Compare commits

...

25 Commits

Author SHA1 Message Date
Lorenze Jay
e59627adf2 Update version to 0.121.0 across project files and dependencies (#2879)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-21 18:17:19 -07:00
devin-ai-integration[bot]
d0855987f8 Fix imports for before_kickoff and after_kickoff in documentation (#2878)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-05-21 13:04:53 -07:00
devin-ai-integration[bot]
c1672613bc Add inject_date flag to Agent for automatic date injection (#2870)
* feat: Add inject_date flag to Agent for automatic date injection

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add date_format parameter and error handling to inject_date feature

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update test implementation for inject_date feature

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add date format validation to prevent invalid formats

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Update documentation for inject_date feature

Co-Authored-By: Joe Moura <joao@crewai.com>

* unnecesary

* new tests

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-05-21 12:58:57 -07:00
Greyson LaLonde
9945da7dbe Add HallucinationGuardrail no-op implementation with tests (#2869)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
- Add `HallucinationGuardrail` class as enterprise feature placeholder
- Update LLM guardrail events to support `HallucinationGuardrail` instances
- Add comprehensive tests for `HallucinationGuardrail` initialization and behavior
- Add integration tests for `HallucinationGuardrail` with task execution system
- Ensure no-op behavior always returns True
2025-05-21 13:47:41 -04:00
Lorenze Jay
31ffa90075 telemetry initialization and enhance event handling (#2853)
* Refactor Crew class memory initialization and enhance event handling

- Simplified the initialization of the external memory attribute in the Crew class.
- Updated memory system retrieval logic for consistency in key usage.
- Introduced a singleton pattern for the Telemetry class to ensure a single instance.
- Replaced telemetry usage in CrewEvaluator with event bus emissions for test results.
- Added new CrewTestResultEvent to handle crew test results more effectively.
- Updated event listener to process CrewTestResultEvent and log telemetry data accordingly.
- Enhanced tests to validate the singleton pattern in Telemetry and the new event handling logic.

* linted

* Remove unused telemetry attribute from Crew class memory initialization

* fix ordering of test

* Implement thread-safe singleton pattern in Telemetry class

- Introduced a threading lock to ensure safe instantiation of the Telemetry singleton.
- Updated the __new__ method to utilize double-checked locking for instance creation.
2025-05-21 10:32:03 -07:00
João Moura
169d3233e8 Updating Logging (#2874) 2025-05-21 09:44:56 -07:00
Tony Kipkemboi
b3484c1d0e Document knowledge events in event-listener.mdx and knowledge.mdx (#2872) 2025-05-21 11:23:53 -04:00
Tony Kipkemboi
910ed716d9 Reasoning docs update (#2871)
* Add MCP integration documentation and update enterprise docs

* Update MCP integration docs with code syntax improvements

* Standardize documentation structure and add reasoning docs
2025-05-21 10:58:13 -04:00
Vini Brasil
eb6364284f Fix encoding error when creating tools (#2876)
This commit fixes a `UnicodeDecodeError` when creating tools. This was
caused when reading template files.
2025-05-21 09:31:13 -03:00
Tony Kipkemboi
e21d54654c docs: add MCP integration documentation and update enterprise docs (#2868)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-20 18:06:41 -04:00
João Moura
50b8f83428 reasoning logs 2025-05-20 14:21:21 -07:00
João Moura
8d2928e49a fixing handler
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-05-20 08:39:16 -07:00
devin-ai-integration[bot]
1ef22131e6 Add reasoning attribute to Agent class (#2866)
* Add reasoning attribute to Agent class

Co-Authored-By: Joe Moura <joao@crewai.com>

* Address PR feedback: improve type hints, error handling, refactor reasoning handler, and enhance tests and docs

Co-Authored-By: Joe Moura <joao@crewai.com>

* Implement function calling for reasoning and move prompts to translations

Co-Authored-By: Joe Moura <joao@crewai.com>

* Simplify function calling implementation with better error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

* Enhance system prompts to leverage agent context (role, goal, backstory)

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix lint and type-checker issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* Enhance system prompts to better leverage agent context

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix backstory access in reasoning handler for Python 3.12 compatibility

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-05-20 07:40:40 -07:00
devin-ai-integration[bot]
227b521f9e Add markdown attribute to Task class (#2865)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Add markdown attribute to Task class for formatting responses in Markdown

Co-Authored-By: Joe Moura <joao@crewai.com>

* Enhance markdown feature based on PR feedback

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix lint error and validation error in test_markdown_task.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-05-19 23:26:03 -07:00
Vidit Ostwal
bef5971598 Added Stop parameter docs (#2854)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-17 17:41:12 -04:00
Vidit Ostwal
aa6e5b703e Fix fail llama test (#2819)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Changed test case

* Addd new interaction with llama

* fixed linting issue

* Gemma Flaky test case

* Gemma Flaky test case

* Minor change

* Minor change

* Dropped API key

* Removed falky test case check file
2025-05-16 15:18:11 -04:00
Tony Kipkemboi
0b35e40a24 docs: add StagehandTool documentation and improve MDX structure (#2842)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-15 12:24:25 -04:00
Lucas Gomide
49bbf3f234 Docs Updates (#2840)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* docs: remove EventHandler reference on docs

* docs: add section explaining how to run a Crew from CrewBase
2025-05-15 09:17:21 -04:00
Lorenze Jay
c566747d4a patch version 0.120.1
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-14 17:34:07 -07:00
Lorenze Jay
3a114463f9 Update version to 0.120.0 and dependencies in pyproject.toml and uv.lock files (#2835) 2025-05-14 16:48:21 -07:00
Lorenze Jay
b4dfb19a3a Enhance string interpolation to support hyphens in variable names and… (#2834)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Enhance string interpolation to support hyphens in variable names and add corresponding test cases. Update existing tests for consistency and formatting.

* Refactor tests in task_test.py by removing unused Task instances to streamline test cases for the interpolate_only method and related functions.
2025-05-14 16:06:07 -07:00
Vidit Ostwal
30ef8ed70b Fix agent kn reset (#2765)
* CLI command added

* Added reset agent knowledge function

* Reduced verbose

* Added test cases

* Added docs

* Llama test case failing

* Changed _reset_agent_knowledge function

* Fixed new line error

* Added docs

* fixed the new line error

* Refractored

* Uncommmented some test cases

* ruff check fixed

* fixed run type checks

* fixed run type checks

* fixed run type checks

* Made reset_fn callable by casting to silence run type checks

* Changed the reset_knowledge as it expects only list of knowledge

* Fixed typo in docs

* Refractored the memory_system

* Minor Changes

* fixed test case

* Fixed linting issues

* Network test cases failing

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-05-14 15:13:39 -04:00
Kunal Lunia
e1541b2619 Updated flow doc (#2828)
Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-05-14 11:18:50 -04:00
Lucas Gomide
7c4889f5c9 Enhance Agent repository feedback & fix Tool auto-import (#2829)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* fix: fix tool auto-import from agent repository

* feat: enhance error message when agent is not found
2025-05-14 10:37:48 -04:00
Lucas Gomide
c403497cf4 feat: support to set an empty context to the Task (#2793)
* feat: support to set an empty context to the Task

* sytle: fix linter issues
2025-05-14 06:36:32 -04:00
87 changed files with 4299 additions and 6503 deletions

View File

@@ -21,7 +21,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
CrewAI Enterprise includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
![Visual Agent Builder Screenshot](../images/enterprise/crew-studio-quickstart)
![Visual Agent Builder Screenshot](/images/enterprise/crew-studio-interface.png)
The Visual Agent Builder enables:
- Intuitive agent configuration with form-based interfaces
@@ -58,6 +58,8 @@ The Visual Agent Builder enables:
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
| **Inject Date** _(optional)_ | `inject_date` | `bool` | Whether to automatically inject the current date into tasks. Default is False. |
| **Date Format** _(optional)_ | `date_format` | `str` | Format string for date when inject_date is enabled. Default is "%Y-%m-%d" (ISO format). |
## Creating Agents
@@ -226,6 +228,18 @@ custom_agent = Agent(
)
```
#### Date-Aware Agent
```python Code
date_aware_agent = Agent(
role="Market Analyst",
goal="Track market movements with precise date references",
backstory="Expert in time-sensitive financial analysis and reporting",
inject_date=True, # Automatically inject current date into tasks
date_format="%B %d, %Y", # Format as "May 21, 2025"
verbose=True
)
```
### Parameter Details
#### Critical Parameters
@@ -332,6 +346,12 @@ When `memory` is enabled, the agent will maintain context across multiple intera
- Main `llm` for complex reasoning
- `function_calling_llm` for efficient tool usage
### Date Awareness
- Use `inject_date: true` to provide agents with current date awareness
- Customize the date format with `date_format` using standard Python datetime format codes
- Valid format codes include: %Y (year), %m (month), %d (day), %B (full month name), etc.
- Invalid date formats will be logged as warnings and will not modify the task description
### Model Compatibility
- Set `use_system_prompt: false` for older models that don't support system messages
- Ensure your chosen `llm` supports the features you need (like function calling)

View File

@@ -4,7 +4,7 @@ description: Learn how to use the CrewAI CLI to interact with CrewAI.
icon: terminal
---
# CrewAI CLI Documentation
## Overview
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews & flows.
@@ -110,6 +110,8 @@ crewai reset-memories [OPTIONS]
- `-s, --short`: Reset SHORT TERM memory
- `-e, --entities`: Reset ENTITIES memory
- `-k, --kickoff-outputs`: Reset LATEST KICKOFF TASK OUTPUTS
- `-kn, --knowledge`: Reset KNOWLEDGE storage
- `-akn, --agent-knowledge`: Reset AGENT KNOWLEDGE storage
- `-a, --all`: Reset ALL memories
Example:

View File

@@ -4,7 +4,7 @@ description: Exploring the dynamics of agent collaboration within the CrewAI fra
icon: screen-users
---
## Collaboration Fundamentals
## Overview
Collaboration in CrewAI is fundamental, enabling agents to combine their skills, share information, and assist each other in task execution, embodying a truly cooperative ecosystem.

View File

@@ -4,7 +4,7 @@ description: Understanding and utilizing crews in the crewAI framework with comp
icon: people-group
---
## What is a Crew?
## Overview
A crew in crewAI represents a collaborative group of agents working together to achieve a set of tasks. Each crew defines the strategy for task execution, agent collaboration, and the overall workflow.
@@ -117,6 +117,12 @@ class YourCrewName:
)
```
How to run the above code:
```python code
YourCrewName().crew().kickoff(inputs={"any": "input here"})
```
<Note>
Tasks will be executed in the order they are defined.
</Note>
@@ -184,6 +190,11 @@ class YourCrewName:
verbose=True
)
```
How to run the above code:
```python code
YourCrewName().crew().kickoff(inputs={})
```
In this example:

View File

@@ -4,7 +4,7 @@ description: 'Tap into CrewAI events to build custom integrations and monitoring
icon: spinner
---
# Event Listeners
## Overview
CrewAI provides a powerful event system that allows you to listen for and react to various events that occur during the execution of your Crew. This feature enables you to build custom integrations, monitoring solutions, logging systems, or any other functionality that needs to be triggered based on CrewAI's internal events.
@@ -21,7 +21,7 @@ When specific actions occur in CrewAI (like a Crew starting execution, an Agent
<Note type="info" title="Enterprise Enhancement: Prompt Tracing">
CrewAI Enterprise provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
![Prompt Tracing Dashboard](../images/enterprise/prompt-tracing.png)
![Prompt Tracing Dashboard](/images/enterprise/traces-overview.png)
With Prompt Tracing you can:
- View the complete history of all prompts sent to your LLM
@@ -224,6 +224,15 @@ CrewAI provides a wide range of events that you can listen for:
- **ToolExecutionErrorEvent**: Emitted when a tool execution encounters an error
- **ToolSelectionErrorEvent**: Emitted when there's an error selecting a tool
### Knowledge Events
- **KnowledgeRetrievalStartedEvent**: Emitted when a knowledge retrieval is started
- **KnowledgeRetrievalCompletedEvent**: Emitted when a knowledge retrieval is completed
- **KnowledgeQueryStartedEvent**: Emitted when a knowledge query is started
- **KnowledgeQueryCompletedEvent**: Emitted when a knowledge query is completed
- **KnowledgeQueryFailedEvent**: Emitted when a knowledge query fails
- **KnowledgeSearchQueryFailedEvent**: Emitted when a knowledge search query fails
### Flow Events
- **FlowCreatedEvent**: Emitted when a Flow is created

View File

@@ -4,7 +4,7 @@ description: Learn how to create and manage AI workflows using CrewAI Flows.
icon: arrow-progress
---
## Introduction
## Overview
CrewAI Flows is a powerful feature designed to streamline the creation and management of AI workflows. Flows allow developers to combine and coordinate coding tasks and Crews efficiently, providing a robust framework for building sophisticated AI automations.
@@ -75,11 +75,12 @@ class ExampleFlow(Flow):
flow = ExampleFlow()
flow.plot()
result = flow.kickoff()
print(f"Generated fun fact: {result}")
```
![Flow Visual image](/images/crewai-flow-1.png)
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
Each Flow instance automatically receives a unique identifier (UUID) in its state, which helps track and manage flow executions. The state can also store additional data (like the generated city and fun fact) that persists throughout the flow's execution.
@@ -146,6 +147,7 @@ class OutputExampleFlow(Flow):
flow = OutputExampleFlow()
flow.plot("my_flow_plot")
final_output = flow.kickoff()
print("---- Final Output ----")
@@ -158,9 +160,10 @@ Second method received: Output from first_method
```
</CodeGroup>
![Flow Visual image](/images/crewai-flow-2.png)
In this example, the `second_method` is the last method to complete, so its output will be the final output of the Flow.
The `kickoff()` method will return the final output, which is then printed to the console.
The `kickoff()` method will return the final output, which is then printed to the console. The `plot()` method will generate the HTML file, which will help you understand the flow.
#### Accessing and Updating State
@@ -192,6 +195,7 @@ class StateExampleFlow(Flow[ExampleState]):
return self.state.message
flow = StateExampleFlow()
flow.plot("my_flow_plot")
final_output = flow.kickoff()
print(f"Final Output: {final_output}")
print("Final State:")
@@ -206,6 +210,8 @@ counter=2 message='Hello from first_method - updated by second_method'
</CodeGroup>
![Flow Visual image](/images/crewai-flow-2.png)
In this example, the state is updated by both `first_method` and `second_method`.
After the Flow has run, you can access the final state to see the updates made by these methods.
@@ -249,9 +255,12 @@ class UnstructuredExampleFlow(Flow):
flow = UnstructuredExampleFlow()
flow.plot("my_flow_plot")
flow.kickoff()
```
![Flow Visual image](/images/crewai-flow-3.png)
**Note:** The `id` field is automatically generated and preserved throughout the flow's execution. You don't need to manage or set it manually, and it will be maintained even when updating the state with new data.
**Key Points:**
@@ -302,6 +311,8 @@ flow = StructuredExampleFlow()
flow.kickoff()
```
![Flow Visual image](/images/crewai-flow-3.png)
**Key Points:**
- **Defined Schema:** `ExampleState` clearly outlines the state structure, enhancing code readability and maintainability.
@@ -436,6 +447,7 @@ class OrExampleFlow(Flow):
flow = OrExampleFlow()
flow.plot("my_flow_plot")
flow.kickoff()
```
@@ -446,6 +458,8 @@ Logger: Hello from the second method
</CodeGroup>
![Flow Visual image](/images/crewai-flow-4.png)
When you run this Flow, the `logger` method will be triggered by the output of either the `start_method` or the `second_method`.
The `or_` function is used to listen to multiple methods and trigger the listener method when any of the specified methods emit an output.
@@ -474,6 +488,7 @@ class AndExampleFlow(Flow):
print(self.state)
flow = AndExampleFlow()
flow.plot()
flow.kickoff()
```
@@ -484,6 +499,8 @@ flow.kickoff()
</CodeGroup>
![Flow Visual image](/images/crewai-flow-5.png)
When you run this Flow, the `logger` method will be triggered only when both the `start_method` and the `second_method` emit an output.
The `and_` function is used to listen to multiple methods and trigger the listener method only when all the specified methods emit an output.
@@ -527,6 +544,7 @@ class RouterFlow(Flow[ExampleState]):
flow = RouterFlow()
flow.plot("my_flow_plot")
flow.kickoff()
```
@@ -538,6 +556,8 @@ Fourth method running
</CodeGroup>
![Flow Visual image](/images/crewai-flow-6.png)
In the above example, the `start_method` generates a random boolean value and sets it in the state.
The `second_method` uses the `@router()` decorator to define conditional routing logic based on the value of the boolean.
If the boolean is `True`, the method returns `"success"`, and if it is `False`, the method returns `"failed"`.
@@ -641,6 +661,7 @@ class MarketResearchFlow(Flow[MarketResearchState]):
# Usage example
async def run_flow():
flow = MarketResearchFlow()
flow.plot("MarketResearchFlowPlot")
result = await flow.kickoff_async(inputs={"product": "AI-powered chatbots"})
return result
@@ -650,6 +671,8 @@ if __name__ == "__main__":
asyncio.run(run_flow())
```
![Flow Visual image](/images/crewai-flow-7.png)
This example demonstrates several key features of using Agents in flows:
1. **Structured Output**: Using Pydantic models to define the expected output format (`MarketAnalysis`) ensures type safety and structured data throughout the flow.
@@ -746,13 +769,16 @@ def kickoff():
def plot():
poem_flow = PoemFlow()
poem_flow.plot()
poem_flow.plot("PoemFlowPlot")
if __name__ == "__main__":
kickoff()
plot()
```
In this example, the `PoemFlow` class defines a flow that generates a sentence count, uses the `PoemCrew` to generate a poem, and then saves the poem to a file. The flow is kicked off by calling the `kickoff()` method.
In this example, the `PoemFlow` class defines a flow that generates a sentence count, uses the `PoemCrew` to generate a poem, and then saves the poem to a file. The flow is kicked off by calling the `kickoff()` method. The PoemFlowPlot will be generated by `plot()` method.
![Flow Visual image](/images/crewai-flow-8.png)
### Running the Flow

View File

@@ -4,7 +4,7 @@ description: What is knowledge in CrewAI and how to use it.
icon: book
---
## What is Knowledge?
## Overview
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
Think of it as giving your agents a reference library they can consult while working.
@@ -36,12 +36,15 @@ CrewAI supports various types of knowledge sources out of the box:
## Supported Knowledge Parameters
| Parameter | Type | Required | Description |
| :--------------------------- | :---------------------------------- | :------- | :---------------------------------------------------------------------------------------------------------------------------------------------------- |
| `sources` | **List[BaseKnowledgeSource]** | Yes | List of knowledge sources that provide content to be stored and queried. Can include PDF, CSV, Excel, JSON, text files, or string content. |
| `collection_name` | **str** | No | Name of the collection where the knowledge will be stored. Used to identify different sets of knowledge. Defaults to "knowledge" if not provided. |
| `storage` | **Optional[KnowledgeStorage]** | No | Custom storage configuration for managing how the knowledge is stored and retrieved. If not provided, a default storage will be created. |
<ParamField body="sources" type="List[BaseKnowledgeSource]" required="Yes">
List of knowledge sources that provide content to be stored and queried. Can include PDF, CSV, Excel, JSON, text files, or string content.
</ParamField>
<ParamField body="collection_name" type="str">
Name of the collection where the knowledge will be stored. Used to identify different sets of knowledge. Defaults to \"knowledge\" if not provided.
</ParamField>
<ParamField body="storage" type="Optional[KnowledgeStorage]">
Custom storage configuration for managing how the knowledge is stored and retrieved. If not provided, a default storage will be created.
</ParamField>
<Tip>
Unlike retrieval from a vector database using a tool, agents preloaded with knowledge will not need a retrieval persona or task.
@@ -432,6 +435,46 @@ Query rewriting happens transparently using a system prompt that instructs the L
This mechanism is fully automatic and requires no configuration from users. The agent's LLM is used to perform the query rewriting, so using a more capable LLM can improve the quality of rewritten queries.
</Tip>
## Knowledge Events
CrewAI emits events during the knowledge retrieval process that you can listen for using the event system. These events allow you to monitor, debug, and analyze how knowledge is being retrieved and used by your agents.
### Available Knowledge Events
- **KnowledgeRetrievalStartedEvent**: Emitted when an agent starts retrieving knowledge from sources
- **KnowledgeRetrievalCompletedEvent**: Emitted when knowledge retrieval is completed, including the query used and the retrieved content
- **KnowledgeQueryStartedEvent**: Emitted when a query to knowledge sources begins
- **KnowledgeQueryCompletedEvent**: Emitted when a query completes successfully
- **KnowledgeQueryFailedEvent**: Emitted when a query to knowledge sources fails
- **KnowledgeSearchQueryFailedEvent**: Emitted when a search query fails
### Example: Monitoring Knowledge Retrieval
```python
from crewai.utilities.events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class KnowledgeMonitorListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(KnowledgeRetrievalStartedEvent)
def on_knowledge_retrieval_started(source, event):
print(f"Agent '{event.agent.role}' started retrieving knowledge")
@crewai_event_bus.on(KnowledgeRetrievalCompletedEvent)
def on_knowledge_retrieval_completed(source, event):
print(f"Agent '{event.agent.role}' completed knowledge retrieval")
print(f"Query: {event.query}")
print(f"Retrieved {len(event.retrieved_knowledge)} knowledge chunks")
# Create an instance of your listener
knowledge_monitor = KnowledgeMonitorListener()
```
For more information on using events, see the [Event Listeners](https://docs.crewai.com/concepts/event-listener) documentation.
### Example
```python
@@ -497,6 +540,13 @@ crew = Crew(
result = crew.kickoff(
inputs={"question": "What is the storage capacity of the XPS 13?"}
)
# Resetting the agent specific knowledge via crew object
crew.reset_memories(command_type = 'agent_knowledge')
# Resetting the agent specific knowledge via CLI
crewai reset-memories --agent-knowledge
crewai reset-memories -akn
```
<Info>

View File

@@ -4,9 +4,10 @@ description: 'A comprehensive guide to configuring and using Large Language Mode
icon: 'microchip-ai'
---
<Note>
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
</Note>
## Overview
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
## What are LLMs?
@@ -677,18 +678,24 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
CrewAI emits events for each chunk received during streaming:
```python
from crewai import LLM
from crewai.utilities.events import EventHandler, LLMStreamChunkEvent
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyEventHandler(EventHandler):
def on_llm_stream_chunk(self, event: LLMStreamChunkEvent):
# Process each chunk as it arrives
print(f"Received chunk: {event.chunk}")
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(LLMStreamChunkEvent)
def on_llm_stream_chunk(self, event: LLMStreamChunkEvent):
# Process each chunk as it arrives
print(f"Received chunk: {event.chunk}")
# Register the event handler
from crewai.utilities.events import crewai_event_bus
crewai_event_bus.register_handler(MyEventHandler())
my_listener = MyCustomListener()
```
<Tip>
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
</Tip>
</Tab>
</Tabs>
@@ -785,6 +792,24 @@ Learn how to get the most out of your LLM configuration:
Remember to regularly monitor your token usage and adjust your configuration as needed to optimize costs and performance.
</Info>
</Accordion>
<Accordion title="Drop Additional Parameters">
CrewAI internally uses Litellm for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
For example, if you don't need to send the <code>stop</code> parameter, you can simply omit it from your LLM call:
```python
from crewai import LLM
import os
os.environ["OPENAI_API_KEY"] = "<api-key>"
o3_llm = LLM(
model="o3",
drop_params=True,
additional_drop_params=["stop"]
)
```
</Accordion>
</AccordionGroup>
## Common Issues and Solutions

View File

@@ -4,7 +4,7 @@ description: Leveraging memory systems in the CrewAI framework to enhance agent
icon: database
---
## Introduction to Memory Systems in CrewAI
## Overview
The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents.
This system comprises `short-term memory`, `long-term memory`, `entity memory`, and `contextual memory`, each serving a unique purpose in aiding agents to remember,
@@ -679,6 +679,7 @@ crewai reset-memories [OPTIONS]
| `-e`, `--entities` | Reset ENTITIES memory. | Flag (boolean) | False |
| `-k`, `--kickoff-outputs` | Reset LATEST KICKOFF TASK OUTPUTS. | Flag (boolean) | False |
| `-kn`, `--knowledge` | Reset KNOWLEDEGE storage | Flag (boolean) | False |
| `-akn`, `--agent-knowledge` | Reset AGENT KNOWLEDGE storage | Flag (boolean) | False |
| `-a`, `--all` | Reset ALL memories. | Flag (boolean) | False |
Note: To use the cli command you need to have your crew in a file called crew.py in the same directory.
@@ -716,9 +717,11 @@ my_crew.reset_memories(command_type = 'all') # Resets all the memory
| `entities` | Reset ENTITIES memory. |
| `kickoff_outputs` | Reset LATEST KICKOFF TASK OUTPUTS. |
| `knowledge` | Reset KNOWLEDGE memory. |
| `agent_knowledge` | Reset AGENT KNOWLEDGE memory. |
| `all` | Reset ALL memories. |
## Benefits of Using CrewAI's Memory System
- 🦾 **Adaptive Learning:** Crews become more efficient over time, adapting to new information and refining their approach to tasks.

View File

@@ -1,10 +1,10 @@
---
title: Planning
description: Learn how to add planning to your CrewAI Crew and improve their performance.
icon: brain
icon: ruler-combined
---
## Introduction
## Overview
The planning feature in CrewAI allows you to add planning capability to your crew. When enabled, before each Crew iteration,
all Crew information is sent to an AgentPlanner that will plan the tasks step by step, and this plan will be added to each task description.

View File

@@ -4,7 +4,8 @@ description: Detailed guide on workflow management through processes in CrewAI,
icon: bars-staggered
---
## Understanding Processes
## Overview
<Tip>
Processes orchestrate the execution of tasks by agents, akin to project management in human teams.
These processes ensure tasks are distributed and executed efficiently, in alignment with a predefined strategy.

147
docs/concepts/reasoning.mdx Normal file
View File

@@ -0,0 +1,147 @@
---
title: Reasoning
description: "Learn how to enable and use agent reasoning to improve task execution."
icon: brain
---
## Overview
Agent reasoning is a feature that allows agents to reflect on a task and create a plan before execution. This helps agents approach tasks more methodically and ensures they're ready to perform the assigned work.
## Usage
To enable reasoning for an agent, simply set `reasoning=True` when creating the agent:
```python
from crewai import Agent
agent = Agent(
role="Data Analyst",
goal="Analyze complex datasets and provide insights",
backstory="You are an experienced data analyst with expertise in finding patterns in complex data.",
reasoning=True, # Enable reasoning
max_reasoning_attempts=3 # Optional: Set a maximum number of reasoning attempts
)
```
## How It Works
When reasoning is enabled, before executing a task, the agent will:
1. Reflect on the task and create a detailed plan
2. Evaluate whether it's ready to execute the task
3. Refine the plan as necessary until it's ready or max_reasoning_attempts is reached
4. Inject the reasoning plan into the task description before execution
This process helps the agent break down complex tasks into manageable steps and identify potential challenges before starting.
## Configuration Options
<ParamField body="reasoning" type="bool" default="False">
Enable or disable reasoning
</ParamField>
<ParamField body="max_reasoning_attempts" type="int" default="None">
Maximum number of attempts to refine the plan before proceeding with execution. If None (default), the agent will continue refining until it's ready.
</ParamField>
## Example
Here's a complete example:
```python
from crewai import Agent, Task, Crew
# Create an agent with reasoning enabled
analyst = Agent(
role="Data Analyst",
goal="Analyze data and provide insights",
backstory="You are an expert data analyst.",
reasoning=True,
max_reasoning_attempts=3 # Optional: Set a limit on reasoning attempts
)
# Create a task
analysis_task = Task(
description="Analyze the provided sales data and identify key trends.",
expected_output="A report highlighting the top 3 sales trends.",
agent=analyst
)
# Create a crew and run the task
crew = Crew(agents=[analyst], tasks=[analysis_task])
result = crew.kickoff()
print(result)
```
## Error Handling
The reasoning process is designed to be robust, with error handling built in. If an error occurs during reasoning, the agent will proceed with executing the task without the reasoning plan. This ensures that tasks can still be executed even if the reasoning process fails.
Here's how to handle potential errors in your code:
```python
from crewai import Agent, Task
import logging
# Set up logging to capture any reasoning errors
logging.basicConfig(level=logging.INFO)
# Create an agent with reasoning enabled
agent = Agent(
role="Data Analyst",
goal="Analyze data and provide insights",
reasoning=True,
max_reasoning_attempts=3
)
# Create a task
task = Task(
description="Analyze the provided sales data and identify key trends.",
expected_output="A report highlighting the top 3 sales trends.",
agent=agent
)
# Execute the task
# If an error occurs during reasoning, it will be logged and execution will continue
result = agent.execute_task(task)
```
## Example Reasoning Output
Here's an example of what a reasoning plan might look like for a data analysis task:
```
Task: Analyze the provided sales data and identify key trends.
Reasoning Plan:
I'll analyze the sales data to identify the top 3 trends.
1. Understanding of the task:
I need to analyze sales data to identify key trends that would be valuable for business decision-making.
2. Key steps I'll take:
- First, I'll examine the data structure to understand what fields are available
- Then I'll perform exploratory data analysis to identify patterns
- Next, I'll analyze sales by time periods to identify temporal trends
- I'll also analyze sales by product categories and customer segments
- Finally, I'll identify the top 3 most significant trends
3. Approach to challenges:
- If the data has missing values, I'll decide whether to fill or filter them
- If the data has outliers, I'll investigate whether they're valid data points or errors
- If trends aren't immediately obvious, I'll apply statistical methods to uncover patterns
4. Use of available tools:
- I'll use data analysis tools to explore and visualize the data
- I'll use statistical tools to identify significant patterns
- I'll use knowledge retrieval to access relevant information about sales analysis
5. Expected outcome:
A concise report highlighting the top 3 sales trends with supporting evidence from the data.
READY: I am ready to execute the task.
```
This reasoning plan helps the agent organize its approach to the task, consider potential challenges, and ensure it delivers the expected output.

View File

@@ -4,7 +4,7 @@ description: Detailed guide on managing and creating tasks within the CrewAI fra
icon: list-check
---
## Overview of a Task
## Overview
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
@@ -15,7 +15,7 @@ Tasks within CrewAI can be collaborative, requiring multiple agents to work toge
<Note type="info" title="Enterprise Enhancement: Visual Task Builder">
CrewAI Enterprise includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
![Task Builder Screenshot](../images/enterprise/crew-studio-quickstart.png)
![Task Builder Screenshot](/images/enterprise/crew-studio-interface.png)
The Visual Task Builder enables:
- Drag-and-drop task creation

View File

@@ -4,7 +4,7 @@ description: Learn how to test your CrewAI Crew and evaluate their performance.
icon: vial
---
## Introduction
## Overview
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. With crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.

View File

@@ -4,7 +4,7 @@ description: Understanding and leveraging tools within the CrewAI framework for
icon: screwdriver-wrench
---
## Introduction
## Overview
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
This documentation outlines how to create, integrate, and leverage these tools within the CrewAI framework, including a new focus on collaboration tools.
@@ -18,8 +18,6 @@ enabling everything from simple searches to complex interactions and effective t
<Note type="info" title="Enterprise Enhancement: Tools Repository">
CrewAI Enterprise provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
![Tools Repository Screenshot](../images/enterprise/tools-repository.png)
The Enterprise Tools Repository includes:
- Pre-built connectors for popular enterprise systems
- Custom tool creation interface

View File

@@ -4,7 +4,7 @@ description: Learn how to train your CrewAI agents by giving them feedback early
icon: dumbbell
---
## Introduction
## Overview
The training feature in CrewAI allows you to train your AI agents using the command-line interface (CLI).
By running the command `crewai train -n <n_iterations>`, you can specify the number of iterations for the training process.

View File

@@ -74,6 +74,7 @@
"concepts/collaboration",
"concepts/training",
"concepts/memory",
"concepts/reasoning",
"concepts/planning",
"concepts/testing",
"concepts/cli",
@@ -129,6 +130,7 @@
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/stagehandtool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
@@ -138,6 +140,12 @@
"tools/youtubevideosearchtool"
]
},
{
"group": "MCP Integration",
"pages": [
"mcp/crewai-mcp-integration"
]
},
{
"group": "Agent Monitoring & Observability",
"pages": [

View File

@@ -64,14 +64,14 @@ CrewAI Enterprise extends the power of the open-source framework with features d
Sign Up
</Card>
</Step>
<Step title="Create your first crew">
Use code or Crew Studio to create your crew
<Step title="Build your first crew">
Use code or Crew Studio to build your crew
<Card
title="Create Crew"
title="Build Crew"
icon="paintbrush"
href="/enterprise/guides/create-crew"
href="/enterprise/guides/build-crew"
>
Create Crew
Build Crew
</Card>
</Step>
<Step title="Deploy your crew">

View File

@@ -4,8 +4,6 @@ description: Dive deeper into low-level prompt customization for CrewAI, enablin
icon: message-pen
---
# Customizing Prompts at a Low Level
## Why Customize Prompts?
Although CrewAI's default prompts work well for many scenarios, low-level customization opens the door to significantly more flexible and powerful agent behavior. Heres why you might want to take advantage of this deeper control:

View File

@@ -4,8 +4,6 @@ description: Learn how to use CrewAI's fingerprinting system to uniquely identif
icon: fingerprint
---
# Fingerprinting in CrewAI
## Overview
Fingerprints in CrewAI provide a way to uniquely identify and track components throughout their lifecycle. Each `Agent`, `Crew`, and `Task` automatically receives a unique fingerprint when created, which cannot be manually overridden.

View File

@@ -4,8 +4,6 @@ description: Learn best practices for designing powerful, specialized AI agents
icon: robot
---
# Crafting Effective Agents
## The Art and Science of Agent Design
At the heart of CrewAI lies the agent - a specialized AI entity designed to perform specific roles within a collaborative framework. While creating basic agents is simple, crafting truly effective agents that produce exceptional results requires understanding key design principles and best practices.

View File

@@ -4,8 +4,6 @@ description: Learn how to assess your AI application needs and choose the right
icon: scale-balanced
---
# Evaluating Use Cases for CrewAI
## Understanding the Decision Framework
When building AI applications with CrewAI, one of the most important decisions you'll make is choosing the right approach for your specific use case. Should you use a Crew? A Flow? A combination of both? This guide will help you evaluate your requirements and make informed architectural decisions.

View File

@@ -4,8 +4,6 @@ description: Step-by-step tutorial to create a collaborative AI team that works
icon: users-gear
---
# Build Your First Crew
## Unleashing the Power of Collaborative AI
Imagine having a team of specialized AI agents working together seamlessly to solve complex problems, each contributing their unique skills to achieve a common goal. This is the power of CrewAI - a framework that enables you to create collaborative AI systems that can accomplish tasks far beyond what a single AI could achieve alone.

View File

@@ -4,8 +4,6 @@ description: Learn how to create structured, event-driven workflows with precise
icon: diagram-project
---
# Build Your First Flow
## Taking Control of AI Workflows with Flows
CrewAI Flows represent the next level in AI orchestration - combining the collaborative power of AI agent crews with the precision and flexibility of procedural programming. While crews excel at agent collaboration, flows give you fine-grained control over exactly how and when different components of your AI system interact.

View File

@@ -4,8 +4,6 @@ description: A comprehensive guide to managing, persisting, and leveraging state
icon: diagram-project
---
# Mastering Flow State Management
## Understanding the Power of State in Flows
State management is the backbone of any sophisticated AI workflow. In CrewAI Flows, the state system allows you to maintain context, share data between steps, and build complex application logic. Mastering state management is essential for creating reliable, maintainable, and powerful AI applications.

View File

@@ -12,7 +12,8 @@ The before kickoff hook is executed before the crew starts its tasks. It receive
Here's an example of defining a before kickoff function in your `crew.py`:
```python
from crewai import CrewBase, before_kickoff
from crewai import CrewBase
from crewai.project import before_kickoff
@CrewBase
class MyCrew:
@@ -34,7 +35,8 @@ The after kickoff hook is executed after the crew has completed its tasks. It re
Here's how you can define an after kickoff function in your `crew.py`:
```python
from crewai import CrewBase, after_kickoff
from crewai import CrewBase
from crewai.project import after_kickoff
@CrewBase
class MyCrew:

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 362 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 241 KiB

View File

@@ -0,0 +1,229 @@
---
title: 'MCP Servers as Tools in CrewAI'
description: 'Learn how to integrate MCP servers as tools in your CrewAI agents using the `crewai-tools` library.'
icon: 'plug'
---
## Overview
The [Model Context Protocol](https://modelcontextprotocol.io/introduction) (MCP) provides a standardized way for AI agents to provide context to LLMs by communicating with external services, known as MCP Servers.
The `crewai-tools` library extends CrewAI's capabilities by allowing you to seamlessly integrate tools from these MCP servers into your agents.
This gives your crews access to a vast ecosystem of functionalities. For now, we support **Standard Input/Output** (Stdio) and **Server-Sent Events** (SSE) transport mechanisms.
<Info>
We will also be integrating **Streamable HTTP** transport in the near future.
Streamable HTTP is designed for efficient, bi-directional communication over a single HTTP connection.
</Info>
## Installation
Before you start using MCP with `crewai-tools`, you need to install the `mcp` extra `crewai-tools` dependency with the following command:
```shell
uv pip install 'crewai-tools[mcp]'
```
### Integrating MCP Tools with `MCPServerAdapter`
The `MCPServerAdapter` class from `crewai-tools` is the primary way to connect to an MCP server and make its tools available to your CrewAI agents.
It supports different transport mechanisms, primarily **Stdio** (for local servers) and **SSE** (Server-Sent Events).You have two main options for managing the connection lifecycle:
### Option 1: Fully Managed Connection (Recommended)
Using a Python context manager (`with` statement) is the recommended approach. It automatically handles starting and stopping the connection to the MCP server.
**For a local Stdio-based MCP server:**
```python
from crewai import Agent, Task, Crew
from crewai_tools import MCPServerAdapter
from mcp import StdioServerParameters
import os
server_params=StdioServerParameters(
command="uxv", # Or your python3 executable i.e. "python3"
args=["mock_server.py"],
env={"UV_PYTHON": "3.12", **os.environ},
)
with MCPServerAdapter(server_params) as tools:
print(f"Available tools from Stdio MCP server: {[tool.name for tool in tools]}")
# Example: Using the tools from the Stdio MCP server in a CrewAI Agent
agent = Agent(
role="Web Information Retriever",
goal="Scrape content from a specified URL.",
backstory="An AI that can fetch and process web page data via an MCP tool.",
tools=tools,
verbose=True,
)
task = Task(
description="Scrape content from a specified URL.",
expected_output="Scraped content from the specified URL.",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
print(result)
```
**For a remote SSE-based MCP server:**
```python
from crewai_tools import MCPServerAdapter
from crewai import Agent, Task, Crew
server_params = {"url": "http://localhost:8000/sse"}
with MCPServerAdapter(server_params) as tools:
print(f"Available tools from SSE MCP server: {[tool.name for tool in tools]}")
# Example: Using the tools from the SSE MCP server in a CrewAI Agent
agent = Agent(
role="Web Information Retriever",
goal="Scrape content from a specified URL.",
backstory="An AI that can fetch and process web page data via an MCP tool.",
tools=tools,
verbose=True,
)
task = Task(
description="Scrape content from a specified URL.",
expected_output="Scraped content from the specified URL.",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
print(result)
```
### Option 2: More control over the MCP server connection lifecycle
If you need finer-grained control over the MCP server connection lifecycle, you can instantiate `MCPServerAdapter` directly and manage its `start()` and `stop()` methods.
<Info>
You **MUST** call `mcp_server_adapter.stop()` to ensure the connection is closed and resources are released. Using a `try...finally` block is highly recommended.
</Info>
#### Stdio Transport Example (Manual)
```python
from mcp import StdioServerParameters
from crewai_tools import MCPServerAdapter
from crewai import Agent, Task, Crew
import os
stdio_params = StdioServerParameters(
command="uvx", # Or your python3 executable i.e. "python3"
args=["--quiet", "your-mcp-server@0.1.3"],
env={"UV_PYTHON": "3.12", **os.environ},
)
mcp_server_adapter = MCPServerAdapter(server_params=stdio_params)
try:
mcp_server_adapter.start() # Manually start the connection
tools = mcp_server_adapter.tools
print(f"Available tools (manual Stdio): {[tool.name for tool in tools]}")
# Use 'tools' with your Agent, Task, Crew setup as in Option 1
agent = Agent(
role="Medical Researcher",
goal="Find recent studies on a given topic using PubMed.",
backstory="An AI assistant specialized in biomedical literature research.",
tools=tools,
verbose=True
)
task = Task(
description="Search for recent articles on 'crispr gene editing'.",
expected_output="A summary of the top 3 recent articles.",
agent=agent
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential
)
result = crew.kickoff()
print(result)
finally:
print("Stopping Stdio MCP server connection (manual)...")
mcp_server_adapter.stop() # **Crucial: Ensure stop is called**
```
#### SSE Transport Example (Manual)
```python
from crewai_tools import MCPServerAdapter
from crewai import Agent, Task, Crew, Process
from mcp import StdioServerParameters
server_params = {"url": "http://localhost:8000/sse"}
try:
mcp_server_adapter = MCPServerAdapter(server_params)
mcp_server_adapter.start()
tools = mcp_server_adapter.tools
print(f"Available tools (manual SSE): {[tool.name for tool in tools]}")
agent = Agent(
role="Medical Researcher",
goal="Find recent studies on a given topic using PubMed.",
backstory="An AI assistant specialized in biomedical literature research.",
tools=tools,
verbose=True
)
task = Task(
description="Search for recent articles on 'crispr gene editing'.",
expected_output="A summary of the top 3 recent articles.",
agent=agent
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential
)
result = crew.kickoff()
print(result)
finally:
print("Stopping SSE MCP server connection (manual)...")
mcp_server_adapter.stop() # **Crucial: Ensure stop is called**
```
## Staying Safe with MCP
<Warning>
Always ensure that you trust an MCP Server before using it.
</Warning>
#### Security Warning: DNS Rebinding Attacks
SSE transports can be vulnerable to DNS rebinding attacks if not properly secured.
To prevent this:
1. **Always validate Origin headers** on incoming SSE connections to ensure they come from expected sources
2. **Avoid binding servers to all network interfaces** (0.0.0.0) when running locally - bind only to localhost (127.0.0.1) instead
3. **Implement proper authentication** for all SSE connections
Without these protections, attackers could use DNS rebinding to interact with local MCP servers from remote websites.
For more details, see the [MCP Transport Security](https://modelcontextprotocol.io/docs/concepts/transports#security-considerations) documentation.
### Limitations
* **Supported Primitives**: Currently, `MCPServerAdapter` primarily supports adapting MCP `tools`.
Other MCP primitives like `prompts` or `resources` are not directly integrated as CrewAI components through this adapter at this time.
* **Output Handling**: The adapter typically processes the primary text output from an MCP tool (e.g., `.content[0].text`). Complex or multi-modal outputs might require custom handling if not fitting this pattern.

View File

@@ -0,0 +1,244 @@
---
title: Stagehand Tool
description: Web automation tool that integrates Stagehand with CrewAI for browser interaction and automation
icon: hand
---
# Overview
The `StagehandTool` integrates the [Stagehand](https://docs.stagehand.dev/get_started/introduction) framework with CrewAI, enabling agents to interact with websites and automate browser tasks using natural language instructions.
## Overview
Stagehand is a powerful browser automation framework built by Browserbase that allows AI agents to:
- Navigate to websites
- Click buttons, links, and other elements
- Fill in forms
- Extract data from web pages
- Observe and identify elements
- Perform complex workflows
The StagehandTool wraps the Stagehand Python SDK to provide CrewAI agents with browser control capabilities through three core primitives:
1. **Act**: Perform actions like clicking, typing, or navigating
2. **Extract**: Extract structured data from web pages
3. **Observe**: Identify and analyze elements on the page
## Prerequisites
Before using this tool, ensure you have:
1. A [Browserbase](https://www.browserbase.com/) account with API key and project ID
2. An API key for an LLM (OpenAI or Anthropic Claude)
3. The Stagehand Python SDK installed
Install the required dependency:
```bash
pip install stagehand-py
```
## Usage
### Basic Implementation
The StagehandTool can be implemented in two ways:
#### 1. Using Context Manager (Recommended)
<Tip>
The context manager approach is recommended as it ensures proper cleanup of resources even if exceptions occur.
</Tip>
```python
from crewai import Agent, Task, Crew
from crewai_tools import StagehandTool
from stagehand.schemas import AvailableModel
# Initialize the tool with your API keys using a context manager
with StagehandTool(
api_key="your-browserbase-api-key",
project_id="your-browserbase-project-id",
model_api_key="your-llm-api-key", # OpenAI or Anthropic API key
model_name=AvailableModel.CLAUDE_3_7_SONNET_LATEST, # Optional: specify which model to use
) as stagehand_tool:
# Create an agent with the tool
researcher = Agent(
role="Web Researcher",
goal="Find and summarize information from websites",
backstory="I'm an expert at finding information online.",
verbose=True,
tools=[stagehand_tool],
)
# Create a task that uses the tool
research_task = Task(
description="Go to https://www.example.com and tell me what you see on the homepage.",
agent=researcher,
)
# Run the crew
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=True,
)
result = crew.kickoff()
print(result)
```
#### 2. Manual Resource Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import StagehandTool
from stagehand.schemas import AvailableModel
# Initialize the tool with your API keys
stagehand_tool = StagehandTool(
api_key="your-browserbase-api-key",
project_id="your-browserbase-project-id",
model_api_key="your-llm-api-key",
model_name=AvailableModel.CLAUDE_3_7_SONNET_LATEST,
)
try:
# Create an agent with the tool
researcher = Agent(
role="Web Researcher",
goal="Find and summarize information from websites",
backstory="I'm an expert at finding information online.",
verbose=True,
tools=[stagehand_tool],
)
# Create a task that uses the tool
research_task = Task(
description="Go to https://www.example.com and tell me what you see on the homepage.",
agent=researcher,
)
# Run the crew
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=True,
)
result = crew.kickoff()
print(result)
finally:
# Explicitly clean up resources
stagehand_tool.close()
```
## Command Types
The StagehandTool supports three different command types for specific web automation tasks:
### 1. Act Command
The `act` command type (default) enables webpage interactions like clicking buttons, filling forms, and navigation.
```python
# Perform an action (default behavior)
result = stagehand_tool.run(
instruction="Click the login button",
url="https://example.com",
command_type="act" # Default, so can be omitted
)
# Fill out a form
result = stagehand_tool.run(
instruction="Fill the contact form with name 'John Doe', email 'john@example.com', and message 'Hello world'",
url="https://example.com/contact"
)
```
### 2. Extract Command
The `extract` command type retrieves structured data from webpages.
```python
# Extract all product information
result = stagehand_tool.run(
instruction="Extract all product names, prices, and descriptions",
url="https://example.com/products",
command_type="extract"
)
# Extract specific information with a selector
result = stagehand_tool.run(
instruction="Extract the main article title and content",
url="https://example.com/blog/article",
command_type="extract",
selector=".article-container" # Optional CSS selector
)
```
### 3. Observe Command
The `observe` command type identifies and analyzes webpage elements.
```python
# Find interactive elements
result = stagehand_tool.run(
instruction="Find all interactive elements in the navigation menu",
url="https://example.com",
command_type="observe"
)
# Identify form fields
result = stagehand_tool.run(
instruction="Identify all the input fields in the registration form",
url="https://example.com/register",
command_type="observe",
selector="#registration-form"
)
```
## Configuration Options
Customize the StagehandTool behavior with these parameters:
```python
stagehand_tool = StagehandTool(
api_key="your-browserbase-api-key",
project_id="your-browserbase-project-id",
model_api_key="your-llm-api-key",
model_name=AvailableModel.CLAUDE_3_7_SONNET_LATEST,
dom_settle_timeout_ms=5000, # Wait longer for DOM to settle
headless=True, # Run browser in headless mode
self_heal=True, # Attempt to recover from errors
wait_for_captcha_solves=True, # Wait for CAPTCHA solving
verbose=1, # Control logging verbosity (0-3)
)
```
## Best Practices
1. **Be Specific**: Provide detailed instructions for better results
2. **Choose Appropriate Command Type**: Select the right command type for your task
3. **Use Selectors**: Leverage CSS selectors to improve accuracy
4. **Break Down Complex Tasks**: Split complex workflows into multiple tool calls
5. **Implement Error Handling**: Add error handling for potential issues
## Troubleshooting
Common issues and solutions:
- **Session Issues**: Verify API keys for both Browserbase and LLM provider
- **Element Not Found**: Increase `dom_settle_timeout_ms` for slower pages
- **Action Failures**: Use `observe` to identify correct elements first
- **Incomplete Data**: Refine instructions or provide specific selectors
## Additional Resources
For questions about the CrewAI integration:
- Join Stagehand's [Slack community](https://stagehand.dev/slack)
- Open an issue in the [Stagehand repository](https://github.com/browserbase/stagehand)
- Visit [Stagehand documentation](https://docs.stagehand.dev/)

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.119.0"
version = "0.121.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
@@ -45,7 +45,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.44.0"]
tools = ["crewai-tools~=0.45.0"]
embeddings = [
"tiktoken~=0.7.0"
]

View File

@@ -17,7 +17,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.119.0"
__version__ = "0.121.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -115,10 +115,26 @@ class Agent(BaseAgent):
default=False,
description="Whether the agent is multimodal.",
)
inject_date: bool = Field(
default=False,
description="Whether to automatically inject the current date into tasks.",
)
date_format: str = Field(
default="%Y-%m-%d",
description="Format string for date when inject_date is enabled.",
)
code_execution_mode: Literal["safe", "unsafe"] = Field(
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
reasoning: bool = Field(
default=False,
description="Whether the agent should reflect and create a plan before executing a task.",
)
max_reasoning_attempts: Optional[int] = Field(
default=None,
description="Maximum number of reasoning attempts before executing the task. If None, will try until ready.",
)
embedder: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
@@ -225,6 +241,23 @@ class Agent(BaseAgent):
ValueError: If the max execution time is not a positive integer.
RuntimeError: If the agent execution fails for other reasons.
"""
if self.reasoning:
try:
from crewai.utilities.reasoning_handler import AgentReasoning, AgentReasoningOutput
reasoning_handler = AgentReasoning(task=task, agent=self)
reasoning_output: AgentReasoningOutput = reasoning_handler.handle_agent_reasoning()
# Add the reasoning plan to the task description
task.description += f"\n\nReasoning Plan:\n{reasoning_output.plan.plan}"
except Exception as e:
if hasattr(self, '_logger'):
self._logger.log("error", f"Error during reasoning process: {str(e)}")
else:
print(f"Error during reasoning process: {str(e)}")
self._inject_date_to_task(task)
if self.tools_handler:
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
@@ -585,6 +618,26 @@ class Agent(BaseAgent):
return description
def _inject_date_to_task(self, task):
"""Inject the current date into the task description if inject_date is enabled."""
if self.inject_date:
from datetime import datetime
try:
valid_format_codes = ['%Y', '%m', '%d', '%H', '%M', '%S', '%B', '%b', '%A', '%a']
is_valid = any(code in self.date_format for code in valid_format_codes)
if not is_valid:
raise ValueError(f"Invalid date format: {self.date_format}")
current_date: str = datetime.now().strftime(self.date_format)
task.description += f"\n\nCurrent Date: {current_date}"
except Exception as e:
if hasattr(self, '_logger'):
self._logger.log("warning", f"Failed to inject date: {str(e)}")
else:
print(f"Warning: Failed to inject date: {str(e)}")
def _validate_docker_installation(self) -> None:
"""Check if Docker is installed and running."""
if not shutil.which("docker"):

View File

@@ -1,6 +1,5 @@
import os
from importlib.metadata import version as get_version
from typing import Optional, Tuple
from typing import Optional
import click
@@ -138,12 +137,8 @@ def log_tasks_outputs() -> None:
@click.option("-s", "--short", is_flag=True, help="Reset SHORT TERM memory")
@click.option("-e", "--entities", is_flag=True, help="Reset ENTITIES memory")
@click.option("-kn", "--knowledge", is_flag=True, help="Reset KNOWLEDGE storage")
@click.option(
"-k",
"--kickoff-outputs",
is_flag=True,
help="Reset LATEST KICKOFF TASK OUTPUTS",
)
@click.option("-akn", "--agent-knowledge", is_flag=True, help="Reset AGENT KNOWLEDGE storage")
@click.option("-k","--kickoff-outputs",is_flag=True,help="Reset LATEST KICKOFF TASK OUTPUTS")
@click.option("-a", "--all", is_flag=True, help="Reset ALL memories")
def reset_memories(
long: bool,
@@ -151,18 +146,20 @@ def reset_memories(
entities: bool,
knowledge: bool,
kickoff_outputs: bool,
agent_knowledge: bool,
all: bool,
) -> None:
"""
Reset the crew memories (long, short, entity, latest_crew_kickoff_ouputs). This will delete all the data saved.
Reset the crew memories (long, short, entity, latest_crew_kickoff_ouputs, knowledge, agent_knowledge). This will delete all the data saved.
"""
try:
if not all and not (long or short or entities or knowledge or kickoff_outputs):
memory_types = [long, short, entities, knowledge, agent_knowledge, kickoff_outputs, all]
if not any(memory_types):
click.echo(
"Please specify at least one memory type to reset using the appropriate flags."
)
return
reset_memories_command(long, short, entities, knowledge, kickoff_outputs, all)
reset_memories_command(long, short, entities, knowledge, agent_knowledge, kickoff_outputs, all)
except Exception as e:
click.echo(f"An error occurred while resetting memories: {e}", err=True)

View File

@@ -10,6 +10,7 @@ def reset_memories_command(
short,
entity,
knowledge,
agent_knowledge,
kickoff_outputs,
all,
) -> None:
@@ -23,10 +24,11 @@ def reset_memories_command(
kickoff_outputs (bool): Whether to reset the latest kickoff task outputs.
all (bool): Whether to reset all memories.
knowledge (bool): Whether to reset the knowledge.
agent_knowledge (bool): Whether to reset the agents knowledge.
"""
try:
if not any([long, short, entity, kickoff_outputs, knowledge, all]):
if not any([long, short, entity, kickoff_outputs, knowledge, agent_knowledge, all]):
click.echo(
"No memory type specified. Please specify at least one type to reset."
)
@@ -67,6 +69,11 @@ def reset_memories_command(
click.echo(
f"[Crew ({crew.name if crew.name else crew.id})] Knowledge has been reset."
)
if agent_knowledge:
crew.reset_memories(command_type="agent_knowledge")
click.echo(
f"[Crew ({crew.name if crew.name else crew.id})] Agents knowledge has been reset."
)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while resetting the memories: {e}", err=True)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.119.0,<1.0.0"
"crewai[tools]>=0.121.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.119.0,<1.0.0",
"crewai[tools]>=0.121.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.119.0"
"crewai[tools]>=0.121.0"
]
[tool.crewai]

View File

@@ -161,7 +161,7 @@ def tree_find_and_replace(directory, find, replace):
for filename in files:
filepath = os.path.join(path, filename)
with open(filepath, "r") as file:
with open(filepath, "r", encoding="utf-8", errors="ignore") as file:
contents = file.read()
with open(filepath, "w") as file:
file.write(contents.replace(find, replace))

View File

@@ -52,7 +52,7 @@ from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import BaseTool, Tool
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.constants import NOT_SPECIFIED, TRAINING_DATA_FILE
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.events.crew_events import (
@@ -315,9 +315,7 @@ class Crew(FlowTrackable, BaseModel):
"""Initialize private memory attributes."""
self._external_memory = (
# External memory doesnt support a default value since it was designed to be managed entirely externally
self.external_memory.set_crew(self)
if self.external_memory
else None
self.external_memory.set_crew(self) if self.external_memory else None
)
self._long_term_memory = self.long_term_memory
@@ -478,7 +476,7 @@ class Crew(FlowTrackable, BaseModel):
separated by a synchronous task.
"""
for i, task in enumerate(self.tasks):
if task.async_execution and task.context:
if task.async_execution and isinstance(task.context, list):
for context_task in task.context:
if context_task.async_execution:
for j in range(i - 1, -1, -1):
@@ -496,7 +494,7 @@ class Crew(FlowTrackable, BaseModel):
task_indices = {id(task): i for i, task in enumerate(self.tasks)}
for task in self.tasks:
if task.context:
if isinstance(task.context, list):
for context_task in task.context:
if id(context_task) not in task_indices:
continue # Skip context tasks not in the main tasks list
@@ -1034,11 +1032,14 @@ class Crew(FlowTrackable, BaseModel):
)
return cast(List[BaseTool], tools)
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
def _get_context(self, task: Task, task_outputs: List[TaskOutput]) -> str:
if not task.context:
return ""
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
aggregate_raw_outputs_from_task_outputs(task_outputs)
if task.context is NOT_SPECIFIED
else aggregate_raw_outputs_from_tasks(task.context)
)
return context
@@ -1201,7 +1202,6 @@ class Crew(FlowTrackable, BaseModel):
"_long_term_memory",
"_entity_memory",
"_external_memory",
"_telemetry",
"agents",
"tasks",
"knowledge_sources",
@@ -1226,7 +1226,7 @@ class Crew(FlowTrackable, BaseModel):
task_mapping[task.key] = cloned_task
for cloned_task, original_task in zip(cloned_tasks, self.tasks):
if original_task.context:
if isinstance(original_task.context, list):
cloned_context = [
task_mapping[context_task.key]
for context_task in original_task.context
@@ -1353,7 +1353,7 @@ class Crew(FlowTrackable, BaseModel):
Args:
command_type: Type of memory to reset.
Valid options: 'long', 'short', 'entity', 'knowledge',
Valid options: 'long', 'short', 'entity', 'knowledge', 'agent_knowledge'
'kickoff_outputs', or 'all'
Raises:
@@ -1366,6 +1366,7 @@ class Crew(FlowTrackable, BaseModel):
"short",
"entity",
"knowledge",
"agent_knowledge",
"kickoff_outputs",
"all",
"external",
@@ -1390,19 +1391,14 @@ class Crew(FlowTrackable, BaseModel):
def _reset_all_memories(self) -> None:
"""Reset all available memory systems."""
memory_systems = [
("short term", getattr(self, "_short_term_memory", None)),
("entity", getattr(self, "_entity_memory", None)),
("external", getattr(self, "_external_memory", None)),
("long term", getattr(self, "_long_term_memory", None)),
("task output", getattr(self, "_task_output_handler", None)),
("knowledge", getattr(self, "knowledge", None)),
]
memory_systems = self._get_memory_systems()
for name, system in memory_systems:
if system is not None:
for memory_type, config in memory_systems.items():
if (system := config.get("system")) is not None:
name = config.get("name")
try:
system.reset()
reset_fn: Callable = cast(Callable, config.get("reset"))
reset_fn(system)
self._logger.log(
"info",
f"[Crew ({self.name if self.name else self.id})] {name} memory has been reset",
@@ -1421,24 +1417,17 @@ class Crew(FlowTrackable, BaseModel):
Raises:
RuntimeError: If the specified memory system fails to reset
"""
reset_functions = {
"long": (getattr(self, "_long_term_memory", None), "long term"),
"short": (getattr(self, "_short_term_memory", None), "short term"),
"entity": (getattr(self, "_entity_memory", None), "entity"),
"knowledge": (getattr(self, "knowledge", None), "knowledge"),
"kickoff_outputs": (
getattr(self, "_task_output_handler", None),
"task output",
),
"external": (getattr(self, "_external_memory", None), "external"),
}
memory_systems = self._get_memory_systems()
config = memory_systems[memory_type]
system = config.get("system")
name = config.get("name")
memory_system, name = reset_functions[memory_type]
if memory_system is None:
if system is None:
raise RuntimeError(f"{name} memory system is not initialized")
try:
memory_system.reset()
reset_fn: Callable = cast(Callable, config.get("reset"))
reset_fn(system)
self._logger.log(
"info",
f"[Crew ({self.name if self.name else self.id})] {name} memory has been reset",
@@ -1447,3 +1436,73 @@ class Crew(FlowTrackable, BaseModel):
raise RuntimeError(
f"[Crew ({self.name if self.name else self.id})] Failed to reset {name} memory: {str(e)}"
) from e
def _get_memory_systems(self):
"""Get all available memory systems with their configuration.
Returns:
Dict containing all memory systems with their reset functions and display names.
"""
def default_reset(memory):
return memory.reset()
def knowledge_reset(memory):
return self.reset_knowledge(memory)
# Get knowledge for agents
agent_knowledges = [
getattr(agent, "knowledge", None)
for agent in self.agents
if getattr(agent, "knowledge", None) is not None
]
# Get knowledge for crew and agents
crew_knowledge = getattr(self, "knowledge", None)
crew_and_agent_knowledges = (
[crew_knowledge] if crew_knowledge is not None else []
) + agent_knowledges
return {
"short": {
"system": getattr(self, "_short_term_memory", None),
"reset": default_reset,
"name": "Short Term",
},
"entity": {
"system": getattr(self, "_entity_memory", None),
"reset": default_reset,
"name": "Entity",
},
"external": {
"system": getattr(self, "_external_memory", None),
"reset": default_reset,
"name": "External",
},
"long": {
"system": getattr(self, "_long_term_memory", None),
"reset": default_reset,
"name": "Long Term",
},
"kickoff_outputs": {
"system": getattr(self, "_task_output_handler", None),
"reset": default_reset,
"name": "Task Output",
},
"knowledge": {
"system": crew_and_agent_knowledges
if crew_and_agent_knowledges
else None,
"reset": knowledge_reset,
"name": "Crew Knowledge and Agent Knowledge",
},
"agent_knowledge": {
"system": agent_knowledges if agent_knowledges else None,
"reset": knowledge_reset,
"name": "Agent Knowledge",
},
}
def reset_knowledge(self, knowledges: List[Knowledge]) -> None:
"""Reset crew and agent knowledge storage."""
for ks in knowledges:
ks.reset()

View File

@@ -2,7 +2,6 @@ import datetime
import inspect
import json
import logging
import re
import threading
import uuid
from concurrent.futures import Future
@@ -41,6 +40,7 @@ from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.tools.base_tool import BaseTool
from crewai.utilities.config import process_config
from crewai.utilities.constants import NOT_SPECIFIED
from crewai.utilities.converter import Converter, convert_to_model
from crewai.utilities.events import (
TaskCompletedEvent,
@@ -97,7 +97,7 @@ class Task(BaseModel):
)
context: Optional[List["Task"]] = Field(
description="Other tasks that will have their output used as context for this task.",
default=None,
default=NOT_SPECIFIED,
)
async_execution: Optional[bool] = Field(
description="Whether the task should be executed asynchronously or not.",
@@ -135,6 +135,10 @@ class Task(BaseModel):
description="Whether the task should have a human review the final answer of the agent",
default=False,
)
markdown: Optional[bool] = Field(
description="Whether the task should instruct the agent to return the final answer formatted in Markdown",
default=False,
)
converter_cls: Optional[Type[Converter]] = Field(
description="A converter class used to export structured output",
default=None,
@@ -522,10 +526,14 @@ class Task(BaseModel):
return guardrail_result
def prompt(self) -> str:
"""Prompt the task.
"""Generates the task prompt with optional markdown formatting.
When the markdown attribute is True, instructions for formatting the
response in Markdown syntax will be added to the prompt.
Returns:
Prompt of the task.
str: The formatted prompt string containing the task description,
expected output, and optional markdown formatting instructions.
"""
tasks_slices = [self.description]
@@ -533,6 +541,17 @@ class Task(BaseModel):
expected_output=self.expected_output
)
tasks_slices = [self.description, output]
if self.markdown:
markdown_instruction = """Your final answer MUST be formatted in Markdown syntax.
Follow these guidelines:
- Use # for headers
- Use ** for bold text
- Use * for italic text
- Use - or * for bullet points
- Use `code` for inline code
- Use ```language for code blocks"""
tasks_slices.append(markdown_instruction)
return "\n".join(tasks_slices)
def interpolate_inputs_and_add_conversation_history(
@@ -643,7 +662,7 @@ class Task(BaseModel):
cloned_context = (
[task_mapping[context_task.key] for context_task in self.context]
if self.context
if isinstance(self.context, list)
else None
)

View File

@@ -0,0 +1,96 @@
"""Hallucination Guardrail Placeholder for CrewAI.
This is a no-op version of the HallucinationGuardrail for the open-source repository.
Classes:
HallucinationGuardrail: Placeholder guardrail that validates task outputs.
"""
from typing import Any, Optional, Tuple
from crewai.llm import LLM
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.logger import Logger
class HallucinationGuardrail:
"""Placeholder for the HallucinationGuardrail feature.
Attributes:
context: The reference context that outputs would be checked against.
llm: The language model that would be used for evaluation.
threshold: Optional minimum faithfulness score that would be required to pass.
tool_response: Optional tool response information that would be used in evaluation.
Examples:
>>> # Basic usage with default verdict logic
>>> guardrail = HallucinationGuardrail(
... context="AI helps with various tasks including analysis and generation.",
... llm=agent.llm
... )
>>> # With custom threshold for stricter validation
>>> strict_guardrail = HallucinationGuardrail(
... context="Quantum computing uses qubits in superposition.",
... llm=agent.llm,
... threshold=8.0 # Would require score >= 8 to pass in enterprise version
... )
>>> # With tool response for additional context
>>> guardrail_with_tools = HallucinationGuardrail(
... context="The current weather data",
... llm=agent.llm,
... tool_response="Weather API returned: Temperature 22°C, Humidity 65%"
... )
"""
def __init__(
self,
context: str,
llm: LLM,
threshold: Optional[float] = None,
tool_response: str = "",
):
"""Initialize the HallucinationGuardrail placeholder.
Args:
context: The reference context that outputs would be checked against.
llm: The language model that would be used for evaluation.
threshold: Optional minimum faithfulness score that would be required to pass.
tool_response: Optional tool response information that would be used in evaluation.
"""
self.context = context
self.llm: LLM = llm
self.threshold = threshold
self.tool_response = tool_response
self._logger = Logger(verbose=True)
self._logger.log(
"warning",
"""Hallucination detection is a no-op in open source, use it for free at https://app.crewai.com\n""",
color="red",
)
@property
def description(self) -> str:
"""Generate a description of this guardrail for event logging."""
return "HallucinationGuardrail (no-op)"
def __call__(self, task_output: TaskOutput) -> Tuple[bool, Any]:
"""Validate a task output against hallucination criteria.
In the open source, this method always returns that the output is valid.
Args:
task_output: The output to be validated.
Returns:
A tuple containing:
- True
- The raw task output
"""
self._logger.log(
"warning",
"Premium hallucination detection skipped (use for free at https://app.crewai.com)\n",
color="red",
)
return True, task_output.raw

View File

@@ -9,6 +9,19 @@ import warnings
from contextlib import contextmanager
from importlib.metadata import version
from typing import TYPE_CHECKING, Any, Optional
import threading
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import (
OTLPSpanExporter,
)
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
BatchSpanProcessor,
SpanExportResult,
)
from opentelemetry.trace import Span, Status, StatusCode
from crewai.telemetry.constants import (
CREWAI_TELEMETRY_BASE_URL,
@@ -25,18 +38,6 @@ def suppress_warnings():
yield
from opentelemetry import trace # noqa: E402
from opentelemetry.exporter.otlp.proto.http.trace_exporter import (
OTLPSpanExporter, # noqa: E402
)
from opentelemetry.sdk.resources import SERVICE_NAME, Resource # noqa: E402
from opentelemetry.sdk.trace import TracerProvider # noqa: E402
from opentelemetry.sdk.trace.export import ( # noqa: E402
BatchSpanProcessor,
SpanExportResult,
)
from opentelemetry.trace import Span, Status, StatusCode # noqa: E402
if TYPE_CHECKING:
from crewai.crew import Crew
from crewai.task import Task
@@ -64,7 +65,17 @@ class Telemetry:
attribute in the Crew class.
"""
def __init__(self):
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super(Telemetry, cls).__new__(cls)
return cls._instance
def __init__(self) -> None:
self.ready: bool = False
self.trace_set: bool = False
@@ -232,7 +243,7 @@ class Telemetry:
"agent_key": task.agent.key if task.agent else None,
"context": (
[task.description for task in task.context]
if task.context
if isinstance(task.context, list)
else None
),
"tools_names": [
@@ -748,7 +759,7 @@ class Telemetry:
"agent_key": task.agent.key if task.agent else None,
"context": (
[task.description for task in task.context]
if task.context
if isinstance(task.context, list)
else None
),
"tools_names": [

View File

@@ -51,5 +51,11 @@
"description": "See image to understand its content, you can optionally ask a question about the image",
"default_action": "Please provide a detailed description of this image, including all visual elements, context, and any notable details you can observe."
}
},
"reasoning": {
"initial_plan": "You are {role}, a professional with the following background: {backstory}\n\nYour primary goal is: {goal}\n\nAs {role}, you are creating a strategic plan for a task that requires your expertise and unique perspective.",
"refine_plan": "You are {role}, a professional with the following background: {backstory}\n\nYour primary goal is: {goal}\n\nAs {role}, you are refining a strategic plan for a task that requires your expertise and unique perspective.",
"create_plan_prompt": "You are {role} with this background: {backstory}\n\nYour primary goal is: {goal}\n\nYou have been assigned the following task:\n{description}\n\nExpected output:\n{expected_output}\n\nAvailable tools: {tools}\n\nBefore executing this task, create a detailed plan that leverages your expertise as {role} and outlines:\n1. Your understanding of the task from your professional perspective\n2. The key steps you'll take to complete it, drawing on your background and skills\n3. How you'll approach any challenges that might arise, considering your expertise\n4. How you'll strategically use the available tools based on your experience\n5. The expected outcome and how it aligns with your goal\n\nAfter creating your plan, assess whether you feel ready to execute the task.\nConclude with one of these statements:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan because [specific reason].\"",
"refine_plan_prompt": "You are {role} with this background: {backstory}\n\nYour primary goal is: {goal}\n\nYou created the following plan for this task:\n{current_plan}\n\nHowever, you indicated that you're not ready to execute the task yet.\n\nPlease refine your plan further, drawing on your expertise as {role} to address any gaps or uncertainties.\n\nAfter refining your plan, assess whether you feel ready to execute the task.\nConclude with one of these statements:\n- \"READY: I am ready to execute the task.\"\n- \"NOT READY: I need to refine my plan further because [specific reason].\""
}
}

View File

@@ -441,6 +441,11 @@ def load_agent_from_repository(from_repository: str) -> Dict[str, Any]:
client = PlusAPI(api_key=get_auth_token())
response = client.get_agent(from_repository)
if response.status_code == 404:
raise AgentRepositoryError(
f"Agent {from_repository} does not exist, make sure the name is correct or the agent is available on your organization"
)
if response.status_code != 200:
raise AgentRepositoryError(
f"Agent {from_repository} could not be loaded: {response.text}"
@@ -450,14 +455,14 @@ def load_agent_from_repository(from_repository: str) -> Dict[str, Any]:
for key, value in agent.items():
if key == "tools":
attributes[key] = []
for tool_name in value:
for tool in value:
try:
module = importlib.import_module("crewai_tools")
tool_class = getattr(module, tool_name)
tool_class = getattr(module, tool["name"])
attributes[key].append(tool_class())
except Exception as e:
raise AgentRepositoryError(
f"Tool {tool_name} could not be loaded: {e}"
f"Tool {tool['name']} could not be loaded: {e}"
) from e
else:
attributes[key] = value

View File

@@ -5,3 +5,14 @@ KNOWLEDGE_DIRECTORY = "knowledge"
MAX_LLM_RETRY = 3
MAX_FILE_NAME_LENGTH = 255
EMITTER_COLOR = "bold_blue"
class _NotSpecified:
def __repr__(self):
return "NOT_SPECIFIED"
# Sentinel value used to detect when no value has been explicitly provided.
# Unlike `None`, which might be a valid value from the user, `NOT_SPECIFIED` allows
# us to distinguish between "not passed at all" and "explicitly passed None" or "[]".
NOT_SPECIFIED = _NotSpecified()

View File

@@ -9,7 +9,8 @@ from crewai.agent import Agent
from crewai.llm import BaseLLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.crew_events import CrewTestResultEvent
class TaskEvaluationPydanticOutput(BaseModel):
@@ -36,7 +37,6 @@ class CrewEvaluator:
def __init__(self, crew, eval_llm: InstanceOf[BaseLLM]):
self.crew = crew
self.llm = eval_llm
self._telemetry = Telemetry()
self._setup_for_evaluating()
def _setup_for_evaluating(self) -> None:
@@ -178,11 +178,15 @@ class CrewEvaluator:
evaluation_result = evaluation_task.execute_sync()
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
self._test_result_span = self._telemetry.individual_test_result_span(
crewai_event_bus.emit(
self.crew,
evaluation_result.pydantic.quality,
current_task.execution_duration,
self.llm.model,
CrewTestResultEvent(
quality=evaluation_result.pydantic.quality,
execution_duration=current_task.execution_duration,
model=self.llm.model,
crew_name=self.crew.name,
crew=self.crew,
),
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(

View File

@@ -100,3 +100,12 @@ class CrewTestFailedEvent(CrewBaseEvent):
error: str
type: str = "crew_test_failed"
class CrewTestResultEvent(CrewBaseEvent):
"""Event emitted when a crew test result is available"""
quality: float
execution_duration: float
model: str
type: str = "crew_test_result"

View File

@@ -37,6 +37,7 @@ from .crew_events import (
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestResultEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
@@ -56,6 +57,11 @@ from .tool_usage_events import (
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
)
from .reasoning_events import (
AgentReasoningStartedEvent,
AgentReasoningCompletedEvent,
AgentReasoningFailedEvent,
)
class EventListener(BaseEventListener):
@@ -129,6 +135,15 @@ class EventListener(BaseEventListener):
def on_crew_train_failed(source, event: CrewTrainFailedEvent):
self.formatter.handle_crew_train_failed(event.crew_name or "Crew")
@crewai_event_bus.on(CrewTestResultEvent)
def on_crew_test_result(source, event: CrewTestResultEvent):
self._telemetry.individual_test_result_span(
source.crew,
event.quality,
int(event.execution_duration),
event.model,
)
# ----------- TASK EVENTS -----------
@crewai_event_bus.on(TaskStartedEvent)
@@ -406,5 +421,30 @@ class EventListener(BaseEventListener):
self.formatter.current_crew_tree,
)
# ----------- REASONING EVENTS -----------
@crewai_event_bus.on(AgentReasoningStartedEvent)
def on_agent_reasoning_started(source, event: AgentReasoningStartedEvent):
self.formatter.handle_reasoning_started(
self.formatter.current_agent_branch,
event.attempt,
self.formatter.current_crew_tree,
)
@crewai_event_bus.on(AgentReasoningCompletedEvent)
def on_agent_reasoning_completed(source, event: AgentReasoningCompletedEvent):
self.formatter.handle_reasoning_completed(
event.plan,
event.ready,
self.formatter.current_crew_tree,
)
@crewai_event_bus.on(AgentReasoningFailedEvent)
def on_agent_reasoning_failed(source, event: AgentReasoningFailedEvent):
self.formatter.handle_reasoning_failed(
event.error,
self.formatter.current_crew_tree,
)
event_listener = EventListener()

View File

@@ -43,6 +43,19 @@ from .tool_usage_events import (
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
)
from .reasoning_events import (
AgentReasoningStartedEvent,
AgentReasoningCompletedEvent,
AgentReasoningFailedEvent,
)
from .knowledge_events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
KnowledgeQueryStartedEvent,
KnowledgeQueryCompletedEvent,
KnowledgeQueryFailedEvent,
KnowledgeSearchQueryFailedEvent,
)
EventTypes = Union[
CrewKickoffStartedEvent,
@@ -74,4 +87,13 @@ EventTypes = Union[
LLMStreamChunkEvent,
LLMGuardrailStartedEvent,
LLMGuardrailCompletedEvent,
AgentReasoningStartedEvent,
AgentReasoningCompletedEvent,
AgentReasoningFailedEvent,
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
KnowledgeQueryStartedEvent,
KnowledgeQueryCompletedEvent,
KnowledgeQueryFailedEvent,
KnowledgeSearchQueryFailedEvent,
]

View File

@@ -19,10 +19,13 @@ class LLMGuardrailStartedEvent(BaseEvent):
from inspect import getsource
from crewai.tasks.llm_guardrail import LLMGuardrail
from crewai.tasks.hallucination_guardrail import HallucinationGuardrail
super().__init__(**data)
if isinstance(self.guardrail, LLMGuardrail):
if isinstance(self.guardrail, LLMGuardrail) or isinstance(
self.guardrail, HallucinationGuardrail
):
self.guardrail = self.guardrail.description.strip()
elif isinstance(self.guardrail, Callable):
self.guardrail = getsource(self.guardrail).strip()

View File

@@ -0,0 +1,31 @@
from crewai.utilities.events.base_events import BaseEvent
class AgentReasoningStartedEvent(BaseEvent):
"""Event emitted when an agent starts reasoning about a task."""
type: str = "agent_reasoning_started"
agent_role: str
task_id: str
attempt: int = 1 # The current reasoning/refinement attempt
class AgentReasoningCompletedEvent(BaseEvent):
"""Event emitted when an agent finishes its reasoning process."""
type: str = "agent_reasoning_completed"
agent_role: str
task_id: str
plan: str
ready: bool
attempt: int = 1
class AgentReasoningFailedEvent(BaseEvent):
"""Event emitted when the reasoning process fails."""
type: str = "agent_reasoning_failed"
agent_role: str
task_id: str
error: str
attempt: int = 1

View File

@@ -4,6 +4,7 @@ from rich.console import Console
from rich.panel import Panel
from rich.text import Text
from rich.tree import Tree
from rich.live import Live
class ConsoleFormatter:
@@ -15,10 +16,17 @@ class ConsoleFormatter:
current_method_branch: Optional[Tree] = None
current_lite_agent_branch: Optional[Tree] = None
tool_usage_counts: Dict[str, int] = {}
current_reasoning_branch: Optional[Tree] = None # Track reasoning status
def __init__(self, verbose: bool = False):
self.console = Console(width=None)
self.verbose = verbose
# Live instance to dynamically update a Tree renderable (e.g. the Crew tree)
# When multiple Tree objects are printed sequentially we reuse this Live
# instance so the previous render is replaced instead of writing a new one.
# Once any non-Tree renderable is printed we stop the Live session so the
# final Tree persists on the terminal.
self._live: Optional[Live] = None
def create_panel(self, content: Text, title: str, style: str = "blue") -> Panel:
"""Create a standardized panel with consistent styling."""
@@ -59,7 +67,7 @@ class ConsoleFormatter:
label.append(f"{prefix} ", style=f"{style} bold")
label.append(name, style=style)
if status:
label.append("\n Status: ", style="white")
label.append("\nStatus: ", style="white")
label.append(status, style=f"{style} bold")
tree.label = label
@@ -68,7 +76,46 @@ class ConsoleFormatter:
return parent.add(Text(text, style=style))
def print(self, *args, **kwargs) -> None:
"""Print to console with consistent formatting if verbose is enabled."""
"""Custom print that replaces consecutive Tree renders.
* If the argument is a single ``Tree`` instance, we either start a
``Live`` session (first tree) or update the existing one (subsequent
trees). This results in the tree being rendered in-place instead of
being appended repeatedly to the log.
* A blank call (no positional arguments) is ignored while a Live
session is active so it does not prematurely terminate the tree
rendering.
* Any other renderable will terminate the Live session (if one is
active) so the last tree stays on screen and the new content is
printed normally.
"""
# Case 1: updating / starting live Tree rendering
if len(args) == 1 and isinstance(args[0], Tree):
tree = args[0]
if not self._live:
# Start a new Live session for the first tree
self._live = Live(tree, console=self.console, refresh_per_second=4)
self._live.start()
else:
# Update existing Live session
self._live.update(tree, refresh=True)
return # Nothing else to do
# Case 2: blank line while a live session is running ignore so we
# don't break the in-place rendering behaviour
if len(args) == 0 and self._live:
return
# Case 3: printing something other than a Tree → terminate live session
if self._live:
self._live.stop()
self._live = None
# Finally, pass through to the regular Console.print implementation
self.console.print(*args, **kwargs)
def print_panel(
@@ -156,7 +203,7 @@ class ConsoleFormatter:
task_content = Text()
task_content.append(f"📋 Task: {task_id}", style="yellow bold")
task_content.append("\n Status: ", style="white")
task_content.append("\nStatus: ", style="white")
task_content.append("Executing Task...", style="yellow dim")
task_branch = None
@@ -196,11 +243,17 @@ class ConsoleFormatter:
# Update tree label
for branch in crew_tree.children:
if str(task_id) in str(branch.label):
# Build label without introducing stray blank lines
task_content = Text()
# First line: Task ID
task_content.append(f"📋 Task: {task_id}", style=f"{style} bold")
task_content.append("\n Assigned to: ", style="white")
# Second line: Assigned to
task_content.append("\nAssigned to: ", style="white")
task_content.append(agent_role, style=style)
task_content.append("\n Status: ", style="white")
# Third line: Status
task_content.append("Status: ", style="white")
task_content.append(status_text, style=f"{style} bold")
branch.label = task_content
self.print(crew_tree)
@@ -219,18 +272,16 @@ class ConsoleFormatter:
if not self.verbose or not task_branch or not crew_tree:
return None
agent_branch = task_branch.add("")
self.update_tree_label(
agent_branch, "🤖 Agent:", agent_role, "green", "In Progress"
)
# Instead of creating a separate Agent node, we treat the task branch
# itself as the logical agent branch so that Reasoning/Tool nodes are
# nested under the task without an extra visual level.
self.print(crew_tree)
self.print()
# Store the task branch as the current_agent_branch for future nesting.
self.current_agent_branch = task_branch
# Set the current_agent_branch attribute directly
self.current_agent_branch = agent_branch
return agent_branch
# No additional tree modification needed; return the task branch so
# caller logic remains unchanged.
return task_branch
def update_agent_status(
self,
@@ -240,19 +291,10 @@ class ConsoleFormatter:
status: str = "completed",
) -> None:
"""Update agent status in the tree."""
if not self.verbose or agent_branch is None or crew_tree is None:
return
self.update_tree_label(
agent_branch,
"🤖 Agent:",
agent_role,
"green",
"✅ Completed" if status == "completed" else "❌ Failed",
)
self.print(crew_tree)
self.print()
# We no longer render a separate agent branch, so this method simply
# updates the stored branch reference (already the task branch) without
# altering the tree. Keeping it a no-op avoids duplicate status lines.
return
def create_flow_tree(self, flow_name: str, flow_id: str) -> Optional[Tree]:
"""Create and initialize a flow tree."""
@@ -265,7 +307,7 @@ class ConsoleFormatter:
flow_label = Text()
flow_label.append("🌊 Flow: ", style="blue bold")
flow_label.append(flow_name, style="blue")
flow_label.append("\n ID: ", style="white")
flow_label.append("\nID: ", style="white")
flow_label.append(flow_id, style="blue")
flow_tree = Tree(flow_label)
@@ -280,7 +322,7 @@ class ConsoleFormatter:
flow_label = Text()
flow_label.append("🌊 Flow: ", style="blue bold")
flow_label.append(flow_name, style="blue")
flow_label.append("\n ID: ", style="white")
flow_label.append("\nID: ", style="white")
flow_label.append(flow_id, style="blue")
flow_tree.label = flow_label
@@ -394,12 +436,22 @@ class ConsoleFormatter:
if not self.verbose:
return None
# Use LiteAgent branch if available, otherwise use regular agent branch
branch_to_use = self.current_lite_agent_branch or agent_branch
tree_to_use = branch_to_use or crew_tree
# Parent for tool usage: LiteAgent > Agent > Task
branch_to_use = (
self.current_lite_agent_branch
or agent_branch
or self.current_task_branch
)
# Render full crew tree when available for consistent live updates
tree_to_use = self.current_crew_tree or crew_tree or branch_to_use
if branch_to_use is None or tree_to_use is None:
return None
# If we don't have a valid branch, default to crew_tree if provided
if crew_tree is not None:
branch_to_use = tree_to_use = crew_tree
else:
return None
# Update tool usage count
self.tool_usage_counts[tool_name] = self.tool_usage_counts.get(tool_name, 0) + 1
@@ -418,10 +470,9 @@ class ConsoleFormatter:
"yellow",
)
# Only print if this is a new tool usage
if tool_branch not in branch_to_use.children:
self.print(tree_to_use)
self.print()
# Print updated tree immediately
self.print(tree_to_use)
self.print()
return tool_branch
@@ -435,8 +486,8 @@ class ConsoleFormatter:
if not self.verbose or tool_branch is None:
return
# Use LiteAgent branch if available, otherwise use crew tree
tree_to_use = self.current_lite_agent_branch or crew_tree
# Decide which tree to render: prefer full crew tree, else parent branch
tree_to_use = self.current_crew_tree or crew_tree or self.current_task_branch
if tree_to_use is None:
return
@@ -467,8 +518,8 @@ class ConsoleFormatter:
if not self.verbose:
return
# Use LiteAgent branch if available, otherwise use crew tree
tree_to_use = self.current_lite_agent_branch or crew_tree
# Decide which tree to render: prefer full crew tree, else parent branch
tree_to_use = self.current_crew_tree or crew_tree or self.current_task_branch
if tool_branch:
self.update_tree_label(
@@ -496,12 +547,22 @@ class ConsoleFormatter:
if not self.verbose:
return None
# Use LiteAgent branch if available, otherwise use regular agent branch
branch_to_use = self.current_lite_agent_branch or agent_branch
tree_to_use = branch_to_use or crew_tree
# Parent for tool usage: LiteAgent > Agent > Task
branch_to_use = (
self.current_lite_agent_branch
or agent_branch
or self.current_task_branch
)
# Render full crew tree when available for consistent live updates
tree_to_use = self.current_crew_tree or crew_tree or branch_to_use
if branch_to_use is None or tree_to_use is None:
return None
# If we don't have a valid branch, default to crew_tree if provided
if crew_tree is not None:
branch_to_use = tree_to_use = crew_tree
else:
return None
# Only add thinking status if we don't have a current tool branch
if self.current_tool_branch is None:
@@ -523,24 +584,33 @@ class ConsoleFormatter:
if not self.verbose or tool_branch is None:
return
# Use LiteAgent branch if available, otherwise use regular agent branch
branch_to_use = self.current_lite_agent_branch or agent_branch
tree_to_use = branch_to_use or crew_tree
if branch_to_use is None or tree_to_use is None:
# Decide which tree to render: prefer full crew tree, else parent branch
tree_to_use = self.current_crew_tree or crew_tree or self.current_task_branch
if tree_to_use is None:
return
# Remove the thinking status node when complete, but only if it exists
# Remove the thinking status node when complete
if "Thinking" in str(tool_branch.label):
try:
# Check if the node is actually in the children list
if tool_branch in branch_to_use.children:
branch_to_use.children.remove(tool_branch)
self.print(tree_to_use)
self.print()
except Exception:
# If any error occurs during removal, just continue without removing
pass
parents = [
self.current_lite_agent_branch,
self.current_agent_branch,
self.current_task_branch,
tree_to_use,
]
removed = False
for parent in parents:
if isinstance(parent, Tree) and tool_branch in parent.children:
parent.children.remove(tool_branch)
removed = True
break
# Clear pointer if we just removed the current_tool_branch
if self.current_tool_branch is tool_branch:
self.current_tool_branch = None
if removed:
self.print(tree_to_use)
self.print()
def handle_llm_call_failed(
self, tool_branch: Optional[Tree], error: str, crew_tree: Optional[Tree]
@@ -549,8 +619,8 @@ class ConsoleFormatter:
if not self.verbose:
return
# Use LiteAgent branch if available, otherwise use crew tree
tree_to_use = self.current_lite_agent_branch or crew_tree
# Decide which tree to render: prefer full crew tree, else parent branch
tree_to_use = self.current_crew_tree or crew_tree or self.current_task_branch
# Update tool branch if it exists
if tool_branch:
@@ -592,7 +662,7 @@ class ConsoleFormatter:
test_label = Text()
test_label.append("🧪 Test: ", style="blue bold")
test_label.append(crew_name or "Crew", style="blue")
test_label.append("\n Status: ", style="white")
test_label.append("\nStatus: ", style="white")
test_label.append("In Progress", style="yellow")
test_tree = Tree(test_label)
@@ -614,7 +684,7 @@ class ConsoleFormatter:
test_label = Text()
test_label.append("✅ Test: ", style="green bold")
test_label.append(crew_name or "Crew", style="green")
test_label.append("\n Status: ", style="white")
test_label.append("\nStatus: ", style="white")
test_label.append("Completed", style="green bold")
flow_tree.label = test_label
@@ -703,7 +773,7 @@ class ConsoleFormatter:
lite_agent_label = Text()
lite_agent_label.append("🤖 LiteAgent: ", style="cyan bold")
lite_agent_label.append(lite_agent_role, style="cyan")
lite_agent_label.append("\n Status: ", style="white")
lite_agent_label.append("\nStatus: ", style="white")
lite_agent_label.append("In Progress", style="yellow")
lite_agent_tree = Tree(lite_agent_label)
@@ -742,7 +812,7 @@ class ConsoleFormatter:
lite_agent_label = Text()
lite_agent_label.append(f"{prefix} ", style=f"{style} bold")
lite_agent_label.append(lite_agent_role, style=style)
lite_agent_label.append("\n Status: ", style="white")
lite_agent_label.append("Status: ", style="white")
lite_agent_label.append(status_text, style=f"{style} bold")
lite_agent_branch.label = lite_agent_label
@@ -797,7 +867,7 @@ class ConsoleFormatter:
tree_to_use = branch_to_use or crew_tree
if branch_to_use is None or tree_to_use is None:
# If we don't have a valid branch, use crew_tree as the branch if available
# If we don't have a valid branch, default to crew_tree if provided
if crew_tree is not None:
branch_to_use = tree_to_use = crew_tree
else:
@@ -982,3 +1052,124 @@ class ConsoleFormatter:
"Knowledge Search Failed", "Search Error", "red", Error=error
)
self.print_panel(error_content, "Search Error", "red")
# ----------- AGENT REASONING EVENTS -----------
def handle_reasoning_started(
self,
agent_branch: Optional[Tree],
attempt: int,
crew_tree: Optional[Tree],
) -> Optional[Tree]:
"""Handle agent reasoning started (or refinement) event."""
if not self.verbose:
return None
# Prefer LiteAgent > Agent > Task branch as the parent for reasoning
branch_to_use = (
self.current_lite_agent_branch
or agent_branch
or self.current_task_branch
)
# We always want to render the full crew tree when possible so the
# Live view updates coherently. Fallbacks: crew tree → branch itself.
tree_to_use = self.current_crew_tree or crew_tree or branch_to_use
if branch_to_use is None:
# Nothing to attach to, abort
return None
# Reuse existing reasoning branch if present
reasoning_branch = self.current_reasoning_branch
if reasoning_branch is None:
reasoning_branch = branch_to_use.add("")
self.current_reasoning_branch = reasoning_branch
# Build label text depending on attempt
status_text = (
f"Reasoning (Attempt {attempt})" if attempt > 1 else "Reasoning..."
)
self.update_tree_label(reasoning_branch, "🧠", status_text, "blue")
self.print(tree_to_use)
self.print()
return reasoning_branch
def handle_reasoning_completed(
self,
plan: str,
ready: bool,
crew_tree: Optional[Tree],
) -> None:
"""Handle agent reasoning completed event."""
if not self.verbose:
return
reasoning_branch = self.current_reasoning_branch
tree_to_use = (
self.current_crew_tree
or self.current_lite_agent_branch
or self.current_task_branch
or crew_tree
)
style = "green" if ready else "yellow"
status_text = "Reasoning Completed" if ready else "Reasoning Completed (Not Ready)"
if reasoning_branch is not None:
self.update_tree_label(reasoning_branch, "", status_text, style)
if tree_to_use is not None:
self.print(tree_to_use)
# Show plan in a panel (trim very long plans)
if plan:
plan_panel = Panel(
Text(plan, style="white"),
title="🧠 Reasoning Plan",
border_style=style,
padding=(1, 2),
)
self.print(plan_panel)
self.print()
# Clear stored branch after completion
self.current_reasoning_branch = None
def handle_reasoning_failed(
self,
error: str,
crew_tree: Optional[Tree],
) -> None:
"""Handle agent reasoning failure event."""
if not self.verbose:
return
reasoning_branch = self.current_reasoning_branch
tree_to_use = (
self.current_crew_tree
or self.current_lite_agent_branch
or self.current_task_branch
or crew_tree
)
if reasoning_branch is not None:
self.update_tree_label(reasoning_branch, "", "Reasoning Failed", "red")
if tree_to_use is not None:
self.print(tree_to_use)
# Error panel
error_content = self.create_status_content(
"Reasoning Failed",
"Error",
"red",
Error=error,
)
self.print_panel(error_content, "Reasoning Error", "red")
# Clear stored branch after failure
self.current_reasoning_branch = None

View File

@@ -1,6 +1,6 @@
import re
from typing import TYPE_CHECKING, List
if TYPE_CHECKING:
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
@@ -17,6 +17,11 @@ def aggregate_raw_outputs_from_task_outputs(task_outputs: List["TaskOutput"]) ->
def aggregate_raw_outputs_from_tasks(tasks: List["Task"]) -> str:
"""Generate string context from the tasks."""
task_outputs = [task.output for task in tasks if task.output is not None]
task_outputs = (
[task.output for task in tasks if task.output is not None]
if isinstance(tasks, list)
else []
)
return aggregate_raw_outputs_from_task_outputs(task_outputs)

View File

@@ -0,0 +1,387 @@
import logging
import json
from typing import Tuple, cast
from pydantic import BaseModel, Field
from crewai.agent import Agent
from crewai.task import Task
from crewai.utilities import I18N
from crewai.llm import LLM
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.reasoning_events import (
AgentReasoningStartedEvent,
AgentReasoningCompletedEvent,
AgentReasoningFailedEvent,
)
class ReasoningPlan(BaseModel):
"""Model representing a reasoning plan for a task."""
plan: str = Field(description="The detailed reasoning plan for the task.")
ready: bool = Field(description="Whether the agent is ready to execute the task.")
class AgentReasoningOutput(BaseModel):
"""Model representing the output of the agent reasoning process."""
plan: ReasoningPlan = Field(description="The reasoning plan for the task.")
class ReasoningFunction(BaseModel):
"""Model for function calling with reasoning."""
plan: str = Field(description="The detailed reasoning plan for the task.")
ready: bool = Field(description="Whether the agent is ready to execute the task.")
class AgentReasoning:
"""
Handles the agent reasoning process, enabling an agent to reflect and create a plan
before executing a task.
"""
def __init__(self, task: Task, agent: Agent):
if not task or not agent:
raise ValueError("Both task and agent must be provided.")
self.task = task
self.agent = agent
self.llm = cast(LLM, agent.llm)
self.logger = logging.getLogger(__name__)
self.i18n = I18N()
def handle_agent_reasoning(self) -> AgentReasoningOutput:
"""
Public method for the reasoning process that creates and refines a plan
for the task until the agent is ready to execute it.
Returns:
AgentReasoningOutput: The output of the agent reasoning process.
"""
# Emit a reasoning started event (attempt 1)
try:
crewai_event_bus.emit(
self.agent,
AgentReasoningStartedEvent(
agent_role=self.agent.role,
task_id=str(self.task.id),
attempt=1,
),
)
except Exception:
# Ignore event bus errors to avoid breaking execution
pass
try:
output = self.__handle_agent_reasoning()
# Emit reasoning completed event
try:
crewai_event_bus.emit(
self.agent,
AgentReasoningCompletedEvent(
agent_role=self.agent.role,
task_id=str(self.task.id),
plan=output.plan.plan,
ready=output.plan.ready,
attempt=1,
),
)
except Exception:
pass
return output
except Exception as e:
# Emit reasoning failed event
try:
crewai_event_bus.emit(
self.agent,
AgentReasoningFailedEvent(
agent_role=self.agent.role,
task_id=str(self.task.id),
error=str(e),
attempt=1,
),
)
except Exception:
pass
raise
def __handle_agent_reasoning(self) -> AgentReasoningOutput:
"""
Private method that handles the agent reasoning process.
Returns:
AgentReasoningOutput: The output of the agent reasoning process.
"""
plan, ready = self.__create_initial_plan()
plan, ready = self.__refine_plan_if_needed(plan, ready)
reasoning_plan = ReasoningPlan(plan=plan, ready=ready)
return AgentReasoningOutput(plan=reasoning_plan)
def __create_initial_plan(self) -> Tuple[str, bool]:
"""
Creates the initial reasoning plan for the task.
Returns:
Tuple[str, bool]: The initial plan and whether the agent is ready to execute the task.
"""
reasoning_prompt = self.__create_reasoning_prompt()
if self.llm.supports_function_calling():
plan, ready = self.__call_with_function(reasoning_prompt, "initial_plan")
return plan, ready
else:
system_prompt = self.i18n.retrieve("reasoning", "initial_plan").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory()
)
response = self.llm.call(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": reasoning_prompt}
]
)
return self.__parse_reasoning_response(str(response))
def __refine_plan_if_needed(self, plan: str, ready: bool) -> Tuple[str, bool]:
"""
Refines the reasoning plan if the agent is not ready to execute the task.
Args:
plan: The current reasoning plan.
ready: Whether the agent is ready to execute the task.
Returns:
Tuple[str, bool]: The refined plan and whether the agent is ready to execute the task.
"""
attempt = 1
max_attempts = self.agent.max_reasoning_attempts
while not ready and (max_attempts is None or attempt < max_attempts):
# Emit event for each refinement attempt
try:
crewai_event_bus.emit(
self.agent,
AgentReasoningStartedEvent(
agent_role=self.agent.role,
task_id=str(self.task.id),
attempt=attempt + 1,
),
)
except Exception:
pass
refine_prompt = self.__create_refine_prompt(plan)
if self.llm.supports_function_calling():
plan, ready = self.__call_with_function(refine_prompt, "refine_plan")
else:
system_prompt = self.i18n.retrieve("reasoning", "refine_plan").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory()
)
response = self.llm.call(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": refine_prompt}
]
)
plan, ready = self.__parse_reasoning_response(str(response))
attempt += 1
if max_attempts is not None and attempt >= max_attempts:
self.logger.warning(
f"Agent reasoning reached maximum attempts ({max_attempts}) without being ready. Proceeding with current plan."
)
break
return plan, ready
def __call_with_function(self, prompt: str, prompt_type: str) -> Tuple[str, bool]:
"""
Calls the LLM with function calling to get a reasoning plan.
Args:
prompt: The prompt to send to the LLM.
prompt_type: The type of prompt (initial_plan or refine_plan).
Returns:
Tuple[str, bool]: A tuple containing the plan and whether the agent is ready.
"""
self.logger.debug(f"Using function calling for {prompt_type} reasoning")
function_schema = {
"type": "function",
"function": {
"name": "create_reasoning_plan",
"description": "Create or refine a reasoning plan for a task",
"parameters": {
"type": "object",
"properties": {
"plan": {
"type": "string",
"description": "The detailed reasoning plan for the task."
},
"ready": {
"type": "boolean",
"description": "Whether the agent is ready to execute the task."
}
},
"required": ["plan", "ready"]
}
}
}
try:
system_prompt = self.i18n.retrieve("reasoning", prompt_type).format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory()
)
# Prepare a simple callable that just returns the tool arguments as JSON
def _create_reasoning_plan(plan: str, ready: bool): # noqa: N802
"""Return the reasoning plan result in JSON string form."""
return json.dumps({"plan": plan, "ready": ready})
response = self.llm.call(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
tools=[function_schema],
available_functions={"create_reasoning_plan": _create_reasoning_plan},
)
self.logger.debug(f"Function calling response: {response[:100]}...")
try:
result = json.loads(response)
if "plan" in result and "ready" in result:
return result["plan"], result["ready"]
except (json.JSONDecodeError, KeyError):
pass
response_str = str(response)
return response_str, "READY: I am ready to execute the task." in response_str
except Exception as e:
self.logger.warning(f"Error during function calling: {str(e)}. Falling back to text parsing.")
try:
system_prompt = self.i18n.retrieve("reasoning", prompt_type).format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory()
)
fallback_response = self.llm.call(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
)
fallback_str = str(fallback_response)
return fallback_str, "READY: I am ready to execute the task." in fallback_str
except Exception as inner_e:
self.logger.error(f"Error during fallback text parsing: {str(inner_e)}")
return "Failed to generate a plan due to an error.", True # Default to ready to avoid getting stuck
def __get_agent_backstory(self) -> str:
"""
Safely gets the agent's backstory, providing a default if not available.
Returns:
str: The agent's backstory or a default value.
"""
return getattr(self.agent, "backstory", "No backstory provided")
def __create_reasoning_prompt(self) -> str:
"""
Creates a prompt for the agent to reason about the task.
Returns:
str: The reasoning prompt.
"""
available_tools = self.__format_available_tools()
return self.i18n.retrieve("reasoning", "create_plan_prompt").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory(),
description=self.task.description,
expected_output=self.task.expected_output,
tools=available_tools
)
def __format_available_tools(self) -> str:
"""
Formats the available tools for inclusion in the prompt.
Returns:
str: Comma-separated list of tool names.
"""
try:
return ', '.join([tool.name for tool in (self.task.tools or [])])
except (AttributeError, TypeError):
return "No tools available"
def __create_refine_prompt(self, current_plan: str) -> str:
"""
Creates a prompt for the agent to refine its reasoning plan.
Args:
current_plan: The current reasoning plan.
Returns:
str: The refine prompt.
"""
return self.i18n.retrieve("reasoning", "refine_plan_prompt").format(
role=self.agent.role,
goal=self.agent.goal,
backstory=self.__get_agent_backstory(),
current_plan=current_plan
)
def __parse_reasoning_response(self, response: str) -> Tuple[str, bool]:
"""
Parses the reasoning response to extract the plan and whether
the agent is ready to execute the task.
Args:
response: The LLM response.
Returns:
Tuple[str, bool]: The plan and whether the agent is ready to execute the task.
"""
if not response:
return "No plan was generated.", False
plan = response
ready = False
if "READY: I am ready to execute the task." in response:
ready = True
return plan, ready
def _handle_agent_reasoning(self) -> AgentReasoningOutput:
"""
Deprecated method for backward compatibility.
Use handle_agent_reasoning() instead.
Returns:
AgentReasoningOutput: The output of the agent reasoning process.
"""
self.logger.warning(
"The _handle_agent_reasoning method is deprecated. Use handle_agent_reasoning instead."
)
return self.handle_agent_reasoning()

View File

@@ -59,7 +59,7 @@ def interpolate_only(
# The regex pattern to find valid variable placeholders
# Matches {variable_name} where variable_name starts with a letter/underscore
# and contains only letters, numbers, and underscores
pattern = r"\{([A-Za-z_][A-Za-z0-9_]*)\}"
pattern = r"\{([A-Za-z_][A-Za-z0-9_\-]*)\}"
# Find all matching variables in the input string
variables = re.findall(pattern, input_string)

View File

@@ -0,0 +1,261 @@
"""Tests for reasoning in agents."""
import json
import pytest
from crewai import Agent, Task
from crewai.llm import LLM
from crewai.utilities.reasoning_handler import AgentReasoning
@pytest.fixture
def mock_llm_responses():
"""Fixture for mock LLM responses."""
return {
"ready": "I'll solve this simple math problem.\n\nREADY: I am ready to execute the task.\n\n",
"not_ready": "I need to think about derivatives.\n\nNOT READY: I need to refine my plan because I'm not sure about the derivative rules.",
"ready_after_refine": "I'll use the power rule for derivatives where d/dx(x^n) = n*x^(n-1).\n\nREADY: I am ready to execute the task.",
"execution": "4"
}
def test_agent_with_reasoning(mock_llm_responses):
"""Test agent with reasoning."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=True
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent
)
agent.llm.call = lambda messages, *args, **kwargs: (
mock_llm_responses["ready"]
if any("create a detailed plan" in msg.get("content", "") for msg in messages)
else mock_llm_responses["execution"]
)
result = agent.execute_task(task)
assert result == mock_llm_responses["execution"]
assert "Reasoning Plan:" in task.description
def test_agent_with_reasoning_not_ready_initially(mock_llm_responses):
"""Test agent with reasoning that requires refinement."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
max_reasoning_attempts=2,
verbose=True
)
task = Task(
description="Complex math task: What's the derivative of x²?",
expected_output="The answer should be a mathematical expression.",
agent=agent
)
call_count = [0]
def mock_llm_call(messages, *args, **kwargs):
if any("create a detailed plan" in msg.get("content", "") for msg in messages) or any("refine your plan" in msg.get("content", "") for msg in messages):
call_count[0] += 1
if call_count[0] == 1:
return mock_llm_responses["not_ready"]
else:
return mock_llm_responses["ready_after_refine"]
else:
return "2x"
agent.llm.call = mock_llm_call
result = agent.execute_task(task)
assert result == "2x"
assert call_count[0] == 2 # Should have made 2 reasoning calls
assert "Reasoning Plan:" in task.description
def test_agent_with_reasoning_max_attempts_reached():
"""Test agent with reasoning that reaches max attempts without being ready."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
max_reasoning_attempts=2,
verbose=True
)
task = Task(
description="Complex math task: Solve the Riemann hypothesis.",
expected_output="A proof or disproof of the hypothesis.",
agent=agent
)
call_count = [0]
def mock_llm_call(messages, *args, **kwargs):
if any("create a detailed plan" in msg.get("content", "") for msg in messages) or any("refine your plan" in msg.get("content", "") for msg in messages):
call_count[0] += 1
return f"Attempt {call_count[0]}: I need more time to think.\n\nNOT READY: I need to refine my plan further."
else:
return "This is an unsolved problem in mathematics."
agent.llm.call = mock_llm_call
result = agent.execute_task(task)
assert result == "This is an unsolved problem in mathematics."
assert call_count[0] == 2 # Should have made exactly 2 reasoning calls (max_attempts)
assert "Reasoning Plan:" in task.description
def test_agent_reasoning_input_validation():
"""Test input validation in AgentReasoning."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True
)
with pytest.raises(ValueError, match="Both task and agent must be provided"):
AgentReasoning(task=None, agent=agent)
task = Task(
description="Simple task",
expected_output="Simple output"
)
with pytest.raises(ValueError, match="Both task and agent must be provided"):
AgentReasoning(task=task, agent=None)
def test_agent_reasoning_error_handling():
"""Test error handling during the reasoning process."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True
)
task = Task(
description="Task that will cause an error",
expected_output="Output that will never be generated",
agent=agent
)
call_count = [0]
def mock_llm_call_error(*args, **kwargs):
call_count[0] += 1
if call_count[0] <= 2: # First calls are for reasoning
raise Exception("LLM error during reasoning")
return "Fallback execution result" # Return a value for task execution
agent.llm.call = mock_llm_call_error
result = agent.execute_task(task)
assert result == "Fallback execution result"
assert call_count[0] > 2 # Ensure we called the mock multiple times
def test_agent_with_function_calling():
"""Test agent with reasoning using function calling."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=True
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent
)
agent.llm.supports_function_calling = lambda: True
def mock_function_call(messages, *args, **kwargs):
if "tools" in kwargs:
return json.dumps({
"plan": "I'll solve this simple math problem: 2+2=4.",
"ready": True
})
else:
return "4"
agent.llm.call = mock_function_call
result = agent.execute_task(task)
assert result == "4"
assert "Reasoning Plan:" in task.description
assert "I'll solve this simple math problem: 2+2=4." in task.description
def test_agent_with_function_calling_fallback():
"""Test agent with reasoning using function calling that falls back to text parsing."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=True
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent
)
agent.llm.supports_function_calling = lambda: True
def mock_function_call(messages, *args, **kwargs):
if "tools" in kwargs:
return "Invalid JSON that will trigger fallback. READY: I am ready to execute the task."
else:
return "4"
agent.llm.call = mock_function_call
result = agent.execute_task(task)
assert result == "4"
assert "Reasoning Plan:" in task.description
assert "Invalid JSON that will trigger fallback" in task.description

View File

@@ -2044,7 +2044,7 @@ def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": ["SerperDevTool"],
"tools": [{"name": "SerperDevTool"}],
}
mock_get_agent.return_value = mock_get_response
agent = Agent(from_repository="test_agent")
@@ -2066,7 +2066,7 @@ def test_agent_from_repository_override_attributes(mock_get_agent, mock_get_auth
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": ["SerperDevTool"],
"tools": [{"name": "SerperDevTool"}],
}
mock_get_agent.return_value = mock_get_response
agent = Agent(from_repository="test_agent", role="Custom Role")
@@ -2086,7 +2086,7 @@ def test_agent_from_repository_with_invalid_tools(mock_get_agent, mock_get_auth_
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": ["DoesNotExist"],
"tools": [{"name": "DoesNotExist"}],
}
mock_get_agent.return_value = mock_get_response
with pytest.raises(
@@ -2096,6 +2096,19 @@ def test_agent_from_repository_with_invalid_tools(mock_get_agent, mock_get_auth_
Agent(from_repository="test_agent")
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
def test_agent_from_repository_internal_error(mock_get_agent, mock_get_auth_token):
mock_get_response = MagicMock()
mock_get_response.status_code = 500
mock_get_response.text = "Internal server error"
mock_get_agent.return_value = mock_get_response
with pytest.raises(
AgentRepositoryError,
match="Agent test_agent could not be loaded: Internal server error",
):
Agent(from_repository="test_agent")
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
def test_agent_from_repository_agent_not_found(mock_get_agent, mock_get_auth_token):
mock_get_response = MagicMock()
@@ -2104,6 +2117,6 @@ def test_agent_from_repository_agent_not_found(mock_get_agent, mock_get_auth_tok
mock_get_agent.return_value = mock_get_response
with pytest.raises(
AgentRepositoryError,
match="Agent NOT_FOUND could not be loaded: Agent not found",
match="Agent test_agent does not exist, make sure the name is correct or the agent is available on your organization",
):
Agent(from_repository="NOT_FOUND")
Agent(from_repository="test_agent")

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,121 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Researcher. You''re
an expert researcher, specialized in technology, software engineering, AI and
startups. You work as a freelancer and is now working on doing research and
analysis for a new customer.\nYour personal goal is: be an assistant that responds
with say hello world\nTo give my best complete final answer to the task respond
using the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: be an assistant that responds
with say hello world\n\nThis is the expected criteria for your final answer:
The response should be addressing: say hello world\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1108'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSTW/UMBC951cMPicoScMu3RuIooUDcOOrVeS1J4mp4zG2sy2q9r9XTrqbtBSJ
iyX7zXt+b2buEgCmJNsAEx0Porc6e/vt4nf3xVxweVZ+3v/Q17fF9+pjs92+O//0iqWRQbtfKMKR
9VJQbzUGRWaChUMeMKoW62pdropVfjYCPUnUkdbakFWU9cqorMzLKsvXWfH6gd2REujZBn4mAAB3
4xl9Gom3bAN5enzp0XveItucigCYIx1fGPde+cBNYOkMCjIBzWj9Axi6AcENtGqPwKGNtoEbf4MO
4NK8V4ZreDPeN7BFrSmFr+S0fLGUdNgMnsdYZtB6AXBjKPDYljHM1QNyONnX1FpHO/+EyhpllO9q
h9yTiVZ9IMtG9JAAXI1tGh4lZ9ZRb0Md6BrH78p8NemxeTozWhzBQIHrBass02f0aomBK+0XjWaC
iw7lTJ2nwgepaAEki9R/u3lOe0quTPs/8jMgBNqAsrYOpRKPE89lDuPy/qvs1OXRMPPo9kpgHRS6
OAmJDR/0tFLM//EB+7pRpkVnnZr2qrH1utjl5bo6bzhLDsk9AAAA//8DAAxaM/dlAwAA
headers:
CF-RAY:
- 93fdd19cdbfb6428-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 14 May 2025 22:26:43 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=eCtOgOCsKt_ybdNPdtFAocCmuQbNltR52chaHVe7Y_Q-1747261603-1.0.1.1-827eoA7wHS5SOkTsTqoMq6OSioi0VznQBVjvmabNSVX1bf5PpWZvblw58iggZ_wyKDB0EuVoeLKFspgBJa0kuQYR17hu43Y2C14sgdvOXIE;
path=/; expires=Wed, 14-May-25 22:56:43 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=QUa5MnypdaVxO826bwdQaN4G6CBEV8HYVV.7OLF.qvQ-1747261603742-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '307'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '309'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999757'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_61d9066e0258b7095517f9f9c01d38e9
status:
code: 200
message: OK
version: 1

View File

@@ -78,4 +78,134 @@ interactions:
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Researcher. You''re
an expert researcher, specialized in technology, software engineering, AI and
startups. You work as a freelancer and are now working on doing research and
analysis for a new customer.\nYour personal goal is: Make the best research
and analysis on content about AI and AI agents. Use the tool provided to you.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: what amazing tool\nTool Arguments: {}\nTool
Description: My tool\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [what amazing tool], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Give me
a list of 5 interesting ideas to explore for an article, what makes them unique
and interesting.\n\nThis is the expected criteria for your final answer: Bullet
point list of 5 interesting ideas.\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1666'
content-type:
- application/json
cookie:
- _cfuvid=CW_cKQGYWY3cL.S6Xo5z0cmkmWHy5Q50OA_KjPEijNk-1735926034530-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jJNPb9swDMXv+RSELrskRZukSZNbBxRbUWwYdhmwtTAYiba5ypQn0f2z
It+9kNPW6dYBu9iAfnzP5BP9MAIw7MwajK1RbdP6yfvvG7r79PnDxYK/LPni5uO35uxstfp6fTvz
1oyzImx+ktVn1YENTetJOcgO20iolF2PlvPlyfR4NZ/1oAmOfJZVrU7mYdKw8GR6OJ1PDpeTo5Mn
dR3YUjJr+DECAHjon7lPcXRn1nA4fj5pKCWsyKxfigBMDD6fGEyJk6KoGQ/QBlGSvvVzECIHGqAi
oYhKgOA5KYQSWJQiJWWpAKOy9QTsCBNE8nm4rDs9BxTXvyoSTWMog+1S1gQBrYkjdMK/OhJKqa+N
5OkGxRKwgAaH9+8SKNlagg8VW/TgUVyy2NLBpVzKqc25ruG2RgVs8Hd21xA8wDOEc2k7XcPDFmB/
1khllzDnLZ33ewBFgmKW9ilfPZHtS64+VG0Mm/SH1JQsnOoiEqYgOcOkoTU93Y4Arvr7615diWlj
aFotNFxT/7nZdLHzM8PaDHR+9AQ1KPo91WI5fsOvcKTIPu1tgLFoa3KDdFgX7ByHPTDam/rvbt7y
3k3OUv2P/QCspVbJFW0kx/b1xENZpPxX/avsJeW+YZMo3rClQplivglHJXZ+t+sm3SelpihZKopt
5N3Cl21xPKfNfOMWq5kZbUePAAAA//8DALOFcXD+AwAA
headers:
CF-RAY:
- 9433a372ec1069e6-LAS
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 21 May 2025 11:12:24 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=SC.7rKr584CqggyyZVMEQ5_zFD.g4Q5djrKS1Kg2ifs-1747825944-1.0.1.1-M3vY0AX_JtRWZBGWsq8v4VWUTYLoQRB5_X2WbagS7emC73L80mIv3OUlMwPOwh7ag8LdkVtbkQ_hpAdM9kVJ_wyV7mhTNCoCPLE._sZWMeI;
path=/; expires=Wed, 21-May-25 11:42:24 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=LMbhtXYRu2foKMlmDSxZF0LlpAWtafPdjq_4PWulGz0-1747825944424-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '819'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '827'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999620'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_93e3b862779b855ab166d171911fa9e0
status:
code: 200
message: OK
version: 1

View File

@@ -162,8 +162,18 @@ def test_reset_knowledge(mock_get_crews, runner):
assert call_count == 1, "reset_memories should have been called once"
def test_reset_memory_from_many_crews(mock_get_crews, runner):
def test_reset_agent_knowledge(mock_get_crews, runner):
result = runner.invoke(reset_memories, ["--agent-knowledge"])
call_count = 0
for crew in mock_get_crews.return_value:
crew.reset_memories.assert_called_once_with(command_type="agent_knowledge")
assert f"[Crew ({crew.name})] Agents knowledge has been reset." in result.output
call_count += 1
assert call_count == 1, "reset_memories should have been called once"
def test_reset_memory_from_many_crews(mock_get_crews, runner):
crews = []
for crew_id in ["id-1234", "id-5678"]:
mock_crew = mock.Mock(spec=Crew)

View File

@@ -46,4 +46,6 @@ def setup_test_environment():
def vcr_config(request) -> dict:
return {
"cassette_library_dir": "tests/cassettes",
"record_mode": "new_episodes",
"filter_headers": [("authorization", "AUTHORIZATION-XXX")],
}

View File

@@ -2,22 +2,19 @@
import hashlib
import json
import os
import tempfile
from concurrent.futures import Future
from unittest import mock
from unittest.mock import MagicMock, patch
from unittest.mock import ANY, MagicMock, patch
import pydantic_core
import pytest
from crewai.agent import Agent
from crewai.agents import CacheHandler
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.flow import Flow, listen, start
from crewai.flow import Flow, start
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
@@ -3141,6 +3138,30 @@ def test_replay_with_context():
assert crew.tasks[1].context[0].output.raw == "context raw output"
def test_replay_with_context_set_to_nullable():
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
task1 = Task(
description="Context Task", expected_output="Say Task Output", agent=agent
)
task2 = Task(
description="Test Task", expected_output="Say Hi", agent=agent, context=[]
)
task3 = Task(
description="Test Task 3", expected_output="Say Hi", agent=agent, context=None
)
crew = Crew(agents=[agent], tasks=[task1, task2, task3], process=Process.sequential)
with patch("crewai.task.Task.execute_sync") as mock_execute_task:
mock_execute_task.return_value = TaskOutput(
description="Test Task Output",
raw="test raw output",
agent="test_agent",
)
crew.kickoff()
mock_execute_task.assert_called_with(agent=ANY, context="", tools=ANY)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_replay_with_invalid_task_id():
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
@@ -4383,3 +4404,165 @@ def test_sets_parent_flow_when_inside_flow(researcher, writer):
flow = MyFlow()
result = flow.kickoff()
assert result.parent_flow is flow
def test_reset_knowledge_with_no_crew_knowledge(researcher,writer):
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[
Task(description="Task 1", expected_output="output", agent=researcher),
Task(description="Task 2", expected_output="output", agent=writer),
]
)
with pytest.raises(RuntimeError) as excinfo:
crew.reset_memories(command_type='knowledge')
# Optionally, you can also check the error message
assert "Crew Knowledge and Agent Knowledge memory system is not initialized" in str(excinfo.value) # Replace with the expected message
def test_reset_knowledge_with_only_crew_knowledge(researcher,writer):
mock_ks = MagicMock(spec=Knowledge)
with patch.object(Crew,'reset_knowledge') as mock_reset_agent_knowledge:
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[
Task(description="Task 1", expected_output="output", agent=researcher),
Task(description="Task 2", expected_output="output", agent=writer),
],
knowledge=mock_ks
)
crew.reset_memories(command_type='knowledge')
mock_reset_agent_knowledge.assert_called_once_with([mock_ks])
def test_reset_knowledge_with_crew_and_agent_knowledge(researcher,writer):
mock_ks_crew = MagicMock(spec=Knowledge)
mock_ks_research = MagicMock(spec=Knowledge)
mock_ks_writer = MagicMock(spec=Knowledge)
researcher.knowledge = mock_ks_research
writer.knowledge = mock_ks_writer
with patch.object(Crew,'reset_knowledge') as mock_reset_agent_knowledge:
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[
Task(description="Task 1", expected_output="output", agent=researcher),
Task(description="Task 2", expected_output="output", agent=writer),
],
knowledge=mock_ks_crew
)
crew.reset_memories(command_type='knowledge')
mock_reset_agent_knowledge.assert_called_once_with([mock_ks_crew,mock_ks_research,mock_ks_writer])
def test_reset_knowledge_with_only_agent_knowledge(researcher,writer):
mock_ks_research = MagicMock(spec=Knowledge)
mock_ks_writer = MagicMock(spec=Knowledge)
researcher.knowledge = mock_ks_research
writer.knowledge = mock_ks_writer
with patch.object(Crew,'reset_knowledge') as mock_reset_agent_knowledge:
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[
Task(description="Task 1", expected_output="output", agent=researcher),
Task(description="Task 2", expected_output="output", agent=writer),
],
)
crew.reset_memories(command_type='knowledge')
mock_reset_agent_knowledge.assert_called_once_with([mock_ks_research,mock_ks_writer])
def test_reset_agent_knowledge_with_no_agent_knowledge(researcher,writer):
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[
Task(description="Task 1", expected_output="output", agent=researcher),
Task(description="Task 2", expected_output="output", agent=writer),
],
)
with pytest.raises(RuntimeError) as excinfo:
crew.reset_memories(command_type='agent_knowledge')
# Optionally, you can also check the error message
assert "Agent Knowledge memory system is not initialized" in str(excinfo.value) # Replace with the expected message
def test_reset_agent_knowledge_with_only_crew_knowledge(researcher,writer):
mock_ks = MagicMock(spec=Knowledge)
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[
Task(description="Task 1", expected_output="output", agent=researcher),
Task(description="Task 2", expected_output="output", agent=writer),
],
knowledge=mock_ks
)
with pytest.raises(RuntimeError) as excinfo:
crew.reset_memories(command_type='agent_knowledge')
# Optionally, you can also check the error message
assert "Agent Knowledge memory system is not initialized" in str(excinfo.value) # Replace with the expected message
def test_reset_agent_knowledge_with_crew_and_agent_knowledge(researcher,writer):
mock_ks_crew = MagicMock(spec=Knowledge)
mock_ks_research = MagicMock(spec=Knowledge)
mock_ks_writer = MagicMock(spec=Knowledge)
researcher.knowledge = mock_ks_research
writer.knowledge = mock_ks_writer
with patch.object(Crew,'reset_knowledge') as mock_reset_agent_knowledge:
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[
Task(description="Task 1", expected_output="output", agent=researcher),
Task(description="Task 2", expected_output="output", agent=writer),
],
knowledge=mock_ks_crew
)
crew.reset_memories(command_type='agent_knowledge')
mock_reset_agent_knowledge.assert_called_once_with([mock_ks_research,mock_ks_writer])
def test_reset_agent_knowledge_with_only_agent_knowledge(researcher,writer):
mock_ks_research = MagicMock(spec=Knowledge)
mock_ks_writer = MagicMock(spec=Knowledge)
researcher.knowledge = mock_ks_research
writer.knowledge = mock_ks_writer
with patch.object(Crew,'reset_knowledge') as mock_reset_agent_knowledge:
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[
Task(description="Task 1", expected_output="output", agent=researcher),
Task(description="Task 2", expected_output="output", agent=writer),
],
)
crew.reset_memories(command_type='agent_knowledge')
mock_reset_agent_knowledge.assert_called_once_with([mock_ks_research,mock_ks_writer])

View File

@@ -398,6 +398,79 @@ def test_output_json_hierarchical():
assert result.json == '{"score": 4}'
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_inject_date():
reporter = Agent(
role="Reporter",
goal="Report the date",
backstory="You're an expert reporter, specialized in reporting the date.",
allow_delegation=False,
inject_date=True,
)
task = Task(
description="What is the date today?",
expected_output="The date today as you were told, same format as the date you were told.",
agent=reporter,
)
crew = Crew(
agents=[reporter],
tasks=[task],
process=Process.sequential,
)
result = crew.kickoff()
assert "2025-05-21" in result.raw
@pytest.mark.vcr(filter_headers=["authorization"])
def test_inject_date_custom_format():
reporter = Agent(
role="Reporter",
goal="Report the date",
backstory="You're an expert reporter, specialized in reporting the date.",
allow_delegation=False,
inject_date=True,
date_format="%B %d, %Y",
)
task = Task(
description="What is the date today?",
expected_output="The date today.",
agent=reporter,
)
crew = Crew(
agents=[reporter],
tasks=[task],
process=Process.sequential,
)
result = crew.kickoff()
assert "May 21, 2025" in result.raw
@pytest.mark.vcr(filter_headers=["authorization"])
def test_no_inject_date():
reporter = Agent(
role="Reporter",
goal="Report the date",
backstory="You're an expert reporter, specialized in reporting the date.",
allow_delegation=False,
inject_date=False,
)
task = Task(
description="What is the date today?",
expected_output="The date today.",
agent=reporter,
)
crew = Crew(
agents=[reporter],
tasks=[task],
process=Process.sequential,
)
result = crew.kickoff()
assert "2025-05-21" not in result.raw
@pytest.mark.vcr(filter_headers=["authorization"])
def test_json_property_without_output_json():
@@ -837,9 +910,6 @@ def test_interpolate_inputs():
def test_interpolate_only():
"""Test the interpolate_only method for various scenarios including JSON structure preservation."""
task = Task(
description="Unused in this test", expected_output="Unused in this test"
)
# Test JSON structure preservation
json_string = '{"info": "Look at {placeholder}", "nested": {"val": "{nestedVal}"}}'
@@ -871,10 +941,6 @@ def test_interpolate_only():
def test_interpolate_only_with_dict_inside_expected_output():
"""Test the interpolate_only method for various scenarios including JSON structure preservation."""
task = Task(
description="Unused in this test",
expected_output="Unused in this test: {questions}",
)
json_string = '{"questions": {"main_question": "What is the user\'s name?", "secondary_question": "What is the user\'s age?"}}'
result = interpolate_only(
@@ -1094,11 +1160,6 @@ def test_task_execution_times():
def test_interpolate_with_list_of_strings():
task = Task(
description="Test list interpolation",
expected_output="List: {items}",
)
# Test simple list of strings
input_str = "Available items: {items}"
inputs = {"items": ["apple", "banana", "cherry"]}
@@ -1112,11 +1173,6 @@ def test_interpolate_with_list_of_strings():
def test_interpolate_with_list_of_dicts():
task = Task(
description="Test list of dicts interpolation",
expected_output="People: {people}",
)
input_data = {
"people": [
{"name": "Alice", "age": 30, "skills": ["Python", "AI"]},
@@ -1137,11 +1193,6 @@ def test_interpolate_with_list_of_dicts():
def test_interpolate_with_nested_structures():
task = Task(
description="Test nested structures",
expected_output="Company: {company}",
)
input_data = {
"company": {
"name": "TechCorp",
@@ -1165,11 +1216,6 @@ def test_interpolate_with_nested_structures():
def test_interpolate_with_special_characters():
task = Task(
description="Test special characters in dicts",
expected_output="Data: {special_data}",
)
input_data = {
"special_data": {
"quotes": """This has "double" and 'single' quotes""",
@@ -1188,11 +1234,6 @@ def test_interpolate_with_special_characters():
def test_interpolate_mixed_types():
task = Task(
description="Test mixed type interpolation",
expected_output="Mixed: {data}",
)
input_data = {
"data": {
"name": "Test Dataset",
@@ -1214,11 +1255,6 @@ def test_interpolate_mixed_types():
def test_interpolate_complex_combination():
task = Task(
description="Test complex combination",
expected_output="Report: {report}",
)
input_data = {
"report": [
{
@@ -1243,11 +1279,6 @@ def test_interpolate_complex_combination():
def test_interpolate_invalid_type_validation():
task = Task(
description="Test invalid type validation",
expected_output="Should never reach here",
)
# Test with invalid top-level type
with pytest.raises(ValueError) as excinfo:
interpolate_only("{data}", {"data": set()}) # type: ignore we are purposely testing this failure
@@ -1268,11 +1299,6 @@ def test_interpolate_invalid_type_validation():
def test_interpolate_custom_object_validation():
task = Task(
description="Test custom object rejection",
expected_output="Should never reach here",
)
class CustomObject:
def __init__(self, value):
self.value = value
@@ -1304,11 +1330,6 @@ def test_interpolate_custom_object_validation():
def test_interpolate_valid_complex_types():
task = Task(
description="Test valid complex types",
expected_output="Validation should pass",
)
# Valid complex structure
valid_data = {
"name": "Valid Dataset",
@@ -1328,11 +1349,6 @@ def test_interpolate_valid_complex_types():
def test_interpolate_edge_cases():
task = Task(
description="Test edge cases",
expected_output="Edge case handling",
)
# Test empty dict and list
assert interpolate_only("{}", {"data": {}}) == "{}"
assert interpolate_only("[]", {"data": []}) == "[]"
@@ -1347,11 +1363,6 @@ def test_interpolate_edge_cases():
def test_interpolate_valid_types():
task = Task(
description="Test valid types including null and boolean",
expected_output="Should pass validation",
)
# Test with boolean and null values (valid JSON types)
valid_data = {
"name": "Test",
@@ -1373,11 +1384,11 @@ def test_interpolate_valid_types():
def test_task_with_no_max_execution_time():
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
max_execution_time=None
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
max_execution_time=None,
)
task = Task(
@@ -1386,7 +1397,7 @@ def test_task_with_no_max_execution_time():
agent=researcher,
)
with patch.object(Agent, "_execute_without_timeout", return_value = "ok") as execute:
with patch.object(Agent, "_execute_without_timeout", return_value="ok") as execute:
result = task.execute_sync(agent=researcher)
assert result.raw == "ok"
execute.assert_called_once()
@@ -1395,6 +1406,7 @@ def test_task_with_no_max_execution_time():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_with_max_execution_time():
from crewai.tools import tool
"""Test that execution raises TimeoutError when max_execution_time is exceeded."""
@tool("what amazing tool", result_as_answer=True)
@@ -1412,7 +1424,7 @@ def test_task_with_max_execution_time():
),
allow_delegation=False,
tools=[my_tool],
max_execution_time=4
max_execution_time=4,
)
task = Task(
@@ -1428,6 +1440,7 @@ def test_task_with_max_execution_time():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_with_max_execution_time_exceeded():
from crewai.tools import tool
"""Test that execution raises TimeoutError when max_execution_time is exceeded."""
@tool("what amazing tool", result_as_answer=True)
@@ -1445,7 +1458,7 @@ def test_task_with_max_execution_time_exceeded():
),
allow_delegation=False,
tools=[my_tool],
max_execution_time=1
max_execution_time=1,
)
task = Task(
@@ -1455,4 +1468,28 @@ def test_task_with_max_execution_time_exceeded():
)
with pytest.raises(TimeoutError):
task.execute_sync(agent=researcher)
task.execute_sync(agent=researcher)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_interpolation_with_hyphens():
agent = Agent(
role="Researcher",
goal="be an assistant that responds with {interpolation-with-hyphens}",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
task = Task(
description="be an assistant that responds with {interpolation-with-hyphens}",
expected_output="The response should be addressing: {interpolation-with-hyphens}",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff(inputs={"interpolation-with-hyphens": "say hello world"})
assert "say hello world" in task.prompt()
assert result.raw == "Hello, World!"

View File

@@ -6,6 +6,8 @@ import pytest
from crewai import Agent, Crew, Task
from crewai.telemetry import Telemetry
from opentelemetry import trace
@pytest.mark.parametrize(
"env_var,value,expected_ready",
@@ -34,9 +36,6 @@ def test_telemetry_enabled_by_default():
assert telemetry.ready is True
from opentelemetry import trace
@patch("crewai.telemetry.telemetry.logger.error")
@patch(
"opentelemetry.exporter.otlp.proto.http.trace_exporter.OTLPSpanExporter.export",
@@ -67,3 +66,32 @@ def test_telemetry_fails_due_connect_timeout(export_mock, logger_mock):
export_mock.assert_called_once()
logger_mock.assert_called_once_with(error)
def test_telemetry_singleton_pattern():
"""Test that Telemetry uses the singleton pattern correctly."""
Telemetry._instance = None
telemetry1 = Telemetry()
telemetry2 = Telemetry()
assert telemetry1 is telemetry2
setattr(telemetry1, "test_attribute", "test_value")
assert hasattr(telemetry2, "test_attribute")
assert getattr(telemetry2, "test_attribute") == "test_value"
import threading
instances = []
def create_instance():
instances.append(Telemetry())
threads = [threading.Thread(target=create_instance) for _ in range(5)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
assert all(instance is telemetry1 for instance in instances)

View File

@@ -0,0 +1,117 @@
from datetime import datetime
from unittest.mock import patch
from crewai.agent import Agent
from crewai.task import Task
def test_agent_inject_date():
"""Test that the inject_date flag injects the current date into the task.
Tests that when inject_date=True, the current date is added to the task description.
"""
with patch('datetime.datetime') as mock_datetime:
mock_datetime.now.return_value = datetime(2025, 1, 1)
agent = Agent(
role="test_agent",
goal="test_goal",
backstory="test_backstory",
inject_date=True,
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
# Store original description
original_description = task.description
agent._inject_date_to_task(task)
assert "Current Date: 2025-01-01" in task.description
assert task.description != original_description
def test_agent_without_inject_date():
"""Test that without inject_date flag, no date is injected.
Tests that when inject_date=False (default), no date is added to the task description.
"""
agent = Agent(
role="test_agent",
goal="test_goal",
backstory="test_backstory",
# inject_date is False by default
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
original_description = task.description
agent._inject_date_to_task(task)
assert task.description == original_description
def test_agent_inject_date_custom_format():
"""Test that the inject_date flag with custom date_format works correctly.
Tests that when inject_date=True with a custom date_format, the date is formatted correctly.
"""
with patch('datetime.datetime') as mock_datetime:
mock_datetime.now.return_value = datetime(2025, 1, 1)
agent = Agent(
role="test_agent",
goal="test_goal",
backstory="test_backstory",
inject_date=True,
date_format="%d/%m/%Y",
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
# Store original description
original_description = task.description
agent._inject_date_to_task(task)
assert "Current Date: 01/01/2025" in task.description
assert task.description != original_description
def test_agent_inject_date_invalid_format():
"""Test error handling with invalid date format.
Tests that when an invalid date_format is provided, the task description remains unchanged.
"""
agent = Agent(
role="test_agent",
goal="test_goal",
backstory="test_backstory",
inject_date=True,
date_format="invalid",
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
original_description = task.description
agent._inject_date_to_task(task)
assert task.description == original_description

View File

@@ -0,0 +1,108 @@
from unittest.mock import Mock
import pytest
from crewai.llm import LLM
from crewai.tasks.hallucination_guardrail import HallucinationGuardrail
from crewai.tasks.task_output import TaskOutput
def test_hallucination_guardrail_initialization():
"""Test that the hallucination guardrail initializes correctly with all parameters."""
mock_llm = Mock(spec=LLM)
guardrail = HallucinationGuardrail(context="Test reference context", llm=mock_llm)
assert guardrail.context == "Test reference context"
assert guardrail.llm == mock_llm
assert guardrail.threshold is None
assert guardrail.tool_response == ""
guardrail = HallucinationGuardrail(
context="Test reference context",
llm=mock_llm,
threshold=8.5,
tool_response="Sample tool response",
)
assert guardrail.context == "Test reference context"
assert guardrail.llm == mock_llm
assert guardrail.threshold == 8.5
assert guardrail.tool_response == "Sample tool response"
def test_hallucination_guardrail_no_op_behavior():
"""Test that the guardrail always returns True in the open-source version."""
mock_llm = Mock(spec=LLM)
guardrail = HallucinationGuardrail(
context="Test reference context",
llm=mock_llm,
threshold=9.0,
)
task_output = TaskOutput(
raw="Sample task output",
description="Test task",
expected_output="Expected output",
agent="Test Agent",
)
result, output = guardrail(task_output)
assert result is True
assert output == "Sample task output"
def test_hallucination_guardrail_description():
"""Test that the guardrail provides the correct description for event logging."""
guardrail = HallucinationGuardrail(
context="Test reference context", llm=Mock(spec=LLM)
)
assert guardrail.description == "HallucinationGuardrail (no-op)"
@pytest.mark.parametrize(
"context,task_output_text,threshold,tool_response",
[
(
"Earth orbits the Sun once every 365.25 days.",
"It takes Earth approximately one year to go around the Sun.",
None,
"",
),
(
"Python was created by Guido van Rossum in 1991.",
"Python is a programming language developed by Guido van Rossum.",
7.5,
"",
),
(
"The capital of France is Paris.",
"Paris is the largest city and capital of France.",
9.0,
"Geographic API returned: France capital is Paris",
),
],
)
def test_hallucination_guardrail_always_passes(
context, task_output_text, threshold, tool_response
):
"""Test that the guardrail always passes regardless of configuration in open-source version."""
mock_llm = Mock(spec=LLM)
guardrail = HallucinationGuardrail(
context=context, llm=mock_llm, threshold=threshold, tool_response=tool_response
)
task_output = TaskOutput(
raw=task_output_text,
description="Test task",
expected_output="Expected output",
agent="Test Agent",
)
result, output = guardrail(task_output)
assert result is True
assert output == task_output_text

View File

@@ -0,0 +1,96 @@
"""Test the markdown attribute in Task class."""
import pytest
from pydantic import BaseModel
from crewai import Agent, Task
@pytest.mark.parametrize(
"markdown_enabled,should_contain_instructions",
[
(True, True),
(False, False),
],
)
def test_markdown_option_in_task_prompt(markdown_enabled, should_contain_instructions):
"""Test that markdown flag correctly controls the inclusion of markdown formatting instructions."""
researcher = Agent(
role="Researcher",
goal="Research a topic",
backstory="You're a researcher specialized in providing well-formatted content.",
allow_delegation=False,
)
task = Task(
description="Research advances in AI in 2023",
expected_output="A summary of key AI advances in 2023",
markdown=markdown_enabled,
agent=researcher,
)
prompt = task.prompt()
assert "Research advances in AI in 2023" in prompt
assert "A summary of key AI advances in 2023" in prompt
if should_contain_instructions:
assert "Your final answer MUST be formatted in Markdown syntax." in prompt
assert "Use # for headers" in prompt
assert "Use ** for bold text" in prompt
else:
assert "Your final answer MUST be formatted in Markdown syntax." not in prompt
def test_markdown_with_empty_description():
"""Test markdown formatting with empty description."""
researcher = Agent(
role="Researcher",
goal="Research a topic",
backstory="You're a researcher.",
allow_delegation=False,
)
task = Task(
description="",
expected_output="A summary",
markdown=True,
agent=researcher,
)
prompt = task.prompt()
assert prompt.strip() != ""
assert "A summary" in prompt
assert "Your final answer MUST be formatted in Markdown syntax." in prompt
def test_markdown_with_complex_output_format():
"""Test markdown with JSON output format to ensure compatibility."""
class ResearchOutput(BaseModel):
title: str
findings: list[str]
researcher = Agent(
role="Researcher",
goal="Research a topic",
backstory="You're a researcher.",
allow_delegation=False,
)
task = Task(
description="Research topic",
expected_output="Research results",
markdown=True,
output_json=ResearchOutput,
agent=researcher,
)
prompt = task.prompt()
assert "Your final answer MUST be formatted in Markdown syntax." in prompt
assert "Research topic" in prompt
assert "Research results" in prompt

View File

@@ -1,9 +1,10 @@
from unittest.mock import ANY, Mock, patch
from unittest.mock import Mock, patch
import pytest
from crewai import Agent, Task
from crewai.llm import LLM
from crewai.tasks.hallucination_guardrail import HallucinationGuardrail
from crewai.tasks.llm_guardrail import LLMGuardrail
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.events import (
@@ -267,3 +268,37 @@ def test_guardrail_when_an_error_occurs(sample_agent, task_output):
max_retries=0,
)
task.execute_sync(agent=sample_agent)
def test_hallucination_guardrail_integration():
"""Test that HallucinationGuardrail integrates properly with the task system."""
agent = Mock()
agent.role = "test_agent"
agent.execute_task.return_value = "test result"
agent.crew = None
mock_llm = Mock(spec=LLM)
guardrail = HallucinationGuardrail(
context="Test reference context for validation", llm=mock_llm, threshold=8.0
)
task = Task(
description="Test task with hallucination guardrail",
expected_output="Valid output",
guardrail=guardrail,
)
result = task.execute_sync(agent=agent)
assert isinstance(result, TaskOutput)
assert result.raw == "test result"
def test_hallucination_guardrail_description_in_events():
"""Test that HallucinationGuardrail description appears correctly in events."""
mock_llm = Mock(spec=LLM)
guardrail = HallucinationGuardrail(context="Test context", llm=mock_llm)
assert guardrail.description == "HallucinationGuardrail (no-op)"
event = LLMGuardrailStartedEvent(guardrail=guardrail, retry_count=0)
assert event.guardrail == "HallucinationGuardrail (no-op)"

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,5 +1,4 @@
import json
import os
from typing import Dict, List, Optional
from unittest.mock import MagicMock, Mock, patch
@@ -19,6 +18,8 @@ from crewai.utilities.converter import (
validate_model,
)
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
# Tests for enums
from enum import Enum
@pytest.fixture(scope="module")
@@ -359,7 +360,7 @@ def test_convert_with_instructions():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_llama3_2_model():
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
llm = LLM(model="openrouter/meta-llama/llama-3.2-3b-instruct")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
@@ -431,7 +432,7 @@ def test_converter_error_handling():
)
with pytest.raises(ConverterError) as exc_info:
output = converter.to_pydantic()
converter.to_pydantic()
assert "Failed to convert text into a Pydantic model" in str(exc_info.value)
@@ -515,10 +516,6 @@ def test_converter_with_list_field():
assert output.items == [1, 2, 3]
# Tests for enums
from enum import Enum
def test_converter_with_enum():
class Color(Enum):
RED = "red"
@@ -565,7 +562,7 @@ def test_converter_with_ambiguous_input():
)
with pytest.raises(ConverterError) as exc_info:
output = converter.to_pydantic()
converter.to_pydantic()
assert "failed to convert text into a pydantic model" in str(exc_info.value).lower()

View File

@@ -1,4 +1,3 @@
import os
from datetime import datetime
from unittest.mock import Mock, patch
@@ -22,6 +21,7 @@ from crewai.utilities.events.crew_events import (
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestResultEvent,
CrewTestStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
@@ -38,7 +38,6 @@ from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
LLMStreamChunkEvent,
)
from crewai.utilities.events.task_events import (
@@ -132,6 +131,10 @@ def test_crew_emits_test_kickoff_type_event():
def handle_crew_test_end(source, event):
received_events.append(event)
@crewai_event_bus.on(CrewTestResultEvent)
def handle_crew_test_result(source, event):
received_events.append(event)
eval_llm = LLM(model="gpt-4o-mini")
with (
patch.object(
@@ -149,13 +152,16 @@ def test_crew_emits_test_kickoff_type_event():
assert args[2] is None
assert args[3] == eval_llm
assert len(received_events) == 2
assert len(received_events) == 3
assert received_events[0].crew_name == "TestCrew"
assert isinstance(received_events[0].timestamp, datetime)
assert received_events[0].type == "crew_test_started"
assert received_events[1].crew_name == "TestCrew"
assert isinstance(received_events[1].timestamp, datetime)
assert received_events[1].type == "crew_test_completed"
assert received_events[1].type == "crew_test_result"
assert received_events[2].crew_name == "TestCrew"
assert isinstance(received_events[2].timestamp, datetime)
assert received_events[2].type == "crew_test_completed"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -309,7 +315,7 @@ def test_agent_emits_execution_error_event():
) as invoke_mock:
invoke_mock.side_effect = Exception(error_message)
with pytest.raises(Exception) as e:
with pytest.raises(Exception):
base_agent.execute_task(
task=base_task,
)

10
uv.lock generated
View File

@@ -738,7 +738,7 @@ wheels = [
[[package]]
name = "crewai"
version = "0.119.0"
version = "0.121.0"
source = { editable = "." }
dependencies = [
{ name = "appdirs" },
@@ -828,7 +828,7 @@ requires-dist = [
{ name = "blinker", specifier = ">=1.9.0" },
{ name = "chromadb", specifier = ">=0.5.23" },
{ name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.44.0" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.45.0" },
{ name = "docling", marker = "extra == 'docling'", specifier = ">=2.12.0" },
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
{ name = "instructor", specifier = ">=1.3.3" },
@@ -879,7 +879,7 @@ dev = [
[[package]]
name = "crewai-tools"
version = "0.44.0"
version = "0.45.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "chromadb" },
@@ -894,9 +894,9 @@ dependencies = [
{ name = "pytube" },
{ name = "requests" },
]
sdist = { url = "https://files.pythonhosted.org/packages/b8/1f/2977dc72628c1225bf5788ae22a65e5a53df384d19b197646d2c4760684e/crewai_tools-0.44.0.tar.gz", hash = "sha256:44e0c26079396503a326efdd9ff34bf369d410cbf95c362cc523db65b18f3c3a", size = 892004 }
sdist = { url = "https://files.pythonhosted.org/packages/e9/3a/7070dcacef56702c5d83ad1a87021b1666ff1850ff80b3aa7540892406e7/crewai_tools-0.45.0.tar.gz", hash = "sha256:1b2e4eff3f928ce5fac308d6e648719a0e4718a1228ae98980aa0d74fc16bfc7", size = 909723 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ba/80/b91aa837d06edbb472445ea3c92d7619518894fd3049d480e5fffbf0c21b/crewai_tools-0.44.0-py3-none-any.whl", hash = "sha256:119e2365fe66ee16e18a5e8e222994b19f76bafcc8c1bb87f61609c1e39b2463", size = 583462 },
{ url = "https://files.pythonhosted.org/packages/6e/72/db45626973027c992df75cbc7ef391f18393d631be3bceb6388c1b9f01e1/crewai_tools-0.45.0-py3-none-any.whl", hash = "sha256:9dd34e4792c075ee7a72134aedaab268e78d0e350114fd7fe2426e691c5f52a3", size = 602659 },
]
[[package]]