https://files.pythonhosted.org/packages/a0/f9/5f1fd077d106ca5655a0f9ff8f25a1ab55b92128b5713a91ed7134ff688e/regex-2026.1.15-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e8cd52557603f5c66a548f69421310886b28b7066853089e1a71ee710e1cdc1", size = 288496, upload-time = "2026-01-14T23:14:19.326Z" },
{ url = "https://files.pythonhosted.org/packages/b5/e1/8f43b03a4968c748858ec77f746c286d81f896c2e437ccf050ebc5d3128c/regex-2026.1.15-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5170907244b14303edc5978f522f16c974f32d3aa92109fabc2af52411c9433b", size = 793503, upload-time = "2026-01-14T23:14:20.922Z" },
{ url = "https://files.pythonhosted.org/packages/8d/4e/a39a5e8edc5377a46a7c875c2f9a626ed3338cb3bb06931be461c3e1a34a/regex-2026.1.15-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2748c1ec0663580b4510bd89941a31560b4b439a0b428b49472a3d9944d11cd8", size = 860535, upload-time = "2026-01-14T23:14:22.405Z" },
{ url = "https://files.pythonhosted.org/packages/dc/1c/9dce667a32a9477f7a2869c1c767dc00727284a9fa3ff5c09a5c6c03575e/regex-2026.1.15-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:2f2775843ca49360508d080eaa87f94fa248e2c946bbcd963bb3aae14f333413", size = 907225, upload-time = "2026-01-14T23:14:23.897Z" },
{ url = "https://files.pythonhosted.org/packages/a4/3c/87ca0a02736d16b6262921425e84b48984e77d8e4e572c9072ce96e66c30/regex-2026.1.15-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d9ea2604370efc9a174c1b5dcc81784fb040044232150f7f33756049edfc9026", size = 800526, upload-time = "2026-01-14T23:14:26.039Z" },
{ url = "https://files.pythonhosted.org/packages/4b/ff/647d5715aeea7c87bdcbd2f578f47b415f55c24e361e639fe8c0cc88878f/regex-2026.1.15-cp311-cp311-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:0dcd31594264029b57bf16f37fd7248a70b3b764ed9e0839a8f271b2d22c0785", size = 773446, upload-time = "2026-01-14T23:14:28.109Z" },
{ url = "https://files.pythonhosted.org/packages/af/89/bf22cac25cb4ba0fe6bff52ebedbb65b77a179052a9d6037136ae93f42f4/regex-2026.1.15-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c08c1f3e34338256732bd6938747daa3c0d5b251e04b6e43b5813e94d503076e", size = 783051, upload-time = "2026-01-14T23:14:29.929Z" },
{ url = "https://files.pythonhosted.org/packages/1e/f4/6ed03e71dca6348a5188363a34f5e26ffd5db1404780288ff0d79513bce4/regex-2026.1.15-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:e43a55f378df1e7a4fa3547c88d9a5a9b7113f653a66821bcea4718fe6c58763", size = 854485, upload-time = "2026-01-14T23:14:31.366Z" },
{ url = "https://files.pythonhosted.org/packages/d9/9a/8e8560bd78caded8eb137e3e47612430a05b9a772caf60876435192d670a/regex-2026.1.15-cp311-cp311-musllinux_1_2_riscv64.whl", hash = "sha256:f82110ab962a541737bd0ce87978d4c658f06e7591ba899192e2712a517badbb", size = 762195, upload-time = "2026-01-14T23:14:32.802Z" },
{ url = "https://files.pythonhosted.org/packages/38/6b/61fc710f9aa8dfcd764fe27d37edfaa023b1a23305a0d84fccd5adb346ea/regex-2026.1.15-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:27618391db7bdaf87ac6c92b31e8f0dfb83a9de0075855152b720140bda177a2", size = 845986, upload-time = "2026-01-14T23:14:34.898Z" },
{ url = "https://files.pythonhosted.org/packages/fd/2e/fbee4cb93f9d686901a7ca8d94285b80405e8c34fe4107f63ffcbfb56379/regex-2026.1.15-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bfb0d6be01fbae8d6655c8ca21b3b72458606c4aec9bbc932db758d47aba6db1", size = 788992, upload-time = "2026-01-14T23:14:37.116Z" },
{ url = "https://files.pythonhosted.org/packages/ed/14/3076348f3f586de64b1ab75a3fbabdaab7684af7f308ad43be7ef1849e55/regex-2026.1.15-cp311-cp311-win32.whl", hash = "sha256:b10e42a6de0e32559a92f2f8dc908478cc0fa02838d7dbe764c44dca3fa13569", size = 265893, upload-time = "2026-01-14T23:14:38.426Z" },
{ url = "https://files.pythonhosted.org/packages/0f/19/772cf8b5fc803f5c89ba85d8b1870a1ca580dc482aa030383a9289c82e44/regex-2026.1.15-cp311-cp311-win_amd64.whl", hash = "sha256:e9bf3f0bbdb56633c07d7116ae60a576f846efdd86a8848f8d62b749e1209ca7", size = 277840, upload-time = "2026-01-14T23:14:39.785Z" },
{ url = "https://files.pythonhosted.org/packages/78/84/d05f61142709474da3c0853222d91086d3e1372bcdab516c6fd8d80f3297/regex-2026.1.15-cp311-cp311-win_arm64.whl", hash = "sha256:41aef6f953283291c4e4e6850607bd71502be67779586a61472beacb315c97ec", size = 270374, upload-time = "2026-01-14T23:14:41.592Z" },
{ url = "https://files.pythonhosted.org/packages/92/81/10d8cf43c807d0326efe874c1b79f22bfb0fb226027b0b19ebc26d301408/regex-2026.1.15-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:4c8fcc5793dde01641a35905d6731ee1548f02b956815f8f1cab89e515a5bdf1", size = 489398, upload-time = "2026-01-14T23:14:43.741Z" },
{ url = "https://files.pythonhosted.org/packages/90/b0/7c2a74e74ef2a7c32de724658a69a862880e3e4155cba992ba04d1c70400/regex-2026.1.15-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bfd876041a956e6a90ad7cdb3f6a630c07d491280bfeed4544053cd434901681", size = 291339, upload-time = "2026-01-14T23:14:45.183Z" },
{ url = "https://files.pythonhosted.org/packages/19/4d/16d0773d0c818417f4cc20aa0da90064b966d22cd62a8c46765b5bd2d643/regex-2026.1.15-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9250d087bc92b7d4899ccd5539a1b2334e44eee85d848c4c1aef8e221d3f8c8f", size = 289003, upload-time = "2026-01-14T23:14:47.25Z" },
{ url = "https://files.pythonhosted.org/packages/c6/e4/1fc4599450c9f0863d9406e944592d968b8d6dfd0d552a7d569e43bceada/regex-2026.1.15-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c8a154cf6537ebbc110e24dabe53095e714245c272da9c1be05734bdad4a61aa", size = 798656, upload-time = "2026-01-14T23:14:48.77Z" },
{ url = "https://files.pythonhosted.org/packages/b2/e6/59650d73a73fa8a60b3a590545bfcf1172b4384a7df2e7fe7b9aab4e2da9/regex-2026.1.15-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:8050ba2e3ea1d8731a549e83c18d2f0999fbc99a5f6bd06b4c91449f55291804", size = 864252, upload-time = "2026-01-14T23:14:50.528Z" },
{ url = "https://files.pythonhosted.org/packages/6e/ab/1d0f4d50a1638849a97d731364c9a80fa304fec46325e48330c170ee8e80/regex-2026.1.15-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:0bf065240704cb8951cc04972cf107063917022511273e0969bdb34fc173456c", size = 912268, upload-time = "2026-01-14T23:14:52.952Z" },
{ url = "https://files.pythonhosted.org/packages/dd/df/0d722c030c82faa1d331d1921ee268a4e8fb55ca8b9042c9341c352f17fa/regex-2026.1.15-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c32bef3e7aeee75746748643667668ef941d28b003bfc89994ecf09a10f7a1b5", size = 803589, upload-time = "2026-01-14T23:14:55.182Z" },
{ url = "https://files.pythonhosted.org/packages/66/23/33289beba7ccb8b805c6610a8913d0131f834928afc555b241caabd422a9/regex-2026.1.15-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:d5eaa4a4c5b1906bd0d2508d68927f15b81821f85092e06f1a34a4254b0e1af3", size = 775700, upload-time = "2026-01-14T23:14:56.707Z" },
{ url = "https://files.pythonhosted.org/packages/e7/65/bf3a42fa6897a0d3afa81acb25c42f4b71c274f698ceabd75523259f6688/regex-2026.1.15-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:86c1077a3cc60d453d4084d5b9649065f3bf1184e22992bd322e1f081d3117fb", size = 787928, upload-time = "2026-01-14T23:14:58.312Z" },
{ url = "https://files.pythonhosted.org/packages/f4/f5/13bf65864fc314f68cdd6d8ca94adcab064d4d39dbd0b10fef29a9da48fc/regex-2026.1.15-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:2b091aefc05c78d286657cd4db95f2e6313375ff65dcf085e42e4c04d9c8d410", size = 858607, upload-time = "2026-01-14T23:15:00.657Z" },
{ url = "https://files.pythonhosted.org/packages/a3/31/040e589834d7a439ee43fb0e1e902bc81bd58a5ba81acffe586bb3321d35/regex-2026.1.15-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:57e7d17f59f9ebfa9667e6e5a1c0127b96b87cb9cede8335482451ed00788ba4", size = 763729, upload-time = "2026-01-14T23:15:02.248Z" },
{ url = "https://files.pythonhosted.org/packages/9b/84/6921e8129687a427edf25a34a5594b588b6d88f491320b9de5b6339a4fcb/regex-2026.1.15-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:c6c4dcdfff2c08509faa15d36ba7e5ef5fcfab25f1e8f85a0c8f45bc3a30725d", size = 850697, upload-time = "2026-01-14T23:15:03.878Z" },
{ url = "https://files.pythonhosted.org/packages/8a/87/3d06143d4b128f4229158f2de5de6c8f2485170c7221e61bf381313314b2/regex-2026.1.15-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:cf8ff04c642716a7f2048713ddc6278c5fd41faa3b9cab12607c7abecd012c22", size = 789849, upload-time = "2026-01-14T23:15:06.102Z" },
{ url = "https://files.pythonhosted.org/packages/77/69/c50a63842b6bd48850ebc7ab22d46e7a2a32d824ad6c605b218441814639/regex-2026.1.15-cp312-cp312-win32.whl", hash = "sha256:82345326b1d8d56afbe41d881fdf62f1926d7264b2fc1537f99ae5da9aad7913", size = 266279, upload-time = "2026-01-14T23:15:07.678Z" },
{ url = "https://files.pythonhosted.org/packages/f2/36/39d0b29d087e2b11fd8191e15e81cce1b635fcc845297c67f11d0d19274d/regex-2026.1.15-cp312-cp312-win_amd64.whl", hash = "sha256:4def140aa6156bc64ee9912383d4038f3fdd18fee03a6f222abd4de6357ce42a", size = 277166, upload-time = "2026-01-14T23:15:09.257Z" },
{ url = "https://files.pythonhosted.org/packages/28/32/5b8e476a12262748851fa8ab1b0be540360692325975b094e594dfebbb52/regex-2026.1.15-cp312-cp312-win_arm64.whl", hash = "sha256:c6c565d9a6e1a8d783c1948937ffc377dd5771e83bd56de8317c450a954d2056", size = 270415, upload-time = "2026-01-14T23:15:10.743Z" },
{ url = "https://files.pythonhosted.org/packages/f8/2e/6870bb16e982669b674cce3ee9ff2d1d46ab80528ee6bcc20fb2292efb60/regex-2026.1.15-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:e69d0deeb977ffe7ed3d2e4439360089f9c3f217ada608f0f88ebd67afb6385e", size = 489164, upload-time = "2026-01-14T23:15:13.962Z" },
{ url = "https://files.pythonhosted.org/packages/dc/67/9774542e203849b0286badf67199970a44ebdb0cc5fb739f06e47ada72f8/regex-2026.1.15-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3601ffb5375de85a16f407854d11cca8fe3f5febbe3ac78fb2866bb220c74d10", size = 291218, upload-time = "2026-01-14T23:15:15.647Z" },
{ url = "https://files.pythonhosted.org/packages/b2/87/b0cda79f22b8dee05f774922a214da109f9a4c0eca5da2c9d72d77ea062c/regex-2026.1.15-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4c5ef43b5c2d4114eb8ea424bb8c9cec01d5d17f242af88b2448f5ee81caadbc", size = 288895, upload-time = "2026-01-14T23:15:17.788Z" },
{ url = "https://files.pythonhosted.org/packages/3b/6a/0041f0a2170d32be01ab981d6346c83a8934277d82c780d60b127331f264/regex-2026.1.15-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:968c14d4f03e10b2fd960f1d5168c1f0ac969381d3c1fcc973bc45fb06346599", size = 798680, upload-time = "2026-01-14T23:15:19.342Z" },
{ url = "https://files.pythonhosted.org/packages/58/de/30e1cfcdbe3e891324aa7568b7c968771f82190df5524fabc1138cb2d45a/regex-2026.1.15-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:56a5595d0f892f214609c9f76b41b7428bed439d98dc961efafdd1354d42baae", size = 864210, upload-time = "2026-01-14T23:15:22.005Z" },
{ url = "https://files.pythonhosted.org/packages/64/44/4db2f5c5ca0ccd40ff052ae7b1e9731352fcdad946c2b812285a7505ca75/regex-2026.1.15-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:0bf650f26087363434c4e560011f8e4e738f6f3e029b85d4904c50135b86cfa5", size = 912358, upload-time = "2026-01-14T23:15:24.569Z" },
{ url = "https://files.pythonhosted.org/packages/79/b6/e6a5665d43a7c42467138c8a2549be432bad22cbd206f5ec87162de74bd7/regex-2026.1.15-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:18388a62989c72ac24de75f1449d0fb0b04dfccd0a1a7c1c43af5eb503d890f6", size = 803583, upload-time = "2026-01-14T23:15:26.526Z" },
{ url = "https://files.pythonhosted.org/packages/e7/53/7cd478222169d85d74d7437e74750005e993f52f335f7c04ff7adfda3310/regex-2026.1.15-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:6d220a2517f5893f55daac983bfa9fe998a7dbcaee4f5d27a88500f8b7873788", size = 775782, upload-time = "2026-01-14T23:15:29.352Z" },
{ url = "https://files.pythonhosted.org/packages/ca/b5/75f9a9ee4b03a7c009fe60500fe550b45df94f0955ca29af16333ef557c5/regex-2026.1.15-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c9c08c2fbc6120e70abff5d7f28ffb4d969e14294fb2143b4b5c7d20e46d1714", size = 787978, upload-time = "2026-01-14T23:15:31.295Z" },
{ url = "https://files.pythonhosted.org/packages/72/b3/79821c826245bbe9ccbb54f6eadb7879c722fd3e0248c17bfc90bf54e123/regex-2026.1.15-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7ef7d5d4bd49ec7364315167a4134a015f61e8266c6d446fc116a9ac4456e10d", size = 858550, upload-time = "2026-01-14T23:15:33.558Z" },
{ url = "https://files.pythonhosted.org/packages/4a/85/2ab5f77a1c465745bfbfcb3ad63178a58337ae8d5274315e2cc623a822fa/regex-2026.1.15-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:6e42844ad64194fa08d5ccb75fe6a459b9b08e6d7296bd704460168d58a388f3", size = 763747, upload-time = "2026-01-14T23:15:35.206Z" },
{ url = "https://files.pythonhosted.org/packages/6d/84/c27df502d4bfe2873a3e3a7cf1bdb2b9cc10284d1a44797cf38bed790470/regex-2026.1.15-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:cfecdaa4b19f9ca534746eb3b55a5195d5c95b88cac32a205e981ec0a22b7d31", size = 850615, upload-time = "2026-01-14T23:15:37.523Z" },
{ url = "https://files.pythonhosted.org/packages/7d/b7/658a9782fb253680aa8ecb5ccbb51f69e088ed48142c46d9f0c99b46c575/regex-2026.1.15-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:08df9722d9b87834a3d701f3fca570b2be115654dbfd30179f30ab2f39d606d3", size = 789951, upload-time = "2026-01-14T23:15:39.582Z" },
{ url = "https://files.pythonhosted.org/packages/fc/2a/5928af114441e059f15b2f63e188bd00c6529b3051c974ade7444b85fcda/regex-2026.1.15-cp313-cp313-win32.whl", hash = "sha256:d426616dae0967ca225ab12c22274eb816558f2f99ccb4a1d52ca92e8baf180f", size = 266275, upload-time = "2026-01-14T23:15:42.108Z" },
{ url = "https://files.pythonhosted.org/packages/4f/16/5bfbb89e435897bff28cf0352a992ca719d9e55ebf8b629203c96b6ce4f7/regex-2026.1.15-cp313-cp313-win_amd64.whl", hash = "sha256:febd38857b09867d3ed3f4f1af7d241c5c50362e25ef43034995b77a50df494e", size = 277145, upload-time = "2026-01-14T23:15:44.244Z" },
{ url = "https://files.pythonhosted.org/packages/56/c1/a09ff7392ef4233296e821aec5f78c51be5e91ffde0d163059e50fd75835/regex-2026.1.15-cp313-cp313-win_arm64.whl", hash = "sha256:8e32f7896f83774f91499d239e24cebfadbc07639c1494bb7213983842348337", size = 270411, upload-time = "2026-01-14T23:15:45.858Z" },
{ url = "https://files.pythonhosted.org/packages/3c/38/0cfd5a78e5c6db00e6782fdae70458f89850ce95baa5e8694ab91d89744f/regex-2026.1.15-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:ec94c04149b6a7b8120f9f44565722c7ae31b7a6d2275569d2eefa76b83da3be", size = 492068, upload-time = "2026-01-14T23:15:47.616Z" },
{ url = "https://files.pythonhosted.org/packages/50/72/6c86acff16cb7c959c4355826bbf06aad670682d07c8f3998d9ef4fee7cd/regex-2026.1.15-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:40c86d8046915bb9aeb15d3f3f15b6fd500b8ea4485b30e1bbc799dab3fe29f8", size = 292756, upload-time = "2026-01-14T23:15:49.307Z" },
{ url = "https://files.pythonhosted.org/packages/4e/58/df7fb69eadfe76526ddfce28abdc0af09ffe65f20c2c90932e89d705153f/regex-2026.1.15-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:726ea4e727aba21643205edad8f2187ec682d3305d790f73b7a51c7587b64bdd", size = 291114, upload-time = "2026-01-14T23:15:51.484Z" },
{ url = "https://files.pythonhosted.org/packages/ed/6c/a4011cd1cf96b90d2cdc7e156f91efbd26531e822a7fbb82a43c1016678e/regex-2026.1.15-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1cb740d044aff31898804e7bf1181cc72c03d11dfd19932b9911ffc19a79070a", size = 807524, upload-time = "2026-01-14T23:15:53.102Z" },
{ url = "https://files.pythonhosted.org/packages/1d/25/a53ffb73183f69c3e9f4355c4922b76d2840aee160af6af5fac229b6201d/regex-2026.1.15-cp313-cp313t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:05d75a668e9ea16f832390d22131fe1e8acc8389a694c8febc3e340b0f810b93", size = 873455, upload-time = "2026-01-14T23:15:54.956Z" },
{ url = "https://files.pythonhosted.org/packages/66/0b/8b47fc2e8f97d9b4a851736f3890a5f786443aa8901061c55f24c955f45b/regex-2026.1.15-cp313-cp313t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d991483606f3dbec93287b9f35596f41aa2e92b7c2ebbb935b63f409e243c9af", size = 915007, upload-time = "2026-01-14T23:15:57.041Z" },
{ url = "https://files.pythonhosted.org/packages/c2/fa/97de0d681e6d26fabe71968dbee06dd52819e9a22fdce5dac7256c31ed84/regex-2026.1.15-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:194312a14819d3e44628a44ed6fea6898fdbecb0550089d84c403475138d0a09", size = 812794, upload-time = "2026-01-14T23:15:58.916Z" },
{ url = "https://files.pythonhosted.org/packages/22/38/e752f94e860d429654aa2b1c51880bff8dfe8f084268258adf9151cf1f53/regex-2026.1.15-cp313-cp313t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:fe2fda4110a3d0bc163c2e0664be44657431440722c5c5315c65155cab92f9e5", size = 781159, upload-time = "2026-01-14T23:16:00.817Z" },
{ url = "https://files.pythonhosted.org/packages/e9/a7/d739ffaef33c378fc888302a018d7f81080393d96c476b058b8c64fd2b0d/regex-2026.1.15-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:124dc36c85d34ef2d9164da41a53c1c8c122cfb1f6e1ec377a1f27ee81deb794", size = 795558, upload-time = "2026-01-14T23:16:03.267Z" },
{ url = "https://files.pythonhosted.org/packages/3e/c4/542876f9a0ac576100fc73e9c75b779f5c31e3527576cfc9cb3009dcc58a/regex-2026.1.15-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:a1774cd1981cd212506a23a14dba7fdeaee259f5deba2df6229966d9911e767a", size = 868427, upload-time = "2026-01-14T23:16:05.646Z" },
{ url = "https://files.pythonhosted.org/packages/fc/0f/d5655bea5b22069e32ae85a947aa564912f23758e112cdb74212848a1a1b/regex-2026.1.15-cp313-cp313t-musllinux_1_2_riscv64.whl", hash = "sha256:b5f7d8d2867152cdb625e72a530d2ccb48a3d199159144cbdd63870882fb6f80", size = 769939, upload-time = "2026-01-14T23:16:07.542Z" },
{ url = "https://files.pythonhosted.org/packages/20/06/7e18a4fa9d326daeda46d471a44ef94201c46eaa26dbbb780b5d92cbfdda/regex-2026.1.15-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:492534a0ab925d1db998defc3c302dae3616a2fc3fe2e08db1472348f096ddf2", size = 854753, upload-time = "2026-01-14T23:16:10.395Z" },
{ url = "https://files.pythonhosted.org/packages/3b/67/dc8946ef3965e166f558ef3b47f492bc364e96a265eb4a2bb3ca765c8e46/regex-2026.1.15-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:c661fc820cfb33e166bf2450d3dadbda47c8d8981898adb9b6fe24e5e582ba60", size = 799559, upload-time = "2026-01-14T23:16:12.347Z" },
{ url = "https://files.pythonhosted.org/packages/a5/61/1bba81ff6d50c86c65d9fd84ce9699dd106438ee4cdb105bf60374ee8412/regex-2026.1.15-cp313-cp313t-win32.whl", hash = "sha256:99ad739c3686085e614bf77a508e26954ff1b8f14da0e3765ff7abbf7799f952", size = 268879, upload-time = "2026-01-14T23:16:14.049Z" },
{ url = "https://files.pythonhosted.org/packages/e9/5e/cef7d4c5fb0ea3ac5c775fd37db5747f7378b29526cc83f572198924ff47/regex-2026.1.15-cp313-cp313t-win_amd64.whl", hash = "sha256:32655d17905e7ff8ba5c764c43cb124e34a9245e45b83c22e81041e1071aee10", size = 280317, upload-time = "2026-01-14T23:16:15.718Z" },
{ url = "https://files.pythonhosted.org/packages/b4/52/4317f7a5988544e34ab57b4bde0f04944c4786128c933fb09825924d3e82/regex-2026.1.15-cp313-cp313t-win_arm64.whl", hash = "sha256:b2a13dd6a95e95a489ca242319d18fc02e07ceb28fa9ad146385194d95b3c829", size = 271551, upload-time = "2026-01-14T23:16:17.533Z" },
{ url = "https://files.pythonhosted.org/packages/63/12/497bd6599ce8a239ade68678132296aec5ee25ebea45fc8ba91aa60fceec/regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408", size = 482488, upload-time = "2024-09-11T18:56:55.331Z" },
{ url = "https://files.pythonhosted.org/packages/c1/24/595ddb9bec2a9b151cdaf9565b0c9f3da9f0cb1dca6c158bc5175332ddf8/regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d", size = 287443, upload-time = "2024-09-11T18:56:58.531Z" },
{ url = "https://files.pythonhosted.org/packages/69/a8/b2fb45d9715b1469383a0da7968f8cacc2f83e9fbbcd6b8713752dd980a6/regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5", size = 284561, upload-time = "2024-09-11T18:57:00.655Z" },
{ url = "https://files.pythonhosted.org/packages/88/87/1ce4a5357216b19b7055e7d3b0efc75a6e426133bf1e7d094321df514257/regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c", size = 783177, upload-time = "2024-09-11T18:57:01.958Z" },
{ url = "https://files.pythonhosted.org/packages/3c/65/b9f002ab32f7b68e7d1dcabb67926f3f47325b8dbc22cc50b6a043e1d07c/regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8", size = 823193, upload-time = "2024-09-11T18:57:04.06Z" },
{ url = "https://files.pythonhosted.org/packages/22/91/8339dd3abce101204d246e31bc26cdd7ec07c9f91598472459a3a902aa41/regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35", size = 809950, upload-time = "2024-09-11T18:57:05.805Z" },
{ url = "https://files.pythonhosted.org/packages/cb/19/556638aa11c2ec9968a1da998f07f27ec0abb9bf3c647d7c7985ca0b8eea/regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71", size = 782661, upload-time = "2024-09-11T18:57:07.881Z" },
{ url = "https://files.pythonhosted.org/packages/d1/e9/7a5bc4c6ef8d9cd2bdd83a667888fc35320da96a4cc4da5fa084330f53db/regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8", size = 772348, upload-time = "2024-09-11T18:57:09.494Z" },
{ url = "https://files.pythonhosted.org/packages/f1/0b/29f2105bfac3ed08e704914c38e93b07c784a6655f8a015297ee7173e95b/regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a", size = 697460, upload-time = "2024-09-11T18:57:11.595Z" },
{ url = "https://files.pythonhosted.org/packages/71/3a/52ff61054d15a4722605f5872ad03962b319a04c1ebaebe570b8b9b7dde1/regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d", size = 769151, upload-time = "2024-09-11T18:57:14.358Z" },
{ url = "https://files.pythonhosted.org/packages/97/07/37e460ab5ca84be8e1e197c3b526c5c86993dcc9e13cbc805c35fc2463c1/regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137", size = 777478, upload-time = "2024-09-11T18:57:16.397Z" },
{ url = "https://files.pythonhosted.org/packages/65/7b/953075723dd5ab00780043ac2f9de667306ff9e2a85332975e9f19279174/regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6", size = 845373, upload-time = "2024-09-11T18:57:17.938Z" },
{ url = "https://files.pythonhosted.org/packages/40/b8/3e9484c6230b8b6e8f816ab7c9a080e631124991a4ae2c27a81631777db0/regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca", size = 845369, upload-time = "2024-09-11T18:57:20.091Z" },
{ url = "https://files.pythonhosted.org/packages/b7/99/38434984d912edbd2e1969d116257e869578f67461bd7462b894c45ed874/regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a", size = 773935, upload-time = "2024-09-11T18:57:21.652Z" },
{ url = "https://files.pythonhosted.org/packages/ab/67/43174d2b46fa947b7b9dfe56b6c8a8a76d44223f35b1d64645a732fd1d6f/regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0", size = 261624, upload-time = "2024-09-11T18:57:23.777Z" },
{ url = "https://files.pythonhosted.org/packages/c4/2a/4f9c47d9395b6aff24874c761d8d620c0232f97c43ef3cf668c8b355e7a7/regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623", size = 274020, upload-time = "2024-09-11T18:57:25.27Z" },
{ url = "https://files.pythonhosted.org/packages/86/a1/d526b7b6095a0019aa360948c143aacfeb029919c898701ce7763bbe4c15/regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df", size = 482483, upload-time = "2024-09-11T18:57:26.694Z" },
{ url = "https://files.pythonhosted.org/packages/32/d9/bfdd153179867c275719e381e1e8e84a97bd186740456a0dcb3e7125c205/regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268", size = 287442, upload-time = "2024-09-11T18:57:28.133Z" },
{ url = "https://files.pythonhosted.org/packages/33/c4/60f3370735135e3a8d673ddcdb2507a8560d0e759e1398d366e43d000253/regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad", size = 284561, upload-time = "2024-09-11T18:57:30.83Z" },
{ url = "https://files.pythonhosted.org/packages/b1/51/91a5ebdff17f9ec4973cb0aa9d37635efec1c6868654bbc25d1543aca4ec/regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679", size = 791779, upload-time = "2024-09-11T18:57:32.461Z" },
{ url = "https://files.pythonhosted.org/packages/07/4a/022c5e6f0891a90cd7eb3d664d6c58ce2aba48bff107b00013f3d6167069/regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4", size = 832605, upload-time = "2024-09-11T18:57:34.01Z" },
{ url = "https://files.pythonhosted.org/packages/ac/1c/3793990c8c83ca04e018151ddda83b83ecc41d89964f0f17749f027fc44d/regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664", size = 818556, upload-time = "2024-09-11T18:57:36.363Z" },
{ url = "https://files.pythonhosted.org/packages/e9/5c/8b385afbfacb853730682c57be56225f9fe275c5bf02ac1fc88edbff316d/regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50", size = 792808, upload-time = "2024-09-11T18:57:38.493Z" },
{ url = "https://files.pythonhosted.org/packages/9b/8b/a4723a838b53c771e9240951adde6af58c829fb6a6a28f554e8131f53839/regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199", size = 781115, upload-time = "2024-09-11T18:57:41.4Z" },
{ url = "https://files.pythonhosted.org/packages/83/5f/031a04b6017033d65b261259c09043c06f4ef2d4eac841d0649d76d69541/regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4", size = 778155, upload-time = "2024-09-11T18:57:43.608Z" },
{ url = "https://files.pythonhosted.org/packages/fd/cd/4660756070b03ce4a66663a43f6c6e7ebc2266cc6b4c586c167917185eb4/regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd", size = 784614, upload-time = "2024-09-11T18:57:45.219Z" },
{ url = "https://files.pythonhosted.org/packages/93/8d/65b9bea7df120a7be8337c415b6d256ba786cbc9107cebba3bf8ff09da99/regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f", size = 853744, upload-time = "2024-09-11T18:57:46.907Z" },
{ url = "https://files.pythonhosted.org/packages/96/a7/fba1eae75eb53a704475baf11bd44b3e6ccb95b316955027eb7748f24ef8/regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96", size = 855890, upload-time = "2024-09-11T18:57:49.264Z" },
{ url = "https://files.pythonhosted.org/packages/45/14/d864b2db80a1a3358534392373e8a281d95b28c29c87d8548aed58813910/regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1", size = 781887, upload-time = "2024-09-11T18:57:51.619Z" },
{ url = "https://files.pythonhosted.org/packages/4d/a9/bfb29b3de3eb11dc9b412603437023b8e6c02fb4e11311863d9bf62c403a/regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9", size = 261644, upload-time = "2024-09-11T18:57:53.334Z" },
{ url = "https://files.pythonhosted.org/packages/c7/ab/1ad2511cf6a208fde57fafe49829cab8ca018128ab0d0b48973d8218634a/regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf", size = 274033, upload-time = "2024-09-11T18:57:55.605Z" },
{ url = "https://files.pythonhosted.org/packages/6e/92/407531450762bed778eedbde04407f68cbd75d13cee96c6f8d6903d9c6c1/regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7", size = 483590, upload-time = "2024-09-11T18:57:57.793Z" },
{ url = "https://files.pythonhosted.org/packages/8e/a2/048acbc5ae1f615adc6cba36cc45734e679b5f1e4e58c3c77f0ed611d4e2/regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231", size = 288175, upload-time = "2024-09-11T18:57:59.671Z" },
{ url = "https://files.pythonhosted.org/packages/8a/ea/909d8620329ab710dfaf7b4adee41242ab7c9b95ea8d838e9bfe76244259/regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d", size = 284749, upload-time = "2024-09-11T18:58:01.855Z" },
{ url = "https://files.pythonhosted.org/packages/ca/fa/521eb683b916389b4975337873e66954e0f6d8f91bd5774164a57b503185/regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64", size = 795181, upload-time = "2024-09-11T18:58:03.985Z" },
{ url = "https://files.pythonhosted.org/packages/28/db/63047feddc3280cc242f9c74f7aeddc6ee662b1835f00046f57d5630c827/regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42", size = 835842, upload-time = "2024-09-11T18:58:05.74Z" },
{ url = "https://files.pythonhosted.org/packages/e3/94/86adc259ff8ec26edf35fcca7e334566c1805c7493b192cb09679f9c3dee/regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766", size = 823533, upload-time = "2024-09-11T18:58:07.427Z" },
{ url = "https://files.pythonhosted.org/packages/29/52/84662b6636061277cb857f658518aa7db6672bc6d1a3f503ccd5aefc581e/regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a", size = 797037, upload-time = "2024-09-11T18:58:09.879Z" },
{ url = "https://files.pythonhosted.org/packages/c3/2a/cd4675dd987e4a7505f0364a958bc41f3b84942de9efaad0ef9a2646681c/regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9", size = 784106, upload-time = "2024-09-11T18:58:11.55Z" },
{ url = "https://files.pythonhosted.org/packages/6f/75/3ea7ec29de0bbf42f21f812f48781d41e627d57a634f3f23947c9a46e303/regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d", size = 782468, upload-time = "2024-09-11T18:58:13.552Z" },
{ url = "https://files.pythonhosted.org/packages/d3/67/15519d69b52c252b270e679cb578e22e0c02b8dd4e361f2b04efcc7f2335/regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822", size = 790324, upload-time = "2024-09-11T18:58:15.268Z" },
{ url = "https://files.pythonhosted.org/packages/9c/71/eff77d3fe7ba08ab0672920059ec30d63fa7e41aa0fb61c562726e9bd721/regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0", size = 860214, upload-time = "2024-09-11T18:58:17.583Z" },
{ url = "https://files.pythonhosted.org/packages/81/11/e1bdf84a72372e56f1ea4b833dd583b822a23138a616ace7ab57a0e11556/regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a", size = 859420, upload-time = "2024-09-11T18:58:19.898Z" },
{ url = "https://files.pythonhosted.org/packages/ea/75/9753e9dcebfa7c3645563ef5c8a58f3a47e799c872165f37c55737dadd3e/regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a", size = 787333, upload-time = "2024-09-11T18:58:21.699Z" },
{ url = "https://files.pythonhosted.org/packages/bc/4e/ba1cbca93141f7416624b3ae63573e785d4bc1834c8be44a8f0747919eca/regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776", size = 262058, upload-time = "2024-09-11T18:58:23.452Z" },
{ url = "https://files.pythonhosted.org/packages/6e/16/efc5f194778bf43e5888209e5cec4b258005d37c613b67ae137df3b89c53/regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009", size = 273526, upload-time = "2024-09-11T18:58:25.191Z" },
{ url = "https://files.pythonhosted.org/packages/93/0a/d1c6b9af1ff1e36832fe38d74d5c5bab913f2bdcbbd6bc0e7f3ce8b2f577/regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784", size = 483376, upload-time = "2024-09-11T18:58:27.11Z" },
{ url = "https://files.pythonhosted.org/packages/a4/42/5910a050c105d7f750a72dcb49c30220c3ae4e2654e54aaaa0e9bc0584cb/regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36", size = 288112, upload-time = "2024-09-11T18:58:28.78Z" },
{ url = "https://files.pythonhosted.org/packages/8d/56/0c262aff0e9224fa7ffce47b5458d373f4d3e3ff84e99b5ff0cb15e0b5b2/regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92", size = 284608, upload-time = "2024-09-11T18:58:30.498Z" },
{ url = "https://files.pythonhosted.org/packages/b9/54/9fe8f9aec5007bbbbce28ba3d2e3eaca425f95387b7d1e84f0d137d25237/regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86", size = 795337, upload-time = "2024-09-11T18:58:32.665Z" },
{ url = "https://files.pythonhosted.org/packages/b2/e7/6b2f642c3cded271c4f16cc4daa7231be544d30fe2b168e0223724b49a61/regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85", size = 835848, upload-time = "2024-09-11T18:58:34.337Z" },
{ url = "https://files.pythonhosted.org/packages/cd/9e/187363bdf5d8c0e4662117b92aa32bf52f8f09620ae93abc7537d96d3311/regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963", size = 823503, upload-time = "2024-09-11T18:58:36.17Z" },
{ url = "https://files.pythonhosted.org/packages/f8/10/601303b8ee93589f879664b0cfd3127949ff32b17f9b6c490fb201106c4d/regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6", size = 797049, upload-time = "2024-09-11T18:58:38.225Z" },
{ url = "https://files.pythonhosted.org/packages/ef/1c/ea200f61ce9f341763f2717ab4daebe4422d83e9fd4ac5e33435fd3a148d/regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802", size = 784144, upload-time = "2024-09-11T18:58:40.605Z" },
{ url = "https://files.pythonhosted.org/packages/d8/5c/d2429be49ef3292def7688401d3deb11702c13dcaecdc71d2b407421275b/regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29", size = 782483, upload-time = "2024-09-11T18:58:42.58Z" },
{ url = "https://files.pythonhosted.org/packages/12/d9/cbc30f2ff7164f3b26a7760f87c54bf8b2faed286f60efd80350a51c5b99/regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8", size = 790320, upload-time = "2024-09-11T18:58:44.5Z" },
{ url = "https://files.pythonhosted.org/packages/19/1d/43ed03a236313639da5a45e61bc553c8d41e925bcf29b0f8ecff0c2c3f25/regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84", size = 860435, upload-time = "2024-09-11T18:58:47.014Z" },
{ url = "https://files.pythonhosted.org/packages/34/4f/5d04da61c7c56e785058a46349f7285ae3ebc0726c6ea7c5c70600a52233/regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554", size = 859571, upload-time = "2024-09-11T18:58:48.974Z" },
{ url = "https://files.pythonhosted.org/packages/12/7f/8398c8155a3c70703a8e91c29532558186558e1aea44144b382faa2a6f7a/regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8", size = 787398, upload-time = "2024-09-11T18:58:51.05Z" },
{ url = "https://files.pythonhosted.org/packages/58/3a/f5903977647a9a7e46d5535e9e96c194304aeeca7501240509bde2f9e17f/regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8", size = 262035, upload-time = "2024-09-11T18:58:53.526Z" },
{ url = "https://files.pythonhosted.org/packages/ff/80/51ba3a4b7482f6011095b3a036e07374f64de180b7d870b704ed22509002/regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f", size = 273510, upload-time = "2024-09-11T18:58:55.263Z" },
]
[[package]]