Compare commits

...

28 Commits

Author SHA1 Message Date
João Moura
e4e9bf343a revamp 2025-06-02 10:18:50 -07:00
João Moura
efebcd9734 improving tool usage for crewai enterprise tools 2025-06-01 09:48:06 -07:00
João Moura
6ecb30ee87 improved 2025-06-01 03:08:25 -07:00
João Moura
7c12aeaa0c cleanign state agent 2025-06-01 01:37:31 -07:00
João Moura
4fcabd391f populating state 2025-06-01 01:27:26 -07:00
João Moura
7009a6b7a0 Agent State Step 1 2025-05-31 23:15:39 -07:00
João Moura
e3cd7209ad fixing console formatter 2025-05-31 21:37:36 -07:00
João Moura
635e5a21f3 updated reasoning 2025-05-29 20:50:38 -07:00
João Moura
e0cd41e9f9 updating 2025-05-28 20:49:05 -07:00
João Moura
224ba1fb69 new test for adaptative reasoning 2025-05-28 11:47:22 -07:00
Devin AI
286958be4f Move adaptive reasoning context prompt to en.json
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-28 16:57:34 +00:00
Devin AI
36fc2365d3 Move mid-execution reasoning update prompt to en.json
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-28 16:55:30 +00:00
Devin AI
138ac95b09 Add timing information to reasoning events to show duration in logs
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-27 09:41:37 +00:00
Devin AI
572d8043eb Fix ready flag detection to handle both execute and continue executing variations
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-27 09:22:19 +00:00
Devin AI
3d5668e988 Fix adaptive reasoning implementation and tests, move all prompts to en.json
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-27 09:04:16 +00:00
Devin AI
cbc81ecc06 Move reasoning prompts to en.json and update documentation
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-27 08:57:44 +00:00
Devin AI
38ed69577f Merge remote changes into local branch
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-27 08:37:08 +00:00
Devin AI
203faa6a77 Implement LLM-based adaptive reasoning with function calling
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-27 08:35:32 +00:00
João Moura
88721788e9 improving test 2025-05-27 01:27:25 -07:00
João Moura
e636f1dc17 Merge branch 'main' into devin/1748280430-reasoning-interval 2025-05-27 01:08:03 -07:00
Devin AI
5868ac71dd Replace examples with comprehensive documentation for reasoning agents
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-26 21:37:10 +00:00
Devin AI
cb5116a21d Fix lint error: remove unused LLM import from reasoning interval tests
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-26 19:15:47 +00:00
Devin AI
b74ee4e98b Fix tests to properly mock LLM calls to avoid authentication errors
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-26 19:07:41 +00:00
Devin AI
0383aa1f27 Update reasoning interval example with comprehensive documentation
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-26 19:01:31 +00:00
Devin AI
db6b831c66 Fix reasoning interval counter management
- Remove state modification from _should_trigger_reasoning method
- Ensure counter is incremented after each step in invoke loop
- Counter is properly reset when reasoning occurs
- Fixes test failures in reasoning_interval_test.py

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-26 18:58:04 +00:00
Devin AI
acb1eac2ac Complete code review improvements
- Fix type errors by converting deque to list when passing to handle_mid_execution_reasoning
- Add proper type annotation for tools_used
- Fix agent type error by casting BaseAgent to Agent
- Fix _should_trigger_reasoning logic to correctly handle reasoning_interval
- All type checking passes (mypy clean)

Addresses all code quality suggestions from PR review.

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-26 17:54:05 +00:00
Devin AI
acabaee480 Fix lint errors and implement code review suggestions
- Remove unused imports (json, re)
- Add validation for reasoning_interval parameter
- Use deque for tools_used to prevent memory leaks
- Add type hints to all new methods
- Refactor adaptive reasoning logic for better readability
- Centralize event handling logic
- Expand test coverage with parametrized tests

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-26 17:42:00 +00:00
Devin AI
9a2ddb39ce Add reasoning_interval and adaptive_reasoning features
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-26 17:32:47 +00:00
37 changed files with 7613 additions and 228 deletions

View File

@@ -6,11 +6,11 @@ icon: brain
## Overview
Agent reasoning is a feature that allows agents to reflect on a task and create a plan before execution. This helps agents approach tasks more methodically and ensures they're ready to perform the assigned work.
Agent reasoning is a feature that allows agents to reflect on a task and create a plan before and during execution. This helps agents approach tasks more methodically and adapt their strategy as they progress through complex tasks.
## Usage
To enable reasoning for an agent, simply set `reasoning=True` when creating the agent:
To enable reasoning for an agent, set `reasoning=True` when creating the agent:
```python
from crewai import Agent
@@ -19,13 +19,43 @@ agent = Agent(
role="Data Analyst",
goal="Analyze complex datasets and provide insights",
backstory="You are an experienced data analyst with expertise in finding patterns in complex data.",
reasoning=True, # Enable reasoning
reasoning=True, # Enable basic reasoning
max_reasoning_attempts=3 # Optional: Set a maximum number of reasoning attempts
)
```
### Interval-based Reasoning
To enable periodic reasoning during task execution, set `reasoning_interval` to specify how often the agent should re-evaluate its plan:
```python
agent = Agent(
role="Research Analyst",
goal="Find comprehensive information about a topic",
backstory="You are a skilled research analyst who methodically approaches information gathering.",
reasoning=True,
reasoning_interval=3, # Re-evaluate plan every 3 steps
)
```
### Adaptive Reasoning
For more dynamic reasoning that adapts to the execution context, enable `adaptive_reasoning`:
```python
agent = Agent(
role="Strategic Advisor",
goal="Provide strategic advice based on market research",
backstory="You are an experienced strategic advisor who adapts your approach based on the information you discover.",
reasoning=True,
adaptive_reasoning=True, # Agent decides when to reason based on context
)
```
## How It Works
### Initial Reasoning
When reasoning is enabled, before executing a task, the agent will:
1. Reflect on the task and create a detailed plan
@@ -33,7 +63,17 @@ When reasoning is enabled, before executing a task, the agent will:
3. Refine the plan as necessary until it's ready or max_reasoning_attempts is reached
4. Inject the reasoning plan into the task description before execution
This process helps the agent break down complex tasks into manageable steps and identify potential challenges before starting.
### Mid-execution Reasoning
During task execution, the agent can re-evaluate and adjust its plan based on:
1. **Interval-based reasoning**: The agent reasons after a fixed number of steps (specified by `reasoning_interval`)
2. **Adaptive reasoning**: The agent uses its LLM to intelligently decide when reasoning is needed based on:
- Current execution context (task description, expected output, steps taken)
- The agent's own judgment about whether strategic reassessment would be beneficial
- Automatic fallback when recent errors or failures are detected in the execution
This mid-execution reasoning helps agents adapt to new information, overcome obstacles, and optimize their approach as they work through complex tasks.
## Configuration Options
@@ -45,35 +85,44 @@ This process helps the agent break down complex tasks into manageable steps and
Maximum number of attempts to refine the plan before proceeding with execution. If None (default), the agent will continue refining until it's ready.
</ParamField>
## Example
<ParamField body="reasoning_interval" type="int" default="None">
Interval of steps after which the agent should reason again during execution. If None, reasoning only happens before execution.
</ParamField>
Here's a complete example:
<ParamField body="adaptive_reasoning" type="bool" default="False">
Whether the agent should adaptively decide when to reason during execution based on context.
</ParamField>
```python
from crewai import Agent, Task, Crew
## Technical Implementation
# Create an agent with reasoning enabled
analyst = Agent(
role="Data Analyst",
goal="Analyze data and provide insights",
backstory="You are an expert data analyst.",
reasoning=True,
max_reasoning_attempts=3 # Optional: Set a limit on reasoning attempts
)
### Interval-based Reasoning
# Create a task
analysis_task = Task(
description="Analyze the provided sales data and identify key trends.",
expected_output="A report highlighting the top 3 sales trends.",
agent=analyst
)
The interval-based reasoning feature works by:
# Create a crew and run the task
crew = Crew(agents=[analyst], tasks=[analysis_task])
result = crew.kickoff()
1. Tracking the number of steps since the last reasoning event
2. Triggering reasoning when `steps_since_reasoning >= reasoning_interval`
3. Resetting the counter after each reasoning event
4. Generating an updated plan based on current progress
print(result)
```
This creates a predictable pattern of reflection during task execution, which is useful for complex tasks where periodic reassessment is beneficial.
### Adaptive Reasoning
The adaptive reasoning feature uses LLM function calling to determine when reasoning should occur:
1. **LLM-based decision**: The agent's LLM evaluates the current execution context (task description, expected output, steps taken so far) to decide if reasoning is needed
2. **Error detection fallback**: When recent messages contain error indicators like "error", "exception", "failed", etc., reasoning is automatically triggered
This creates an intelligent reasoning pattern where the agent uses its own judgment to determine when strategic reassessment would be most beneficial, while maintaining automatic error recovery.
### Mid-execution Reasoning Process
When mid-execution reasoning is triggered, the agent:
1. Summarizes current progress (steps taken, tools used, recent actions)
2. Evaluates the effectiveness of the current approach
3. Adjusts the plan based on new information and challenges encountered
4. Continues execution with the updated plan
## Error Handling
@@ -93,7 +142,7 @@ agent = Agent(
role="Data Analyst",
goal="Analyze data and provide insights",
reasoning=True,
max_reasoning_attempts=3
reasoning_interval=5 # Re-evaluate plan every 5 steps
)
# Create a task
@@ -144,4 +193,33 @@ I'll analyze the sales data to identify the top 3 trends.
READY: I am ready to execute the task.
```
This reasoning plan helps the agent organize its approach to the task, consider potential challenges, and ensure it delivers the expected output.
During execution, the agent might generate an updated plan:
```
Based on progress so far (3 steps completed):
Updated Reasoning Plan:
After examining the data structure and initial exploratory analysis, I need to adjust my approach:
1. Current findings:
- The data shows seasonal patterns that need deeper investigation
- Customer segments show varying purchasing behaviors
- There are outliers in the luxury product category
2. Adjusted approach:
- Focus more on seasonal analysis with year-over-year comparisons
- Segment analysis by both demographics and purchasing frequency
- Investigate the luxury product category anomalies
3. Next steps:
- Apply time series analysis to better quantify seasonal patterns
- Create customer cohorts for more precise segmentation
- Perform statistical tests on the luxury category data
4. Expected outcome:
Still on track to deliver the top 3 sales trends, but with more precise quantification and actionable insights.
READY: I am ready to continue executing the task.
```
This mid-execution reasoning helps the agent adapt its approach based on what it has learned during the initial steps of the task.

3
score.json Normal file
View File

@@ -0,0 +1,3 @@
{
"score": 4
}

View File

@@ -2,7 +2,7 @@ import shutil
import subprocess
from typing import Any, Dict, List, Literal, Optional, Sequence, Type, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from pydantic import Field, InstanceOf, PrivateAttr, field_validator, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -71,6 +71,7 @@ class Agent(BaseAgent):
"""
_times_executed: int = PrivateAttr(default=0)
_last_reasoning_output: Optional[Any] = PrivateAttr(default=None)
max_execution_time: Optional[int] = Field(
default=None,
description="Maximum execution time for an agent to execute a task",
@@ -135,6 +136,21 @@ class Agent(BaseAgent):
default=None,
description="Maximum number of reasoning attempts before executing the task. If None, will try until ready.",
)
reasoning_interval: Optional[int] = Field(
default=None,
description="Interval of steps after which the agent should reason again during execution. If None, reasoning only happens before execution.",
)
@field_validator('reasoning_interval')
@classmethod
def validate_reasoning_interval(cls, v):
if v is not None and v < 1:
raise ValueError("reasoning_interval must be >= 1")
return v
adaptive_reasoning: bool = Field(
default=False,
description="Whether the agent should adaptively decide when to reason during execution based on context.",
)
embedder: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
@@ -166,6 +182,9 @@ class Agent(BaseAgent):
def post_init_setup(self):
self.agent_ops_agent_name = self.role
if getattr(self, "adaptive_reasoning", False) and not getattr(self, "reasoning", False):
self.reasoning = True
self.llm = create_llm(self.llm)
if self.function_calling_llm and not isinstance(
self.function_calling_llm, BaseLLM
@@ -241,23 +260,9 @@ class Agent(BaseAgent):
ValueError: If the max execution time is not a positive integer.
RuntimeError: If the agent execution fails for other reasons.
"""
if self.reasoning:
try:
from crewai.utilities.reasoning_handler import AgentReasoning, AgentReasoningOutput
reasoning_handler = AgentReasoning(task=task, agent=self)
reasoning_output: AgentReasoningOutput = reasoning_handler.handle_agent_reasoning()
# Add the reasoning plan to the task description
task.description += f"\n\nReasoning Plan:\n{reasoning_output.plan.plan}"
except Exception as e:
if hasattr(self, '_logger'):
self._logger.log("error", f"Error during reasoning process: {str(e)}")
else:
print(f"Error during reasoning process: {str(e)}")
self._inject_date_to_task(task)
if self.tools_handler:
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
@@ -369,6 +374,44 @@ class Agent(BaseAgent):
else:
task_prompt = self._use_trained_data(task_prompt=task_prompt)
if self.reasoning:
try:
from crewai.utilities.reasoning_handler import (
AgentReasoning,
AgentReasoningOutput,
)
reasoning_handler = AgentReasoning(
task=task,
agent=self,
extra_context=context or "",
)
reasoning_output: AgentReasoningOutput = reasoning_handler.handle_agent_reasoning()
# Store the reasoning output for the executor to use
self._last_reasoning_output = reasoning_output
plan_text = reasoning_output.plan.plan
internal_plan_msg = (
"### INTERNAL PLAN (do NOT reveal or repeat)\n" + plan_text
)
task_prompt = (
task_prompt
+ "\n\n"
+ internal_plan_msg
)
except Exception as e:
if hasattr(self, "_logger"):
self._logger.log(
"error", f"Error during reasoning process: {str(e)}"
)
else:
print(f"Error during reasoning process: {str(e)}")
try:
crewai_event_bus.emit(
self,
@@ -444,6 +487,10 @@ class Agent(BaseAgent):
self,
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
)
# Clean up reasoning output after task completion
self._last_reasoning_output = None
return result
def _execute_with_timeout(self, task_prompt: str, task: Task, timeout: int) -> str:
@@ -625,10 +672,10 @@ class Agent(BaseAgent):
try:
valid_format_codes = ['%Y', '%m', '%d', '%H', '%M', '%S', '%B', '%b', '%A', '%a']
is_valid = any(code in self.date_format for code in valid_format_codes)
if not is_valid:
raise ValueError(f"Invalid date format: {self.date_format}")
current_date: str = datetime.now().strftime(self.date_format)
task.description += f"\n\nCurrent Date: {current_date}"
except Exception as e:

View File

@@ -0,0 +1,386 @@
"""Agent state management for long-running tasks with focus on progress tracking."""
from typing import Any, Dict, List, Optional, Union, Set
from pydantic import BaseModel, Field
from datetime import datetime
import json
class CriterionProgress(BaseModel):
"""Progress tracking for a single acceptance criterion."""
criterion: str = Field(description="The acceptance criterion")
status: str = Field(default="not_started", description="Status: not_started, in_progress, completed")
progress_notes: str = Field(default="", description="Specific progress made towards this criterion")
completion_percentage: int = Field(default=0, description="Estimated completion percentage (0-100)")
remaining_work: str = Field(default="", description="What still needs to be done for this criterion")
# Enhanced tracking
processed_items: Set[str] = Field(default_factory=set, description="IDs or identifiers of processed items")
total_items_expected: Optional[int] = Field(default=None, description="Total number of items expected (if known)")
items_to_process: List[str] = Field(default_factory=list, description="Queue of specific items to process next")
last_updated: datetime = Field(default_factory=datetime.now)
class ProgressLog(BaseModel):
"""Single log entry for progress tracking."""
timestamp: datetime = Field(default_factory=datetime.now)
action: str = Field(description="What action was taken")
result: str = Field(description="Result or outcome of the action")
items_processed: List[str] = Field(default_factory=list, description="Items processed in this action")
criterion: Optional[str] = Field(default=None, description="Related acceptance criterion")
class AgentState(BaseModel):
"""Enhanced state management with deterministic progress tracking.
This state helps agents maintain focus during long executions by tracking
specific progress against each acceptance criterion with detailed logging.
"""
# Core planning elements
plan: List[str] = Field(
default_factory=list,
description="The current plan steps"
)
acceptance_criteria: List[str] = Field(
default_factory=list,
description="Concrete criteria that must be met for task completion"
)
# Progress tracking
criteria_progress: Dict[str, CriterionProgress] = Field(
default_factory=dict,
description="Detailed progress for each acceptance criterion"
)
# Data storage
scratchpad: Dict[str, Any] = Field(
default_factory=dict,
description="Storage for intermediate results and data"
)
# Simple tracking
current_focus: str = Field(
default="",
description="What the agent should be focusing on right now"
)
next_steps: List[str] = Field(
default_factory=list,
description="Immediate next steps to take"
)
overall_progress: int = Field(
default=0,
description="Overall task completion percentage (0-100)"
)
# Enhanced tracking
progress_logs: List[ProgressLog] = Field(
default_factory=list,
description="Detailed log of all progress made"
)
work_queue: List[Dict[str, Any]] = Field(
default_factory=list,
description="Queue of specific work items to process"
)
# Metadata tracking
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Additional metadata for tracking (e.g., total count expectations)"
)
def initialize_criteria_progress(self) -> None:
"""Initialize progress tracking for all acceptance criteria."""
for criterion in self.acceptance_criteria:
if criterion not in self.criteria_progress:
self.criteria_progress[criterion] = CriterionProgress(criterion=criterion)
def update_criterion_progress(
self,
criterion: str,
status: str,
progress_notes: str,
completion_percentage: int,
remaining_work: str,
processed_items: Optional[List[str]] = None,
items_to_process: Optional[List[str]] = None,
total_items_expected: Optional[int] = None
) -> None:
"""Update progress for a specific criterion with enhanced tracking."""
if criterion in self.criteria_progress:
progress = self.criteria_progress[criterion]
progress.status = status
progress.progress_notes = progress_notes
progress.completion_percentage = max(0, min(100, completion_percentage))
progress.remaining_work = remaining_work
progress.last_updated = datetime.now()
# Update processed items
if processed_items:
progress.processed_items.update(processed_items)
# Update items to process queue
if items_to_process is not None:
progress.items_to_process = items_to_process
# Update total expected if provided
if total_items_expected is not None:
progress.total_items_expected = total_items_expected
# Recalculate completion percentage based on actual items if possible
if progress.total_items_expected and progress.total_items_expected > 0:
actual_percentage = int((len(progress.processed_items) / progress.total_items_expected) * 100)
progress.completion_percentage = actual_percentage
# Update overall progress
self._recalculate_overall_progress()
def _recalculate_overall_progress(self) -> None:
"""Recalculate overall progress based on all criteria."""
if not self.criteria_progress:
self.overall_progress = 0
return
total_progress = sum(p.completion_percentage for p in self.criteria_progress.values())
self.overall_progress = int(total_progress / len(self.criteria_progress))
def add_to_scratchpad(self, key: str, value: Any) -> None:
"""Add or update a value in the scratchpad."""
self.scratchpad[key] = value
# Analyze the data for item tracking
self._analyze_scratchpad_for_items(key, value)
def _analyze_scratchpad_for_items(self, key: str, value: Any) -> None:
"""Analyze scratchpad data to extract trackable items."""
# If it's a list, try to extract IDs
if isinstance(value, list) and value:
item_ids = []
for item in value:
if isinstance(item, dict):
# Look for common ID fields
for id_field in ['id', 'ID', 'uid', 'uuid', 'message_id', 'email_id']:
if id_field in item:
item_ids.append(str(item[id_field]))
break
if item_ids:
# Store metadata about this list
self.metadata[f"{key}_ids"] = item_ids
self.metadata[f"{key}_count"] = len(value)
def log_progress(self, action: str, result: str, items_processed: Optional[List[str]] = None, criterion: Optional[str] = None) -> None:
"""Add a progress log entry."""
log_entry = ProgressLog(
action=action,
result=result,
items_processed=items_processed or [],
criterion=criterion
)
self.progress_logs.append(log_entry)
def add_to_work_queue(self, work_item: Dict[str, Any]) -> None:
"""Add an item to the work queue."""
self.work_queue.append(work_item)
def get_next_work_item(self) -> Optional[Dict[str, Any]]:
"""Get and remove the next item from the work queue."""
if self.work_queue:
return self.work_queue.pop(0)
return None
def set_focus_and_next_steps(self, focus: str, next_steps: List[str]) -> None:
"""Update current focus and next steps."""
self.current_focus = focus
self.next_steps = next_steps
def get_progress_context(self) -> str:
"""Generate a focused progress update for the agent."""
context = f"📊 PROGRESS UPDATE (Overall: {self.overall_progress}%)\n"
context += "="*50 + "\n\n"
# Current focus
if self.current_focus:
context += f"🎯 CURRENT FOCUS: {self.current_focus}\n\n"
# Progress on each criterion with detailed tracking
if self.criteria_progress:
context += "📋 ACCEPTANCE CRITERIA PROGRESS:\n"
for criterion, progress in self.criteria_progress.items():
status_emoji = "" if progress.status == "completed" else "🔄" if progress.status == "in_progress" else "⏸️"
context += f"\n{status_emoji} {criterion}\n"
# Show detailed progress
if progress.total_items_expected:
context += f" Progress: {len(progress.processed_items)}/{progress.total_items_expected} items ({progress.completion_percentage}%)\n"
else:
context += f" Progress: {progress.completion_percentage}%"
if progress.processed_items:
context += f" - {len(progress.processed_items)} items processed"
context += "\n"
if progress.progress_notes:
context += f" Notes: {progress.progress_notes}\n"
# Show next items to process
if progress.items_to_process and progress.status != "completed":
next_items = progress.items_to_process[:3] # Show next 3
context += f" Next items: {', '.join(next_items)}"
if len(progress.items_to_process) > 3:
context += f" (and {len(progress.items_to_process) - 3} more)"
context += "\n"
if progress.remaining_work and progress.status != "completed":
context += f" Still needed: {progress.remaining_work}\n"
# Work queue status
if self.work_queue:
context += f"\n📝 WORK QUEUE: {len(self.work_queue)} items pending\n"
next_work = self.work_queue[0]
context += f" Next: {next_work.get('description', 'Process next item')}\n"
# Next steps
if self.next_steps:
context += f"\n📍 IMMEDIATE NEXT STEPS:\n"
for i, step in enumerate(self.next_steps, 1):
context += f"{i}. {step}\n"
# Available data
if self.scratchpad:
context += f"\n💾 AVAILABLE DATA IN SCRATCHPAD:\n"
for key, value in self.scratchpad.items():
if isinstance(value, list):
context += f"'{key}' - {len(value)} items"
if f"{key}_ids" in self.metadata:
context += f" (IDs tracked)"
context += "\n"
elif isinstance(value, dict):
context += f"'{key}' - dictionary data\n"
else:
context += f"'{key}'\n"
# Recent progress logs
if self.progress_logs:
context += f"\n📜 RECENT ACTIVITY:\n"
for log in self.progress_logs[-3:]: # Show last 3 logs
context += f"{log.timestamp.strftime('%H:%M:%S')} - {log.action}"
if log.items_processed:
context += f" ({len(log.items_processed)} items)"
context += "\n"
context += "\n" + "="*50
return context
def analyze_scratchpad_for_criterion_progress(self, criterion: str) -> Dict[str, Any]:
"""Analyze scratchpad data to determine specific progress on a criterion."""
analysis = {
"relevant_data": [],
"item_count": 0,
"processed_ids": set(),
"data_completeness": 0,
"specific_gaps": []
}
criterion_lower = criterion.lower()
# Look for data that relates to this criterion
for key, value in self.scratchpad.items():
key_lower = key.lower()
# Check if this data is relevant to the criterion
is_relevant = False
for keyword in criterion_lower.split():
if len(keyword) > 3 and keyword in key_lower: # Skip short words
is_relevant = True
break
if is_relevant:
analysis["relevant_data"].append(key)
# Count items and extract IDs
if isinstance(value, list):
analysis["item_count"] += len(value)
# Try to extract IDs from metadata
if f"{key}_ids" in self.metadata:
analysis["processed_ids"].update(self.metadata[f"{key}_ids"])
elif isinstance(value, dict):
analysis["item_count"] += 1
# Calculate completeness based on what we know
if analysis["item_count"] > 0:
# Check if criterion mentions specific numbers
import re
number_match = re.search(r'\b(\d+)\b', criterion)
if number_match:
expected_count = int(number_match.group(1))
analysis["data_completeness"] = min(100, int((analysis["item_count"] / expected_count) * 100))
if analysis["item_count"] < expected_count:
analysis["specific_gaps"].append(f"Need {expected_count - analysis['item_count']} more items")
else:
# For criteria without specific numbers, use heuristics
if "all" in criterion_lower or "every" in criterion_lower:
# For "all" criteria, we need to be more careful
analysis["data_completeness"] = 50 if analysis["item_count"] > 0 else 0
analysis["specific_gaps"].append("Verify all items are included")
else:
analysis["data_completeness"] = min(100, analysis["item_count"] * 20) # Rough estimate
return analysis
def generate_specific_next_steps(self, criterion: str) -> List[str]:
"""Generate specific, actionable next steps for a criterion."""
analysis = self.analyze_scratchpad_for_criterion_progress(criterion)
progress = self.criteria_progress.get(criterion)
next_steps = []
if not progress:
return ["Initialize progress tracking for this criterion"]
# If we have a queue of items to process
if progress.items_to_process:
next_item = progress.items_to_process[0]
next_steps.append(f"Query/process item: {next_item}")
if len(progress.items_to_process) > 1:
next_steps.append(f"Then process {len(progress.items_to_process) - 1} remaining items")
# If we have processed some items but not all
elif progress.processed_items and progress.total_items_expected:
remaining = progress.total_items_expected - len(progress.processed_items)
if remaining > 0:
next_steps.append(f"Process {remaining} more items to reach target of {progress.total_items_expected}")
# If we have data but haven't accessed it
elif analysis["relevant_data"] and not progress.processed_items:
for data_key in analysis["relevant_data"][:2]: # First 2 relevant keys
next_steps.append(f"Access and process data from '{data_key}'")
# Generic steps based on criterion keywords
else:
criterion_lower = criterion.lower()
if "email" in criterion_lower:
next_steps.append("Use email search/fetch tool to gather emails")
elif "analyze" in criterion_lower or "summary" in criterion_lower:
next_steps.append("Access stored data and create analysis/summary")
else:
next_steps.append(f"Use appropriate tools to gather data for: {criterion}")
return next_steps
def reset(self) -> None:
"""Reset state for a new task."""
self.plan = []
self.acceptance_criteria = []
self.criteria_progress = {}
self.scratchpad = {}
self.current_focus = ""
self.next_steps = []
self.overall_progress = 0
self.progress_logs = []
self.work_queue = []
self.metadata = {}

File diff suppressed because it is too large Load Diff

View File

@@ -314,7 +314,7 @@ class Crew(FlowTrackable, BaseModel):
def create_crew_memory(self) -> "Crew":
"""Initialize private memory attributes."""
self._external_memory = (
# External memory doesnt support a default value since it was designed to be managed entirely externally
# External memory doesn't support a default value since it was designed to be managed entirely externally
self.external_memory.set_crew(self) if self.external_memory else None
)
@@ -1081,6 +1081,23 @@ class Crew(FlowTrackable, BaseModel):
token_usage=token_usage,
)
def _finish_execution(self, final_string_output: str) -> None:
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
def calculate_usage_metrics(self) -> UsageMetrics:
"""Calculates and returns the usage metrics."""
total_usage_metrics = UsageMetrics()
for agent in self.agents:
if hasattr(agent, "_token_process"):
token_sum = agent._token_process.get_summary()
total_usage_metrics.add_usage_metrics(token_sum)
if self.manager_agent and hasattr(self.manager_agent, "_token_process"):
token_sum = self.manager_agent._token_process.get_summary()
total_usage_metrics.add_usage_metrics(token_sum)
self.usage_metrics = total_usage_metrics
return total_usage_metrics
def _process_async_tasks(
self,
futures: List[Tuple[Task, Future[TaskOutput], int]],
@@ -1284,23 +1301,6 @@ class Crew(FlowTrackable, BaseModel):
for agent in self.agents:
agent.interpolate_inputs(inputs)
def _finish_execution(self, final_string_output: str) -> None:
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
def calculate_usage_metrics(self) -> UsageMetrics:
"""Calculates and returns the usage metrics."""
total_usage_metrics = UsageMetrics()
for agent in self.agents:
if hasattr(agent, "_token_process"):
token_sum = agent._token_process.get_summary()
total_usage_metrics.add_usage_metrics(token_sum)
if self.manager_agent and hasattr(self.manager_agent, "_token_process"):
token_sum = self.manager_agent._token_process.get_summary()
total_usage_metrics.add_usage_metrics(token_sum)
self.usage_metrics = total_usage_metrics
return total_usage_metrics
def test(
self,
n_iterations: int,

View File

@@ -74,7 +74,7 @@ class FilteredStream(io.TextIOBase):
"give feedback / get help" in lower_s
or "litellm.info:" in lower_s
or "litellm" in lower_s
or "Consider using a smaller input or implementing a text splitting strategy" in lower_s
or "consider using a smaller input or implementing a text splitting strategy" in lower_s
):
return 0

View File

@@ -527,10 +527,10 @@ class Task(BaseModel):
def prompt(self) -> str:
"""Generates the task prompt with optional markdown formatting.
When the markdown attribute is True, instructions for formatting the
response in Markdown syntax will be added to the prompt.
Returns:
str: The formatted prompt string containing the task description,
expected output, and optional markdown formatting instructions.
@@ -541,7 +541,7 @@ class Task(BaseModel):
expected_output=self.expected_output
)
tasks_slices = [self.description, output]
if self.markdown:
markdown_instruction = """Your final answer MUST be formatted in Markdown syntax.
Follow these guidelines:
@@ -550,7 +550,8 @@ Follow these guidelines:
- Use * for italic text
- Use - or * for bullet points
- Use `code` for inline code
- Use ```language for code blocks"""
- Use ```language for code blocks
- Don't start your answer with a code block"""
tasks_slices.append(markdown_instruction)
return "\n".join(tasks_slices)

View File

@@ -1 +1,6 @@
"""Agent tools for crewAI."""
from .agent_tools import AgentTools
from .scratchpad_tool import ScratchpadTool
__all__ = ["AgentTools", "ScratchpadTool"]

View File

@@ -0,0 +1,174 @@
"""Tool for accessing data stored in the agent's scratchpad during reasoning."""
from typing import Any, Dict, Optional, Type, Union, Callable
from pydantic import BaseModel, Field
from crewai.tools import BaseTool
class ScratchpadToolSchema(BaseModel):
"""Input schema for ScratchpadTool."""
key: str = Field(
...,
description=(
"The key name to retrieve data from the scratchpad. "
"Must be one of the available keys shown in the tool description. "
"Example: if 'email_data' is listed as available, use {\"key\": \"email_data\"}"
)
)
class ScratchpadTool(BaseTool):
"""Tool that allows agents to access data stored in their scratchpad during task execution.
This tool's description is dynamically updated to show all available keys,
making it easy for agents to know what data they can retrieve.
"""
name: str = "Access Scratchpad Memory"
description: str = "Access data stored in your scratchpad memory during task execution."
args_schema: Type[BaseModel] = ScratchpadToolSchema
scratchpad_data: Dict[str, Any] = Field(default_factory=dict)
# Allow repeated usage of this tool - scratchpad access should not be limited
cache_function: Callable = lambda _args, _result: False # Don't cache scratchpad access
allow_repeated_usage: bool = True # Allow accessing the same key multiple times
def __init__(self, scratchpad_data: Optional[Dict[str, Any]] = None, **kwargs):
"""Initialize the scratchpad tool with optional initial data.
Args:
scratchpad_data: Initial scratchpad data (usually from agent state)
"""
super().__init__(**kwargs)
if scratchpad_data:
self.scratchpad_data = scratchpad_data
self._update_description()
def _run(
self,
key: str,
**kwargs: Any,
) -> Union[str, Dict[str, Any], Any]:
"""Retrieve data from the scratchpad using the specified key.
Args:
key: The key to look up in the scratchpad
Returns:
The value associated with the key, or an error message if not found
"""
print(f"[DEBUG] ScratchpadTool._run called with key: '{key}'")
print(f"[DEBUG] Current scratchpad keys: {list(self.scratchpad_data.keys())}")
print(f"[DEBUG] Scratchpad data size: {len(self.scratchpad_data)}")
if not self.scratchpad_data:
return (
"❌ SCRATCHPAD IS EMPTY\n\n"
"The scratchpad does not contain any data yet.\n"
"Data will be automatically stored here as you use other tools.\n"
"Try executing other tools first to gather information.\n\n"
"💡 TIP: Tools like search, read, or fetch operations will automatically store their results in the scratchpad."
)
if key not in self.scratchpad_data:
available_keys = list(self.scratchpad_data.keys())
keys_formatted = "\n".join(f" - '{k}'" for k in available_keys)
# Create more helpful examples based on actual keys
example_key = available_keys[0] if available_keys else 'example_key'
# Check if the user tried a similar key (case-insensitive or partial match)
similar_keys = [k for k in available_keys if key.lower() in k.lower() or k.lower() in key.lower()]
similarity_hint = ""
if similar_keys:
similarity_hint = f"\n\n🔍 Did you mean one of these?\n" + "\n".join(f" - '{k}'" for k in similar_keys)
return (
f"❌ KEY NOT FOUND: '{key}'\n"
f"{'='*50}\n\n"
f"The key '{key}' does not exist in the scratchpad.\n\n"
f"📦 AVAILABLE KEYS IN SCRATCHPAD:\n{keys_formatted}\n"
f"{similarity_hint}\n\n"
f"✅ CORRECT USAGE EXAMPLE:\n"
f"Action: Access Scratchpad Memory\n"
f"Action Input: {{\"key\": \"{example_key}\"}}\n\n"
f"⚠️ IMPORTANT:\n"
f"- Keys are case-sensitive and must match EXACTLY\n"
f"- Use the exact key name from the list above\n"
f"- Do NOT modify or guess key names\n\n"
f"{'='*50}"
)
value = self.scratchpad_data[key]
# Format the output nicely based on the type
if isinstance(value, dict):
import json
formatted_output = f"✅ Successfully retrieved data for key '{key}':\n\n"
formatted_output += json.dumps(value, indent=2)
return formatted_output
elif isinstance(value, list):
import json
formatted_output = f"✅ Successfully retrieved data for key '{key}':\n\n"
formatted_output += json.dumps(value, indent=2)
return formatted_output
else:
return f"✅ Successfully retrieved data for key '{key}':\n\n{str(value)}"
def update_scratchpad(self, new_data: Dict[str, Any]) -> None:
"""Update the scratchpad data and refresh the tool description.
Args:
new_data: The new complete scratchpad data
"""
self.scratchpad_data = new_data
self._update_description()
def _update_description(self) -> None:
"""Update the tool description to include all available keys."""
base_description = (
"Access data stored in your scratchpad memory during task execution.\n\n"
"HOW TO USE THIS TOOL:\n"
"Provide a JSON object with a 'key' field containing the exact name of the data you want to retrieve.\n"
"Example: {\"key\": \"email_data\"}"
)
if not self.scratchpad_data:
self.description = (
f"{base_description}\n\n"
"📝 STATUS: Scratchpad is currently empty.\n"
"Data will be automatically stored here as you use other tools."
)
return
# Build a description of available keys with a preview of their contents
key_descriptions = []
example_key = None
for key, value in self.scratchpad_data.items():
if not example_key:
example_key = key
# Create a brief description of what's stored
if isinstance(value, dict):
preview = f"dict with {len(value)} items"
if 'data' in value and isinstance(value['data'], list):
preview = f"list of {len(value['data'])} items"
elif isinstance(value, list):
preview = f"list of {len(value)} items"
elif isinstance(value, str):
preview = f"string ({len(value)} chars)"
else:
preview = type(value).__name__
key_descriptions.append(f" 📌 '{key}': {preview}")
available_keys_text = "\n".join(key_descriptions)
self.description = (
f"{base_description}\n\n"
f"📦 AVAILABLE DATA IN SCRATCHPAD:\n{available_keys_text}\n\n"
f"💡 EXAMPLE USAGE:\n"
f"To retrieve the '{example_key}' data, use:\n"
f"Action Input: {{\"key\": \"{example_key}\"}}"
)

View File

@@ -39,6 +39,8 @@ class BaseTool(BaseModel, ABC):
"""Maximum number of times this tool can be used. None means unlimited usage."""
current_usage_count: int = 0
"""Current number of times this tool has been used."""
allow_repeated_usage: bool = False
"""Flag to allow this tool to be used repeatedly with the same arguments."""
@field_validator("args_schema", mode="before")
@classmethod
@@ -57,7 +59,7 @@ class BaseTool(BaseModel, ABC):
},
},
)
@field_validator("max_usage_count", mode="before")
@classmethod
def validate_max_usage_count(cls, v: int | None) -> int | None:
@@ -81,11 +83,11 @@ class BaseTool(BaseModel, ABC):
# If _run is async, we safely run it
if asyncio.iscoroutine(result):
result = asyncio.run(result)
self.current_usage_count += 1
return result
def reset_usage_count(self) -> None:
"""Reset the current usage count to zero."""
self.current_usage_count = 0
@@ -109,6 +111,8 @@ class BaseTool(BaseModel, ABC):
result_as_answer=self.result_as_answer,
max_usage_count=self.max_usage_count,
current_usage_count=self.current_usage_count,
allow_repeated_usage=self.allow_repeated_usage,
cache_function=self.cache_function,
)
@classmethod
@@ -272,7 +276,7 @@ def to_langchain(
def tool(*args, result_as_answer: bool = False, max_usage_count: int | None = None) -> Callable:
"""
Decorator to create a tool from a function.
Args:
*args: Positional arguments, either the function to decorate or the tool name.
result_as_answer: Flag to indicate if the tool result should be used as the final agent answer.

View File

@@ -25,6 +25,8 @@ class CrewStructuredTool:
result_as_answer: bool = False,
max_usage_count: int | None = None,
current_usage_count: int = 0,
allow_repeated_usage: bool = False,
cache_function: Optional[Callable] = None,
) -> None:
"""Initialize the structured tool.
@@ -36,6 +38,8 @@ class CrewStructuredTool:
result_as_answer: Whether to return the output directly
max_usage_count: Maximum number of times this tool can be used. None means unlimited usage.
current_usage_count: Current number of times this tool has been used.
allow_repeated_usage: Whether to allow this tool to be used repeatedly with the same arguments.
cache_function: Function that will be used to determine if the tool should be cached.
"""
self.name = name
self.description = description
@@ -45,6 +49,8 @@ class CrewStructuredTool:
self.result_as_answer = result_as_answer
self.max_usage_count = max_usage_count
self.current_usage_count = current_usage_count
self.allow_repeated_usage = allow_repeated_usage
self.cache_function = cache_function if cache_function is not None else lambda _args=None, _result=None: True
# Validate the function signature matches the schema
self._validate_function_signature()
@@ -197,6 +203,42 @@ class CrewStructuredTool:
validated_args = self.args_schema.model_validate(raw_args)
return validated_args.model_dump()
except Exception as e:
# Check if this is a "Field required" error and try to fix it
error_str = str(e)
if "Field required" in error_str:
# Try to parse missing fields from the error
import re
from pydantic import ValidationError
if isinstance(e, ValidationError):
# Extract missing fields from validation error
missing_fields = []
for error_detail in e.errors():
if error_detail.get('type') == 'missing':
field_path = error_detail.get('loc', ())
if field_path:
missing_fields.append(field_path[0])
if missing_fields:
# Create a copy of raw_args and add missing fields with None
fixed_args = dict(raw_args) if isinstance(raw_args, dict) else {}
for field in missing_fields:
if field not in fixed_args:
fixed_args[field] = None
# Try validation again with fixed args
try:
self._logger.log("debug", f"Auto-fixing missing fields: {missing_fields}")
validated_args = self.args_schema.model_validate(fixed_args)
return validated_args.model_dump()
except Exception as retry_e:
# If it still fails, raise the original error with additional context
raise ValueError(
f"Arguments validation failed: {e}\n"
f"Attempted to auto-fix missing fields {missing_fields} but still failed: {retry_e}"
)
# For other validation errors, raise as before
raise ValueError(f"Arguments validation failed: {e}")
async def ainvoke(

View File

@@ -149,7 +149,13 @@ class ToolUsage:
tool: CrewStructuredTool,
calling: Union[ToolCalling, InstructorToolCalling],
) -> str:
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
# Check if tool allows repeated usage before blocking
allows_repeated = False
if hasattr(tool, 'allow_repeated_usage'):
allows_repeated = tool.allow_repeated_usage
elif hasattr(tool, '_tool') and hasattr(tool._tool, 'allow_repeated_usage'):
allows_repeated = tool._tool.allow_repeated_usage
if not allows_repeated and self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
try:
result = self._i18n.errors("task_repeated_usage").format(
tool_names=self.tools_names
@@ -180,7 +186,7 @@ class ToolUsage:
event_data.update(self.agent.fingerprint)
crewai_event_bus.emit(self,ToolUsageStartedEvent(**event_data))
started_at = time.time()
from_cache = False
result = None # type: ignore
@@ -250,9 +256,54 @@ class ToolUsage:
self._run_attempts += 1
if self._run_attempts > self._max_parsing_attempts:
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
error_message = self._i18n.errors("tool_usage_exception").format(
error=e, tool=tool.name, tool_inputs=tool.description
)
# Check if this is a validation error with missing fields
error_str = str(e)
if "Arguments validation failed" in error_str and "Field required" in error_str:
# Extract the field name that's missing
import re
field_match = re.search(r'(\w+)\s*Field required', error_str)
if field_match:
missing_field = field_match.group(1)
# Create a more helpful error message
error_message = (
f"Tool validation error: The '{missing_field}' parameter is required but was not provided.\n\n"
f"SOLUTION: Include ALL parameters in your tool call, even optional ones (use null for optional parameters):\n"
f'{{"tool_name": "{tool.name}", "arguments": {{'
)
# Get all expected parameters from the tool schema
if hasattr(tool, 'args_schema'):
schema_props = tool.args_schema.model_json_schema().get('properties', {})
param_examples = []
for param_name, param_info in schema_props.items():
if param_name == missing_field:
param_examples.append(f'"{param_name}": "YOUR_VALUE_HERE"')
else:
# Check if it's optional by looking at required fields
is_required = param_name in tool.args_schema.model_json_schema().get('required', [])
if not is_required:
param_examples.append(f'"{param_name}": null')
else:
param_examples.append(f'"{param_name}": "value"')
error_message += ', '.join(param_examples)
error_message += '}}\n\n'
error_message += f"Original error: {e}\n"
error_message += f"Tool description: {tool.description}"
else:
# Use the original error message
error_message = self._i18n.errors("tool_usage_exception").format(
error=e, tool=tool.name, tool_inputs=tool.description
)
else:
# Use the original error message for non-validation errors
error_message = self._i18n.errors("tool_usage_exception").format(
error=e, tool=tool.name, tool_inputs=tool.description
)
error = ToolUsageErrorException(
f"\n{error_message}.\nMoving on then. {self._i18n.slice('format').format(tool_names=self.tools_names)}"
).message
@@ -281,49 +332,54 @@ class ToolUsage:
self.tools_handler.on_tool_use(
calling=calling, output=result, should_cache=should_cache
)
self._telemetry.tool_usage(
llm=self.function_calling_llm,
tool_name=tool.name,
attempts=self._run_attempts,
)
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
data = {
"result": result,
"tool_name": tool.name,
"tool_args": calling.arguments,
}
self._telemetry.tool_usage(
llm=self.function_calling_llm,
tool_name=tool.name,
attempts=self._run_attempts,
)
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
data = {
"result": result,
"tool_name": tool.name,
"tool_args": calling.arguments,
}
self.on_tool_use_finished(
tool=tool,
tool_calling=calling,
from_cache=from_cache,
started_at=started_at,
result=result,
)
self.on_tool_use_finished(
tool=tool,
tool_calling=calling,
from_cache=from_cache,
started_at=started_at,
result=result,
)
if (
hasattr(available_tool, "result_as_answer")
and available_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
):
result_as_answer = available_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "result_as_answer"
data["result_as_answer"] = result_as_answer # type: ignore
if (
hasattr(available_tool, "result_as_answer")
and available_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
):
result_as_answer = available_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "result_as_answer"
data["result_as_answer"] = result_as_answer # type: ignore
if self.agent and hasattr(self.agent, "tools_results"):
self.agent.tools_results.append(data)
if self.agent and hasattr(self.agent, "tools_results"):
self.agent.tools_results.append(data)
if available_tool and hasattr(available_tool, 'current_usage_count'):
available_tool.current_usage_count += 1
if hasattr(available_tool, 'max_usage_count') and available_tool.max_usage_count is not None:
self._printer.print(
content=f"Tool '{available_tool.name}' usage: {available_tool.current_usage_count}/{available_tool.max_usage_count}",
color="blue"
)
if available_tool and hasattr(available_tool, 'current_usage_count'):
available_tool.current_usage_count += 1
if hasattr(available_tool, 'max_usage_count') and available_tool.max_usage_count is not None:
self._printer.print(
content=f"Tool '{available_tool.name}' usage: {available_tool.current_usage_count}/{available_tool.max_usage_count}",
color="blue"
)
return result
return result
def _format_result(self, result: Any) -> str:
if self.task:
self.task.used_tools += 1
# Handle None results explicitly
if result is None:
result = "No result returned from tool"
if self._should_remember_format():
result = self._remember_format(result=result)
return str(result)
@@ -346,24 +402,34 @@ class ToolUsage:
if not self.tools_handler:
return False
if last_tool_usage := self.tools_handler.last_used_tool:
return (calling.tool_name == last_tool_usage.tool_name) and (
# Add debug logging
print(f"[DEBUG] _check_tool_repeated_usage:")
print(f" Current tool: {calling.tool_name}")
print(f" Current args: {calling.arguments}")
print(f" Last tool: {last_tool_usage.tool_name}")
print(f" Last args: {last_tool_usage.arguments}")
is_repeated = (calling.tool_name == last_tool_usage.tool_name) and (
calling.arguments == last_tool_usage.arguments
)
print(f" Is repeated: {is_repeated}")
return is_repeated
return False
def _check_usage_limit(self, tool: Any, tool_name: str) -> str | None:
"""Check if tool has reached its usage limit.
Args:
tool: The tool to check
tool_name: The name of the tool (used for error message)
Returns:
Error message if limit reached, None otherwise
"""
if (
hasattr(tool, 'max_usage_count')
and tool.max_usage_count is not None
hasattr(tool, 'max_usage_count')
and tool.max_usage_count is not None
and tool.current_usage_count >= tool.max_usage_count
):
return f"Tool '{tool_name}' has reached its usage limit of {tool.max_usage_count} times and cannot be used anymore."

View File

@@ -25,7 +25,7 @@
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
"conversation_history_instruction": "You are a member of a crew collaborating to achieve a common goal. Your task is a specific action that contributes to this larger objective. For additional context, please review the conversation history between you and the user that led to the initiation of this crew. Use any relevant information or feedback from the conversation to inform your task execution and ensure your response aligns with both the immediate task and the crew's overall goals.",
"feedback_instructions": "User feedback: {feedback}\nInstructions: Use this feedback to enhance the next output iteration.\nNote: Do not respond or add commentary.",
"lite_agent_system_prompt_with_tools": "You are {role}. {backstory}\nYour personal goal is: {goal}\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n```",
"lite_agent_system_prompt_with_tools": "You are {role}. {backstory}\nYour personal goal is: {goal}\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the complete final answer to the original input question\n```",
"lite_agent_system_prompt_without_tools": "You are {role}. {backstory}\nYour personal goal is: {goal}\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
"lite_agent_response_format": "\nIMPORTANT: Your final answer MUST contain all the information requested in the following format: {response_format}\n\nIMPORTANT: Ensure the final output does not include any code block markers like ```json or ```python.",
"knowledge_search_query": "The original query is: {task_prompt}.",
@@ -41,7 +41,8 @@
"wrong_tool_name": "You tried to use the tool {tool}, but it doesn't exist. You must use one of the following tools, use one at time: {tools}.",
"tool_usage_exception": "I encountered an error while trying to use the tool. This was the error: {error}.\n Tool {tool} accepts these inputs: {tool_inputs}",
"agent_tool_execution_error": "Error executing task with agent '{agent_role}'. Error: {error}",
"validation_error": "### Previous attempt failed validation: {guardrail_result_error}\n\n\n### Previous result:\n{task_output}\n\n\nTry again, making sure to address the validation error."
"validation_error": "### Previous attempt failed validation: {guardrail_result_error}\n\n\n### Previous result:\n{task_output}\n\n\nTry again, making sure to address the validation error.",
"criteria_validation_error": "### Your answer did not meet all acceptance criteria\n\n### Unmet criteria:\n{unmet_criteria}\n\n### Previous result:\n{task_output}\n\n\nPlease revise your answer to ensure ALL acceptance criteria are met. Use the 'Access Scratchpad Memory' tool if you need to retrieve any previously collected information."
},
"tools": {
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolutely everything you know, don't reference things but instead explain them.",
@@ -55,7 +56,12 @@
"reasoning": {
"initial_plan": "You are {role}, a professional with the following background: {backstory}\n\nYour primary goal is: {goal}\n\nAs {role}, you are creating a strategic plan for a task that requires your expertise and unique perspective.",
"refine_plan": "You are {role}, a professional with the following background: {backstory}\n\nYour primary goal is: {goal}\n\nAs {role}, you are refining a strategic plan for a task that requires your expertise and unique perspective.",
"create_plan_prompt": "You are {role} with this background: {backstory}\n\nYour primary goal is: {goal}\n\nYou have been assigned the following task:\n{description}\n\nExpected output:\n{expected_output}\n\nAvailable tools: {tools}\n\nBefore executing this task, create a detailed plan that leverages your expertise as {role} and outlines:\n1. Your understanding of the task from your professional perspective\n2. The key steps you'll take to complete it, drawing on your background and skills\n3. How you'll approach any challenges that might arise, considering your expertise\n4. How you'll strategically use the available tools based on your experience, exactly what tools to use and how to use them\n5. The expected outcome and how it aligns with your goal\n\nAfter creating your plan, assess whether you feel ready to execute the task or if you could do better.\nConclude with one of these statements:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan because [specific reason].\"",
"refine_plan_prompt": "You are {role} with this background: {backstory}\n\nYour primary goal is: {goal}\n\nYou created the following plan for this task:\n{current_plan}\n\nHowever, you indicated that you're not ready to execute the task yet.\n\nPlease refine your plan further, drawing on your expertise as {role} to address any gaps or uncertainties. As you refine your plan, be specific about which available tools you will use, how you will use them, and why they are the best choices for each step. Clearly outline your tool usage strategy as part of your improved plan.\n\nAfter refining your plan, assess whether you feel ready to execute the task.\nConclude with one of these statements:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan further because [specific reason].\""
"create_plan_prompt": "You are {role} with this background: {backstory}\n\nYour primary goal is: {goal}\n\nYou have been assigned the following task:\n{description}\n\nExpected output:\n{expected_output}\n\nAvailable tools: {tools}\n\nBefore executing this task, create a detailed plan that leverages your expertise as {role} and outlines:\n1. Your understanding of the task from your professional perspective\n2. The key steps you'll take to complete it, drawing on your background and skills\n3. How you'll approach any challenges that might arise, considering your expertise\n4. How you'll strategically use the available tools based on your experience, exactly what tools to use and how to use them\n5. The expected outcome and how it aligns with your goal\n\nIMPORTANT: Structure your plan as follows:\n\nSTEPS:\n1. [First concrete action step]\n2. [Second concrete action step]\n3. [Continue with numbered steps...]\n\nACCEPTANCE CRITERIA:\n- [First criterion that must be met]\n- [Second criterion that must be met]\n- [Continue with criteria...]\n\nRemember: your ultimate objective is to produce the most COMPLETE Final Answer that fully meets the **Expected output** criteria.\n\nAfter creating your plan, assess whether you feel ready to execute the task or if you could do better.\nConclude with one of these statements:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan because [specific reason].\"",
"refine_plan_prompt": "You are {role} with this background: {backstory}\n\nYour primary goal is: {goal}\n\nYou created the following plan for this task:\n{current_plan}\n\nHowever, you indicated that you're not ready to execute the task yet.\n\nPlease refine your plan further, drawing on your expertise as {role} to address any gaps or uncertainties. As you refine your plan, be specific about which available tools you will use, how you will use them, and why they are the best choices for each step. Clearly outline your tool usage strategy as part of your improved plan.\n\nIMPORTANT: Structure your refined plan as follows:\n\nSTEPS:\n1. [First concrete action step]\n2. [Second concrete action step]\n3. [Continue with numbered steps...]\n\nACCEPTANCE CRITERIA:\n- [First criterion that must be met]\n- [Second criterion that must be met]\n- [Continue with criteria...]\n\nMake sure your refined strategy directly guides you toward producing the most COMPLETE Final Answer that fully satisfies the **Expected output**.\n\nAfter refining your plan, assess whether you feel ready to execute the task.\nConclude with one of these statements:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan further because [specific reason].\"",
"adaptive_reasoning_decision": "You are {role}, a professional with the following background: {backstory}\n\nYour primary goal is: {goal}\n\nAs {role}, you are currently executing a task and need to decide whether to pause and reassess your plan based on the current context.",
"mid_execution_reasoning": "You are currently executing a task and need to reassess your plan based on progress so far.\n\nTASK DESCRIPTION:\n{description}\n\nEXPECTED OUTPUT:\n{expected_output}\n\nCURRENT PROGRESS:\nSteps completed: {current_steps}\nTools used: {tools_used}\nProgress summary: {current_progress}\n\nRECENT CONVERSATION:\n{recent_messages}\n\nYour reassessment MUST focus on steering the remaining work toward a FINAL ANSWER that is as complete as possible and perfectly matches the **Expected output**.\n\nBased on the current progress and context, please reassess your plan for completing this task.\nConsider what has been accomplished, what challenges you've encountered, and what steps remain.\nAdjust your strategy if needed or confirm your current approach is still optimal.\n\nIMPORTANT: Structure your updated plan as follows:\n\nREMAINING STEPS:\n1. [First remaining action step]\n2. [Second remaining action step]\n3. [Continue with numbered steps...]\n\nUPDATED ACCEPTANCE CRITERIA (if changed):\n- [First criterion that must be met]\n- [Second criterion that must be met]\n- [Continue with criteria...]\n\nProvide a detailed updated plan for completing the task.\nEnd with \"READY: I am ready to continue executing the task.\" if you're confident in your plan.",
"mid_execution_plan": "You are {role}, a professional with the following background: {backstory}\n\nYour primary goal is: {goal}\n\nAs {role}, you are reassessing your plan during task execution based on the progress made so far.",
"mid_execution_reasoning_update": "I've reassessed my approach based on progress so far. Updated plan:\n\n{plan}",
"adaptive_reasoning_context": "\n\nTASK DESCRIPTION:\n{description}\n\nEXPECTED OUTPUT:\n{expected_output}\n\nCURRENT EXECUTION CONTEXT:\n- Steps completed: {current_steps}\n- Tools used: {tools_used}\n- Progress summary: {current_progress}\n\nConsider whether the current approach is optimal or if a strategic pause to reassess would be beneficial. You should reason when:\n- You might be approaching the task inefficiently\n- The context suggests a different strategy might be better\n- You're uncertain about the next steps\n- The progress suggests you need to reconsider your approach\n- Tool usage patterns indicate issues (e.g., repeated failures, same tool used many times, rapid switching)\n- Multiple tools have returned errors or empty results\n- You're using the same tool repeatedly without making progress\n\nPay special attention to the TOOL USAGE STATISTICS section if present, as it reveals patterns that might not be obvious from the tool list alone.\n\nDecide whether reasoning/re-planning is needed at this point."
}
}

View File

@@ -296,6 +296,8 @@ def handle_context_length(
llm: Any,
callbacks: List[Any],
i18n: Any,
task_description: Optional[str] = None,
expected_output: Optional[str] = None,
) -> None:
"""Handle context length exceeded by either summarizing or raising an error.
@@ -306,13 +308,22 @@ def handle_context_length(
llm: LLM instance for summarization
callbacks: List of callbacks for LLM
i18n: I18N instance for messages
task_description: Optional original task description
expected_output: Optional expected output
"""
if respect_context_window:
printer.print(
content="Context length exceeded. Summarizing content to fit the model context window. Might take a while...",
color="yellow",
)
summarize_messages(messages, llm, callbacks, i18n)
summarize_messages(
messages,
llm,
callbacks,
i18n,
task_description=task_description,
expected_output=expected_output,
)
else:
printer.print(
content="Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
@@ -328,6 +339,8 @@ def summarize_messages(
llm: Any,
callbacks: List[Any],
i18n: Any,
task_description: Optional[str] = None,
expected_output: Optional[str] = None,
) -> None:
"""Summarize messages to fit within context window.
@@ -336,6 +349,8 @@ def summarize_messages(
llm: LLM instance for summarization
callbacks: List of callbacks for LLM
i18n: I18N instance for messages
task_description: Optional original task description
expected_output: Optional expected output
"""
messages_string = " ".join([message["content"] for message in messages])
messages_groups = []
@@ -368,12 +383,19 @@ def summarize_messages(
merged_summary = " ".join(content["content"] for content in summarized_contents)
# Build the summary message and optionally inject the task reminder.
summary_message = i18n.slice("summary").format(merged_summary=merged_summary)
if task_description or expected_output:
summary_message += "\n\n" # blank line before the reminder
if task_description:
summary_message += f"Original task: {task_description}\n"
if expected_output:
summary_message += f"Expected output: {expected_output}"
# Replace the conversation with the new summary message.
messages.clear()
messages.append(
format_message_for_llm(
i18n.slice("summary").format(merged_summary=merged_summary)
)
)
messages.append(format_message_for_llm(summary_message))
def show_agent_logs(

View File

@@ -61,6 +61,8 @@ from .reasoning_events import (
AgentReasoningStartedEvent,
AgentReasoningCompletedEvent,
AgentReasoningFailedEvent,
AgentMidExecutionReasoningStartedEvent,
AgentMidExecutionReasoningCompletedEvent,
)
@@ -108,6 +110,7 @@ class EventListener(BaseEventListener):
event.crew_name or "Crew",
source.id,
"completed",
final_result=final_string_output,
)
@crewai_event_bus.on(CrewKickoffFailedEvent)
@@ -421,8 +424,6 @@ class EventListener(BaseEventListener):
self.formatter.current_crew_tree,
)
# ----------- REASONING EVENTS -----------
@crewai_event_bus.on(AgentReasoningStartedEvent)
def on_agent_reasoning_started(source, event: AgentReasoningStartedEvent):
self.formatter.handle_reasoning_started(
@@ -446,5 +447,37 @@ class EventListener(BaseEventListener):
self.formatter.current_crew_tree,
)
@crewai_event_bus.on(AgentMidExecutionReasoningStartedEvent)
def on_mid_execution_reasoning_started(source, event: AgentMidExecutionReasoningStartedEvent):
self.formatter.handle_reasoning_started(
self.formatter.current_agent_branch,
event.attempt if hasattr(event, "attempt") else 1,
self.formatter.current_crew_tree,
current_step=event.current_step,
reasoning_trigger=event.reasoning_trigger,
)
@crewai_event_bus.on(AgentMidExecutionReasoningCompletedEvent)
def on_mid_execution_reasoning_completed(source, event: AgentMidExecutionReasoningCompletedEvent):
self.formatter.handle_reasoning_completed(
event.updated_plan,
True,
self.formatter.current_crew_tree,
duration_seconds=event.duration_seconds,
current_step=event.current_step,
reasoning_trigger=event.reasoning_trigger,
)
from crewai.utilities.events.reasoning_events import AgentAdaptiveReasoningDecisionEvent
@crewai_event_bus.on(AgentAdaptiveReasoningDecisionEvent)
def on_adaptive_reasoning_decision(source, event: AgentAdaptiveReasoningDecisionEvent):
self.formatter.handle_adaptive_reasoning_decision(
self.formatter.current_agent_branch,
event.should_reason,
event.reasoning,
self.formatter.current_crew_tree,
)
event_listener = EventListener()

View File

@@ -19,6 +19,7 @@ class AgentReasoningCompletedEvent(BaseEvent):
plan: str
ready: bool
attempt: int = 1
duration_seconds: float = 0.0 # Time taken for reasoning in seconds
class AgentReasoningFailedEvent(BaseEvent):
@@ -28,4 +29,37 @@ class AgentReasoningFailedEvent(BaseEvent):
agent_role: str
task_id: str
error: str
attempt: int = 1
attempt: int = 1
class AgentMidExecutionReasoningStartedEvent(BaseEvent):
"""Event emitted when an agent starts mid-execution reasoning."""
type: str = "agent_mid_execution_reasoning_started"
agent_role: str
task_id: str
current_step: int
reasoning_trigger: str # "interval" or "adaptive"
class AgentMidExecutionReasoningCompletedEvent(BaseEvent):
"""Event emitted when an agent completes mid-execution reasoning."""
type: str = "agent_mid_execution_reasoning_completed"
agent_role: str
task_id: str
current_step: int
updated_plan: str
reasoning_trigger: str
duration_seconds: float = 0.0 # Time taken for reasoning in seconds
class AgentAdaptiveReasoningDecisionEvent(BaseEvent):
"""Event emitted after the agent decides whether to trigger adaptive reasoning."""
type: str = "agent_adaptive_reasoning_decision"
agent_role: str
task_id: str
should_reason: bool # Whether the agent decided to reason
reasoning: str # Brief explanation / rationale from the LLM
reasoning_trigger: str = "adaptive" # Always adaptive for this event

View File

@@ -1,4 +1,5 @@
from typing import Any, Dict, Optional
import threading
from rich.console import Console
from rich.panel import Panel
@@ -17,6 +18,14 @@ class ConsoleFormatter:
current_lite_agent_branch: Optional[Tree] = None
tool_usage_counts: Dict[str, int] = {}
current_reasoning_branch: Optional[Tree] = None # Track reasoning status
current_adaptive_decision_branch: Optional[Tree] = None # Track last adaptive decision branch
# Spinner support ---------------------------------------------------
_spinner_frames = ["", "", "", "", "", "", "", "", "", ""]
_spinner_index: int = 0
_spinner_branches: Dict[Tree, tuple[str, str, str]] = {} # branch -> (icon, name, style)
_spinner_thread: Optional[threading.Thread] = None
_stop_spinner_event: Optional[threading.Event] = None
_spinner_running: bool = False
def __init__(self, verbose: bool = False):
self.console = Console(width=None)
@@ -48,6 +57,8 @@ class ConsoleFormatter:
for label, value in fields.items():
content.append(f"{label}: ", style="white")
if label == "Result":
content.append("\n")
content.append(
f"{value}\n", style=fields.get(f"{label}_style", status_style)
)
@@ -137,6 +148,7 @@ class ConsoleFormatter:
crew_name: str,
source_id: str,
status: str = "completed",
final_result: Optional[str] = None,
) -> None:
"""Handle crew tree updates with consistent formatting."""
if not self.verbose or tree is None:
@@ -162,15 +174,26 @@ class ConsoleFormatter:
style,
)
# Prepare additional fields for the completion panel
additional_fields: Dict[str, Any] = {"ID": source_id}
# Include the final result if provided and the status is completed
if status == "completed" and final_result is not None:
additional_fields["Result"] = final_result
content = self.create_status_content(
content_title,
crew_name or "Crew",
style,
ID=source_id,
**additional_fields,
)
self.print_panel(content, title, style)
# Clear all spinners when crew completes or fails
if status in {"completed", "failed"}:
self._clear_all_spinners()
def create_crew_tree(self, crew_name: str, source_id: str) -> Optional[Tree]:
"""Create and initialize a new crew tree with initial status."""
if not self.verbose:
@@ -218,6 +241,15 @@ class ConsoleFormatter:
# Set the current_task_branch attribute directly
self.current_task_branch = task_branch
# When a new task starts, clear pointers to previous agent, reasoning,
# and tool branches so that any upcoming Reasoning / Tool logs attach
# to the correct task.
if self.current_tool_branch:
self._unregister_spinner_branch(self.current_tool_branch)
self.current_agent_branch = None
# Keep current_reasoning_branch; reasoning may still be in progress
self.current_tool_branch = None
return task_branch
def update_task_status(
@@ -265,6 +297,17 @@ class ConsoleFormatter:
)
self.print_panel(content, panel_title, style)
# Clear task-scoped pointers after the task is finished so subsequent
# events don't mistakenly attach to the old task branch.
if status in {"completed", "failed"}:
self.current_task_branch = None
self.current_agent_branch = None
self.current_tool_branch = None
# Ensure spinner is stopped if reasoning branch exists
if self.current_reasoning_branch is not None:
self._unregister_spinner_branch(self.current_reasoning_branch)
self.current_reasoning_branch = None
def create_agent_branch(
self, task_branch: Optional[Tree], agent_role: str, crew_tree: Optional[Tree]
) -> Optional[Tree]:
@@ -456,19 +499,20 @@ class ConsoleFormatter:
# Update tool usage count
self.tool_usage_counts[tool_name] = self.tool_usage_counts.get(tool_name, 0) + 1
# Find or create tool node
tool_branch = self.current_tool_branch
if tool_branch is None:
tool_branch = branch_to_use.add("")
self.current_tool_branch = tool_branch
# Always create a new branch for each tool invocation so that previous
# tool usages remain visible in the tree.
tool_branch = branch_to_use.add("")
self.current_tool_branch = tool_branch
# Update label with current count
spinner_char = self._next_spinner()
self.update_tree_label(
tool_branch,
"🔧",
f"🔧 {spinner_char}",
f"Using {tool_name} ({self.tool_usage_counts[tool_name]})",
"yellow",
)
self._register_spinner_branch(tool_branch, "🔧", f"Using {tool_name} ({self.tool_usage_counts[tool_name]})", "yellow")
# Print updated tree immediately
self.print(tree_to_use)
@@ -498,9 +542,7 @@ class ConsoleFormatter:
f"Used {tool_name} ({self.tool_usage_counts[tool_name]})",
"green",
)
# Clear the current tool branch as we're done with it
self.current_tool_branch = None
self._unregister_spinner_branch(tool_branch)
# Only print if we have a valid tree and the tool node is still in it
if isinstance(tree_to_use, Tree) and tool_branch in tree_to_use.children:
@@ -528,6 +570,7 @@ class ConsoleFormatter:
f"{tool_name} ({self.tool_usage_counts[tool_name]})",
"red",
)
self._unregister_spinner_branch(tool_branch)
if tree_to_use:
self.print(tree_to_use)
self.print()
@@ -567,7 +610,9 @@ class ConsoleFormatter:
# Only add thinking status if we don't have a current tool branch
if self.current_tool_branch is None:
tool_branch = branch_to_use.add("")
self.update_tree_label(tool_branch, "🧠", "Thinking...", "blue")
spinner_char = self._next_spinner()
self.update_tree_label(tool_branch, f"🧠 {spinner_char}", "Thinking...", "blue")
self._register_spinner_branch(tool_branch, "🧠", "Thinking...", "blue")
self.current_tool_branch = tool_branch
self.print(tree_to_use)
self.print()
@@ -601,6 +646,8 @@ class ConsoleFormatter:
for parent in parents:
if isinstance(parent, Tree) and tool_branch in parent.children:
parent.children.remove(tool_branch)
# Stop spinner for the thinking branch before removing
self._unregister_spinner_branch(tool_branch)
removed = True
break
@@ -625,6 +672,7 @@ class ConsoleFormatter:
# Update tool branch if it exists
if tool_branch:
tool_branch.label = Text("❌ LLM Failed", style="red bold")
self._unregister_spinner_branch(tool_branch)
if tree_to_use:
self.print(tree_to_use)
self.print()
@@ -1060,17 +1108,23 @@ class ConsoleFormatter:
agent_branch: Optional[Tree],
attempt: int,
crew_tree: Optional[Tree],
current_step: Optional[int] = None,
reasoning_trigger: Optional[str] = None,
) -> Optional[Tree]:
"""Handle agent reasoning started (or refinement) event."""
if not self.verbose:
return None
# Prefer LiteAgent > Agent > Task branch as the parent for reasoning
branch_to_use = (
self.current_lite_agent_branch
or agent_branch
or self.current_task_branch
)
# Prefer to nest under the latest adaptive decision branch when this is a
# mid-execution reasoning cycle so the tree indents nicely.
if current_step is not None and self.current_adaptive_decision_branch is not None:
branch_to_use = self.current_adaptive_decision_branch
else:
branch_to_use = (
self.current_lite_agent_branch
or agent_branch
or self.current_task_branch
)
# We always want to render the full crew tree when possible so the
# Live view updates coherently. Fallbacks: crew tree → branch itself.
@@ -1086,11 +1140,21 @@ class ConsoleFormatter:
reasoning_branch = branch_to_use.add("")
self.current_reasoning_branch = reasoning_branch
# Build label text depending on attempt
status_text = (
f"Reasoning (Attempt {attempt})" if attempt > 1 else "Reasoning..."
)
self.update_tree_label(reasoning_branch, "🧠", status_text, "blue")
# Build label text depending on attempt and whether it's mid-execution
if current_step is not None:
status_text = "Mid-Execution Reasoning"
else:
status_text = (
f"Reasoning (Attempt {attempt})" if attempt > 1 else "Reasoning..."
)
# ⠋ is the first frame of a braille spinner visually hints progress even
# without true animation.
spinner_char = self._next_spinner()
self.update_tree_label(reasoning_branch, f"🧠 {spinner_char}", status_text, "yellow")
# Register branch for continuous spinner
self._register_spinner_branch(reasoning_branch, "🧠", status_text, "yellow")
self.print(tree_to_use)
self.print()
@@ -1102,6 +1166,9 @@ class ConsoleFormatter:
plan: str,
ready: bool,
crew_tree: Optional[Tree],
duration_seconds: float = 0.0,
current_step: Optional[int] = None,
reasoning_trigger: Optional[str] = None,
) -> None:
"""Handle agent reasoning completed event."""
if not self.verbose:
@@ -1115,10 +1182,31 @@ class ConsoleFormatter:
or crew_tree
)
style = "green" if ready else "yellow"
status_text = "Reasoning Completed" if ready else "Reasoning Completed (Not Ready)"
# Completed reasoning should always display in green.
style = "green"
# Build duration part separately for cleaner formatting
duration_part = f"{duration_seconds:.2f}s" if duration_seconds > 0 else ""
if reasoning_branch is not None:
if current_step is not None:
# Build label manually to style duration differently and omit trigger info.
if reasoning_branch is not None:
label = Text()
label.append("", style=f"{style} bold")
label.append("Mid-Execution Reasoning Completed", style=style)
if duration_part:
label.append(f" ({duration_part})", style="cyan")
reasoning_branch.label = label
status_text = None # Already set label manually
else:
status_text = (
f"Reasoning Completed ({duration_part})" if duration_part else "Reasoning Completed"
) if ready else (
f"Reasoning Completed (Not Ready • {duration_part})" if duration_part else "Reasoning Completed (Not Ready)"
)
# If we didn't build a custom label (non-mid-execution case), use helper
if status_text and reasoning_branch is not None:
self.update_tree_label(reasoning_branch, "", status_text, style)
if tree_to_use is not None:
@@ -1126,9 +1214,17 @@ class ConsoleFormatter:
# Show plan in a panel (trim very long plans)
if plan:
# Derive duration text for panel title
duration_text = f" ({duration_part})" if duration_part else ""
if current_step is not None:
title = f"🧠 Mid-Execution Reasoning Plan{duration_text}"
else:
title = f"🧠 Reasoning Plan{duration_text}"
plan_panel = Panel(
Text(plan, style="white"),
title="🧠 Reasoning Plan",
title=title,
border_style=style,
padding=(1, 2),
)
@@ -1136,9 +1232,17 @@ class ConsoleFormatter:
self.print()
# Unregister spinner before clearing
if reasoning_branch is not None:
self._unregister_spinner_branch(reasoning_branch)
# Clear stored branch after completion
self.current_reasoning_branch = None
# After reasoning finished, we also clear the adaptive decision branch to
# avoid nesting unrelated future nodes.
self.current_adaptive_decision_branch = None
def handle_reasoning_failed(
self,
error: str,
@@ -1158,6 +1262,7 @@ class ConsoleFormatter:
if reasoning_branch is not None:
self.update_tree_label(reasoning_branch, "", "Reasoning Failed", "red")
self._unregister_spinner_branch(reasoning_branch)
if tree_to_use is not None:
self.print(tree_to_use)
@@ -1173,3 +1278,115 @@ class ConsoleFormatter:
# Clear stored branch after failure
self.current_reasoning_branch = None
# ----------- ADAPTIVE REASONING DECISION EVENTS -----------
def handle_adaptive_reasoning_decision(
self,
agent_branch: Optional[Tree],
should_reason: bool,
reasoning: str,
crew_tree: Optional[Tree],
) -> None:
"""Render the decision on whether to trigger adaptive reasoning."""
if not self.verbose:
return
# Prefer LiteAgent > Agent > Task as parent
branch_to_use = (
self.current_lite_agent_branch
or agent_branch
or self.current_task_branch
)
tree_to_use = self.current_crew_tree or crew_tree or branch_to_use
if branch_to_use is None or tree_to_use is None:
return
decision_branch = branch_to_use.add("")
decision_text = "YES" if should_reason else "NO"
style = "green" if should_reason else "yellow"
self.update_tree_label(
decision_branch,
"🤔",
f"Adaptive Reasoning Decision: {decision_text}",
style,
)
# Print tree first (live update)
self.print(tree_to_use)
# Also show explanation if available
if reasoning:
truncated_reasoning = reasoning[:500] + "..." if len(reasoning) > 500 else reasoning
panel = Panel(
Text(truncated_reasoning, style="white"),
title="🤔 Adaptive Reasoning Rationale",
border_style=style,
padding=(1, 2),
)
self.print(panel)
self.print()
# Store the decision branch so that subsequent mid-execution reasoning nodes
# can be rendered as children of this decision (for better indentation).
self.current_adaptive_decision_branch = decision_branch
# ------------------------------------------------------------------
# Spinner helpers
# ------------------------------------------------------------------
def _next_spinner(self) -> str:
"""Return next spinner frame."""
frame = self._spinner_frames[self._spinner_index]
self._spinner_index = (self._spinner_index + 1) % len(self._spinner_frames)
return frame
def _register_spinner_branch(self, branch: Tree, icon: str, name: str, style: str):
"""Start animating spinner for given branch."""
self._spinner_branches[branch] = (icon, name, style)
if not self._spinner_running:
self._start_spinner_thread()
def _unregister_spinner_branch(self, branch: Optional[Tree]):
if branch is None:
return
self._spinner_branches.pop(branch, None)
if not self._spinner_branches:
self._stop_spinner_thread()
def _start_spinner_thread(self):
if self._spinner_running:
return
self._stop_spinner_event = threading.Event()
self._spinner_thread = threading.Thread(target=self._spinner_loop, daemon=True)
self._spinner_thread.start()
self._spinner_running = True
def _stop_spinner_thread(self):
if self._stop_spinner_event:
self._stop_spinner_event.set()
self._spinner_running = False
def _clear_all_spinners(self):
"""Clear all active spinners. Used as a safety mechanism."""
self._spinner_branches.clear()
self._stop_spinner_thread()
def _spinner_loop(self):
import time
while self._stop_spinner_event and not self._stop_spinner_event.is_set():
if self._live and self._spinner_branches:
for branch, (icon, name, style) in list(self._spinner_branches.items()):
spinner_char = self._next_spinner()
self.update_tree_label(branch, f"{icon} {spinner_char}", name, style)
# Refresh live view
try:
self._live.update(self._live.renderable, refresh=True)
except Exception:
pass
time.sleep(0.15)

View File

@@ -1,6 +1,6 @@
import logging
import json
from typing import Tuple, cast
from typing import Tuple, cast, List, Optional, Dict, Any
from pydantic import BaseModel, Field
@@ -16,10 +16,17 @@ from crewai.utilities.events.reasoning_events import (
)
class StructuredPlan(BaseModel):
"""Structured representation of a task plan."""
steps: List[str] = Field(description="List of steps to complete the task")
acceptance_criteria: List[str] = Field(description="Criteria that must be met before task is considered complete")
class ReasoningPlan(BaseModel):
"""Model representing a reasoning plan for a task."""
plan: str = Field(description="The detailed reasoning plan for the task.")
ready: bool = Field(description="Whether the agent is ready to execute the task.")
structured_plan: Optional[StructuredPlan] = Field(default=None, description="Structured version of the plan")
class AgentReasoningOutput(BaseModel):
@@ -31,6 +38,8 @@ class ReasoningFunction(BaseModel):
"""Model for function calling with reasoning."""
plan: str = Field(description="The detailed reasoning plan for the task.")
ready: bool = Field(description="Whether the agent is ready to execute the task.")
steps: Optional[List[str]] = Field(default=None, description="List of steps to complete the task")
acceptance_criteria: Optional[List[str]] = Field(default=None, description="Criteria that must be met before task is complete")
class AgentReasoning:
@@ -38,7 +47,7 @@ class AgentReasoning:
Handles the agent reasoning process, enabling an agent to reflect and create a plan
before executing a task.
"""
def __init__(self, task: Task, agent: Agent):
def __init__(self, task: Task, agent: Agent, extra_context: str | None = None):
if not task or not agent:
raise ValueError("Both task and agent must be provided.")
self.task = task
@@ -46,6 +55,7 @@ class AgentReasoning:
self.llm = cast(LLM, agent.llm)
self.logger = logging.getLogger(__name__)
self.i18n = I18N()
self.extra_context = extra_context or ""
def handle_agent_reasoning(self) -> AgentReasoningOutput:
"""
@@ -55,6 +65,9 @@ class AgentReasoning:
Returns:
AgentReasoningOutput: The output of the agent reasoning process.
"""
import time
start_time = time.time()
# Emit a reasoning started event (attempt 1)
try:
crewai_event_bus.emit(
@@ -72,6 +85,8 @@ class AgentReasoning:
try:
output = self.__handle_agent_reasoning()
duration_seconds = time.time() - start_time
# Emit reasoning completed event
try:
crewai_event_bus.emit(
@@ -82,6 +97,7 @@ class AgentReasoning:
plan=output.plan.plan,
ready=output.plan.ready,
attempt=1,
duration_seconds=duration_seconds,
),
)
except Exception:
@@ -112,25 +128,25 @@ class AgentReasoning:
Returns:
AgentReasoningOutput: The output of the agent reasoning process.
"""
plan, ready = self.__create_initial_plan()
plan, ready, structured_plan = self.__create_initial_plan()
plan, ready = self.__refine_plan_if_needed(plan, ready)
plan, ready, structured_plan = self.__refine_plan_if_needed(plan, ready, structured_plan)
reasoning_plan = ReasoningPlan(plan=plan, ready=ready)
reasoning_plan = ReasoningPlan(plan=plan, ready=ready, structured_plan=structured_plan)
return AgentReasoningOutput(plan=reasoning_plan)
def __create_initial_plan(self) -> Tuple[str, bool]:
def __create_initial_plan(self) -> Tuple[str, bool, Optional[StructuredPlan]]:
"""
Creates the initial reasoning plan for the task.
Returns:
Tuple[str, bool]: The initial plan and whether the agent is ready to execute the task.
Tuple[str, bool, Optional[StructuredPlan]]: The initial plan, whether the agent is ready, and structured plan.
"""
reasoning_prompt = self.__create_reasoning_prompt()
if self.llm.supports_function_calling():
plan, ready = self.__call_with_function(reasoning_prompt, "initial_plan")
return plan, ready
plan, ready, structured_plan = self.__call_with_function(reasoning_prompt, "initial_plan")
return plan, ready, structured_plan
else:
system_prompt = self.i18n.retrieve("reasoning", "initial_plan").format(
role=self.agent.role,
@@ -145,18 +161,21 @@ class AgentReasoning:
]
)
return self.__parse_reasoning_response(str(response))
plan, ready = self.__parse_reasoning_response(str(response))
structured_plan = self.__extract_structured_plan(plan)
return plan, ready, structured_plan
def __refine_plan_if_needed(self, plan: str, ready: bool) -> Tuple[str, bool]:
def __refine_plan_if_needed(self, plan: str, ready: bool, structured_plan: Optional[StructuredPlan]) -> Tuple[str, bool, Optional[StructuredPlan]]:
"""
Refines the reasoning plan if the agent is not ready to execute the task.
Args:
plan: The current reasoning plan.
ready: Whether the agent is ready to execute the task.
structured_plan: The current structured plan.
Returns:
Tuple[str, bool]: The refined plan and whether the agent is ready to execute the task.
Tuple[str, bool, Optional[StructuredPlan]]: The refined plan, ready status, and structured plan.
"""
attempt = 1
max_attempts = self.agent.max_reasoning_attempts
@@ -178,7 +197,7 @@ class AgentReasoning:
refine_prompt = self.__create_refine_prompt(plan)
if self.llm.supports_function_calling():
plan, ready = self.__call_with_function(refine_prompt, "refine_plan")
plan, ready, structured_plan = self.__call_with_function(refine_prompt, "refine_plan")
else:
system_prompt = self.i18n.retrieve("reasoning", "refine_plan").format(
role=self.agent.role,
@@ -193,6 +212,7 @@ class AgentReasoning:
]
)
plan, ready = self.__parse_reasoning_response(str(response))
structured_plan = self.__extract_structured_plan(plan)
attempt += 1
@@ -202,9 +222,9 @@ class AgentReasoning:
)
break
return plan, ready
return plan, ready, structured_plan
def __call_with_function(self, prompt: str, prompt_type: str) -> Tuple[str, bool]:
def __call_with_function(self, prompt: str, prompt_type: str) -> Tuple[str, bool, Optional[StructuredPlan]]:
"""
Calls the LLM with function calling to get a reasoning plan.
@@ -213,7 +233,7 @@ class AgentReasoning:
prompt_type: The type of prompt (initial_plan or refine_plan).
Returns:
Tuple[str, bool]: A tuple containing the plan and whether the agent is ready.
Tuple[str, bool, Optional[StructuredPlan]]: A tuple containing the plan, ready status, and structured plan.
"""
self.logger.debug(f"Using function calling for {prompt_type} reasoning")
@@ -232,6 +252,16 @@ class AgentReasoning:
"ready": {
"type": "boolean",
"description": "Whether the agent is ready to execute the task."
},
"steps": {
"type": "array",
"items": {"type": "string"},
"description": "List of steps to complete the task"
},
"acceptance_criteria": {
"type": "array",
"items": {"type": "string"},
"description": "Criteria that must be met before task is considered complete"
}
},
"required": ["plan", "ready"]
@@ -247,9 +277,14 @@ class AgentReasoning:
)
# Prepare a simple callable that just returns the tool arguments as JSON
def _create_reasoning_plan(plan: str, ready: bool): # noqa: N802
def _create_reasoning_plan(plan: str, ready: bool, steps: Optional[List[str]] = None, acceptance_criteria: Optional[List[str]] = None): # noqa: N802
"""Return the reasoning plan result in JSON string form."""
return json.dumps({"plan": plan, "ready": ready})
return json.dumps({
"plan": plan,
"ready": ready,
"steps": steps,
"acceptance_criteria": acceptance_criteria
})
response = self.llm.call(
[
@@ -265,12 +300,19 @@ class AgentReasoning:
try:
result = json.loads(response)
if "plan" in result and "ready" in result:
return result["plan"], result["ready"]
structured_plan = None
if result.get("steps") or result.get("acceptance_criteria"):
structured_plan = StructuredPlan(
steps=result.get("steps", []),
acceptance_criteria=result.get("acceptance_criteria", [])
)
return result["plan"], result["ready"], structured_plan
except (json.JSONDecodeError, KeyError):
pass
response_str = str(response)
return response_str, "READY: I am ready to execute the task." in response_str
structured_plan = self.__extract_structured_plan(response_str)
return response_str, "READY: I am ready to execute the task." in response_str, structured_plan
except Exception as e:
self.logger.warning(f"Error during function calling: {str(e)}. Falling back to text parsing.")
@@ -290,10 +332,11 @@ class AgentReasoning:
)
fallback_str = str(fallback_response)
return fallback_str, "READY: I am ready to execute the task." in fallback_str
structured_plan = self.__extract_structured_plan(fallback_str)
return fallback_str, "READY: I am ready to execute the task." in fallback_str, structured_plan
except Exception as inner_e:
self.logger.error(f"Error during fallback text parsing: {str(inner_e)}")
return "Failed to generate a plan due to an error.", True # Default to ready to avoid getting stuck
return "Failed to generate a plan due to an error.", True, None # Default to ready to avoid getting stuck
def __get_agent_backstory(self) -> str:
"""
@@ -317,7 +360,7 @@ class AgentReasoning:
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory(),
description=self.task.description,
description=self.task.description + (f"\n\nContext:\n{self.extra_context}" if self.extra_context else ""),
expected_output=self.task.expected_output,
tools=available_tools
)
@@ -368,7 +411,7 @@ class AgentReasoning:
plan = response
ready = False
if "READY: I am ready to execute the task." in response:
if "READY: I am ready to execute the task." in response or "READY: I am ready to continue executing the task." in response:
ready = True
return plan, ready
@@ -385,3 +428,403 @@ class AgentReasoning:
"The _handle_agent_reasoning method is deprecated. Use handle_agent_reasoning instead."
)
return self.handle_agent_reasoning()
def _emit_reasoning_event(self, event_class, **kwargs):
"""Centralized method for emitting reasoning events."""
try:
reasoning_trigger = "interval"
if hasattr(self.agent, 'adaptive_reasoning') and self.agent.adaptive_reasoning:
reasoning_trigger = "adaptive"
crewai_event_bus.emit(
self.agent,
event_class(
agent_role=self.agent.role,
task_id=str(self.task.id),
reasoning_trigger=reasoning_trigger,
**kwargs
),
)
except Exception:
# Ignore event bus errors to avoid breaking execution
pass
def handle_mid_execution_reasoning(
self,
current_steps: int,
tools_used: list,
current_progress: str,
iteration_messages: list
) -> AgentReasoningOutput:
"""
Handle reasoning during task execution with context about current progress.
Args:
current_steps: Number of steps executed so far
tools_used: List of tools that have been used
current_progress: Summary of progress made so far
iteration_messages: Recent conversation messages
Returns:
AgentReasoningOutput: Updated reasoning plan based on current context
"""
import time
start_time = time.time()
from crewai.utilities.events.reasoning_events import AgentMidExecutionReasoningStartedEvent
self._emit_reasoning_event(
AgentMidExecutionReasoningStartedEvent,
current_step=current_steps
)
try:
output = self.__handle_mid_execution_reasoning(
current_steps, tools_used, current_progress, iteration_messages
)
duration_seconds = time.time() - start_time
# Emit completed event
from crewai.utilities.events.reasoning_events import AgentMidExecutionReasoningCompletedEvent
self._emit_reasoning_event(
AgentMidExecutionReasoningCompletedEvent,
current_step=current_steps,
updated_plan=output.plan.plan,
duration_seconds=duration_seconds
)
return output
except Exception as e:
# Emit failed event
from crewai.utilities.events.reasoning_events import AgentReasoningFailedEvent
self._emit_reasoning_event(
AgentReasoningFailedEvent,
error=str(e),
attempt=1
)
raise
def __handle_mid_execution_reasoning(
self,
current_steps: int,
tools_used: list,
current_progress: str,
iteration_messages: list
) -> AgentReasoningOutput:
"""
Private method that handles the mid-execution reasoning process.
Args:
current_steps: Number of steps executed so far
tools_used: List of tools that have been used
current_progress: Summary of progress made so far
iteration_messages: Recent conversation messages
Returns:
AgentReasoningOutput: The output of the mid-execution reasoning process.
"""
mid_execution_prompt = self.__create_mid_execution_prompt(
current_steps, tools_used, current_progress, iteration_messages
)
if self.llm.supports_function_calling():
plan, ready, structured_plan = self.__call_with_function(mid_execution_prompt, "mid_execution_plan")
else:
# Use the same prompt for system context
system_prompt = self.i18n.retrieve("reasoning", "mid_execution_plan").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory()
)
response = self.llm.call(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": mid_execution_prompt}
]
)
plan, ready = self.__parse_reasoning_response(str(response))
structured_plan = self.__extract_structured_plan(plan)
reasoning_plan = ReasoningPlan(plan=plan, ready=ready, structured_plan=structured_plan)
return AgentReasoningOutput(plan=reasoning_plan)
def __create_mid_execution_prompt(
self,
current_steps: int,
tools_used: list,
current_progress: str,
iteration_messages: list
) -> str:
"""
Creates a prompt for the agent to reason during task execution.
Args:
current_steps: Number of steps executed so far
tools_used: List of tools that have been used
current_progress: Summary of progress made so far
iteration_messages: Recent conversation messages
Returns:
str: The mid-execution reasoning prompt.
"""
tools_used_str = ", ".join(tools_used) if tools_used else "No tools used yet"
recent_messages = ""
if iteration_messages:
recent_msgs = iteration_messages[-6:] if len(iteration_messages) > 6 else iteration_messages
for msg in recent_msgs:
role = msg.get("role", "unknown")
content = msg.get("content", "")
if content:
recent_messages += f"{role.upper()}: {content[:200]}...\n\n"
return self.i18n.retrieve("reasoning", "mid_execution_reasoning").format(
description=self.task.description + (f"\n\nContext:\n{self.extra_context}" if self.extra_context else ""),
expected_output=self.task.expected_output,
current_steps=current_steps,
tools_used=tools_used_str,
current_progress=current_progress,
recent_messages=recent_messages
)
def should_adaptive_reason_llm(
self,
current_steps: int,
tools_used: list,
current_progress: str,
tool_usage_stats: Optional[Dict[str, Any]] = None
) -> bool:
"""
Use LLM function calling to determine if adaptive reasoning should be triggered.
Args:
current_steps: Number of steps executed so far
tools_used: List of tools that have been used
current_progress: Summary of progress made so far
tool_usage_stats: Optional statistics about tool usage patterns
Returns:
bool: True if reasoning should be triggered, False otherwise.
"""
try:
decision_prompt = self.__create_adaptive_reasoning_decision_prompt(
current_steps, tools_used, current_progress, tool_usage_stats
)
if self.llm.supports_function_calling():
should_reason, reasoning_expl = self.__call_adaptive_reasoning_function(decision_prompt)
else:
should_reason, reasoning_expl = self.__call_adaptive_reasoning_text(decision_prompt)
# Emit an event so the UI/console can display the decision
try:
from crewai.utilities.events.reasoning_events import AgentAdaptiveReasoningDecisionEvent
self._emit_reasoning_event(
AgentAdaptiveReasoningDecisionEvent,
should_reason=should_reason,
reasoning=reasoning_expl,
)
except Exception:
# Ignore event bus errors to avoid breaking execution
pass
return should_reason
except Exception as e:
self.logger.warning(f"Error during adaptive reasoning decision: {str(e)}. Defaulting to no reasoning.")
return False
def __call_adaptive_reasoning_function(self, prompt: str) -> tuple[bool, str]:
"""Call LLM with function calling for adaptive reasoning decision."""
function_schema = {
"type": "function",
"function": {
"name": "decide_reasoning_need",
"description": "Decide whether reasoning is needed based on current task execution context",
"parameters": {
"type": "object",
"properties": {
"should_reason": {
"type": "boolean",
"description": "Whether reasoning/re-planning is needed at this point in task execution."
},
"reasoning": {
"type": "string",
"description": "Brief explanation of why reasoning is or isn't needed."
},
"detected_issues": {
"type": "array",
"items": {"type": "string"},
"description": "List of specific issues detected (e.g., 'repeated tool failures', 'no progress', 'inefficient approach')"
}
},
"required": ["should_reason", "reasoning"]
}
}
}
def _decide_reasoning_need(should_reason: bool, reasoning: str, detected_issues: Optional[List[str]] = None):
"""Return the reasoning decision result in JSON string form."""
result = {
"should_reason": should_reason,
"reasoning": reasoning
}
if detected_issues:
result["detected_issues"] = detected_issues
# Append detected issues to reasoning explanation
issues_str = ", ".join(detected_issues)
result["reasoning"] = f"{reasoning} Detected issues: {issues_str}"
return json.dumps(result)
system_prompt = self.i18n.retrieve("reasoning", "adaptive_reasoning_decision").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory()
)
response = self.llm.call(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
tools=[function_schema],
available_functions={"decide_reasoning_need": _decide_reasoning_need},
)
try:
result = json.loads(response)
reasoning_text = result.get("reasoning", "No explanation provided")
if result.get("detected_issues"):
# Include detected issues in the reasoning text for logging
self.logger.debug(f"Adaptive reasoning detected issues: {result['detected_issues']}")
return result.get("should_reason", False), reasoning_text
except (json.JSONDecodeError, KeyError):
return False, "No explanation provided"
def __call_adaptive_reasoning_text(self, prompt: str) -> tuple[bool, str]:
"""Fallback text-based adaptive reasoning decision."""
system_prompt = self.i18n.retrieve("reasoning", "adaptive_reasoning_decision").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory()
)
response = self.llm.call([
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt + "\n\nRespond with 'YES' if reasoning is needed, 'NO' if not."}
])
return "YES" in str(response).upper(), "No explanation provided"
def __create_adaptive_reasoning_decision_prompt(
self,
current_steps: int,
tools_used: list,
current_progress: str,
tool_usage_stats: Optional[Dict[str, Any]] = None
) -> str:
"""Create prompt for adaptive reasoning decision."""
tools_used_str = ", ".join(tools_used) if tools_used else "No tools used yet"
# Add tool usage statistics to the prompt
tool_stats_str = ""
if tool_usage_stats:
tool_stats_str = f"\n\nTOOL USAGE STATISTICS:\n"
tool_stats_str += f"- Total tool invocations: {tool_usage_stats.get('total_tool_uses', 0)}\n"
tool_stats_str += f"- Unique tools used: {tool_usage_stats.get('unique_tools', 0)}\n"
if tool_usage_stats.get('tools_by_frequency'):
tool_stats_str += "- Tool frequency:\n"
for tool, count in tool_usage_stats['tools_by_frequency'].items():
tool_stats_str += f"{tool}: {count} times\n"
if tool_usage_stats.get('recent_patterns'):
tool_stats_str += f"- Recent patterns: {tool_usage_stats['recent_patterns']}\n"
# Use the prompt from i18n and format it with the current context
base_prompt = self.i18n.retrieve("reasoning", "adaptive_reasoning_decision").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory()
)
context_prompt = self.i18n.retrieve("reasoning", "adaptive_reasoning_context").format(
description=self.task.description + (f"\n\nContext:\n{self.extra_context}" if self.extra_context else ""),
expected_output=self.task.expected_output,
current_steps=current_steps,
tools_used=tools_used_str,
current_progress=current_progress + tool_stats_str
)
prompt = base_prompt + context_prompt
return prompt
def __extract_structured_plan(self, plan: str) -> Optional[StructuredPlan]:
"""
Extracts a structured plan from the given plan text.
Args:
plan: The plan text.
Returns:
Optional[StructuredPlan]: The extracted structured plan or None if no plan was found.
"""
if not plan:
return None
import re
steps = []
acceptance_criteria = []
# Look for numbered steps (1., 2., etc.)
step_pattern = r'^\s*(?:\d+\.|\-|\*)\s*(.+)$'
# Look for acceptance criteria section
in_acceptance_section = False
lines = plan.split('\n')
for line in lines:
line = line.strip()
# Check if we're entering acceptance criteria section
if any(marker in line.lower() for marker in ['acceptance criteria', 'success criteria', 'completion criteria']):
in_acceptance_section = True
continue
# Skip empty lines
if not line:
continue
# Extract steps or criteria
match = re.match(step_pattern, line, re.MULTILINE)
if match:
content = match.group(1).strip()
if in_acceptance_section:
acceptance_criteria.append(content)
else:
steps.append(content)
elif line and not line.endswith(':'): # Non-empty line that's not a header
if in_acceptance_section:
acceptance_criteria.append(line)
else:
# Check if it looks like a step (starts with action verb)
action_verbs = ['create', 'implement', 'design', 'build', 'test', 'verify', 'check', 'ensure', 'analyze', 'review']
if any(line.lower().startswith(verb) for verb in action_verbs):
steps.append(line)
# If we found steps or criteria, return structured plan
if steps or acceptance_criteria:
return StructuredPlan(
steps=steps,
acceptance_criteria=acceptance_criteria
)
return None

View File

@@ -0,0 +1,89 @@
from unittest.mock import MagicMock, patch
import pytest
from crewai import Agent, Crew, Task
from crewai.agents.crew_agent_executor import CrewAgentExecutor
def _create_executor(agent): # noqa: D401,E501
"""Utility to build a minimal CrewAgentExecutor with the given agent.
A real LLM call is not required for these unit-tests, so we stub it with
MagicMock to avoid any network interaction.
"""
return CrewAgentExecutor(
llm=MagicMock(),
task=MagicMock(),
crew=MagicMock(),
agent=agent,
prompt={},
max_iter=5,
tools=[],
tools_names="",
stop_words=[],
tools_description="",
tools_handler=MagicMock(),
)
def test_agent_adaptive_reasoning_default():
"""Agent.adaptive_reasoning should be False by default."""
agent = Agent(role="Test", goal="Goal", backstory="Backstory")
assert agent.adaptive_reasoning is False
@pytest.mark.parametrize("adaptive_decision,expected", [(True, True), (False, False)])
def test_should_trigger_reasoning_with_adaptive_reasoning(adaptive_decision, expected):
"""Verify _should_trigger_reasoning defers to _should_adaptive_reason when
adaptive_reasoning is enabled and reasoning_interval is None."""
# Use a lightweight mock instead of a full Agent instance to isolate the logic
agent = MagicMock()
agent.reasoning = True
agent.reasoning_interval = None
agent.adaptive_reasoning = True
executor = _create_executor(agent)
# Ensure the helper returns the desired decision
with patch.object(executor, "_should_adaptive_reason", return_value=adaptive_decision) as mock_adaptive:
assert executor._should_trigger_reasoning() is expected
mock_adaptive.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_adaptive_reasoning_full_execution():
"""End-to-end test that triggers adaptive reasoning in a real execution flow.
The task description intentionally contains the word "error" to activate the
simple error-based heuristic inside `_should_adaptive_reason`, guaranteeing
that the agent reasons mid-execution without relying on patched internals.
"""
agent = Agent(
role="Math Analyst",
goal="Solve arithmetic problems flawlessly",
backstory="You excel at basic calculations and always double-check your steps.",
llm="gpt-4o-mini",
reasoning=True,
adaptive_reasoning=True,
verbose=False,
)
task = Task(
description="There was an unexpected error earlier. Now, please calculate 3 + 5 and return only the number.",
expected_output="The result of the calculation (a single number).",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Validate the answer is correct and numeric
assert result.raw.strip() == "8"
# Confirm that an adaptive reasoning message (Updated plan) was injected
assert any(
"updated plan" in msg.get("content", "").lower()
for msg in agent.agent_executor.messages
)

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1020,4 +1020,63 @@ interactions:
- req_83a900d075a98ab391c27c5d1cd4fbcb
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
CtcMCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSrgwKEgoQY3Jld2FpLnRl
bGVtZXRyeRKUCAoQot+4QIkYBzRK/SkLTbr2XBIIKFjBQjUmSxQqDENyZXcgQ3JlYXRlZDABOdDB
ddshVEMYQbBDfdshVEMYShsKDmNyZXdhaV92ZXJzaW9uEgkKBzAuMTIxLjBKGgoOcHl0aG9uX3Zl
cnNpb24SCAoGMy4xMS43Si4KCGNyZXdfa2V5EiIKIDY5NDY1NGEzMThmNzE5ODgzYzA2ZjhlNmQ5
YTc1NDlmSjEKB2NyZXdfaWQSJgokYTgxMTFiOTktZWJkMy00ZWYzLWFmNmQtMTk1ZDhiYjNhN2Jl
ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3
X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUo6ChBjcmV3
X2ZpbmdlcnByaW50EiYKJGQ2YTE3OTk4LTQ0ODgtNDQ0Mi1iY2I3LWZiYzdlMDU1NjE4MUo7Chtj
cmV3X2ZpbmdlcnByaW50X2NyZWF0ZWRfYXQSHAoaMjAyNS0wNS0yN1QwMToxMzowNC43NDEyNzRK
zAIKC2NyZXdfYWdlbnRzErwCCrkCW3sia2V5IjogIjU1ODY5YmNiMTYzMjNlNzEyOWQyNTIzNjJj
ODU1ZGE2IiwgImlkIjogIjdiOTMxZWIzLTRiM2YtNGI3OC1hOWEzLTY4ODZiNTE1M2QxZiIsICJy
b2xlIjogIlNheSBIaSIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyNSwgIm1heF9y
cG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJ0ZXN0LW1vZGVs
IiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6
IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUr7AQoKY3Jl
d190YXNrcxLsAQrpAVt7ImtleSI6ICJkZTI5NDBmMDZhZDhhNDE2YzI4Y2MwZjI2MTBmMTgwYiIs
ICJpZCI6ICI5MWU0NjUyYy1kMzk0LTQyMGQtYTIwOS0wNzlhYThkN2E5MDAiLCAiYXN5bmNfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlNh
eSBIaSIsICJhZ2VudF9rZXkiOiAiNTU4NjliY2IxNjMyM2U3MTI5ZDI1MjM2MmM4NTVkYTYiLCAi
dG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKABAoQG7YeGAh0HoexHn1XjCcuCRIIHGHDZGTQ
CskqDFRhc2sgQ3JlYXRlZDABObDFkdshVEMYQThWktshVEMYSi4KCGNyZXdfa2V5EiIKIDY5NDY1
NGEzMThmNzE5ODgzYzA2ZjhlNmQ5YTc1NDlmSjEKB2NyZXdfaWQSJgokYTgxMTFiOTktZWJkMy00
ZWYzLWFmNmQtMTk1ZDhiYjNhN2JlSi4KCHRhc2tfa2V5EiIKIGRlMjk0MGYwNmFkOGE0MTZjMjhj
YzBmMjYxMGYxODBiSjEKB3Rhc2tfaWQSJgokOTFlNDY1MmMtZDM5NC00MjBkLWEyMDktMDc5YWE4
ZDdhOTAwSjoKEGNyZXdfZmluZ2VycHJpbnQSJgokZDZhMTc5OTgtNDQ4OC00NDQyLWJjYjctZmJj
N2UwNTU2MTgxSjoKEHRhc2tfZmluZ2VycHJpbnQSJgokZDk1ZDk1ZmYtYTBhNC00NmFjLWI2NWUt
MWE4Njg5ODYwOWQySjsKG3Rhc2tfZmluZ2VycHJpbnRfY3JlYXRlZF9hdBIcChoyMDI1LTA1LTI3
VDAxOjEzOjA0Ljc0MTIyNko7ChFhZ2VudF9maW5nZXJwcmludBImCiRkNTc5ZDA2Ny03YzU1LTQw
NmQtYTg5Zi1mZTM1MzU0ZGFlYTJ6AhgBhQEAAQAA
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '1626'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.31.1
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Tue, 27 May 2025 08:13:05 GMT
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -202,4 +202,389 @@ interactions:
- req_366bcd7dfe94e2a2b5640fd9bb1c5a6b
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
CtmdAQokCiIKDHNlcnZpY2UubmFtZRISChBjcmV3QUktdGVsZW1ldHJ5Eq+dAQoSChBjcmV3YWku
dGVsZW1ldHJ5EmMKEKLfuECJGAc0Sv0pC0269lwSCChYwUI1JksUKg1GbG93IENyZWF0aW9uMAE5
kMTMfCVUQxhBWPfMfCVUQxhKGAoJZmxvd19uYW1lEgsKCVN0YXRlRmxvd3oCGAGFAQABAAASigEK
EBu2HhgIdB6HsR59V4wnLgkSCBxhw2Rk0ArJKg5GbG93IEV4ZWN1dGlvbjABOTgH53wlVEMYQbBw
53wlVEMYShgKCWZsb3dfbmFtZRILCglTdGF0ZUZsb3dKJAoKbm9kZV9uYW1lcxIWChRbInN0ZXBf
MSIsICJzdGVwXzIiXXoCGAGFAQABAAASbAoQot+4QIkYBzRK/SkLTbr2XBIIKFjBQjUmSxQqDUZs
b3cgQ3JlYXRpb24wATkYyCJ9JVRDGEHI/iJ9JVRDGEohCglmbG93X25hbWUSFAoSVVVJRFN0cnVj
dHVyZWRGbG93egIYAYUBAAEAABKgAQoQG7YeGAh0HoexHn1XjCcuCRIIHGHDZGTQCskqDkZsb3cg
RXhlY3V0aW9uMAE5EI0zfSVUQxhBqMczfSVUQxhKIQoJZmxvd19uYW1lEhQKElVVSURTdHJ1Y3R1
cmVkRmxvd0oxCgpub2RlX25hbWVzEiMKIVsiZmlyc3RfbWV0aG9kIiwgInNlY29uZF9tZXRob2Qi
XXoCGAGFAQABAAASaQoQot+4QIkYBzRK/SkLTbr2XBIIKFjBQjUmSxQqDUZsb3cgQ3JlYXRpb24w
ATlwqmp9JVRDGEGA0Wp9JVRDGEoeCglmbG93X25hbWUSEQoPUmVzdGFydGFibGVGbG93egIYAYUB
AAEAABKQAQoQG7YeGAh0HoexHn1XjCcuCRIIHGHDZGTQCskqDkZsb3cgRXhlY3V0aW9uMAE56Cp8
fSVUQxhB8Hx8fSVUQxhKHgoJZmxvd19uYW1lEhEKD1Jlc3RhcnRhYmxlRmxvd0okCgpub2RlX25h
bWVzEhYKFFsic3RlcF8xIiwgInN0ZXBfMiJdegIYAYUBAAEAABKQAQoQdFTCtCIDudZwchZzoNOX
RxIIhkf3XlJigkQqDkZsb3cgRXhlY3V0aW9uMAE5IKSJfSVUQxhBGM+JfSVUQxhKHgoJZmxvd19u
YW1lEhEKD1Jlc3RhcnRhYmxlRmxvd0okCgpub2RlX25hbWVzEhYKFFsic3RlcF8xIiwgInN0ZXBf
MiJdegIYAYUBAAEAABJnChCi37hAiRgHNEr9KQtNuvZcEggoWMFCNSZLFCoNRmxvdyBDcmVhdGlv
bjABObi/o30lVEMYQSjXo30lVEMYShwKCWZsb3dfbmFtZRIPCg1TdGF0ZWxlc3NGbG93egIYAYUB
AAEAABKNAQoQG7YeGAh0HoexHn1XjCcuCRIIHGHDZGTQCskqDkZsb3cgRXhlY3V0aW9uMAE5+Iqx
fSVUQxhB8LWxfSVUQxhKHAoJZmxvd19uYW1lEg8KDVN0YXRlbGVzc0Zsb3dKIwoKbm9kZV9uYW1l
cxIVChNbImluaXQiLCAicHJvY2VzcyJdegIYAYUBAAEAABJjChCi37hAiRgHNEr9KQtNuvZcEggo
WMFCNSZLFCoNRmxvdyBDcmVhdGlvbjABOVDa0n0lVEMYQZD50n0lVEMYShgKCWZsb3dfbmFtZRIL
CglBc3luY0Zsb3d6AhgBhQEAAQAAEooBChAbth4YCHQeh7EefVeMJy4JEggcYcNkZNAKySoORmxv
dyBFeGVjdXRpb24wATkQW+J9JVRDGEGoleJ9JVRDGEoYCglmbG93X25hbWUSCwoJQXN5bmNGbG93
SiQKCm5vZGVfbmFtZXMSFgoUWyJzdGVwXzEiLCAic3RlcF8yIl16AhgBhQEAAQAAEmQKEKLfuECJ
GAc0Sv0pC0269lwSCChYwUI1JksUKg1GbG93IENyZWF0aW9uMAE56DtAiiVUQxhBeKFAiiVUQxhK
GQoJZmxvd19uYW1lEgwKClNpbXBsZUZsb3d6AhgBhQEAAQAAEosBChAbth4YCHQeh7EefVeMJy4J
EggcYcNkZNAKySoORmxvdyBFeGVjdXRpb24wATnI5WqKJVRDGEHAjWuKJVRDGEoZCglmbG93X25h
bWUSDAoKU2ltcGxlRmxvd0okCgpub2RlX25hbWVzEhYKFFsic3RlcF8xIiwgInN0ZXBfMiJdegIY
AYUBAAEAABJoChCi37hAiRgHNEr9KQtNuvZcEggoWMFCNSZLFCoNRmxvdyBDcmVhdGlvbjABOQDN
NoslVEMYQSjwNoslVEMYSh0KCWZsb3dfbmFtZRIQCg5NdWx0aVN0YXJ0Rmxvd3oCGAGFAQABAAAS
owEKEBu2HhgIdB6HsR59V4wnLgkSCBxhw2Rk0ArJKg5GbG93IEV4ZWN1dGlvbjABOTgoSYslVEMY
QaBqSYslVEMYSh0KCWZsb3dfbmFtZRIQCg5NdWx0aVN0YXJ0Rmxvd0o4Cgpub2RlX25hbWVzEioK
KFsic3RlcF9hIiwgInN0ZXBfYiIsICJzdGVwX2MiLCAic3RlcF9kIl16AhgBhQEAAQAAEmkKEKLf
uECJGAc0Sv0pC0269lwSCChYwUI1JksUKg1GbG93IENyZWF0aW9uMAE5aL9tiyVUQxhBkOJtiyVU
QxhKHgoJZmxvd19uYW1lEhEKD09yQ29uZGl0aW9uRmxvd3oCGAGFAQABAAASmgEKEBu2HhgIdB6H
sR59V4wnLgkSCBxhw2Rk0ArJKg5GbG93IEV4ZWN1dGlvbjABObiTgIslVEMYQXjxgIslVEMYSh4K
CWZsb3dfbmFtZRIRCg9PckNvbmRpdGlvbkZsb3dKLgoKbm9kZV9uYW1lcxIgCh5bInN0ZXBfYSIs
ICJzdGVwX2IiLCAic3RlcF9jIl16AhgBhQEAAQAAEmQKEKLfuECJGAc0Sv0pC0269lwSCChYwUI1
JksUKg1GbG93IENyZWF0aW9uMAE5CGa9iyVUQxhBMIm9iyVUQxhKGQoJZmxvd19uYW1lEgwKCkN5
Y2xpY0Zsb3d6AhgBhQEAAQAAEpUBChAbth4YCHQeh7EefVeMJy4JEggcYcNkZNAKySoORmxvdyBF
eGVjdXRpb24wATkgZ9GLJVRDGEFwrdGLJVRDGEoZCglmbG93X25hbWUSDAoKQ3ljbGljRmxvd0ou
Cgpub2RlX25hbWVzEiAKHlsic3RlcF8xIiwgInN0ZXBfMiIsICJzdGVwXzMiXXoCGAGFAQABAAAS
YgoQot+4QIkYBzRK/SkLTbr2XBIIKFjBQjUmSxQqDUZsb3cgQ3JlYXRpb24wATnoYQSMJVRDGEHI
kASMJVRDGEoXCglmbG93X25hbWUSCgoIUG9lbUZsb3d6AhgBhQEAAQAAEtgBChAbth4YCHQeh7Ee
fVeMJy4JEggcYcNkZNAKySoORmxvdyBFeGVjdXRpb24wATlQGhuMJVRDGEGgYBuMJVRDGEoXCglm
bG93X25hbWUSCgoIUG9lbUZsb3dKcwoKbm9kZV9uYW1lcxJlCmNbImZpbmlzaF9wb2VtIiwgInBy
ZXBhcmVfY29sb3IiLCAicHJlcGFyZV9mbG93ZXIiLCAic2F2ZV9wb2VtX3RvX2RhdGFiYXNlIiwg
IndyaXRlX2ZpcnN0X3NlbnRlbmNlIl16AhgBhQEAAQAAEmsKEKLfuECJGAc0Sv0pC0269lwSCChY
wUI1JksUKg1GbG93IENyZWF0aW9uMAE5mC5pjCVUQxhBqFVpjCVUQxhKIAoJZmxvd19uYW1lEhMK
EUNvbXBsZXhSb3V0ZXJGbG93egIYAYUBAAEAABLtAQoQG7YeGAh0HoexHn1XjCcuCRIIHGHDZGTQ
CskqDkZsb3cgRXhlY3V0aW9uMAE5eGJ9jCVUQxhByKh9jCVUQxhKIAoJZmxvd19uYW1lEhMKEUNv
bXBsZXhSb3V0ZXJGbG93Sn8KCm5vZGVfbmFtZXMScQpvWyJicmFuY2hfMl9zdGVwIiwgImhhbmRs
ZV9uZXh0X3N0ZXBfb3JfZXZlbnQiLCAibG9nX2ZpbmFsX3N0ZXAiLCAicm91dGVyX2FuZCIsICJy
b3V0ZXJfb3IiLCAic3RlcF9hIiwgInN0ZXBfYiJdegIYAYUBAAEAABJuChCi37hAiRgHNEr9KQtN
uvZcEggoWMFCNSZLFCoNRmxvdyBDcmVhdGlvbjABOeCip4wlVEMYQdjNp4wlVEMYSiMKCWZsb3df
bmFtZRIWChRVVUlEVW5zdHJ1Y3R1cmVkRmxvd3oCGAGFAQABAAASogEKEBu2HhgIdB6HsR59V4wn
LgkSCBxhw2Rk0ArJKg5GbG93IEV4ZWN1dGlvbjABOdAPuYwlVEMYQYBGuYwlVEMYSiMKCWZsb3df
bmFtZRIWChRVVUlEVW5zdHJ1Y3R1cmVkRmxvd0oxCgpub2RlX25hbWVzEiMKIVsiZmlyc3RfbWV0
aG9kIiwgInNlY29uZF9tZXRob2QiXXoCGAGFAQABAAASZAoQot+4QIkYBzRK/SkLTbr2XBIIKFjB
QjUmSxQqDUZsb3cgQ3JlYXRpb24wATkoHeWMJVRDGEGQX+WMJVRDGEoZCglmbG93X25hbWUSDAoK
Um91dGVyRmxvd3oCGAGFAQABAAASpAEKEBu2HhgIdB6HsR59V4wnLgkSCBxhw2Rk0ArJKg5GbG93
IEV4ZWN1dGlvbjABOVA5+4wlVEMYQYiD+4wlVEMYShkKCWZsb3dfbmFtZRIMCgpSb3V0ZXJGbG93
Sj0KCm5vZGVfbmFtZXMSLwotWyJmYWxzeSIsICJyb3V0ZXIiLCAic3RhcnRfbWV0aG9kIiwgInRy
dXRoeSJdegIYAYUBAAEAABJnChCi37hAiRgHNEr9KQtNuvZcEggoWMFCNSZLFCoNRmxvdyBDcmVh
dGlvbjABOSg4H40lVEMYQQhnH40lVEMYShwKCWZsb3dfbmFtZRIPCg1FeGNlcHRpb25GbG93egIY
AYUBAAEAABKOAQoQG7YeGAh0HoexHn1XjCcuCRIIHGHDZGTQCskqDkZsb3cgRXhlY3V0aW9uMAE5
AKkwjSVUQxhBaOswjSVUQxhKHAoJZmxvd19uYW1lEg8KDUV4Y2VwdGlvbkZsb3dKJAoKbm9kZV9u
YW1lcxIWChRbInN0ZXBfMSIsICJzdGVwXzIiXXoCGAGFAQABAAASagoQot+4QIkYBzRK/SkLTbr2
XBIIKFjBQjUmSxQqDUZsb3cgQ3JlYXRpb24wATm46FGNJVRDGEHgC1KNJVRDGEofCglmbG93X25h
bWUSEgoQQW5kQ29uZGl0aW9uRmxvd3oCGAGFAQABAAASmwEKEBu2HhgIdB6HsR59V4wnLgkSCBxh
w2Rk0ArJKg5GbG93IEV4ZWN1dGlvbjABOVBAYo0lVEMYQdB+Yo0lVEMYSh8KCWZsb3dfbmFtZRIS
ChBBbmRDb25kaXRpb25GbG93Si4KCm5vZGVfbmFtZXMSIAoeWyJzdGVwXzEiLCAic3RlcF8yIiwg
InN0ZXBfMyJdegIYAYUBAAEAABJpChCi37hAiRgHNEr9KQtNuvZcEggoWMFCNSZLFCoNRmxvdyBD
cmVhdGlvbjABOVhykY0lVEMYQWiZkY0lVEMYSh4KCWZsb3dfbmFtZRIRCg9NdWx0aVJvdXRlckZs
b3d6AhgBhQEAAQAAEqICChAbth4YCHQeh7EefVeMJy4JEggcYcNkZNAKySoORmxvdyBFeGVjdXRp
b24wATnYx6KNJVRDGEEQEqONJVRDGEoeCglmbG93X25hbWUSEQoPTXVsdGlSb3V0ZXJGbG93SrUB
Cgpub2RlX25hbWVzEqYBCqMBWyJhbmVtaWFfYW5hbHlzaXMiLCAiYW5lbWlhX3JvdXRlciIsICJk
aWFiZXRlc19hbmFseXNpcyIsICJkaWFiZXRlc19yb3V0ZXIiLCAiZGlhZ25vc2VfY29uZGl0aW9u
cyIsICJoeXBlcnRlbnNpb25fYW5hbHlzaXMiLCAiaHlwZXJ0ZW5zaW9uX3JvdXRlciIsICJzY2Fu
X21lZGljYWwiXXoCGAGFAQABAAASZwoQot+4QIkYBzRK/SkLTbr2XBIIKFjBQjUmSxQqDUZsb3cg
Q3JlYXRpb24wATkAZs2NJVRDGEHglM2NJVRDGEocCglmbG93X25hbWUSDwoNU3RhdGVsZXNzRmxv
d3oCGAGFAQABAAASjQEKEBu2HhgIdB6HsR59V4wnLgkSCBxhw2Rk0ArJKg5GbG93IEV4ZWN1dGlv
bjABOfBJ4I0lVEMYQbh84I0lVEMYShwKCWZsb3dfbmFtZRIPCg1TdGF0ZWxlc3NGbG93SiMKCm5v
ZGVfbmFtZXMSFQoTWyJpbml0IiwgInByb2Nlc3MiXXoCGAGFAQABAAASaAoQot+4QIkYBzRK/SkL
Tbr2XBIIKFjBQjUmSxQqDUZsb3cgQ3JlYXRpb24wATnQUaKOJVRDGEEQcaKOJVRDGEodCglmbG93
X25hbWUSEAoOT25ib2FyZGluZ0Zsb3d6AhgBhQEAAQAAEqQBChAbth4YCHQeh7EefVeMJy4JEggc
YcNkZNAKySoORmxvdyBFeGVjdXRpb24wATloMrGOJVRDGEEwZbGOJVRDGEodCglmbG93X25hbWUS
EAoOT25ib2FyZGluZ0Zsb3dKOQoKbm9kZV9uYW1lcxIrCilbInNlbmRfd2VsY29tZV9tZXNzYWdl
IiwgInVzZXJfc2lnbnNfdXAiXXoCGAGFAQABAAASpAEKEHRUwrQiA7nWcHIWc6DTl0cSCIZH915S
YoJEKg5GbG93IEV4ZWN1dGlvbjABOSBhwI4lVEMYQWjSwI4lVEMYSh0KCWZsb3dfbmFtZRIQCg5P
bmJvYXJkaW5nRmxvd0o5Cgpub2RlX25hbWVzEisKKVsic2VuZF93ZWxjb21lX21lc3NhZ2UiLCAi
dXNlcl9zaWduc191cCJdegIYAYUBAAEAABJiChCi37hAiRgHNEr9KQtNuvZcEggoWMFCNSZLFCoN
RmxvdyBDcmVhdGlvbjABOYiD744lVEMYQcii744lVEMYShcKCWZsb3dfbmFtZRIKCghQb2VtRmxv
d3oCGAGFAQABAAASiwEKEBu2HhgIdB6HsR59V4wnLgkSCBxhw2Rk0ArJKg5GbG93IEV4ZWN1dGlv
bjABORDG/I4lVEMYQcD8/I4lVEMYShcKCWZsb3dfbmFtZRIKCghQb2VtRmxvd0omCgpub2RlX25h
bWVzEhgKFlsic2V0X3NlbnRlbmNlX2NvdW50Il16AhgBhQEAAQAAEmIKEHRUwrQiA7nWcHIWc6DT
l0cSCIZH915SYoJEKg1GbG93IENyZWF0aW9uMAE5YCMOjyVUQxhB6DYOjyVUQxhKFwoJZmxvd19u
YW1lEgoKCFBvZW1GbG93egIYAYUBAAEAABKLAQoQ+IJI5Szv23yAr2JkgMzajhIIiLWekQ9/opYq
DkZsb3cgRXhlY3V0aW9uMAE5aBUejyVUQxhBYEAejyVUQxhKFwoJZmxvd19uYW1lEgoKCFBvZW1G
bG93SiYKCm5vZGVfbmFtZXMSGAoWWyJzZXRfc2VudGVuY2VfY291bnQiXXoCGAGFAQABAAASYgoQ
ORKxisuZI8VOlFqqkbOP8RII4xCjMFEzEPAqDUZsb3cgQ3JlYXRpb24wATnIaTePJVRDGEFQfTeP
JVRDGEoXCglmbG93X25hbWUSCgoIUG9lbUZsb3d6AhgBhQEAAQAAEosBChBGNO93ef4eaK09E79N
4aSAEgimMY60twg0WSoORmxvdyBFeGVjdXRpb24wATnIjEaPJVRDGEHAt0aPJVRDGEoXCglmbG93
X25hbWUSCgoIUG9lbUZsb3dKJgoKbm9kZV9uYW1lcxIYChZbInNldF9zZW50ZW5jZV9jb3VudCJd
egIYAYUBAAEAABJiChBlZYci9JilJqJsVsHp1G6EEgit0w4tLscveyoNRmxvdyBDcmVhdGlvbjAB
OYhmXI8lVEMYQfh9XI8lVEMYShcKCWZsb3dfbmFtZRIKCghQb2VtRmxvd3oCGAGFAQABAAASiwEK
ENVcATReHOdubt4FxYacl6kSCGS2sAp886WiKg5GbG93IEV4ZWN1dGlvbjABOQALaI8lVEMYQSgu
aI8lVEMYShcKCWZsb3dfbmFtZRIKCghQb2VtRmxvd0omCgpub2RlX25hbWVzEhgKFlsic2V0X3Nl
bnRlbmNlX2NvdW50Il16AhgBhQEAAQAAEmsKEKLfuECJGAc0Sv0pC0269lwSCChYwUI1JksUKg1G
bG93IENyZWF0aW9uMAE54LSSjyVUQxhBaMiSjyVUQxhKIAoJZmxvd19uYW1lEhMKEU11bHRpU3Rl
cFBvZW1GbG93egIYAYUBAAEAABKxAQoQG7YeGAh0HoexHn1XjCcuCRIIHGHDZGTQCskqDkZsb3cg
RXhlY3V0aW9uMAE5sHSejyVUQxhBkKOejyVUQxhKIAoJZmxvd19uYW1lEhMKEU11bHRpU3RlcFBv
ZW1GbG93SkMKCm5vZGVfbmFtZXMSNQozWyJmaW5pc2hlZCIsICJzZXRfcG9lbV90eXBlIiwgInNl
dF9zZW50ZW5jZV9jb3VudCJdegIYAYUBAAEAABJrChB0VMK0IgO51nByFnOg05dHEgiGR/deUmKC
RCoNRmxvdyBDcmVhdGlvbjABOXBlxY8lVEMYQeB8xY8lVEMYSiAKCWZsb3dfbmFtZRITChFNdWx0
aVN0ZXBQb2VtRmxvd3oCGAGFAQABAAASsQEKEPiCSOUs79t8gK9iZIDM2o4SCIi1npEPf6KWKg5G
bG93IEV4ZWN1dGlvbjABOZgc148lVEMYQZBH148lVEMYSiAKCWZsb3dfbmFtZRITChFNdWx0aVN0
ZXBQb2VtRmxvd0pDCgpub2RlX25hbWVzEjUKM1siZmluaXNoZWQiLCAic2V0X3BvZW1fdHlwZSIs
ICJzZXRfc2VudGVuY2VfY291bnQiXXoCGAGFAQABAAASawoQORKxisuZI8VOlFqqkbOP8RII4xCj
MFEzEPAqDUZsb3cgQ3JlYXRpb24wATn4mf6PJVRDGEGArf6PJVRDGEogCglmbG93X25hbWUSEwoR
TXVsdGlTdGVwUG9lbUZsb3d6AhgBhQEAAQAAErEBChBGNO93ef4eaK09E79N4aSAEgimMY60twg0
WSoORmxvdyBFeGVjdXRpb24wATnw5w2QJVRDGEEADw6QJVRDGEogCglmbG93X25hbWUSEwoRTXVs
dGlTdGVwUG9lbUZsb3dKQwoKbm9kZV9uYW1lcxI1CjNbImZpbmlzaGVkIiwgInNldF9wb2VtX3R5
cGUiLCAic2V0X3NlbnRlbmNlX2NvdW50Il16AhgBhQEAAQAAEq8NChCi37hAiRgHNEr9KQtNuvZc
EggoWMFCNSZLFCoMQ3JldyBDcmVhdGVkMAE5QDbLkyVUQxhB6OTTkyVUQxhKGwoOY3Jld2FpX3Zl
cnNpb24SCQoHMC4xMjEuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkS
IgogNmJhOTEyZjkxMjlkNjg0OWEwYWM0OWNmYmQzMjFkYWRKMQoHY3Jld19pZBImCiQxOTM3YzRh
MC1hNTZjLTQ1MWEtOWU5YS0zNGM3MTBkMTM3ZTRKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRp
YWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3
X251bWJlcl9vZl9hZ2VudHMSAhgCSjoKEGNyZXdfZmluZ2VycHJpbnQSJgokMDAxZDVhNGEtMzlj
NC00MWQ3LTljMDEtZjcwNjI2MGEyMjc3SjsKG2NyZXdfZmluZ2VycHJpbnRfY3JlYXRlZF9hdBIc
ChoyMDI1LTA1LTI3VDAxOjEzOjIwLjcxNzYzOUrPBQoLY3Jld19hZ2VudHMSvwUKvAVbeyJrZXki
OiAiNzNjMzQ5YzkzYzE2M2I1ZDRkZjk4YTY0ZmFjMWM0MzAiLCAiaWQiOiAiNDJjNzg4ZDEtMjJl
NS00NmE2LTk1OWEtYmIwMGZiMzViOWQ1IiwgInJvbGUiOiAie3RvcGljfSBTZW5pb3IgRGF0YSBS
ZXNlYXJjaGVyXG4iLCAidmVyYm9zZT8iOiB0cnVlLCAibWF4X2l0ZXIiOiAyNSwgIm1heF9ycG0i
OiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAib3BlbmFpL21vZGVsX25hbWUiLCAibGxt
IjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2Nv
ZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVz
IjogW119LCB7ImtleSI6ICIxMDRmZTA2NTllMTBiNDI2Y2Y4OGYwMjRmYjU3MTU1MyIsICJpZCI6
ICJlNGMzNmIwYi02NTcyLTQ2ZmMtOTNkZC0xMTUzNWM0NjcxZjQiLCAicm9sZSI6ICJ7dG9waWN9
IFJlcG9ydGluZyBBbmFseXN0XG4iLCAidmVyYm9zZT8iOiB0cnVlLCAibWF4X2l0ZXIiOiAyNSwg
Im1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAib25saW5lX2xsbSIsICJs
bG0iOiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3df
Y29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFt
ZXMiOiBbXX1dSpMECgpjcmV3X3Rhc2tzEoQECoEEW3sia2V5IjogIjAwMTc5N2UzZjYyZDMzY2Qx
ZDYzNWViNmZkZDViNDUzIiwgImlkIjogImQ4NTE0MzM4LTgzOGItNDUzMC1iNDllLTI2YWYzZjc3
YTljZiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwg
ImFnZW50X3JvbGUiOiAie3RvcGljfSBTZW5pb3IgRGF0YSBSZXNlYXJjaGVyXG4iLCAiYWdlbnRf
a2V5IjogIjczYzM0OWM5M2MxNjNiNWQ0ZGY5OGE2NGZhYzFjNDMwIiwgInRvb2xzX25hbWVzIjog
W119LCB7ImtleSI6ICJiMTdiMTg4ZGJmMTRmOTNhOThlNWI5NWFhZDM2NzU3NyIsICJpZCI6ICI5
Y2NmNWZhZS1kZTZkLTQwOTMtYTA0Ni04MGQ0ZDIxMzJkODciLCAiYXN5bmNfZXhlY3V0aW9uPyI6
IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogInt0b3BpY30gUmVw
b3J0aW5nIEFuYWx5c3RcbiIsICJhZ2VudF9rZXkiOiAiMTA0ZmUwNjU5ZTEwYjQyNmNmODhmMDI0
ZmI1NzE1NTMiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKABAoQG7YeGAh0HoexHn1X
jCcuCRIIHGHDZGTQCskqDFRhc2sgQ3JlYXRlZDABOdCx8ZMlVEMYQXC78pMlVEMYSi4KCGNyZXdf
a2V5EiIKIDZiYTkxMmY5MTI5ZDY4NDlhMGFjNDljZmJkMzIxZGFkSjEKB2NyZXdfaWQSJgokMTkz
N2M0YTAtYTU2Yy00NTFhLTllOWEtMzRjNzEwZDEzN2U0Si4KCHRhc2tfa2V5EiIKIDAwMTc5N2Uz
ZjYyZDMzY2QxZDYzNWViNmZkZDViNDUzSjEKB3Rhc2tfaWQSJgokZDg1MTQzMzgtODM4Yi00NTMw
LWI0OWUtMjZhZjNmNzdhOWNmSjoKEGNyZXdfZmluZ2VycHJpbnQSJgokMDAxZDVhNGEtMzljNC00
MWQ3LTljMDEtZjcwNjI2MGEyMjc3SjoKEHRhc2tfZmluZ2VycHJpbnQSJgokMjFmZjExMDktZjQy
Zi00MzQ3LWJjMDctMDgyMWNiMWZkMGUySjsKG3Rhc2tfZmluZ2VycHJpbnRfY3JlYXRlZF9hdBIc
ChoyMDI1LTA1LTI3VDAxOjEzOjIwLjcxNzUwNEo7ChFhZ2VudF9maW5nZXJwcmludBImCiQxZjkx
ZWFjYy04MWE5LTQzNTItOTJmOC00MjI0ZWQxY2QxNTZ6AhgBhQEAAQAAEoAEChD4gkjlLO/bfICv
YmSAzNqOEgiItZ6RD3+ilioMVGFzayBDcmVhdGVkMAE52AatlCVUQxhByNmtlCVUQxhKLgoIY3Jl
d19rZXkSIgogNmJhOTEyZjkxMjlkNjg0OWEwYWM0OWNmYmQzMjFkYWRKMQoHY3Jld19pZBImCiQx
OTM3YzRhMC1hNTZjLTQ1MWEtOWU5YS0zNGM3MTBkMTM3ZTRKLgoIdGFza19rZXkSIgogMDAxNzk3
ZTNmNjJkMzNjZDFkNjM1ZWI2ZmRkNWI0NTNKMQoHdGFza19pZBImCiRkODUxNDMzOC04MzhiLTQ1
MzAtYjQ5ZS0yNmFmM2Y3N2E5Y2ZKOgoQY3Jld19maW5nZXJwcmludBImCiQwMDFkNWE0YS0zOWM0
LTQxZDctOWMwMS1mNzA2MjYwYTIyNzdKOgoQdGFza19maW5nZXJwcmludBImCiQyMWZmMTEwOS1m
NDJmLTQzNDctYmMwNy0wODIxY2IxZmQwZTJKOwobdGFza19maW5nZXJwcmludF9jcmVhdGVkX2F0
EhwKGjIwMjUtMDUtMjdUMDE6MTM6MjAuNzE3NTA0SjsKEWFnZW50X2ZpbmdlcnByaW50EiYKJDFm
OTFlYWNjLTgxYTktNDM1Mi05MmY4LTQyMjRlZDFjZDE1NnoCGAGFAQABAAASgAQKEEY073d5/h5o
rT0Tv03hpIASCKYxjrS3CDRZKgxUYXNrIENyZWF0ZWQwATnYr3aVJVRDGEGIY3eVJVRDGEouCghj
cmV3X2tleRIiCiA2YmE5MTJmOTEyOWQ2ODQ5YTBhYzQ5Y2ZiZDMyMWRhZEoxCgdjcmV3X2lkEiYK
JDE5MzdjNGEwLWE1NmMtNDUxYS05ZTlhLTM0YzcxMGQxMzdlNEouCgh0YXNrX2tleRIiCiBiMTdi
MTg4ZGJmMTRmOTNhOThlNWI5NWFhZDM2NzU3N0oxCgd0YXNrX2lkEiYKJDljY2Y1ZmFlLWRlNmQt
NDA5My1hMDQ2LTgwZDRkMjEzMmQ4N0o6ChBjcmV3X2ZpbmdlcnByaW50EiYKJDAwMWQ1YTRhLTM5
YzQtNDFkNy05YzAxLWY3MDYyNjBhMjI3N0o6ChB0YXNrX2ZpbmdlcnByaW50EiYKJDAwZTljMDgx
LWU1ZWYtNDhjNS1iMTc0LWRlZWI2Zjk1OGE5OUo7Cht0YXNrX2ZpbmdlcnByaW50X2NyZWF0ZWRf
YXQSHAoaMjAyNS0wNS0yN1QwMToxMzoyMC43MTc1ODhKOwoRYWdlbnRfZmluZ2VycHJpbnQSJgok
ODFiN2U4MTEtYmZmMi00OGY0LWExMzQtN2RmODAxMWQwYTE3egIYAYUBAAEAABKvDQoQot+4QIkY
BzRK/SkLTbr2XBIIKFjBQjUmSxQqDENyZXcgQ3JlYXRlZDABOThCVpYlVEMYQZh/XpYlVEMYShsK
DmNyZXdhaV92ZXJzaW9uEgkKBzAuMTIxLjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMS43Si4K
CGNyZXdfa2V5EiIKIDZiYTkxMmY5MTI5ZDY4NDlhMGFjNDljZmJkMzIxZGFkSjEKB2NyZXdfaWQS
JgokMWExMmMyMGUtMWJiNy00OWRiLTk2MTAtMzcxMmU3YTRiNDU1ShwKDGNyZXdfcHJvY2VzcxIM
CgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxIC
GAJKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAko6ChBjcmV3X2ZpbmdlcnByaW50EiYKJGJj
ZDE5Nzc3LWZmNjAtNDQyNy05NzkwLTc4ODJkZmMxNjE5NEo7ChtjcmV3X2ZpbmdlcnByaW50X2Ny
ZWF0ZWRfYXQSHAoaMjAyNS0wNS0yN1QwMToxMzoyMC43NjExMDhKzwUKC2NyZXdfYWdlbnRzEr8F
CrwFW3sia2V5IjogIjczYzM0OWM5M2MxNjNiNWQ0ZGY5OGE2NGZhYzFjNDMwIiwgImlkIjogIjAy
MzI1NmU1LTRkZDctNGIxOC04ODQyLTMxYTM2MjcwNjQyYiIsICJyb2xlIjogInt0b3BpY30gU2Vu
aW9yIERhdGEgUmVzZWFyY2hlclxuIiwgInZlcmJvc2U/IjogdHJ1ZSwgIm1heF9pdGVyIjogMjUs
ICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIm9wZW5haS9tb2RlbF9u
YW1lIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2Us
ICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0
b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiMTA0ZmUwNjU5ZTEwYjQyNmNmODhmMDI0ZmI1NzE1
NTMiLCAiaWQiOiAiNjJiZWZmMzMtNzkyOC00ZTlkLTkxYWMtMWUzNTNmZjRhNzhkIiwgInJvbGUi
OiAie3RvcGljfSBSZXBvcnRpbmcgQW5hbHlzdFxuIiwgInZlcmJvc2U/IjogdHJ1ZSwgIm1heF9p
dGVyIjogMjUsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIm9ubGlu
ZV9sbG0iLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxz
ZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwg
InRvb2xzX25hbWVzIjogW119XUqTBAoKY3Jld190YXNrcxKEBAqBBFt7ImtleSI6ICIwMDE3OTdl
M2Y2MmQzM2NkMWQ2MzVlYjZmZGQ1YjQ1MyIsICJpZCI6ICI4ZGM3MDM1Ni1mMDljLTQxMDYtOWZi
ZC0wNTNmYWNlYzIwOWQiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/
IjogZmFsc2UsICJhZ2VudF9yb2xlIjogInt0b3BpY30gU2VuaW9yIERhdGEgUmVzZWFyY2hlclxu
IiwgImFnZW50X2tleSI6ICI3M2MzNDljOTNjMTYzYjVkNGRmOThhNjRmYWMxYzQzMCIsICJ0b29s
c19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiYjE3YjE4OGRiZjE0ZjkzYTk4ZTViOTVhYWQzNjc1Nzci
LCAiaWQiOiAiOTVkODFmYjMtYTVkOC00ZDUxLThkZmMtYWIwODRmNTU5Y2RmIiwgImFzeW5jX2V4
ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJ7
dG9waWN9IFJlcG9ydGluZyBBbmFseXN0XG4iLCAiYWdlbnRfa2V5IjogIjEwNGZlMDY1OWUxMGI0
MjZjZjg4ZjAyNGZiNTcxNTUzIiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASgAQKEBu2
HhgIdB6HsR59V4wnLgkSCBxhw2Rk0ArJKgxUYXNrIENyZWF0ZWQwATlYR3eWJVRDGEE483eWJVRD
GEouCghjcmV3X2tleRIiCiA2YmE5MTJmOTEyOWQ2ODQ5YTBhYzQ5Y2ZiZDMyMWRhZEoxCgdjcmV3
X2lkEiYKJDFhMTJjMjBlLTFiYjctNDlkYi05NjEwLTM3MTJlN2E0YjQ1NUouCgh0YXNrX2tleRIi
CiAwMDE3OTdlM2Y2MmQzM2NkMWQ2MzVlYjZmZGQ1YjQ1M0oxCgd0YXNrX2lkEiYKJDhkYzcwMzU2
LWYwOWMtNDEwNi05ZmJkLTA1M2ZhY2VjMjA5ZEo6ChBjcmV3X2ZpbmdlcnByaW50EiYKJGJjZDE5
Nzc3LWZmNjAtNDQyNy05NzkwLTc4ODJkZmMxNjE5NEo6ChB0YXNrX2ZpbmdlcnByaW50EiYKJDU4
NWVjNWI1LTY3MzUtNDU0Ny1hOGY2LWY2ZTRiMzgzMjJlNko7Cht0YXNrX2ZpbmdlcnByaW50X2Ny
ZWF0ZWRfYXQSHAoaMjAyNS0wNS0yN1QwMToxMzoyMC43NjA5OTRKOwoRYWdlbnRfZmluZ2VycHJp
bnQSJgokZjczM2I4NzQtZmIxOC00MzUxLWE0YjEtYTFjY2E5ZDgzZGM1egIYAYUBAAEAABKABAoQ
+IJI5Szv23yAr2JkgMzajhIIiLWekQ9/opYqDFRhc2sgQ3JlYXRlZDABOUhTKpclVEMYQfAxK5cl
VEMYSi4KCGNyZXdfa2V5EiIKIDZiYTkxMmY5MTI5ZDY4NDlhMGFjNDljZmJkMzIxZGFkSjEKB2Ny
ZXdfaWQSJgokMWExMmMyMGUtMWJiNy00OWRiLTk2MTAtMzcxMmU3YTRiNDU1Si4KCHRhc2tfa2V5
EiIKIDAwMTc5N2UzZjYyZDMzY2QxZDYzNWViNmZkZDViNDUzSjEKB3Rhc2tfaWQSJgokOGRjNzAz
NTYtZjA5Yy00MTA2LTlmYmQtMDUzZmFjZWMyMDlkSjoKEGNyZXdfZmluZ2VycHJpbnQSJgokYmNk
MTk3NzctZmY2MC00NDI3LTk3OTAtNzg4MmRmYzE2MTk0SjoKEHRhc2tfZmluZ2VycHJpbnQSJgok
NTg1ZWM1YjUtNjczNS00NTQ3LWE4ZjYtZjZlNGIzODMyMmU2SjsKG3Rhc2tfZmluZ2VycHJpbnRf
Y3JlYXRlZF9hdBIcChoyMDI1LTA1LTI3VDAxOjEzOjIwLjc2MDk5NEo7ChFhZ2VudF9maW5nZXJw
cmludBImCiRmNzMzYjg3NC1mYjE4LTQzNTEtYTRiMS1hMWNjYTlkODNkYzV6AhgBhQEAAQAAEoAE
ChBGNO93ef4eaK09E79N4aSAEgimMY60twg0WSoMVGFzayBDcmVhdGVkMAE5OI7qlyVUQxhBQF3r
lyVUQxhKLgoIY3Jld19rZXkSIgogNmJhOTEyZjkxMjlkNjg0OWEwYWM0OWNmYmQzMjFkYWRKMQoH
Y3Jld19pZBImCiQxYTEyYzIwZS0xYmI3LTQ5ZGItOTYxMC0zNzEyZTdhNGI0NTVKLgoIdGFza19r
ZXkSIgogYjE3YjE4OGRiZjE0ZjkzYTk4ZTViOTVhYWQzNjc1NzdKMQoHdGFza19pZBImCiQ5NWQ4
MWZiMy1hNWQ4LTRkNTEtOGRmYy1hYjA4NGY1NTljZGZKOgoQY3Jld19maW5nZXJwcmludBImCiRi
Y2QxOTc3Ny1mZjYwLTQ0MjctOTc5MC03ODgyZGZjMTYxOTRKOgoQdGFza19maW5nZXJwcmludBIm
CiRkZjNlNTYwNi03YjRjLTQzYTgtYTljOS0yZjRhMjEwYjI5NmRKOwobdGFza19maW5nZXJwcmlu
dF9jcmVhdGVkX2F0EhwKGjIwMjUtMDUtMjdUMDE6MTM6MjAuNzYxMDUzSjsKEWFnZW50X2Zpbmdl
cnByaW50EiYKJDU2YTAxNzA0LTJlODctNDcxMS05MjEwLWQ1MmUxNmRmZDEyNnoCGAGFAQABAAAS
rw0KEKLfuECJGAc0Sv0pC0269lwSCChYwUI1JksUKgxDcmV3IENyZWF0ZWQwATkoPACZJVRDGEGw
EwqZJVRDGEobCg5jcmV3YWlfdmVyc2lvbhIJCgcwLjEyMS4wShoKDnB5dGhvbl92ZXJzaW9uEggK
BjMuMTEuN0ouCghjcmV3X2tleRIiCiA2YmE5MTJmOTEyOWQ2ODQ5YTBhYzQ5Y2ZiZDMyMWRhZEox
CgdjcmV3X2lkEiYKJDM4NGU2ZTcwLTNlNDYtNDdjNC04NGM2LWVjOTgwYjk2OTE3MUocCgxjcmV3
X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJf
b2ZfdGFza3MSAhgCShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKOgoQY3Jld19maW5nZXJw
cmludBImCiQxM2VjZDE5NC1mMWNkLTQ3ZGUtOWQ1Yy00M2NhZTE0YTMzNWRKOwobY3Jld19maW5n
ZXJwcmludF9jcmVhdGVkX2F0EhwKGjIwMjUtMDUtMjdUMDE6MTM6MjAuODA1ODgxSs8FCgtjcmV3
X2FnZW50cxK/BQq8BVt7ImtleSI6ICI3M2MzNDljOTNjMTYzYjVkNGRmOThhNjRmYWMxYzQzMCIs
ICJpZCI6ICI0Njg3ZmI3Zi03ZGI1LTQ4ZWUtOWIxOC1jMjJkZjBjYzY2YjAiLCAicm9sZSI6ICJ7
dG9waWN9IFNlbmlvciBEYXRhIFJlc2VhcmNoZXJcbiIsICJ2ZXJib3NlPyI6IHRydWUsICJtYXhf
aXRlciI6IDI1LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICJvcGVu
YWkvbW9kZWxfbmFtZSIsICJsbG0iOiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdhdGlvbl9lbmFibGVk
PyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGlt
aXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5IjogIjEwNGZlMDY1OWUxMGI0MjZjZjg4
ZjAyNGZiNTcxNTUzIiwgImlkIjogIjAzYzM1ZGIzLWUwOWItNGJjNC04ZjZlLTI4ZjhhZWQxMmQ2
NyIsICJyb2xlIjogInt0b3BpY30gUmVwb3J0aW5nIEFuYWx5c3RcbiIsICJ2ZXJib3NlPyI6IHRy
dWUsICJtYXhfaXRlciI6IDI1LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xs
bSI6ICJvbmxpbmVfbGxtIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1KkwQKCmNyZXdfdGFza3MShAQKgQRbeyJrZXki
OiAiMDAxNzk3ZTNmNjJkMzNjZDFkNjM1ZWI2ZmRkNWI0NTMiLCAiaWQiOiAiNGExNGMxMTAtYTIy
Zi00Mjg4LTk0N2QtNWNkNmEwMzk2OTg3IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1
bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJ7dG9waWN9IFNlbmlvciBEYXRhIFJl
c2VhcmNoZXJcbiIsICJhZ2VudF9rZXkiOiAiNzNjMzQ5YzkzYzE2M2I1ZDRkZjk4YTY0ZmFjMWM0
MzAiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5IjogImIxN2IxODhkYmYxNGY5M2E5OGU1Yjk1
YWFkMzY3NTc3IiwgImlkIjogImUyZTU2OTE3LWU3OGYtNDJlMC04MGY2LTgxOTQ0YTRmZmYwNiIs
ICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50
X3JvbGUiOiAie3RvcGljfSBSZXBvcnRpbmcgQW5hbHlzdFxuIiwgImFnZW50X2tleSI6ICIxMDRm
ZTA2NTllMTBiNDI2Y2Y4OGYwMjRmYjU3MTU1MyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEA
AQAAEoAEChAbth4YCHQeh7EefVeMJy4JEggcYcNkZNAKySoMVGFzayBDcmVhdGVkMAE56KknmSVU
QxhBQDArmSVUQxhKLgoIY3Jld19rZXkSIgogNmJhOTEyZjkxMjlkNjg0OWEwYWM0OWNmYmQzMjFk
YWRKMQoHY3Jld19pZBImCiQzODRlNmU3MC0zZTQ2LTQ3YzQtODRjNi1lYzk4MGI5NjkxNzFKLgoI
dGFza19rZXkSIgogMDAxNzk3ZTNmNjJkMzNjZDFkNjM1ZWI2ZmRkNWI0NTNKMQoHdGFza19pZBIm
CiQ0YTE0YzExMC1hMjJmLTQyODgtOTQ3ZC01Y2Q2YTAzOTY5ODdKOgoQY3Jld19maW5nZXJwcmlu
dBImCiQxM2VjZDE5NC1mMWNkLTQ3ZGUtOWQ1Yy00M2NhZTE0YTMzNWRKOgoQdGFza19maW5nZXJw
cmludBImCiQ2OWYwN2MyMy0wYzgxLTRlNGYtYjNmOC1kNzJiYjE2NjA1NzFKOwobdGFza19maW5n
ZXJwcmludF9jcmVhdGVkX2F0EhwKGjIwMjUtMDUtMjdUMDE6MTM6MjAuODA1Nzc0SjsKEWFnZW50
X2ZpbmdlcnByaW50EiYKJGIxNWUzMGQzLThmYzEtNGRlYy1hZWZiLTVhMzhiMTViMDE0ZHoCGAGF
AQABAAASgAQKEPiCSOUs79t8gK9iZIDM2o4SCIi1npEPf6KWKgxUYXNrIENyZWF0ZWQwATnQG+aZ
JVRDGEFg/uaZJVRDGEouCghjcmV3X2tleRIiCiA2YmE5MTJmOTEyOWQ2ODQ5YTBhYzQ5Y2ZiZDMy
MWRhZEoxCgdjcmV3X2lkEiYKJDM4NGU2ZTcwLTNlNDYtNDdjNC04NGM2LWVjOTgwYjk2OTE3MUou
Cgh0YXNrX2tleRIiCiAwMDE3OTdlM2Y2MmQzM2NkMWQ2MzVlYjZmZGQ1YjQ1M0oxCgd0YXNrX2lk
EiYKJDRhMTRjMTEwLWEyMmYtNDI4OC05NDdkLTVjZDZhMDM5Njk4N0o6ChBjcmV3X2ZpbmdlcnBy
aW50EiYKJDEzZWNkMTk0LWYxY2QtNDdkZS05ZDVjLTQzY2FlMTRhMzM1ZEo6ChB0YXNrX2Zpbmdl
cnByaW50EiYKJDY5ZjA3YzIzLTBjODEtNGU0Zi1iM2Y4LWQ3MmJiMTY2MDU3MUo7Cht0YXNrX2Zp
bmdlcnByaW50X2NyZWF0ZWRfYXQSHAoaMjAyNS0wNS0yN1QwMToxMzoyMC44MDU3NzRKOwoRYWdl
bnRfZmluZ2VycHJpbnQSJgokYjE1ZTMwZDMtOGZjMS00ZGVjLWFlZmItNWEzOGIxNWIwMTRkegIY
AYUBAAEAABKABAoQRjTvd3n+HmitPRO/TeGkgBIIpjGOtLcINFkqDFRhc2sgQ3JlYXRlZDABOVhP
sZolVEMYQZAWspolVEMYSi4KCGNyZXdfa2V5EiIKIDZiYTkxMmY5MTI5ZDY4NDlhMGFjNDljZmJk
MzIxZGFkSjEKB2NyZXdfaWQSJgokMzg0ZTZlNzAtM2U0Ni00N2M0LTg0YzYtZWM5ODBiOTY5MTcx
Si4KCHRhc2tfa2V5EiIKIGIxN2IxODhkYmYxNGY5M2E5OGU1Yjk1YWFkMzY3NTc3SjEKB3Rhc2tf
aWQSJgokZTJlNTY5MTctZTc4Zi00MmUwLTgwZjYtODE5NDRhNGZmZjA2SjoKEGNyZXdfZmluZ2Vy
cHJpbnQSJgokMTNlY2QxOTQtZjFjZC00N2RlLTlkNWMtNDNjYWUxNGEzMzVkSjoKEHRhc2tfZmlu
Z2VycHJpbnQSJgokZDRmMGE3NzItMzUwOC00OGI1LWI5OWEtZWU2ZmEzMjE5ZWMwSjsKG3Rhc2tf
ZmluZ2VycHJpbnRfY3JlYXRlZF9hdBIcChoyMDI1LTA1LTI3VDAxOjEzOjIwLjgwNTgzNEo7ChFh
Z2VudF9maW5nZXJwcmludBImCiQ2NzhjOTkxNC01NWU2LTQ0YjYtODRlMS01ZjBhODA3OWIzNzl6
AhgBhQEAAQAAEqcNChCi37hAiRgHNEr9KQtNuvZcEggoWMFCNSZLFCoMQ3JldyBDcmVhdGVkMAE5
UMbImyVUQxhB4PvQmyVUQxhKGwoOY3Jld2FpX3ZlcnNpb24SCQoHMC4xMjEuMEoaCg5weXRob25f
dmVyc2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogNmJhOTEyZjkxMjlkNjg0OWEwYWM0OWNm
YmQzMjFkYWRKMQoHY3Jld19pZBImCiQyNWZlM2JkNS00MmRmLTRmYmYtYTQzYi00MDlmZDUyZGMz
YjNKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNy
ZXdfbnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSjoKEGNy
ZXdfZmluZ2VycHJpbnQSJgokN2FiOGQ2NzctYjczYi00MmFkLTljOGEtNjEyYTg1N2MwZGIzSjsK
G2NyZXdfZmluZ2VycHJpbnRfY3JlYXRlZF9hdBIcChoyMDI1LTA1LTI3VDAxOjEzOjIwLjg1MjQ5
MkrHBQoLY3Jld19hZ2VudHMStwUKtAVbeyJrZXkiOiAiNzNjMzQ5YzkzYzE2M2I1ZDRkZjk4YTY0
ZmFjMWM0MzAiLCAiaWQiOiAiMTExNDdkNDgtMzlkMS00MzRjLTk1MmYtNzk4NmJhN2M0OGVjIiwg
InJvbGUiOiAie3RvcGljfSBTZW5pb3IgRGF0YSBSZXNlYXJjaGVyXG4iLCAidmVyYm9zZT8iOiB0
cnVlLCAibWF4X2l0ZXIiOiAyNSwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19s
bG0iOiAibG9jYWxfbGxtIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiMTA0ZmUwNjU5ZTEwYjQyNmNm
ODhmMDI0ZmI1NzE1NTMiLCAiaWQiOiAiNmJlMTZjNWUtMDc4OS00MTQ1LWE5MmUtYWQzNzE2Mjdl
M2VhIiwgInJvbGUiOiAie3RvcGljfSBSZXBvcnRpbmcgQW5hbHlzdFxuIiwgInZlcmJvc2U/Ijog
dHJ1ZSwgIm1heF9pdGVyIjogMjUsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdf
bGxtIjogIm9ubGluZV9sbG0iLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5h
YmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5
X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqTBAoKY3Jld190YXNrcxKEBAqBBFt7Imtl
eSI6ICIwMDE3OTdlM2Y2MmQzM2NkMWQ2MzVlYjZmZGQ1YjQ1MyIsICJpZCI6ICI3YjBjNjAwYy1j
MTcwLTQ1MmYtYTE1Mi05MzJiY2E0NzljNzciLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAi
aHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogInt0b3BpY30gU2VuaW9yIERhdGEg
UmVzZWFyY2hlclxuIiwgImFnZW50X2tleSI6ICI3M2MzNDljOTNjMTYzYjVkNGRmOThhNjRmYWMx
YzQzMCIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiYjE3YjE4OGRiZjE0ZjkzYTk4ZTVi
OTVhYWQzNjc1NzciLCAiaWQiOiAiZTdmMWRmNzAtNjhmMS00N2FiLWI0M2QtNWRjOGVhNGNiZjM3
IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdl
bnRfcm9sZSI6ICJ7dG9waWN9IFJlcG9ydGluZyBBbmFseXN0XG4iLCAiYWdlbnRfa2V5IjogIjEw
NGZlMDY1OWUxMGI0MjZjZjg4ZjAyNGZiNTcxNTUzIiwgInRvb2xzX25hbWVzIjogW119XXoCGAGF
AQABAAASgAQKEBu2HhgIdB6HsR59V4wnLgkSCBxhw2Rk0ArJKgxUYXNrIENyZWF0ZWQwATmo8e+b
JVRDGEG4lfCbJVRDGEouCghjcmV3X2tleRIiCiA2YmE5MTJmOTEyOWQ2ODQ5YTBhYzQ5Y2ZiZDMy
MWRhZEoxCgdjcmV3X2lkEiYKJDI1ZmUzYmQ1LTQyZGYtNGZiZi1hNDNiLTQwOWZkNTJkYzNiM0ou
Cgh0YXNrX2tleRIiCiAwMDE3OTdlM2Y2MmQzM2NkMWQ2MzVlYjZmZGQ1YjQ1M0oxCgd0YXNrX2lk
EiYKJDdiMGM2MDBjLWMxNzAtNDUyZi1hMTUyLTkzMmJjYTQ3OWM3N0o6ChBjcmV3X2ZpbmdlcnBy
aW50EiYKJDdhYjhkNjc3LWI3M2ItNDJhZC05YzhhLTYxMmE4NTdjMGRiM0o6ChB0YXNrX2Zpbmdl
cnByaW50EiYKJDhjY2IyZWVhLThhNTMtNGY0MS05MDkxLTRiODJiZjk5NTM1MUo7Cht0YXNrX2Zp
bmdlcnByaW50X2NyZWF0ZWRfYXQSHAoaMjAyNS0wNS0yN1QwMToxMzoyMC44NTIzODhKOwoRYWdl
bnRfZmluZ2VycHJpbnQSJgokOWMxMTJkM2UtM2U2Yy00YTY0LTk5YTEtZTVlZDM4ZjZkY2EyegIY
AYUBAAEAABKABAoQ+IJI5Szv23yAr2JkgMzajhIIiLWekQ9/opYqDFRhc2sgQ3JlYXRlZDABOQjU
mJwlVEMYQaCLmZwlVEMYSi4KCGNyZXdfa2V5EiIKIDZiYTkxMmY5MTI5ZDY4NDlhMGFjNDljZmJk
MzIxZGFkSjEKB2NyZXdfaWQSJgokMjVmZTNiZDUtNDJkZi00ZmJmLWE0M2ItNDA5ZmQ1MmRjM2Iz
Si4KCHRhc2tfa2V5EiIKIDAwMTc5N2UzZjYyZDMzY2QxZDYzNWViNmZkZDViNDUzSjEKB3Rhc2tf
aWQSJgokN2IwYzYwMGMtYzE3MC00NTJmLWExNTItOTMyYmNhNDc5Yzc3SjoKEGNyZXdfZmluZ2Vy
cHJpbnQSJgokN2FiOGQ2NzctYjczYi00MmFkLTljOGEtNjEyYTg1N2MwZGIzSjoKEHRhc2tfZmlu
Z2VycHJpbnQSJgokOGNjYjJlZWEtOGE1My00ZjQxLTkwOTEtNGI4MmJmOTk1MzUxSjsKG3Rhc2tf
ZmluZ2VycHJpbnRfY3JlYXRlZF9hdBIcChoyMDI1LTA1LTI3VDAxOjEzOjIwLjg1MjM4OEo7ChFh
Z2VudF9maW5nZXJwcmludBImCiQ5YzExMmQzZS0zZTZjLTRhNjQtOTlhMS1lNWVkMzhmNmRjYTJ6
AhgBhQEAAQAAEoAEChBGNO93ef4eaK09E79N4aSAEgimMY60twg0WSoMVGFzayBDcmVhdGVkMAE5
iBtTnSVUQxhB8NpTnSVUQxhKLgoIY3Jld19rZXkSIgogNmJhOTEyZjkxMjlkNjg0OWEwYWM0OWNm
YmQzMjFkYWRKMQoHY3Jld19pZBImCiQyNWZlM2JkNS00MmRmLTRmYmYtYTQzYi00MDlmZDUyZGMz
YjNKLgoIdGFza19rZXkSIgogYjE3YjE4OGRiZjE0ZjkzYTk4ZTViOTVhYWQzNjc1NzdKMQoHdGFz
a19pZBImCiRlN2YxZGY3MC02OGYxLTQ3YWItYjQzZC01ZGM4ZWE0Y2JmMzdKOgoQY3Jld19maW5n
ZXJwcmludBImCiQ3YWI4ZDY3Ny1iNzNiLTQyYWQtOWM4YS02MTJhODU3YzBkYjNKOgoQdGFza19m
aW5nZXJwcmludBImCiQ3YzY4NjdiYi1hMzEwLTQ2ZDUtOTM4Mi0zMGIyZDhmN2ZmMmZKOwobdGFz
a19maW5nZXJwcmludF9jcmVhdGVkX2F0EhwKGjIwMjUtMDUtMjdUMDE6MTM6MjAuODUyNDQ1SjsK
EWFnZW50X2ZpbmdlcnByaW50EiYKJGM0YzRiNjdjLTgxYzktNDFjNS1iYzVkLTRiNjcyNDQxY2Mw
N3oCGAGFAQABAAA=
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '20189'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.31.1
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Tue, 27 May 2025 08:13:25 GMT
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -199,4 +199,829 @@ interactions:
- req_2ac1e3cef69e9b09b7ade0e1d010fc08
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"input": ["I now can give a great answer. Final Answer: **Topic**: Basic
Addition **Explanation**: Addition is a fundamental concept in math that means
combining two or more numbers to get a new total. It''s like putting together
pieces of a puzzle to see the whole picture. When we add, we take two or more
groups of things and count them all together. **Angle**: Use relatable and
engaging real-life scenarios to illustrate addition, making it fun and easier
for a 6-year-old to understand and apply. **Examples**: 1. **Counting Apples**: Let''s
say you have 2 apples and your friend gives you 3 more apples. How many apples
do you have in total? - You start with 2 apples. - Your friend gives you
3 more apples. - Now, you count all the apples together: 2 + 3 = 5. -
So, you have 5 apples in total. 2. **Toy Cars**: Imagine you have 4 toy
cars and you find 2 more toy cars in your room. How many toy cars do you have
now? - You start with 4 toy cars. - You find 2 more toy cars. - You
count them all together: 4 + 2 = 6. - So, you have 6 toy cars in total. 3.
**Drawing Pictures**: If you draw 3 pictures today and 2 pictures tomorrow,
how many pictures will you have drawn in total? - You draw 3 pictures today. -
You draw 2 pictures tomorrow. - You add them together: 3 + 2 = 5. - So,
you will have drawn 5 pictures in total. 4. **Using Fingers**: Let''s use
your fingers to practice addition. Show 3 fingers on one hand and 1 finger on
the other hand. How many fingers are you holding up? - 3 fingers on one hand. -
1 finger on the other hand. - Put them together and count: 3 + 1 = 4. -
So, you are holding up 4 fingers. By using objects that kids are familiar with,
such as apples, toy cars, drawings, and even their own fingers, we can make
the concept of addition relatable and enjoyable. Practicing with real items
helps children visualize the math and understand that addition is simply combining
groups to find out how many there are altogether."], "model": "text-embedding-3-small",
"encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2092'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SaSw+yTrfl5++nePKf0idyEarqnXEXASkEr51OBxAREJFLFVAn57t38OmcTk8c
IBGE2muv9dv1n//68+efNq3ybPzn33/+eZfD+M//WI89kjH5599//ue//vz58+c/f5//35l5k+aP
R/kpfqf/viw/j3z+599/+P8+8v9O+veff+ZECgOidjuPT/hggOYz8/B5WXJjKhdrgcXu+QpqzjpU
fHRkJbTCW4nP3zI23k+iNugeb0qq9aECplduqMgw4oEQ79P11KnpRe7JhmCtVCkjaRmdQPymFnlr
alLNxrOD0FHcF7aCU+zx4if3AdioPj4Y2K+W8UIT2IeKGkz3BnhfmzMXhMhxhw/EruKFp/kWHL5S
Rd399RvP3VZSAdhPHc2G/mvQ7ZJPECZiSrWnMXjLt25zkGDgYS1J7X4e5CVBrDtrNIqXOObbdEhg
ROwPxh/vyKb6ClTY3d0d9UThysbDPCwwwwnEKvAoYO0YdUhr0iGY+TruhV2VnaAT4xrbtfoFQywZ
KozwpAdXsNlVAhNFE87oqWHTwbAfzlrpoFZo1GB5DAmTpjsNAZeNO5yk8SedYWISNNrcg+KxbEC2
C4sJ9dXtQk+NdKgk+XtbIH+J+gCiAqXU6h86VKTwRC/vsUynp+tE6P60Q6py75e3zCGywe65SMH2
ethV/FLVIthevw69JLYe88BmOVTVvAvGgtcqnhNLHbXz/h7wdW2nou/vM9jm1QcHlhIZ00s+OrBi
QkSfwsiBiVotQSdU37A6uDmYLevmQzxFEd7nxdJTgNISnqOhoImdvPvFfNEcpqpQYtuzjh4f3r4+
CM5KS+Y+VBizw6H5+z6vocWDIVgYROWyhThwhI2x8PSigNcMG+yj4pHOvfsqlfen4OnFferp0m0P
BXQsNaHnk6FXYsjXLcKhltFry12qqZNuPqxvAoeNnXz25nl4qjDUlxbvz8HEFul5KEGjcg71d9Wr
J49BTqARKjMNqH6PheNO7dD1MX+pIfQ3JpzdRYeNNXLY/AZ6NRePYwl3pmlS3XOu3nD2DqLiwFbC
l1ta9PzEpwoUIiAEKLo/PSkLM1P+trNIxm1z7ykpThw6yJDDYWQ4vRhvXglyVasmUOOXeIzFYwFP
cuzTdT1V88OJE2TfnATne+gwiRZKB+F4mQOFM2WwlGflBKO+PmJf45d0fkh2A0vd1PDxMzqxSK/d
BD/TwaCPQBwq3qNFCEmS7rGWaueUdVlfw3PouzivjachVAfVhZcr1KkT2Q828dnGAbODn2QWvnYv
GMElQFonxngv3U+pVNC4gVKZNuSSkA+QhjPawn5oGFXtrK2Wx7GK0A4ML3y+cDQeQHh14TeeXRzG
08ug+CsvUDFfDtk+rFssHIWLA9vZu2M3+pzSuXkVNTpPoMO7d1p7U+/FOrzdRYL3U/7piXfGGbix
UKdHGs39OJzVGrG8PeDw0c5sycqtDvnmZuM7oVtv7rYbFV4jU6RxWpdVS54sQ6Nwe/zepyFwqWMj
EJsV3d32eirQl8TBjmg3et9/dxX/yg0dvnMf4IPLC2zOhk8Ji86K6HOvW5449e8SNaKN6eFEHjHv
yR4EBbt7+EbSXb+g8QGh38oH7Jbinc0mew9IAmNOw+3W6dnTNW20i44BPUWqXkmc5BVw9CRC7etc
G0s5OzlsP1KBD+ZTYmycvwPwkvNCd35ZpkxhkYMeYU6wZWZlz+rvK4L32kb0AHWtEk/biw7N3t0E
pfjOKnYwzQbdx2NCVW+IK0l9mDXyNE3BVqraHo0d+QLrk+1gk1ZqJV5bs4NvxXCpWn/8mE/54Qat
e73BGl/HFf/Y+1u4JVmHb9rxWy1m4N7AkKoMa2QoGTvHYQLbiMNUhxedSUyYJhQr40xKeTOy6SS1
A8jApcGH/OH30/c9LoCiTYgDaTj3bJOlNrL2z5p6THGB8MaiA/2Hf8fnu5yl/EnzM/DuRRVj7zyk
0+tDCLgkF4T30JgYm17hBblhsCEKs56p4D1KHQmRLOBdJBUxFWIeovFbBzgOQtcQV32F7qnwsHeO
ZMaie3GDR7cssJoC2Vj20T2HQZxENIvdV7V4Xj+Bjfwc8L5NEu9Xj6AZpgtObtw+FdlxypB+D2N6
MV0zFfYjSxDpyhrr78lJJYDiAn08E2A36TUgnGW89uekDHripdWS2KQErplMBDrMZ9MzriBkVqBg
9XrM1nqVXEhx1+PoReZ+kA8vB8Yb9xZ0PB8AYeZV++//u+jpibGDUvDQsfQkgM9rmM6DrCSw8gMe
62v/EpRCuUGznUxq4bttvFXKnyDXaCp9uPwZTC9fDNHenyKcp+JkLFtFvoB0+9xg0yQFmzoXncDv
98yNq1ZS7+U8iIfy89OHfnCEKdpqjx3D1uLTeBFOJIdO4EvUKV5qKmaozRRyUwOalGHvsaj6Tkje
DjLdyySqFk3+KvADZJFi9day0boJIbraiY6NV8biqYY1j7Ran+m+LPexCHijRXXpSUSpkNEv0LEz
WFhmEwg23TO+c9EFXIxXSq/385NNxRbkqDzVV4qjU8OoJ48Z5EQ3pansXoxxYl0ClyII8PMFbMCP
58VE589nxpohDN6kA38Lq3Mxkhm2midJp+mEWl3kqb8zHzHlyTuBrcQB7Avnd7qkt5CDeRs0WKU1
BbN8mXU4vMRLMNDmzCQuOg7IO2cvmoqCBFjvXXiAU8fFjzhfDMZS9YS6z/mIdeHaprPQDAOEdsrT
nXzIPEm/5ArEp0tLlI1XVYM+GwU6+nJKcfOuPJ4EDYGin1dk+529lP3WI0z4FB+PsxtLrjopqHod
XtjIfCeeA4vWkAfJEkhH9wNoKS8tSgieSN+oRj9VhxSi0+NaBnz/2gOpdQoePbxcowfbn9IF3bdb
SJ+TjePeK3u2hN8Q1oe9izH/7PoJf8Pwr77GvCp5yyY2fHD4ZC1+bBu5mrYHL4OyUS80Izetl3b9
MkBOdFLqmP6lWuovssH7reYBr2+O8XTIZR96yXUJGHftAcMoF8HyvfUYX6CfsnZMOnTvlCcO1n4r
NP0XwlVvSHWXOm/5hKqKxEDK6WF3rNIZL4WLFi69YjMOLoAah5sCizzJqRnGncdIkXGA25EUO2/K
V/S4Ezhg7ewvtn2+6PmZO0cw7wikJslEMPB168OhdwJq3eUs5pHon6BbnBKK97plCEWDfPh4wCt2
IDpVdPWXCgmGM72qQI8ZheoEf3qmX3ZzNdVXpiMmagINci9I+QmXNqqI+KY+U3fevFR3HZ6F0xHv
dmER0w+nDagsYg87ihoC6RzfEqhz4YZsIxux71N7D4j2mUJmwJkVT8C+QY9PGAZbPG/6cWzfHYwT
/Yj11rIrNn6KC+AyuiMzF+tgEh9KATTZeFBtrYepa4wMICGwMNb7ySPbZ+9DJc0saq9+l46f9gLn
p5tRcyuUVce7OAHg3MhEOjhHb75/Y15ePNvGFrRFwJbwFYG1XnFoXc/VdNL8HNRjopJvdvBikaWZ
q1yMKqWed4tSWl85Hr7zAFD11Tk9w+jCK93negy4NHylS4gVHsovcA06QX6x9X5OcPXbVN0wIaaw
rExYqaWGD9HWiMnbKiBK81qjUSoWYNa81gcgS1KyHQg2pHisXDR6AqHuxjP6v/04r+QE4+ZteMLP
v7X37kIPVu0C/llPBCLve6GuFgOwTP1YKuN5/yHzsHHTyQBljXKrFqjxLQog3g/yFrYRxARMhcyW
8WAMIN9eNMK0+mpQWiwdaG5nir30I7HyV3/5mYTBIpkFYGz/2MLWwhRj4pyrJXJoBkQ/q9Z+6sdk
Q44XiOvcoMFz27DpM8QZkl/ylernlw4mKQ99eNudbvi+zASw2JkvaHvtHRrDjqV/+2UPh4BGTHc9
UUGfi8K3SkZ1H7+8KbsziHbO5vzLAx6Vv+EC62TBhH68GQz8PjHhYOs7MgXakU15nargg2+74Bhd
ZW+Y730OO2LcqMciKxV5etnCl3tyCODLsJqqpc+hbrclzVT6jJflGE2A7WiI93o3evOQ1yHkzvIb
H6L7xlvuX0eHN5PXcTi4HGDF6ZBBA/IJtcpq2887rswR2VISREzvjGWCS/Q3T9+tT8j4y/Q4AVWX
3mQq3uee321iCJf37hkoG8+o2JuVLbztLjdsfQ48G5qQtrD8vo2g0JMjWMKujxS+NJVgU+2BMbrb
KIN5N8AAOa+gJ30s3+DRGDgy7hutWrLjoQHqdrcjkbqHjDmp1/1dn0YUFYwmFlKBVW632PXMF5u/
qpsBVRfeRFIzzls0WpRo0jeIWr88/wnlAhhJ8MW2nvJsWjgFwp9/uHWbTV8f0UTAej80H/m3txAg
Kmjth1QlTwjI8Q4DGG+cGz1N89lYIqHVEfwab2xMD7Pib1/awbc5t9QASetNt8KDAC/fw/r8JsbY
ZnER+iJA/e9RAqPvnyNYeNOIrWfrVTS9bxbw6o0WmzvN8VhlHhdUGeoVW9Flz+bNlpTgvfcx2W6o
6k3SByjwfb3fycwUyRs4sVQhXK55AF9D0C+S1+YwcO076ZO7UUlL+ArR6m8p5q7Am992ksGLGH6w
phwHg73kjFP0vbPFp3N1NsZvTAu41hc9VVCtiHEYCJQa8UAOw71jc3rXMzTPU4B3d742WAKPEXI+
nYetfScC+mZdC3/Pe99YANBm987AqenTYDM9GBtXvyufP++ZTM9zFy96e3bBwt2veP9KN/20rjdo
MT3+63/YbVZ8+DjwkPQRAj05P8YG6FMPCDLwUC0vb4KoUgsN30X2rqbw9goQSqc5UK7SJiX3pSLw
GR02dNVXNjf25MDFXhTCe99DRV6KnYF8t5nIzz8J0w4XUAyEnGpdNxijGxcdbF7flnB72LJZsYYQ
8g/7QJjKtfHq37ZwrY/gUT6NeOUROUB6JtNjnOtAUoL2AnHquthhxsGjuaoTONjqjhrGEVfDY28q
8Bjzd4wfcugxf9IWxI7aHueKxsDS4O4El70n0MA/7jwxrtMQ6oJdEvPA9WDZS14It7OdUfd6nHp2
L945ZMMIsV/OWsXQTulgm7kD1rO8qSaPFtHPP2KvaaKUCTGE8Drd02B7FQ4GrZTwgqoraMm0069x
1z3ONjQ2h3Ow7BUd/OUJBxK5QfdQC29ESXeDMjhgbHdoTNf3FciOIJzx+XM4rfpxPkFjg8+klmzm
fSfW3ZTVb9PHYX/yFkHb36BPB0rjrT4ytjX3IaqbJg+mVa+Wbj+piseYjTXEcxVBlRJBO+dfeEcs
NRaeRK3RpH50aj+MxljurxxCrIlRgBPOMNgjAS5cogehh8dNrkhgcja8sOVIFHjfGmy6f0L443s7
MlpA5KKxVDRr8KkF8qOxXPMWwvKyiagbnkZvfn2iLZIBxj9+ELNV30FW37/0serZfFVcRanBkwbF
6WYD/g4iG9HnYmMruRX9rOWfBpZCLGE/px2Y1voFF/dQrv23ipn77gjIFmdP17zR0wQeQ/ispYl6
t6E3WiGeXUTr7w0b7JJUkw5MBU6c3NCTftd78SGebURBc6YWlY7GcJ2ADt/FGOFIC+1etG7eAqMo
vGN75WuDG8McgnMtU9vrn2yauXMID157x8+Mf3gLKEUF2m6q4AB/tXRqwk8HDVHf0l+9jzDxCfwm
zUB3e1tJZ99/hL98ToRT73h/n//1tr2Ry3vU46Xd3LYoTbyE2ppgG9M3cgi4lv6RJqPUG9O5STlo
DGRDpOvTYlI7Ji1Y+VfAUV1OZxpEChpt+KCPOI+87zEcLlDdRf7K9zgwK/jdoeoqt9iF95ux8qcb
MB8vheIdSL1lkNUtMNvFDDZZEMRLAKITyBB9UY0p19Wfez6smzoP0LVowShoyhY8HtyV6iQxeyE4
hB36LjtK0C8/RunTB4pZOQSsPHbZp4KDNvJjoJalz/HyUoIcjhK7YXwYtHRAx6SAP/8DoUJ6qrfa
BTp30GO7rzJjGeYrD1G6zNSaG7Wf+ublwsUzbfzXnzySY4uOD13Eq5/2Fi56F7CmE6B7kVm9WGj3
Lbh+dmXAbxbbEL+RqEKn02ysOwc3FstnrgOK255eTptbNWTce4ErrybS3k7iZXrVDshzZQx6rdCA
EIvHEh2k2ljzyataBtlRUPZQNfxs3pVBAD7y0DooHnWmyWKsjcwC7mliBDeuvcTLq3klCOyXbvVj
Qs/gLuNgfTIdfBO4xBDse8RBS0gDvL+AfcyP36sDf/lit+ax6Yi2BKz+hcb5E/dz+JpttK2uEGuz
9jK67GjVMBbEgnqcbMXCYOQuNJ1XgB+NLrApvechPB4vBj7ortzTSrmd4O7SJNhldVURK2htKAiv
Bseffc9W/1FD2UIj9Vce8hY9GP7WL46G0TcmlIgBsKL5gTGah3QmX+8C1w4X3NgXsNnivQTOfFQH
U/EWqjnlwwa07/yNtdMgxYvkFdmPl6z++xyzrtmFci3bfCAkN7UfRH1IQC8oA3kvPk4Hy94P8MqT
D0FkiAxem0YRnI6LG0hKhL3VH7UQOicL78vyG7PRj3z55aQS9cv51U/fSCXIvadZwPvyFoxhaHdQ
S8iWrnmPTSlWaqBm+wfVY9+spOPdJWBdj0ScldlYyOF1g3HsU3xLJQNI5tImsJSHnD4W0rJ55rQc
xepwp/rhIcTT01UjWEq+g73b4HmSJ78zCDewxJmdB9XCxDL81QPhsIs8ejD9BgI/Vsm7CI/p+NK/
NvzgZIft9fp/9W/NQ6Rud1vAuOhI0JqPg6pnjiH+eORvfoLT+vjrhxFUHoKKHfVbe0ueDq0iHIBD
xIqL2DIarQ795/tEz6naGNOTLCZQpmzBfndxGRNPUQtXfcIBP7fs626TDFx24gfbq3599fO3hvh0
avEZ2hcw7TYp95e3OIP9rYaNtnfhwevu1H17N6/7JNoNrX4C7wyRGsPKt4DNuC/dn0UxnfbvvQ/n
4+uGcc+u6XKqJw7Zo9bjw7a5VzQarRw2b8gH7cpfV17RgCCrKV7nJ3/1Dd32Y4w13YmrVY8HyI7G
nsiNlbL50qgOuATdHrvXY1gt7y6aYMWkiDq5X3okrtMIao5fUsMN4nRBGzVBD66XAhgZVzAmt2GB
a97EwXyVqnkerjqCTdthzzL4dLkZUwE7zmFE/j5Hb1C1pYPotMHYrGs7/hqKbMtTYPfB8TRc4yVF
7gSuU5pS21U5Y0SOBEHvnxE206iOx9IvM3jl9Cf17GlgU9d4GQTWMw+mWQ48FiybBfZVcvnx3n7p
yEsE+Ss1sbtr74x91c2kqLvQxykNST9fjaYD+EKrgK28Z1r91s8/Yo2LdTbja6TCrFQJ3YlbBMi1
9TswnPAxEO1HX9HMnhKUU9Whz/ATpOKxem4VqBUVdUep9xZur/FwYpcg2Kz8hd+29wb+eK/Z7rZs
7XeKsj4PaqqD6/F+Hhdwo0mYgM3zZCys3vDwEFZ9IHhXmq68eAInraN0X+DSmPZ7YMPH1RFouOaR
sbKu9m++FWxW/eejyokgaHcYuzxPGPNPoAWf8sMR8fHlGZ1e4QndnYhQZ9Un1j+0CAbWfKDqOr/8
PEJ5UnZLYdLUeVg9Xx/kDloctdf5KAZ8e+xVeHRUlzSaYHstFEgLf/161fNqHpXQhl1a6UGv22G/
jO2dhz6SZWqs/HkGvOCikBuOGFtqEIt6+3D/9utg92Zsviq6AhTovfFhne+JF3pT4ai6AGMmmUDK
NrtQOQuXI1UDbQZ/5ynqvt/h4PhM00HVlBYGFjsE2218ixn+zhPkzuCNnZXnDHtSb9GT89qVp4k9
XecDcJ0P0B9fXCpzrH/9m+orb2Z+jnQ4deqZPu9Ht19y97mFewtO2B2xVf30X9nhPqPmZrG95XaR
FKin34Bq0fXurfmh/PFAen2a2CPfus3gpjSt1c/HgD83MYTTfavgYMncfuWbBIKN7hM4A95bx2uc
ojlBSd7BiRl05rhJKS8oWvP802BZeDLR1hNlrGllzeb7N+XhjDWN7prvNl4W0Wwg1Y1P8FjPn/Ps
4kLEYn71C29v+PHkw1eoqCskqJ86V7iAdZ5DFreYq3k5khr85kP7/XfXM3B7ERTDTsf2uE3S2Y3b
9ufPME64ylhOcVCCUx0W9LKVeDCt80QIl3NOg/7ZsDHFmo329V4h0nD7AH6j7R249KxZ8/AVzPEG
+cA+XrbY1oTGmMenBtE/v10B//WvP3/+12+HQdM+8ve6MWDM5/E//nurwH9I/zE0yfv9dxsCGZIi
/+ff/3cHwj/fvm2+4/8e2zr/DP/8+48sin83G/wztmPy/v+++Nd6sf/61/8BAAD//wMAMvIyqeIg
AAA=
headers:
CF-RAY:
- 94640d271c367db6-LAX
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 27 May 2025 08:13:10 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=zxXbTMyK.67_c.SQXNivPXTcfsIBL5Vl1Q7WXFcTgxU-1748333590-1.0.1.1-ArIOxtxz6HMOCmEGGFc.Hxs19gY1LkxaxTZYc9hAE7zSdmh2fCrczDquGUovgGjYHvCJ94TxWQTCVlo1v7kDhnnrF0jwHy_U_LaR6AbA.94;
path=/; expires=Tue, 27-May-25 08:43:10 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=4YFW5U1WwjrbdrZ7OWIvzgymvtGAnmnPEu1zeEdQsGg-1748333590310-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '180'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
via:
- envoy-router-5f689c5f9d-mdwg9
x-envoy-upstream-service-time:
- '185'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999496'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 3ms
x-request-id:
- req_421cd0437639cc5312b23b1d7727f0a4
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nResearch a topic to teach a kid aged 6 about math.\n\nExpected
Output:\nA topic, explanation, angle, and examples.\n\nActual Output:\nI now
can give a great answer.\nFinal Answer: \n**Topic**: Basic Addition\n\n**Explanation**:\nAddition
is a fundamental concept in math that means combining two or more numbers to
get a new total. It''s like putting together pieces of a puzzle to see the whole
picture. When we add, we take two or more groups of things and count them all
together.\n\n**Angle**:\nUse relatable and engaging real-life scenarios to illustrate
addition, making it fun and easier for a 6-year-old to understand and apply.\n\n**Examples**:\n\n1.
**Counting Apples**:\n Let''s say you have 2 apples and your friend gives
you 3 more apples. How many apples do you have in total?\n - You start with
2 apples.\n - Your friend gives you 3 more apples.\n - Now, you count all
the apples together: 2 + 3 = 5.\n - So, you have 5 apples in total.\n\n2.
**Toy Cars**:\n Imagine you have 4 toy cars and you find 2 more toy cars in
your room. How many toy cars do you have now?\n - You start with 4 toy cars.\n -
You find 2 more toy cars.\n - You count them all together: 4 + 2 = 6.\n -
So, you have 6 toy cars in total.\n\n3. **Drawing Pictures**:\n If you draw
3 pictures today and 2 pictures tomorrow, how many pictures will you have drawn
in total?\n - You draw 3 pictures today.\n - You draw 2 pictures tomorrow.\n -
You add them together: 3 + 2 = 5.\n - So, you will have drawn 5 pictures in
total.\n\n4. **Using Fingers**:\n Let''s use your fingers to practice addition.
Show 3 fingers on one hand and 1 finger on the other hand. How many fingers
are you holding up?\n - 3 fingers on one hand.\n - 1 finger on the other
hand.\n - Put them together and count: 3 + 1 = 4.\n - So, you are holding
up 4 fingers.\n\nBy using objects that kids are familiar with, such as apples,
toy cars, drawings, and even their own fingers, we can make the concept of addition
relatable and enjoyable. Practicing with real items helps children visualize
the math and understand that addition is simply combining groups to find out
how many there are altogether.\n\nPlease provide:\n- Bullet points suggestions
to improve future similar tasks\n- A score from 0 to 10 evaluating on completion,
quality, and overall performance- Entities extracted from the task output, if
any, their type, description, and relationships"}], "model": "gpt-4o-mini",
"tool_choice": {"type": "function", "function": {"name": "TaskEvaluation"}},
"tools": [{"type": "function", "function": {"name": "TaskEvaluation", "description":
"Correctly extracted `TaskEvaluation` with all the required parameters with
correct types", "parameters": {"$defs": {"Entity": {"properties": {"name": {"description":
"The name of the entity.", "title": "Name", "type": "string"}, "type": {"description":
"The type of the entity.", "title": "Type", "type": "string"}, "description":
{"description": "Description of the entity.", "title": "Description", "type":
"string"}, "relationships": {"description": "Relationships of the entity.",
"items": {"type": "string"}, "title": "Relationships", "type": "array"}}, "required":
["name", "type", "description", "relationships"], "title": "Entity", "type":
"object"}}, "properties": {"suggestions": {"description": "Suggestions to improve
future similar tasks.", "items": {"type": "string"}, "title": "Suggestions",
"type": "array"}, "quality": {"description": "A score from 0 to 10 evaluating
on completion, quality, and overall performance, all taking into account the
task description, expected output, and the result of the task.", "title": "Quality",
"type": "number"}, "entities": {"description": "Entities extracted from the
task output.", "items": {"$ref": "#/$defs/Entity"}, "title": "Entities", "type":
"array"}}, "required": ["entities", "quality", "suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '4092'
content-type:
- application/json
cookie:
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//zFZLbxs3EL77Vwx4lgzb8lM3PxrAOaRu4xSIs4YwImd3x+GSLB+KFob/
e0GuLcm2CqSnRgdB4ry+b+bbHT7uAAhWYgpCthhl5/T4Yv7A9qG7O4qX8k9X790df17SZ3NFV7ef
JmKUI+z8gWR8idqVtnOaIlszmKUnjJSz7p8cnk4mk6OzvWLorCKdwxoXx4d23LHh8cHeweF472S8
f/oc3VqWFMQUvu0AADyW74zTKFqKKZRc5aSjELAhMV05AQhvdT4RGAKHiCaK0doorYlkMnSTtN4w
RGv1TKLW68LD53Hj97pZqPXs6mJ5+fWu/th9bRbu03J54/GPj3ft6Ua9IXXvCqA6Gblq0oZ9dT59
UwxAGOxK7C2G778tUCfckgFAoG9SRyZm9OKxEiE1DYXsGyox/VaJL4EgcJ6TB42mSdgQhMQR55qg
th4Qjsc9oR9brUaAAYLtCGjpNJpSNUCHPYTIWsOcYJj6crcSo0pcG6mTIuisJ2ATyaOMvMjxmN0C
5Ar5iCNTgNhiBNmyVp4MSDTg2j5w7msPjnxtfQfRApkmA/3BsQVUijOOoeKlNYEVeWAjrXfWY2TT
wIJDQl3KKY8/2DQhc8mQGo8654wtQSSUbfZ33koKYQRkWjQyHyWjyGflqPwvt6a3yTSgCb0hH4b6
N94uWBFEdqE4OfR5AGANtPZHLuSJTW29pFJSWiPJRcAIbe5s4VQnAw12Q39oQb5X2G80arcS96NK
/J1Qc+wrMT0bVYJMLMY82ceqaKQS00pcYGAJ589tKiiz9ort1jqW5UhRkJ7d4JItLWUYCrN+UK9w
soEOY0sdRpYBbJ0nPmeTm2JSNycfMsksgxQJEKKNqIfmeNKDZFp2zwK8DoAbCVGDdeRxhfQ6AIWQ
qaEu/ST0uh800lqrSuwwAzZNJe6fRpvcz11W2WvOv5fX1FbSH3ziGCAFUpkomhehZkqsdQrRYySY
l5a+Vt4Wcl9e8oC0yRQhbuQrYlsleQf91vZwif7nwd/a/heBfsMyJv8f+v5XeTwBfQTHJOkX4fGB
TUNvJ3BhVQ836LczOTcYbVeE7DKd/4vH/ZN4tQyedrb9vt9YdZ7qFFC/34FojI0DnrwE758tT6t9
q23jvJ2HN6GiZsOhnXnCUNaYCNG6AVaGUIqL9GpVC+dt5+Is2u9Uyp2cnQ35xPo6sbYeHB8+W8tb
Zm3Y3zuejLZknCmKyGWbry4QEmVLah27vkhgUmw3DDsbvN/j2ZZ74M6m+Zn0a4PMr1pSM+dJsXzN
ee3mKT9Q/+a26nMBLAL5BUuaRSafZ6GoxqSHW5AIfYjUzeqid+e5XIVE7WaTQzw6RDqbSLHztPMP
AAAA//8DAGHAjEAYCgAA
headers:
CF-RAY:
- 94640d2c4fbb14f8-LAX
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 27 May 2025 08:13:14 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=2gcR.TdsIISbWE0mGGmusReUBNsIatAwc18zV72zD20-1748333594-1.0.1.1-qeHSEYFoSHrtU4ZrkbG05aW.fPl53pBh5THKK8DsmUMObmaOM2VjUu.LX4CG.kTiSHKPDctGkrALLResb.5.jJ8KafoAb00ULAntajitgj0;
path=/; expires=Tue, 27-May-25 08:43:14 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=JuFQuJzf0SDdTXeiRyPt8YpIoGL3iM9ZMap_LG1xa5k-1748333594521-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3966'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '3976'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999368'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_da07dbd4e017b1837841676fb84c2e7f
status:
code: 200
message: OK
- request:
body: '{"input": ["Apples(Object): Fruits used in an example to illustrate basic
addition."], "model": "text-embedding-3-small", "encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '150'
content-type:
- application/json
cookie:
- __cf_bm=zxXbTMyK.67_c.SQXNivPXTcfsIBL5Vl1Q7WXFcTgxU-1748333590-1.0.1.1-ArIOxtxz6HMOCmEGGFc.Hxs19gY1LkxaxTZYc9hAE7zSdmh2fCrczDquGUovgGjYHvCJ94TxWQTCVlo1v7kDhnnrF0jwHy_U_LaR6AbA.94;
_cfuvid=4YFW5U1WwjrbdrZ7OWIvzgymvtGAnmnPEu1zeEdQsGg-1748333590310-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SaSxO6Orfm5++n2LWn9im5SZI9Q0BEbkFAxa6uLkBEUOSaADl1vnsX/t863T1x
AEEIZK31PL+V//zXX3/93aRVno1///PX359yGP/+H+uxRzImf//z1//8119//fXXf/5+/7+ReZ3m
j0f5LX7DfyfL7yOf//7nL+6/j/zfQf/89Xckbi/UPZZxOtWfDQHNrcjxw2hOjJN9zoAvyTuRGUlV
T9NahrB6Dxgn0OyqvsmqDrm5AKlaYacfKd86cCu5jreZq6Ia4JiZ8P7EFdkJkcE4P0kncCxiF1vv
61TNsaboCLKxwApwr/Z0eu1r5LYfCe+b7WkdHy5ovrgC1rbFbC/qronk21avyEabHbYMe6mBTVwJ
2LmMijZ71sWAb5vzqaWWhU1sx4jkmxO/vK2xe/UTSt8ejCXpi0P/iwAzToWBJqUR6dWTylD4it8O
hnJxw17/9tjEudoCu3OqUs23hGo+aEaOAk854zg6l9qUyhsTPJetRIjs7W3B0WEBD+0lx/eLy8C0
bZsGbp/+SB1yNyuhLx1P3r1zCasWS+x5R90Y4OtxQ5W7MGpz2KUZHBy9w4H0cdnQgyuEu2SMqDYD
1abK9qajvIU7bK3vf0b9XUaSsjvj25an6fKdHgL0vjzwIGnznmvUq4CGyhmw+3xpvdA6CMpu6qn4
4G75dGyU7A2E6G7TaLAP9jLJ04KyqLxg3ftaFTflL4K8j2LQm7n/9DOvVDFKJkiIPL1bNnDqp4O3
FzFoSOnTpkKQXYFxfZ9waH2+4WLqXQn7TLHwtXv0GvOqpwCdg7Kj1qvbV4KqiwQdVPwgY7qxAPO5
ooaAfzyovpEAm9bnh/EObAkUN2JFuHKvoNvVOlCNQj/k6IcVsLgFuid5z1c1bwLfRBcBx/T0kLiw
bEUlQ4tVJfR06YBNMrNtEJpsg2oH7aHxHphj9LGMEJtFYNlifQYFGJ2ThQ+3+dLPrH8YcnbaDh48
BXzPfCAncPpsUmoZF48tzwO9Qj0vVfLVAafNT5h4MLi/A2zYy8SoNU0B0i705rEW5WB2pNSAF3/H
YafXXjZ/r+cNPEb7I32U3R0wWJQLGi/HliqbyWPsUqkd0vXpSf0mJPa8t4wANpal0GczBjav+5ME
mRYZ+OBlWcVXRHnD19CY2JDGhAlJw3tofZ/4MUeOzfGDZMEM5cybFMTC5SvSBrw3RYCvh+oUCiZW
GqTSOKH5qXJDfic8PWhtOw7vrZfCxHzudcjVeoMfZVIxsazuGYyL7YsqiqYD8jx8r1D3owKflRKH
yxI5NVzOfYb17Kun4kz8BD3nTeEtwy3quezFxWBrWgMB0x2w6bs5B8gq/RtOsFv0U8BoAYOPFeI7
bvRKqPZMQJbyHbH9/hxsZteJBbkvOGB9Z6S9YJsmB7NrtHi83mUpJz+fBH5ki1Gj2AchcyxHh2Ve
Hch8l/xUtOvARDGFJsa0XuysHIQCfjV78fhHddWmLCnf6JpFe/o8Mt+ea36IAW3GCSsG1JmoS08f
xqZwpMeBCPb0MJcOTUmcUN/XHSa8X4UHF3E6UMVtGBt4EC5oY+oONZnQ9azJ+g7WOqDUzUVbW/hb
KUM5GADh3e0lnVEBJtjC44NILyeuOADECT3EQKTGMCyMJfPdQEYFvzT0b0cmvBtZgWja2FQF+QgY
6WQD3u7LFmt6zQNqbVMJWp/dmTrhC2kTz502ckg2V+xdZqOazxY1oH6YRW/hnzCcr+Nu2T2Ozg2H
n7Fhi/4IArgISKFKHWUhr/uSBPo2bnAw3KKKr0lSQ5S1G2wR0wdtLLUyigv0oml5GrS5qPwc3IXL
h6r+R64Y3191eBfNDvt8yoPp9ME63O6UMz3cNjWbk4ulgjSlLbXy+RVyCs44eN2qGtUqYIacuzdV
8OiJQPfHlKZdKJ9M8K27HfbARQH8+7yUCJz2IvUdckj5DbYF8PAtATuBdUz55NlYkNu/T16RlZm9
DH4UgKYynvhoc5E2ATXOUUHiA1Zoy6ds+94bkJ0p9ODb2mtiWtUNuueOTUOOU1MqES5B2UtmWN8e
XK27NZWDvlP8wPbof3qypNcE0i+JaXxuRNBcc11HVWLXVKlsQ5sk8JlgWH7P+Piy+HQedtGAnndl
T9d6ACipGh/8vsel3Sg9dxnoAKvFGEkvwijlzW0iwa2EHXwUims6Crt7Ae1dJtETrEi/nJNoAVxu
v/6cZ/SCOICJcMJx95r7iU7nTo7lUceBm71TsnVPNbQcuODrgO1qPtV3E8L6plIz18qQLr2ugwZ/
bvj2+GaVYJuKALfk0VDv2l+0obuNBiS9v9Cn8jAZL9lhgUgfLF7Xq9twts6RhJptKxLUl3Y/yfFB
ArwdO9S9lIEmXtKJg+m89/C9M9xeUE1dBev8CJrENxj0ve3BELwo1uv7u5+en4CAVU/Q583a9my4
VBwaMH1TdWFjOKEoSWSt5xSaXvbvkJ7OmoS42mioDuih4uuvMiGM3C29n5OPxmRFiNETlQVWk+Mb
LNgMOFTVxUAN/v2uxLhuNrvP2bvQi9SL1Z94yxcQk00sQ0BT4iyA3xgeve1OSsU9btcAeQqVsSlQ
CywPYdeBl/F6YvX+GMKhP/AmaC5kT0/T5RJO+l5z0HFcOuqgKbaXbGNnwA+jFl+9/MkWg0YOfN/i
M74fnJ51Dio74B+XBuub5gAW+z5NYHczErJttF3PLMnS4RovnnA+WtqSDKcCzldBoUfBV8IREw/C
zzGfqULbS8on7uQg2dze8K/ezZgYEAn+dKY3ZnlAGE5WDpspQ1TjiQ9Y8HxHKGm5AT+cpAunHuQb
eHkernj/FF9g1U8ZusHHnvoyKrSh51wTntRbh7Uspow8hLlBYCg3WPcsLSVSmSqwQXyCXXF6g8kP
9xDlenvxYF+YqcjxnAMPqQ0IvY5xOJWDUMJg3zvYHkcHsDU/g8McfIj0beZ0CK+Fj0gQRfR+cGw2
vFVHgPnjy6jeHli/zm8DhvvTxIfxKIDh9EABjKQlwUdhPPaDu1dUeAy8Dus3WFVT4cSbf3/Piz1V
i/56LjDJco/iRe3tOaz2DVyEreJJAu3AZDz6AML6ouLsLW5SVsYggshuanzKD59+Ibk/oH254bGl
7XjWOiOEoHxeLfrLH0s3UQGa+uHrbWI5Y4vIWRv4GZYLAeJz1BbwmSN04T3FE6ezx5Y+bN5Qu4w3
aurjPmTwcc2Bcfu8vLm+PvvpdXI6cFjOCFuvxxRSM/I9xLnWCe+pN6fTMzdlZOYNptllVOy5JkGN
XNzsqaMhGC7nF3lDKQ8JmXrB6MXn5aHAfv8svXo8ydpCnWJCbyBN9HhmH8YKGHpILg53fJA8P6WZ
u3OgaukCtvv8YC/BPlXl0NNnrN1Gaq/5Mt4dvLqkh0dY2FOkS1c4R07ugZfqpD3OPAWy5y73WiO0
e+I2JIHh+06ow6VPbVmvh5GILtSIFCulrxkZwPuKwGM8mcB8AFwNgOGoP/8TipdU4mB0lHh8V5Gu
cbC2rkB5vKdf/PaC1UQxmq+cQpPn/pYuezu+gtL4bKlmfb7pJN6Y/ItnbxvIbT+cZdP86SdvtuYr
YH1X6DBnwwMfo2fEWCKVEhxvo00vbWTa8y8/9s23wqeuigDRX7cFKhxZPPg8PACbjokHN5vUJDJ2
lV7oPnG5kws5pzbGGuCCJnZgHMUmzZ6HB2NgCQZ4Ui8dtad61JaLo5no6WbKT89Xc/X9QiCcOoy1
wt70w+pn4Gdkoycws++n07XP4OYktR7juDLtPunxDVd9Si6Rh+w/ekrPCxUnE7dl/cnd1jv5BQTs
rHp9aXzLh/7pcyDzSTRDDtZqhPxz6RA4wn3Yd1orAb0/pPjpmm06trMkI+My6zSwqrf9uz+4Pm53
6syBCQRjKUrYGY1BXbSk6eTfjhmqcNxRx4mP9kS5m/nHb1gvpbWpzp0n5LmSTh3i3NLp/upisOze
pSflRds/MvJYwO0+bal+J7q2pBjkYHu8fckuzX7/j3MZdmzvgR2JGJO+ZQ3PXEDIu5rkdLi84hgq
Gu9iTE8dW66iIYDzc/GwZvEoZZwSxOgT8Zi6aOv0yzlUN0gU7ZEwn6NaczsdObnUFsubFapU/Jp/
4GlbR/Qgpa9e6Npcgf1Udli1FTtk2wIuADvmEQfN+8NGLH10cLvBkjoTv68YWWwZXB7BDh8FDdsL
3u8VeLPeaz3f2f3EarcA23AYsf0FTjgnF1VFGKQlGdZ4Zq+uCpAivDARD+YnHN5Ot5EPiVVhe7qn
YL7zjxoGWGvp4TF9U7KuP9hsmie1pqPaLyoaBdhcxzu2mHy224z/1uDbPK+esGWOvZyTbIHJ41HT
y9DRqjOQKMAL7yj0vOaj4ck20Z/5XKT0Vc2Pp2yhOu8DAjCuGPNaKQNldzCIfME3Wzg/Xjq8ed7G
mzdLoE0WejXwMVYh3u9bbC+jmOTwvK8HT2CLbi82Thp4Fg42Nr92p03d7WOg8hlZ9LHGPzk2VgLZ
eYTeHG9ejBHe92C5KC7OZHebrryhg8Ot64mgui/Gfjzkl58Pg2uGXCQHJko+8Ug2HKb9xHIwwBTF
IVZkpGgCVa0Otsd688cviT+/LOwGSh9aUIY//Qdur8GgycQ9Qac0tzck8nMkGydzK/5zjBLkvd09
jiPS/jtfy2Gh4OTkUW1Jk/MbWnHJqAc+V/bTKz9/TkB869mwxou06hGMe6aloguaBAhHZcTHMzsw
PiOXCZz9+YsP27lhw+yLPlyC/LX6g7pirioHUhT0M3XX+j67masCV+kTuv+0ZTj5GHWw1486xuFb
1RblnRgQnDTRgyZPUmampQpUOEn4+OBGwKK59lFWGFeq758lGz7yAoH4VMNV/xugfVsFQfBrHn9+
T2N2ChW45geyLc93jduliSeLWh5iQ9jbgN8b5gSu2Baw1+SPalIfZx+CMdKwJbA5ZcHF8yBcBpNq
HFeGLVwqgrAcWzg1Wa+Rb+so0MmXjBrnY2dPbXtRISqnhqCr0/ULVO85WNc/kdRzk87r+9oVNH1Q
S91+0y5q7g4sdVZitc2jcBHbt4Bw0XzxxQ6NkOMOOwifiZB7vD251RxWpw62g1RiN91YbH6f5RKW
nWzj/T5DYPnF1xMVBfacXQRmcCwUxKPzibCmbm22b9sG7mcrxunTt5lYntvy56epaeiiRrqhu/7i
/6dvKoaOrQJXf02Tl9JqP32IHHEA9CYg1E/Xq+zLZeO31Fn1SZMOSQl3TjV7Wy5/a5MntBxc6yc9
bnka/u4PfterdzmsxKZCORzgBlNXo23F4rrYoPOSn6neBjqb8k2UQTBeNezJvZlydHQjeK4lnwYZ
Y4A+41eEBm9w6D11Dunc7tQBxSXbENZqU7gwNsE/PO7wMAhgOnefdu5y1UcAOSPkPqy1YFryPXbi
Wkm5ZbxFsGsjE2uUPrWvV90EGaZvY62XFSP0FGXQiVyOAOMW2KT7+AX8XPuBsG1xtr8ntQlQF+In
/sM3DwDWu10si9SN0yX9o8fod4hpmNQ07Ky+GOBpjhcc6Ec7nWJ5sMB2aG18aESFEXHYWXAjLx51
Y+leTXKkxEj3rwV2LgUBc7uzBhC8Lx6+fzuuX3budUGnb+95UoImQM7vRUZHcDKx8zorQCDl1YF9
ploY+/tTRWe+82RpXgTqvXsCmJqKDjpzPqFPcNM1evWMGHpxq9CsbIRqppAp8L2tOqxswm/Fhvcx
Q280uvjKPgug1VFbeQ0syFS+3H6+E3sB3WEPvWluvlq7KOcE7VONYG/NT1xOJQ4a1eaLD1HqpayD
voJWfY2tg3Ts5zzABFY46Va9JaWEMQnC5PGs8W+9Tas/Ar6g9nhve7nNZxKQ4XJuM6xln5c25haS
5VVfEREGVzZT3ZHgs06e1BFffjj33l0FkCs++Hmsc8aeWc1BG4QXrBBqgPHHW0FHXtgjD6yt/KUB
fFl6ZIPeTcVWvvqrnx6fiF97OguMQ8oiXbAbhl26fIc4Au2V7eghVx6p6BvxG9i7XKLuu7UrPoB2
DFZ98oeXUNArMvpEIqbqbR+GrDraiWzYikmVT+KyZa0HYIY3kR4H8E1ZsoUEclvOJiORmDY9c0VG
byBPWGuLW89OrlhDJmrFn/HTUX+VcL0eWwhbYSNx4QYWcZhhfPpMPVuqJYB7L79gw96WmvBK+BqK
gnXBP73Az8E+Qsb9vvFYUuOUFtqog5VneRt0E9Nl2AwBlPbkiv/wb61sBPmguo9VjysaN4P9Ihcn
/fXHD9Cfn1n9o8cv7d5mojLE8OWfNZwGpq5Nn1ZTUXjjLtjfJ3I1GNd7Biq3dukJS0k1dH4Y/PQu
trqLqk39AVk7neO29OeHRludA4QS/oU1LxbsqS1tD+7Vo+9Nz2b88cxud1WmPTXP8YtNaz1BLz/U
fvmCjcTrVSiYvEX1fTBXi6mXJdIPTCSC36lgVmcn++kVbL+eYSWSqvChUZoW1W9Q61vjSQq4+l9s
wUWzR64QNnBdP1SnG9Yvx2Kq0UKFzW89h1QzTgtc+ba3W/0dgeo5h9g9PVf/Bv/oc1QL7/uv3jP+
Ai8xOn93DQ6oPNrsLNUG/HZnRpXGyMCiJ+4GbjuBULN7nasJ1uoVXb86WudzrujKE8HKt7GFH9eq
y18ohvhUfqi+h53WrOMhaGSdmtIm6KfIRNxPf3sd/JzByN5aAIn5ngg8PQ2wlAfTgtUcNh54DW82
csUGwogqgkcbvwOj8H29oWVbF7rGdzWlGzWDTLsadD93Vrjk7dGDP78U3vwjYPWZFXA2u4cnd5fS
niSx8SF9sjPWNrXajysfhP6oO/jsKpt+zMhjgqW6PWBV+oxsFgTXg70WbgmaI2f1M7YF1/kTSBwx
pCtfBvFJfHqCnp2qRel7CUhJw1Hd1s9sfsTNVfZcWfeKLDBsQRMiFR0q6YizU8BXbW87BJyfk0dd
R5z74Z7nhtzcyhwf2o1SiZNixpAYS+imGtjZLH22phybexVrTX2ylyXS39BC3A1bh14IhxmcJujV
Wk7NL69WLOKWGu2qnnmiOjjhopDJQ/e+bgm/+uH5t77DYuJ+er0Sk6NRI/SJLepxGPfCztA34H39
OPi4jRuNFHQnQF/OV3/wWPpxb5gLPD+sgSqcrmhzHhwHtPI/rEfOjk1Hk6rgI0VXbxdErGJkdxl+
/T3qGHVdsaWSfbj6CxrVgg2mH+/45Sf3E761WWvlDhYvDLyN3DfhsvJWuOpP+uOjw+GNjN98vZXn
VcvjcxrA9XG54/vYGiFT1D6Xv3PKkyHUebby/RJ+cSF6xdFJGCfUzxKu/SciTzepZ64UGX/8gj40
Q0h+vKMNrS0+wSsKx+XYe/DHe12uC6v5c4zin7+mhp6dej6GNAZttM28r4AePUFTm0ED6A221FKx
hW4or0AT4z0Nsxgz9nvfaaxTet5cLDAwPzbgeKO2J7+rPZg6Pw3AK5A++HIuPXvKPuYAY2pr5C5E
NaBldc4RlhPLA6u/4rdK4chKa86kuwybcHEbEkPeSd90n0WnlJv9rQ/2XnbB4eOJe8FBXQP3iz3R
Y/ck4avkkxgsJkH0CGmuzVIwRmDN/1653RvVMrgYQrdeNOpx6ialpFsMOF4OLfap42kCA9YCFQZG
b9mes6qX7aiE2vHF4dM7GsOJjocI8u9rT9XkJjOy8kV4BLbpiQkY+zGFivPr32Jz7a+ROe8GKIqn
EXvodgv/+Juo4CN8qcpjz9J6gSh0w4Eaqry12cGfJbTySqpYwZDOxL4SSM4vTF3iyRW5ve4xvCHf
IIut2ClrPVMBv/5yuMSncIzivoRlv6vor3/Ef+DGg+rmc6G2c1p6Um+UAP301Ek+Xnr24vcx8A/Q
xqb62oSEm4YGVs3tRGQzUnr+51+l/EyorvNdOgvopshXz8qpAjqUjlVV5oittdA673DFzx5SYL/c
jmSWt1W6/J539U/klUVtuPYbLTglSUIxGbRKMIRa2QH++cBrfu6XK9tHqAucI31o22c/XYbvAPv9
o8TuM1rC2YTeG2xMw/HEJDdWXn8uf/kWa8fh+G9/a2o6xlp924fTMIArrIf9tPJ7ISStKeXQ0Zzs
3/z8Iy8bdNbup5VX64A7mlQBn1BZaFAun7RVQflGa/+F8O1Mw9mUTjr8+7cr4L/+9ddf/+u3w6Bu
Hvln3Rgw5vP4H/+9VeA/xP8Y6uTz+bMNgQxJkf/9z793IPzd9k3djv97bN75d/j7n7/43Z+9Bn+P
zZh8/t/j/1pv9V//+j8AAAD//wMAYp9Xq+AgAAA=
headers:
CF-RAY:
- 94640d46896fb6c9-LAX
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 27 May 2025 08:13:14 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '196'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
via:
- envoy-router-5f689c5f9d-svjx7
x-envoy-upstream-service-time:
- '200'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999982'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_51978202e4a91acdb0b2cf314d536032
status:
code: 200
message: OK
- request:
body: '{"input": ["Pictures(Object): Visual art pieces used in an example to illustrate
basic addition."], "model": "text-embedding-3-small", "encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '163'
content-type:
- application/json
cookie:
- __cf_bm=zxXbTMyK.67_c.SQXNivPXTcfsIBL5Vl1Q7WXFcTgxU-1748333590-1.0.1.1-ArIOxtxz6HMOCmEGGFc.Hxs19gY1LkxaxTZYc9hAE7zSdmh2fCrczDquGUovgGjYHvCJ94TxWQTCVlo1v7kDhnnrF0jwHy_U_LaR6AbA.94;
_cfuvid=4YFW5U1WwjrbdrZ7OWIvzgymvtGAnmnPEu1zeEdQsGg-1748333590310-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R6RxOyTLvm/vsVT71b5hRJ6O5vRxJJ0khSp6amQBFJooQG+tT571P6TE3YuEAK
6HDfV+r//NefP//0eV3cpn/+/eefthqnf/7b99o9m7J//v3nv//rz58/f/7z9/v/3Vl0eXG/V6/y
d/vvz+p1L9Z//v2H+z9X/u9N//7zT8ilLlHq2s55S89TOKWb6C88dWvqEyrDt+NzfnEL13o7XJAA
I/3oYMWmTDS7HfWRwR74+XZYjkCo27JElbiaOPPTyt3G6d3AQORG7KTLTl9fDcsBpGgywYXe1mtk
vi8Qvy4GPj/aiztA5JpwNGOMD+8eR2LPmzOc3+yOeHvJdEWK3yE8nLTLzC10G1bdAA1Mr/Xdf6qq
kU9908uQDPWTaEcC61k6cRlUH3nid6uq6vRzKH0AfDHGeqbV7pqtOIMn6ZKQ61O81qLSWanMVryI
D2fRigQhJRkcuitD9AJwEXkZTYaexsBh7z6zdGvNKQC/8T7GrXaX+3oykOBTgDVZHnK610IDpYF7
IkcJ7CPOEzNDfl5Dl1hmplNhH15iGN3alLiHd1pz1zof4a6cC3xzzNVdT28/htfu3vgUNQtYPZUa
yChONjH4x46u9DjPkI+Ws/958Zdh3bTWQZdbT+Ydcj75snFrhvgn9yHHrlQHjt4bCCPKHLCxhhPd
GKuNYfm5ARIngww2x1YDKYDlhh8e0+rLUW44WOH27aN6ZMAC76wH3YxT8eXk3N3puN0z4NemRu4H
ce9Si198dBtY1+fNRoqmJxpLiUcsxvrqpgM9ISmA+ettzxKZ9vW6+DsNydtIiEMSdRBvHWtAbmhk
UkzOQeczd/7AIXq3JCay6gp0b8Uojt4bNvcqpcs0XAxotNN7Xm5PxaVkBjcIRG0lOD5K9bbTSwNR
uH7I5ZqO+TtoQYOAY/vELxmRru2qjSjAb+xD+5XQ8Y5dEzpV3+KgwZhuhC4OssZN+rufhuz49JCn
A4n47YdxqZpWMyL2zvZLCvV6Uce7D5M1DLGSDpRuAUhNZFoKxpbz8sEmrH4jueIaYdP0klx0n0IF
Gi5oScw4ek7nyy6F94aNfeb9rvJReeYfGD0S4jOusgccS4cM7rFikuvSie5W7y47ENjqjXjaRY14
9xYGckwbHaf5iafbw3t2iDwygPfTTsm5eyrJQD0lur8GQI+E1OhLwFo94zNbFdWc7fMlanz+SQrL
fdWrFl89aDbsEx9xy9EpLxQDgc/OxRdrOehiF2sKcCZYELWvN3d5HeYKpDhtiLtwbb3ph2mGB6hC
v44mMKwyO3bweQ1ckje5m3Mw5D8wBNsHO0Wg6t/6MOHb38k4KkCc8+8X7RF3yjRcZHJDP3n/1NBZ
kX3su4+nTpGSyFC9rNWcC8MxFx6PKwOdiSmIgzUrFwtPgagcL73/xtJh4GeX88Di+y45NIEGBP0w
jbBrbw7+zWfHd0cFElu28UFgFVdoR1NBEpONxOSqlk5Npzq/fkf20W2m2/vMX+T7updJnhzDYaIU
F9K3XmZ6Ou/qCVelAJqR25M8FUk+no+vEvaM4ZOI9adhxXgpUCgaDbnq0yXiTKuD8Fa+Q5w0TzIs
/r67wXUkJraX7qxvPrdr0HnfxCTsP+98ZYaIQeK110i2H841X9yYBdaMwmMtNhp3kT+O+ZtvfDyv
hs5fJ+4DeOcu+cp6aKNPvVQGlKrgQPJrhoahy3ccoA/uQgo6JfpysC6K9GwvKzGTbNZHeV1ktHSP
88wb8q0Wbna7wMdHYLETZ7y76OSqQa27r9g8HWt9/RxvBfzWBwmGk+TS7Xwxocg6HPGDFtWbo4YF
CsrL0S/PAp8vzL0M0N1SNHLo7xNdM7fr4a7qXZJ2jE0XutxTuQ8OA9mbzTXi5HUnQ/gpD9/+LdUk
fosdbFeGwzqje+6KkouARldJSOioI1ij62kBaOelOHsyAdji174AXOXPxBrXQKfzZUnRKSUDtmxg
DeKYcBXipciemWvQu9uzZQupZG2VHDTzWdMkXQL0wxN7ao7DItaggsPa29gTUadvFpM2iFyohbUu
7vRx46QMZsVbIQ8k1kMP76KHdsIxIEWIs5ze1CIFNYEVVvPilPOtz40Iu+fjr56GxbmKBvDgIfHp
+Ahy8ZNdGmSPF56cWu2Yz6bzrODVELyZ/87PwpXiCEIudkkuOtbAdcXGoPI1VvhUf8qaDDunhC9p
8/A1Kdh8CVDZo6HLGew8Q2dYqjLyYW4tDi62ig7kgfMZmEMbf/t3W//GB7RbsMOh8i4j7pRnHyDr
0gO7wz0e1vWg+jB0jiq57aVOn2YXesCIZTQPkp/XvNVzBowhg7EbpZ/hYya1CV16OJLjM81/9ZVB
TXEif2kwBkvbPTd4OcA3NvDrABaHfXCw2T+Sma/TiVKlU2IorbZJslvX5BR4/YICanUkGhm3Xo+V
uMDmWXokf0FCqZ2fFPTtp/iLj7XwIiqHxhd6kTxKP/UaKCGHvI3YPtCWfb49Ni2FmFafuT2/r5Qz
HjSD92zLyXn8XMAUM1sFTzobEvt0inPiJ7cZpseLSDJv3EfCbaAbOlpHgJOdzURf/DLh/ZRhnO5V
Cii+vG7wVnXsjGLY0i1Ldj165FAhCdGfVDCTwYCP541iz2y9nNuy0IdxAK7YrUkD/u6/S6pB7GWj
EFGls2Io2tPqS8xNdzlFf44wzR/OvANsXy/WTo7h9/n4OjXHemL21IPTGL3J3jeqnPs4VYzOev/C
JrmwYHTYM4f2H30gxyR/upzDFSHs/MPVf/Z16FLRVxX093n1M4226X2sYAXvni9rb1+ny2Z6KHvm
GVE5OOZbxFx3QGqVEmePXBvETj19oAPFOzaL6BGt9xPy4GEbFqzfjbGeiVk2yLyNyfxp4thdYn8n
iD++59y6Jlq/fAHcHlyLVcAk9VRo5waAUztjU7G0YRmZ8wUd94+KHNloBWvkX3wUbpeCJOe3BNZY
1Gf45UvYaWJOfwe7AYIMPVniDndu2FKjr6DDUAer6TboTS2kKXpLioFzXg3qTWJd5sePfa5bQE7Z
5R3AqpcPPsc/dr/+syHldZTwxTUdna+s2YGhLx0IrsgA1iNKISxuqYEtwygp9ZN4hBV8eLP8ssOc
U9LQgPfbaGE7KR7RJp1gBsVaw/jXv4Teoxwa13BPTNtnKD0vpgW//YKYzg7U26p5Jchy+YUd7T27
W8ScZHgXyYQPDrsBUpvGBymAC3xweAvDkjSUgWqq2sTScnYYn3ergNCra6yUmgG6fWuNsNfRHmsJ
bocxTIUGurHnY73cYL4KdbaD4pjl2OgWEG3ceZnBSUehz/SFAoRdGtxAaU+Mv+59nG965ckwSY45
3h/bg07TTNfgiTFz4l3SKBqPN1mG3/3jo8vdqdepyy9wcvoTvjI3Xd+ap1Eg3TWtWXqfq5o4682C
P/xWucB0V+2maMjMth4rx02rqQrdAnz5LPE/XE15OXM5cF8PMva+/erLx2K4g7xOcpu9glVmmwal
x0wknmOu+uIPBx8azmzMgFeXYcnmewAJE8lzVXBIn/h9CZHUwaNPv/yHUl5TIDZIhn20eNGmFbIF
hWL2SGF9NMDF3LUBR0BOWBnQIxr3aEph0VWIaAneDyLvPxj45ddYN1A18N/6ABJzGckpOpnRp48/
H/BA7YXEIg/oYk27BbLbZhHnWy/bpDcbkKW0IiY9Ny6lB/kGW++5+EIwvyhFGW8AjYgIe4dlAtuO
czIQvBQFG5B9Unra9xZcz16MtR//0DfdQnrQAGwB1hom7zEp4ld/4ILBr3olMK2gYqUy+eJZtHRv
rkTRAQTzuHPWnFTJJ5Q/p1OAo9me3G0Z1RSJrMWRE2nznBbSpYTE77C/ozHj0krchbCl8tN/fiTe
pYPuWZCkCiEqCHH+l39XHcywS986EPFx2v3wjajmNaDUViQBRAmq8b67nPO16WwLWufwQKytPwN6
8x4ylPDrRnSsJjml1fUD17Mfkz24n8Ema8Um33Ln4bP2vYwIuekmzFty8yGq7mAZgPeRt2OhY0yT
k7s8WtNDi13t/cWmTL49pNVB5m1OCO6gQLcx0rK/63kQBzPi2yJM0cevBKJ2o+OKSxwH0BHwx8f3
xokWr3mOcLmFxQy1i5pz4s0YYZSwNdHh7jPQlzFe5L11iYj22KJhRb3qoZ4bNWKzr2bYnkoxwp9+
dHVggjHtzRle9KAm9s4s9VWx5w6Syk389dBs0ao0+wVmtuNjLdizdKlz1gLh6f38y182836V4avM
FGJURqKv2s3SQJ+SAqtMvKN0OwcmfFung/8RGsFduJIdwa/fhbk55aQwQgfxfXH370KmDIK7cstP
/3/5rZ0vij+EaE3CF1bhB+p/9fbHFpZZsH0GrBLWArhe4eQvXRtSWt2vJox9hyVKUob5+tlPH6j3
ajbD+lyCGT7WDaWhyfgySZ715giBgJLjBvz2FjfDmi+7Ator6OfGPhmAujCZkfq4Jthi1c1d0vvR
kkvWVWf0eERgTeTiBr/93Aenh0b5eNQsqD30k//c3Vd3lZ9yD5YAtt9+zUZ0n2gFnMbTm7j7iA4L
OEADVnSvkLC1jVqsTa8Hv3qxqRzU/Ea4EerFcMR7/sDRjZlN88cXccrpn4HmAWV+fggxiPzU1+XZ
Z7BqtYno9Hmtmzrgux+f8OvZPuqcfD7NcP8QtpmxU9vl11BbfuP1pZ2p6FzC5pYMdkyB9T7cR2Ld
h1885u9fP4ZEa7YeMsgUTw7/9N3MSocP/PJbsvekEmz9K9J+9Yi1NHvpi3odBai8sDTvcuXtLsLw
ScEbzQ52Vs8eWowUBe3aS0OKkjnTPrluGRSSWCF7Snp3SXt/hmXM2MS/NCrlLTDe4Pmo0fmcSSul
Ly/35EU6LsTa4yqnL6nagGZXD2wonZwvMXftYHZlZGKsDOcupzz8ID05qVjVhqe7fPo4RCn0Drio
44wuBytQwEWpnPmHR1wEH6nsPsoD9uZD5m58t9dgSUWLHK7zki+fezjDVuhl7BkA19MYBAF8luOA
v/pm2N5nlMEEjz2+6XVFV8XuOugxqoado1vWW5CgFPqf8jlLs27R8RoMqby1BGPr4jqA57ddBdfP
eiVuKuJoaygUwHc+ZvC8Pun2iIMLlLeZ4OTrtyzLx9ygU847f6MSqse8YD9QPZ114pE1paOlPD3U
toJPfAYcKfdMrj0cbsc9SbqLmH/58QbnfXcgztdP2uYrkSEnvY/YcIBab9MCU4BkSydnpFO9t31U
yq1uNzN4U5Gu19wIERVcceaTbdPJIiENfvf/LDpsCFbreQwAy5iqL2+CmfNCxAdwq6BA8rbz6DoE
L09esnglSpudcuHH9758mRy9E4iW0gkMRJiTPLMdTMEWe10AldN0wPuHXdHxI0oy/KDUJC6vBoOw
Sy8FPO6YHXbM8x1sX/8AnqAzk798BcCtgIV0SokvzxX97p8FXaf9ed6ZWU2n7iqE6Lf+VwHK7pQ+
2FCuVjvCh+zoDmI3v31kcfj69YMKd/t+L5wVWcUPHFvu9sXjH1/0F3mEdDq4jiXPTngkzqL2Ovn6
g1CoL5EvslfBXTzW2oHGOs44OjrH4YcHkL0+PsSYVtvl34kewtu02/kgdG1X+PI5+F0PX2JfRk3T
zFVg7Twf2H1BTLf3dmvgmgQvkgmNoK/Pep9Co4jsmVU2ns5+ZflwP4E9/uHRegObgn7+S14Hdr08
tWeILNS25CBVfkSX+BZCI68Wn/vuh0mYbwX0CCTYuLs6FYKET8FapzJWZcrp22V378D+aFyxfb3X
Na3EJfyL79HdGAequG8LRmyoYGULTSA2TLJAO+9sf9XPr3zj0LWA9zLysRGrjNtqai/AmHY6sSPr
pnetiBt4udCEaBJ5g00yZQHeKx9gm7Xs/ItnzU8f4kMTVHRs1DMDS+W84eNEUp0WRmjBe2z15HBA
dvTXj+mh85w3BDnw8Sd1+eE3xkWlAJF1lRI59H4idyMtB75dnREoPjMRraNqtI1KpkBkTAq25nyk
24uoArrYckocUV8jgpRkB90y5fzlcM916ju5A5Pi9SKHixHVqzLADkLvWc/Mo3N1EWx2hV6i8MDf
eohG77TGkF69duaFda0HsVwzSAVbxEaRtnnnrtwGv37+X/7YxM+n9+sfWO/XsuaOt02WoL06RFPe
SsTJD6VE4PSase4NYUR2w8aA5vQCvkDPhiuqupxCn/VexGiySzSeZl0B/q7jfFnq2Ho6uJqD5ONp
mCV0etZrNZvyb/1n2E6Nu4gzb8DKQoJPqiCo/+oJG0QcthL7mU+i8eh//jUxM5OL3v1pqeBkaAV2
Xvyu3sZCZ2B29p5Ey81jLhRqqSHNLbxZiLE3rOftMkNcbidybBNFF8W+9/++T/j6n18+6MGv/0k8
7qbWwu4ZapBNpxNRqsuBcsZR15CldSpWs1IG09dvAdxUvWZuOXiRsMrJR37Kpoitey3mK1cqFir6
4oOVwNrTTX6JJRCfZkX0nWfkfOM+GaQRHvnCR6ER1djUk7nKm7HKyxqg1aIWsMguZ59juVIn1f1q
wB0U9bkf10XfUqMsIR5NB2f3dQ+EeneR5bprUuxs58FdzkdSQVm88NgVhmO0SazOQEFAl6nfFY27
MIlUwFOp2cTcvKoeT1YVwv1pKYlyig75IlxWBvJducyfl73lE5szKfjxt68eGsghf0HwKi8Kvjiv
mZKUrTe5Pp522JRyUZ++fhr4fY9xKjClRfHdj23i+rzqjWCV0tWAbzQ6836R33RNH2IA9k6skKg0
BX29s8YGv/rb38ncwd0eL2X54T+O1/BIJ92rMvTFI7wX1nUgB+FgwXuD4h+e1mPB1QJUbx/oj/aL
B30tFCnMjMLy2XvziebDEQZwfeZHf33PtJ4uKAugchdHst/2bkQOAnbAnBvST9+7f/OHr7828w+7
Akv3hhWstxGS6L6EYJ0U+QPe8XUiZiK9o02Nlgaxwb7wly3sAK37rP+bh6hSvw3k1okG1LrHivUC
zzr96jUQWlFMXHCmw5e/hvDOnEufZvM7+upT55eHEFuAmU5PgyXDRxIf8bnrWroJbiugrtwMoqVS
lW9rzMmwnOMEK8Ppqm8//tWIGuNvMLzodMcMKbxN8u4vv/zxY5TnZf3XH1msaVnA1x/Ahn1qKL/1
xx18UetKUrHB+toWWQzZvdwSS+Ze7pYlSw855hwR9T3TYVCLa/n7Pl9Ol4u+cefdCPdOqmC1ffYD
yY5vH0pTo+AjME1Ad/bIgMG+jfgcKmW97pVzBddczjDeTYhuatcz8NFZ0szXvP3Ne7oPrJ36QX7+
lsDxnx7gtUHkm/eA33z88hGi//IE75ULsqLI+Tc/eLo9B9IdGNzsOoP4Oear8YljmAXdPLPf943d
WqfgqjjmzNi8ka+H3WmEIogyojF5oG8P791B+/q5EWXpHZ2G+RBC7O87fOqOM6Bm6WnwxxevfHjP
iS1pEOXtdCN7N2CH583/FFDRe25+G1eGLtUeKn+fr8Mr/vWTHlZVEJMom+2cj/yLB8/654UPt1Mx
iGPf7ODPr01Nj4/GV7WfwTffnCX3+IzoVy+DhYg1Oe6fmruZ99MO1VJKiNfoh3x1T8GMUNSy+OtX
UP5b31AQ2AvWXXag6yFcGPjrR3pppvo3HzDgvnw/iJEMGV2DyPWB22oycU0U5OskuRukH/30zUt1
/ZOcCQe//rDPH3Su3h6S9MXvQMF5rK0uOeQEwi+ekK9eBIvXvEeIFEXGipGv4Kefdm3L+SR9HiqX
fusFFATYM6vdtoFKZD+DcMsK7HviEfz8U/CCZYuPsKDD9ticFFro1RKFQn0QGfdRgJ2vUp+5kjoi
CVYLOFXgjhWtsQHHmhGHDJw55Jt/uHzHPjT446uLucbg5y/L89X2iFs1dbTot7KH0e2VYpsP75GY
7bcL2thDPkP+VbvjL5+IJ52ZX9i7Uxq/2QZ88QmrHynRxZQdNjhPfIjP2LuDbx5Wwnqh2B9+ei+b
kxCc40dElLDoAUnSXQCXhyZi9+svU+3ZhGhbed5HYxMP4i8P/PldjP/81PTDSin0vSf65gH7YWSW
ywf+8qDzaz3k27UXGWgOrxg7wfHjbubiBCBJcD5T+21ROg1sDxLb4IluIK0WBHcSwD+/UwH/9a8/
f/7H74RB19+L9nswYCrW6T/+z1GB/xD/Y+yytv17DGEes7L459//+wTCP++h797T/5z6pniN//z7
Dy/9PWvwz9RPWfv/Xv/X91X/9a//BQAA//8DAK+bEofgIAAA
headers:
CF-RAY:
- 94640d492fdbb6c9-LAX
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 27 May 2025 08:13:15 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '393'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
via:
- envoy-router-78456c78d9-689qp
x-envoy-upstream-service-time:
- '395'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999979'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_c9c729639c1a9714296bd221d8edd696
status:
code: 200
message: OK
version: 1

View File

@@ -4418,7 +4418,7 @@ def test_reset_knowledge_with_no_crew_knowledge(researcher,writer):
with pytest.raises(RuntimeError) as excinfo:
crew.reset_memories(command_type='knowledge')
# Optionally, you can also check the error message
assert "Crew Knowledge and Agent Knowledge memory system is not initialized" in str(excinfo.value) # Replace with the expected message
@@ -4497,7 +4497,7 @@ def test_reset_agent_knowledge_with_no_agent_knowledge(researcher,writer):
with pytest.raises(RuntimeError) as excinfo:
crew.reset_memories(command_type='agent_knowledge')
# Optionally, you can also check the error message
assert "Agent Knowledge memory system is not initialized" in str(excinfo.value) # Replace with the expected message
@@ -4517,7 +4517,7 @@ def test_reset_agent_knowledge_with_only_crew_knowledge(researcher,writer):
with pytest.raises(RuntimeError) as excinfo:
crew.reset_memories(command_type='agent_knowledge')
# Optionally, you can also check the error message
assert "Agent Knowledge memory system is not initialized" in str(excinfo.value) # Replace with the expected message

View File

@@ -0,0 +1,258 @@
"""Tests for reasoning interval and adaptive reasoning in agents."""
import pytest
from unittest.mock import patch, MagicMock
from crewai import Agent, Task
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.utilities.reasoning_handler import AgentReasoning
def test_agent_with_reasoning_interval():
"""Ensure that the agent triggers mid-execution reasoning based on the fixed interval."""
# Use a mock LLM to avoid real network calls
llm = MagicMock()
agent = Agent(
role="Test Agent",
goal="To test the reasoning interval feature",
backstory="I am a test agent created to verify the reasoning interval feature works correctly.",
llm=llm,
reasoning=True,
reasoning_interval=2, # Reason every 2 steps
verbose=True,
)
task = Task(
description="Multi-step task that requires periodic reasoning.",
expected_output="The task should be completed with periodic reasoning.",
agent=agent,
)
# Create a mock executor that will be injected into the agent
mock_executor = MagicMock()
mock_executor.steps_since_reasoning = 0
def mock_invoke(*args, **kwargs):
return mock_executor._invoke_loop()
def mock_invoke_loop():
assert not mock_executor._should_trigger_reasoning()
mock_executor.steps_since_reasoning += 1
mock_executor.steps_since_reasoning = 2
assert mock_executor._should_trigger_reasoning()
mock_executor._handle_mid_execution_reasoning()
return {"output": "Task completed successfully."}
mock_executor.invoke = MagicMock(side_effect=mock_invoke)
mock_executor._invoke_loop = MagicMock(side_effect=mock_invoke_loop)
mock_executor._should_trigger_reasoning = MagicMock(side_effect=lambda: mock_executor.steps_since_reasoning >= 2)
mock_executor._handle_mid_execution_reasoning = MagicMock()
# Monkey-patch create_agent_executor so that it sets our mock_executor
def _fake_create_agent_executor(self, tools=None, task=None): # noqa: D401,E501
"""Replace the real executor with the mock while preserving behaviour."""
self.agent_executor = mock_executor
return mock_executor
with patch.object(Agent, "create_agent_executor", _fake_create_agent_executor):
result = agent.execute_task(task)
# Validate results and that reasoning happened when expected
assert result == "Task completed successfully."
mock_executor._invoke_loop.assert_called_once()
mock_executor._handle_mid_execution_reasoning.assert_called_once()
def test_agent_with_adaptive_reasoning():
"""Test agent with adaptive reasoning."""
# Create a mock agent with adaptive reasoning
agent = MagicMock()
agent.reasoning = True
agent.reasoning_interval = None
agent.adaptive_reasoning = True
agent.role = "Test Agent"
# Create a mock task
task = MagicMock()
executor = CrewAgentExecutor(
llm=MagicMock(),
task=task,
crew=MagicMock(),
agent=agent,
prompt={},
max_iter=10,
tools=[],
tools_names="",
stop_words=[],
tools_description="",
tools_handler=MagicMock()
)
def mock_invoke_loop():
assert executor._should_adaptive_reason()
executor._handle_mid_execution_reasoning()
return {"output": "Task completed with adaptive reasoning."}
executor._invoke_loop = MagicMock(side_effect=mock_invoke_loop)
executor._should_adaptive_reason = MagicMock(return_value=True)
executor._handle_mid_execution_reasoning = MagicMock()
result = executor._invoke_loop()
assert result["output"] == "Task completed with adaptive reasoning."
executor._should_adaptive_reason.assert_called_once()
executor._handle_mid_execution_reasoning.assert_called_once()
def test_mid_execution_reasoning_handler():
"""Test the mid-execution reasoning handler."""
llm = MagicMock()
llm.call.return_value = "Based on progress, I'll adjust my approach.\n\nREADY: I am ready to continue executing the task."
agent = Agent(
role="Test Agent",
goal="To test the mid-execution reasoning handler",
backstory="I am a test agent created to verify the mid-execution reasoning handler works correctly.",
llm=llm,
reasoning=True,
verbose=True
)
task = Task(
description="Task to test mid-execution reasoning handler.",
expected_output="The mid-execution reasoning handler should work correctly.",
agent=agent
)
agent.llm.call = MagicMock(return_value="Based on progress, I'll adjust my approach.\n\nREADY: I am ready to continue executing the task.")
reasoning_handler = AgentReasoning(task=task, agent=agent)
result = reasoning_handler.handle_mid_execution_reasoning(
current_steps=3,
tools_used=["search_tool", "calculator_tool"],
current_progress="Made progress on steps 1-3",
iteration_messages=[
{"role": "assistant", "content": "I'll search for information."},
{"role": "system", "content": "Search results: ..."},
{"role": "assistant", "content": "I'll calculate the answer."},
{"role": "system", "content": "Calculation result: 42"}
]
)
assert result is not None
assert hasattr(result, 'plan')
assert hasattr(result.plan, 'plan')
assert hasattr(result.plan, 'ready')
assert result.plan.ready is True
def test_should_trigger_reasoning_interval():
"""Test the _should_trigger_reasoning method with interval-based reasoning."""
agent = MagicMock()
agent.reasoning = True
agent.reasoning_interval = 3
agent.adaptive_reasoning = False
executor = CrewAgentExecutor(
llm=MagicMock(),
task=MagicMock(),
crew=MagicMock(),
agent=agent,
prompt={},
max_iter=10,
tools=[],
tools_names="",
stop_words=[],
tools_description="",
tools_handler=MagicMock()
)
executor.steps_since_reasoning = 0
assert executor._should_trigger_reasoning() is False
executor.steps_since_reasoning = 2
assert executor._should_trigger_reasoning() is False
executor.steps_since_reasoning = 3
assert executor._should_trigger_reasoning() is True
executor.steps_since_reasoning = 4
assert executor._should_trigger_reasoning() is True
def test_should_trigger_adaptive_reasoning():
"""Test the _should_adaptive_reason method."""
agent = MagicMock()
agent.reasoning = True
agent.reasoning_interval = None
agent.adaptive_reasoning = True
executor = CrewAgentExecutor(
llm=MagicMock(),
task=MagicMock(),
crew=MagicMock(),
agent=agent,
prompt={},
max_iter=10,
tools=[],
tools_names="",
stop_words=[],
tools_description="",
tools_handler=MagicMock()
)
with patch('crewai.utilities.reasoning_handler.AgentReasoning.should_adaptive_reason_llm', return_value=True):
assert executor._should_adaptive_reason() is True
executor.messages = [
{"role": "assistant", "content": "I'll try this approach."},
{"role": "system", "content": "Error: Failed to execute the command."},
{"role": "assistant", "content": "Let me try something else."}
]
assert executor._should_adaptive_reason() is True
executor.messages = [
{"role": "assistant", "content": "I'll try this approach."},
{"role": "system", "content": "Command executed successfully."},
{"role": "assistant", "content": "Let me continue with the next step."}
]
with patch('crewai.utilities.reasoning_handler.AgentReasoning.should_adaptive_reason_llm', return_value=False):
assert executor._should_adaptive_reason() is False
@pytest.mark.parametrize("interval,steps,should_reason", [
(None, 5, False),
(3, 2, False),
(3, 3, True),
(1, 1, True),
(5, 10, True),
])
def test_reasoning_interval_scenarios(interval, steps, should_reason):
"""Test various reasoning interval scenarios."""
agent = MagicMock()
agent.reasoning = True
agent.reasoning_interval = interval
agent.adaptive_reasoning = False
executor = CrewAgentExecutor(
llm=MagicMock(),
task=MagicMock(),
crew=MagicMock(),
agent=agent,
prompt={},
max_iter=10,
tools=[],
tools_names="",
stop_words=[],
tools_description="",
tools_handler=MagicMock()
)
executor.steps_since_reasoning = steps
assert executor._should_trigger_reasoning() is should_reason

View File

@@ -0,0 +1,215 @@
"""Unit tests for acceptance criteria validation feature at task level."""
import pytest
from unittest.mock import MagicMock, patch, call
from typing import List, Tuple
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.agent_state import AgentState
from crewai.tools.agent_tools.scratchpad_tool import ScratchpadTool
from crewai.agents.parser import AgentFinish
from crewai.utilities import Printer
from crewai.llm import LLM
class TestAcceptanceCriteriaValidation:
"""Test suite for task-level acceptance criteria validation functionality."""
def setup_method(self):
"""Set up test fixtures."""
self.mock_llm = MagicMock(spec=LLM)
self.mock_agent = MagicMock()
self.mock_task = MagicMock()
self.mock_crew = MagicMock()
self.mock_tools_handler = MagicMock()
# Set up agent attributes
self.mock_agent.role = "Test Agent"
self.mock_agent.reasoning = True
self.mock_agent.verbose = False
self.mock_agent.reasoning_interval = None
self.mock_agent.adaptive_reasoning = False
# Create executor
self.executor = CrewAgentExecutor(
llm=self.mock_llm,
task=self.mock_task,
crew=self.mock_crew,
agent=self.mock_agent,
prompt={},
max_iter=10,
tools=[],
tools_names="",
stop_words=[],
tools_description="",
tools_handler=self.mock_tools_handler,
callbacks=[]
)
# Set up agent state with acceptance criteria
self.executor.agent_state = AgentState(task_id="test-task-id")
self.executor.agent_state.acceptance_criteria = [
"Include all required information",
"Format output properly",
"Provide complete analysis"
]
# Mock printer
self.executor._printer = MagicMock(spec=Printer)
def test_validate_acceptance_criteria_all_met(self):
"""Test validation when all acceptance criteria are met."""
output = "Complete output with all information, properly formatted, with full analysis"
# Configure LLM to return all criteria met
self.mock_llm.call.return_value = '''{
"1": "MET",
"2": "MET",
"3": "MET"
}'''
is_valid, unmet_criteria = self.executor._validate_acceptance_criteria(output)
assert is_valid is True
assert unmet_criteria == []
assert self.mock_llm.call.call_count == 1
def test_validate_acceptance_criteria_some_unmet(self):
"""Test validation when some criteria are not met."""
output = "Partial output missing formatting"
# Configure LLM to return mixed results
self.mock_llm.call.return_value = '''{
"1": "MET",
"2": "NOT MET: Missing proper formatting",
"3": "NOT MET: Analysis incomplete"
}'''
is_valid, unmet_criteria = self.executor._validate_acceptance_criteria(output)
assert is_valid is False
assert len(unmet_criteria) == 2
assert "Format output properly" in unmet_criteria
assert "Provide complete analysis" in unmet_criteria
def test_create_criteria_retry_prompt_with_scratchpad(self):
"""Test retry prompt creation when scratchpad has data."""
# Set up scratchpad tool with data
self.executor.scratchpad_tool = ScratchpadTool()
self.executor.agent_state.scratchpad = {
"research_data": {"key": "value"},
"analysis_results": ["item1", "item2"]
}
# Set up task details
self.mock_task.description = "Analyze research data and provide insights"
self.mock_task.expected_output = "A comprehensive report with analysis and recommendations"
unmet_criteria = ["Include specific examples", "Add recommendations"]
prompt = self.executor._create_criteria_retry_prompt(unmet_criteria)
# Verify prompt content with new format
assert "VALIDATION FAILED" in prompt
assert "YOU CANNOT PROVIDE A FINAL ANSWER YET" in prompt
assert "ORIGINAL TASK:" in prompt
assert "Analyze research data" in prompt
assert "EXPECTED OUTPUT:" in prompt
assert "comprehensive report" in prompt
assert "Include specific examples" in prompt
assert "Add recommendations" in prompt
assert "Access Scratchpad Memory" in prompt
assert "'research_data'" in prompt
assert "'analysis_results'" in prompt
assert "Action:" in prompt
assert "Action Input:" in prompt
assert "CONTINUE WITH TOOL USAGE NOW" in prompt
assert "DO NOT ATTEMPT ANOTHER FINAL ANSWER" in prompt
def test_create_criteria_retry_prompt_without_scratchpad(self):
"""Test retry prompt creation when no scratchpad data exists."""
unmet_criteria = ["Add more detail"]
prompt = self.executor._create_criteria_retry_prompt(unmet_criteria)
assert "Add more detail" in prompt
assert "VALIDATION FAILED" in prompt
assert "📦 YOUR SCRATCHPAD CONTAINS DATA" not in prompt
@patch('crewai.agents.crew_agent_executor.get_llm_response')
@patch('crewai.agents.crew_agent_executor.process_llm_response')
def test_invoke_loop_blocks_incomplete_final_answer(self, mock_process, mock_get_response):
"""Test that invoke loop blocks incomplete final answers."""
# Set up conditions
self.executor.agent_state.acceptance_criteria = ["Complete all sections"]
# First attempt returns incomplete final answer
incomplete_answer = AgentFinish(
thought="Done",
output="Exploring potential follow-up tasks!",
text="Final Answer: Exploring potential follow-up tasks!"
)
# After retry, return complete answer
complete_answer = AgentFinish(
thought="Done with all sections",
output="Complete output with all sections addressed",
text="Final Answer: Complete output with all sections addressed"
)
# Configure mocks
mock_process.side_effect = [incomplete_answer, complete_answer]
mock_get_response.return_value = "response"
# Configure validation
self.mock_llm.call.side_effect = [
'{"1": "NOT MET: Missing required sections"}', # First validation fails
'{"1": "MET"}' # Second validation passes
]
# Execute
result = self.executor._invoke_loop()
# Verify
assert result == complete_answer
assert self.mock_llm.call.call_count == 2 # Two validation attempts
assert mock_process.call_count == 2 # Two processing attempts
# Verify error message was shown
self._verify_validation_messages_shown()
def test_validation_happens_on_every_final_answer_attempt(self):
"""Test that validation happens on every AgentFinish attempt."""
self.executor.agent_state.acceptance_criteria = ["Complete all sections"]
# Configure LLM to always return criteria not met
self.mock_llm.call.return_value = '{"1": "NOT MET: Missing required sections"}'
output = "Incomplete output"
# Validate multiple times - each should trigger validation
for _ in range(3):
is_valid, unmet_criteria = self.executor._validate_acceptance_criteria(output)
assert is_valid is False
assert len(unmet_criteria) == 1
# Verify validation was called every time
assert self.mock_llm.call.call_count == 3
def _verify_validation_messages_shown(self):
"""Helper to verify validation messages were displayed."""
print_calls = self.executor._printer.print.call_args_list
# Check for validation message
validation_msg_shown = any(
"Validating acceptance criteria" in str(call)
for call in print_calls
)
# Check for failure message
failure_msg_shown = any(
"Cannot finalize" in str(call)
for call in print_calls
)
assert validation_msg_shown or failure_msg_shown

View File

@@ -0,0 +1,176 @@
"""Unit tests for the ScratchpadTool."""
import pytest
from crewai.tools.agent_tools.scratchpad_tool import ScratchpadTool, ScratchpadToolSchema
class TestScratchpadTool:
"""Test suite for the ScratchpadTool functionality."""
def test_schema_description(self):
"""Test that the schema has helpful description."""
schema = ScratchpadToolSchema
key_field = schema.model_fields['key']
assert "Example:" in key_field.description
assert '{"key":' in key_field.description
def test_empty_scratchpad_error_message(self):
"""Test error message when scratchpad is empty."""
tool = ScratchpadTool()
result = tool._run(key="nonexistent")
assert "❌ SCRATCHPAD IS EMPTY" in result
assert "does not contain any data yet" in result
assert "Try executing other tools first" in result
assert "💡 TIP:" in result
assert "search, read, or fetch operations" in result
def test_key_not_found_error_message(self):
"""Test error message when key is not found."""
tool = ScratchpadTool(scratchpad_data={
"existing_key": "value",
"another_key": {"data": "test"}
})
result = tool._run(key="wrong_key")
assert "❌ KEY NOT FOUND: 'wrong_key'" in result
assert "📦 AVAILABLE KEYS IN SCRATCHPAD:" in result
assert "- 'existing_key'" in result
assert "- 'another_key'" in result
assert '✅ CORRECT USAGE EXAMPLE:' in result
assert 'Action: Access Scratchpad Memory' in result
assert 'Action Input: {"key": "existing_key"}' in result
assert "⚠️ IMPORTANT:" in result
assert "Keys are case-sensitive and must match EXACTLY" in result
def test_successful_retrieval_string(self):
"""Test successful retrieval of string data."""
tool = ScratchpadTool(scratchpad_data={
"message": "Hello, World!"
})
result = tool._run(key="message")
assert "✅ Successfully retrieved data for key 'message':" in result
assert "Hello, World!" in result
def test_successful_retrieval_dict(self):
"""Test successful retrieval of dictionary data."""
test_dict = {"name": "John", "age": 30}
tool = ScratchpadTool(scratchpad_data={
"user_data": test_dict
})
result = tool._run(key="user_data")
assert "✅ Successfully retrieved data for key 'user_data':" in result
assert '"name": "John"' in result
assert '"age": 30' in result
def test_successful_retrieval_list(self):
"""Test successful retrieval of list data."""
test_list = ["item1", "item2", "item3"]
tool = ScratchpadTool(scratchpad_data={
"items": test_list
})
result = tool._run(key="items")
assert "✅ Successfully retrieved data for key 'items':" in result
assert '"item1"' in result
assert '"item2"' in result
assert '"item3"' in result
def test_tool_description_empty(self):
"""Test tool description when scratchpad is empty."""
tool = ScratchpadTool()
assert "HOW TO USE THIS TOOL:" in tool.description
assert 'Example: {"key": "email_data"}' in tool.description
assert "📝 STATUS: Scratchpad is currently empty" in tool.description
def test_tool_description_with_data(self):
"""Test tool description when scratchpad has data."""
tool = ScratchpadTool(scratchpad_data={
"emails": ["email1@test.com", "email2@test.com"],
"results": {"count": 5, "status": "success"},
"api_key": "secret_key_123"
})
desc = tool.description
# Check basic structure
assert "HOW TO USE THIS TOOL:" in desc
assert "📦 AVAILABLE DATA IN SCRATCHPAD:" in desc
assert "💡 EXAMPLE USAGE:" in desc
# Check key listings
assert "📌 'emails': list of 2 items" in desc
assert "📌 'results': dict with 2 items" in desc
assert "📌 'api_key': string (14 chars)" in desc
# Check example uses first key
assert 'Action Input: {"key": "emails"}' in desc
def test_update_scratchpad(self):
"""Test updating scratchpad data."""
tool = ScratchpadTool()
# Initially empty
assert not tool.scratchpad_data
# Update with data
new_data = {"test": "value"}
tool.update_scratchpad(new_data)
assert tool.scratchpad_data == new_data
assert "📌 'test': string (5 chars)" in tool.description
def test_complex_data_preview(self):
"""Test preview generation for complex data structures."""
tool = ScratchpadTool(scratchpad_data={
"nested_dict": {
"data": ["item1", "item2", "item3"]
},
"empty_list": [],
"boolean_value": True,
"number": 42
})
desc = tool.description
# Special case for dict with 'data' key containing list
assert "📌 'nested_dict': list of 3 items" in desc
assert "📌 'empty_list': list of 0 items" in desc
assert "📌 'boolean_value': bool" in desc
assert "📌 'number': int" in desc
def test_similar_key_suggestion(self):
"""Test that similar keys are suggested when a wrong key is used."""
tool = ScratchpadTool(scratchpad_data={
"email_search_results": ["email1", "email2"],
"email_details": {"id": "123"},
"user_preferences": {"theme": "dark"}
})
# Test partial match
result = tool._run(key="email")
assert "🔍 Did you mean one of these?" in result
# Check that similar keys are in the suggestions
# Extract just the "Did you mean" section
did_you_mean_section = result.split("🔍 Did you mean one of these?")[1].split("✅ CORRECT USAGE EXAMPLE:")[0]
assert "- 'email_search_results'" in did_you_mean_section
assert "- 'email_details'" in did_you_mean_section
assert "- 'user_preferences'" not in did_you_mean_section
# But user_preferences should still be in the full list
assert "- 'user_preferences'" in result
# Test case-insensitive match
result = tool._run(key="EMAIL_DETAILS")
assert "🔍 Did you mean one of these?" in result
assert "- 'email_details'" in result
# Test no similar keys
result = tool._run(key="completely_different")
assert "🔍 Did you mean one of these?" not in result