Compare commits

..

6 Commits

Author SHA1 Message Date
Greyson LaLonde
806863eae7 Merge branch 'main' into lorenze/fix-google-vertex-api-using-api-keys 2026-01-17 10:16:15 -05:00
Greyson LaLonde
ceef062426 feat: add additional a2a events and enrich event metadata
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2026-01-16 16:57:31 -05:00
lorenzejay
e83b7554bf docs translations 2026-01-15 14:43:43 -08:00
lorenzejay
7834b07ce4 Merge branch 'main' of github.com:crewAIInc/crewAI into lorenze/fix-google-vertex-api-using-api-keys 2026-01-15 14:37:37 -08:00
lorenzejay
a9bb03ffa8 docs update here 2026-01-15 14:37:16 -08:00
lorenzejay
5beaea189b supporting vertex through api key use - expo mode 2026-01-15 14:34:07 -08:00
39 changed files with 3391 additions and 2980 deletions

View File

@@ -375,10 +375,13 @@ In this section, you'll find detailed examples that help you select, configure,
GOOGLE_API_KEY=<your-api-key>
GEMINI_API_KEY=<your-api-key>
# Optional - for Vertex AI
# For Vertex AI Express mode (API key authentication)
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_API_KEY=<your-api-key>
# For Vertex AI with service account
GOOGLE_CLOUD_PROJECT=<your-project-id>
GOOGLE_CLOUD_LOCATION=<location> # Defaults to us-central1
GOOGLE_GENAI_USE_VERTEXAI=true # Set to use Vertex AI
```
**Basic Usage:**
@@ -412,7 +415,35 @@ In this section, you'll find detailed examples that help you select, configure,
)
```
**Vertex AI Configuration:**
**Vertex AI Express Mode (API Key Authentication):**
Vertex AI Express mode allows you to use Vertex AI with simple API key authentication instead of service account credentials. This is the quickest way to get started with Vertex AI.
To enable Express mode, set both environment variables in your `.env` file:
```toml .env
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_API_KEY=<your-api-key>
```
Then use the LLM as usual:
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
temperature=0.7
)
```
<Info>
To get an Express mode API key:
- New Google Cloud users: Get an [express mode API key](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey)
- Existing Google Cloud users: Get a [Google Cloud API key bound to a service account](https://cloud.google.com/docs/authentication/api-keys)
For more details, see the [Vertex AI Express mode documentation](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey).
</Info>
**Vertex AI Configuration (Service Account):**
```python Code
from crewai import LLM
@@ -424,10 +455,10 @@ In this section, you'll find detailed examples that help you select, configure,
```
**Supported Environment Variables:**
- `GOOGLE_API_KEY` or `GEMINI_API_KEY`: Your Google API key (required for Gemini API)
- `GOOGLE_CLOUD_PROJECT`: Google Cloud project ID (for Vertex AI)
- `GOOGLE_API_KEY` or `GEMINI_API_KEY`: Your Google API key (required for Gemini API and Vertex AI Express mode)
- `GOOGLE_GENAI_USE_VERTEXAI`: Set to `true` to use Vertex AI (required for Express mode)
- `GOOGLE_CLOUD_PROJECT`: Google Cloud project ID (for Vertex AI with service account)
- `GOOGLE_CLOUD_LOCATION`: GCP location (defaults to `us-central1`)
- `GOOGLE_GENAI_USE_VERTEXAI`: Set to `true` to use Vertex AI
**Features:**
- Native function calling support for Gemini 1.5+ and 2.x models

View File

@@ -107,7 +107,7 @@ CrewAI 코드 내에는 사용할 모델을 지정할 수 있는 여러 위치
## 공급자 구성 예시
CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양한 LLM 공급자를 지원합니다.
CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양한 LLM 공급자를 지원합니다.
이 섹션에서는 프로젝트의 요구에 가장 적합한 LLM을 선택, 구성, 최적화하는 데 도움이 되는 자세한 예시를 제공합니다.
<AccordionGroup>
@@ -153,8 +153,8 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
</Accordion>
<Accordion title="Meta-Llama">
Meta의 Llama API는 Meta의 대형 언어 모델 패밀리 접근을 제공합니다.
API는 [Meta Llama API](https://llama.developer.meta.com?utm_source=partner-crewai&utm_medium=website)에서 사용할 수 있습니다.
Meta의 Llama API는 Meta의 대형 언어 모델 패밀리 접근을 제공합니다.
API는 [Meta Llama API](https://llama.developer.meta.com?utm_source=partner-crewai&utm_medium=website)에서 사용할 수 있습니다.
`.env` 파일에 다음 환경 변수를 설정하십시오:
```toml Code
@@ -207,11 +207,20 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
`.env` 파일에 API 키를 설정하십시오. 키가 필요하거나 기존 키를 찾으려면 [AI Studio](https://aistudio.google.com/apikey)를 확인하세요.
```toml .env
# https://ai.google.dev/gemini-api/docs/api-key
# Gemini API 사용 시 (다음 중 하나)
GOOGLE_API_KEY=<your-api-key>
GEMINI_API_KEY=<your-api-key>
# Vertex AI Express 모드 사용 시 (API 키 인증)
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_API_KEY=<your-api-key>
# Vertex AI 서비스 계정 사용 시
GOOGLE_CLOUD_PROJECT=<your-project-id>
GOOGLE_CLOUD_LOCATION=<location> # 기본값: us-central1
```
CrewAI 프로젝트에서의 예시 사용법:
**기본 사용법:**
```python Code
from crewai import LLM
@@ -221,6 +230,34 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
)
```
**Vertex AI Express 모드 (API 키 인증):**
Vertex AI Express 모드를 사용하면 서비스 계정 자격 증명 대신 간단한 API 키 인증으로 Vertex AI를 사용할 수 있습니다. Vertex AI를 시작하는 가장 빠른 방법입니다.
Express 모드를 활성화하려면 `.env` 파일에 두 환경 변수를 모두 설정하세요:
```toml .env
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_API_KEY=<your-api-key>
```
그런 다음 평소처럼 LLM을 사용하세요:
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
temperature=0.7
)
```
<Info>
Express 모드 API 키를 받으려면:
- 신규 Google Cloud 사용자: [Express 모드 API 키](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey) 받기
- 기존 Google Cloud 사용자: [서비스 계정에 바인딩된 Google Cloud API 키](https://cloud.google.com/docs/authentication/api-keys) 받기
자세한 내용은 [Vertex AI Express 모드 문서](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey)를 참조하세요.
</Info>
### Gemini 모델
Google은 다양한 용도에 최적화된 강력한 모델을 제공합니다.
@@ -476,7 +513,7 @@ CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양
<Accordion title="Local NVIDIA NIM Deployed using WSL2">
NVIDIA NIM을 이용하면 Windows 기기에서 WSL2(Windows Subsystem for Linux)를 통해 강력한 LLM을 로컬로 실행할 수 있습니다.
NVIDIA NIM을 이용하면 Windows 기기에서 WSL2(Windows Subsystem for Linux)를 통해 강력한 LLM을 로컬로 실행할 수 있습니다.
이 방식은 Nvidia GPU를 활용하여 프라이빗하고, 안전하며, 비용 효율적인 AI 추론을 클라우드 서비스에 의존하지 않고 구현할 수 있습니다.
데이터 프라이버시, 오프라인 기능이 필요한 개발, 테스트, 또는 프로덕션 환경에 최적입니다.
@@ -954,4 +991,4 @@ LLM 설정을 최대한 활용하는 방법을 알아보세요:
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>
</Tabs>

View File

@@ -79,7 +79,7 @@ Existem diferentes locais no código do CrewAI onde você pode especificar o mod
# Configuração avançada com parâmetros detalhados
llm = LLM(
model="openai/gpt-4",
model="openai/gpt-4",
temperature=0.8,
max_tokens=150,
top_p=0.9,
@@ -207,11 +207,20 @@ Nesta seção, você encontrará exemplos detalhados que ajudam a selecionar, co
Defina sua chave de API no seu arquivo `.env`. Se precisar de uma chave, ou encontrar uma existente, verifique o [AI Studio](https://aistudio.google.com/apikey).
```toml .env
# https://ai.google.dev/gemini-api/docs/api-key
# Para API Gemini (uma das seguintes)
GOOGLE_API_KEY=<your-api-key>
GEMINI_API_KEY=<your-api-key>
# Para Vertex AI Express mode (autenticação por chave de API)
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_API_KEY=<your-api-key>
# Para Vertex AI com conta de serviço
GOOGLE_CLOUD_PROJECT=<your-project-id>
GOOGLE_CLOUD_LOCATION=<location> # Padrão: us-central1
```
Exemplo de uso em seu projeto CrewAI:
**Uso Básico:**
```python Code
from crewai import LLM
@@ -221,6 +230,34 @@ Nesta seção, você encontrará exemplos detalhados que ajudam a selecionar, co
)
```
**Vertex AI Express Mode (Autenticação por Chave de API):**
O Vertex AI Express mode permite usar o Vertex AI com autenticação simples por chave de API, em vez de credenciais de conta de serviço. Esta é a maneira mais rápida de começar com o Vertex AI.
Para habilitar o Express mode, defina ambas as variáveis de ambiente no seu arquivo `.env`:
```toml .env
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_API_KEY=<your-api-key>
```
Em seguida, use o LLM normalmente:
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
temperature=0.7
)
```
<Info>
Para obter uma chave de API do Express mode:
- Novos usuários do Google Cloud: Obtenha uma [chave de API do Express mode](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey)
- Usuários existentes do Google Cloud: Obtenha uma [chave de API do Google Cloud vinculada a uma conta de serviço](https://cloud.google.com/docs/authentication/api-keys)
Para mais detalhes, consulte a [documentação do Vertex AI Express mode](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey).
</Info>
### Modelos Gemini
O Google oferece uma variedade de modelos poderosos otimizados para diferentes casos de uso.
@@ -823,7 +860,7 @@ Saiba como obter o máximo da configuração do seu LLM:
Lembre-se de monitorar regularmente o uso de tokens e ajustar suas configurações para otimizar custos e desempenho.
</Info>
</Accordion>
<Accordion title="Descartar Parâmetros Adicionais">
O CrewAI usa Litellm internamente para chamadas LLM, permitindo descartar parâmetros adicionais desnecessários para seu caso de uso. Isso pode simplificar seu código e reduzir a complexidade da configuração do LLM.
Por exemplo, se não precisar enviar o parâmetro <code>stop</code>, basta omiti-lo na chamada do LLM:
@@ -882,4 +919,4 @@ Saiba como obter o máximo da configuração do seu LLM:
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>
</Tabs>

View File

@@ -3,9 +3,10 @@
from __future__ import annotations
from collections.abc import AsyncIterator
from typing import TYPE_CHECKING, TypedDict
from typing import TYPE_CHECKING, Any, TypedDict
import uuid
from a2a.client.errors import A2AClientHTTPError
from a2a.types import (
AgentCard,
Message,
@@ -20,7 +21,10 @@ from a2a.types import (
from typing_extensions import NotRequired
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.a2a_events import A2AResponseReceivedEvent
from crewai.events.types.a2a_events import (
A2AConnectionErrorEvent,
A2AResponseReceivedEvent,
)
if TYPE_CHECKING:
@@ -55,7 +59,8 @@ class TaskStateResult(TypedDict):
history: list[Message]
result: NotRequired[str]
error: NotRequired[str]
agent_card: NotRequired[AgentCard]
agent_card: NotRequired[dict[str, Any]]
a2a_agent_name: NotRequired[str | None]
def extract_task_result_parts(a2a_task: A2ATask) -> list[str]:
@@ -131,50 +136,69 @@ def process_task_state(
is_multiturn: bool,
agent_role: str | None,
result_parts: list[str] | None = None,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
from_task: Any | None = None,
from_agent: Any | None = None,
is_final: bool = True,
) -> TaskStateResult | None:
"""Process A2A task state and return result dictionary.
Shared logic for both polling and streaming handlers.
Args:
a2a_task: The A2A task to process
new_messages: List to collect messages (modified in place)
agent_card: The agent card
turn_number: Current turn number
is_multiturn: Whether multi-turn conversation
agent_role: Agent role for logging
a2a_task: The A2A task to process.
new_messages: List to collect messages (modified in place).
agent_card: The agent card.
turn_number: Current turn number.
is_multiturn: Whether multi-turn conversation.
agent_role: Agent role for logging.
result_parts: Accumulated result parts (streaming passes accumulated,
polling passes None to extract from task)
polling passes None to extract from task).
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
from_task: Optional CrewAI Task for event metadata.
from_agent: Optional CrewAI Agent for event metadata.
is_final: Whether this is the final response in the stream.
Returns:
Result dictionary if terminal/actionable state, None otherwise
Result dictionary if terminal/actionable state, None otherwise.
"""
should_extract = result_parts is None
if result_parts is None:
result_parts = []
if a2a_task.status.state == TaskState.completed:
if should_extract:
if not result_parts:
extracted_parts = extract_task_result_parts(a2a_task)
result_parts.extend(extracted_parts)
if a2a_task.history:
new_messages.extend(a2a_task.history)
response_text = " ".join(result_parts) if result_parts else ""
message_id = None
if a2a_task.status and a2a_task.status.message:
message_id = a2a_task.status.message.message_id
crewai_event_bus.emit(
None,
A2AResponseReceivedEvent(
response=response_text,
turn_number=turn_number,
context_id=a2a_task.context_id,
message_id=message_id,
is_multiturn=is_multiturn,
status="completed",
final=is_final,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
status=TaskState.completed,
agent_card=agent_card,
agent_card=agent_card.model_dump(exclude_none=True),
result=response_text,
history=new_messages,
)
@@ -194,14 +218,24 @@ def process_task_state(
)
new_messages.append(agent_message)
input_message_id = None
if a2a_task.status and a2a_task.status.message:
input_message_id = a2a_task.status.message.message_id
crewai_event_bus.emit(
None,
A2AResponseReceivedEvent(
response=response_text,
turn_number=turn_number,
context_id=a2a_task.context_id,
message_id=input_message_id,
is_multiturn=is_multiturn,
status="input_required",
final=is_final,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -209,7 +243,7 @@ def process_task_state(
status=TaskState.input_required,
error=response_text,
history=new_messages,
agent_card=agent_card,
agent_card=agent_card.model_dump(exclude_none=True),
)
if a2a_task.status.state in {TaskState.failed, TaskState.rejected}:
@@ -248,6 +282,11 @@ async def send_message_and_get_task_id(
turn_number: int,
is_multiturn: bool,
agent_role: str | None,
from_task: Any | None = None,
from_agent: Any | None = None,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
context_id: str | None = None,
) -> str | TaskStateResult:
"""Send message and process initial response.
@@ -262,6 +301,11 @@ async def send_message_and_get_task_id(
turn_number: Current turn number
is_multiturn: Whether multi-turn conversation
agent_role: Agent role for logging
from_task: Optional CrewAI Task object for event metadata.
from_agent: Optional CrewAI Agent object for event metadata.
endpoint: Optional A2A endpoint URL.
a2a_agent_name: Optional A2A agent name.
context_id: Optional A2A context ID for correlation.
Returns:
Task ID string if agent needs polling/waiting, or TaskStateResult if done.
@@ -280,9 +324,16 @@ async def send_message_and_get_task_id(
A2AResponseReceivedEvent(
response=response_text,
turn_number=turn_number,
context_id=event.context_id,
message_id=event.message_id,
is_multiturn=is_multiturn,
status="completed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -290,7 +341,7 @@ async def send_message_and_get_task_id(
status=TaskState.completed,
result=response_text,
history=new_messages,
agent_card=agent_card,
agent_card=agent_card.model_dump(exclude_none=True),
)
if isinstance(event, tuple):
@@ -304,6 +355,10 @@ async def send_message_and_get_task_id(
turn_number=turn_number,
is_multiturn=is_multiturn,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
)
if result:
return result
@@ -316,6 +371,99 @@ async def send_message_and_get_task_id(
history=new_messages,
)
except A2AClientHTTPError as e:
error_msg = f"HTTP Error {e.status_code}: {e!s}"
error_message = Message(
role=Role.agent,
message_id=str(uuid.uuid4()),
parts=[Part(root=TextPart(text=error_msg))],
context_id=context_id,
)
new_messages.append(error_message)
crewai_event_bus.emit(
None,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=str(e),
error_type="http_error",
status_code=e.status_code,
a2a_agent_name=a2a_agent_name,
operation="send_message",
context_id=context_id,
from_task=from_task,
from_agent=from_agent,
),
)
crewai_event_bus.emit(
None,
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
status=TaskState.failed,
error=error_msg,
history=new_messages,
)
except Exception as e:
error_msg = f"Unexpected error during send_message: {e!s}"
error_message = Message(
role=Role.agent,
message_id=str(uuid.uuid4()),
parts=[Part(root=TextPart(text=error_msg))],
context_id=context_id,
)
new_messages.append(error_message)
crewai_event_bus.emit(
None,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=str(e),
error_type="unexpected_error",
a2a_agent_name=a2a_agent_name,
operation="send_message",
context_id=context_id,
from_task=from_task,
from_agent=from_agent,
),
)
crewai_event_bus.emit(
None,
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
status=TaskState.failed,
error=error_msg,
history=new_messages,
)
finally:
aclose = getattr(event_stream, "aclose", None)
if aclose:

View File

@@ -22,6 +22,13 @@ class BaseHandlerKwargs(TypedDict, total=False):
turn_number: int
is_multiturn: bool
agent_role: str | None
context_id: str | None
task_id: str | None
endpoint: str | None
agent_branch: Any
a2a_agent_name: str | None
from_task: Any
from_agent: Any
class PollingHandlerKwargs(BaseHandlerKwargs, total=False):
@@ -29,8 +36,6 @@ class PollingHandlerKwargs(BaseHandlerKwargs, total=False):
polling_interval: float
polling_timeout: float
endpoint: str
agent_branch: Any
history_length: int
max_polls: int | None
@@ -38,9 +43,6 @@ class PollingHandlerKwargs(BaseHandlerKwargs, total=False):
class StreamingHandlerKwargs(BaseHandlerKwargs, total=False):
"""Kwargs for streaming handler."""
context_id: str | None
task_id: str | None
class PushNotificationHandlerKwargs(BaseHandlerKwargs, total=False):
"""Kwargs for push notification handler."""
@@ -49,7 +51,6 @@ class PushNotificationHandlerKwargs(BaseHandlerKwargs, total=False):
result_store: PushNotificationResultStore
polling_timeout: float
polling_interval: float
agent_branch: Any
class PushNotificationResultStore(Protocol):

View File

@@ -31,6 +31,7 @@ from crewai.a2a.task_helpers import (
from crewai.a2a.updates.base import PollingHandlerKwargs
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.a2a_events import (
A2AConnectionErrorEvent,
A2APollingStartedEvent,
A2APollingStatusEvent,
A2AResponseReceivedEvent,
@@ -49,23 +50,33 @@ async def _poll_task_until_complete(
agent_branch: Any | None = None,
history_length: int = 100,
max_polls: int | None = None,
from_task: Any | None = None,
from_agent: Any | None = None,
context_id: str | None = None,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
) -> A2ATask:
"""Poll task status until terminal state reached.
Args:
client: A2A client instance
task_id: Task ID to poll
polling_interval: Seconds between poll attempts
polling_timeout: Max seconds before timeout
agent_branch: Agent tree branch for logging
history_length: Number of messages to retrieve per poll
max_polls: Max number of poll attempts (None = unlimited)
client: A2A client instance.
task_id: Task ID to poll.
polling_interval: Seconds between poll attempts.
polling_timeout: Max seconds before timeout.
agent_branch: Agent tree branch for logging.
history_length: Number of messages to retrieve per poll.
max_polls: Max number of poll attempts (None = unlimited).
from_task: Optional CrewAI Task object for event metadata.
from_agent: Optional CrewAI Agent object for event metadata.
context_id: A2A context ID for correlation.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
Returns:
Final task object in terminal state
Final task object in terminal state.
Raises:
A2APollingTimeoutError: If polling exceeds timeout or max_polls
A2APollingTimeoutError: If polling exceeds timeout or max_polls.
"""
start_time = time.monotonic()
poll_count = 0
@@ -77,13 +88,19 @@ async def _poll_task_until_complete(
)
elapsed = time.monotonic() - start_time
effective_context_id = task.context_id or context_id
crewai_event_bus.emit(
agent_branch,
A2APollingStatusEvent(
task_id=task_id,
context_id=effective_context_id,
state=str(task.status.state.value) if task.status.state else "unknown",
elapsed_seconds=elapsed,
poll_count=poll_count,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -137,6 +154,9 @@ class PollingHandler:
max_polls = kwargs.get("max_polls")
context_id = kwargs.get("context_id")
task_id = kwargs.get("task_id")
a2a_agent_name = kwargs.get("a2a_agent_name")
from_task = kwargs.get("from_task")
from_agent = kwargs.get("from_agent")
try:
result_or_task_id = await send_message_and_get_task_id(
@@ -146,6 +166,11 @@ class PollingHandler:
turn_number=turn_number,
is_multiturn=is_multiturn,
agent_role=agent_role,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
context_id=context_id,
)
if not isinstance(result_or_task_id, str):
@@ -157,8 +182,12 @@ class PollingHandler:
agent_branch,
A2APollingStartedEvent(
task_id=task_id,
context_id=context_id,
polling_interval=polling_interval,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -170,6 +199,11 @@ class PollingHandler:
agent_branch=agent_branch,
history_length=history_length,
max_polls=max_polls,
from_task=from_task,
from_agent=from_agent,
context_id=context_id,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
)
result = process_task_state(
@@ -179,6 +213,10 @@ class PollingHandler:
turn_number=turn_number,
is_multiturn=is_multiturn,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
)
if result:
return result
@@ -206,9 +244,15 @@ class PollingHandler:
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
@@ -229,14 +273,83 @@ class PollingHandler:
)
new_messages.append(error_message)
crewai_event_bus.emit(
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint,
error=str(e),
error_type="http_error",
status_code=e.status_code,
a2a_agent_name=a2a_agent_name,
operation="polling",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
crewai_event_bus.emit(
agent_branch,
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
status=TaskState.failed,
error=error_msg,
history=new_messages,
)
except Exception as e:
error_msg = f"Unexpected error during polling: {e!s}"
error_message = Message(
role=Role.agent,
message_id=str(uuid.uuid4()),
parts=[Part(root=TextPart(text=error_msg))],
context_id=context_id,
task_id=task_id,
)
new_messages.append(error_message)
crewai_event_bus.emit(
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=str(e),
error_type="unexpected_error",
a2a_agent_name=a2a_agent_name,
operation="polling",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
crewai_event_bus.emit(
agent_branch,
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(

View File

@@ -29,6 +29,7 @@ from crewai.a2a.updates.base import (
)
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.a2a_events import (
A2AConnectionErrorEvent,
A2APushNotificationRegisteredEvent,
A2APushNotificationTimeoutEvent,
A2AResponseReceivedEvent,
@@ -48,6 +49,11 @@ async def _wait_for_push_result(
timeout: float,
poll_interval: float,
agent_branch: Any | None = None,
from_task: Any | None = None,
from_agent: Any | None = None,
context_id: str | None = None,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
) -> A2ATask | None:
"""Wait for push notification result.
@@ -57,6 +63,11 @@ async def _wait_for_push_result(
timeout: Max seconds to wait.
poll_interval: Seconds between polling attempts.
agent_branch: Agent tree branch for logging.
from_task: Optional CrewAI Task object for event metadata.
from_agent: Optional CrewAI Agent object for event metadata.
context_id: A2A context ID for correlation.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent.
Returns:
Final task object, or None if timeout.
@@ -72,7 +83,12 @@ async def _wait_for_push_result(
agent_branch,
A2APushNotificationTimeoutEvent(
task_id=task_id,
context_id=context_id,
timeout_seconds=timeout,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -115,18 +131,56 @@ class PushNotificationHandler:
agent_role = kwargs.get("agent_role")
context_id = kwargs.get("context_id")
task_id = kwargs.get("task_id")
endpoint = kwargs.get("endpoint")
a2a_agent_name = kwargs.get("a2a_agent_name")
from_task = kwargs.get("from_task")
from_agent = kwargs.get("from_agent")
if config is None:
error_msg = (
"PushNotificationConfig is required for push notification handler"
)
crewai_event_bus.emit(
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=error_msg,
error_type="configuration_error",
a2a_agent_name=a2a_agent_name,
operation="push_notification",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
status=TaskState.failed,
error="PushNotificationConfig is required for push notification handler",
error=error_msg,
history=new_messages,
)
if result_store is None:
error_msg = (
"PushNotificationResultStore is required for push notification handler"
)
crewai_event_bus.emit(
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=error_msg,
error_type="configuration_error",
a2a_agent_name=a2a_agent_name,
operation="push_notification",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
status=TaskState.failed,
error="PushNotificationResultStore is required for push notification handler",
error=error_msg,
history=new_messages,
)
@@ -138,6 +192,11 @@ class PushNotificationHandler:
turn_number=turn_number,
is_multiturn=is_multiturn,
agent_role=agent_role,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
context_id=context_id,
)
if not isinstance(result_or_task_id, str):
@@ -149,7 +208,12 @@ class PushNotificationHandler:
agent_branch,
A2APushNotificationRegisteredEvent(
task_id=task_id,
context_id=context_id,
callback_url=str(config.url),
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -165,6 +229,11 @@ class PushNotificationHandler:
timeout=polling_timeout,
poll_interval=polling_interval,
agent_branch=agent_branch,
from_task=from_task,
from_agent=from_agent,
context_id=context_id,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
)
if final_task is None:
@@ -181,6 +250,10 @@ class PushNotificationHandler:
turn_number=turn_number,
is_multiturn=is_multiturn,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
)
if result:
return result
@@ -203,14 +276,83 @@ class PushNotificationHandler:
)
new_messages.append(error_message)
crewai_event_bus.emit(
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=str(e),
error_type="http_error",
status_code=e.status_code,
a2a_agent_name=a2a_agent_name,
operation="push_notification",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
crewai_event_bus.emit(
agent_branch,
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
status=TaskState.failed,
error=error_msg,
history=new_messages,
)
except Exception as e:
error_msg = f"Unexpected error during push notification: {e!s}"
error_message = Message(
role=Role.agent,
message_id=str(uuid.uuid4()),
parts=[Part(root=TextPart(text=error_msg))],
context_id=context_id,
task_id=task_id,
)
new_messages.append(error_message)
crewai_event_bus.emit(
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=str(e),
error_type="unexpected_error",
a2a_agent_name=a2a_agent_name,
operation="push_notification",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
crewai_event_bus.emit(
agent_branch,
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(

View File

@@ -26,7 +26,13 @@ from crewai.a2a.task_helpers import (
)
from crewai.a2a.updates.base import StreamingHandlerKwargs
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.a2a_events import A2AResponseReceivedEvent
from crewai.events.types.a2a_events import (
A2AArtifactReceivedEvent,
A2AConnectionErrorEvent,
A2AResponseReceivedEvent,
A2AStreamingChunkEvent,
A2AStreamingStartedEvent,
)
class StreamingHandler:
@@ -57,19 +63,57 @@ class StreamingHandler:
turn_number = kwargs.get("turn_number", 0)
is_multiturn = kwargs.get("is_multiturn", False)
agent_role = kwargs.get("agent_role")
endpoint = kwargs.get("endpoint")
a2a_agent_name = kwargs.get("a2a_agent_name")
from_task = kwargs.get("from_task")
from_agent = kwargs.get("from_agent")
agent_branch = kwargs.get("agent_branch")
result_parts: list[str] = []
final_result: TaskStateResult | None = None
event_stream = client.send_message(message)
chunk_index = 0
crewai_event_bus.emit(
agent_branch,
A2AStreamingStartedEvent(
task_id=task_id,
context_id=context_id,
endpoint=endpoint or "",
a2a_agent_name=a2a_agent_name,
turn_number=turn_number,
is_multiturn=is_multiturn,
agent_role=agent_role,
from_task=from_task,
from_agent=from_agent,
),
)
try:
async for event in event_stream:
if isinstance(event, Message):
new_messages.append(event)
message_context_id = event.context_id or context_id
for part in event.parts:
if part.root.kind == "text":
text = part.root.text
result_parts.append(text)
crewai_event_bus.emit(
agent_branch,
A2AStreamingChunkEvent(
task_id=event.task_id or task_id,
context_id=message_context_id,
chunk=text,
chunk_index=chunk_index,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
turn_number=turn_number,
is_multiturn=is_multiturn,
from_task=from_task,
from_agent=from_agent,
),
)
chunk_index += 1
elif isinstance(event, tuple):
a2a_task, update = event
@@ -81,10 +125,51 @@ class StreamingHandler:
for part in artifact.parts
if part.root.kind == "text"
)
artifact_size = None
if artifact.parts:
artifact_size = sum(
len(p.root.text.encode("utf-8"))
if p.root.kind == "text"
else len(getattr(p.root, "data", b""))
for p in artifact.parts
)
effective_context_id = a2a_task.context_id or context_id
crewai_event_bus.emit(
agent_branch,
A2AArtifactReceivedEvent(
task_id=a2a_task.id,
artifact_id=artifact.artifact_id,
artifact_name=artifact.name,
artifact_description=artifact.description,
mime_type=artifact.parts[0].root.kind
if artifact.parts
else None,
size_bytes=artifact_size,
append=update.append or False,
last_chunk=update.last_chunk or False,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
context_id=effective_context_id,
turn_number=turn_number,
is_multiturn=is_multiturn,
from_task=from_task,
from_agent=from_agent,
),
)
is_final_update = False
if isinstance(update, TaskStatusUpdateEvent):
is_final_update = update.final
if (
update.status
and update.status.message
and update.status.message.parts
):
result_parts.extend(
part.root.text
for part in update.status.message.parts
if part.root.kind == "text" and part.root.text
)
if (
not is_final_update
@@ -101,6 +186,11 @@ class StreamingHandler:
is_multiturn=is_multiturn,
agent_role=agent_role,
result_parts=result_parts,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
is_final=is_final_update,
)
if final_result:
break
@@ -118,13 +208,82 @@ class StreamingHandler:
new_messages.append(error_message)
crewai_event_bus.emit(
None,
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=str(e),
error_type="http_error",
status_code=e.status_code,
a2a_agent_name=a2a_agent_name,
operation="streaming",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
crewai_event_bus.emit(
agent_branch,
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
status=TaskState.failed,
error=error_msg,
history=new_messages,
)
except Exception as e:
error_msg = f"Unexpected error during streaming: {e!s}"
error_message = Message(
role=Role.agent,
message_id=str(uuid.uuid4()),
parts=[Part(root=TextPart(text=error_msg))],
context_id=context_id,
task_id=task_id,
)
new_messages.append(error_message)
crewai_event_bus.emit(
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=str(e),
error_type="unexpected_error",
a2a_agent_name=a2a_agent_name,
operation="streaming",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
crewai_event_bus.emit(
agent_branch,
A2AResponseReceivedEvent(
response=error_msg,
turn_number=turn_number,
context_id=context_id,
is_multiturn=is_multiturn,
status="failed",
final=True,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
from_task=from_task,
from_agent=from_agent,
),
)
return TaskStateResult(
@@ -136,7 +295,23 @@ class StreamingHandler:
finally:
aclose = getattr(event_stream, "aclose", None)
if aclose:
await aclose()
try:
await aclose()
except Exception as close_error:
crewai_event_bus.emit(
agent_branch,
A2AConnectionErrorEvent(
endpoint=endpoint or "",
error=str(close_error),
error_type="stream_close_error",
a2a_agent_name=a2a_agent_name,
operation="stream_close",
context_id=context_id,
task_id=task_id,
from_task=from_task,
from_agent=from_agent,
),
)
if final_result:
return final_result
@@ -145,5 +320,5 @@ class StreamingHandler:
status=TaskState.completed,
result=" ".join(result_parts) if result_parts else "",
history=new_messages,
agent_card=agent_card,
agent_card=agent_card.model_dump(exclude_none=True),
)

View File

@@ -23,6 +23,12 @@ from crewai.a2a.auth.utils import (
)
from crewai.a2a.config import A2AServerConfig
from crewai.crew import Crew
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.a2a_events import (
A2AAgentCardFetchedEvent,
A2AAuthenticationFailedEvent,
A2AConnectionErrorEvent,
)
if TYPE_CHECKING:
@@ -183,6 +189,8 @@ async def _afetch_agent_card_impl(
timeout: int,
) -> AgentCard:
"""Internal async implementation of AgentCard fetching."""
start_time = time.perf_counter()
if "/.well-known/agent-card.json" in endpoint:
base_url = endpoint.replace("/.well-known/agent-card.json", "")
agent_card_path = "/.well-known/agent-card.json"
@@ -217,9 +225,29 @@ async def _afetch_agent_card_impl(
)
response.raise_for_status()
return AgentCard.model_validate(response.json())
agent_card = AgentCard.model_validate(response.json())
fetch_time_ms = (time.perf_counter() - start_time) * 1000
agent_card_dict = agent_card.model_dump(exclude_none=True)
crewai_event_bus.emit(
None,
A2AAgentCardFetchedEvent(
endpoint=endpoint,
a2a_agent_name=agent_card.name,
agent_card=agent_card_dict,
protocol_version=agent_card.protocol_version,
provider=agent_card_dict.get("provider"),
cached=False,
fetch_time_ms=fetch_time_ms,
),
)
return agent_card
except httpx.HTTPStatusError as e:
elapsed_ms = (time.perf_counter() - start_time) * 1000
response_body = e.response.text[:1000] if e.response.text else None
if e.response.status_code == 401:
error_details = ["Authentication failed"]
www_auth = e.response.headers.get("WWW-Authenticate")
@@ -228,7 +256,93 @@ async def _afetch_agent_card_impl(
if not auth:
error_details.append("No auth scheme provided")
msg = " | ".join(error_details)
auth_type = type(auth).__name__ if auth else None
crewai_event_bus.emit(
None,
A2AAuthenticationFailedEvent(
endpoint=endpoint,
auth_type=auth_type,
error=msg,
status_code=401,
metadata={
"elapsed_ms": elapsed_ms,
"response_body": response_body,
"www_authenticate": www_auth,
"request_url": str(e.request.url),
},
),
)
raise A2AClientHTTPError(401, msg) from e
crewai_event_bus.emit(
None,
A2AConnectionErrorEvent(
endpoint=endpoint,
error=str(e),
error_type="http_error",
status_code=e.response.status_code,
operation="fetch_agent_card",
metadata={
"elapsed_ms": elapsed_ms,
"response_body": response_body,
"request_url": str(e.request.url),
},
),
)
raise
except httpx.TimeoutException as e:
elapsed_ms = (time.perf_counter() - start_time) * 1000
crewai_event_bus.emit(
None,
A2AConnectionErrorEvent(
endpoint=endpoint,
error=str(e),
error_type="timeout",
operation="fetch_agent_card",
metadata={
"elapsed_ms": elapsed_ms,
"timeout_config": timeout,
"request_url": str(e.request.url) if e.request else None,
},
),
)
raise
except httpx.ConnectError as e:
elapsed_ms = (time.perf_counter() - start_time) * 1000
crewai_event_bus.emit(
None,
A2AConnectionErrorEvent(
endpoint=endpoint,
error=str(e),
error_type="connection_error",
operation="fetch_agent_card",
metadata={
"elapsed_ms": elapsed_ms,
"request_url": str(e.request.url) if e.request else None,
},
),
)
raise
except httpx.RequestError as e:
elapsed_ms = (time.perf_counter() - start_time) * 1000
crewai_event_bus.emit(
None,
A2AConnectionErrorEvent(
endpoint=endpoint,
error=str(e),
error_type="request_error",
operation="fetch_agent_card",
metadata={
"elapsed_ms": elapsed_ms,
"request_url": str(e.request.url) if e.request else None,
},
),
)
raise

View File

@@ -88,6 +88,9 @@ def execute_a2a_delegation(
response_model: type[BaseModel] | None = None,
turn_number: int | None = None,
updates: UpdateConfig | None = None,
from_task: Any | None = None,
from_agent: Any | None = None,
skill_id: str | None = None,
) -> TaskStateResult:
"""Execute a task delegation to a remote A2A agent synchronously.
@@ -129,6 +132,9 @@ def execute_a2a_delegation(
response_model: Optional Pydantic model for structured outputs.
turn_number: Optional turn number for multi-turn conversations.
updates: Update mechanism config from A2AConfig.updates.
from_task: Optional CrewAI Task object for event metadata.
from_agent: Optional CrewAI Agent object for event metadata.
skill_id: Optional skill ID to target a specific agent capability.
Returns:
TaskStateResult with status, result/error, history, and agent_card.
@@ -156,10 +162,16 @@ def execute_a2a_delegation(
transport_protocol=transport_protocol,
turn_number=turn_number,
updates=updates,
from_task=from_task,
from_agent=from_agent,
skill_id=skill_id,
)
)
finally:
loop.close()
try:
loop.run_until_complete(loop.shutdown_asyncgens())
finally:
loop.close()
async def aexecute_a2a_delegation(
@@ -181,6 +193,9 @@ async def aexecute_a2a_delegation(
response_model: type[BaseModel] | None = None,
turn_number: int | None = None,
updates: UpdateConfig | None = None,
from_task: Any | None = None,
from_agent: Any | None = None,
skill_id: str | None = None,
) -> TaskStateResult:
"""Execute a task delegation to a remote A2A agent asynchronously.
@@ -222,6 +237,9 @@ async def aexecute_a2a_delegation(
response_model: Optional Pydantic model for structured outputs.
turn_number: Optional turn number for multi-turn conversations.
updates: Update mechanism config from A2AConfig.updates.
from_task: Optional CrewAI Task object for event metadata.
from_agent: Optional CrewAI Agent object for event metadata.
skill_id: Optional skill ID to target a specific agent capability.
Returns:
TaskStateResult with status, result/error, history, and agent_card.
@@ -233,17 +251,6 @@ async def aexecute_a2a_delegation(
if turn_number is None:
turn_number = len([m for m in conversation_history if m.role == Role.user]) + 1
crewai_event_bus.emit(
agent_branch,
A2ADelegationStartedEvent(
endpoint=endpoint,
task_description=task_description,
agent_id=agent_id,
is_multiturn=is_multiturn,
turn_number=turn_number,
),
)
result = await _aexecute_a2a_delegation_impl(
endpoint=endpoint,
auth=auth,
@@ -264,15 +271,28 @@ async def aexecute_a2a_delegation(
response_model=response_model,
updates=updates,
transport_protocol=transport_protocol,
from_task=from_task,
from_agent=from_agent,
skill_id=skill_id,
)
agent_card_data: dict[str, Any] = result.get("agent_card") or {}
crewai_event_bus.emit(
agent_branch,
A2ADelegationCompletedEvent(
status=result["status"],
result=result.get("result"),
error=result.get("error"),
context_id=context_id,
is_multiturn=is_multiturn,
endpoint=endpoint,
a2a_agent_name=result.get("a2a_agent_name"),
agent_card=agent_card_data,
provider=agent_card_data.get("provider"),
metadata=metadata,
extensions=list(extensions.keys()) if extensions else None,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -299,6 +319,9 @@ async def _aexecute_a2a_delegation_impl(
agent_role: str | None,
response_model: type[BaseModel] | None,
updates: UpdateConfig | None,
from_task: Any | None = None,
from_agent: Any | None = None,
skill_id: str | None = None,
) -> TaskStateResult:
"""Internal async implementation of A2A delegation."""
if auth:
@@ -331,6 +354,28 @@ async def _aexecute_a2a_delegation_impl(
if agent_card.name:
a2a_agent_name = agent_card.name
agent_card_dict = agent_card.model_dump(exclude_none=True)
crewai_event_bus.emit(
agent_branch,
A2ADelegationStartedEvent(
endpoint=endpoint,
task_description=task_description,
agent_id=agent_id or endpoint,
context_id=context_id,
is_multiturn=is_multiturn,
turn_number=turn_number,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card_dict,
protocol_version=agent_card.protocol_version,
provider=agent_card_dict.get("provider"),
skill_id=skill_id,
metadata=metadata,
extensions=list(extensions.keys()) if extensions else None,
from_task=from_task,
from_agent=from_agent,
),
)
if turn_number == 1:
agent_id_for_event = agent_id or endpoint
crewai_event_bus.emit(
@@ -338,7 +383,17 @@ async def _aexecute_a2a_delegation_impl(
A2AConversationStartedEvent(
agent_id=agent_id_for_event,
endpoint=endpoint,
context_id=context_id,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card_dict,
protocol_version=agent_card.protocol_version,
provider=agent_card_dict.get("provider"),
skill_id=skill_id,
reference_task_ids=reference_task_ids,
metadata=metadata,
extensions=list(extensions.keys()) if extensions else None,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -364,6 +419,10 @@ async def _aexecute_a2a_delegation_impl(
}
)
message_metadata = metadata.copy() if metadata else {}
if skill_id:
message_metadata["skill_id"] = skill_id
message = Message(
role=Role.user,
message_id=str(uuid.uuid4()),
@@ -371,7 +430,7 @@ async def _aexecute_a2a_delegation_impl(
context_id=context_id,
task_id=task_id,
reference_task_ids=reference_task_ids,
metadata=metadata,
metadata=message_metadata if message_metadata else None,
extensions=extensions,
)
@@ -381,8 +440,17 @@ async def _aexecute_a2a_delegation_impl(
A2AMessageSentEvent(
message=message_text,
turn_number=turn_number,
context_id=context_id,
message_id=message.message_id,
is_multiturn=is_multiturn,
agent_role=agent_role,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
skill_id=skill_id,
metadata=message_metadata if message_metadata else None,
extensions=list(extensions.keys()) if extensions else None,
from_task=from_task,
from_agent=from_agent,
),
)
@@ -397,6 +465,9 @@ async def _aexecute_a2a_delegation_impl(
"task_id": task_id,
"endpoint": endpoint,
"agent_branch": agent_branch,
"a2a_agent_name": a2a_agent_name,
"from_task": from_task,
"from_agent": from_agent,
}
if isinstance(updates, PollingConfig):
@@ -434,13 +505,16 @@ async def _aexecute_a2a_delegation_impl(
use_polling=use_polling,
push_notification_config=push_config_for_client,
) as client:
return await handler.execute(
result = await handler.execute(
client=client,
message=message,
new_messages=new_messages,
agent_card=agent_card,
**handler_kwargs,
)
result["a2a_agent_name"] = a2a_agent_name
result["agent_card"] = agent_card.model_dump(exclude_none=True)
return result
@asynccontextmanager

View File

@@ -3,11 +3,14 @@
from __future__ import annotations
import asyncio
import base64
from collections.abc import Callable, Coroutine
from datetime import datetime
from functools import wraps
import logging
import os
from typing import TYPE_CHECKING, Any, ParamSpec, TypeVar, cast
from urllib.parse import urlparse
from a2a.server.agent_execution import RequestContext
from a2a.server.events import EventQueue
@@ -45,7 +48,14 @@ T = TypeVar("T")
def _parse_redis_url(url: str) -> dict[str, Any]:
from urllib.parse import urlparse
"""Parse a Redis URL into aiocache configuration.
Args:
url: Redis connection URL (e.g., redis://localhost:6379/0).
Returns:
Configuration dict for aiocache.RedisCache.
"""
parsed = urlparse(url)
config: dict[str, Any] = {
@@ -127,7 +137,7 @@ def cancellable(
async for message in pubsub.listen():
if message["type"] == "message":
return True
except Exception as e:
except (OSError, ConnectionError) as e:
logger.warning("Cancel watcher error for task_id=%s: %s", task_id, e)
return await poll_for_cancel()
return False
@@ -183,7 +193,12 @@ async def execute(
msg = "task_id and context_id are required"
crewai_event_bus.emit(
agent,
A2AServerTaskFailedEvent(a2a_task_id="", a2a_context_id="", error=msg),
A2AServerTaskFailedEvent(
task_id="",
context_id="",
error=msg,
from_agent=agent,
),
)
raise ServerError(InvalidParamsError(message=msg)) from None
@@ -195,7 +210,12 @@ async def execute(
crewai_event_bus.emit(
agent,
A2AServerTaskStartedEvent(a2a_task_id=task_id, a2a_context_id=context_id),
A2AServerTaskStartedEvent(
task_id=task_id,
context_id=context_id,
from_task=task,
from_agent=agent,
),
)
try:
@@ -215,20 +235,33 @@ async def execute(
crewai_event_bus.emit(
agent,
A2AServerTaskCompletedEvent(
a2a_task_id=task_id, a2a_context_id=context_id, result=str(result)
task_id=task_id,
context_id=context_id,
result=str(result),
from_task=task,
from_agent=agent,
),
)
except asyncio.CancelledError:
crewai_event_bus.emit(
agent,
A2AServerTaskCanceledEvent(a2a_task_id=task_id, a2a_context_id=context_id),
A2AServerTaskCanceledEvent(
task_id=task_id,
context_id=context_id,
from_task=task,
from_agent=agent,
),
)
raise
except Exception as e:
crewai_event_bus.emit(
agent,
A2AServerTaskFailedEvent(
a2a_task_id=task_id, a2a_context_id=context_id, error=str(e)
task_id=task_id,
context_id=context_id,
error=str(e),
from_task=task,
from_agent=agent,
),
)
raise ServerError(
@@ -282,3 +315,85 @@ async def cancel(
context.current_task.status = TaskStatus(state=TaskState.canceled)
return context.current_task
return None
def list_tasks(
tasks: list[A2ATask],
context_id: str | None = None,
status: TaskState | None = None,
status_timestamp_after: datetime | None = None,
page_size: int = 50,
page_token: str | None = None,
history_length: int | None = None,
include_artifacts: bool = False,
) -> tuple[list[A2ATask], str | None, int]:
"""Filter and paginate A2A tasks.
Provides filtering by context, status, and timestamp, along with
cursor-based pagination. This is a pure utility function that operates
on an in-memory list of tasks - storage retrieval is handled separately.
Args:
tasks: All tasks to filter.
context_id: Filter by context ID to get tasks in a conversation.
status: Filter by task state (e.g., completed, working).
status_timestamp_after: Filter to tasks updated after this time.
page_size: Maximum tasks per page (default 50).
page_token: Base64-encoded cursor from previous response.
history_length: Limit history messages per task (None = full history).
include_artifacts: Whether to include task artifacts (default False).
Returns:
Tuple of (filtered_tasks, next_page_token, total_count).
- filtered_tasks: Tasks matching filters, paginated and trimmed.
- next_page_token: Token for next page, or None if no more pages.
- total_count: Total number of tasks matching filters (before pagination).
"""
filtered: list[A2ATask] = []
for task in tasks:
if context_id and task.context_id != context_id:
continue
if status and task.status.state != status:
continue
if status_timestamp_after and task.status.timestamp:
ts = datetime.fromisoformat(task.status.timestamp.replace("Z", "+00:00"))
if ts <= status_timestamp_after:
continue
filtered.append(task)
def get_timestamp(t: A2ATask) -> datetime:
"""Extract timestamp from task status for sorting."""
if t.status.timestamp is None:
return datetime.min
return datetime.fromisoformat(t.status.timestamp.replace("Z", "+00:00"))
filtered.sort(key=get_timestamp, reverse=True)
total = len(filtered)
start = 0
if page_token:
try:
cursor_id = base64.b64decode(page_token).decode()
for idx, task in enumerate(filtered):
if task.id == cursor_id:
start = idx + 1
break
except (ValueError, UnicodeDecodeError):
pass
page = filtered[start : start + page_size]
result: list[A2ATask] = []
for task in page:
task = task.model_copy(deep=True)
if history_length is not None and task.history:
task.history = task.history[-history_length:]
if not include_artifacts:
task.artifacts = None
result.append(task)
next_token: str | None = None
if result and len(result) == page_size:
next_token = base64.b64encode(result[-1].id.encode()).decode()
return result, next_token, total

View File

@@ -6,9 +6,10 @@ Wraps agent classes with A2A delegation capabilities.
from __future__ import annotations
import asyncio
from collections.abc import Callable, Coroutine
from collections.abc import Callable, Coroutine, Mapping
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import wraps
import json
from types import MethodType
from typing import TYPE_CHECKING, Any
@@ -189,7 +190,7 @@ def _execute_task_with_a2a(
a2a_agents: list[A2AConfig | A2AClientConfig],
original_fn: Callable[..., str],
task: Task,
agent_response_model: type[BaseModel],
agent_response_model: type[BaseModel] | None,
context: str | None,
tools: list[BaseTool] | None,
extension_registry: ExtensionRegistry,
@@ -277,7 +278,7 @@ def _execute_task_with_a2a(
def _augment_prompt_with_a2a(
a2a_agents: list[A2AConfig | A2AClientConfig],
task_description: str,
agent_cards: dict[str, AgentCard],
agent_cards: Mapping[str, AgentCard | dict[str, Any]],
conversation_history: list[Message] | None = None,
turn_num: int = 0,
max_turns: int | None = None,
@@ -309,7 +310,15 @@ def _augment_prompt_with_a2a(
for config in a2a_agents:
if config.endpoint in agent_cards:
card = agent_cards[config.endpoint]
agents_text += f"\n{card.model_dump_json(indent=2, exclude_none=True, include={'description', 'url', 'skills'})}\n"
if isinstance(card, dict):
filtered = {
k: v
for k, v in card.items()
if k in {"description", "url", "skills"} and v is not None
}
agents_text += f"\n{json.dumps(filtered, indent=2)}\n"
else:
agents_text += f"\n{card.model_dump_json(indent=2, exclude_none=True, include={'description', 'url', 'skills'})}\n"
failed_agents = failed_agents or {}
if failed_agents:
@@ -377,7 +386,7 @@ IMPORTANT: You have the ability to delegate this task to remote A2A agents.
def _parse_agent_response(
raw_result: str | dict[str, Any], agent_response_model: type[BaseModel]
raw_result: str | dict[str, Any], agent_response_model: type[BaseModel] | None
) -> BaseModel | str | dict[str, Any]:
"""Parse LLM output as AgentResponse or return raw agent response."""
if agent_response_model:
@@ -394,6 +403,11 @@ def _parse_agent_response(
def _handle_max_turns_exceeded(
conversation_history: list[Message],
max_turns: int,
from_task: Any | None = None,
from_agent: Any | None = None,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
agent_card: dict[str, Any] | None = None,
) -> str:
"""Handle the case when max turns is exceeded.
@@ -421,6 +435,11 @@ def _handle_max_turns_exceeded(
final_result=final_message,
error=None,
total_turns=max_turns,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card,
),
)
return final_message
@@ -432,6 +451,11 @@ def _handle_max_turns_exceeded(
final_result=None,
error=f"Conversation exceeded maximum turns ({max_turns})",
total_turns=max_turns,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card,
),
)
raise Exception(f"A2A conversation exceeded maximum turns ({max_turns})")
@@ -442,7 +466,12 @@ def _process_response_result(
disable_structured_output: bool,
turn_num: int,
agent_role: str,
agent_response_model: type[BaseModel],
agent_response_model: type[BaseModel] | None,
from_task: Any | None = None,
from_agent: Any | None = None,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
agent_card: dict[str, Any] | None = None,
) -> tuple[str | None, str | None]:
"""Process LLM response and determine next action.
@@ -461,6 +490,10 @@ def _process_response_result(
turn_number=final_turn_number,
is_multiturn=True,
agent_role=agent_role,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
),
)
crewai_event_bus.emit(
@@ -470,6 +503,11 @@ def _process_response_result(
final_result=result_text,
error=None,
total_turns=final_turn_number,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card,
),
)
return result_text, None
@@ -490,6 +528,10 @@ def _process_response_result(
turn_number=final_turn_number,
is_multiturn=True,
agent_role=agent_role,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
),
)
crewai_event_bus.emit(
@@ -499,6 +541,11 @@ def _process_response_result(
final_result=str(llm_response.message),
error=None,
total_turns=final_turn_number,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card,
),
)
return str(llm_response.message), None
@@ -510,13 +557,15 @@ def _process_response_result(
def _prepare_agent_cards_dict(
a2a_result: TaskStateResult,
agent_id: str,
agent_cards: dict[str, AgentCard] | None,
) -> dict[str, AgentCard]:
agent_cards: Mapping[str, AgentCard | dict[str, Any]] | None,
) -> dict[str, AgentCard | dict[str, Any]]:
"""Prepare agent cards dictionary from result and existing cards.
Shared logic for both sync and async response handlers.
"""
agent_cards_dict = agent_cards or {}
agent_cards_dict: dict[str, AgentCard | dict[str, Any]] = (
dict(agent_cards) if agent_cards else {}
)
if "agent_card" in a2a_result and agent_id not in agent_cards_dict:
agent_cards_dict[agent_id] = a2a_result["agent_card"]
return agent_cards_dict
@@ -529,7 +578,7 @@ def _prepare_delegation_context(
original_task_description: str | None,
) -> tuple[
list[A2AConfig | A2AClientConfig],
type[BaseModel],
type[BaseModel] | None,
str,
str,
A2AConfig | A2AClientConfig,
@@ -598,6 +647,11 @@ def _handle_task_completion(
reference_task_ids: list[str],
agent_config: A2AConfig | A2AClientConfig,
turn_num: int,
from_task: Any | None = None,
from_agent: Any | None = None,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
agent_card: dict[str, Any] | None = None,
) -> tuple[str | None, str | None, list[str]]:
"""Handle task completion state including reference task updates.
@@ -624,6 +678,11 @@ def _handle_task_completion(
final_result=result_text,
error=None,
total_turns=final_turn_number,
from_task=from_task,
from_agent=from_agent,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card,
),
)
return str(result_text), task_id_config, reference_task_ids
@@ -645,8 +704,11 @@ def _handle_agent_response_and_continue(
original_fn: Callable[..., str],
context: str | None,
tools: list[BaseTool] | None,
agent_response_model: type[BaseModel],
agent_response_model: type[BaseModel] | None,
remote_task_completed: bool = False,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
agent_card: dict[str, Any] | None = None,
) -> tuple[str | None, str | None]:
"""Handle A2A result and get CrewAI agent's response.
@@ -698,6 +760,11 @@ def _handle_agent_response_and_continue(
turn_num=turn_num,
agent_role=self.role,
agent_response_model=agent_response_model,
from_task=task,
from_agent=self,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card,
)
@@ -750,6 +817,12 @@ def _delegate_to_a2a(
conversation_history: list[Message] = []
current_agent_card = agent_cards.get(agent_id) if agent_cards else None
current_agent_card_dict = (
current_agent_card.model_dump() if current_agent_card else None
)
current_a2a_agent_name = current_agent_card.name if current_agent_card else None
try:
for turn_num in range(max_turns):
console_formatter = getattr(crewai_event_bus, "_console", None)
@@ -777,6 +850,8 @@ def _delegate_to_a2a(
turn_number=turn_num + 1,
updates=agent_config.updates,
transport_protocol=agent_config.transport_protocol,
from_task=task,
from_agent=self,
)
conversation_history = a2a_result.get("history", [])
@@ -797,6 +872,11 @@ def _delegate_to_a2a(
reference_task_ids,
agent_config,
turn_num,
from_task=task,
from_agent=self,
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
)
)
if trusted_result is not None:
@@ -818,6 +898,9 @@ def _delegate_to_a2a(
tools=tools,
agent_response_model=agent_response_model,
remote_task_completed=(a2a_result["status"] == TaskState.completed),
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
)
if final_result is not None:
@@ -846,6 +929,9 @@ def _delegate_to_a2a(
tools=tools,
agent_response_model=agent_response_model,
remote_task_completed=False,
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
)
if final_result is not None:
@@ -862,11 +948,24 @@ def _delegate_to_a2a(
final_result=None,
error=error_msg,
total_turns=turn_num + 1,
from_task=task,
from_agent=self,
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
),
)
return f"A2A delegation failed: {error_msg}"
return _handle_max_turns_exceeded(conversation_history, max_turns)
return _handle_max_turns_exceeded(
conversation_history,
max_turns,
from_task=task,
from_agent=self,
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
)
finally:
task.description = original_task_description
@@ -916,7 +1015,7 @@ async def _aexecute_task_with_a2a(
a2a_agents: list[A2AConfig | A2AClientConfig],
original_fn: Callable[..., Coroutine[Any, Any, str]],
task: Task,
agent_response_model: type[BaseModel],
agent_response_model: type[BaseModel] | None,
context: str | None,
tools: list[BaseTool] | None,
extension_registry: ExtensionRegistry,
@@ -1001,8 +1100,11 @@ async def _ahandle_agent_response_and_continue(
original_fn: Callable[..., Coroutine[Any, Any, str]],
context: str | None,
tools: list[BaseTool] | None,
agent_response_model: type[BaseModel],
agent_response_model: type[BaseModel] | None,
remote_task_completed: bool = False,
endpoint: str | None = None,
a2a_agent_name: str | None = None,
agent_card: dict[str, Any] | None = None,
) -> tuple[str | None, str | None]:
"""Async version of _handle_agent_response_and_continue."""
agent_cards_dict = _prepare_agent_cards_dict(a2a_result, agent_id, agent_cards)
@@ -1032,6 +1134,11 @@ async def _ahandle_agent_response_and_continue(
turn_num=turn_num,
agent_role=self.role,
agent_response_model=agent_response_model,
from_task=task,
from_agent=self,
endpoint=endpoint,
a2a_agent_name=a2a_agent_name,
agent_card=agent_card,
)
@@ -1066,6 +1173,12 @@ async def _adelegate_to_a2a(
conversation_history: list[Message] = []
current_agent_card = agent_cards.get(agent_id) if agent_cards else None
current_agent_card_dict = (
current_agent_card.model_dump() if current_agent_card else None
)
current_a2a_agent_name = current_agent_card.name if current_agent_card else None
try:
for turn_num in range(max_turns):
console_formatter = getattr(crewai_event_bus, "_console", None)
@@ -1093,6 +1206,8 @@ async def _adelegate_to_a2a(
turn_number=turn_num + 1,
transport_protocol=agent_config.transport_protocol,
updates=agent_config.updates,
from_task=task,
from_agent=self,
)
conversation_history = a2a_result.get("history", [])
@@ -1113,6 +1228,11 @@ async def _adelegate_to_a2a(
reference_task_ids,
agent_config,
turn_num,
from_task=task,
from_agent=self,
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
)
)
if trusted_result is not None:
@@ -1134,6 +1254,9 @@ async def _adelegate_to_a2a(
tools=tools,
agent_response_model=agent_response_model,
remote_task_completed=(a2a_result["status"] == TaskState.completed),
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
)
if final_result is not None:
@@ -1161,6 +1284,9 @@ async def _adelegate_to_a2a(
context=context,
tools=tools,
agent_response_model=agent_response_model,
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
)
if final_result is not None:
@@ -1177,11 +1303,24 @@ async def _adelegate_to_a2a(
final_result=None,
error=error_msg,
total_turns=turn_num + 1,
from_task=task,
from_agent=self,
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
),
)
return f"A2A delegation failed: {error_msg}"
return _handle_max_turns_exceeded(conversation_history, max_turns)
return _handle_max_turns_exceeded(
conversation_history,
max_turns,
from_task=task,
from_agent=self,
endpoint=agent_config.endpoint,
a2a_agent_name=current_a2a_agent_name,
agent_card=current_agent_card_dict,
)
finally:
task.description = original_task_description

View File

@@ -1,7 +1,7 @@
from __future__ import annotations
import asyncio
from collections.abc import Callable, Coroutine, Sequence
from collections.abc import Callable, Sequence
import shutil
import subprocess
import time
@@ -34,11 +34,6 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.agent_events import (
LiteAgentExecutionCompletedEvent,
LiteAgentExecutionErrorEvent,
LiteAgentExecutionStartedEvent,
)
from crewai.events.types.knowledge_events import (
KnowledgeQueryCompletedEvent,
KnowledgeQueryFailedEvent,
@@ -48,10 +43,10 @@ from crewai.events.types.memory_events import (
MemoryRetrievalCompletedEvent,
MemoryRetrievalStartedEvent,
)
from crewai.experimental.agent_executor import AgentExecutor
from crewai.experimental.crew_agent_executor_flow import CrewAgentExecutorFlow
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.lite_agent_output import LiteAgentOutput
from crewai.lite_agent import LiteAgent
from crewai.llms.base_llm import BaseLLM
from crewai.mcp import (
MCPClient,
@@ -69,18 +64,15 @@ from crewai.security.fingerprint import Fingerprint
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities.agent_utils import (
get_tool_names,
is_inside_event_loop,
load_agent_from_repository,
parse_tools,
render_text_description_and_args,
)
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import Converter, ConverterError
from crewai.utilities.guardrail import process_guardrail
from crewai.utilities.converter import Converter
from crewai.utilities.guardrail_types import GuardrailType
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.prompts import Prompts, StandardPromptResult, SystemPromptResult
from crewai.utilities.pydantic_schema_utils import generate_model_description
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
@@ -97,9 +89,9 @@ if TYPE_CHECKING:
from crewai_tools import CodeInterpreterTool
from crewai.agents.agent_builder.base_agent import PlatformAppOrAction
from crewai.lite_agent_output import LiteAgentOutput
from crewai.task import Task
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.utilities.types import LLMMessage
@@ -121,7 +113,7 @@ class Agent(BaseAgent):
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
Attributes:
agent_executor: An instance of the CrewAgentExecutor or AgentExecutor class.
agent_executor: An instance of the CrewAgentExecutor or CrewAgentExecutorFlow class.
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
@@ -246,9 +238,9 @@ class Agent(BaseAgent):
Can be a single A2AConfig/A2AClientConfig/A2AServerConfig, or a list of any number of A2AConfig/A2AClientConfig with a single A2AServerConfig.
""",
)
executor_class: type[CrewAgentExecutor] | type[AgentExecutor] = Field(
executor_class: type[CrewAgentExecutor] | type[CrewAgentExecutorFlow] = Field(
default=CrewAgentExecutor,
description="Class to use for the agent executor. Defaults to CrewAgentExecutor, can optionally use AgentExecutor.",
description="Class to use for the agent executor. Defaults to CrewAgentExecutor, can optionally use CrewAgentExecutorFlow.",
)
@model_validator(mode="before")
@@ -1591,25 +1583,26 @@ class Agent(BaseAgent):
)
return None
def _prepare_kickoff(
def kickoff(
self,
messages: str | list[LLMMessage],
response_format: type[Any] | None = None,
) -> tuple[AgentExecutor, dict[str, str], dict[str, Any], list[CrewStructuredTool]]:
"""Prepare common setup for kickoff execution.
) -> LiteAgentOutput:
"""
Execute the agent with the given messages using a LiteAgent instance.
This method handles all the common preparation logic shared between
kickoff() and kickoff_async(), including tool processing, prompt building,
executor creation, and input formatting.
This method is useful when you want to use the Agent configuration but
with the simpler and more direct execution flow of LiteAgent.
Args:
messages: Either a string query or a list of message dictionaries.
If a string is provided, it will be converted to a user message.
If a list is provided, each dict should have 'role' and 'content' keys.
response_format: Optional Pydantic model for structured output.
Returns:
Tuple of (executor, inputs, agent_info, parsed_tools) ready for execution.
LiteAgentOutput: The result of the agent execution.
"""
# Process platform apps and MCP tools
if self.apps:
platform_tools = self.get_platform_tools(self.apps)
if platform_tools and self.tools is not None:
@@ -1619,359 +1612,25 @@ class Agent(BaseAgent):
if mcps and self.tools is not None:
self.tools.extend(mcps)
# Prepare tools
raw_tools: list[BaseTool] = self.tools or []
parsed_tools = parse_tools(raw_tools)
# Build agent_info for backward-compatible event emission
agent_info = {
"id": self.id,
"role": self.role,
"goal": self.goal,
"backstory": self.backstory,
"tools": raw_tools,
"verbose": self.verbose,
}
# Build prompt for standalone execution
prompt = Prompts(
agent=self,
has_tools=len(raw_tools) > 0,
i18n=self.i18n,
use_system_prompt=self.use_system_prompt,
system_template=self.system_template,
prompt_template=self.prompt_template,
response_template=self.response_template,
).task_execution()
# Prepare stop words
stop_words = [self.i18n.slice("observation")]
if self.response_template:
stop_words.append(
self.response_template.split("{{ .Response }}")[1].strip()
)
# Get RPM limit function
rpm_limit_fn = (
self._rpm_controller.check_or_wait if self._rpm_controller else None
)
# Create the executor for standalone mode (no crew, no task)
executor = AgentExecutor(
task=None,
crew=None,
llm=cast(BaseLLM, self.llm),
agent=self,
prompt=prompt,
max_iter=self.max_iter,
tools=parsed_tools,
tools_names=get_tool_names(parsed_tools),
stop_words=stop_words,
tools_description=render_text_description_and_args(parsed_tools),
tools_handler=self.tools_handler,
original_tools=raw_tools,
step_callback=self.step_callback,
function_calling_llm=self.function_calling_llm,
lite_agent = LiteAgent(
id=self.id,
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
request_within_rpm_limit=rpm_limit_fn,
callbacks=[TokenCalcHandler(self._token_process)],
response_model=response_format,
verbose=self.verbose,
response_format=response_format,
i18n=self.i18n,
original_agent=self,
guardrail=self.guardrail,
guardrail_max_retries=self.guardrail_max_retries,
)
# Format messages
if isinstance(messages, str):
formatted_messages = messages
else:
formatted_messages = "\n".join(
str(msg.get("content", "")) for msg in messages if msg.get("content")
)
# Build the input dict for the executor
inputs = {
"input": formatted_messages,
"tool_names": get_tool_names(parsed_tools),
"tools": render_text_description_and_args(parsed_tools),
}
return executor, inputs, agent_info, parsed_tools
def kickoff(
self,
messages: str | list[LLMMessage],
response_format: type[Any] | None = None,
) -> LiteAgentOutput | Coroutine[Any, Any, LiteAgentOutput]:
"""
Execute the agent with the given messages using the AgentExecutor.
This method provides standalone agent execution without requiring a Crew.
It supports tools, response formatting, and guardrails.
When called from within a Flow (sync or async method), this automatically
detects the event loop and returns a coroutine that the Flow framework
awaits. Users don't need to handle async explicitly.
Args:
messages: Either a string query or a list of message dictionaries.
If a string is provided, it will be converted to a user message.
If a list is provided, each dict should have 'role' and 'content' keys.
response_format: Optional Pydantic model for structured output.
Returns:
LiteAgentOutput: The result of the agent execution.
When inside a Flow, returns a coroutine that resolves to LiteAgentOutput.
Note:
For explicit async usage outside of Flow, use kickoff_async() directly.
"""
# Magic auto-async: if inside event loop (e.g., inside a Flow),
# return coroutine for Flow to await
if is_inside_event_loop():
return self.kickoff_async(messages, response_format)
executor, inputs, agent_info, parsed_tools = self._prepare_kickoff(
messages, response_format
)
try:
crewai_event_bus.emit(
self,
event=LiteAgentExecutionStartedEvent(
agent_info=agent_info,
tools=parsed_tools,
messages=messages,
),
)
output = self._execute_and_build_output(executor, inputs, response_format)
if self.guardrail is not None:
output = self._process_kickoff_guardrail(
output=output,
executor=executor,
inputs=inputs,
response_format=response_format,
)
crewai_event_bus.emit(
self,
event=LiteAgentExecutionCompletedEvent(
agent_info=agent_info,
output=output.raw,
),
)
return output
except Exception as e:
crewai_event_bus.emit(
self,
event=LiteAgentExecutionErrorEvent(
agent_info=agent_info,
error=str(e),
),
)
raise
def _execute_and_build_output(
self,
executor: AgentExecutor,
inputs: dict[str, str],
response_format: type[Any] | None = None,
) -> LiteAgentOutput:
"""Execute the agent and build the output object.
Args:
executor: The executor instance.
inputs: Input dictionary for execution.
response_format: Optional response format.
Returns:
LiteAgentOutput with raw output, formatted result, and metrics.
"""
import json
# Execute the agent (this is called from sync path, so invoke returns dict)
result = cast(dict[str, Any], executor.invoke(inputs))
raw_output = result.get("output", "")
# Handle response format conversion
formatted_result: BaseModel | None = None
if response_format:
try:
model_schema = generate_model_description(response_format)
schema = json.dumps(model_schema, indent=2)
instructions = self.i18n.slice("formatted_task_instructions").format(
output_format=schema
)
converter = Converter(
llm=self.llm,
text=raw_output,
model=response_format,
instructions=instructions,
)
conversion_result = converter.to_pydantic()
if isinstance(conversion_result, BaseModel):
formatted_result = conversion_result
except ConverterError:
pass # Keep raw output if conversion fails
# Get token usage metrics
if isinstance(self.llm, BaseLLM):
usage_metrics = self.llm.get_token_usage_summary()
else:
usage_metrics = self._token_process.get_summary()
return LiteAgentOutput(
raw=raw_output,
pydantic=formatted_result,
agent_role=self.role,
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
messages=executor.messages,
)
async def _execute_and_build_output_async(
self,
executor: AgentExecutor,
inputs: dict[str, str],
response_format: type[Any] | None = None,
) -> LiteAgentOutput:
"""Execute the agent asynchronously and build the output object.
This is the async version of _execute_and_build_output that uses
invoke_async() for native async execution within event loops.
Args:
executor: The executor instance.
inputs: Input dictionary for execution.
response_format: Optional response format.
Returns:
LiteAgentOutput with raw output, formatted result, and metrics.
"""
import json
# Execute the agent asynchronously
result = await executor.invoke_async(inputs)
raw_output = result.get("output", "")
# Handle response format conversion
formatted_result: BaseModel | None = None
if response_format:
try:
model_schema = generate_model_description(response_format)
schema = json.dumps(model_schema, indent=2)
instructions = self.i18n.slice("formatted_task_instructions").format(
output_format=schema
)
converter = Converter(
llm=self.llm,
text=raw_output,
model=response_format,
instructions=instructions,
)
conversion_result = converter.to_pydantic()
if isinstance(conversion_result, BaseModel):
formatted_result = conversion_result
except ConverterError:
pass # Keep raw output if conversion fails
# Get token usage metrics
if isinstance(self.llm, BaseLLM):
usage_metrics = self.llm.get_token_usage_summary()
else:
usage_metrics = self._token_process.get_summary()
return LiteAgentOutput(
raw=raw_output,
pydantic=formatted_result,
agent_role=self.role,
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
messages=executor.messages,
)
def _process_kickoff_guardrail(
self,
output: LiteAgentOutput,
executor: AgentExecutor,
inputs: dict[str, str],
response_format: type[Any] | None = None,
retry_count: int = 0,
) -> LiteAgentOutput:
"""Process guardrail for kickoff execution with retry logic.
Args:
output: Current agent output.
executor: The executor instance.
inputs: Input dictionary for re-execution.
response_format: Optional response format.
retry_count: Current retry count.
Returns:
Validated/updated output.
"""
from crewai.utilities.guardrail_types import GuardrailCallable
# Ensure guardrail is callable
guardrail_callable: GuardrailCallable
if isinstance(self.guardrail, str):
from crewai.tasks.llm_guardrail import LLMGuardrail
guardrail_callable = cast(
GuardrailCallable,
LLMGuardrail(description=self.guardrail, llm=cast(BaseLLM, self.llm)),
)
elif callable(self.guardrail):
guardrail_callable = self.guardrail
else:
# Should not happen if called from kickoff with guardrail check
return output
guardrail_result = process_guardrail(
output=output,
guardrail=guardrail_callable,
retry_count=retry_count,
event_source=self,
from_agent=self,
)
if not guardrail_result.success:
if retry_count >= self.guardrail_max_retries:
raise ValueError(
f"Agent's guardrail failed validation after {self.guardrail_max_retries} retries. "
f"Last error: {guardrail_result.error}"
)
# Add feedback and re-execute
executor._append_message_to_state(
guardrail_result.error or "Guardrail validation failed",
role="user",
)
# Re-execute and build new output
output = self._execute_and_build_output(executor, inputs, response_format)
# Recursively retry guardrail
return self._process_kickoff_guardrail(
output=output,
executor=executor,
inputs=inputs,
response_format=response_format,
retry_count=retry_count + 1,
)
# Apply guardrail result if available
if guardrail_result.result is not None:
if isinstance(guardrail_result.result, str):
output.raw = guardrail_result.result
elif isinstance(guardrail_result.result, BaseModel):
output.pydantic = guardrail_result.result
return output
return lite_agent.kickoff(messages)
async def kickoff_async(
self,
@@ -1979,11 +1638,9 @@ class Agent(BaseAgent):
response_format: type[Any] | None = None,
) -> LiteAgentOutput:
"""
Execute the agent asynchronously with the given messages.
Execute the agent asynchronously with the given messages using a LiteAgent instance.
This is the async version of the kickoff method that uses native async
execution. It is designed for use within async contexts, such as when
called from within an async Flow method.
This is the async version of the kickoff method.
Args:
messages: Either a string query or a list of message dictionaries.
@@ -1994,48 +1651,21 @@ class Agent(BaseAgent):
Returns:
LiteAgentOutput: The result of the agent execution.
"""
executor, inputs, agent_info, parsed_tools = self._prepare_kickoff(
messages, response_format
lite_agent = LiteAgent(
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
verbose=self.verbose,
response_format=response_format,
i18n=self.i18n,
original_agent=self,
guardrail=self.guardrail,
guardrail_max_retries=self.guardrail_max_retries,
)
try:
crewai_event_bus.emit(
self,
event=LiteAgentExecutionStartedEvent(
agent_info=agent_info,
tools=parsed_tools,
messages=messages,
),
)
output = await self._execute_and_build_output_async(
executor, inputs, response_format
)
if self.guardrail is not None:
output = self._process_kickoff_guardrail(
output=output,
executor=executor,
inputs=inputs,
response_format=response_format,
)
crewai_event_bus.emit(
self,
event=LiteAgentExecutionCompletedEvent(
agent_info=agent_info,
output=output.raw,
),
)
return output
except Exception as e:
crewai_event_bus.emit(
self,
event=LiteAgentExecutionErrorEvent(
agent_info=agent_info,
error=str(e),
),
)
raise
return await lite_agent.kickoff_async(messages)

View File

@@ -21,9 +21,9 @@ if TYPE_CHECKING:
class CrewAgentExecutorMixin:
crew: Crew | None
crew: Crew
agent: Agent
task: Task | None
task: Task
iterations: int
max_iter: int
messages: list[LLMMessage]

View File

@@ -1,19 +1,28 @@
from crewai.events.types.a2a_events import (
A2AAgentCardFetchedEvent,
A2AArtifactReceivedEvent,
A2AAuthenticationFailedEvent,
A2AConnectionErrorEvent,
A2AConversationCompletedEvent,
A2AConversationStartedEvent,
A2ADelegationCompletedEvent,
A2ADelegationStartedEvent,
A2AMessageSentEvent,
A2AParallelDelegationCompletedEvent,
A2AParallelDelegationStartedEvent,
A2APollingStartedEvent,
A2APollingStatusEvent,
A2APushNotificationReceivedEvent,
A2APushNotificationRegisteredEvent,
A2APushNotificationSentEvent,
A2APushNotificationTimeoutEvent,
A2AResponseReceivedEvent,
A2AServerTaskCanceledEvent,
A2AServerTaskCompletedEvent,
A2AServerTaskFailedEvent,
A2AServerTaskStartedEvent,
A2AStreamingChunkEvent,
A2AStreamingStartedEvent,
)
from crewai.events.types.agent_events import (
AgentExecutionCompletedEvent,
@@ -93,7 +102,11 @@ from crewai.events.types.tool_usage_events import (
EventTypes = (
A2AConversationCompletedEvent
A2AAgentCardFetchedEvent
| A2AArtifactReceivedEvent
| A2AAuthenticationFailedEvent
| A2AConnectionErrorEvent
| A2AConversationCompletedEvent
| A2AConversationStartedEvent
| A2ADelegationCompletedEvent
| A2ADelegationStartedEvent
@@ -102,12 +115,17 @@ EventTypes = (
| A2APollingStatusEvent
| A2APushNotificationReceivedEvent
| A2APushNotificationRegisteredEvent
| A2APushNotificationSentEvent
| A2APushNotificationTimeoutEvent
| A2AResponseReceivedEvent
| A2AServerTaskCanceledEvent
| A2AServerTaskCompletedEvent
| A2AServerTaskFailedEvent
| A2AServerTaskStartedEvent
| A2AStreamingChunkEvent
| A2AStreamingStartedEvent
| A2AParallelDelegationStartedEvent
| A2AParallelDelegationCompletedEvent
| CrewKickoffStartedEvent
| CrewKickoffCompletedEvent
| CrewKickoffFailedEvent

View File

@@ -1,7 +1,7 @@
"""Trace collection listener for orchestrating trace collection."""
import os
from typing import Any, ClassVar, cast
from typing import Any, ClassVar
import uuid
from typing_extensions import Self
@@ -18,6 +18,32 @@ from crewai.events.listeners.tracing.types import TraceEvent
from crewai.events.listeners.tracing.utils import (
safe_serialize_to_dict,
)
from crewai.events.types.a2a_events import (
A2AAgentCardFetchedEvent,
A2AArtifactReceivedEvent,
A2AAuthenticationFailedEvent,
A2AConnectionErrorEvent,
A2AConversationCompletedEvent,
A2AConversationStartedEvent,
A2ADelegationCompletedEvent,
A2ADelegationStartedEvent,
A2AMessageSentEvent,
A2AParallelDelegationCompletedEvent,
A2AParallelDelegationStartedEvent,
A2APollingStartedEvent,
A2APollingStatusEvent,
A2APushNotificationReceivedEvent,
A2APushNotificationRegisteredEvent,
A2APushNotificationSentEvent,
A2APushNotificationTimeoutEvent,
A2AResponseReceivedEvent,
A2AServerTaskCanceledEvent,
A2AServerTaskCompletedEvent,
A2AServerTaskFailedEvent,
A2AServerTaskStartedEvent,
A2AStreamingChunkEvent,
A2AStreamingStartedEvent,
)
from crewai.events.types.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
@@ -105,7 +131,7 @@ class TraceCollectionListener(BaseEventListener):
"""Create or return singleton instance."""
if cls._instance is None:
cls._instance = super().__new__(cls)
return cast(Self, cls._instance)
return cls._instance
def __init__(
self,
@@ -160,6 +186,7 @@ class TraceCollectionListener(BaseEventListener):
self._register_flow_event_handlers(crewai_event_bus)
self._register_context_event_handlers(crewai_event_bus)
self._register_action_event_handlers(crewai_event_bus)
self._register_a2a_event_handlers(crewai_event_bus)
self._register_system_event_handlers(crewai_event_bus)
self._listeners_setup = True
@@ -439,6 +466,147 @@ class TraceCollectionListener(BaseEventListener):
) -> None:
self._handle_action_event("knowledge_query_failed", source, event)
def _register_a2a_event_handlers(self, event_bus: CrewAIEventsBus) -> None:
"""Register handlers for A2A (Agent-to-Agent) events."""
@event_bus.on(A2ADelegationStartedEvent)
def on_a2a_delegation_started(
source: Any, event: A2ADelegationStartedEvent
) -> None:
self._handle_action_event("a2a_delegation_started", source, event)
@event_bus.on(A2ADelegationCompletedEvent)
def on_a2a_delegation_completed(
source: Any, event: A2ADelegationCompletedEvent
) -> None:
self._handle_action_event("a2a_delegation_completed", source, event)
@event_bus.on(A2AConversationStartedEvent)
def on_a2a_conversation_started(
source: Any, event: A2AConversationStartedEvent
) -> None:
self._handle_action_event("a2a_conversation_started", source, event)
@event_bus.on(A2AMessageSentEvent)
def on_a2a_message_sent(source: Any, event: A2AMessageSentEvent) -> None:
self._handle_action_event("a2a_message_sent", source, event)
@event_bus.on(A2AResponseReceivedEvent)
def on_a2a_response_received(
source: Any, event: A2AResponseReceivedEvent
) -> None:
self._handle_action_event("a2a_response_received", source, event)
@event_bus.on(A2AConversationCompletedEvent)
def on_a2a_conversation_completed(
source: Any, event: A2AConversationCompletedEvent
) -> None:
self._handle_action_event("a2a_conversation_completed", source, event)
@event_bus.on(A2APollingStartedEvent)
def on_a2a_polling_started(source: Any, event: A2APollingStartedEvent) -> None:
self._handle_action_event("a2a_polling_started", source, event)
@event_bus.on(A2APollingStatusEvent)
def on_a2a_polling_status(source: Any, event: A2APollingStatusEvent) -> None:
self._handle_action_event("a2a_polling_status", source, event)
@event_bus.on(A2APushNotificationRegisteredEvent)
def on_a2a_push_notification_registered(
source: Any, event: A2APushNotificationRegisteredEvent
) -> None:
self._handle_action_event("a2a_push_notification_registered", source, event)
@event_bus.on(A2APushNotificationReceivedEvent)
def on_a2a_push_notification_received(
source: Any, event: A2APushNotificationReceivedEvent
) -> None:
self._handle_action_event("a2a_push_notification_received", source, event)
@event_bus.on(A2APushNotificationSentEvent)
def on_a2a_push_notification_sent(
source: Any, event: A2APushNotificationSentEvent
) -> None:
self._handle_action_event("a2a_push_notification_sent", source, event)
@event_bus.on(A2APushNotificationTimeoutEvent)
def on_a2a_push_notification_timeout(
source: Any, event: A2APushNotificationTimeoutEvent
) -> None:
self._handle_action_event("a2a_push_notification_timeout", source, event)
@event_bus.on(A2AStreamingStartedEvent)
def on_a2a_streaming_started(
source: Any, event: A2AStreamingStartedEvent
) -> None:
self._handle_action_event("a2a_streaming_started", source, event)
@event_bus.on(A2AStreamingChunkEvent)
def on_a2a_streaming_chunk(source: Any, event: A2AStreamingChunkEvent) -> None:
self._handle_action_event("a2a_streaming_chunk", source, event)
@event_bus.on(A2AAgentCardFetchedEvent)
def on_a2a_agent_card_fetched(
source: Any, event: A2AAgentCardFetchedEvent
) -> None:
self._handle_action_event("a2a_agent_card_fetched", source, event)
@event_bus.on(A2AAuthenticationFailedEvent)
def on_a2a_authentication_failed(
source: Any, event: A2AAuthenticationFailedEvent
) -> None:
self._handle_action_event("a2a_authentication_failed", source, event)
@event_bus.on(A2AArtifactReceivedEvent)
def on_a2a_artifact_received(
source: Any, event: A2AArtifactReceivedEvent
) -> None:
self._handle_action_event("a2a_artifact_received", source, event)
@event_bus.on(A2AConnectionErrorEvent)
def on_a2a_connection_error(
source: Any, event: A2AConnectionErrorEvent
) -> None:
self._handle_action_event("a2a_connection_error", source, event)
@event_bus.on(A2AServerTaskStartedEvent)
def on_a2a_server_task_started(
source: Any, event: A2AServerTaskStartedEvent
) -> None:
self._handle_action_event("a2a_server_task_started", source, event)
@event_bus.on(A2AServerTaskCompletedEvent)
def on_a2a_server_task_completed(
source: Any, event: A2AServerTaskCompletedEvent
) -> None:
self._handle_action_event("a2a_server_task_completed", source, event)
@event_bus.on(A2AServerTaskCanceledEvent)
def on_a2a_server_task_canceled(
source: Any, event: A2AServerTaskCanceledEvent
) -> None:
self._handle_action_event("a2a_server_task_canceled", source, event)
@event_bus.on(A2AServerTaskFailedEvent)
def on_a2a_server_task_failed(
source: Any, event: A2AServerTaskFailedEvent
) -> None:
self._handle_action_event("a2a_server_task_failed", source, event)
@event_bus.on(A2AParallelDelegationStartedEvent)
def on_a2a_parallel_delegation_started(
source: Any, event: A2AParallelDelegationStartedEvent
) -> None:
self._handle_action_event("a2a_parallel_delegation_started", source, event)
@event_bus.on(A2AParallelDelegationCompletedEvent)
def on_a2a_parallel_delegation_completed(
source: Any, event: A2AParallelDelegationCompletedEvent
) -> None:
self._handle_action_event(
"a2a_parallel_delegation_completed", source, event
)
def _register_system_event_handlers(self, event_bus: CrewAIEventsBus) -> None:
"""Register handlers for system signal events (SIGTERM, SIGINT, etc.)."""
@@ -570,10 +738,15 @@ class TraceCollectionListener(BaseEventListener):
if event_type not in self.complex_events:
return safe_serialize_to_dict(event)
if event_type == "task_started":
task_name = event.task.name or event.task.description
task_display_name = (
task_name[:80] + "..." if len(task_name) > 80 else task_name
)
return {
"task_description": event.task.description,
"expected_output": event.task.expected_output,
"task_name": event.task.name or event.task.description,
"task_name": task_name,
"task_display_name": task_display_name,
"context": event.context,
"agent_role": source.agent.role,
"task_id": str(event.task.id),

View File

@@ -4,68 +4,120 @@ This module defines events emitted during A2A protocol delegation,
including both single-turn and multiturn conversation flows.
"""
from __future__ import annotations
from typing import Any, Literal
from pydantic import model_validator
from crewai.events.base_events import BaseEvent
class A2AEventBase(BaseEvent):
"""Base class for A2A events with task/agent context."""
from_task: Any | None = None
from_agent: Any | None = None
from_task: Any = None
from_agent: Any = None
def __init__(self, **data: Any) -> None:
"""Initialize A2A event, extracting task and agent metadata."""
if data.get("from_task"):
task = data["from_task"]
@model_validator(mode="before")
@classmethod
def extract_task_and_agent_metadata(cls, data: dict[str, Any]) -> dict[str, Any]:
"""Extract task and agent metadata before validation."""
if task := data.get("from_task"):
data["task_id"] = str(task.id)
data["task_name"] = task.name or task.description
data.setdefault("source_fingerprint", str(task.id))
data.setdefault("source_type", "task")
data.setdefault(
"fingerprint_metadata",
{
"task_id": str(task.id),
"task_name": task.name or task.description,
},
)
data["from_task"] = None
if data.get("from_agent"):
agent = data["from_agent"]
if agent := data.get("from_agent"):
data["agent_id"] = str(agent.id)
data["agent_role"] = agent.role
data.setdefault("source_fingerprint", str(agent.id))
data.setdefault("source_type", "agent")
data.setdefault(
"fingerprint_metadata",
{
"agent_id": str(agent.id),
"agent_role": agent.role,
},
)
data["from_agent"] = None
super().__init__(**data)
return data
class A2ADelegationStartedEvent(A2AEventBase):
"""Event emitted when A2A delegation starts.
Attributes:
endpoint: A2A agent endpoint URL (AgentCard URL)
task_description: Task being delegated to the A2A agent
agent_id: A2A agent identifier
is_multiturn: Whether this is part of a multiturn conversation
turn_number: Current turn number (1-indexed, 1 for single-turn)
endpoint: A2A agent endpoint URL (AgentCard URL).
task_description: Task being delegated to the A2A agent.
agent_id: A2A agent identifier.
context_id: A2A context ID grouping related tasks.
is_multiturn: Whether this is part of a multiturn conversation.
turn_number: Current turn number (1-indexed, 1 for single-turn).
a2a_agent_name: Name of the A2A agent from agent card.
agent_card: Full A2A agent card metadata.
protocol_version: A2A protocol version being used.
provider: Agent provider/organization info from agent card.
skill_id: ID of the specific skill being invoked.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_delegation_started"
endpoint: str
task_description: str
agent_id: str
context_id: str | None = None
is_multiturn: bool = False
turn_number: int = 1
a2a_agent_name: str | None = None
agent_card: dict[str, Any] | None = None
protocol_version: str | None = None
provider: dict[str, Any] | None = None
skill_id: str | None = None
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2ADelegationCompletedEvent(A2AEventBase):
"""Event emitted when A2A delegation completes.
Attributes:
status: Completion status (completed, input_required, failed, etc.)
result: Result message if status is completed
error: Error/response message (error for failed, response for input_required)
is_multiturn: Whether this is part of a multiturn conversation
status: Completion status (completed, input_required, failed, etc.).
result: Result message if status is completed.
error: Error/response message (error for failed, response for input_required).
context_id: A2A context ID grouping related tasks.
is_multiturn: Whether this is part of a multiturn conversation.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
agent_card: Full A2A agent card metadata.
provider: Agent provider/organization info from agent card.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_delegation_completed"
status: str
result: str | None = None
error: str | None = None
context_id: str | None = None
is_multiturn: bool = False
endpoint: str | None = None
a2a_agent_name: str | None = None
agent_card: dict[str, Any] | None = None
provider: dict[str, Any] | None = None
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2AConversationStartedEvent(A2AEventBase):
@@ -75,51 +127,95 @@ class A2AConversationStartedEvent(A2AEventBase):
before the first message exchange.
Attributes:
agent_id: A2A agent identifier
endpoint: A2A agent endpoint URL
a2a_agent_name: Name of the A2A agent from agent card
agent_id: A2A agent identifier.
endpoint: A2A agent endpoint URL.
context_id: A2A context ID grouping related tasks.
a2a_agent_name: Name of the A2A agent from agent card.
agent_card: Full A2A agent card metadata.
protocol_version: A2A protocol version being used.
provider: Agent provider/organization info from agent card.
skill_id: ID of the specific skill being invoked.
reference_task_ids: Related task IDs for context.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_conversation_started"
agent_id: str
endpoint: str
context_id: str | None = None
a2a_agent_name: str | None = None
agent_card: dict[str, Any] | None = None
protocol_version: str | None = None
provider: dict[str, Any] | None = None
skill_id: str | None = None
reference_task_ids: list[str] | None = None
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2AMessageSentEvent(A2AEventBase):
"""Event emitted when a message is sent to the A2A agent.
Attributes:
message: Message content sent to the A2A agent
turn_number: Current turn number (1-indexed)
is_multiturn: Whether this is part of a multiturn conversation
agent_role: Role of the CrewAI agent sending the message
message: Message content sent to the A2A agent.
turn_number: Current turn number (1-indexed).
context_id: A2A context ID grouping related tasks.
message_id: Unique A2A message identifier.
is_multiturn: Whether this is part of a multiturn conversation.
agent_role: Role of the CrewAI agent sending the message.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
skill_id: ID of the specific skill being invoked.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_message_sent"
message: str
turn_number: int
context_id: str | None = None
message_id: str | None = None
is_multiturn: bool = False
agent_role: str | None = None
endpoint: str | None = None
a2a_agent_name: str | None = None
skill_id: str | None = None
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2AResponseReceivedEvent(A2AEventBase):
"""Event emitted when a response is received from the A2A agent.
Attributes:
response: Response content from the A2A agent
turn_number: Current turn number (1-indexed)
is_multiturn: Whether this is part of a multiturn conversation
status: Response status (input_required, completed, etc.)
agent_role: Role of the CrewAI agent (for display)
response: Response content from the A2A agent.
turn_number: Current turn number (1-indexed).
context_id: A2A context ID grouping related tasks.
message_id: Unique A2A message identifier.
is_multiturn: Whether this is part of a multiturn conversation.
status: Response status (input_required, completed, etc.).
final: Whether this is the final response in the stream.
agent_role: Role of the CrewAI agent (for display).
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_response_received"
response: str
turn_number: int
context_id: str | None = None
message_id: str | None = None
is_multiturn: bool = False
status: str
final: bool = False
agent_role: str | None = None
endpoint: str | None = None
a2a_agent_name: str | None = None
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2AConversationCompletedEvent(A2AEventBase):
@@ -128,119 +224,433 @@ class A2AConversationCompletedEvent(A2AEventBase):
This is emitted once at the end of a multiturn conversation.
Attributes:
status: Final status (completed, failed, etc.)
final_result: Final result if completed successfully
error: Error message if failed
total_turns: Total number of turns in the conversation
status: Final status (completed, failed, etc.).
final_result: Final result if completed successfully.
error: Error message if failed.
context_id: A2A context ID grouping related tasks.
total_turns: Total number of turns in the conversation.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
agent_card: Full A2A agent card metadata.
reference_task_ids: Related task IDs for context.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_conversation_completed"
status: Literal["completed", "failed"]
final_result: str | None = None
error: str | None = None
context_id: str | None = None
total_turns: int
endpoint: str | None = None
a2a_agent_name: str | None = None
agent_card: dict[str, Any] | None = None
reference_task_ids: list[str] | None = None
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2APollingStartedEvent(A2AEventBase):
"""Event emitted when polling mode begins for A2A delegation.
Attributes:
task_id: A2A task ID being polled
polling_interval: Seconds between poll attempts
endpoint: A2A agent endpoint URL
task_id: A2A task ID being polled.
context_id: A2A context ID grouping related tasks.
polling_interval: Seconds between poll attempts.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_polling_started"
task_id: str
context_id: str | None = None
polling_interval: float
endpoint: str
a2a_agent_name: str | None = None
metadata: dict[str, Any] | None = None
class A2APollingStatusEvent(A2AEventBase):
"""Event emitted on each polling iteration.
Attributes:
task_id: A2A task ID being polled
state: Current task state from remote agent
elapsed_seconds: Time since polling started
poll_count: Number of polls completed
task_id: A2A task ID being polled.
context_id: A2A context ID grouping related tasks.
state: Current task state from remote agent.
elapsed_seconds: Time since polling started.
poll_count: Number of polls completed.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_polling_status"
task_id: str
context_id: str | None = None
state: str
elapsed_seconds: float
poll_count: int
endpoint: str | None = None
a2a_agent_name: str | None = None
metadata: dict[str, Any] | None = None
class A2APushNotificationRegisteredEvent(A2AEventBase):
"""Event emitted when push notification callback is registered.
Attributes:
task_id: A2A task ID for which callback is registered
callback_url: URL where agent will send push notifications
task_id: A2A task ID for which callback is registered.
context_id: A2A context ID grouping related tasks.
callback_url: URL where agent will send push notifications.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_push_notification_registered"
task_id: str
context_id: str | None = None
callback_url: str
endpoint: str | None = None
a2a_agent_name: str | None = None
metadata: dict[str, Any] | None = None
class A2APushNotificationReceivedEvent(A2AEventBase):
"""Event emitted when a push notification is received.
This event should be emitted by the user's webhook handler when it receives
a push notification from the remote A2A agent, before calling
`result_store.store_result()`.
Attributes:
task_id: A2A task ID from the notification
state: Current task state from the notification
task_id: A2A task ID from the notification.
context_id: A2A context ID grouping related tasks.
state: Current task state from the notification.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_push_notification_received"
task_id: str
context_id: str | None = None
state: str
endpoint: str | None = None
a2a_agent_name: str | None = None
metadata: dict[str, Any] | None = None
class A2APushNotificationSentEvent(A2AEventBase):
"""Event emitted when a push notification is sent to a callback URL.
Emitted by the A2A server when it sends a task status update to the
client's registered push notification callback URL.
Attributes:
task_id: A2A task ID being notified.
context_id: A2A context ID grouping related tasks.
callback_url: URL the notification was sent to.
state: Task state being reported.
success: Whether the notification was successfully delivered.
error: Error message if delivery failed.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_push_notification_sent"
task_id: str
context_id: str | None = None
callback_url: str
state: str
success: bool = True
error: str | None = None
metadata: dict[str, Any] | None = None
class A2APushNotificationTimeoutEvent(A2AEventBase):
"""Event emitted when push notification wait times out.
Attributes:
task_id: A2A task ID that timed out
timeout_seconds: Timeout duration in seconds
task_id: A2A task ID that timed out.
context_id: A2A context ID grouping related tasks.
timeout_seconds: Timeout duration in seconds.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_push_notification_timeout"
task_id: str
context_id: str | None = None
timeout_seconds: float
endpoint: str | None = None
a2a_agent_name: str | None = None
metadata: dict[str, Any] | None = None
class A2AStreamingStartedEvent(A2AEventBase):
"""Event emitted when streaming mode begins for A2A delegation.
Attributes:
task_id: A2A task ID for the streaming session.
context_id: A2A context ID grouping related tasks.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
turn_number: Current turn number (1-indexed).
is_multiturn: Whether this is part of a multiturn conversation.
agent_role: Role of the CrewAI agent.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_streaming_started"
task_id: str | None = None
context_id: str | None = None
endpoint: str
a2a_agent_name: str | None = None
turn_number: int = 1
is_multiturn: bool = False
agent_role: str | None = None
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2AStreamingChunkEvent(A2AEventBase):
"""Event emitted when a streaming chunk is received.
Attributes:
task_id: A2A task ID for the streaming session.
context_id: A2A context ID grouping related tasks.
chunk: The text content of the chunk.
chunk_index: Index of this chunk in the stream (0-indexed).
final: Whether this is the final chunk in the stream.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
turn_number: Current turn number (1-indexed).
is_multiturn: Whether this is part of a multiturn conversation.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_streaming_chunk"
task_id: str | None = None
context_id: str | None = None
chunk: str
chunk_index: int
final: bool = False
endpoint: str | None = None
a2a_agent_name: str | None = None
turn_number: int = 1
is_multiturn: bool = False
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2AAgentCardFetchedEvent(A2AEventBase):
"""Event emitted when an agent card is successfully fetched.
Attributes:
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
agent_card: Full A2A agent card metadata.
protocol_version: A2A protocol version from agent card.
provider: Agent provider/organization info from agent card.
cached: Whether the agent card was retrieved from cache.
fetch_time_ms: Time taken to fetch the agent card in milliseconds.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_agent_card_fetched"
endpoint: str
a2a_agent_name: str | None = None
agent_card: dict[str, Any] | None = None
protocol_version: str | None = None
provider: dict[str, Any] | None = None
cached: bool = False
fetch_time_ms: float | None = None
metadata: dict[str, Any] | None = None
class A2AAuthenticationFailedEvent(A2AEventBase):
"""Event emitted when authentication to an A2A agent fails.
Attributes:
endpoint: A2A agent endpoint URL.
auth_type: Type of authentication attempted (e.g., bearer, oauth2, api_key).
error: Error message describing the failure.
status_code: HTTP status code if applicable.
a2a_agent_name: Name of the A2A agent if known.
protocol_version: A2A protocol version being used.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_authentication_failed"
endpoint: str
auth_type: str | None = None
error: str
status_code: int | None = None
a2a_agent_name: str | None = None
protocol_version: str | None = None
metadata: dict[str, Any] | None = None
class A2AArtifactReceivedEvent(A2AEventBase):
"""Event emitted when an artifact is received from a remote A2A agent.
Attributes:
task_id: A2A task ID the artifact belongs to.
artifact_id: Unique identifier for the artifact.
artifact_name: Name of the artifact.
artifact_description: Purpose description of the artifact.
mime_type: MIME type of the artifact content.
size_bytes: Size of the artifact in bytes.
append: Whether content should be appended to existing artifact.
last_chunk: Whether this is the final chunk of the artifact.
endpoint: A2A agent endpoint URL.
a2a_agent_name: Name of the A2A agent from agent card.
context_id: Context ID for correlation.
turn_number: Current turn number (1-indexed).
is_multiturn: Whether this is part of a multiturn conversation.
metadata: Custom A2A metadata key-value pairs.
extensions: List of A2A extension URIs in use.
"""
type: str = "a2a_artifact_received"
task_id: str
artifact_id: str
artifact_name: str | None = None
artifact_description: str | None = None
mime_type: str | None = None
size_bytes: int | None = None
append: bool = False
last_chunk: bool = False
endpoint: str | None = None
a2a_agent_name: str | None = None
context_id: str | None = None
turn_number: int = 1
is_multiturn: bool = False
metadata: dict[str, Any] | None = None
extensions: list[str] | None = None
class A2AConnectionErrorEvent(A2AEventBase):
"""Event emitted when a connection error occurs during A2A communication.
Attributes:
endpoint: A2A agent endpoint URL.
error: Error message describing the connection failure.
error_type: Type of error (e.g., timeout, connection_refused, dns_error).
status_code: HTTP status code if applicable.
a2a_agent_name: Name of the A2A agent from agent card.
operation: The operation being attempted when error occurred.
context_id: A2A context ID grouping related tasks.
task_id: A2A task ID if applicable.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_connection_error"
endpoint: str
error: str
error_type: str | None = None
status_code: int | None = None
a2a_agent_name: str | None = None
operation: str | None = None
context_id: str | None = None
task_id: str | None = None
metadata: dict[str, Any] | None = None
class A2AServerTaskStartedEvent(A2AEventBase):
"""Event emitted when an A2A server task execution starts."""
"""Event emitted when an A2A server task execution starts.
Attributes:
task_id: A2A task ID for this execution.
context_id: A2A context ID grouping related tasks.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_server_task_started"
a2a_task_id: str
a2a_context_id: str
task_id: str
context_id: str
metadata: dict[str, Any] | None = None
class A2AServerTaskCompletedEvent(A2AEventBase):
"""Event emitted when an A2A server task execution completes."""
"""Event emitted when an A2A server task execution completes.
Attributes:
task_id: A2A task ID for this execution.
context_id: A2A context ID grouping related tasks.
result: The task result.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_server_task_completed"
a2a_task_id: str
a2a_context_id: str
task_id: str
context_id: str
result: str
metadata: dict[str, Any] | None = None
class A2AServerTaskCanceledEvent(A2AEventBase):
"""Event emitted when an A2A server task execution is canceled."""
"""Event emitted when an A2A server task execution is canceled.
Attributes:
task_id: A2A task ID for this execution.
context_id: A2A context ID grouping related tasks.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_server_task_canceled"
a2a_task_id: str
a2a_context_id: str
task_id: str
context_id: str
metadata: dict[str, Any] | None = None
class A2AServerTaskFailedEvent(A2AEventBase):
"""Event emitted when an A2A server task execution fails."""
"""Event emitted when an A2A server task execution fails.
Attributes:
task_id: A2A task ID for this execution.
context_id: A2A context ID grouping related tasks.
error: Error message describing the failure.
metadata: Custom A2A metadata key-value pairs.
"""
type: str = "a2a_server_task_failed"
a2a_task_id: str
a2a_context_id: str
task_id: str
context_id: str
error: str
metadata: dict[str, Any] | None = None
class A2AParallelDelegationStartedEvent(A2AEventBase):
"""Event emitted when parallel delegation to multiple A2A agents begins.
Attributes:
endpoints: List of A2A agent endpoints being delegated to.
task_description: Description of the task being delegated.
"""
type: str = "a2a_parallel_delegation_started"
endpoints: list[str]
task_description: str
class A2AParallelDelegationCompletedEvent(A2AEventBase):
"""Event emitted when parallel delegation to multiple A2A agents completes.
Attributes:
endpoints: List of A2A agent endpoints that were delegated to.
success_count: Number of successful delegations.
failure_count: Number of failed delegations.
results: Summary of results from each agent.
"""
type: str = "a2a_parallel_delegation_completed"
endpoints: list[str]
success_count: int
failure_count: int
results: dict[str, str] | None = None

View File

@@ -1,4 +1,4 @@
from crewai.experimental.agent_executor import AgentExecutor, CrewAgentExecutorFlow
from crewai.experimental.crew_agent_executor_flow import CrewAgentExecutorFlow
from crewai.experimental.evaluation import (
AgentEvaluationResult,
AgentEvaluator,
@@ -23,9 +23,8 @@ from crewai.experimental.evaluation import (
__all__ = [
"AgentEvaluationResult",
"AgentEvaluator",
"AgentExecutor",
"BaseEvaluator",
"CrewAgentExecutorFlow", # Deprecated alias for AgentExecutor
"CrewAgentExecutorFlow",
"EvaluationScore",
"EvaluationTraceCallback",
"ExperimentResult",

View File

@@ -1,6 +1,6 @@
from __future__ import annotations
from collections.abc import Callable, Coroutine
from collections.abc import Callable
import threading
from typing import TYPE_CHECKING, Any, Literal, cast
from uuid import uuid4
@@ -37,7 +37,6 @@ from crewai.utilities.agent_utils import (
handle_unknown_error,
has_reached_max_iterations,
is_context_length_exceeded,
is_inside_event_loop,
process_llm_response,
)
from crewai.utilities.constants import TRAINING_DATA_FILE
@@ -74,17 +73,13 @@ class AgentReActState(BaseModel):
ask_for_human_input: bool = Field(default=False)
class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
"""Flow-based agent executor for both standalone and crew-bound execution.
class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
"""Flow-based executor matching CrewAgentExecutor interface.
Inherits from:
- Flow[AgentReActState]: Provides flow orchestration capabilities
- CrewAgentExecutorMixin: Provides memory methods (short/long/external term)
This executor can operate in two modes:
- Standalone mode: When crew and task are None (used by Agent.kickoff())
- Crew mode: When crew and task are provided (used by Agent.execute_task())
Note: Multiple instances may be created during agent initialization
(cache setup, RPM controller setup, etc.) but only the final instance
should execute tasks via invoke().
@@ -93,6 +88,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
def __init__(
self,
llm: BaseLLM,
task: Task,
crew: Crew,
agent: Agent,
prompt: SystemPromptResult | StandardPromptResult,
max_iter: int,
@@ -101,8 +98,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
stop_words: list[str],
tools_description: str,
tools_handler: ToolsHandler,
task: Task | None = None,
crew: Crew | None = None,
step_callback: Any = None,
original_tools: list[BaseTool] | None = None,
function_calling_llm: BaseLLM | Any | None = None,
@@ -116,6 +111,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
Args:
llm: Language model instance.
task: Task to execute.
crew: Crew instance.
agent: Agent to execute.
prompt: Prompt templates.
max_iter: Maximum iterations.
@@ -124,8 +121,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
stop_words: Stop word list.
tools_description: Tool descriptions.
tools_handler: Tool handler instance.
task: Optional task to execute (None for standalone agent execution).
crew: Optional crew instance (None for standalone agent execution).
step_callback: Optional step callback.
original_tools: Original tool list.
function_calling_llm: Optional function calling LLM.
@@ -136,9 +131,9 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
"""
self._i18n: I18N = i18n or get_i18n()
self.llm = llm
self.task: Task | None = task
self.task = task
self.agent = agent
self.crew: Crew | None = crew
self.crew = crew
self.prompt = prompt
self.tools = tools
self.tools_names = tools_names
@@ -183,6 +178,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
else self.stop
)
)
self._state = AgentReActState()
def _ensure_flow_initialized(self) -> None:
@@ -268,7 +264,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
printer=self._printer,
from_task=self.task,
from_agent=self.agent,
response_model=None,
response_model=self.response_model,
executor_context=self,
)
@@ -453,99 +449,9 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
return "initialized"
def invoke(
self, inputs: dict[str, Any]
) -> dict[str, Any] | Coroutine[Any, Any, dict[str, Any]]:
def invoke(self, inputs: dict[str, Any]) -> dict[str, Any]:
"""Execute agent with given inputs.
When called from within an existing event loop (e.g., inside a Flow),
this method returns a coroutine that should be awaited. The Flow
framework handles this automatically.
Args:
inputs: Input dictionary containing prompt variables.
Returns:
Dictionary with agent output, or a coroutine if inside an event loop.
"""
# Magic auto-async: if inside event loop, return coroutine for Flow to await
if is_inside_event_loop():
return self.invoke_async(inputs)
self._ensure_flow_initialized()
with self._execution_lock:
if self._is_executing:
raise RuntimeError(
"Executor is already running. "
"Cannot invoke the same executor instance concurrently."
)
self._is_executing = True
self._has_been_invoked = True
try:
# Reset state for fresh execution
self.state.messages.clear()
self.state.iterations = 0
self.state.current_answer = None
self.state.is_finished = False
if "system" in self.prompt:
prompt = cast("SystemPromptResult", self.prompt)
system_prompt = self._format_prompt(prompt["system"], inputs)
user_prompt = self._format_prompt(prompt["user"], inputs)
self.state.messages.append(
format_message_for_llm(system_prompt, role="system")
)
self.state.messages.append(format_message_for_llm(user_prompt))
else:
user_prompt = self._format_prompt(self.prompt["prompt"], inputs)
self.state.messages.append(format_message_for_llm(user_prompt))
self.state.ask_for_human_input = bool(
inputs.get("ask_for_human_input", False)
)
self.kickoff()
formatted_answer = self.state.current_answer
if not isinstance(formatted_answer, AgentFinish):
raise RuntimeError(
"Agent execution ended without reaching a final answer."
)
if self.state.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
self._create_external_memory(formatted_answer)
return {"output": formatted_answer.output}
except AssertionError:
fail_text = Text()
fail_text.append("", style="red bold")
fail_text.append(
"Agent failed to reach a final answer. This is likely a bug - please report it.",
style="red",
)
self._console.print(fail_text)
raise
except Exception as e:
handle_unknown_error(self._printer, e)
raise
finally:
self._is_executing = False
async def invoke_async(self, inputs: dict[str, Any]) -> dict[str, Any]:
"""Execute agent asynchronously with given inputs.
This method is designed for use within async contexts, such as when
the agent is called from within an async Flow method. It uses
kickoff_async() directly instead of running in a separate thread.
Args:
inputs: Input dictionary containing prompt variables.
@@ -586,8 +492,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
inputs.get("ask_for_human_input", False)
)
# Use async kickoff directly since we're already in an async context
await self.kickoff_async()
self.kickoff()
formatted_answer = self.state.current_answer
@@ -678,14 +583,11 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
if self.agent is None:
raise ValueError("Agent cannot be None")
if self.task is None:
return
crewai_event_bus.emit(
self.agent,
AgentLogsStartedEvent(
agent_role=self.agent.role,
task_description=self.task.description,
task_description=(self.task.description if self.task else "Not Found"),
verbose=self.agent.verbose
or (hasattr(self, "crew") and getattr(self.crew, "verbose", False)),
),
@@ -719,12 +621,10 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
result: Agent's final output.
human_feedback: Optional feedback from human.
"""
# Early return if no crew (standalone mode)
if self.crew is None:
return
agent_id = str(self.agent.id)
train_iteration = getattr(self.crew, "_train_iteration", None)
train_iteration = (
getattr(self.crew, "_train_iteration", None) if self.crew else None
)
if train_iteration is None or not isinstance(train_iteration, int):
train_error = Text()
@@ -906,7 +806,3 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
requiring arbitrary_types_allowed=True.
"""
return core_schema.any_schema()
# Backward compatibility alias (deprecated)
CrewAgentExecutorFlow = AgentExecutor

View File

@@ -73,7 +73,6 @@ from crewai.flow.utils import (
is_simple_flow_condition,
)
if TYPE_CHECKING:
from crewai.flow.async_feedback.types import PendingFeedbackContext
from crewai.flow.human_feedback import HumanFeedbackResult
@@ -520,9 +519,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._methods: dict[FlowMethodName, FlowMethod[Any, Any]] = {}
self._method_execution_counts: dict[FlowMethodName, int] = {}
self._pending_and_listeners: dict[PendingListenerKey, set[FlowMethodName]] = {}
self._fired_or_listeners: set[FlowMethodName] = (
set()
) # Track OR listeners that already fired
self._method_outputs: list[Any] = [] # list to store all method outputs
self._completed_methods: set[FlowMethodName] = (
set()
@@ -574,7 +570,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
flow_id: str,
persistence: FlowPersistence | None = None,
**kwargs: Any,
) -> Flow[Any]:
) -> "Flow[Any]":
"""Create a Flow instance from a pending feedback state.
This classmethod is used to restore a flow that was paused waiting
@@ -635,7 +631,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
return instance
@property
def pending_feedback(self) -> PendingFeedbackContext | None:
def pending_feedback(self) -> "PendingFeedbackContext | None":
"""Get the pending feedback context if this flow is waiting for feedback.
Returns:
@@ -720,9 +716,8 @@ class Flow(Generic[T], metaclass=FlowMeta):
Raises:
ValueError: If no pending feedback context exists
"""
from datetime import datetime
from crewai.flow.human_feedback import HumanFeedbackResult
from datetime import datetime
if self._pending_feedback_context is None:
raise ValueError(
@@ -1300,7 +1295,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._completed_methods.clear()
self._method_outputs.clear()
self._pending_and_listeners.clear()
self._fired_or_listeners.clear()
else:
# We're restoring from persistence, set the flag
self._is_execution_resuming = True
@@ -1352,26 +1346,9 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._initialize_state(inputs)
try:
# Determine which start methods to execute at kickoff
# Conditional start methods (with __trigger_methods__) are only triggered by their conditions
# UNLESS there are no unconditional starts (then all starts run as entry points)
unconditional_starts = [
start_method
for start_method in self._start_methods
if not getattr(
self._methods.get(start_method), "__trigger_methods__", None
)
]
# If there are unconditional starts, only run those at kickoff
# If there are NO unconditional starts, run all starts (including conditional ones)
starts_to_execute = (
unconditional_starts
if unconditional_starts
else self._start_methods
)
tasks = [
self._execute_start_method(start_method)
for start_method in starts_to_execute
for start_method in self._start_methods
]
await asyncio.gather(*tasks)
except Exception as e:
@@ -1504,8 +1481,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
return
# For cyclic flows, clear from completed to allow re-execution
self._completed_methods.discard(start_method_name)
# Also clear fired OR listeners to allow them to fire again in new cycle
self._fired_or_listeners.clear()
method = self._methods[start_method_name]
enhanced_method = self._inject_trigger_payload_for_start_method(method)
@@ -1528,9 +1503,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
if self.last_human_feedback is not None
else result
)
# Execute listeners sequentially to prevent race conditions on shared state
for listener_name in listeners_for_result:
await self._execute_single_listener(listener_name, listener_result)
tasks = [
self._execute_single_listener(listener_name, listener_result)
for listener_name in listeners_for_result
]
await asyncio.gather(*tasks)
else:
await self._execute_listeners(start_method_name, result)
@@ -1596,19 +1573,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
if future:
self._event_futures.append(future)
if asyncio.iscoroutinefunction(method):
result = await method(*args, **kwargs)
else:
# Run sync methods in thread pool for isolation
# This allows Agent.kickoff() to work synchronously inside Flow methods
import contextvars
ctx = contextvars.copy_context()
result = await asyncio.to_thread(ctx.run, method, *args, **kwargs)
# Auto-await coroutines returned from sync methods (enables AgentExecutor pattern)
if asyncio.iscoroutine(result):
result = await result
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
@@ -1755,11 +1724,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
listener_result = router_result_to_feedback.get(
str(current_trigger), result
)
# Execute listeners sequentially to prevent race conditions on shared state
for listener_name in listeners_triggered:
await self._execute_single_listener(
listener_name, listener_result
)
tasks = [
self._execute_single_listener(listener_name, listener_result)
for listener_name in listeners_triggered
]
await asyncio.gather(*tasks)
if current_trigger in router_results:
# Find start methods triggered by this router result
@@ -1776,16 +1745,14 @@ class Flow(Generic[T], metaclass=FlowMeta):
should_trigger = current_trigger in all_methods
if should_trigger:
# Execute conditional start method triggered by router result
# Only execute if this is a cycle (method was already completed)
if method_name in self._completed_methods:
# For cyclic re-execution, temporarily clear resumption flag
# For router-triggered start methods in cycles, temporarily clear resumption flag
# to allow cyclic execution
was_resuming = self._is_execution_resuming
self._is_execution_resuming = False
await self._execute_start_method(method_name)
self._is_execution_resuming = was_resuming
else:
# First-time execution of conditional start
await self._execute_start_method(method_name)
def _evaluate_condition(
self,
@@ -1883,21 +1850,8 @@ class Flow(Generic[T], metaclass=FlowMeta):
condition_type, methods = condition_data
if condition_type == OR_CONDITION:
# Only trigger multi-source OR listeners (or_(A, B, C)) once - skip if already fired
# Simple single-method listeners fire every time their trigger occurs
# Routers also fire every time - they're decision points
has_multiple_triggers = len(methods) > 1
should_check_fired = has_multiple_triggers and not is_router
if (
not should_check_fired
or listener_name not in self._fired_or_listeners
):
if trigger_method in methods:
triggered.append(listener_name)
# Only track multi-source OR listeners (not single-method or routers)
if should_check_fired:
self._fired_or_listeners.add(listener_name)
if trigger_method in methods:
triggered.append(listener_name)
elif condition_type == AND_CONDITION:
pending_key = PendingListenerKey(listener_name)
if pending_key not in self._pending_and_listeners:
@@ -1910,26 +1864,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._pending_and_listeners.pop(pending_key, None)
elif is_flow_condition_dict(condition_data):
# For complex conditions, check if top-level is OR and track accordingly
top_level_type = condition_data.get("type", OR_CONDITION)
is_or_based = top_level_type == OR_CONDITION
# Only track multi-source OR conditions (multiple sub-conditions), not routers
sub_conditions = condition_data.get("conditions", [])
has_multiple_triggers = is_or_based and len(sub_conditions) > 1
should_check_fired = has_multiple_triggers and not is_router
# Skip compound OR-based listeners that have already fired
if should_check_fired and listener_name in self._fired_or_listeners:
continue
if self._evaluate_condition(
condition_data, trigger_method, listener_name
):
triggered.append(listener_name)
# Track compound OR-based listeners so they only fire once
if should_check_fired:
self._fired_or_listeners.add(listener_name)
return triggered
@@ -1958,22 +1896,9 @@ class Flow(Generic[T], metaclass=FlowMeta):
if self._is_execution_resuming:
# During resumption, skip execution but continue listeners
await self._execute_listeners(listener_name, None)
# For routers, also check if any conditional starts they triggered are completed
# If so, continue their chains
if listener_name in self._routers:
for start_method_name in self._start_methods:
if (
start_method_name in self._listeners
and start_method_name in self._completed_methods
):
# This conditional start was executed, continue its chain
await self._execute_start_method(start_method_name)
return
# For cyclic flows, clear from completed to allow re-execution
self._completed_methods.discard(listener_name)
# Also clear from fired OR listeners for cyclic flows
self._fired_or_listeners.discard(listener_name)
try:
method = self._methods[listener_name]
@@ -2006,9 +1931,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
if self.last_human_feedback is not None
else listener_result
)
# Execute listeners sequentially to prevent race conditions on shared state
for name in listeners_for_result:
await self._execute_single_listener(name, feedback_result)
tasks = [
self._execute_single_listener(name, feedback_result)
for name in listeners_for_result
]
await asyncio.gather(*tasks)
except Exception as e:
# Don't log HumanFeedbackPending as an error - it's expected control flow

View File

@@ -10,7 +10,6 @@ from typing import (
get_origin,
)
import uuid
import warnings
from pydantic import (
UUID4,
@@ -81,11 +80,6 @@ class LiteAgent(FlowTrackable, BaseModel):
"""
A lightweight agent that can process messages and use tools.
.. deprecated::
LiteAgent is deprecated and will be removed in a future version.
Use ``Agent().kickoff(messages)`` instead, which provides the same
functionality with additional features like memory and knowledge support.
This agent is simpler than the full Agent class, focusing on direct execution
rather than task delegation. It's designed to be used for simple interactions
where a full crew is not needed.
@@ -170,18 +164,6 @@ class LiteAgent(FlowTrackable, BaseModel):
default_factory=get_after_llm_call_hooks
)
@model_validator(mode="after")
def emit_deprecation_warning(self) -> Self:
"""Emit deprecation warning for LiteAgent usage."""
warnings.warn(
"LiteAgent is deprecated and will be removed in a future version. "
"Use Agent().kickoff(messages) instead, which provides the same "
"functionality with additional features like memory and knowledge support.",
DeprecationWarning,
stacklevel=2,
)
return self
@model_validator(mode="after")
def setup_llm(self) -> Self:
"""Set up the LLM and other components after initialization."""

View File

@@ -54,15 +54,21 @@ class GeminiCompletion(BaseLLM):
safety_settings: dict[str, Any] | None = None,
client_params: dict[str, Any] | None = None,
interceptor: BaseInterceptor[Any, Any] | None = None,
use_vertexai: bool | None = None,
**kwargs: Any,
):
"""Initialize Google Gemini chat completion client.
Args:
model: Gemini model name (e.g., 'gemini-2.0-flash-001', 'gemini-1.5-pro')
api_key: Google API key (defaults to GOOGLE_API_KEY or GEMINI_API_KEY env var)
project: Google Cloud project ID (for Vertex AI)
location: Google Cloud location (for Vertex AI, defaults to 'us-central1')
api_key: Google API key for Gemini API authentication.
Defaults to GOOGLE_API_KEY or GEMINI_API_KEY env var.
NOTE: Cannot be used with Vertex AI (project parameter). Use Gemini API instead.
project: Google Cloud project ID for Vertex AI with ADC authentication.
Requires Application Default Credentials (gcloud auth application-default login).
NOTE: Vertex AI does NOT support API keys, only OAuth2/ADC.
If both api_key and project are set, api_key takes precedence.
location: Google Cloud location (for Vertex AI with ADC, defaults to 'us-central1')
temperature: Sampling temperature (0-2)
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
@@ -73,6 +79,12 @@ class GeminiCompletion(BaseLLM):
client_params: Additional parameters to pass to the Google Gen AI Client constructor.
Supports parameters like http_options, credentials, debug_config, etc.
interceptor: HTTP interceptor (not yet supported for Gemini).
use_vertexai: Whether to use Vertex AI instead of Gemini API.
- True: Use Vertex AI (with ADC or Express mode with API key)
- False: Use Gemini API (explicitly override env var)
- None (default): Check GOOGLE_GENAI_USE_VERTEXAI env var
When using Vertex AI with API key (Express mode), http_options with
api_version="v1" is automatically configured.
**kwargs: Additional parameters
"""
if interceptor is not None:
@@ -95,7 +107,8 @@ class GeminiCompletion(BaseLLM):
self.project = project or os.getenv("GOOGLE_CLOUD_PROJECT")
self.location = location or os.getenv("GOOGLE_CLOUD_LOCATION") or "us-central1"
use_vertexai = os.getenv("GOOGLE_GENAI_USE_VERTEXAI", "").lower() == "true"
if use_vertexai is None:
use_vertexai = os.getenv("GOOGLE_GENAI_USE_VERTEXAI", "").lower() == "true"
self.client = self._initialize_client(use_vertexai)
@@ -146,13 +159,34 @@ class GeminiCompletion(BaseLLM):
Returns:
Initialized Google Gen AI Client
Note:
Google Gen AI SDK has two distinct endpoints with different auth requirements:
- Gemini API (generativelanguage.googleapis.com): Supports API key authentication
- Vertex AI (aiplatform.googleapis.com): Only supports OAuth2/ADC, NO API keys
When vertexai=True is set, it routes to aiplatform.googleapis.com which rejects
API keys. Use Gemini API endpoint for API key authentication instead.
"""
client_params = {}
if self.client_params:
client_params.update(self.client_params)
if use_vertexai or self.project:
# Determine authentication mode based on available credentials
has_api_key = bool(self.api_key)
has_project = bool(self.project)
if has_api_key and has_project:
logging.warning(
"Both API key and project provided. Using API key authentication. "
"Project/location parameters are ignored when using API keys. "
"To use Vertex AI with ADC, remove the api_key parameter."
)
has_project = False
# Vertex AI with ADC (project without API key)
if (use_vertexai or has_project) and not has_api_key:
client_params.update(
{
"vertexai": True,
@@ -161,12 +195,20 @@ class GeminiCompletion(BaseLLM):
}
)
client_params.pop("api_key", None)
elif self.api_key:
# API key authentication (works with both Gemini API and Vertex AI Express)
elif has_api_key:
client_params["api_key"] = self.api_key
client_params.pop("vertexai", None)
# Vertex AI Express mode: API key + vertexai=True + http_options with api_version="v1"
# See: https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstart?usertype=apikey
if use_vertexai:
client_params["vertexai"] = True
client_params["http_options"] = types.HttpOptions(api_version="v1")
else:
# This ensures we use the Gemini API (generativelanguage.googleapis.com)
client_params["vertexai"] = False
# Clean up project/location (not allowed with API key)
client_params.pop("project", None)
client_params.pop("location", None)
@@ -175,10 +217,13 @@ class GeminiCompletion(BaseLLM):
return genai.Client(**client_params)
except Exception as e:
raise ValueError(
"Either GOOGLE_API_KEY/GEMINI_API_KEY (for Gemini API) or "
"GOOGLE_CLOUD_PROJECT (for Vertex AI) must be set"
"Authentication required. Provide one of:\n"
" 1. API key via GOOGLE_API_KEY or GEMINI_API_KEY environment variable\n"
" (use_vertexai=True is optional for Vertex AI with API key)\n"
" 2. For Vertex AI with ADC: Set GOOGLE_CLOUD_PROJECT and run:\n"
" gcloud auth application-default login\n"
" 3. Pass api_key parameter directly to LLM constructor\n"
) from e
return genai.Client(**client_params)
def _get_client_params(self) -> dict[str, Any]:
@@ -202,6 +247,8 @@ class GeminiCompletion(BaseLLM):
"location": self.location,
}
)
if self.api_key:
params["api_key"] = self.api_key
elif self.api_key:
params["api_key"] = self.api_key

View File

@@ -1,6 +1,5 @@
from __future__ import annotations
import asyncio
from collections.abc import Callable, Sequence
import json
import re
@@ -55,23 +54,6 @@ console = Console()
_MULTIPLE_NEWLINES: Final[re.Pattern[str]] = re.compile(r"\n+")
def is_inside_event_loop() -> bool:
"""Check if code is currently running inside an asyncio event loop.
This is used to detect when code is being called from within an async context
(e.g., inside a Flow). In such cases, callers should return a coroutine
instead of executing synchronously to avoid nested event loop errors.
Returns:
True if inside a running event loop, False otherwise.
"""
try:
asyncio.get_running_loop()
return True
except RuntimeError:
return False
def parse_tools(tools: list[BaseTool]) -> list[CrewStructuredTool]:
"""Parse tools to be used for the task.

View File

@@ -26,9 +26,13 @@ def mock_agent() -> MagicMock:
@pytest.fixture
def mock_task() -> MagicMock:
def mock_task(mock_context: MagicMock) -> MagicMock:
"""Create a mock Task."""
return MagicMock()
task = MagicMock()
task.id = mock_context.task_id
task.name = "Mock Task"
task.description = "Mock task description"
return task
@pytest.fixture
@@ -179,8 +183,8 @@ class TestExecute:
event = first_call[0][1]
assert event.type == "a2a_server_task_started"
assert event.a2a_task_id == mock_context.task_id
assert event.a2a_context_id == mock_context.context_id
assert event.task_id == mock_context.task_id
assert event.context_id == mock_context.context_id
@pytest.mark.asyncio
async def test_emits_completed_event(
@@ -201,7 +205,7 @@ class TestExecute:
event = second_call[0][1]
assert event.type == "a2a_server_task_completed"
assert event.a2a_task_id == mock_context.task_id
assert event.task_id == mock_context.task_id
assert event.result == "Task completed successfully"
@pytest.mark.asyncio
@@ -250,7 +254,7 @@ class TestExecute:
event = canceled_call[0][1]
assert event.type == "a2a_server_task_canceled"
assert event.a2a_task_id == mock_context.task_id
assert event.task_id == mock_context.task_id
class TestCancel:

View File

@@ -14,6 +14,16 @@ except ImportError:
A2A_SDK_INSTALLED = False
def _create_mock_agent_card(name: str = "Test", url: str = "http://test-endpoint.com/"):
"""Create a mock agent card with proper model_dump behavior."""
mock_card = MagicMock()
mock_card.name = name
mock_card.url = url
mock_card.model_dump.return_value = {"name": name, "url": url}
mock_card.model_dump_json.return_value = f'{{"name": "{name}", "url": "{url}"}}'
return mock_card
@pytest.mark.skipif(not A2A_SDK_INSTALLED, reason="Requires a2a-sdk to be installed")
def test_trust_remote_completion_status_true_returns_directly():
"""When trust_remote_completion_status=True and A2A returns completed, return result directly."""
@@ -44,8 +54,7 @@ def test_trust_remote_completion_status_true_returns_directly():
patch("crewai.a2a.wrapper.execute_a2a_delegation") as mock_execute,
patch("crewai.a2a.wrapper._fetch_agent_cards_concurrently") as mock_fetch,
):
mock_card = MagicMock()
mock_card.name = "Test"
mock_card = _create_mock_agent_card()
mock_fetch.return_value = ({"http://test-endpoint.com/": mock_card}, {})
# A2A returns completed
@@ -110,8 +119,7 @@ def test_trust_remote_completion_status_false_continues_conversation():
patch("crewai.a2a.wrapper.execute_a2a_delegation") as mock_execute,
patch("crewai.a2a.wrapper._fetch_agent_cards_concurrently") as mock_fetch,
):
mock_card = MagicMock()
mock_card.name = "Test"
mock_card = _create_mock_agent_card()
mock_fetch.return_value = ({"http://test-endpoint.com/": mock_card}, {})
# A2A returns completed

View File

@@ -1,4 +1,4 @@
"""Unit tests for AgentExecutor.
"""Unit tests for CrewAgentExecutorFlow.
Tests the Flow-based agent executor implementation including state management,
flow methods, routing logic, and error handling.
@@ -8,9 +8,9 @@ from unittest.mock import Mock, patch
import pytest
from crewai.experimental.agent_executor import (
from crewai.experimental.crew_agent_executor_flow import (
AgentReActState,
AgentExecutor,
CrewAgentExecutorFlow,
)
from crewai.agents.parser import AgentAction, AgentFinish
@@ -43,8 +43,8 @@ class TestAgentReActState:
assert state.ask_for_human_input is True
class TestAgentExecutor:
"""Test AgentExecutor class."""
class TestCrewAgentExecutorFlow:
"""Test CrewAgentExecutorFlow class."""
@pytest.fixture
def mock_dependencies(self):
@@ -87,8 +87,8 @@ class TestAgentExecutor:
}
def test_executor_initialization(self, mock_dependencies):
"""Test AgentExecutor initialization."""
executor = AgentExecutor(**mock_dependencies)
"""Test CrewAgentExecutorFlow initialization."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
assert executor.llm == mock_dependencies["llm"]
assert executor.task == mock_dependencies["task"]
@@ -100,9 +100,9 @@ class TestAgentExecutor:
def test_initialize_reasoning(self, mock_dependencies):
"""Test flow entry point."""
with patch.object(
AgentExecutor, "_show_start_logs"
CrewAgentExecutorFlow, "_show_start_logs"
) as mock_show_start:
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
result = executor.initialize_reasoning()
assert result == "initialized"
@@ -110,7 +110,7 @@ class TestAgentExecutor:
def test_check_max_iterations_not_reached(self, mock_dependencies):
"""Test routing when iterations < max."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor.state.iterations = 5
result = executor.check_max_iterations()
@@ -118,7 +118,7 @@ class TestAgentExecutor:
def test_check_max_iterations_reached(self, mock_dependencies):
"""Test routing when iterations >= max."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor.state.iterations = 10
result = executor.check_max_iterations()
@@ -126,7 +126,7 @@ class TestAgentExecutor:
def test_route_by_answer_type_action(self, mock_dependencies):
"""Test routing for AgentAction."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor.state.current_answer = AgentAction(
thought="thinking", tool="search", tool_input="query", text="action text"
)
@@ -136,7 +136,7 @@ class TestAgentExecutor:
def test_route_by_answer_type_finish(self, mock_dependencies):
"""Test routing for AgentFinish."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor.state.current_answer = AgentFinish(
thought="final thoughts", output="Final answer", text="complete"
)
@@ -146,7 +146,7 @@ class TestAgentExecutor:
def test_continue_iteration(self, mock_dependencies):
"""Test iteration continuation."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
result = executor.continue_iteration()
@@ -154,8 +154,8 @@ class TestAgentExecutor:
def test_finalize_success(self, mock_dependencies):
"""Test finalize with valid AgentFinish."""
with patch.object(AgentExecutor, "_show_logs") as mock_show_logs:
executor = AgentExecutor(**mock_dependencies)
with patch.object(CrewAgentExecutorFlow, "_show_logs") as mock_show_logs:
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor.state.current_answer = AgentFinish(
thought="final thinking", output="Done", text="complete"
)
@@ -168,7 +168,7 @@ class TestAgentExecutor:
def test_finalize_failure(self, mock_dependencies):
"""Test finalize skips when given AgentAction instead of AgentFinish."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor.state.current_answer = AgentAction(
thought="thinking", tool="search", tool_input="query", text="action text"
)
@@ -181,7 +181,7 @@ class TestAgentExecutor:
def test_format_prompt(self, mock_dependencies):
"""Test prompt formatting."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
inputs = {"input": "test input", "tool_names": "tool1, tool2", "tools": "desc"}
result = executor._format_prompt("Prompt {input} {tool_names} {tools}", inputs)
@@ -192,18 +192,18 @@ class TestAgentExecutor:
def test_is_training_mode_false(self, mock_dependencies):
"""Test training mode detection when not in training."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
assert executor._is_training_mode() is False
def test_is_training_mode_true(self, mock_dependencies):
"""Test training mode detection when in training."""
mock_dependencies["crew"]._train = True
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
assert executor._is_training_mode() is True
def test_append_message_to_state(self, mock_dependencies):
"""Test message appending to state."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
initial_count = len(executor.state.messages)
executor._append_message_to_state("test message")
@@ -216,7 +216,7 @@ class TestAgentExecutor:
callback = Mock()
mock_dependencies["step_callback"] = callback
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
answer = AgentFinish(thought="thinking", output="test", text="final")
executor._invoke_step_callback(answer)
@@ -226,14 +226,14 @@ class TestAgentExecutor:
def test_invoke_step_callback_none(self, mock_dependencies):
"""Test step callback when none provided."""
mock_dependencies["step_callback"] = None
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
# Should not raise error
executor._invoke_step_callback(
AgentFinish(thought="thinking", output="test", text="final")
)
@patch("crewai.experimental.agent_executor.handle_output_parser_exception")
@patch("crewai.experimental.crew_agent_executor_flow.handle_output_parser_exception")
def test_recover_from_parser_error(
self, mock_handle_exception, mock_dependencies
):
@@ -242,7 +242,7 @@ class TestAgentExecutor:
mock_handle_exception.return_value = None
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor._last_parser_error = OutputParserError("test error")
initial_iterations = executor.state.iterations
@@ -252,12 +252,12 @@ class TestAgentExecutor:
assert executor.state.iterations == initial_iterations + 1
mock_handle_exception.assert_called_once()
@patch("crewai.experimental.agent_executor.handle_context_length")
@patch("crewai.experimental.crew_agent_executor_flow.handle_context_length")
def test_recover_from_context_length(
self, mock_handle_context, mock_dependencies
):
"""Test recovery from context length error."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor._last_context_error = Exception("context too long")
initial_iterations = executor.state.iterations
@@ -270,16 +270,16 @@ class TestAgentExecutor:
def test_use_stop_words_property(self, mock_dependencies):
"""Test use_stop_words property."""
mock_dependencies["llm"].supports_stop_words.return_value = True
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
assert executor.use_stop_words is True
mock_dependencies["llm"].supports_stop_words.return_value = False
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
assert executor.use_stop_words is False
def test_compatibility_properties(self, mock_dependencies):
"""Test compatibility properties for mixin."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor.state.messages = [{"role": "user", "content": "test"}]
executor.state.iterations = 5
@@ -321,8 +321,8 @@ class TestFlowErrorHandling:
"tools_handler": Mock(),
}
@patch("crewai.experimental.agent_executor.get_llm_response")
@patch("crewai.experimental.agent_executor.enforce_rpm_limit")
@patch("crewai.experimental.crew_agent_executor_flow.get_llm_response")
@patch("crewai.experimental.crew_agent_executor_flow.enforce_rpm_limit")
def test_call_llm_parser_error(
self, mock_enforce_rpm, mock_get_llm, mock_dependencies
):
@@ -332,15 +332,15 @@ class TestFlowErrorHandling:
mock_enforce_rpm.return_value = None
mock_get_llm.side_effect = OutputParserError("parse failed")
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
result = executor.call_llm_and_parse()
assert result == "parser_error"
assert executor._last_parser_error is not None
@patch("crewai.experimental.agent_executor.get_llm_response")
@patch("crewai.experimental.agent_executor.enforce_rpm_limit")
@patch("crewai.experimental.agent_executor.is_context_length_exceeded")
@patch("crewai.experimental.crew_agent_executor_flow.get_llm_response")
@patch("crewai.experimental.crew_agent_executor_flow.enforce_rpm_limit")
@patch("crewai.experimental.crew_agent_executor_flow.is_context_length_exceeded")
def test_call_llm_context_error(
self,
mock_is_context_exceeded,
@@ -353,7 +353,7 @@ class TestFlowErrorHandling:
mock_get_llm.side_effect = Exception("context length")
mock_is_context_exceeded.return_value = True
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
result = executor.call_llm_and_parse()
assert result == "context_error"
@@ -397,10 +397,10 @@ class TestFlowInvoke:
"tools_handler": Mock(),
}
@patch.object(AgentExecutor, "kickoff")
@patch.object(AgentExecutor, "_create_short_term_memory")
@patch.object(AgentExecutor, "_create_long_term_memory")
@patch.object(AgentExecutor, "_create_external_memory")
@patch.object(CrewAgentExecutorFlow, "kickoff")
@patch.object(CrewAgentExecutorFlow, "_create_short_term_memory")
@patch.object(CrewAgentExecutorFlow, "_create_long_term_memory")
@patch.object(CrewAgentExecutorFlow, "_create_external_memory")
def test_invoke_success(
self,
mock_external_memory,
@@ -410,7 +410,7 @@ class TestFlowInvoke:
mock_dependencies,
):
"""Test successful invoke without human feedback."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
# Mock kickoff to set the final answer in state
def mock_kickoff_side_effect():
@@ -429,10 +429,10 @@ class TestFlowInvoke:
mock_long_term_memory.assert_called_once()
mock_external_memory.assert_called_once()
@patch.object(AgentExecutor, "kickoff")
@patch.object(CrewAgentExecutorFlow, "kickoff")
def test_invoke_failure_no_agent_finish(self, mock_kickoff, mock_dependencies):
"""Test invoke fails without AgentFinish."""
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor.state.current_answer = AgentAction(
thought="thinking", tool="test", tool_input="test", text="action text"
)
@@ -442,10 +442,10 @@ class TestFlowInvoke:
with pytest.raises(RuntimeError, match="without reaching a final answer"):
executor.invoke(inputs)
@patch.object(AgentExecutor, "kickoff")
@patch.object(AgentExecutor, "_create_short_term_memory")
@patch.object(AgentExecutor, "_create_long_term_memory")
@patch.object(AgentExecutor, "_create_external_memory")
@patch.object(CrewAgentExecutorFlow, "kickoff")
@patch.object(CrewAgentExecutorFlow, "_create_short_term_memory")
@patch.object(CrewAgentExecutorFlow, "_create_long_term_memory")
@patch.object(CrewAgentExecutorFlow, "_create_external_memory")
def test_invoke_with_system_prompt(
self,
mock_external_memory,
@@ -459,7 +459,7 @@ class TestFlowInvoke:
"system": "System: {input}",
"user": "User: {input} {tool_names} {tools}",
}
executor = AgentExecutor(**mock_dependencies)
executor = CrewAgentExecutorFlow(**mock_dependencies)
def mock_kickoff_side_effect():
executor.state.current_answer = AgentFinish(

View File

@@ -72,53 +72,62 @@ class ResearchResult(BaseModel):
@pytest.mark.vcr()
@pytest.mark.parametrize("verbose", [True, False])
def test_agent_kickoff_preserves_parameters(verbose):
"""Test that Agent.kickoff() uses the correct parameters from the Agent."""
def test_lite_agent_created_with_correct_parameters(monkeypatch, verbose):
"""Test that LiteAgent is created with the correct parameters when Agent.kickoff() is called."""
# Create a test agent with specific parameters
mock_llm = Mock(spec=LLM)
mock_llm.call.return_value = "Final Answer: Test response"
mock_llm.stop = []
from crewai.types.usage_metrics import UsageMetrics
mock_usage_metrics = UsageMetrics(
total_tokens=100,
prompt_tokens=50,
completion_tokens=50,
cached_prompt_tokens=0,
successful_requests=1,
)
mock_llm.get_token_usage_summary.return_value = mock_usage_metrics
llm = LLM(model="gpt-4o-mini")
custom_tools = [WebSearchTool(), CalculatorTool()]
max_iter = 10
max_execution_time = 300
agent = Agent(
role="Test Agent",
goal="Test Goal",
backstory="Test Backstory",
llm=mock_llm,
llm=llm,
tools=custom_tools,
max_iter=max_iter,
max_execution_time=max_execution_time,
verbose=verbose,
)
# Call kickoff and verify it works
result = agent.kickoff("Test query")
# Create a mock to capture the created LiteAgent
created_lite_agent = None
original_lite_agent = LiteAgent
# Verify the agent was configured correctly
assert agent.role == "Test Agent"
assert agent.goal == "Test Goal"
assert agent.backstory == "Test Backstory"
assert len(agent.tools) == 2
assert isinstance(agent.tools[0], WebSearchTool)
assert isinstance(agent.tools[1], CalculatorTool)
assert agent.max_iter == max_iter
assert agent.verbose == verbose
# Define a mock LiteAgent class that captures its arguments
class MockLiteAgent(original_lite_agent):
def __init__(self, **kwargs):
nonlocal created_lite_agent
created_lite_agent = kwargs
super().__init__(**kwargs)
# Verify kickoff returned a result
assert result is not None
assert result.raw is not None
# Patch the LiteAgent class
monkeypatch.setattr("crewai.agent.core.LiteAgent", MockLiteAgent)
# Call kickoff to create the LiteAgent
agent.kickoff("Test query")
# Verify all parameters were passed correctly
assert created_lite_agent is not None
assert created_lite_agent["role"] == "Test Agent"
assert created_lite_agent["goal"] == "Test Goal"
assert created_lite_agent["backstory"] == "Test Backstory"
assert created_lite_agent["llm"] == llm
assert len(created_lite_agent["tools"]) == 2
assert isinstance(created_lite_agent["tools"][0], WebSearchTool)
assert isinstance(created_lite_agent["tools"][1], CalculatorTool)
assert created_lite_agent["max_iterations"] == max_iter
assert created_lite_agent["max_execution_time"] == max_execution_time
assert created_lite_agent["verbose"] == verbose
assert created_lite_agent["response_format"] is None
# Test with a response_format
class TestResponse(BaseModel):
test_field: str
agent.kickoff("Test query", response_format=TestResponse)
assert created_lite_agent["response_format"] == TestResponse
@pytest.mark.vcr()
@@ -301,8 +310,7 @@ def verify_agent_parent_flow(result, agent, flow):
def test_sets_parent_flow_when_inside_flow():
"""Test that an Agent can be created and executed inside a Flow context."""
captured_event = None
captured_agent = None
mock_llm = Mock(spec=LLM)
mock_llm.call.return_value = "Test response"
@@ -335,17 +343,15 @@ def test_sets_parent_flow_when_inside_flow():
event_received = threading.Event()
@crewai_event_bus.on(LiteAgentExecutionStartedEvent)
def capture_event(source, event):
nonlocal captured_event
captured_event = event
def capture_agent(source, event):
nonlocal captured_agent
captured_agent = source
event_received.set()
result = flow.kickoff()
flow.kickoff()
assert event_received.wait(timeout=5), "Timeout waiting for agent execution event"
assert captured_event is not None
assert captured_event.agent_info["role"] == "Test Agent"
assert result is not None
assert captured_agent.parent_flow is flow
@pytest.mark.vcr()
@@ -367,14 +373,16 @@ def test_guardrail_is_called_using_string():
@crewai_event_bus.on(LLMGuardrailStartedEvent)
def capture_guardrail_started(source, event):
assert isinstance(source, Agent)
assert isinstance(source, LiteAgent)
assert source.original_agent == agent
with condition:
guardrail_events["started"].append(event)
condition.notify()
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
def capture_guardrail_completed(source, event):
assert isinstance(source, Agent)
assert isinstance(source, LiteAgent)
assert source.original_agent == agent
with condition:
guardrail_events["completed"].append(event)
condition.notify()
@@ -675,151 +683,3 @@ def test_agent_kickoff_with_mcp_tools(mock_get_mcp_tools):
# Verify MCP tools were retrieved
mock_get_mcp_tools.assert_called_once_with("https://mcp.exa.ai/mcp?api_key=test_exa_key&profile=research")
# ============================================================================
# Tests for LiteAgent inside Flow (magic auto-async pattern)
# ============================================================================
from crewai.flow.flow import listen
@pytest.mark.vcr()
def test_lite_agent_inside_flow_sync():
"""Test that LiteAgent.kickoff() works magically inside a Flow.
This tests the "magic auto-async" pattern where calling agent.kickoff()
from within a Flow automatically detects the event loop and returns a
coroutine that the Flow framework awaits. Users don't need to use async/await.
"""
# Track execution
execution_log = []
class TestFlow(Flow):
@start()
def run_agent(self):
execution_log.append("flow_started")
agent = Agent(
role="Test Agent",
goal="Answer questions",
backstory="A helpful test assistant",
llm=LLM(model="gpt-4o-mini"),
verbose=False,
)
# Magic: just call kickoff() normally - it auto-detects Flow context
result = agent.kickoff(messages="What is 2+2? Reply with just the number.")
execution_log.append("agent_completed")
return result
flow = TestFlow()
result = flow.kickoff()
# Verify the flow executed successfully
assert "flow_started" in execution_log
assert "agent_completed" in execution_log
assert result is not None
assert isinstance(result, LiteAgentOutput)
@pytest.mark.vcr()
def test_lite_agent_inside_flow_with_tools():
"""Test that LiteAgent with tools works correctly inside a Flow."""
class TestFlow(Flow):
@start()
def run_agent_with_tools(self):
agent = Agent(
role="Calculator Agent",
goal="Perform calculations",
backstory="A math expert",
llm=LLM(model="gpt-4o-mini"),
tools=[CalculatorTool()],
verbose=False,
)
result = agent.kickoff(messages="Calculate 10 * 5")
return result
flow = TestFlow()
result = flow.kickoff()
assert result is not None
assert isinstance(result, LiteAgentOutput)
assert result.raw is not None
@pytest.mark.vcr()
def test_multiple_agents_in_same_flow():
"""Test that multiple LiteAgents can run sequentially in the same Flow."""
class MultiAgentFlow(Flow):
@start()
def first_step(self):
agent1 = Agent(
role="First Agent",
goal="Greet users",
backstory="A friendly greeter",
llm=LLM(model="gpt-4o-mini"),
verbose=False,
)
return agent1.kickoff(messages="Say hello")
@listen(first_step)
def second_step(self, first_result):
agent2 = Agent(
role="Second Agent",
goal="Say goodbye",
backstory="A polite farewell agent",
llm=LLM(model="gpt-4o-mini"),
verbose=False,
)
return agent2.kickoff(messages="Say goodbye")
flow = MultiAgentFlow()
result = flow.kickoff()
assert result is not None
assert isinstance(result, LiteAgentOutput)
@pytest.mark.vcr()
def test_lite_agent_kickoff_async_inside_flow():
"""Test that Agent.kickoff_async() works correctly from async Flow methods."""
class AsyncAgentFlow(Flow):
@start()
async def async_agent_step(self):
agent = Agent(
role="Async Test Agent",
goal="Answer questions asynchronously",
backstory="An async helper",
llm=LLM(model="gpt-4o-mini"),
verbose=False,
)
result = await agent.kickoff_async(messages="What is 3+3?")
return result
flow = AsyncAgentFlow()
result = flow.kickoff()
assert result is not None
assert isinstance(result, LiteAgentOutput)
@pytest.mark.vcr()
def test_lite_agent_standalone_still_works():
"""Test that LiteAgent.kickoff() still works normally outside of a Flow.
This verifies that the magic auto-async pattern doesn't break standalone usage
where there's no event loop running.
"""
agent = Agent(
role="Standalone Agent",
goal="Answer questions",
backstory="A helpful assistant",
llm=LLM(model="gpt-4o-mini"),
verbose=False,
)
# This should work normally - no Flow, no event loop
result = agent.kickoff(messages="What is 5+5? Reply with just the number.")
assert result is not None
assert isinstance(result, LiteAgentOutput)
assert result.raw is not None

View File

@@ -1,119 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. A helpful
test assistant\nYour personal goal is: Answer questions\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
What is 2+2? Reply with just the number.\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '673'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7b0HjL79y39EkUcMLrRhPFe3XGj\",\n \"object\":
\"chat.completion\",\n \"created\": 1768444914,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: 4\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 136,\n \"completion_tokens\": 13,\n
\ \"total_tokens\": 149,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_8bbc38b4db\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 02:41:55 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '857'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '341'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '358'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,255 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator Agent. A math
expert\nYour personal goal is: Perform calculations\nYou ONLY have access to
the following tools, and should NEVER make up tools that are not listed here:\n\nTool
Name: calculate\nTool Arguments: {\n \"properties\": {\n \"expression\":
{\n \"title\": \"Expression\",\n \"type\": \"string\"\n }\n },\n \"required\":
[\n \"expression\"\n ],\n \"title\": \"CalculatorToolSchema\",\n \"type\":
\"object\",\n \"additionalProperties\": false\n}\nTool Description: Calculate
the result of a mathematical expression.\n\nIMPORTANT: Use the following format
in your response:\n\n```\nThought: you should always think about what to do\nAction:
the action to take, only one name of [calculate], just the name, exactly as
it''s written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
Task: Calculate 10 * 5\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1403'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7avghVPSpszLmlbHpwDQlWDoD6O\",\n \"object\":
\"chat.completion\",\n \"created\": 1768444909,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I need to calculate the expression
10 * 5.\\nAction: calculate\\nAction Input: {\\\"expression\\\":\\\"10 * 5\\\"}\\nObservation:
50\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 291,\n \"completion_tokens\": 33,\n
\ \"total_tokens\": 324,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 02:41:49 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '939'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '579'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '598'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator Agent. A math
expert\nYour personal goal is: Perform calculations\nYou ONLY have access to
the following tools, and should NEVER make up tools that are not listed here:\n\nTool
Name: calculate\nTool Arguments: {\n \"properties\": {\n \"expression\":
{\n \"title\": \"Expression\",\n \"type\": \"string\"\n }\n },\n \"required\":
[\n \"expression\"\n ],\n \"title\": \"CalculatorToolSchema\",\n \"type\":
\"object\",\n \"additionalProperties\": false\n}\nTool Description: Calculate
the result of a mathematical expression.\n\nIMPORTANT: Use the following format
in your response:\n\n```\nThought: you should always think about what to do\nAction:
the action to take, only one name of [calculate], just the name, exactly as
it''s written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
Task: Calculate 10 * 5\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"},{"role":"assistant","content":"Thought:
I need to calculate the expression 10 * 5.\nAction: calculate\nAction Input:
{\"expression\":\"10 * 5\"}\nObservation: The result of 10 * 5 is 50"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1591'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7avDhDZCLvv8v2dh8ZQRrLdci6A\",\n \"object\":
\"chat.completion\",\n \"created\": 1768444909,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now know the final answer.\\nFinal
Answer: 50\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 337,\n \"completion_tokens\": 14,\n
\ \"total_tokens\": 351,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 02:41:50 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '864'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '429'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '457'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,119 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Async Test Agent. An async
helper\nYour personal goal is: Answer questions asynchronously\nTo give my best
complete final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
What is 3+3?\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '657'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7atOGxtc4y3oYNI62WiQ0Vogsdv\",\n \"object\":
\"chat.completion\",\n \"created\": 1768444907,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: The sum of 3 + 3 is 6. Therefore, the outcome is that if you add three
and three together, you will arrive at the total of six.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
131,\n \"completion_tokens\": 46,\n \"total_tokens\": 177,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_29330a9688\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 02:41:48 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '983'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '944'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1192'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,119 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Standalone Agent. A helpful
assistant\nYour personal goal is: Answer questions\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
What is 5+5? Reply with just the number.\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '674'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7azhPwUHQ0p5tdhxSAmLPoE8UgC\",\n \"object\":
\"chat.completion\",\n \"created\": 1768444913,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: 10\",\n \"refusal\": null,\n \"annotations\": []\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 136,\n \"completion_tokens\": 13,\n
\ \"total_tokens\": 149,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_29330a9688\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 02:41:54 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '858'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '455'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '583'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,239 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are First Agent. A friendly
greeter\nYour personal goal is: Greet users\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task: Say
hello\n\nBegin! This is VERY important to you, use the tools available and give
your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '632'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-CyRKzgODZ9yn3F9OkaXsscLk2Ln3N\",\n \"object\":
\"chat.completion\",\n \"created\": 1768520801,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Hello! Welcome! I'm so glad to see you here. If you need any assistance
or have any questions, feel free to ask. Have a wonderful day!\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
127,\n \"completion_tokens\": 43,\n \"total_tokens\": 170,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 23:46:42 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '990'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '880'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1160'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Second Agent. A polite
farewell agent\nYour personal goal is: Say goodbye\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
Say goodbye\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '640'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-CyRL1Ua2PkK5xXPp3KeF0AnGAk3JP\",\n \"object\":
\"chat.completion\",\n \"created\": 1768520803,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: As we reach the end of our conversation, I want to express my gratitude
for the time we've shared. It's been a pleasure assisting you, and I hope
you found our interaction helpful and enjoyable. Remember, whenever you need
assistance, I'm just a message away. Wishing you all the best in your future
endeavors. Goodbye and take care!\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 126,\n \"completion_tokens\":
79,\n \"total_tokens\": 205,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_29330a9688\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 23:46:44 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '1189'
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1363'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1605'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,75 @@
interactions:
- request:
body: '{"contents": [{"parts": [{"text": "\nCurrent Task: What is the capital
of Japan?\n\nThis is the expected criteria for your final answer: The capital
of Japan\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "role":
"user"}], "systemInstruction": {"parts": [{"text": "You are Research Assistant.
You are a helpful research assistant.\nYour personal goal is: Find information
about the capital of Japan\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}], "role": "user"}, "generationConfig": {"stopSequences": ["\nObservation:"]}}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- '*/*'
accept-encoding:
- ACCEPT-ENCODING-XXX
connection:
- keep-alive
content-length:
- '952'
content-type:
- application/json
host:
- aiplatform.googleapis.com
x-goog-api-client:
- google-genai-sdk/1.59.0 gl-python/3.13.3
x-goog-api-key:
- X-GOOG-API-KEY-XXX
method: POST
uri: https://aiplatform.googleapis.com/v1/publishers/google/models/gemini-2.0-flash-exp:generateContent
response:
body:
string: "{\n \"candidates\": [\n {\n \"content\": {\n \"role\":
\"model\",\n \"parts\": [\n {\n \"text\": \"The
capital of Japan is Tokyo.\\nFinal Answer: Tokyo\\n\"\n }\n ]\n
\ },\n \"finishReason\": \"STOP\",\n \"avgLogprobs\": -0.017845841554495003\n
\ }\n ],\n \"usageMetadata\": {\n \"promptTokenCount\": 163,\n \"candidatesTokenCount\":
13,\n \"totalTokenCount\": 176,\n \"trafficType\": \"ON_DEMAND\",\n
\ \"promptTokensDetails\": [\n {\n \"modality\": \"TEXT\",\n
\ \"tokenCount\": 163\n }\n ],\n \"candidatesTokensDetails\":
[\n {\n \"modality\": \"TEXT\",\n \"tokenCount\": 13\n
\ }\n ]\n },\n \"modelVersion\": \"gemini-2.0-flash-exp\",\n \"createTime\":
\"2026-01-15T22:27:38.066749Z\",\n \"responseId\": \"2mlpab2JBNOFidsPh5GigQs\"\n}\n"
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Type:
- application/json; charset=UTF-8
Date:
- Thu, 15 Jan 2026 22:27:38 GMT
Server:
- scaffolding on HTTPServer2
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
X-Frame-Options:
- X-FRAME-OPTIONS-XXX
X-XSS-Protection:
- '0'
content-length:
- '786'
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -1,528 +1,456 @@
interactions:
- request:
body: "{\"messages\":[{\"role\":\"system\",\"content\":\"You are Guardrail Agent.
You are a expert at validating the output of a task. By providing effective
feedback if the output is not valid.\\nYour personal goal is: Validate the output
of the task\\nTo give my best complete final answer to the task respond using
the exact following format:\\n\\nThought: I now can give a great answer\\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\\n\\nI MUST use these formats, my job depends
on it!\"},{\"role\":\"user\",\"content\":\"\\nCurrent Task: \\n Ensure
the following task result complies with the given guardrail.\\n\\n Task
result:\\n \\n Lorem Ipsum is simply dummy text of the printing
and typesetting industry. Lorem Ipsum has been the industry's standard dummy
text ever\\n \\n\\n Guardrail:\\n Ensure the result has
less than 10 words\\n\\n Your task:\\n - Confirm if the Task result
complies with the guardrail.\\n - If not, provide clear feedback explaining
what is wrong (e.g., by how much it violates the rule, or what specific part
fails).\\n - Focus only on identifying issues \u2014 do not propose corrections.\\n
\ - If the Task result complies with the guardrail, saying that is valid\\n
\ \\n\\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\\n\\nThought:\"}],\"model\":\"gpt-4o\"}"
body: '{"trace_id": "00000000-0000-0000-0000-000000000000", "execution_type": "crew", "user_identifier": null, "execution_context": {"crew_fingerprint": null, "crew_name": "Unknown Crew", "flow_name": null, "crewai_version": "1.3.0", "privacy_level": "standard"}, "execution_metadata": {"expected_duration_estimate": 300, "agent_count": 0, "task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-11-05T22:19:56.074812+00:00"}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '434'
Content-Type:
- application/json
User-Agent:
- X-USER-AGENT-XXX
- CrewAI-CLI/1.3.0
X-Crewai-Version:
- 1.3.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing/batches
response:
body:
string: '{"error":"bad_credentials","message":"Bad credentials"}'
headers:
Connection:
- keep-alive
Content-Length:
- '55'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 05 Nov 2025 22:19:56 GMT
cache-control:
- no-store
content-security-policy:
- 'default-src ''self'' *.app.crewai.com app.crewai.com; script-src ''self'' ''unsafe-inline'' *.app.crewai.com app.crewai.com https://cdn.jsdelivr.net/npm/apexcharts https://www.gstatic.com https://run.pstmn.io https://apis.google.com https://apis.google.com/js/api.js https://accounts.google.com https://accounts.google.com/gsi/client https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.min.css.map https://*.google.com https://docs.google.com https://slides.google.com https://js.hs-scripts.com https://js.sentry-cdn.com https://browser.sentry-cdn.com https://www.googletagmanager.com https://js-na1.hs-scripts.com https://js.hubspot.com http://js-na1.hs-scripts.com https://bat.bing.com https://cdn.amplitude.com https://cdn.segment.com https://d1d3n03t5zntha.cloudfront.net/ https://descriptusercontent.com https://edge.fullstory.com https://googleads.g.doubleclick.net https://js.hs-analytics.net https://js.hs-banner.com https://js.hsadspixel.net https://js.hscollectedforms.net
https://js.usemessages.com https://snap.licdn.com https://static.cloudflareinsights.com https://static.reo.dev https://www.google-analytics.com https://share.descript.com/; style-src ''self'' ''unsafe-inline'' *.app.crewai.com app.crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self'' data: *.app.crewai.com app.crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com https://cdn.jsdelivr.net https://forms.hsforms.com https://track.hubspot.com https://px.ads.linkedin.com https://px4.ads.linkedin.com https://www.google.com https://www.google.com.br; font-src ''self'' data: *.app.crewai.com app.crewai.com; connect-src ''self'' *.app.crewai.com app.crewai.com https://zeus.tools.crewai.com https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/* https://run.pstmn.io https://connect.tools.crewai.com/ https://*.sentry.io https://www.google-analytics.com https://edge.fullstory.com https://rs.fullstory.com https://api.hubspot.com
https://forms.hscollectedforms.net https://api.hubapi.com https://px.ads.linkedin.com https://px4.ads.linkedin.com https://google.com/pagead/form-data/16713662509 https://google.com/ccm/form-data/16713662509 https://www.google.com/ccm/collect https://worker-actionkit.tools.crewai.com https://api.reo.dev; frame-src ''self'' *.app.crewai.com app.crewai.com https://connect.useparagon.com/ https://zeus.tools.crewai.com https://zeus.useparagon.com/* https://connect.tools.crewai.com/ https://docs.google.com https://drive.google.com https://slides.google.com https://accounts.google.com https://*.google.com https://app.hubspot.com/ https://td.doubleclick.net https://www.googletagmanager.com/ https://www.youtube.com https://share.descript.com'
expires:
- '0'
permissions-policy:
- camera=(), microphone=(self), geolocation=()
pragma:
- no-cache
referrer-policy:
- strict-origin-when-cross-origin
strict-transport-security:
- max-age=63072000; includeSubDomains
vary:
- Accept
x-content-type-options:
- nosniff
x-frame-options:
- SAMEORIGIN
x-permitted-cross-domain-policies:
- none
x-request-id:
- 230c6cb5-92c7-448d-8c94-e5548a9f4259
x-runtime:
- '0.073220'
x-xss-protection:
- 1; mode=block
status:
code: 401
message: Unauthorized
- request:
body: '{"messages":[{"role":"system","content":"You are Guardrail Agent. You are a expert at validating the output of a task. By providing effective feedback if the output is not valid.\nYour personal goal is: Validate the output of the task\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!Ensure your final answer strictly adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\": {\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\": {\n \"properties\": {\n \"valid\": {\n \"description\": \"Whether the task output complies with the guardrail\",\n \"title\": \"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\": {\n \"anyOf\":
[\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"default\": null,\n \"description\": \"A feedback about the task output if it is not valid\",\n \"title\": \"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\": \"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\": false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output. Ensure the final output does not include any code block markers like ```json or ```python."},{"role":"user","content":"\n Ensure the following task result complies with the given guardrail.\n\n Task result:\n \n Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry''s standard dummy text ever\n \n\n Guardrail:\n Ensure
the result has less than 10 words\n\n Your task:\n - Confirm if the Task result complies with the guardrail.\n - If not, provide clear feedback explaining what is wrong (e.g., by how much it violates the rule, or what specific part fails).\n - Focus only on identifying issues — do not propose corrections.\n - If the Task result complies with the guardrail, saying that is valid\n "}],"model":"gpt-4o"}'
headers:
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1467'
- '2452'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
- MacOS
x-stainless-package-version:
- 1.83.0
- 1.109.1
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7yHRYTZi8yzRbcODnKr92keLKCb\",\n \"object\":
\"chat.completion\",\n \"created\": 1768446357,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"The task result provided has more than
10 words. I will count the words to verify this.\\n\\nThe task result is the
following text:\\n\\\"Lorem Ipsum is simply dummy text of the printing and
typesetting industry. Lorem Ipsum has been the industry's standard dummy text
ever\\\"\\n\\nCounting the words:\\n\\n1. Lorem \\n2. Ipsum \\n3. is \\n4.
simply \\n5. dummy \\n6. text \\n7. of \\n8. the \\n9. printing \\n10. and
\\n11. typesetting \\n12. industry. \\n13. Lorem \\n14. Ipsum \\n15. has \\n16.
been \\n17. the \\n18. industry's \\n19. standard \\n20. dummy \\n21. text
\\n22. ever\\n\\nThe total word count is 22.\\n\\nThought: I now can give
a great answer\\nFinal Answer: The task result does not comply with the guardrail.
It contains 22 words, which exceeds the limit of 10 words.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
285,\n \"completion_tokens\": 195,\n \"total_tokens\": 480,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_deacdd5f6f\"\n}\n"
string: "{\n \"id\": \"chatcmpl-CYg96Riy2RJRxnBHvoROukymP9wvs\",\n \"object\": \"chat.completion\",\n \"created\": 1762381196,\n \"model\": \"gpt-4o-2024-08-06\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Thought: I need to check if the task result meets the requirement of having less than 10 words.\\n\\nFinal Answer: {\\n \\\"valid\\\": false,\\n \\\"feedback\\\": \\\"The task result contains more than 10 words, violating the guardrail. The text provided contains about 21 words.\\\"\\n}\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 489,\n \"completion_tokens\": 61,\n \"total_tokens\": 550,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\"\
: 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_cbf1785567\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
- REDACTED-RAY
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 03:05:59 GMT
- Wed, 05 Nov 2025 22:19:58 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
- __cf_bm=REDACTED; path=/; expires=Wed, 05-Nov-25 22:49:58 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
- _cfuvid=REDACTED; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- STS-XXX
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
- nosniff
access-control-expose-headers:
- ACCESS-CONTROL-XXX
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '1557'
openai-organization:
- OPENAI-ORG-XXX
- user-hortuttj2f3qtmxyik2zxf4q
openai-processing-ms:
- '2130'
- '2201'
openai-project:
- OPENAI-PROJECT-XXX
- proj_fL4UBWR1CMpAAdgzaSKqsVvA
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '2147'
- '2401'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
- '500'
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
- '30000'
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
- '499'
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
- '29439'
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
- 120ms
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
- 1.122s
x-request-id:
- X-REQUEST-ID-XXX
- req_REDACTED
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"Ensure your final answer strictly
adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\":
{\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\":
{\n \"properties\": {\n \"valid\": {\n \"description\":
\"Whether the task output complies with the guardrail\",\n \"title\":
\"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\":
{\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\":
\"null\"\n }\n ],\n \"default\": null,\n \"description\":
\"A feedback about the task output if it is not valid\",\n \"title\":
\"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\":
\"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\":
false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output.
Ensure the final output does not include any code block markers like ```json
or ```python."},{"role":"user","content":"The task result does not comply with
the guardrail. It contains 22 words, which exceeds the limit of 10 words."}],"model":"gpt-4o","response_format":{"type":"json_schema","json_schema":{"schema":{"properties":{"valid":{"description":"Whether
the task output complies with the guardrail","title":"Valid","type":"boolean"},"feedback":{"anyOf":[{"type":"string"},{"type":"null"}],"description":"A
feedback about the task output if it is not valid","title":"Feedback"}},"required":["valid","feedback"],"title":"LLMGuardrailResult","type":"object","additionalProperties":false},"name":"LLMGuardrailResult","strict":true}},"stream":false}'
body: '{"messages":[{"role":"system","content":"Ensure your final answer strictly adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\": {\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\": {\n \"properties\": {\n \"valid\": {\n \"description\": \"Whether the task output complies with the guardrail\",\n \"title\": \"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\": {\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"default\": null,\n \"description\": \"A feedback about the task output if it is not valid\",\n \"title\": \"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\": \"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\":
false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output. Ensure the final output does not include any code block markers like ```json or ```python."},{"role":"user","content":"{\n \"valid\": false,\n \"feedback\": \"The task result contains more than 10 words, violating the guardrail. The text provided contains about 21 words.\"\n}"}],"model":"gpt-4o","response_format":{"type":"json_schema","json_schema":{"schema":{"properties":{"valid":{"description":"Whether the task output complies with the guardrail","title":"Valid","type":"boolean"},"feedback":{"anyOf":[{"type":"string"},{"type":"null"}],"description":"A feedback about the task output if it is not valid","title":"Feedback"}},"required":["valid","feedback"],"title":"LLMGuardrailResult","type":"object","additionalProperties":false},"name":"LLMGuardrailResult","strict":true}},"stream":false}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1835'
- '1884'
content-type:
- application/json
cookie:
- COOKIE-XXX
- __cf_bm=REDACTED; _cfuvid=REDACTED
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
- arm64
x-stainless-async:
- 'false'
x-stainless-helper-method:
- beta.chat.completions.parse
- chat.completions.parse
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
- MacOS
x-stainless-package-version:
- 1.83.0
- 1.109.1
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7yJiPCk4fXuogyT5e8XeGRLCSf8\",\n \"object\":
\"chat.completion\",\n \"created\": 1768446359,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"{\\\"valid\\\":false,\\\"feedback\\\":\\\"The
task output exceeds the word limit of 10 words by containing 22 words.\\\"}\",\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
363,\n \"completion_tokens\": 25,\n \"total_tokens\": 388,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_a0e9480a2f\"\n}\n"
string: "{\n \"id\": \"chatcmpl-CYg98QlZ8NTrQ69676MpXXyCoZJT8\",\n \"object\": \"chat.completion\",\n \"created\": 1762381198,\n \"model\": \"gpt-4o-2024-08-06\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"{\\\"valid\\\":false,\\\"feedback\\\":\\\"The task result contains more than 10 words, violating the guardrail. The text provided contains about 21 words.\\\"}\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 374,\n \"completion_tokens\": 32,\n \"total_tokens\": 406,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n\
\ \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_cbf1785567\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
- REDACTED-RAY
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 03:05:59 GMT
- Wed, 05 Nov 2025 22:19:59 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
- nosniff
access-control-expose-headers:
- ACCESS-CONTROL-XXX
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '913'
openai-organization:
- OPENAI-ORG-XXX
- user-hortuttj2f3qtmxyik2zxf4q
openai-processing-ms:
- '488'
- '419'
openai-project:
- OPENAI-PROJECT-XXX
- proj_fL4UBWR1CMpAAdgzaSKqsVvA
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '507'
- '432'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
- '500'
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
- '30000'
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
- '499'
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
- '29702'
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
- 120ms
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
- 596ms
x-request-id:
- X-REQUEST-ID-XXX
- req_REDACTED
status:
code: 200
message: OK
- request:
body: "{\"messages\":[{\"role\":\"system\",\"content\":\"You are Guardrail Agent.
You are a expert at validating the output of a task. By providing effective
feedback if the output is not valid.\\nYour personal goal is: Validate the output
of the task\\nTo give my best complete final answer to the task respond using
the exact following format:\\n\\nThought: I now can give a great answer\\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\\n\\nI MUST use these formats, my job depends
on it!\"},{\"role\":\"user\",\"content\":\"\\nCurrent Task: \\n Ensure
the following task result complies with the given guardrail.\\n\\n Task
result:\\n \\n Lorem Ipsum is simply dummy text of the printing
and typesetting industry. Lorem Ipsum has been the industry's standard dummy
text ever\\n \\n\\n Guardrail:\\n Ensure the result has
less than 500 words\\n\\n Your task:\\n - Confirm if the Task
result complies with the guardrail.\\n - If not, provide clear feedback
explaining what is wrong (e.g., by how much it violates the rule, or what specific
part fails).\\n - Focus only on identifying issues \u2014 do not propose
corrections.\\n - If the Task result complies with the guardrail, saying
that is valid\\n \\n\\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\\n\\nThought:\"}],\"model\":\"gpt-4o\"}"
body: '{"messages":[{"role":"system","content":"You are Guardrail Agent. You are a expert at validating the output of a task. By providing effective feedback if the output is not valid.\nYour personal goal is: Validate the output of the task\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!Ensure your final answer strictly adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\": {\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\": {\n \"properties\": {\n \"valid\": {\n \"description\": \"Whether the task output complies with the guardrail\",\n \"title\": \"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\": {\n \"anyOf\":
[\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"default\": null,\n \"description\": \"A feedback about the task output if it is not valid\",\n \"title\": \"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\": \"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\": false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output. Ensure the final output does not include any code block markers like ```json or ```python."},{"role":"user","content":"\n Ensure the following task result complies with the given guardrail.\n\n Task result:\n \n Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry''s standard dummy text ever\n \n\n Guardrail:\n Ensure
the result has less than 500 words\n\n Your task:\n - Confirm if the Task result complies with the guardrail.\n - If not, provide clear feedback explaining what is wrong (e.g., by how much it violates the rule, or what specific part fails).\n - Focus only on identifying issues — do not propose corrections.\n - If the Task result complies with the guardrail, saying that is valid\n "}],"model":"gpt-4o"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1468'
- '2453'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
- MacOS
x-stainless-package-version:
- 1.83.0
- 1.109.1
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7yKa0rmi2YoTLpyXt9hjeLt2rTI\",\n \"object\":
\"chat.completion\",\n \"created\": 1768446360,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"First, I'll count the number of words
in the Task result to ensure it complies with the guardrail. \\n\\nThe Task
result is: \\\"Lorem Ipsum is simply dummy text of the printing and typesetting
industry. Lorem Ipsum has been the industry's standard dummy text ever.\\\"\\n\\nBy
counting the words: \\n1. Lorem\\n2. Ipsum\\n3. is\\n4. simply\\n5. dummy\\n6.
text\\n7. of\\n8. the\\n9. printing\\n10. and\\n11. typesetting\\n12. industry\\n13.
Lorem\\n14. Ipsum\\n15. has\\n16. been\\n17. the\\n18. industry's\\n19. standard\\n20.
dummy\\n21. text\\n22. ever\\n\\nThere are 22 words total in the Task result.\\n\\nI
need to verify if the count of 22 words is less than the guardrail limit of
500 words.\\n\\nThought: I now can give a great answer\\nFinal Answer: The
Task result complies with the guardrail as it contains 22 words, which is
less than the 500-word limit. Therefore, the output is valid.\",\n \"refusal\":
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
285,\n \"completion_tokens\": 227,\n \"total_tokens\": 512,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_deacdd5f6f\"\n}\n"
string: "{\n \"id\": \"chatcmpl-CYgBMV6fu7EvV2BqzMdJaKyLAg1WW\",\n \"object\": \"chat.completion\",\n \"created\": 1762381336,\n \"model\": \"gpt-4o-2024-08-06\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Thought: I now can give a great answer\\nFinal Answer: {\\\"valid\\\": true, \\\"feedback\\\": null}\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 489,\n \"completion_tokens\": 23,\n \"total_tokens\": 512,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\"\
: \"fp_cbf1785567\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
- REDACTED-RAY
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 03:06:02 GMT
- Wed, 05 Nov 2025 22:22:16 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
- __cf_bm=REDACTED; path=/; expires=Wed, 05-Nov-25 22:52:16 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
- _cfuvid=REDACTED; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- STS-XXX
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
- nosniff
access-control-expose-headers:
- ACCESS-CONTROL-XXX
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '1668'
openai-organization:
- OPENAI-ORG-XXX
- user-hortuttj2f3qtmxyik2zxf4q
openai-processing-ms:
- '2502'
- '327'
openai-project:
- OPENAI-PROJECT-XXX
- proj_fL4UBWR1CMpAAdgzaSKqsVvA
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '2522'
- '372'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
- '500'
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
- '30000'
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
- '499'
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
- '29438'
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
- 120ms
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
- 1.124s
x-request-id:
- X-REQUEST-ID-XXX
- req_REDACTED
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"Ensure your final answer strictly
adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\":
{\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\":
{\n \"properties\": {\n \"valid\": {\n \"description\":
\"Whether the task output complies with the guardrail\",\n \"title\":
\"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\":
{\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\":
\"null\"\n }\n ],\n \"default\": null,\n \"description\":
\"A feedback about the task output if it is not valid\",\n \"title\":
\"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\":
\"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\":
false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output.
Ensure the final output does not include any code block markers like ```json
or ```python."},{"role":"user","content":"The Task result complies with the
guardrail as it contains 22 words, which is less than the 500-word limit. Therefore,
the output is valid."}],"model":"gpt-4o","response_format":{"type":"json_schema","json_schema":{"schema":{"properties":{"valid":{"description":"Whether
the task output complies with the guardrail","title":"Valid","type":"boolean"},"feedback":{"anyOf":[{"type":"string"},{"type":"null"}],"description":"A
feedback about the task output if it is not valid","title":"Feedback"}},"required":["valid","feedback"],"title":"LLMGuardrailResult","type":"object","additionalProperties":false},"name":"LLMGuardrailResult","strict":true}},"stream":false}'
body: '{"messages":[{"role":"system","content":"Ensure your final answer strictly adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\": {\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\": {\n \"properties\": {\n \"valid\": {\n \"description\": \"Whether the task output complies with the guardrail\",\n \"title\": \"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\": {\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"default\": null,\n \"description\": \"A feedback about the task output if it is not valid\",\n \"title\": \"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\": \"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\":
false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output. Ensure the final output does not include any code block markers like ```json or ```python."},{"role":"user","content":"{\"valid\": true, \"feedback\": null}"}],"model":"gpt-4o","response_format":{"type":"json_schema","json_schema":{"schema":{"properties":{"valid":{"description":"Whether the task output complies with the guardrail","title":"Valid","type":"boolean"},"feedback":{"anyOf":[{"type":"string"},{"type":"null"}],"description":"A feedback about the task output if it is not valid","title":"Feedback"}},"required":["valid","feedback"],"title":"LLMGuardrailResult","type":"object","additionalProperties":false},"name":"LLMGuardrailResult","strict":true}},"stream":false}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1864'
- '1762'
content-type:
- application/json
cookie:
- COOKIE-XXX
- __cf_bm=REDACTED; _cfuvid=REDACTED
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
- arm64
x-stainless-async:
- 'false'
x-stainless-helper-method:
- beta.chat.completions.parse
- chat.completions.parse
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
- MacOS
x-stainless-package-version:
- 1.83.0
- 1.109.1
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-Cy7yMAjNYSCz2foZPEcSVCuapzF8y\",\n \"object\":
\"chat.completion\",\n \"created\": 1768446362,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"{\\\"valid\\\":true,\\\"feedback\\\":null}\",\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
369,\n \"completion_tokens\": 9,\n \"total_tokens\": 378,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_a0e9480a2f\"\n}\n"
string: "{\n \"id\": \"chatcmpl-CYgBMU20R45qGGaLN6vNAmW1NR4R6\",\n \"object\": \"chat.completion\",\n \"created\": 1762381336,\n \"model\": \"gpt-4o-2024-08-06\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"{\\\"valid\\\":true,\\\"feedback\\\":null}\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 347,\n \"completion_tokens\": 9,\n \"total_tokens\": 356,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_cbf1785567\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
- REDACTED-RAY
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Thu, 15 Jan 2026 03:06:03 GMT
- Wed, 05 Nov 2025 22:22:17 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
- nosniff
access-control-expose-headers:
- ACCESS-CONTROL-XXX
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
content-length:
- '837'
openai-organization:
- OPENAI-ORG-XXX
- user-hortuttj2f3qtmxyik2zxf4q
openai-processing-ms:
- '413'
- '1081'
openai-project:
- OPENAI-PROJECT-XXX
- proj_fL4UBWR1CMpAAdgzaSKqsVvA
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '650'
- '1241'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
- '500'
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
- '30000'
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
- '499'
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
- '29478'
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
- 120ms
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
- 1.042s
x-request-id:
- X-REQUEST-ID-XXX
- req_REDACTED
status:
code: 200
message: OK

View File

@@ -728,3 +728,39 @@ def test_google_streaming_returns_usage_metrics():
assert result.token_usage.prompt_tokens > 0
assert result.token_usage.completion_tokens > 0
assert result.token_usage.successful_requests >= 1
@pytest.mark.vcr()
def test_google_express_mode_works() -> None:
"""
Test Google Vertex AI Express mode with API key authentication.
This tests Vertex AI Express mode (aiplatform.googleapis.com) with API key
authentication.
"""
with patch.dict(os.environ, {"GOOGLE_GENAI_USE_VERTEXAI": "true"}):
agent = Agent(
role="Research Assistant",
goal="Find information about the capital of Japan",
backstory="You are a helpful research assistant.",
llm=LLM(
model="gemini/gemini-2.0-flash-exp",
),
verbose=True,
)
task = Task(
description="What is the capital of Japan?",
expected_output="The capital of Japan",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
assert result.token_usage is not None
assert result.token_usage.total_tokens > 0
assert result.token_usage.prompt_tokens > 0
assert result.token_usage.completion_tokens > 0
assert result.token_usage.successful_requests >= 1

View File

@@ -1202,9 +1202,8 @@ def test_complex_and_or_branching():
)
assert execution_order.index("branch_2b") > min_branch_1_index
# Final should be after both 2a and 2b
# Note: final may not be absolutely last due to independent branches (like branch_1c)
# that don't contribute to the final result path with sequential listener execution
# Final should be last and after both 2a and 2b
assert execution_order[-1] == "final"
assert execution_order.index("final") > execution_order.index("branch_2a")
assert execution_order.index("final") > execution_order.index("branch_2b")

View File

@@ -185,8 +185,8 @@ def test_task_guardrail_process_output(task_output):
result = guardrail(task_output)
assert result[0] is False
# Check that feedback is provided (wording varies by LLM)
assert result[1] and len(result[1]) > 0
assert result[1] == "The task result contains more than 10 words, violating the guardrail. The text provided contains about 21 words."
guardrail = LLMGuardrail(
description="Ensure the result has less than 500 words", llm=LLM(model="gpt-4o")

View File

@@ -348,11 +348,11 @@ def test_agent_emits_execution_error_event(base_agent, base_task):
error_message = "Error happening while sending prompt to model."
base_agent.max_retry_limit = 0
# Patch at the class level since agent_executor is created lazily
with patch.object(
CrewAgentExecutor, "invoke", side_effect=Exception(error_message)
):
CrewAgentExecutor, "invoke", wraps=base_agent.agent_executor.invoke
) as invoke_mock:
invoke_mock.side_effect = Exception(error_message)
with pytest.raises(Exception): # noqa: B017
base_agent.execute_task(
task=base_task,