mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-30 19:28:29 +00:00
Compare commits
16 Commits
lg-remove-
...
lg-agent-r
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
615eb0afb7 | ||
|
|
c403497cf4 | ||
|
|
fed397f745 | ||
|
|
d55e596800 | ||
|
|
f700e014c9 | ||
|
|
4e496d7a20 | ||
|
|
8663c7e1c2 | ||
|
|
cb1a98cabf | ||
|
|
369e6d109c | ||
|
|
2c011631f9 | ||
|
|
d3fc2b4477 | ||
|
|
516d45deaa | ||
|
|
7ad51d9d05 | ||
|
|
e3887ae36e | ||
|
|
e23bc2aaa7 | ||
|
|
7fc405408e |
38
.github/security.md
vendored
38
.github/security.md
vendored
@@ -1,19 +1,27 @@
|
||||
CrewAI takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organization.
|
||||
If you believe you have found a security vulnerability in any CrewAI product or service, please report it to us as described below.
|
||||
## CrewAI Security Vulnerability Reporting Policy
|
||||
|
||||
## Reporting a Vulnerability
|
||||
Please do not report security vulnerabilities through public GitHub issues.
|
||||
To report a vulnerability, please email us at security@crewai.com.
|
||||
Please include the requested information listed below so that we can triage your report more quickly
|
||||
CrewAI prioritizes the security of our software products, services, and GitHub repositories. To promptly address vulnerabilities, follow these steps for reporting security issues:
|
||||
|
||||
- Type of issue (e.g. SQL injection, cross-site scripting, etc.)
|
||||
- Full paths of source file(s) related to the manifestation of the issue
|
||||
- The location of the affected source code (tag/branch/commit or direct URL)
|
||||
- Any special configuration required to reproduce the issue
|
||||
- Step-by-step instructions to reproduce the issue (please include screenshots if needed)
|
||||
- Proof-of-concept or exploit code (if possible)
|
||||
- Impact of the issue, including how an attacker might exploit the issue
|
||||
### Reporting Process
|
||||
Do **not** report vulnerabilities via public GitHub issues.
|
||||
|
||||
Once we have received your report, we will respond to you at the email address you provide. If the issue is confirmed, we will release a patch as soon as possible depending on the complexity of the issue.
|
||||
Email all vulnerability reports directly to:
|
||||
**security@crewai.com**
|
||||
|
||||
At this time, we are not offering a bug bounty program. Any rewards will be at our discretion.
|
||||
### Required Information
|
||||
To help us quickly validate and remediate the issue, your report must include:
|
||||
|
||||
- **Vulnerability Type:** Clearly state the vulnerability type (e.g., SQL injection, XSS, privilege escalation).
|
||||
- **Affected Source Code:** Provide full file paths and direct URLs (branch, tag, or commit).
|
||||
- **Reproduction Steps:** Include detailed, step-by-step instructions. Screenshots are recommended.
|
||||
- **Special Configuration:** Document any special settings or configurations required to reproduce.
|
||||
- **Proof-of-Concept (PoC):** Provide exploit or PoC code (if available).
|
||||
- **Impact Assessment:** Clearly explain the severity and potential exploitation scenarios.
|
||||
|
||||
### Our Response
|
||||
- We will acknowledge receipt of your report promptly via your provided email.
|
||||
- Confirmed vulnerabilities will receive priority remediation based on severity.
|
||||
- Patches will be released as swiftly as possible following verification.
|
||||
|
||||
### Reward Notice
|
||||
Currently, we do not offer a bug bounty program. Rewards, if issued, are discretionary.
|
||||
|
||||
25
.github/workflows/linter.yml
vendored
25
.github/workflows/linter.yml
vendored
@@ -5,12 +5,29 @@ on: [pull_request]
|
||||
jobs:
|
||||
lint:
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
TARGET_BRANCH: ${{ github.event.pull_request.base.ref }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install Requirements
|
||||
- name: Fetch Target Branch
|
||||
run: git fetch origin $TARGET_BRANCH --depth=1
|
||||
|
||||
- name: Install Ruff
|
||||
run: pip install ruff
|
||||
|
||||
- name: Get Changed Python Files
|
||||
id: changed-files
|
||||
run: |
|
||||
pip install ruff
|
||||
merge_base=$(git merge-base origin/"$TARGET_BRANCH" HEAD)
|
||||
changed_files=$(git diff --name-only --diff-filter=ACMRTUB "$merge_base" | grep '\.py$' || true)
|
||||
echo "files<<EOF" >> $GITHUB_OUTPUT
|
||||
echo "$changed_files" >> $GITHUB_OUTPUT
|
||||
echo "EOF" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Run Ruff Linter
|
||||
run: ruff check
|
||||
- name: Run Ruff on Changed Files
|
||||
if: ${{ steps.changed-files.outputs.files != '' }}
|
||||
run: |
|
||||
echo "${{ steps.changed-files.outputs.files }}" | tr " " "\n" | xargs -I{} ruff check "{}"
|
||||
|
||||
@@ -2,8 +2,3 @@ exclude = [
|
||||
"templates",
|
||||
"__init__.py",
|
||||
]
|
||||
|
||||
[lint]
|
||||
select = [
|
||||
"I", # isort rules
|
||||
]
|
||||
|
||||
@@ -504,7 +504,7 @@ This example demonstrates how to:
|
||||
|
||||
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
|
||||
|
||||
Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring you agents' connections to models.
|
||||
Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models.
|
||||
|
||||
## How CrewAI Compares
|
||||
|
||||
|
||||
@@ -27,7 +27,7 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
|
||||
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
|
||||
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
| **Output Log File** _(optional)_ | `output_log_file` | Set to True to save logs as logs.txt in the current directory or provide a file path. Logs will be in JSON format if the filename ends in .json, otherwise .txt. Defautls to `None`. |
|
||||
| **Output Log File** _(optional)_ | `output_log_file` | Set to True to save logs as logs.txt in the current directory or provide a file path. Logs will be in JSON format if the filename ends in .json, otherwise .txt. Defaults to `None`. |
|
||||
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
|
||||
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
|
||||
@@ -246,7 +246,7 @@ print(f"Token Usage: {crew_output.token_usage}")
|
||||
You can see real time log of the crew execution, by setting `output_log_file` as a `True(Boolean)` or a `file_name(str)`. Supports logging of events as both `file_name.txt` and `file_name.json`.
|
||||
In case of `True(Boolean)` will save as `logs.txt`.
|
||||
|
||||
In case of `output_log_file` is set as `False(Booelan)` or `None`, the logs will not be populated.
|
||||
In case of `output_log_file` is set as `False(Boolean)` or `None`, the logs will not be populated.
|
||||
|
||||
```python Code
|
||||
# Save crew logs
|
||||
|
||||
@@ -397,6 +397,53 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
|
||||
John is 30 years old and lives in San Francisco.
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Query Rewriting
|
||||
|
||||
CrewAI implements an intelligent query rewriting mechanism to optimize knowledge retrieval. When an agent needs to search through knowledge sources, the raw task prompt is automatically transformed into a more effective search query.
|
||||
|
||||
### How Query Rewriting Works
|
||||
|
||||
1. When an agent executes a task with knowledge sources available, the `_get_knowledge_search_query` method is triggered
|
||||
2. The agent's LLM is used to transform the original task prompt into an optimized search query
|
||||
3. This optimized query is then used to retrieve relevant information from knowledge sources
|
||||
|
||||
### Benefits of Query Rewriting
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Improved Retrieval Accuracy" icon="bullseye-arrow">
|
||||
By focusing on key concepts and removing irrelevant content, query rewriting helps retrieve more relevant information.
|
||||
</Card>
|
||||
<Card title="Context Awareness" icon="brain">
|
||||
The rewritten queries are designed to be more specific and context-aware for vector database retrieval.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Implementation Details
|
||||
|
||||
Query rewriting happens transparently using a system prompt that instructs the LLM to:
|
||||
|
||||
- Focus on key words of the intended task
|
||||
- Make the query more specific and context-aware
|
||||
- Remove irrelevant content like output format instructions
|
||||
- Generate only the rewritten query without preamble or postamble
|
||||
|
||||
<Tip>
|
||||
This mechanism is fully automatic and requires no configuration from users. The agent's LLM is used to perform the query rewriting, so using a more capable LLM can improve the quality of rewritten queries.
|
||||
</Tip>
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
# Original task prompt
|
||||
task_prompt = "Answer the following questions about the user's favorite movies: What movie did John watch last week? Format your answer in JSON."
|
||||
|
||||
# Behind the scenes, this might be rewritten as:
|
||||
rewritten_query = "What movies did John watch last week?"
|
||||
```
|
||||
|
||||
The rewritten query is more focused on the core information need and removes irrelevant instructions about output formatting.
|
||||
|
||||
## Clearing Knowledge
|
||||
|
||||
If you need to clear the knowledge stored in CrewAI, you can use the `crewai reset-memories` command with the `--knowledge` option.
|
||||
@@ -653,4 +700,11 @@ recent_news = SpaceNewsKnowledgeSource(
|
||||
- Configure appropriate embedding models
|
||||
- Consider using local embedding providers for faster processing
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="One Time Knowledge">
|
||||
- With the typical file structure provided by CrewAI, knowledge sources are embedded every time the kickoff is triggered.
|
||||
- If the knowledge sources are large, this leads to inefficiency and increased latency, as the same data is embedded each time.
|
||||
- To resolve this, directly initialize the knowledge parameter instead of the knowledge_sources parameter.
|
||||
- Link to the issue to get complete idea [Github Issue](https://github.com/crewAIInc/crewAI/issues/2755)
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
@@ -169,19 +169,55 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Google">
|
||||
Set the following environment variables in your `.env` file:
|
||||
<Accordion title="Google (Gemini API)">
|
||||
Set your API key in your `.env` file. If you need a key, or need to find an
|
||||
existing key, check [AI Studio](https://aistudio.google.com/apikey).
|
||||
|
||||
```toml Code
|
||||
# Option 1: Gemini accessed with an API key.
|
||||
```toml .env
|
||||
# https://ai.google.dev/gemini-api/docs/api-key
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Option 2: Vertex AI IAM credentials for Gemini, Anthropic, and Model Garden.
|
||||
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
|
||||
```
|
||||
|
||||
Get credentials from your Google Cloud Console and save it to a JSON file with the following code:
|
||||
Example usage in your CrewAI project:
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
temperature=0.7,
|
||||
)
|
||||
```
|
||||
|
||||
### Gemini models
|
||||
|
||||
Google offers a range of powerful models optimized for different use cases.
|
||||
|
||||
| Model | Context Window | Best For |
|
||||
|--------------------------------|----------------|-------------------------------------------------------------------|
|
||||
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
|
||||
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
|
||||
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
|
||||
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
|
||||
The full list of models is available in the [Gemini model docs](https://ai.google.dev/gemini-api/docs/models).
|
||||
|
||||
### Gemma
|
||||
|
||||
The Gemini API also allows you to use your API key to access [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
|
||||
|
||||
| Model | Context Window |
|
||||
|----------------|----------------|
|
||||
| gemma-3-1b-it | 32k tokens |
|
||||
| gemma-3-4b-it | 32k tokens |
|
||||
| gemma-3-12b-it | 32k tokens |
|
||||
| gemma-3-27b-it | 128k tokens |
|
||||
|
||||
</Accordion>
|
||||
<Accordion title="Google (Vertex AI)">
|
||||
Get credentials from your Google Cloud Console and save it to a JSON file, then load it with the following code:
|
||||
```python Code
|
||||
import json
|
||||
|
||||
@@ -205,14 +241,18 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
vertex_credentials=vertex_credentials_json
|
||||
)
|
||||
```
|
||||
|
||||
Google offers a range of powerful models optimized for different use cases:
|
||||
|
||||
| Model | Context Window | Best For |
|
||||
|-----------------------|----------------|------------------------------------------------------------------|
|
||||
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
| Model | Context Window | Best For |
|
||||
|--------------------------------|----------------|-------------------------------------------------------------------|
|
||||
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
|
||||
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
|
||||
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
|
||||
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Azure">
|
||||
|
||||
70
docs/enterprise/features/agent-repository.mdx
Normal file
70
docs/enterprise/features/agent-repository.mdx
Normal file
@@ -0,0 +1,70 @@
|
||||
---
|
||||
title: "Agent Repository"
|
||||
description: "Store and retrieve agents for your CrewAI projects"
|
||||
---
|
||||
|
||||
# Agent Repository
|
||||
|
||||
The Agent Repository allows you to store, manage, and reuse agents across your CrewAI projects. This feature streamlines the development process by enabling you to configure agents once and use them in multiple projects.
|
||||
|
||||
## How It Works
|
||||
|
||||
When you create an agent in the CrewAI interface, it's stored in the Agent Repository. You can then initialize these agents in your code using the `from_repository` parameter.
|
||||
|
||||
## Usage
|
||||
|
||||
To use an agent from the repository in your CrewAI project, initialize it with the following code:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
|
||||
# Initialize the agent with its role
|
||||
agent = Agent(from_repository="python-job-researcher")
|
||||
```
|
||||
|
||||
### Creating a Crew with Repository Agents
|
||||
|
||||
```python
|
||||
from crewai import Agent, Crew, Task
|
||||
|
||||
agent = Agent(from_repository="python-job-researcher")
|
||||
|
||||
job_search_task = Task(
|
||||
description="Search for recent Python developer job listings online",
|
||||
expected_output="Markdown list of 5 recent Python developer jobs with details.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[job_search_task], verbose=True)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Important Notes
|
||||
|
||||
- The `from_repository` value must match the agent's role in a URL-safe format.
|
||||
- If you change an agent's role after creation, you must update the `from_repository` value in your code accordingly, or you won't be able to find the agent anymore.
|
||||
- Make sure you have permission to use the agent as mentioned in the key points.
|
||||
|
||||
## Agent Configuration
|
||||
|
||||
When configuring an agent in the repository, you can specify:
|
||||
|
||||
1. **Role** - The agent's primary function (e.g., "Python Job Researcher")
|
||||
2. **Goal** - What the agent aims to achieve (e.g., "Find Python developer job opportunities")
|
||||
3. **Backstory** - Context for the agent's behavior
|
||||
4. **Tools** - Available capabilities for the agent to use when performing tasks
|
||||
5. **Visibility Controls** - Who can access and use the agent
|
||||
|
||||
## Managing Agents
|
||||
|
||||
The Agent Repository interface provides functionality to:
|
||||
|
||||
- View all available agents
|
||||
- Add new agents
|
||||
- Edit existing agents
|
||||
- Delete agents
|
||||
- View agent details including usage examples
|
||||
|
||||
By leveraging the Agent Repository, you can build more modular and reusable AI workflows while maintaining a central location for managing your agents.
|
||||
@@ -35,7 +35,8 @@ Let's get started building your first crew!
|
||||
Before starting, make sure you have:
|
||||
|
||||
1. Installed CrewAI following the [installation guide](/installation)
|
||||
2. Set up your OpenAI API key in your environment variables
|
||||
2. Set up your LLM API key in your environment, following the [LLM setup
|
||||
guide](/concepts/llms#setting-up-your-llm)
|
||||
3. Basic understanding of Python
|
||||
|
||||
## Step 1: Create a New CrewAI Project
|
||||
@@ -92,7 +93,8 @@ For our research crew, we'll create two agents:
|
||||
1. A **researcher** who excels at finding and organizing information
|
||||
2. An **analyst** who can interpret research findings and create insightful reports
|
||||
|
||||
Let's modify the `agents.yaml` file to define these specialized agents:
|
||||
Let's modify the `agents.yaml` file to define these specialized agents. Be sure
|
||||
to set `llm` to the provider you are using.
|
||||
|
||||
```yaml
|
||||
# src/research_crew/config/agents.yaml
|
||||
@@ -107,7 +109,7 @@ researcher:
|
||||
finding relevant information from various sources. You excel at
|
||||
organizing information in a clear and structured manner, making
|
||||
complex topics accessible to others.
|
||||
llm: openai/gpt-4o-mini
|
||||
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
|
||||
|
||||
analyst:
|
||||
role: >
|
||||
@@ -120,7 +122,7 @@ analyst:
|
||||
and technical writing. You have a talent for identifying patterns
|
||||
and extracting meaningful insights from research data, then
|
||||
communicating those insights effectively through well-crafted reports.
|
||||
llm: openai/gpt-4o-mini
|
||||
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
|
||||
```
|
||||
|
||||
Notice how each agent has a distinct role, goal, and backstory. These elements aren't just descriptive - they actively shape how the agent approaches its tasks. By crafting these carefully, you can create agents with specialized skills and perspectives that complement each other.
|
||||
@@ -282,12 +284,12 @@ This script prepares the environment, specifies our research topic, and kicks of
|
||||
|
||||
Create a `.env` file in your project root with your API keys:
|
||||
|
||||
```
|
||||
OPENAI_API_KEY=your_openai_api_key
|
||||
```sh
|
||||
SERPER_API_KEY=your_serper_api_key
|
||||
# Add your provider's API key here too.
|
||||
```
|
||||
|
||||
You can get a Serper API key from [Serper.dev](https://serper.dev/).
|
||||
See the [LLM Setup guide](/concepts/llms#setting-up-your-llm) for details on configuring your provider of choice. You can get a Serper API key from [Serper.dev](https://serper.dev/).
|
||||
|
||||
## Step 8: Install Dependencies
|
||||
|
||||
|
||||
@@ -45,7 +45,8 @@ Let's dive in and build your first flow!
|
||||
Before starting, make sure you have:
|
||||
|
||||
1. Installed CrewAI following the [installation guide](/installation)
|
||||
2. Set up your OpenAI API key in your environment variables
|
||||
2. Set up your LLM API key in your environment, following the [LLM setup
|
||||
guide](/concepts/llms#setting-up-your-llm)
|
||||
3. Basic understanding of Python
|
||||
|
||||
## Step 1: Create a New CrewAI Flow Project
|
||||
@@ -107,6 +108,8 @@ Now, let's modify the generated files for the content writer crew. We'll set up
|
||||
|
||||
1. First, update the agents configuration file to define our content creation team:
|
||||
|
||||
Remember to set `llm` to the provider you are using.
|
||||
|
||||
```yaml
|
||||
# src/guide_creator_flow/crews/content_crew/config/agents.yaml
|
||||
content_writer:
|
||||
@@ -119,7 +122,7 @@ content_writer:
|
||||
You are a talented educational writer with expertise in creating clear, engaging
|
||||
content. You have a gift for explaining complex concepts in accessible language
|
||||
and organizing information in a way that helps readers build their understanding.
|
||||
llm: openai/gpt-4o-mini
|
||||
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
|
||||
|
||||
content_reviewer:
|
||||
role: >
|
||||
@@ -132,7 +135,7 @@ content_reviewer:
|
||||
content. You have an eye for detail, clarity, and coherence. You excel at
|
||||
improving content while maintaining the original author's voice and ensuring
|
||||
consistent quality across multiple sections.
|
||||
llm: openai/gpt-4o-mini
|
||||
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
|
||||
```
|
||||
|
||||
These agent definitions establish the specialized roles and perspectives that will shape how our AI agents approach content creation. Notice how each agent has a distinct purpose and expertise.
|
||||
@@ -441,10 +444,15 @@ This is the power of flows - combining different types of processing (user inter
|
||||
|
||||
## Step 6: Set Up Your Environment Variables
|
||||
|
||||
Create a `.env` file in your project root with your API keys:
|
||||
Create a `.env` file in your project root with your API keys. See the [LLM setup
|
||||
guide](/concepts/llms#setting-up-your-llm) for details on configuring a provider.
|
||||
|
||||
```
|
||||
```sh .env
|
||||
OPENAI_API_KEY=your_openai_api_key
|
||||
# or
|
||||
GEMINI_API_KEY=your_gemini_api_key
|
||||
# or
|
||||
ANTHROPIC_API_KEY=your_anthropic_api_key
|
||||
```
|
||||
|
||||
## Step 7: Install Dependencies
|
||||
@@ -547,7 +555,10 @@ Let's break down the key components of flows to help you understand how to build
|
||||
Flows allow you to make direct calls to language models when you need simple, structured responses:
|
||||
|
||||
```python
|
||||
llm = LLM(model="openai/gpt-4o-mini", response_format=GuideOutline)
|
||||
llm = LLM(
|
||||
model="model-id-here", # gpt-4o, gemini-2.0-flash, anthropic/claude...
|
||||
response_format=GuideOutline
|
||||
)
|
||||
response = llm.call(messages=messages)
|
||||
```
|
||||
|
||||
|
||||
@@ -68,7 +68,13 @@ We'll create a CrewAI application where two agents collaborate to research and w
|
||||
```python
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai_tools import SerperDevTool
|
||||
from openinference.instrumentation.crewai import CrewAIInstrumentor
|
||||
from phoenix.otel import register
|
||||
|
||||
# setup monitoring for your crew
|
||||
tracer_provider = register(
|
||||
endpoint="http://localhost:6006/v1/traces")
|
||||
CrewAIInstrumentor().instrument(skip_dep_check=True, tracer_provider=tracer_provider)
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Define your agents with roles and goals
|
||||
|
||||
@@ -180,8 +180,9 @@ Follow the steps below to get Crewing! 🚣♂️
|
||||
</Step>
|
||||
<Step title="Set your environment variables">
|
||||
Before running your crew, make sure you have the following keys set as environment variables in your `.env` file:
|
||||
- An [OpenAI API key](https://platform.openai.com/account/api-keys) (or other LLM API key): `OPENAI_API_KEY=sk-...`
|
||||
- A [Serper.dev](https://serper.dev/) API key: `SERPER_API_KEY=YOUR_KEY_HERE`
|
||||
- The configuration for your choice of model, such as an API key. See the
|
||||
[LLM setup guide](/concepts/llms#setting-up-your-llm) to learn how to configure models from any provider.
|
||||
</Step>
|
||||
<Step title="Lock and install the dependencies">
|
||||
- Lock the dependencies and install them by using the CLI command:
|
||||
@@ -317,7 +318,7 @@ email_summarizer:
|
||||
Summarize emails into a concise and clear summary
|
||||
backstory: >
|
||||
You will create a 5 bullet point summary of the report
|
||||
llm: openai/gpt-4o
|
||||
llm: provider/model-id # Add your choice of model here
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
@@ -8,10 +8,10 @@ icon: language
|
||||
|
||||
## Description
|
||||
|
||||
This tool is used to convert natural language to SQL queries. When passsed to the agent it will generate queries and then use them to interact with the database.
|
||||
This tool is used to convert natural language to SQL queries. When passed to the agent it will generate queries and then use them to interact with the database.
|
||||
|
||||
This enables multiple workflows like having an Agent to access the database fetch information based on the goal and then use the information to generate a response, report or any other output.
|
||||
Along with that proivdes the ability for the Agent to update the database based on its goal.
|
||||
Along with that provides the ability for the Agent to update the database based on its goal.
|
||||
|
||||
**Attention**: Make sure that the Agent has access to a Read-Replica or that is okay for the Agent to run insert/update queries on the database.
|
||||
|
||||
@@ -81,4 +81,4 @@ The Tool provides endless possibilities on the logic of the Agent and how it can
|
||||
|
||||
```md
|
||||
DB -> Agent -> ... -> Agent -> DB
|
||||
```
|
||||
```
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.118.0"
|
||||
version = "0.119.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
@@ -45,7 +45,7 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools~=0.42.2"]
|
||||
tools = ["crewai-tools~=0.44.0"]
|
||||
embeddings = [
|
||||
"tiktoken~=0.7.0"
|
||||
]
|
||||
|
||||
@@ -17,7 +17,7 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.118.0"
|
||||
__version__ = "0.119.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"Crew",
|
||||
|
||||
@@ -20,6 +20,7 @@ from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.agent_utils import (
|
||||
get_tool_names,
|
||||
load_agent_from_repository,
|
||||
parse_tools,
|
||||
render_text_description_and_args,
|
||||
)
|
||||
@@ -31,6 +32,14 @@ from crewai.utilities.events.agent_events import (
|
||||
AgentExecutionStartedEvent,
|
||||
)
|
||||
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
|
||||
from crewai.utilities.events.knowledge_events import (
|
||||
KnowledgeQueryCompletedEvent,
|
||||
KnowledgeQueryFailedEvent,
|
||||
KnowledgeQueryStartedEvent,
|
||||
KnowledgeRetrievalCompletedEvent,
|
||||
KnowledgeRetrievalStartedEvent,
|
||||
KnowledgeSearchQueryFailedEvent,
|
||||
)
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
@@ -122,6 +131,20 @@ class Agent(BaseAgent):
|
||||
default=None,
|
||||
description="Knowledge context for the crew.",
|
||||
)
|
||||
knowledge_search_query: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Knowledge search query for the agent dynamically generated by the agent.",
|
||||
)
|
||||
from_repository: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The Agent's role to be used from your repository.",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
def validate_from_repository(cls, v):
|
||||
if v is not None and (from_repository := v.get("from_repository")):
|
||||
return load_agent_from_repository(from_repository) | v
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
@@ -185,7 +208,7 @@ class Agent(BaseAgent):
|
||||
self,
|
||||
task: Task,
|
||||
context: Optional[str] = None,
|
||||
tools: Optional[List[BaseTool]] = None
|
||||
tools: Optional[List[BaseTool]] = None,
|
||||
) -> str:
|
||||
"""Execute a task with the agent.
|
||||
|
||||
@@ -245,27 +268,65 @@ class Agent(BaseAgent):
|
||||
knowledge_config = (
|
||||
self.knowledge_config.model_dump() if self.knowledge_config else {}
|
||||
)
|
||||
if self.knowledge:
|
||||
agent_knowledge_snippets = self.knowledge.query(
|
||||
[task.prompt()], **knowledge_config
|
||||
)
|
||||
if agent_knowledge_snippets:
|
||||
self.agent_knowledge_context = extract_knowledge_context(
|
||||
agent_knowledge_snippets
|
||||
)
|
||||
if self.agent_knowledge_context:
|
||||
task_prompt += self.agent_knowledge_context
|
||||
|
||||
if self.crew:
|
||||
knowledge_snippets = self.crew.query_knowledge(
|
||||
[task.prompt()], **knowledge_config
|
||||
if self.knowledge:
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=KnowledgeRetrievalStartedEvent(
|
||||
agent=self,
|
||||
),
|
||||
)
|
||||
if knowledge_snippets:
|
||||
self.crew_knowledge_context = extract_knowledge_context(
|
||||
knowledge_snippets
|
||||
try:
|
||||
self.knowledge_search_query = self._get_knowledge_search_query(
|
||||
task_prompt
|
||||
)
|
||||
if self.knowledge_search_query:
|
||||
agent_knowledge_snippets = self.knowledge.query(
|
||||
[self.knowledge_search_query], **knowledge_config
|
||||
)
|
||||
if agent_knowledge_snippets:
|
||||
self.agent_knowledge_context = extract_knowledge_context(
|
||||
agent_knowledge_snippets
|
||||
)
|
||||
if self.agent_knowledge_context:
|
||||
task_prompt += self.agent_knowledge_context
|
||||
if self.crew:
|
||||
knowledge_snippets = self.crew.query_knowledge(
|
||||
[self.knowledge_search_query], **knowledge_config
|
||||
)
|
||||
if knowledge_snippets:
|
||||
self.crew_knowledge_context = extract_knowledge_context(
|
||||
knowledge_snippets
|
||||
)
|
||||
if self.crew_knowledge_context:
|
||||
task_prompt += self.crew_knowledge_context
|
||||
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=KnowledgeRetrievalCompletedEvent(
|
||||
query=self.knowledge_search_query,
|
||||
agent=self,
|
||||
retrieved_knowledge=(
|
||||
(self.agent_knowledge_context or "")
|
||||
+ (
|
||||
"\n"
|
||||
if self.agent_knowledge_context
|
||||
and self.crew_knowledge_context
|
||||
else ""
|
||||
)
|
||||
+ (self.crew_knowledge_context or "")
|
||||
),
|
||||
),
|
||||
)
|
||||
except Exception as e:
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=KnowledgeSearchQueryFailedEvent(
|
||||
query=self.knowledge_search_query or "",
|
||||
agent=self,
|
||||
error=str(e),
|
||||
),
|
||||
)
|
||||
if self.crew_knowledge_context:
|
||||
task_prompt += self.crew_knowledge_context
|
||||
|
||||
tools = tools or self.tools or []
|
||||
self.create_agent_executor(tools=tools, task=task)
|
||||
@@ -288,12 +349,19 @@ class Agent(BaseAgent):
|
||||
|
||||
# Determine execution method based on timeout setting
|
||||
if self.max_execution_time is not None:
|
||||
if not isinstance(self.max_execution_time, int) or self.max_execution_time <= 0:
|
||||
raise ValueError("Max Execution time must be a positive integer greater than zero")
|
||||
result = self._execute_with_timeout(task_prompt, task, self.max_execution_time)
|
||||
if (
|
||||
not isinstance(self.max_execution_time, int)
|
||||
or self.max_execution_time <= 0
|
||||
):
|
||||
raise ValueError(
|
||||
"Max Execution time must be a positive integer greater than zero"
|
||||
)
|
||||
result = self._execute_with_timeout(
|
||||
task_prompt, task, self.max_execution_time
|
||||
)
|
||||
else:
|
||||
result = self._execute_without_timeout(task_prompt, task)
|
||||
|
||||
|
||||
except TimeoutError as e:
|
||||
# Propagate TimeoutError without retry
|
||||
crewai_event_bus.emit(
|
||||
@@ -345,54 +413,46 @@ class Agent(BaseAgent):
|
||||
)
|
||||
return result
|
||||
|
||||
def _execute_with_timeout(
|
||||
self,
|
||||
task_prompt: str,
|
||||
task: Task,
|
||||
timeout: int
|
||||
) -> str:
|
||||
def _execute_with_timeout(self, task_prompt: str, task: Task, timeout: int) -> str:
|
||||
"""Execute a task with a timeout.
|
||||
|
||||
|
||||
Args:
|
||||
task_prompt: The prompt to send to the agent.
|
||||
task: The task being executed.
|
||||
timeout: Maximum execution time in seconds.
|
||||
|
||||
|
||||
Returns:
|
||||
The output of the agent.
|
||||
|
||||
|
||||
Raises:
|
||||
TimeoutError: If execution exceeds the timeout.
|
||||
RuntimeError: If execution fails for other reasons.
|
||||
"""
|
||||
import concurrent.futures
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
future = executor.submit(
|
||||
self._execute_without_timeout,
|
||||
task_prompt=task_prompt,
|
||||
task=task
|
||||
self._execute_without_timeout, task_prompt=task_prompt, task=task
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
return future.result(timeout=timeout)
|
||||
except concurrent.futures.TimeoutError:
|
||||
future.cancel()
|
||||
raise TimeoutError(f"Task '{task.description}' execution timed out after {timeout} seconds. Consider increasing max_execution_time or optimizing the task.")
|
||||
raise TimeoutError(
|
||||
f"Task '{task.description}' execution timed out after {timeout} seconds. Consider increasing max_execution_time or optimizing the task."
|
||||
)
|
||||
except Exception as e:
|
||||
future.cancel()
|
||||
raise RuntimeError(f"Task execution failed: {str(e)}")
|
||||
|
||||
def _execute_without_timeout(
|
||||
self,
|
||||
task_prompt: str,
|
||||
task: Task
|
||||
) -> str:
|
||||
def _execute_without_timeout(self, task_prompt: str, task: Task) -> str:
|
||||
"""Execute a task without a timeout.
|
||||
|
||||
|
||||
Args:
|
||||
task_prompt: The prompt to send to the agent.
|
||||
task: The task being executed.
|
||||
|
||||
|
||||
Returns:
|
||||
The output of the agent.
|
||||
"""
|
||||
@@ -560,6 +620,61 @@ class Agent(BaseAgent):
|
||||
def set_fingerprint(self, fingerprint: Fingerprint):
|
||||
self.security_config.fingerprint = fingerprint
|
||||
|
||||
def _get_knowledge_search_query(self, task_prompt: str) -> str | None:
|
||||
"""Generate a search query for the knowledge base based on the task description."""
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=KnowledgeQueryStartedEvent(
|
||||
task_prompt=task_prompt,
|
||||
agent=self,
|
||||
),
|
||||
)
|
||||
query = self.i18n.slice("knowledge_search_query").format(
|
||||
task_prompt=task_prompt
|
||||
)
|
||||
rewriter_prompt = self.i18n.slice("knowledge_search_query_system_prompt")
|
||||
if not isinstance(self.llm, BaseLLM):
|
||||
self._logger.log(
|
||||
"warning",
|
||||
f"Knowledge search query failed: LLM for agent '{self.role}' is not an instance of BaseLLM",
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=KnowledgeQueryFailedEvent(
|
||||
agent=self,
|
||||
error="LLM is not compatible with knowledge search queries",
|
||||
),
|
||||
)
|
||||
return None
|
||||
|
||||
try:
|
||||
rewritten_query = self.llm.call(
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": rewriter_prompt,
|
||||
},
|
||||
{"role": "user", "content": query},
|
||||
]
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=KnowledgeQueryCompletedEvent(
|
||||
query=query,
|
||||
agent=self,
|
||||
),
|
||||
)
|
||||
return rewritten_query
|
||||
except Exception as e:
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=KnowledgeQueryFailedEvent(
|
||||
agent=self,
|
||||
error=str(e),
|
||||
),
|
||||
)
|
||||
return None
|
||||
|
||||
def kickoff(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
|
||||
@@ -5,5 +5,5 @@ def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
raise Exception("No token found, make sure you are logged in")
|
||||
return access_token
|
||||
|
||||
@@ -13,7 +13,7 @@ ENV_VARS = {
|
||||
],
|
||||
"gemini": [
|
||||
{
|
||||
"prompt": "Enter your GEMINI API key (press Enter to skip)",
|
||||
"prompt": "Enter your GEMINI API key from https://ai.dev/apikey (press Enter to skip)",
|
||||
"key_name": "GEMINI_API_KEY",
|
||||
}
|
||||
],
|
||||
|
||||
@@ -14,6 +14,7 @@ class PlusAPI:
|
||||
|
||||
TOOLS_RESOURCE = "/crewai_plus/api/v1/tools"
|
||||
CREWS_RESOURCE = "/crewai_plus/api/v1/crews"
|
||||
AGENTS_RESOURCE = "/crewai_plus/api/v1/agents"
|
||||
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self.api_key = api_key
|
||||
@@ -37,6 +38,9 @@ class PlusAPI:
|
||||
def get_tool(self, handle: str):
|
||||
return self._make_request("GET", f"{self.TOOLS_RESOURCE}/{handle}")
|
||||
|
||||
def get_agent(self, handle: str):
|
||||
return self._make_request("GET", f"{self.AGENTS_RESOURCE}/{handle}")
|
||||
|
||||
def publish_tool(
|
||||
self,
|
||||
handle: str,
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.118.0,<1.0.0"
|
||||
"crewai[tools]>=0.119.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.118.0,<1.0.0",
|
||||
"crewai[tools]>=0.119.0,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.118.0"
|
||||
"crewai[tools]>=0.119.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
|
||||
@@ -52,7 +52,7 @@ from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import BaseTool, Tool
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.constants import NOT_SPECIFIED, TRAINING_DATA_FILE
|
||||
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities.events.crew_events import (
|
||||
@@ -478,7 +478,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
separated by a synchronous task.
|
||||
"""
|
||||
for i, task in enumerate(self.tasks):
|
||||
if task.async_execution and task.context:
|
||||
if task.async_execution and isinstance(task.context, list):
|
||||
for context_task in task.context:
|
||||
if context_task.async_execution:
|
||||
for j in range(i - 1, -1, -1):
|
||||
@@ -496,7 +496,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
task_indices = {id(task): i for i, task in enumerate(self.tasks)}
|
||||
|
||||
for task in self.tasks:
|
||||
if task.context:
|
||||
if isinstance(task.context, list):
|
||||
for context_task in task.context:
|
||||
if id(context_task) not in task_indices:
|
||||
continue # Skip context tasks not in the main tasks list
|
||||
@@ -1034,11 +1034,14 @@ class Crew(FlowTrackable, BaseModel):
|
||||
)
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]) -> str:
|
||||
if not task.context:
|
||||
return ""
|
||||
|
||||
context = (
|
||||
aggregate_raw_outputs_from_tasks(task.context)
|
||||
if task.context
|
||||
else aggregate_raw_outputs_from_task_outputs(task_outputs)
|
||||
aggregate_raw_outputs_from_task_outputs(task_outputs)
|
||||
if task.context is NOT_SPECIFIED
|
||||
else aggregate_raw_outputs_from_tasks(task.context)
|
||||
)
|
||||
return context
|
||||
|
||||
@@ -1226,7 +1229,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
task_mapping[task.key] = cloned_task
|
||||
|
||||
for cloned_task, original_task in zip(cloned_tasks, self.tasks):
|
||||
if original_task.context:
|
||||
if isinstance(original_task.context, list):
|
||||
cloned_context = [
|
||||
task_mapping[context_task.key]
|
||||
for context_task in original_task.context
|
||||
|
||||
@@ -5,8 +5,7 @@ import sys
|
||||
import threading
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
from types import SimpleNamespace
|
||||
from contextlib import contextmanager, redirect_stderr, redirect_stdout
|
||||
from typing import (
|
||||
Any,
|
||||
DefaultDict,
|
||||
@@ -31,7 +30,6 @@ from crewai.utilities.events.llm_events import (
|
||||
LLMCallType,
|
||||
LLMStreamChunkEvent,
|
||||
)
|
||||
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
@@ -45,6 +43,9 @@ with warnings.catch_warnings():
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
||||
import io
|
||||
from typing import TextIO
|
||||
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
@@ -54,12 +55,17 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class FilteredStream:
|
||||
def __init__(self, original_stream):
|
||||
class FilteredStream(io.TextIOBase):
|
||||
_lock = None
|
||||
|
||||
def __init__(self, original_stream: TextIO):
|
||||
self._original_stream = original_stream
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def write(self, s) -> int:
|
||||
def write(self, s: str) -> int:
|
||||
if not self._lock:
|
||||
self._lock = threading.Lock()
|
||||
|
||||
with self._lock:
|
||||
# Filter out extraneous messages from LiteLLM
|
||||
if (
|
||||
@@ -214,15 +220,11 @@ def suppress_warnings():
|
||||
)
|
||||
|
||||
# Redirect stdout and stderr
|
||||
old_stdout = sys.stdout
|
||||
old_stderr = sys.stderr
|
||||
sys.stdout = FilteredStream(old_stdout)
|
||||
sys.stderr = FilteredStream(old_stderr)
|
||||
try:
|
||||
with (
|
||||
redirect_stdout(FilteredStream(sys.stdout)),
|
||||
redirect_stderr(FilteredStream(sys.stderr)),
|
||||
):
|
||||
yield
|
||||
finally:
|
||||
sys.stdout = old_stdout
|
||||
sys.stderr = old_stderr
|
||||
|
||||
|
||||
class Delta(TypedDict):
|
||||
|
||||
@@ -2,7 +2,6 @@ import datetime
|
||||
import inspect
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import threading
|
||||
import uuid
|
||||
from concurrent.futures import Future
|
||||
@@ -41,6 +40,7 @@ from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.utilities.config import process_config
|
||||
from crewai.utilities.constants import NOT_SPECIFIED
|
||||
from crewai.utilities.converter import Converter, convert_to_model
|
||||
from crewai.utilities.events import (
|
||||
TaskCompletedEvent,
|
||||
@@ -97,7 +97,7 @@ class Task(BaseModel):
|
||||
)
|
||||
context: Optional[List["Task"]] = Field(
|
||||
description="Other tasks that will have their output used as context for this task.",
|
||||
default=None,
|
||||
default=NOT_SPECIFIED,
|
||||
)
|
||||
async_execution: Optional[bool] = Field(
|
||||
description="Whether the task should be executed asynchronously or not.",
|
||||
@@ -643,7 +643,7 @@ class Task(BaseModel):
|
||||
|
||||
cloned_context = (
|
||||
[task_mapping[context_task.key] for context_task in self.context]
|
||||
if self.context
|
||||
if isinstance(self.context, list)
|
||||
else None
|
||||
)
|
||||
|
||||
|
||||
@@ -10,6 +10,18 @@ from contextlib import contextmanager
|
||||
from importlib.metadata import version
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import (
|
||||
OTLPSpanExporter,
|
||||
)
|
||||
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import (
|
||||
BatchSpanProcessor,
|
||||
SpanExportResult,
|
||||
)
|
||||
from opentelemetry.trace import Span, Status, StatusCode
|
||||
|
||||
from crewai.telemetry.constants import (
|
||||
CREWAI_TELEMETRY_BASE_URL,
|
||||
CREWAI_TELEMETRY_SERVICE_NAME,
|
||||
@@ -25,18 +37,6 @@ def suppress_warnings():
|
||||
yield
|
||||
|
||||
|
||||
from opentelemetry import trace # noqa: E402
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import (
|
||||
OTLPSpanExporter, # noqa: E402
|
||||
)
|
||||
from opentelemetry.sdk.resources import SERVICE_NAME, Resource # noqa: E402
|
||||
from opentelemetry.sdk.trace import TracerProvider # noqa: E402
|
||||
from opentelemetry.sdk.trace.export import ( # noqa: E402
|
||||
BatchSpanProcessor,
|
||||
SpanExportResult,
|
||||
)
|
||||
from opentelemetry.trace import Span, Status, StatusCode # noqa: E402
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
@@ -232,7 +232,7 @@ class Telemetry:
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"context": (
|
||||
[task.description for task in task.context]
|
||||
if task.context
|
||||
if isinstance(task.context, list)
|
||||
else None
|
||||
),
|
||||
"tools_names": [
|
||||
@@ -748,7 +748,7 @@ class Telemetry:
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"context": (
|
||||
[task.description for task in task.context]
|
||||
if task.context
|
||||
if isinstance(task.context, list)
|
||||
else None
|
||||
),
|
||||
"tools_names": [
|
||||
|
||||
@@ -27,7 +27,9 @@
|
||||
"feedback_instructions": "User feedback: {feedback}\nInstructions: Use this feedback to enhance the next output iteration.\nNote: Do not respond or add commentary.",
|
||||
"lite_agent_system_prompt_with_tools": "You are {role}. {backstory}\nYour personal goal is: {goal}\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n```",
|
||||
"lite_agent_system_prompt_without_tools": "You are {role}. {backstory}\nYour personal goal is: {goal}\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
|
||||
"lite_agent_response_format": "\nIMPORTANT: Your final answer MUST contain all the information requested in the following format: {response_format}\n\nIMPORTANT: Ensure the final output does not include any code block markers like ```json or ```python."
|
||||
"lite_agent_response_format": "\nIMPORTANT: Your final answer MUST contain all the information requested in the following format: {response_format}\n\nIMPORTANT: Ensure the final output does not include any code block markers like ```json or ```python.",
|
||||
"knowledge_search_query": "The original query is: {task_prompt}.",
|
||||
"knowledge_search_query_system_prompt": "Your goal is to rewrite the user query so that it is optimized for retrieval from a vector database. Consider how the query will be used to find relevant documents, and aim to make it more specific and context-aware. \n\n Do not include any other text than the rewritten query, especially any preamble or postamble and only add expected output format if its relevant to the rewritten query. \n\n Focus on the key words of the intended task and to retrieve the most relevant information. \n\n There will be some extra context provided that might need to be removed such as expected_output formats structured_outputs and other instructions."
|
||||
},
|
||||
"errors": {
|
||||
"force_final_answer_error": "You can't keep going, here is the best final answer you generated:\n\n {formatted_answer}",
|
||||
|
||||
@@ -16,6 +16,7 @@ from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from crewai.tools.tool_types import ToolResult
|
||||
from crewai.utilities import I18N, Printer
|
||||
from crewai.utilities.errors import AgentRepositoryError
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
@@ -428,3 +429,36 @@ def show_agent_logs(
|
||||
printer.print(
|
||||
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
|
||||
)
|
||||
|
||||
|
||||
def load_agent_from_repository(from_repository: str) -> Dict[str, Any]:
|
||||
attributes: Dict[str, Any] = {}
|
||||
if from_repository:
|
||||
import importlib
|
||||
|
||||
from crewai.cli.authentication.token import get_auth_token
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
|
||||
client = PlusAPI(api_key=get_auth_token())
|
||||
response = client.get_agent(from_repository)
|
||||
if response.status_code != 200:
|
||||
raise AgentRepositoryError(
|
||||
f"Agent {from_repository} could not be loaded: {response.text}"
|
||||
)
|
||||
|
||||
agent = response.json()
|
||||
for key, value in agent.items():
|
||||
if key == "tools":
|
||||
attributes[key] = []
|
||||
for tool_name in value:
|
||||
try:
|
||||
module = importlib.import_module("crewai_tools")
|
||||
tool_class = getattr(module, tool_name)
|
||||
attributes[key].append(tool_class())
|
||||
except Exception as e:
|
||||
raise AgentRepositoryError(
|
||||
f"Tool {tool_name} could not be loaded: {e}"
|
||||
) from e
|
||||
else:
|
||||
attributes[key] = value
|
||||
return attributes
|
||||
|
||||
@@ -5,3 +5,14 @@ KNOWLEDGE_DIRECTORY = "knowledge"
|
||||
MAX_LLM_RETRY = 3
|
||||
MAX_FILE_NAME_LENGTH = 255
|
||||
EMITTER_COLOR = "bold_blue"
|
||||
|
||||
|
||||
class _NotSpecified:
|
||||
def __repr__(self):
|
||||
return "NOT_SPECIFIED"
|
||||
|
||||
|
||||
# Sentinel value used to detect when no value has been explicitly provided.
|
||||
# Unlike `None`, which might be a valid value from the user, `NOT_SPECIFIED` allows
|
||||
# us to distinguish between "not passed at all" and "explicitly passed None" or "[]".
|
||||
NOT_SPECIFIED = _NotSpecified()
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
"""Error message definitions for CrewAI database operations."""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@@ -37,3 +38,9 @@ class DatabaseError:
|
||||
The formatted error message
|
||||
"""
|
||||
return template.format(str(error))
|
||||
|
||||
|
||||
class AgentRepositoryError(Exception):
|
||||
"""Exception raised when an agent repository is not found."""
|
||||
|
||||
...
|
||||
|
||||
@@ -8,6 +8,14 @@ from crewai.telemetry.telemetry import Telemetry
|
||||
from crewai.utilities import Logger
|
||||
from crewai.utilities.constants import EMITTER_COLOR
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events.knowledge_events import (
|
||||
KnowledgeQueryCompletedEvent,
|
||||
KnowledgeQueryFailedEvent,
|
||||
KnowledgeQueryStartedEvent,
|
||||
KnowledgeRetrievalCompletedEvent,
|
||||
KnowledgeRetrievalStartedEvent,
|
||||
KnowledgeSearchQueryFailedEvent,
|
||||
)
|
||||
from crewai.utilities.events.llm_events import (
|
||||
LLMCallCompletedEvent,
|
||||
LLMCallFailedEvent,
|
||||
@@ -57,6 +65,8 @@ class EventListener(BaseEventListener):
|
||||
execution_spans: Dict[Task, Any] = Field(default_factory=dict)
|
||||
next_chunk = 0
|
||||
text_stream = StringIO()
|
||||
knowledge_retrieval_in_progress = False
|
||||
knowledge_query_in_progress = False
|
||||
|
||||
def __new__(cls):
|
||||
if cls._instance is None:
|
||||
@@ -342,5 +352,59 @@ class EventListener(BaseEventListener):
|
||||
def on_crew_test_failed(source, event: CrewTestFailedEvent):
|
||||
self.formatter.handle_crew_test_failed(event.crew_name or "Crew")
|
||||
|
||||
@crewai_event_bus.on(KnowledgeRetrievalStartedEvent)
|
||||
def on_knowledge_retrieval_started(
|
||||
source, event: KnowledgeRetrievalStartedEvent
|
||||
):
|
||||
if self.knowledge_retrieval_in_progress:
|
||||
return
|
||||
|
||||
self.knowledge_retrieval_in_progress = True
|
||||
|
||||
self.formatter.handle_knowledge_retrieval_started(
|
||||
self.formatter.current_agent_branch,
|
||||
self.formatter.current_crew_tree,
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(KnowledgeRetrievalCompletedEvent)
|
||||
def on_knowledge_retrieval_completed(
|
||||
source, event: KnowledgeRetrievalCompletedEvent
|
||||
):
|
||||
if not self.knowledge_retrieval_in_progress:
|
||||
return
|
||||
|
||||
self.knowledge_retrieval_in_progress = False
|
||||
self.formatter.handle_knowledge_retrieval_completed(
|
||||
self.formatter.current_agent_branch,
|
||||
self.formatter.current_crew_tree,
|
||||
event.retrieved_knowledge,
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(KnowledgeQueryStartedEvent)
|
||||
def on_knowledge_query_started(source, event: KnowledgeQueryStartedEvent):
|
||||
pass
|
||||
|
||||
@crewai_event_bus.on(KnowledgeQueryFailedEvent)
|
||||
def on_knowledge_query_failed(source, event: KnowledgeQueryFailedEvent):
|
||||
self.formatter.handle_knowledge_query_failed(
|
||||
self.formatter.current_agent_branch,
|
||||
event.error,
|
||||
self.formatter.current_crew_tree,
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(KnowledgeQueryCompletedEvent)
|
||||
def on_knowledge_query_completed(source, event: KnowledgeQueryCompletedEvent):
|
||||
pass
|
||||
|
||||
@crewai_event_bus.on(KnowledgeSearchQueryFailedEvent)
|
||||
def on_knowledge_search_query_failed(
|
||||
source, event: KnowledgeSearchQueryFailedEvent
|
||||
):
|
||||
self.formatter.handle_knowledge_search_query_failed(
|
||||
self.formatter.current_agent_branch,
|
||||
event.error,
|
||||
self.formatter.current_crew_tree,
|
||||
)
|
||||
|
||||
|
||||
event_listener = EventListener()
|
||||
|
||||
56
src/crewai/utilities/events/knowledge_events.py
Normal file
56
src/crewai/utilities/events/knowledge_events.py
Normal file
@@ -0,0 +1,56 @@
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.utilities.events.base_events import BaseEvent
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
|
||||
|
||||
class KnowledgeRetrievalStartedEvent(BaseEvent):
|
||||
"""Event emitted when a knowledge retrieval is started."""
|
||||
|
||||
type: str = "knowledge_search_query_started"
|
||||
agent: BaseAgent
|
||||
|
||||
|
||||
class KnowledgeRetrievalCompletedEvent(BaseEvent):
|
||||
"""Event emitted when a knowledge retrieval is completed."""
|
||||
|
||||
query: str
|
||||
type: str = "knowledge_search_query_completed"
|
||||
agent: BaseAgent
|
||||
retrieved_knowledge: Any
|
||||
|
||||
|
||||
class KnowledgeQueryStartedEvent(BaseEvent):
|
||||
"""Event emitted when a knowledge query is started."""
|
||||
|
||||
task_prompt: str
|
||||
type: str = "knowledge_query_started"
|
||||
agent: BaseAgent
|
||||
|
||||
|
||||
class KnowledgeQueryFailedEvent(BaseEvent):
|
||||
"""Event emitted when a knowledge query fails."""
|
||||
|
||||
type: str = "knowledge_query_failed"
|
||||
agent: BaseAgent
|
||||
error: str
|
||||
|
||||
|
||||
class KnowledgeQueryCompletedEvent(BaseEvent):
|
||||
"""Event emitted when a knowledge query is completed."""
|
||||
|
||||
query: str
|
||||
type: str = "knowledge_query_completed"
|
||||
agent: BaseAgent
|
||||
|
||||
|
||||
class KnowledgeSearchQueryFailedEvent(BaseEvent):
|
||||
"""Event emitted when a knowledge search query fails."""
|
||||
|
||||
query: str
|
||||
type: str = "knowledge_search_query_failed"
|
||||
agent: BaseAgent
|
||||
error: str
|
||||
@@ -783,3 +783,202 @@ class ConsoleFormatter:
|
||||
self.update_lite_agent_status(
|
||||
self.current_lite_agent_branch, lite_agent_role, status, **fields
|
||||
)
|
||||
|
||||
def handle_knowledge_retrieval_started(
|
||||
self,
|
||||
agent_branch: Optional[Tree],
|
||||
crew_tree: Optional[Tree],
|
||||
) -> Optional[Tree]:
|
||||
"""Handle knowledge retrieval started event."""
|
||||
if not self.verbose:
|
||||
return None
|
||||
|
||||
branch_to_use = agent_branch or self.current_lite_agent_branch
|
||||
tree_to_use = branch_to_use or crew_tree
|
||||
|
||||
if branch_to_use is None or tree_to_use is None:
|
||||
# If we don't have a valid branch, use crew_tree as the branch if available
|
||||
if crew_tree is not None:
|
||||
branch_to_use = tree_to_use = crew_tree
|
||||
else:
|
||||
return None
|
||||
|
||||
knowledge_branch = branch_to_use.add("")
|
||||
self.update_tree_label(
|
||||
knowledge_branch, "🔍", "Knowledge Retrieval Started", "blue"
|
||||
)
|
||||
|
||||
self.print(tree_to_use)
|
||||
self.print()
|
||||
return knowledge_branch
|
||||
|
||||
def handle_knowledge_retrieval_completed(
|
||||
self,
|
||||
agent_branch: Optional[Tree],
|
||||
crew_tree: Optional[Tree],
|
||||
retrieved_knowledge: Any,
|
||||
) -> None:
|
||||
"""Handle knowledge retrieval completed event."""
|
||||
if not self.verbose:
|
||||
return None
|
||||
|
||||
branch_to_use = self.current_lite_agent_branch or agent_branch
|
||||
tree_to_use = branch_to_use or crew_tree
|
||||
|
||||
if branch_to_use is None and tree_to_use is not None:
|
||||
branch_to_use = tree_to_use
|
||||
|
||||
if branch_to_use is None or tree_to_use is None:
|
||||
if retrieved_knowledge:
|
||||
knowledge_text = str(retrieved_knowledge)
|
||||
if len(knowledge_text) > 500:
|
||||
knowledge_text = knowledge_text[:497] + "..."
|
||||
|
||||
knowledge_panel = Panel(
|
||||
Text(knowledge_text, style="white"),
|
||||
title="📚 Retrieved Knowledge",
|
||||
border_style="green",
|
||||
padding=(1, 2),
|
||||
)
|
||||
self.print(knowledge_panel)
|
||||
self.print()
|
||||
return None
|
||||
|
||||
knowledge_branch_found = False
|
||||
for child in branch_to_use.children:
|
||||
if "Knowledge Retrieval Started" in str(child.label):
|
||||
self.update_tree_label(
|
||||
child, "✅", "Knowledge Retrieval Completed", "green"
|
||||
)
|
||||
knowledge_branch_found = True
|
||||
break
|
||||
|
||||
if not knowledge_branch_found:
|
||||
for child in branch_to_use.children:
|
||||
if (
|
||||
"Knowledge Retrieval" in str(child.label)
|
||||
and "Started" not in str(child.label)
|
||||
and "Completed" not in str(child.label)
|
||||
):
|
||||
self.update_tree_label(
|
||||
child, "✅", "Knowledge Retrieval Completed", "green"
|
||||
)
|
||||
knowledge_branch_found = True
|
||||
break
|
||||
|
||||
if not knowledge_branch_found:
|
||||
knowledge_branch = branch_to_use.add("")
|
||||
self.update_tree_label(
|
||||
knowledge_branch, "✅", "Knowledge Retrieval Completed", "green"
|
||||
)
|
||||
|
||||
self.print(tree_to_use)
|
||||
|
||||
if retrieved_knowledge:
|
||||
knowledge_text = str(retrieved_knowledge)
|
||||
if len(knowledge_text) > 500:
|
||||
knowledge_text = knowledge_text[:497] + "..."
|
||||
|
||||
knowledge_panel = Panel(
|
||||
Text(knowledge_text, style="white"),
|
||||
title="📚 Retrieved Knowledge",
|
||||
border_style="green",
|
||||
padding=(1, 2),
|
||||
)
|
||||
self.print(knowledge_panel)
|
||||
|
||||
self.print()
|
||||
|
||||
def handle_knowledge_query_started(
|
||||
self,
|
||||
agent_branch: Optional[Tree],
|
||||
task_prompt: str,
|
||||
crew_tree: Optional[Tree],
|
||||
) -> None:
|
||||
"""Handle knowledge query generated event."""
|
||||
if not self.verbose:
|
||||
return None
|
||||
|
||||
branch_to_use = self.current_lite_agent_branch or agent_branch
|
||||
tree_to_use = branch_to_use or crew_tree
|
||||
if branch_to_use is None or tree_to_use is None:
|
||||
return None
|
||||
|
||||
query_branch = branch_to_use.add("")
|
||||
self.update_tree_label(
|
||||
query_branch, "🔎", f"Query: {task_prompt[:50]}...", "yellow"
|
||||
)
|
||||
|
||||
self.print(tree_to_use)
|
||||
self.print()
|
||||
|
||||
def handle_knowledge_query_failed(
|
||||
self,
|
||||
agent_branch: Optional[Tree],
|
||||
error: str,
|
||||
crew_tree: Optional[Tree],
|
||||
) -> None:
|
||||
"""Handle knowledge query failed event."""
|
||||
if not self.verbose:
|
||||
return
|
||||
|
||||
tree_to_use = self.current_lite_agent_branch or crew_tree
|
||||
branch_to_use = self.current_lite_agent_branch or agent_branch
|
||||
|
||||
if branch_to_use and tree_to_use:
|
||||
query_branch = branch_to_use.add("")
|
||||
self.update_tree_label(query_branch, "❌", "Knowledge Query Failed", "red")
|
||||
self.print(tree_to_use)
|
||||
self.print()
|
||||
|
||||
# Show error panel
|
||||
error_content = self.create_status_content(
|
||||
"Knowledge Query Failed", "Query Error", "red", Error=error
|
||||
)
|
||||
self.print_panel(error_content, "Knowledge Error", "red")
|
||||
|
||||
def handle_knowledge_query_completed(
|
||||
self,
|
||||
agent_branch: Optional[Tree],
|
||||
crew_tree: Optional[Tree],
|
||||
) -> None:
|
||||
"""Handle knowledge query completed event."""
|
||||
if not self.verbose:
|
||||
return None
|
||||
|
||||
branch_to_use = self.current_lite_agent_branch or agent_branch
|
||||
tree_to_use = branch_to_use or crew_tree
|
||||
|
||||
if branch_to_use is None or tree_to_use is None:
|
||||
return None
|
||||
|
||||
query_branch = branch_to_use.add("")
|
||||
self.update_tree_label(query_branch, "✅", "Knowledge Query Completed", "green")
|
||||
|
||||
self.print(tree_to_use)
|
||||
self.print()
|
||||
|
||||
def handle_knowledge_search_query_failed(
|
||||
self,
|
||||
agent_branch: Optional[Tree],
|
||||
error: str,
|
||||
crew_tree: Optional[Tree],
|
||||
) -> None:
|
||||
"""Handle knowledge search query failed event."""
|
||||
if not self.verbose:
|
||||
return
|
||||
|
||||
tree_to_use = self.current_lite_agent_branch or crew_tree
|
||||
branch_to_use = self.current_lite_agent_branch or agent_branch
|
||||
|
||||
if branch_to_use and tree_to_use:
|
||||
query_branch = branch_to_use.add("")
|
||||
self.update_tree_label(query_branch, "❌", "Knowledge Search Failed", "red")
|
||||
self.print(tree_to_use)
|
||||
self.print()
|
||||
|
||||
# Show error panel
|
||||
error_content = self.create_status_content(
|
||||
"Knowledge Search Failed", "Search Error", "red", Error=error
|
||||
)
|
||||
self.print_panel(error_content, "Search Error", "red")
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import re
|
||||
from typing import TYPE_CHECKING, List
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
@@ -17,6 +17,11 @@ def aggregate_raw_outputs_from_task_outputs(task_outputs: List["TaskOutput"]) ->
|
||||
|
||||
def aggregate_raw_outputs_from_tasks(tasks: List["Task"]) -> str:
|
||||
"""Generate string context from the tasks."""
|
||||
task_outputs = [task.output for task in tasks if task.output is not None]
|
||||
|
||||
task_outputs = (
|
||||
[task.output for task in tasks if task.output is not None]
|
||||
if isinstance(tasks, list)
|
||||
else []
|
||||
)
|
||||
|
||||
return aggregate_raw_outputs_from_task_outputs(task_outputs)
|
||||
|
||||
@@ -2,14 +2,13 @@
|
||||
|
||||
import os
|
||||
from unittest import mock
|
||||
from unittest.mock import patch
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai import Agent, Crew, Task
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
|
||||
from crewai.agents.parser import CrewAgentParser, OutputParserException
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.knowledge_config import KnowledgeConfig
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
@@ -19,6 +18,7 @@ from crewai.tools import tool
|
||||
from crewai.tools.tool_calling import InstructorToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.utilities import RPMController
|
||||
from crewai.utilities.errors import AgentRepositoryError
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
|
||||
|
||||
@@ -73,6 +73,7 @@ def test_agent_creation():
|
||||
assert agent.goal == "test goal"
|
||||
assert agent.backstory == "test backstory"
|
||||
|
||||
|
||||
def test_agent_with_only_system_template():
|
||||
"""Test that an agent with only system_template works without errors."""
|
||||
agent = Agent(
|
||||
@@ -88,6 +89,7 @@ def test_agent_with_only_system_template():
|
||||
assert agent.goal == "Test Goal"
|
||||
assert agent.backstory == "Test Backstory"
|
||||
|
||||
|
||||
def test_agent_with_only_prompt_template():
|
||||
"""Test that an agent with only system_template works without errors."""
|
||||
agent = Agent(
|
||||
@@ -119,7 +121,8 @@ def test_agent_with_missing_response_template():
|
||||
assert agent.role == "Test Role"
|
||||
assert agent.goal == "Test Goal"
|
||||
assert agent.backstory == "Test Backstory"
|
||||
|
||||
|
||||
|
||||
def test_agent_default_values():
|
||||
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
|
||||
assert agent.llm.model == "gpt-4o-mini"
|
||||
@@ -306,9 +309,7 @@ def test_cache_hitting():
|
||||
def handle_tool_end(source, event):
|
||||
received_events.append(event)
|
||||
|
||||
with (
|
||||
patch.object(CacheHandler, "read") as read,
|
||||
):
|
||||
with (patch.object(CacheHandler, "read") as read,):
|
||||
read.return_value = "0"
|
||||
task = Task(
|
||||
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
|
||||
@@ -1038,7 +1039,7 @@ def test_agent_human_input():
|
||||
CrewAgentExecutor,
|
||||
"_invoke_loop",
|
||||
return_value=AgentFinish(output="Hello", thought="", text=""),
|
||||
) as mock_invoke_loop,
|
||||
),
|
||||
):
|
||||
# Execute the task
|
||||
output = agent.execute_task(task)
|
||||
@@ -1630,13 +1631,10 @@ def test_agent_with_knowledge_sources():
|
||||
# Create a knowledge source with some content
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
with patch(
|
||||
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
|
||||
) as MockKnowledge:
|
||||
with patch("crewai.knowledge") as MockKnowledge:
|
||||
mock_knowledge_instance = MockKnowledge.return_value
|
||||
mock_knowledge_instance.sources = [string_source]
|
||||
mock_knowledge_instance.query.return_value = [{"content": content}]
|
||||
mock_knowledge_instance.search.return_value = [{"content": content}]
|
||||
|
||||
agent = Agent(
|
||||
role="Information Agent",
|
||||
@@ -1690,7 +1688,7 @@ def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold():
|
||||
|
||||
assert agent.knowledge is not None
|
||||
mock_knowledge_query.assert_called_once_with(
|
||||
[task.prompt()],
|
||||
["Brandon's favorite color"],
|
||||
**knowledge_config.model_dump(),
|
||||
)
|
||||
|
||||
@@ -1727,7 +1725,7 @@ def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold_defau
|
||||
|
||||
assert agent.knowledge is not None
|
||||
mock_knowledge_query.assert_called_once_with(
|
||||
[task.prompt()],
|
||||
["Brandon's favorite color"],
|
||||
**knowledge_config.model_dump(),
|
||||
)
|
||||
|
||||
@@ -1737,9 +1735,7 @@ def test_agent_with_knowledge_sources_extensive_role():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
with patch(
|
||||
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
|
||||
) as MockKnowledge:
|
||||
with patch("crewai.knowledge") as MockKnowledge:
|
||||
mock_knowledge_instance = MockKnowledge.return_value
|
||||
mock_knowledge_instance.sources = [string_source]
|
||||
mock_knowledge_instance.query.return_value = [{"content": content}]
|
||||
@@ -1803,6 +1799,40 @@ def test_agent_with_knowledge_sources_works_with_copy():
|
||||
assert isinstance(agent_copy.llm, LLM)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources_generate_search_query():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
with patch("crewai.knowledge") as MockKnowledge:
|
||||
mock_knowledge_instance = MockKnowledge.return_value
|
||||
mock_knowledge_instance.sources = [string_source]
|
||||
mock_knowledge_instance.query.return_value = [{"content": content}]
|
||||
|
||||
agent = Agent(
|
||||
role="Information Agent with extensive role description that is longer than 80 characters",
|
||||
goal="Provide information based on knowledge sources",
|
||||
backstory="You have access to specific knowledge sources.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
knowledge_sources=[string_source],
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="What is Brandon's favorite color?",
|
||||
expected_output="The answer to the question, in a format like this: `{{name: str, favorite_color: str}}`",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
|
||||
# Updated assertion to check the JSON content
|
||||
assert "Brandon" in str(agent.knowledge_search_query)
|
||||
assert "favorite color" in str(agent.knowledge_search_query)
|
||||
|
||||
assert "red" in result.raw.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_litellm_auth_error_handling():
|
||||
"""Test that LiteLLM authentication errors are handled correctly and not retried."""
|
||||
@@ -1940,3 +1970,140 @@ def test_litellm_anthropic_error_handling():
|
||||
|
||||
# Verify the LLM call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_get_knowledge_search_query():
|
||||
"""Test that _get_knowledge_search_query calls the LLM with the correct prompts."""
|
||||
from crewai.utilities.i18n import I18N
|
||||
|
||||
content = "The capital of France is Paris."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
agent = Agent(
|
||||
role="Information Agent",
|
||||
goal="Provide information based on knowledge sources",
|
||||
backstory="I have access to knowledge sources",
|
||||
llm=LLM(model="gpt-4"),
|
||||
knowledge_sources=[string_source],
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="What is the capital of France?",
|
||||
expected_output="The capital of France is Paris.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
i18n = I18N()
|
||||
task_prompt = task.prompt()
|
||||
|
||||
with patch.object(agent, "_get_knowledge_search_query") as mock_get_query:
|
||||
mock_get_query.return_value = "Capital of France"
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
crew.kickoff()
|
||||
|
||||
mock_get_query.assert_called_once_with(task_prompt)
|
||||
|
||||
with patch.object(agent.llm, "call") as mock_llm_call:
|
||||
agent._get_knowledge_search_query(task_prompt)
|
||||
|
||||
mock_llm_call.assert_called_once_with(
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": i18n.slice(
|
||||
"knowledge_search_query_system_prompt"
|
||||
).format(task_prompt=task.description),
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": i18n.slice("knowledge_search_query").format(
|
||||
task_prompt=task_prompt
|
||||
),
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_get_auth_token():
|
||||
with patch(
|
||||
"crewai.cli.authentication.token.get_auth_token", return_value="test_token"
|
||||
):
|
||||
yield
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
|
||||
def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
mock_get_response = MagicMock()
|
||||
mock_get_response.status_code = 200
|
||||
mock_get_response.json.return_value = {
|
||||
"role": "test role",
|
||||
"goal": "test goal",
|
||||
"backstory": "test backstory",
|
||||
"tools": ["SerperDevTool"],
|
||||
}
|
||||
mock_get_agent.return_value = mock_get_response
|
||||
agent = Agent(from_repository="test_agent")
|
||||
|
||||
assert agent.role == "test role"
|
||||
assert agent.goal == "test goal"
|
||||
assert agent.backstory == "test backstory"
|
||||
assert len(agent.tools) == 1
|
||||
assert isinstance(agent.tools[0], SerperDevTool)
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
|
||||
def test_agent_from_repository_override_attributes(mock_get_agent, mock_get_auth_token):
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
mock_get_response = MagicMock()
|
||||
mock_get_response.status_code = 200
|
||||
mock_get_response.json.return_value = {
|
||||
"role": "test role",
|
||||
"goal": "test goal",
|
||||
"backstory": "test backstory",
|
||||
"tools": ["SerperDevTool"],
|
||||
}
|
||||
mock_get_agent.return_value = mock_get_response
|
||||
agent = Agent(from_repository="test_agent", role="Custom Role")
|
||||
|
||||
assert agent.role == "Custom Role"
|
||||
assert agent.goal == "test goal"
|
||||
assert agent.backstory == "test backstory"
|
||||
assert len(agent.tools) == 1
|
||||
assert isinstance(agent.tools[0], SerperDevTool)
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
|
||||
def test_agent_from_repository_with_invalid_tools(mock_get_agent, mock_get_auth_token):
|
||||
mock_get_response = MagicMock()
|
||||
mock_get_response.status_code = 200
|
||||
mock_get_response.json.return_value = {
|
||||
"role": "test role",
|
||||
"goal": "test goal",
|
||||
"backstory": "test backstory",
|
||||
"tools": ["DoesNotExist"],
|
||||
}
|
||||
mock_get_agent.return_value = mock_get_response
|
||||
with pytest.raises(
|
||||
AgentRepositoryError,
|
||||
match="Tool DoesNotExist could not be loaded: module 'crewai_tools' has no attribute 'DoesNotExist'",
|
||||
):
|
||||
Agent(from_repository="test_agent")
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
|
||||
def test_agent_from_repository_agent_not_found(mock_get_agent, mock_get_auth_token):
|
||||
mock_get_response = MagicMock()
|
||||
mock_get_response.status_code = 404
|
||||
mock_get_response.text = "Agent not found"
|
||||
mock_get_agent.return_value = mock_get_response
|
||||
with pytest.raises(
|
||||
AgentRepositoryError,
|
||||
match="Agent NOT_FOUND could not be loaded: Agent not found",
|
||||
):
|
||||
Agent(from_repository="NOT_FOUND")
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -0,0 +1,660 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"input": ["Brandon''s favorite color is red and he likes Mexican food."],
|
||||
"model": "text-embedding-3-small", "encoding_format": "base64"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '137'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/embeddings
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1SaWw+6SrPm799PsbJumTcCIt297hDkjDQnESeTCSAqB0VODfTO/u4T/O/smbkx
|
||||
EYimm+qq5/dU/ce//vrr7zarinz8+5+//m7KYfz7f2zX7umY/v3PX//zX3/99ddf//H7/P+eLN5Z
|
||||
cb+Xn+fv8d/N8nMvlr//+Yv97yv/96F//vpbqXVC1KY6Ai5tbEYUvL2Fz3d3UKbls2ooTr4sDq2d
|
||||
H3I7zRfROAtPcpupB9i58SM02CpPTBYpFV92+RsAu3VxJt5ItRyJHKMCiSkJHii1FzN45mier6KL
|
||||
Ip7L5nWpWVTu8pScO3MAizDvZ1Br3wLbot335HPPZbheQ8HlvOuQzV81D0SsxfIkjqoL9pgYb1Q+
|
||||
zXbinHJXEY9NT+ix5hM+rQMCq7GWOepKI8RXuDL0vftIJ5iHrwKfMaParIgPOQwa5kEkgbyrZRSy
|
||||
Dl6qJCJ3xdLCqeGqGYbZeYdlLiz71WQDBkXLyGPNY7yQ92PjDYVFvOOz4rfZHLYNj8YH5+AsdFSF
|
||||
fF8vF7Xw8iU4PqFsoZFdI98/mwRfEMjoTvVb1JiOQwqjTKqJQ7WHOI5KRG0Ene4vpiGJX7vN8Xkl
|
||||
n2r5vuUCBR9vj43K+tLZPXcWQJp6Jtfiydm0/ewk2JVWSHz18sqmmGQz9HHeupQ5JP3qJVwCucbm
|
||||
iGw9cMhP6ZogL1sb4iS3WqFpw7qQaxpE5KvaKcNuKixoJM6daLe7aXMPwYzgmaQKCcX7XNHYeUkI
|
||||
3JNpip3ZydagABq8jpk18R2gYNB6+IRDyi4kX4/Hig7rUUSxdohIKLtKSCMb8pBrPgjrRbAos0nL
|
||||
CaR9qBOJHTjAy7H4hqOzRi4PdbPijmzII/C8f4hxEqRsXzq6AR7YWXG0OqeeawJpBgXKA+y7Ec0G
|
||||
yecsxOQWcMNwfmSL03AMOF0ilahvBSjr4wZEqLCTiPX38gXLuQ069BIFndg8zik7v4QIqDBQiMIN
|
||||
ZTWnp8uKVFNMiDXMLV1jtgnQddesOL60MFu68VSgM2Ft7KlVXu1fx8GCa3xrybkBLaDcNXmCZiCO
|
||||
OwuvsmeVWx/BipUnbHweGJCBigm8na4m0YW7QOc3QKUo+H6ATQ4nlApvY4BqGj8JJk1CuYtleJCB
|
||||
s+YKZyYKOc1yNdifqDLdWrkEs07uJQTkExPJnyV7r59DGRZItojy5EKFJlfBQaadJ9hMEbEpdzvK
|
||||
SCmfAYn3rVfR7FNPgDGZkERrcQDklt1c+DK/Cw6ekq1weTMbSOdHmaQVNAE3io4FsehbOCbegY4S
|
||||
JR3QQ1fGdx71/bK66wlcM7fEsqwn/eTHUg2Jfg6xw9d2tb/4bgTjA9GJbmpZv9zn0ICi/lRwiGXZ
|
||||
5sGFuqg7qhJ2BWlP50fKWgjsYp8c+92x2gP+lSCr5B/u82GLyrzX0hm+zPOXON/sDRZfoDG6nahP
|
||||
7Gs7KmsrVyX8NPVEgowXlEG87mb4PkdXUhjmMeQv7W2GU21kJG0zmfIN18/geHNaLH3yCcxKFrJI
|
||||
oA5H/OzoKTT7DBM4KB3CEttQMJR1wKPxSe7YYaCc8aK7uOiaa+sE+fu3WlRt1KDb7CBxjVKoZsk7
|
||||
dTCF9pUY6X1UZjm6sfDUpoiYVWcDrn0YOTQn1cBe2noKPw/XFAmlXWLF2i3Z2ATSCq5TmGJ8O3TK
|
||||
nFthDm+nizm9u5GAxWkQhNE5bohmaM9wrYfFg8wOUyIfSNfPTEUt9CgJnRY347Kl4IYW+IF+cytO
|
||||
1Ko12R8ZxIyPkKjgHlXf4yyyUHC7F972l850vUmQJdIJxy/4ohQAbYCN6ToTD/pXOKqKo4H9aGrY
|
||||
Oi5l2LHU9OBvv9x3ZgH+g25QPCbr013aB7AXTX3OaOKpTbD08Kqp80gJOVlDWDITM+RZagZwMDWf
|
||||
HIdxZ9PpMJ/Qh88ZfHycJLr/PJzytz5s+PRoc7obetAvXy8ixaGl7Et1idEnemXEOnZStoJb5ICv
|
||||
c6qxP2Qm4J/pU0OGATrivBLeXlEmiBDYnUvkx/qmQ0NtCcq7oSDF/n7uB/dcWsjcGRnRy0ql2/4G
|
||||
KLy5KZGOetS3wjlfoVUmV3K356PNFzc8HELz/iAyF8pVd13mHI3OHGHND/mMPnfgjWZmzon/gTOg
|
||||
/TAniEFt/ItXezb46xNm7nVH9LPcZVOmlwOcqinE1wvR7dXRahcSo+qxqgth+Lrltxyk+qpjo5VT
|
||||
ZQ8OhQuDg3LFUkpWe76hbICwrM8ktM9cSHfG2qH2Ox1ccZgNMKPMaKHlX0/YpUe1mv1kiX7xj939
|
||||
/VyxBn8tYeKKDZafLlaWxVVFKJrqk1zh81vN4nW3AsZKMnxJkG5zyf0+Q9/Hpsva0dPeD1RMQWFf
|
||||
B+LCfAdIabwN9OEP2sRF7UtZnM87h0LZdMQRD0vfy9A9QaL3GZYqSaP88hE1kfYf7U88sR/x4KCX
|
||||
cbnhmyqAamFO3xSOj72Dj8H3ln0J48dI87DjHg6npqI73bJAaILPdOBiEXybJK6hUiUlya7t2eb3
|
||||
uiIjqdHuxMHDR1kqK6hhHlaFy1OnrVa1PM5IOt0Dl6HGp1oPZ2OCvSAxOBsLF6zcLlrRNWs74iS2
|
||||
ZK9z+awRx8XCFr8PZeaA8oSbnnKJ/wrDRegnD8wj2fTCaijzbioMML6akfjb+Zg7TSpQ3RoHXEA3
|
||||
A7yNDi1sRjvCtpa8s4kpVwGhz7slcnaXwJ6RDAt8wlTDJmfEgGryLEPrBTE2VK0Oeb9wBTDxiz2l
|
||||
zIXrF3GpGCSscYN//8+2SrUikgRvbI9DQOdmSZ/Q0ESV6HSw+lmOrRjy7ZtipVH2ShsUFg8eLyPG
|
||||
j/h0zzhNmT10ip0LVncfPSPv6PsEXBQ2031NXxUhygThbJ9uGPtkHy5OZRqI9hYz7YvnRaHnT5r+
|
||||
0Wd5/mntNRFLiLhafrrgSrBNdayUKEyfK5akg9cvhPEjdLrE6jQqSh1+F6sW/uRPk8MCnSykFvDA
|
||||
i8Ikcne1X6y7ncPds7Cw+z5rYI5qo4StGJ+2fCWH/On90eBdvOduLfJzNaGGTICTd2di57qmjOsF
|
||||
C3Bmogi7p4jtl/zzbKHH1AmJof6tRqn/RpB8LR6fI54LqXk5uvBqFjLGpS9R+nk4T/jwVGVi3u9C
|
||||
mfmdN8HO33ku/JYtWJKHFkBivHoSbnqkzYwSok+0q9y9AYyQ/dUP4JziCSnKKVzrOQ2gY0YXcjvU
|
||||
BZ0L72bA3VMIyFZPlZF/pDN0mIbDDm5Ue8bRYIBm8E940/M9T5dkhqfYvUyH4WrQ2j2XBhqM1iQP
|
||||
QnM6+jCP4bb+ieu0HqyPxE4hcOCbeCzd04XLlhlpLz13m12f9PT8lUV0EvbqtLv0b3u10dL+7mOn
|
||||
OZeAi+15Rf3hGpOTzH3CQe8EB92i04nku8utpy8NtX/0Xt48BGWkF1aDRP9m+KTosKcNTmQw38Oj
|
||||
W08eBxY8JTG6vYOBuKfz2q+PGxXgquoe0Yn5rPaA+UzwOu6DjX9egACGDPAuHiOMy8eJssdLbIHF
|
||||
Qyr25mIBmx57wpPAqcRTlSrjM72cwBolyh99Ph66F4O08zvDGlW1fv4wgQPK4qaTNDya9srLiIWH
|
||||
xkqmw7Hb91TkkAuRhu7Tejyw/cZHBcqr6UVcZ+izrX5O8PR5jiTe9PS7bAcNTpwASJYdXnRZ/UmE
|
||||
qv3gXHFgBtCCGOSAkysV//LLEp6sN6BomdzO+gbZ/PrgFhp6ExBv9kbavj56Czf9j1VQ8/0as6MH
|
||||
Nr2Iz07YZySyTjF8rNIbXxS9CRfDZz1oiJbkvmrrYi/D4cpAekuK7Tx/MvLSuA7C41PE+aZ3VlTt
|
||||
HKhwtkzcib6qpTicO/F8zp8kkjk95NXSnGGYnjribfVnYuoqhYyVZuQ+FSudplRMIAZ2OrHf0Qbv
|
||||
3pFdpHCmPAHZr8NZXzQJTopuEOtwGKvlmjgepGA2sd/vjv0yUNlA+t623Pc0S9UsOdWmRzsLY8qP
|
||||
1Rq9Xx6qL6WJpY9r0UGO5QiJRp9MjGG+wqki0wk0w+i4MzoN/bjxL/zwBYOlQf7S1QIRhM6QnbFu
|
||||
nlG/nN+dAbnIbyakj3M2RbWwAl68hhPIP4+MllbcQYutd+QK1wLQ17G20OGkqxOzg+9s6tydBKaA
|
||||
VdxdX8Rg73YggR0V6UQ3XprFGAcwc+J0klAw9xSiKkH3NmCx07xFe8js64o2fsPqrk+qVbnDGlJE
|
||||
pz/nmwcX4ICqDNyJczJUrVv8omya1Gku+EiZp9QyoP9KHOJVN0aZn8XFgqrVNC58Wauy2vJVglxj
|
||||
cuQX3+ve3LOwgYWOjSCF4aBWsgT6CxsTjXg3One6wECF9Vas+U6Utc8XY0G9PgXEn/cLndOdkMAU
|
||||
SLLLrYPWc96yRCgPd+8fH1RrNXJv9LXdiEhVALf6Fxvgfmgcl9lxdTjeh9VAgsdZOHsugTLXpJRA
|
||||
3VoH7BZKpLCdLkAYvNMP1vapUy23RCjgj88C5jRXy+KeRcjuxIiob39nf4l0FEXDeJRYMjumH6Iy
|
||||
kVD/9gqcfB4ErMu3e4P2GyzY0s5dNqi1WIIfn2kv+AIU710Bph2/c9eM8Eqrj6MkNj0Pib1Qli7S
|
||||
rLXgIl+PE++ra0jbwnChuasrnLqMEA43uQkgFklAsCA9+9lmFgHaQii7ezidq3nMtAJ+bSciGF60
|
||||
aonPXw/8ePynlyZwyx3Yfr2FOJ6BQ37bP/jT6/r5Omft56hrsNwVqSseDud+MaMEwnE9cthUEzmk
|
||||
XZdNMDs7HdGFoKnmaHB5yN7h4s6D/AX7C77w8NWNJ6zublVG+aqWwOngn0mkuEVFH3vzBOPY0bEj
|
||||
rrginrBPYPKabvh8z2eFPsXyBJeXYZB7VEsKpwhfCT7f1uLujLkJF90SPbj5T64f7O9h5yiKA//s
|
||||
78b/+8V4RtC+YoK3fE2XGg8ayIqXTI6sWFajuPQM7AXgEjs5cdk8Ph8MfKzymxzVyyucBcP2oGoW
|
||||
HpYzEtu//At++coO06/dpscWgrRL9vj2WUYwXfnLyhXmion7jgw68YyXo90ztwje6h+9j2UCnzV/
|
||||
c5d+96rmQzAF0AGDhM2Y2MqP58DmJ2DfPfvZaqxdDnNJmMi1nA7KpJbmCgv7Mkzr1RkUyl6eEnx4
|
||||
u3Dal9x/8Q/c/C5sHrtrxelOuf7hA1P1n9kKi3GCadJe3Z1PrtmMo9pAoS7IRB5YE6zYk0WEk1NJ
|
||||
/DY52N2l9VcgLMKdaJfjS6HD7KdwhxOeHDd+5ZB8GuAnQhU+4axUFsBKHbrmpeiiiQpgunRWAC9c
|
||||
DYm5HCO6Hv3v6ceX5DwNPP2j/356wsxOvrJ22jxAdN2P02IKfTYLJpjB8rIMrH53JlhC5iChrT7h
|
||||
k/ypwuWW+wWMD6OOpTPrZ5y3l3m45XtiBs5LebvOV4QqMkIcG2c5ZO/ObKA2SV+b3ooqXm2vNeS/
|
||||
D2USiulF52c1dVDww8A9iWTqF0YWRKiE5weRysOJUoJ8Db3XiE7M7WbYvJz0GtwtUYqTjb/Hfr0z
|
||||
P97A8jWd7T/rPV4Fj5wm7wKo1H1PUKq7CzHO+zUcL5YUQHQ1nljttJ7O1uGZon0+MdP7YigK5fJS
|
||||
QhsfEXm5huC7b88BnHf3L9Hh7VMtC+YTSAy1wmbF7ezFygIG5U3IEDVqX/b8FvISPrzKJuebnWUT
|
||||
LMYBPjwUYifnHJtIg1/D/BjzExivA31u8Sx+ai/GXhx2NmmCgwwqKeo3fXalXKl4b1TuhJKoIA76
|
||||
Wx1xNfz5r9bjU4Hxk/crjGbjRh4G8822emUAqYEjMX88xcVtAFLDxUS5Uk8Z3EDPYXX8KsTO3VaZ
|
||||
bZCIf/wGTEKlWh4iY0DjCxEpJnqsuFsyFz99g2/cPQeUK3csjHVaEyNQ44x7opQHWz7E+Kz22bc6
|
||||
0zesr+rbfW56bHR6nMOOjYF7mMUAtEEexOgQspIL5UrOxn4UWiSmNwEf2+SmbPqLB/L5I2CjZzkw
|
||||
DBfIwI+8Apcxrk1GY399QulyLbG2MnU1ie7BhfaHFbGCs1s4mkFbgO284eIUsdUW7xH45uVA1M1/
|
||||
Xq/8fQbauodukxBFWa8HZv35f+6idnq4wENqgOf+bk5I6XbV5v92sP5435/fbv/hva1eu0ip7v2f
|
||||
+GbdL7PpMTtcvetJhJorVS7Lp20186h1RW3lIHYYTgo5TX2ukBpPF99ccw6/12Bd0fZ98yMayglN
|
||||
UsA3vkL3l2+IGSYTLKfNR+/BHvzqN6LwEROJgE81bHoSKsFyJdbP/9p4C6boQbCpLoeK6qYo/+Fv
|
||||
W8731Xd7v+DsRrMr9OBK6fctDrBAkoXd27OzVzn03/DVeXBaH0i0l0mcYySUnw6rCa8qG6/F0HMO
|
||||
Ila+j52yJNkYwNlqfXI9LVzVYR+kf/jJvd1aez44Sf5bDz7xrdPT9jFPEF258cf3IS8Y9PnLp0Q1
|
||||
tGs/t0fqgahwOKy9/Q+YOEBXyDDXCp82/2GuSSf98atd6AKw6v2zgG3XmPhMjYISorwZQAy9mvpt
|
||||
vfT7+joQOMwbH9tHpkwJ5xfwp0d+ft0Mb4kh/n5PPh6ifm1PuST+/F6FG+SKN8gxR+PZzSfOZkuF
|
||||
+ntwAhwrzhufSP1Saoc3HIzOJPbX6+hbcKIS7dZu/cPzU3C33pAc1qPLQMuquJ1hJTCE0pkch0gH
|
||||
K128GdZJxrh15HjZ5D/2KQg7RnRFxqX920sbAT5eVkzO3ouEgy11OdzqlVtt55lMsBaR9qAKdsR+
|
||||
7B8PYXlD4VVcsBEfG+V9D87Dn3oqFb1EefSSU5jt6guWj9MroxfTkNEasTb2Y9G1xydKWbhIJw5f
|
||||
9GoMp/HqJ5AmMMbFln/XsrFP8Mfv51uAsiZ7swXc/A13af29stVr56eP8HE4N4CeqyUFbJEciC5V
|
||||
fkUVxNTQjXDu8lt94K7JKYDylGrToTVrSmhoR/DZeK8pQVJfzTeJnWHO3Y/kGHwP4Sycoxm2Wnvc
|
||||
3iew6ZFzNHi14mCCTVTTdetvQTFhM4Jj+xG+7yHjAM2VK/fwEQhdRe81occq8vjXX6Dh7uuB9/Md
|
||||
uqJVztlqQ9MQsRha5GzPR2UeC1JA1B4kcnbUTzgn/G0Amz9F7KV9/eFBmDxZ0+W2/txe2RENkG/N
|
||||
EFm7wH6+yY0HeZVRsPOdB7A41dGCWz/mj5+4565eiZJX4E+7/sqCbz8KHXy8soz8/FOuOJxb2DD3
|
||||
AXv+vrTpS8lbsPl7RNUFmq1iJE/QMePL5udcbfqOUxlozxS7C1qDat3rioRqlbpYL3MF0F//4sdf
|
||||
kR1J9h4dTzlc6CpM4tOalGGvBTNaL7un+2GNlZLj0p/Eza+aIJBoP5472wA6x65Ewd97yIXSq/75
|
||||
ycTb9MBry29IapjRre3oqczxHMmoo3I18ZeXGP78fuAM+wvZ+AysfuRp6HPZU+J8ZwewWz4Twdx2
|
||||
5HGpa2V+lV0Mpkbup91Z7cPp5+/ibyLih8/fMmrFhwkeosEjOpzGfvj1UxrmWE/Lxpe8l6AEzsya
|
||||
E5MzeDDNn7MgMqiLp2TwGJsCuHdAfYG++/O/53VSeCiFs4oTsxw2ntMDSHuDwa4xw359vcoTMgwl
|
||||
ndYDmnpaykkEt/7rxFP13X8Lrm5h/IEfbB7sT7VawtNA1Dhp2DW+Yr+SF5vAzb8mliqcMv5UMzVc
|
||||
SjnBqr3jsrn8DjEcX5+R2PUogc9LPRuwVi8a1s+yFU7raNdwPHc1sTmk99yw/xRw84snTrl8w7Uz
|
||||
Xi4gh/mIzfil2/vpyOQwZ40vzvLcUXiTTSHMQz3++e+ApXP7hMZ1veCzvVfsrf/AgG19LsXmyZ61
|
||||
dyWhsSjZaeWPO7DCnHPQ2+3IdKguKli2fjTc9Oq0p43Rc4dJZuBUWxl2vqVBOV+sWMQdW45oG9+z
|
||||
boALKLykM85zONnfrR8CdUXa4bhUFEAjI2NhflwZojnfLltRNovItGoDu2Cl1Yxx0P76M79+Srgg
|
||||
pmpRsJ92+LxzpYzOp9CAlpSzW/+rt5cY32aw9Yuwdqt7e3g1DwOKt6Da/KMadBaIGCAphojTMGTC
|
||||
xRcrHm36kNypwdCxSfWTyIwgI9KnmsHIqM3w6zfhokxSZZG+M4+6Kmyxw8efihxGeYJYHANshcev
|
||||
vb4eyxtZkgCx2Zo1WNdRecNxVbiffwXWmt3XcJIdYetHN/YQvCoWloQ8poO6u1e0LSQX/v2bCvjP
|
||||
f/311//6TRi823vRbIMBY7GM//7vUYF/7/89vNOm+TOGMA3ps/j7n/+aQPj727fv7/i/x7YuPsPf
|
||||
//zF8X9mDf4e2zFt/t/r/9r+6j//9X8AAAD//wMAEEMP2eAgAAA=
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 93bd468618792506-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 07 May 2025 02:26:58 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=b8RyPEId4yq9HJyuFnK7KNXV1hEa38vaf3KsPaYMi6U-1746584818-1.0.1.1-D2L05owANBA1NNJNxdD5avYizVIMB0Q9M_6PgN4YJzuXkQLOyORtRMDfNCF4SCptihGS_hISsNIh4LqfOcp9pQDRlLaFsYpAvHOaWt6teXk;
|
||||
path=/; expires=Wed, 07-May-25 02:56:58 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=xH94XekAl_WXtZ8yJYk4wagWOpjufglIcgBHuIK4j5s-1746584818263-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-model:
|
||||
- text-embedding-3-small
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '271'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
via:
|
||||
- envoy-router-6fcbcbb5fd-rlx2b
|
||||
x-envoy-upstream-service-time:
|
||||
- '276'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '10000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '9999986'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_dfb1b7e20cfae7dd4c21a591f5989210
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "Your goal is to rewrite the
|
||||
user query so that it is optimized for retrieval from a vector database. Consider
|
||||
how the query will be used to find relevant documents, and aim to make it more
|
||||
specific and context-aware. \n\n Do not include any other text than the rewritten
|
||||
query, especially any preamble or postamble and only add expected output format
|
||||
if its relevant to the rewritten query. \n\n Focus on the key words of the intended
|
||||
task and to retrieve the most relevant information. \n\n There will be some
|
||||
extra context provided that might need to be removed such as expected_output
|
||||
formats structured_outputs and other instructions."}, {"role": "user", "content":
|
||||
"The original query is: What is Brandon''s favorite color?\n\nThis is the expected
|
||||
criteria for your final answer: The answer to the question, in a format like
|
||||
this: `{{name: str, favorite_color: str}}`\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.."}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1054'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSsW7bMBTc9RXEW7pYhaw6leylQJClU4AGyRIEAkM+yUwoPoJ8MloE/veAkmMp
|
||||
aQp04cB7d7w7vpdMCDAadgLUXrLqvc0vb697eroKNzdey/hLF9XzdXm4uLqTZfUTVolBj0+o+I31
|
||||
VVHvLbIhN8EqoGRMqutq8/2i3tTregR60mgTrfOcbyjvjTN5WZSbvKjydX1i78kojLAT95kQQryM
|
||||
Z/LpNP6GnShWbzc9xig7hN15SAgIZNMNyBhNZOkYVjOoyDG60fplkE6T+xJFKw8UDKNQZCn8WM4H
|
||||
bIcok2c3WLsApHPEMmUenT6ckOPZm6XOB3qMH6jQGmfivgkoI7nkIzJ5GNFjJsTD2MHwLhb4QL3n
|
||||
hukZx+fW23LSg7n6Ga1OGBNLuyRtV5/INRpZGhsXJYKSao96ps6Ny0EbWgDZIvTfZj7TnoIb1/2P
|
||||
/AwohZ5RNz6gNup94HksYFrMf42dSx4NQ8RwMAobNhjSR2hs5WCndYH4JzL2TWtch8EHM+1M65vi
|
||||
27asy7LYFpAds1cAAAD//wMA3xmId0EDAAA=
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 93bd468ac97dcedd-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 07 May 2025 02:26:58 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=RAnX9bxMu6FRFRvWLdkruoVeTpKeJSsewnbE5u1SKNc-1746584818-1.0.1.1-08O3HvJLNgXLW2GhIFer0bWIw7kc_bnco7201aq5kLNaI2.5R_LzcmmIHlEQmos6TsjWG..AYDzzeYQBts4AfDWCT__jWc1iMNREXvz_Bk4;
|
||||
path=/; expires=Wed, 07-May-25 02:56:58 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=hVuA8E89306pCEvNIEtxK0bavBXUyyJLC45CNZ0NFcY-1746584818774-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '267'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '300'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999769'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_9be67025184f64bbc77df86b89c5f894
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"input": ["Brandon''s favorite color?"], "model": "text-embedding-3-small",
|
||||
"encoding_format": "base64"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '104'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=b8RyPEId4yq9HJyuFnK7KNXV1hEa38vaf3KsPaYMi6U-1746584818-1.0.1.1-D2L05owANBA1NNJNxdD5avYizVIMB0Q9M_6PgN4YJzuXkQLOyORtRMDfNCF4SCptihGS_hISsNIh4LqfOcp9pQDRlLaFsYpAvHOaWt6teXk;
|
||||
_cfuvid=xH94XekAl_WXtZ8yJYk4wagWOpjufglIcgBHuIK4j5s-1746584818263-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/embeddings
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1R6SROyTLPl/vsVT7xb+oZMUsW3YxIRkEJBxI6ODlBkEpGhqqBu3P/eoU9HDxsX
|
||||
QIAkmSfPOZn/+a8/f/7p86a4z//8+88/r3qa//lv32OPbM7++fef//6vP3/+/PnP3+//d2XR5cXj
|
||||
Ub/L3+W/k/X7USz//PsP/3+O/N+L/v3nHy10PsRPcxuIYz6sIG03O6RXYmZOpt0pqpupCN1ta2+K
|
||||
2T5U1Gg2d8TiXAzYNTdb1V+PVxL4y4exz8UvwQOkRxSSJ4tWZ2tkKpuTicTBlRsXtnHarSCuWzyr
|
||||
8Xukk9e3ahtwIUF5NIA1fk8ZqD/yndw55DQYvzVRNRuDD/Jwh/O1q+ZYwffBJUfYrWDZhO2qCmzb
|
||||
4QTlN7B8vB1VcQJa5DzSyqOKN1nwJKknZL74FSx8MrfwwkdHdAzUEqzqZ+tDDT0zooO9ZK6Orqwg
|
||||
AmVAvE8yRvh1ppPagBvB8527NWyD7ETNW8fGwD6xCKcF5OCsG/sAOI+7t67vA/4br9M48GCun6da
|
||||
fSsdR4xB2edrsb9RVQVaRyxn64IFtEuq0mU6kui6e0VLGm0n2LVGhA6R30UCfT4MYLEpRIaVUrYc
|
||||
l2cB6+QCiN9yXrPcxmKAxZO+SCjT2Vv0MS1hpRUFySFXeVQ7nGVYB+cuKB/RPl/X4pRu7waTMTjg
|
||||
1VwV99jD6+2iByUHhYYdz2kPa+0+EVQYMViot6/Vw7Zw8bIUCND94d7DPHy/CNo9p4adDpWv6p/u
|
||||
HbB933hT7Wxt9TpoCJ0rvsqXOWl4NUFbg6T9E+a09NEAw3QwyYH7kIbGfG+oFPY8CmUjjeh4ag3o
|
||||
hZNFTjuReYJX1zx4QfpGns3zDTUymMFFjUOyy9wLmDAeJpgnsYcuo1mNrJw6ET5AdkSaC9/N/Ny8
|
||||
FFh212dwPTveNx6ZDCctGYnzOB4bCZ6UBPI62QWcHzgNW5owUU1NrJCOhiOTqtVp4ZGaJbHmuzi+
|
||||
04vjqq/D1ibIPlYR3atSpjYFZ6Br/Nzn5HVOVjV0XQUd7feNSSF4WoBu6j3eEv+YSwsyeCilmwzL
|
||||
NyPzhOwVBZBkRYSlQmzyCb5UGUqhYpPd8X0yv/Evf89HXnIS2Rw7eQ+54dIRywzNSIKnNYbf+KNg
|
||||
N6WM3yw5B5zS8P/+XywQRYbPOyjxBgNtFDPABvh2spEYM28x5lVWqr6yNkbXi+GMVFhuCaSJfSX7
|
||||
s+OZS9UfeHg5rw65Fk7QYAhOoqr49Qtdju/FZJ+LVapbRxVJoah3sKgbM4DZpSfol89DZA0h5Er7
|
||||
iE58OkfUJ34N59sux8vWNjxh/xRsGMVhg5KLemjoR3NLyEwFEuNYJIBPyN6BJpsM9FSAZdKzJHbw
|
||||
E2MPoYIeGsE+aYW6d7kr8atqYoT6F6iiTXAmaCx0wISsl+HeWc9ffHEBlbTAAEZOFWJvDb3heSle
|
||||
VfvoBOQUG5to0Z4ght7n3gWC1Nk5aWRLho8T9yC7d44i8XC3Wugn7yrgztniMa24KzDE1ZlcrTjM
|
||||
cZt/NGXoUIHs3ftp4t08JX/z86hx51HaZE2tajtfJ9dCbKJfvNXv/YgpbA5MDMGiwfi1iOSuWBeP
|
||||
YfvWw2x73f6+hyfJykb7/T/0zJ1rJPDJq1Nr7xYhJxGXCBstcOHUEhMFxPEZ/w64EH7xErnKxhp/
|
||||
9Q648/lMdro15ROQihKS8tqQo4iShu7VTQbrVrCIb7HFW5v50CuczBNitNrgkXP6EOFhe3fxBsJb
|
||||
RLR1SIFd1W9k3ayK4Zjpraqn4Ib2KJibicXnXv3ia8AP9c1cEHYUqHBYxtDqH80SnkwLLpFcooP9
|
||||
0UfpW1/wXDSYOA9Q52xfJL0an62JPIcvvjWiWCid29Yo2ZtOI9WHVweHRYjJbqqEkfFmV0M7pVYg
|
||||
KaIb8VTzz5BGyMJL5+ueiI63CXzxnOziyTCla252Kt/tHmgHJ3+kurQGanHwHeJowyuX3uRRwM1o
|
||||
GsSysJTTxLxjmHpNTHQeBM38q4+jNpXk3JGIsbHDBrRswuFyaDW2ZvtUUeNBCIgWH/VcFEBoQb2t
|
||||
ECl6aOW8cMI9tPEYBQCfVDZdYiGGEGgpcu/CJl/1QexUd3tPyQ21sbdYV1NWK+1ekKc3XjzJsEyo
|
||||
lpI2B3RoNSBs7gcOVJvlgfL7bgHk9OEK2HJcgQ79o2lGon7OimKzzbcfnpn4CF0bLsfYQDegvMal
|
||||
3WkdFPyPgrdC8xnJ5sQC9W4sMnL85yWnwnKKVXsTV8Ra3q5Jedze1UKuHGJvgsFk2GxXOLbmGx36
|
||||
c2hSKuUywDcqkdPqtw1VroczcMfhQdwdLke+/gQxuIz1QOwmaDwpvxwMsL3eN6TIDDOfe3iy1E8Z
|
||||
60RTdNMUkQ5LOCVHhbgnbHkC3LNW/eIdbrK6NakzJSt875qUGFfhDMRL1UN1e6+vyFW3hrd21SuB
|
||||
xzf0AmixxSSrWrvqvg5M5JXhLhK440YBuK4y4g78sWHsE/fwx29uFYgAf8g4F+rHqCHWM3Sj5UGX
|
||||
Mzic/SfJb8mbzTFvW7AXGp64G0Xypq2zCQBnD3dk8dV7pMpz2/3wCcsvuuZTorSxOixSTJwnvEYS
|
||||
K6cYyrdBxJBDfcNSbjfBMb0txOvuR8b83OFAROSUhJ/IBbz2KDM1CdsTikvM5WtIc1GJEUqRkxVm
|
||||
s6Kt5UAhjSiyyu0CyBXhDJqCvP++7ytipk1FNRILEWlH8WVK+WMbw6tBWxL3Vestet37cLOtPbS/
|
||||
mo/mh9dqe8UMrxpYvSWjcgqtoP+QxJlCb5X0ewG+/REdnsTz+lAZOnALMgFpppSMIu/LFDrD6YXX
|
||||
O9iac3avZbjKJxsZhY88Atd9q2KPg2i/0DaafOUzwVTrZqzozWwOizwkcNdMBQkFkYxLUs936Nht
|
||||
jpwPeAE6PvRAJZw4Eo0e+3ztZreEW0ZNlNunKF9wWKbQn+J9cDOJZeINUWvloeANCZZYGNngxz5c
|
||||
RpUPBNddc9zNbg1fC68hC+QWE2tuOINtgO/IaAQxWty+C2Eevl7EnfFofutfg6vneIHs6XouRCeP
|
||||
A6/y2ZKDTm85e5hlCnmZo+iLb9FyEVcI90l7JLYmad58Hu8yvIGKIsPwHZMeMtGBab1fgx9+0Zz/
|
||||
UNiLR4Pku4Zrpv7hxODHt8zJQ6YgzSUPb8gyg0tYBQ29+UcFHvTqRFIo2EzafwAPOnyaSGQQhS3c
|
||||
cSMDg2kdik930mDh7bZgErITCr71x1tC4AO0ZClxz6ddxHb6FcIMIp/YUTdH81wfDOgM0QsL9LAH
|
||||
4tBGtvp8UkauerYyTM4sVkXU5HhrDQmgLD4P6o/f/fCe3zWvFl619olSpo+A//EDpaEnct29umiF
|
||||
hO9VoxiOxJht6jFVbSlsm/iDLlb1jfdqBrCJpTPabThpXGitywrmDgi/tugImGGZnCqFsk2MvYDy
|
||||
5X1cViXmww3J9aRkQhzJIuTmYItF+NRydtaorFrb9zPgL+/GFGh9kJVXmqFAufpXwMdqmijJuktI
|
||||
npwSIOI2hyDbXrbIvHtjQ0/lbYB9bBDkjrWRT+Yhp2DsZIU8jpMLpNc5obBa+wV58k4GS9FrHBT4
|
||||
lidewYNxiW7wDAnHjwRVw9tjgp1n21er7Uhehq98KfHxDGXPm0ngB864Zlt7hbdXX5Hd5516bC7r
|
||||
DnZbUCOX9v3Irg9aqJJpewTxug1EfR7vMNyf3iRNImouKCh8GM9ThdeN8MjJgHRL/fIPdNzLBKyJ
|
||||
Lp6VrbMRkQc53RT2T9WCZ/O9x9tvPq+Jzp0Be9YLcgO+a5ju8yGshNJCD1ZOIymnjodhlXUEzU/J
|
||||
XBJsDEBlO0CCV7yaU2X7PiyeuyvJrMfQLHFERTWtdyu5e3Pw49cpTN98Sg5BxHmTkfGZim+rRAL5
|
||||
1jWUjuIEv/gdwJKlJhnMRoaiEIboqqu8t2puFav34jZjNVkpY8X5osHayyMsa88T6G+BQiFejAYF
|
||||
0bj3/urDbz4FlMRPRp/jmihavguRMfMtGILN/hvfbY3ubT7kL2WAPNyNbEX6V+/hWf4UIOHhB7lS
|
||||
vQOL9rDvQCyMlljvPh/xLd2WQDc1l+QFn4+L+ZIG9boBBab02EfsroHyL58/AP2R85Ey3uG4Ge+Y
|
||||
aXjH2E5/cnAjDjI6ikgc13TIHHh7DRXa11HtkbZrz+pciDq6bDipmQYpc2C8ja8ohEAbx+/3hXz2
|
||||
eAdLS68Nc3zOgJzJDnjrnz8mcdLcB9ne64KtUWCTNbKvKLMZ+MiXOz2nnaYP0FFFmzieXuWMv0ID
|
||||
DI8CBPAp76J1IasGw4x30F5xhBFf6aOD6T2okcl2fkTts89BHPDo10/ZKs2BDGXODNAxQL4nlWYV
|
||||
qnPgMmQN9dac194O1MSgCTm665z3lZqL4NJ/rmR/ysR8Bu02hWnyhEiv9eO44tC+w6cejZh9+bRQ
|
||||
4mMIX53vojztI3Oh9UGBFPNbdDFZ4rHc5jjIl0FAPFJHYG1S3oWBnzQBj10vYqp2mtRXmiJUfPn+
|
||||
mnNlDUue71Fs1EGDNbdKgH48Nd/+swPzoyY+9NIlJZpMZ3Ot328F4mu3Ek+0zEZwPNIBUQsG4juc
|
||||
Nf7w8McvUbB36og2IwjgpXltvv2g9OiY3WP4qtyVfOuRkVHtMwiTQcMrvtreeqWPFn7u7EkQvfHj
|
||||
rLr9/ZefxMl1i0m/fPniAXH15mjS0t8PMMvwHgv3avVw+B5r0LVahAzVjppBF/MV5pZKvveLG1rZ
|
||||
fgBj8WEhm5iRJ3RG3MHJqGkAo0s5rqJrUdgc0J1YidtGsxVfNSgYaYU0NthsbS08gIPenLCQyW4j
|
||||
gauwQnWqHiRpFivi1fgSwmktOWIb8sVkNtmEAGBiB6FlDDl9ZCEPo7c6o+Ag+ZEoW3oMY/FpoeAV
|
||||
n80v/8igAwY92IwRzrFyGURQiFeT+PVqAOGgBAosF/VC3MwW8l7Grxg+7PiNUC5OHjW6WweV7afE
|
||||
KzvLY1/zTakmk2+jXOt9b8E7z4cI+RY5Z3o+kvowt1AY+RNyK6+LcETvGIRn8CDGp3gAelhoDd54
|
||||
4+CJz48Md9WcQMm0PHRw7TJfLkYawPCoHUl4E51xfDTq8KsXTENjZsumVUJ4FKhNnvNT8uiLnzKl
|
||||
3Moaun/10t/3cfvFRdZ8T8a14KpMFXeh8fMHwCLfNV/VNVciewn6jG4dKVA5YXMnpnASzOnLXxUh
|
||||
DO4BhceR0clhGM7kIwciC7pmDQolAd2ucoN5K/WMBjHrIFdax4CFnuMxon5C+Mq6mPzw5qdPFeua
|
||||
+8ES3K6MteTeQUEnEbK+/RPDtaqhI4D8y//EkYGrQGEGjz666GvlLQFvxSpI3Q+WLkbfsOG6zZTt
|
||||
66xgSZY2I50Neob9wdr/xfvv+wVqXoUMXdRMj8SvH/jLZ+Qcj4PJnz46hEnYnb76rjaHiSEMwirt
|
||||
8DY9T+MCbrEPJyE9kSh6MG8KynBV7cgsvvxWHZfzGCtwkV4D8tx7xyjGNVbdfbhDN0BWb0mCJ4T8
|
||||
6AhY/NbD4vLmXX02Dw6rc2yZxJuqTj0RH6Nbut+a9Oz7LqTbpUIet0lMQT5yDpTeRYPpU3qM7Omf
|
||||
OrhgYU+O1AzMJb5XjvrYjbcAPrbZSNORdmp43j4IGujRW5NUHqAwiifiUw552NEVCiHJaoIK+hlX
|
||||
zx0hPNIJkwNRDHMdCA3lc22F6Kye3h7zKj+DrwOwv/6mFy2fgRYqKIGPtx+tBYv52vSKvgsQMjnl
|
||||
nq/mXk3gvvbNQIXdyr71k0Bx5J9E/+q51XMbDrrociM/fCf5Rdf+6ttD/ekbxi7IBSeXT0j6SHVT
|
||||
ZAIXAwf0OkkMWTAXttE66A+Oga7ffMLuXrIgbZQzOUZylPOXWEigtObe14+bGWvM2oHTh+bkHtzl
|
||||
aN4/BUt17C4PODlgJuGbWwAbsmyJ230ykzm+qKnK0vroDtnGXDcgw6DxLYLulCMmbq2uh+9pL+DY
|
||||
SQ6juH2bdxioQo98bC3jHJ5MWzVewYiM6qR5K+HmFdj7vP/y897sm8aQwY//m9GDmdQgugxfloSR
|
||||
K/KLSd3Dowblsrng5C7tzeXnZx5Zp+MTRz7R6sxz8IsvKr78Y6WX3odffR5sHcHNhWiHKfzqE+Sm
|
||||
uzKaVdZpCr3kB2R3ow6o+9ECWEn4gPbFiJi0XIG79VKWIstJDg3lFX1QfUO+In+Ueybwt3Px80sC
|
||||
enMYWL79FTjPWCX3XfVi86fWHLVL/JQ83uXHXI3bBSo/f8wvmWziX79JumcZvKJQjn7nwVcfBuC2
|
||||
PZh8rTkUBm/uRnan1WpEWZ4sSBpfJI7XGs1S0dWFP7/7UA4qYMGhT/7i+R6LNsPPIVeU6oa0QG7a
|
||||
T7OYfVvDYm5LcqzisplyNbMh3u4lFNjZPNJt/5HBT997t2QP6PbhYyguMwnWr34Sja3Wg1+9G6eP
|
||||
G61VXrp/+aHBe5W5+lZZq2jjn1F04EdAxf5jgJ8etV7WK18Eusm2pLMOyBss7dcvWvidL2Dl6kts
|
||||
5dKwhcoms4NqHHg24dea/vX3dSI4Ed0sOYTn4dAGbbzF+eJCsEKgBgghC47RmoW6r6KSuFi5KlPD
|
||||
vvobTIX7wuI6vnIGmoyDwYvG5Iqd1RyfGp+pNA3vJBtrI2KSf52UzvhIAfvmH8ty6w4F6b7Hy6vw
|
||||
o/HupxP44gVeluieT1//AYjCOURaEojRfMNmCS6bI0/8XXLOmSL1dyC97w0yNsIjouTUKjC6XyRk
|
||||
BL7XjPXFpdB2uUOw7R/myN7mqEEnThN0dNdjxIeLEoIvf/j5n953njCot8P1gQzl+mleX7yHXSUG
|
||||
6MgHVUOJA1twuD/lQFzUcJzSkbZq7k4X4kikbGi4rCHMlvML2Xuzb5Yz1qkqBcYaiO10NdmqqKHy
|
||||
9d/xOtuhyQcxaKEZV2PA2gay7/kz+PrLxDtsX82y3a+T6pi6ggL5ZjfrqQA+OAtLhoyrsIIpfXQ1
|
||||
GFv9jX75OS2KtkLj1gmYa5xPRKIGGFAPxR0ySX9sVqG9TMpPDxyATxl9v+igroV0+enniLd8p4ej
|
||||
UdfE//KlhTtKMrxKvEvyg0cZuU2zDcEx0DF3iEeTlObnDIRt7yMU3+ZxahpDgew+FgHzdjqQuos3
|
||||
wFXIGQlwJnv05u8U0AYwRPHPX4Vho8B3xd+xuFvXhp2EfIB0/w7IcX/B4+IEcfHjr+TXn7/40MPH
|
||||
HYlIjwQ9X79+CDhYaUscctuOS+rpmWL2to90Pj3ma+qSAkrFpAWc+9JN9p0/qD9+f/j2V5Z11QAZ
|
||||
QxDZm2XM1932UIKPfhjIUZ/eEeWuhqNa5ytP9s6zYXOTVAG8hK1JDOV6GJfyKGtQrUOLxGgXRaIZ
|
||||
ZSXUNw+R6JWomOTLLwDYRQk5oDY2KfWqQqXnSsQdWfZMCDafGih++SLhj2/8/OoPu6rE8np+XGeB
|
||||
7/7iz1OhtMGkCGu1vVOP7MRLGC0342ZDbtR4lE0PwVx+84X2POa4t8UZUEsbC3hDtvmdL1SMSP5z
|
||||
gsknZiRqmztbbtisFVUWK3QIouLrh8V3db7tc/ylGc0iH0UXuoY/I4eea3Ntkn0Ibkt4JfoSwZwW
|
||||
p7JUlwrnxAtDnf2d511vVx3tjbFn82lTp5D4Q0qOcLEjfvLKVt341TZQ50M48j6xapgomo6877yU
|
||||
uo/GgE+L91GcVtooTZddBre9eyS7Kzebf/X1N/7IvGOfsRBcLQjCIxeI1Xobhbx3bKjvfER2UZjm
|
||||
tXgWbHh82XIgBJcd4GtNW0ElTQf0zCOXSfY6OTBlRYBM80FG2uDSUtu9+UK691RyvKSbAZ6Su4+8
|
||||
O+uaQSCrrGp8o+OXqhrjb97306OBRGMF4CEVFODubI3YL/Xo8bJi1PAFd1+LKzQjPlTqVu3criaH
|
||||
5LMzv/rxrOYL1NHztd+Bv3yzw9GEfv7PGrgTD1fP9TD39fuWi+fUwLymXMCxSIvEdf/U4JcPIRS8
|
||||
1maRw0ZTv/WJfn71Ejw5HjavskTpV+9JR8601Wve2Mjn8yOg7akO1e/9kasJaU4HKXPl6L2ZkQ72
|
||||
V5OKD1NU8bVdySnaT834Ohcr3PQeIYZ3xt5X7/pQ64GHAkPFjLlvJMIp50rkHF5XtoSvtIVK6ubI
|
||||
knYqoCigrvrXP5OINi6Yqj3cR1hB+5sKPJY0TIbXIr2hvGeDtwhh7YCv3sbiWi5s2fZ7CP/5bQX8
|
||||
17/+/Pkfvw2Drn8Ur+9iwFws83/8n1WB/5D+Y+qy1+vvGgKesrL459//ewPhn8/Yd5/5f859W7yn
|
||||
f/79Z/t31eCfuZ+z1/9z+F/fB/3Xv/4XAAAA//8DAHXQUXneIAAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 93bd468e08302506-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 07 May 2025 02:26:59 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-model:
|
||||
- text-embedding-3-small
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '140'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
via:
|
||||
- envoy-router-678b766599-k7s96
|
||||
x-envoy-upstream-service-time:
|
||||
- '61'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '10000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '9999994'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_22e020337220a8384462c62d1e51bcc6
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Information Agent
|
||||
with extensive role description that is longer than 80 characters. You have
|
||||
access to specific knowledge sources.\nYour personal goal is: Provide information
|
||||
based on knowledge sources\nTo give my best complete final answer to the task
|
||||
respond using the exact following format:\n\nThought: I now can give a great
|
||||
answer\nFinal Answer: Your final answer must be the great and the most complete
|
||||
as possible, it must be outcome described.\n\nI MUST use these formats, my job
|
||||
depends on it!"}, {"role": "user", "content": "\nCurrent Task: What is Brandon''s
|
||||
favorite color?\n\nThis is the expected criteria for your final answer: The
|
||||
answer to the question, in a format like this: `{{name: str, favorite_color:
|
||||
str}}`\nyou MUST return the actual complete content as the final answer, not
|
||||
a summary.Additional Information: Brandon''s favorite color is red and he likes
|
||||
Mexican food.\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
|
||||
"gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1136'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=RAnX9bxMu6FRFRvWLdkruoVeTpKeJSsewnbE5u1SKNc-1746584818-1.0.1.1-08O3HvJLNgXLW2GhIFer0bWIw7kc_bnco7201aq5kLNaI2.5R_LzcmmIHlEQmos6TsjWG..AYDzzeYQBts4AfDWCT__jWc1iMNREXvz_Bk4;
|
||||
_cfuvid=hVuA8E89306pCEvNIEtxK0bavBXUyyJLC45CNZ0NFcY-1746584818774-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFNNb+IwEL3nV4x8JqsQYAu50UOl7mG/JE5LFU3tSXBxPJZt6K4Q/33l
|
||||
QCHtdqVeInnevOf3ZpxDBiC0EhUIucEoO2fy29W3zq2+L2dmpb4sFj+2X5dm80Td9qe8j2KUGPz4
|
||||
RDK+sD5J7pyhqNmeYOkJIyXV8c3082w+nY8XPdCxIpNorYv5lPNOW52XRTnNi5t8PD+zN6wlBVHB
|
||||
rwwA4NB/k0+r6LeooBi9VDoKAVsS1aUJQHg2qSIwBB0i2pPnMyjZRrK99Xuw/AwSLbR6T4DQJtuA
|
||||
NjyTB1jbO23RwLI/V3A4WOyogrW49WgV27UYQYN79jpSLdmwT6AntRbH4/BOT80uYMptd8YMALSW
|
||||
I6a59Wkfzsjxks9w6zw/hjdU0Wirw6b2hIFtyhIiO9GjxwzgoZ/j7tVohPPcuVhH3lJ/XTmenPTE
|
||||
dX0DdHYGI0c0g/pkPnpHr1YUUZsw2ISQKDekrtTr2nCnNA+AbJD6XzfvaZ+Sa9t+RP4KSEkukqqd
|
||||
J6Xl68TXNk/pdf+v7TLl3rAI5PdaUh01+bQJRQ3uzPk/CX9CpK5utG3JO69PD69xdTFZlPOyLBaF
|
||||
yI7ZXwAAAP//AwCISUFdhgMAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 93bd46929f55cedd-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 07 May 2025 02:27:00 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '394'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '399'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999749'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_08f3bc0843f6a5d9afa8380d28251c47
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -6,7 +6,7 @@ interactions:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
@@ -151,7 +151,7 @@ interactions:
|
||||
6NrP9D+nrsnf4z///rMV/t41+GfqpvT1/z7/1/dV//Wv/wUAAP//AwBcfFVx4CAAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 931fcf607c16eb34-SJC
|
||||
- 93bd535cca31f973-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -159,14 +159,14 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 17 Apr 2025 23:47:53 GMT
|
||||
- Wed, 07 May 2025 02:35:43 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=CncSMPCav.9EJL3emmM0sTqugx5GN6_Oy8JPFBssVho-1744933673-1.0.1.1-Q1XMvHbQdrfEWkkCYeeNHwFdZ1NpjAGJ_0jOUYIk_APelFe7nCanjW_xlOj12b3JQql9.iWQDiHvCeYJDTWkdxnNiMQOEiFMYHX5YZXUuJs;
|
||||
path=/; expires=Fri, 18-Apr-25 00:17:53 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=FaqN2sfsTata5eZF3jpzsswr9Ry6.aLOWPP..HstyKk-1746585343-1.0.1.1-9IGOA.WxYd0mtZoXXs5PV_DSi6IzwCB.H8l4mQxLdl3V1cQ9rGr5FSQPLoDVJA5uPwxduxFEbLVxJobTW2J_P0iBVcEQSvxcMnsJ8Jtnsxk;
|
||||
path=/; expires=Wed, 07-May-25 03:05:43 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=unfPTYCpF5COtm5PuZDuaJqlhefP0iibfjsXHc9lKq0-1744933673515-0.0.1.1-604800000;
|
||||
- _cfuvid=SlYSO8wQlhrJsTTYoTXd7IBl_D9ZddMlIzW1PTFiZIE-1746585343627-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -185,15 +185,15 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '75'
|
||||
- '38'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
via:
|
||||
- envoy-router-8687b6cbdb-4qpmr
|
||||
- envoy-router-6fcbcbb5fd-pxw6t
|
||||
x-envoy-upstream-service-time:
|
||||
- '46'
|
||||
- '41'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
@@ -207,32 +207,33 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_b8c884a7fe2bd4732903ecbdc632576d
|
||||
- req_39d01dc72178a8952d00ba36c7512521
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
|
||||
You have access to specific knowledge sources.\nYour personal goal is: Provide
|
||||
information based on knowledge sources\nTo give my best complete final answer
|
||||
to the task respond using the exact following format:\n\nThought: I now can
|
||||
give a great answer\nFinal Answer: Your final answer must be the great and the
|
||||
most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
|
||||
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
|
||||
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
body: '{"messages": [{"role": "system", "content": "Your goal is to rewrite the
|
||||
user query so that it is optimized for retrieval from a vector database. Consider
|
||||
how the query will be used to find relevant documents, and aim to make it more
|
||||
specific and context-aware. \n\n Do not include any other text than the rewritten
|
||||
query, especially any preamble or postamble and only add expected output format
|
||||
if its relevant to the rewritten query. \n\n Focus on the key words of the intended
|
||||
task and to retrieve the most relevant information. \n\n There will be some
|
||||
extra context provided that might need to be removed such as expected_output
|
||||
formats structured_outputs and other instructions."}, {"role": "user", "content":
|
||||
"The original query is: What is Brandon''s favorite color?\n\nThis is the expected
|
||||
criteria for your final answer: Brandon''s favorite color.\nyou MUST return
|
||||
the actual complete content as the final answer, not a summary.."}], "model":
|
||||
"gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '926'
|
||||
- '992'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
@@ -264,18 +265,19 @@ interactions:
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jJNNi9swEIbv+RWDLr0ki/NBvm5NYUsplFK29NAuZiKNnWlkjVaSk02X
|
||||
/PdiJxtn2y30YrCeecfvvCM/9QAUG7UEpTeYdOXtYPXp7vbLw7evm4ePmObvt/jrsVgVn9/5dbhj
|
||||
1W8Usv5JOj2rbrRU3lJicSesA2GiputwNpksxuPpbNyCSgzZRlb6NJjIoGLHg1E2mgyy2WA4P6s3
|
||||
wpqiWsL3HgDAU/tsfDpDj2oJWf/5pKIYsSS1vBQBqCC2OVEYI8eELql+B7W4RK61/gGc7EGjg5J3
|
||||
BAhlYxvQxT0FgB/ulh1aeNu+L2EV0BlxbyIUuJPAiUCLlQAcwUkCX68ta3sAI7quyCUywA72bMge
|
||||
AHfIFteWYOtkb8mUBFHqoCneXPsLVNQRm4xcbe0VQOckYZNxm8z9mRwvWVgpfZB1/EOqCnYcN3kg
|
||||
jOKauWMSr1p67AHct5nXL2JUPkjlU55kS+3nhtP5qZ/qVt3R0fQMkyS0V6rFpP9Kv9xQQrbxamtK
|
||||
o96Q6aTdirE2LFegdzX1325e632anF35P+07oDX5RCb3gQzrlxN3ZYGaP+FfZZeUW8MqUtixpjwx
|
||||
hWYThgqs7el+qniIiaq8YFdS8IFPl7TweTZejOajUbbIVO/Y+w0AAP//AwA4a1/QsgMAAA==
|
||||
H4sIAAAAAAAAAwAAAP//jFJNa9wwFLz7V4h36WVdvF5nv46BQEsPpYWeSjCK9GwrlfVU6XlpCfvf
|
||||
i+zN2klT6EUHzZvRzOg9ZUKA0XAUoDrJqvc2v/32+fTh68e7bel/UtXFR6/vKv+FP6191cMqMejh
|
||||
ERU/s94r6r1FNuQmWAWUjEl1vau2N/ubTbUZgZ402kRrPecV5b1xJi+LssqLXb7eX9gdGYURjuJ7
|
||||
JoQQT+OZfDqNv+AoitXzTY8xyhbheB0SAgLZdAMyRhNZOobVDCpyjG60fhuk0+TeRdHIEwXDKBRZ
|
||||
CsvxgM0QZbLsBmsXgHSOWKbIo9H7C3K+WrPU+kAP8RUVGuNM7OqAMpJLNiKThxE9Z0LcjxUML1KB
|
||||
D9R7rpl+4PjcereZ9GBufka3F4yJpV2SDqs35GqNLI2Niw5BSdWhnqlz4XLQhhZAtgj9t5m3tKfg
|
||||
xrX/Iz8DSqFn1LUPqI16GXgeC5j28l9j15JHwxAxnIzCmg2G9BEaGznYaVsg/o6Mfd0Y12LwwUwr
|
||||
0/i62BzKfVkWhwKyc/YHAAD//wMAwl9O/EADAAA=
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 931fcf649bdbed40-SJC
|
||||
- 93bd535e5f0b3ad4-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -283,14 +285,14 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 17 Apr 2025 23:47:54 GMT
|
||||
- Wed, 07 May 2025 02:35:43 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=8vySwO0xqpm0u93_1_rXQwTeEIWa2ei3_CD5sAdoo3o-1744933674-1.0.1.1-iqZDpH5poOUp4Rcnhfrb0N2Z0c2662RBiPEcx_gefNW.m3tBA3qyFa8tmFv7PitH8u9vyYK7jxUwy4lPiSi830QWNbTMgCMTbrJ7iaUV7hY;
|
||||
path=/; expires=Fri, 18-Apr-25 00:17:54 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=4ExRXOhgXGvPCnJZJFlvggG1kkRKGLpJmVtf53soQhg-1746585343-1.0.1.1-X3_EsGB.4aHojKVKihPI6WFlCtq43Qvk.iFgVlsU18nGDyeau8Mi0Y.LCQ8J8.g512gWoCQCEakoWWjNpR4G.sMDqDrKit3KUFaL71iPZXo;
|
||||
path=/; expires=Wed, 07-May-25 03:05:43 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=IXAyT8eWpFERM53ngcYNmaqhocfGbOHWSoe7SFNdoGI-1744933674288-0.0.1.1-604800000;
|
||||
- _cfuvid=vNgB2gnZiY_kSsrGNv.zug22PCkhqeyHmMQUQ5_FfM8-1746585343998-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -300,16 +302,133 @@ interactions:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '167'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '174'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999783'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_efb615e12a042605322c615ab896925c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
|
||||
You have access to specific knowledge sources.\nYour personal goal is: Provide
|
||||
information based on knowledge sources\nTo give my best complete final answer
|
||||
to the task respond using the exact following format:\n\nThought: I now can
|
||||
give a great answer\nFinal Answer: Your final answer must be the great and the
|
||||
most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
|
||||
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
|
||||
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '926'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=4ExRXOhgXGvPCnJZJFlvggG1kkRKGLpJmVtf53soQhg-1746585343-1.0.1.1-X3_EsGB.4aHojKVKihPI6WFlCtq43Qvk.iFgVlsU18nGDyeau8Mi0Y.LCQ8J8.g512gWoCQCEakoWWjNpR4G.sMDqDrKit3KUFaL71iPZXo;
|
||||
_cfuvid=vNgB2gnZiY_kSsrGNv.zug22PCkhqeyHmMQUQ5_FfM8-1746585343998-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xTTU/bQBC951eM9tJLghITIORWVKFSDq0qoR5aZE12x/aW9Yy7O06IEP+9shPi
|
||||
0FKpF0ueN+/tm6+nEYDxzizB2ArV1k2YXN19Xt/cVtnjh+2XbLH99W399a759HFzy8Xs0Yw7hqx+
|
||||
ktUX1omVugmkXngH20io1KnOLubnZ4uz0/m8B2pxFDpa2ehkLpPas59k02w+mV5MZos9uxJvKZkl
|
||||
fB8BADz1384nO3o0S5iOXyI1pYQlmeUhCcBECV3EYEo+KbKa8QBaYSXurd8AywYsMpR+TYBQdrYB
|
||||
OW0oAvzga88Y4H3/v4SriOyE3yUocC3RK4GVIBF8AhaFpl0Fb8MWnNi2JlZy4Bms1LVw2AKu0Qdc
|
||||
BYIHlk0gVxIkaaOldALXEgGtbSMqgedCYo1dP8fgFTbSBgcrghUlBRXA9PBiB5yPZDVsQSJY4dQG
|
||||
hYZiks77Xh82FUUCrXw6Focat51sqjCSOzluU6SiTdiNitsQjgBkFu3Z/YDu98jzYSRByibKKv1B
|
||||
NYVnn6o8Eibhrv1JpTE9+jwCuO9H376apmmi1I3mKg/UPzc7X+z0zLBxAzq/3IMqimGIZ7OL8Rt6
|
||||
uSNFH9LR8hiLtiI3UIdNw9Z5OQJGR1X/7eYt7V3lnsv/kR8Aa6lRcnkTyXn7uuIhLVJ3kP9KO3S5
|
||||
N2wSxbW3lKun2E3CUYFt2J2JSdukVOeF55JiE/3uVoomn55eZossm15Ozeh59BsAAP//AwAaTaZd
|
||||
OQQAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 93bd53604e3f3ad4-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 07 May 2025 02:35:45 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '489'
|
||||
- '933'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '936'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
@@ -317,13 +436,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999801'
|
||||
- '149999802'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_151f9d0b786f2022f249ee20ea108b43
|
||||
- req_0001c38df543cc383617c370087f0ee3
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
@@ -6,7 +6,7 @@ interactions:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
@@ -150,8 +150,10 @@ interactions:
|
||||
Mj9mH/7zuxXwX//68+d//G4YtN0jf30vBkz5Mv3H/7kq8B/if4xt+nr9vYZAxrTI//n3/76B8M9n
|
||||
6NrP9D+nrsnf4z///rMV/t41+GfqpvT1/z7/1/dV//Wv/wUAAP//AwBcfFVx4CAAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 931fceef786ded38-SJC
|
||||
- 93bd57189acf15be-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -159,14 +161,14 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 17 Apr 2025 23:47:35 GMT
|
||||
- Wed, 07 May 2025 02:38:16 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=fj4RMXSXRDQjE2CFC6CGC3dVcJ8cl2Cbu8alijwMHA8-1744933655-1.0.1.1-M3c3AI4XQa.0GJoanNACuOm2aEL4xjqHR1grxIP3olFvq3e0eFHwQTvCF20YwR_OLiMJUH87eNUwgziawMccsxjR9OVZyDr5._5Wts6CrqA;
|
||||
path=/; expires=Fri, 18-Apr-25 00:17:35 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=VGdrMAj2834vuX5RC6lPbHVNwWHXnBmqLb0kAhiGO4g-1746585496-1.0.1.1-kvgkEGO9fI9sasCfJjizGBG4k82_KhCRbH8CEyFrjJatzMoxhM0Z3suJO_hFFH13Wyi2wThiM9QSPvH3dddjfC7hC_tscxijZwiGqtCVnnE;
|
||||
path=/; expires=Wed, 07-May-25 03:08:16 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=MSkpJsQZtdyIGvrl2mIwy0a_We8H6CIrS7etFgRBl2Y-1744933655703-0.0.1.1-604800000;
|
||||
- _cfuvid=sAoMYVxAaEFBkQttcKO7GlBZ5NlUNUIaJomZ05pGlCs-1746585496569-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -178,22 +180,20 @@ interactions:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-model:
|
||||
- text-embedding-3-small
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '140'
|
||||
- '69'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
via:
|
||||
- envoy-router-84959bbcd5-rzqvq
|
||||
- envoy-router-7d545f8f56-jx5wk
|
||||
x-envoy-upstream-service-time:
|
||||
- '110'
|
||||
- '52'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
@@ -207,32 +207,33 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_dd3ef61c4765b46ed7db80ddfe261f41
|
||||
- req_73f3f0d371e3c19b16c7a6d7cc45d3ee
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
|
||||
You have access to specific knowledge sources.\nYour personal goal is: Provide
|
||||
information based on knowledge sources\nTo give my best complete final answer
|
||||
to the task respond using the exact following format:\n\nThought: I now can
|
||||
give a great answer\nFinal Answer: Your final answer must be the great and the
|
||||
most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
|
||||
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
|
||||
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
body: '{"messages": [{"role": "system", "content": "Your goal is to rewrite the
|
||||
user query so that it is optimized for retrieval from a vector database. Consider
|
||||
how the query will be used to find relevant documents, and aim to make it more
|
||||
specific and context-aware. \n\n Do not include any other text than the rewritten
|
||||
query, especially any preamble or postamble and only add expected output format
|
||||
if its relevant to the rewritten query. \n\n Focus on the key words of the intended
|
||||
task and to retrieve the most relevant information. \n\n There will be some
|
||||
extra context provided that might need to be removed such as expected_output
|
||||
formats structured_outputs and other instructions."}, {"role": "user", "content":
|
||||
"The original query is: What is Brandon''s favorite color?\n\nThis is the expected
|
||||
criteria for your final answer: Brandon''s favorite color.\nyou MUST return
|
||||
the actual complete content as the final answer, not a summary.."}], "model":
|
||||
"gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '926'
|
||||
- '992'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
@@ -264,20 +265,19 @@ interactions:
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFLBbtswDL37KwhdeokLx0mbOLd2WIAC63YZdthWGIpMO9xkUZDkpEWR
|
||||
fx/kpLG7dUAvBszHR733yOcEQFAlViDUVgbVWp3efv66LvKPRd7Q/f57vtaf7m6ePjze774sv23E
|
||||
JDJ48wtVeGFdKm6txkBsjrByKAPGqdPFfF7MZtdXVz3QcoU60hob0jmnLRlK8yyfp9kinS5P7C2T
|
||||
Qi9W8CMBAHjuv1GnqfBRrCCbvFRa9F42KFbnJgDhWMeKkN6TD9IEMRlAxSag6aXfgeE9KGmgoR2C
|
||||
hCbKBmn8Hh3AT7MmIzXc9P8ruHXSVGwuPNRyx44CgmLNDsjDRnd4OX7GYd15Ga2aTusRII3hIGNU
|
||||
vcGHE3I4W9LcWMcb/xdV1GTIb0uH0rOJ8n1gK3r0kAA89NF1r9IQ1nFrQxn4N/bPTa+Xx3li2NgI
|
||||
LU5g4CD1qL5cTN6YV1YYJGk/Cl8oqbZYDdRhU7KriEdAMnL9r5q3Zh+dk2neM34AlEIbsCqtw4rU
|
||||
a8dDm8N40P9rO6fcCxYe3Y4UloHQxU1UWMtOH89M+CcfsC1rMg066+h4a7Uts1mRL/M8KzKRHJI/
|
||||
AAAA//8DALRhJdF5AwAA
|
||||
H4sIAAAAAAAAA4xSy27bMBC86yuIvfRiFbKs+HVLUKBFL0YPRosWgcCQK5kNxSXItZEi8L8XlBxL
|
||||
aVOgFx44O8OZ4T5nQoDRsBWgDpJV521+t989PX78tF/fnr5X+w/fdgv6WnxuWruzX25hlhj08BMV
|
||||
v7DeK+q8RTbkBlgFlIxJdb6qljfrm2qz7IGONNpEaz3nFeWdcSYvi7LKi1U+X1/YBzIKI2zFj0wI
|
||||
IZ77M/l0Gp9gK4rZy02HMcoWYXsdEgIC2XQDMkYTWTqG2Qgqcoyut34XpNPk3kXRyBMFwygUWQrT
|
||||
8YDNMcpk2R2tnQDSOWKZIvdG7y/I+WrNUusDPcQ/qNAYZ+KhDigjuWQjMnno0XMmxH1fwfFVKvCB
|
||||
Os810yP2z81Xi0EPxuZHdHnBmFjaKWkze0Ou1sjS2DjpEJRUB9QjdSxcHrWhCZBNQv9t5i3tIbhx
|
||||
7f/Ij4BS6Bl17QNqo14HHscCpr3819i15N4wRAwno7BmgyF9hMZGHu2wLRB/RcauboxrMfhghpVp
|
||||
fF0sNuW6LItNAdk5+w0AAP//AwDAmd1xQAMAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 931fcef51a67f947-SJC
|
||||
- 93bd571a5a7267e2-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -285,14 +285,14 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 17 Apr 2025 23:47:36 GMT
|
||||
- Wed, 07 May 2025 02:38:17 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=7agwu5JV1OJvEFNhvfvqdgWf.HoMyIni9D85soRl3WE-1744933656-1.0.1.1-dKUwAZnjjuuiswFKWGsxpwHNBJUpjhYlZvfZpyNQIejxEJrXMCppgPvtQ9wa4SKezLmKqftvn_H.bAx_AEFJD2EWm5V6R_uK8.odneErR6A;
|
||||
path=/; expires=Fri, 18-Apr-25 00:17:36 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=62_LRbzx15KBnTorpnulb_ZMoUJCYXHWEnTXVApNOr4-1746585497-1.0.1.1-KqnrR_1Udr1SzCiZW4umsNj1gQgcKOjAPf24HsqotTebuxO48nvo8g_X5O7Mng9tGurC0otvvkjYjsSWuRaddXculJnfdeGq5W3hJhxI21k;
|
||||
path=/; expires=Wed, 07-May-25 03:08:17 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=LdTrzwZYrB6ZyQLY7NdaaHVpDVFvIjYm3arSpNy87wU-1744933656504-0.0.1.1-604800000;
|
||||
- _cfuvid=LPWfk79PGAoGrMHseblqRazN9H8qdBY0BP50Y1Bp5wI-1746585497006-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -305,11 +305,130 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '540'
|
||||
- '183'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '187'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999783'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_50fa35cb9ba592c55aacf7ddded877ac
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
|
||||
You have access to specific knowledge sources.\nYour personal goal is: Provide
|
||||
information based on knowledge sources\nTo give my best complete final answer
|
||||
to the task respond using the exact following format:\n\nThought: I now can
|
||||
give a great answer\nFinal Answer: Your final answer must be the great and the
|
||||
most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
|
||||
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
|
||||
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '926'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=62_LRbzx15KBnTorpnulb_ZMoUJCYXHWEnTXVApNOr4-1746585497-1.0.1.1-KqnrR_1Udr1SzCiZW4umsNj1gQgcKOjAPf24HsqotTebuxO48nvo8g_X5O7Mng9tGurC0otvvkjYjsSWuRaddXculJnfdeGq5W3hJhxI21k;
|
||||
_cfuvid=LPWfk79PGAoGrMHseblqRazN9H8qdBY0BP50Y1Bp5wI-1746585497006-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFNNb9swDL3nVxC67JIMSZo0aW4ttmI77bIO3UdhMBLtcJVJQZKTBkX/
|
||||
+2CnrdOuA3YxYD4+8lGPvB8AGHZmBcZuMNs6+NHF1Zc7Xycnp/Rhdv3x2/fL82r+9Tr/uDrxn8yw
|
||||
Zej6N9n8xHpvtQ6eMqscYBsJM7VVJ4vZ6Xw5n50tOqBWR76lVSGPZjqqWXg0HU9no/FiNFk+sjfK
|
||||
lpJZwc8BAMB99211iqM7s4Lx8ClSU0pYkVk9JwGYqL6NGEyJU0bJZtiDViWTdNI/g+gOLApUvCVA
|
||||
qFrZgJJ2FAF+ySULejjv/ldwEVGcyrsEJW41ciaw6jUCJxDNEJq1Z+v3cCu6E9AIuEX2uPYELGC1
|
||||
rlU60JOrCJI20VIaAiYIFJO2zUKkkiKJpQSeb+lVrwQYCfI+sEXv9xAibzEToLhukC3GPezYkd8D
|
||||
1ioVsDjesmvQJ9hx3mhzpDRtMJIDllJjja1/74/fKlLZJGz9ksb7IwBFNHf5nUs3j8jDsy9eqxB1
|
||||
nV5RTcnCaVNEwqTSepCyBtOhDwOAm87/5oWlJkStQy6y3lLXbnK6PNQz/dr16GzxCGbN6Pv4dDIf
|
||||
vlGvcJSRfTraIGPRbsj11H7dsHGsR8DgaOq/1bxV+zA5S/U/5XvAWgqZXBEiObYvJ+7TIrVX+a+0
|
||||
51fuBJtEccuWiswUWyccldj4w62YtE+Z6qJkqSiGyIeDKUMxPjmbLqfT8dnYDB4GfwAAAP//AwA/
|
||||
0jeHPgQAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 93bd571c9cf367e2-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 07 May 2025 02:38:18 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '785'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '931'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
@@ -323,7 +442,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_8837be6510731522fd5ac4b75c11d486
|
||||
- req_9bf7c8e011b2b1a8e8546b68c82384a7
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
333
tests/cassettes/test_get_knowledge_search_query.yaml
Normal file
333
tests/cassettes/test_get_knowledge_search_query.yaml
Normal file
@@ -0,0 +1,333 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"input": ["Capital of France"], "model": "text-embedding-3-small", "encoding_format":
|
||||
"base64"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '96'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/embeddings
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1R6Ww+yyrbl+/4VK+uV3pGLUFXrjbsISKEgYqfTAUEEBeRWQJ2c/97Br/t094uJ
|
||||
WIZUzVljjjHm/I9//fXX321a5Y/x73/++vtTDuPf/217liVj8vc/f/33f/31119//cfv8/9bmddp
|
||||
nmVlU/yW/34smyxf/v7nL/a/nvzfRf/89XfIFDaOu8OtX0ttiOESiQE+pXaRrnxot/BYFAy5kEUP
|
||||
ONOCJaymU0mOVijT9bPeH/BZXg4kYptvv4S7/QQztojx/ay+Ul5kFR8F+9XEUeizziKFvQ+uIr4T
|
||||
E107h77ZSw1r9zPiUCqSYL4SxUbv5usRy5ZLusgkecBnVXUYOzGbrs25voiDG1c4vEhCTxHz8GCW
|
||||
BAdvL9+sngv6iwv3uxDj7HWgPUkXUIBvFy3YnkpJo7AQIvipwoIEgINatQMnCZbG54EP4NtQGgm1
|
||||
j84HJBDbhxeNI+7DBsboBuS5G27VeLUbGV4TmSEyXDVNYO2qg963GbCJrrazpK3iIk9XzQn1/aGa
|
||||
HvHpDatPvZDj9a5UvL67PpApmxGO6maite0dfTjujIfHLN4F0Dun8IiTkpSc0vyuLRl9hRAz+on4
|
||||
10ruubG6mchYruLEKW2rfYOdyUKFSzKs4XeRsjXNYsmeAMVeXOk9n7hjDu9xnGNTZ57p3DVSDWr5
|
||||
fMXpOdNo4zDGG1m7/QtHFVHoPOe4gw9gDliBlhTQ8z7hRY3aLjneZ4Uu8u3TAfe1ODjU9lrFPfww
|
||||
hvez5uNTtZcBx1Zhglg5CrF231NAhv5ewND/BCQ5FX2/CJdjAW8sKYkyly7lHFe2AdR9HZ9Jc6EC
|
||||
8O8qelzOmcdoegrac2xJ0KLvI8be8UXp28I+fJ/uiCQH4ews2KhKpFTMwxPPo5S+M+Oxh4esr7Hb
|
||||
TDigi6VIaPf8aMS6GVol/PItMgbfA8z3HghaTguYSWJFrmr1AovFCxN6lWOCH8Zy0Cj3tG24rysZ
|
||||
n9r61c8ncz9A32GbqY46xeETxDNIpUswCWHyqRbOfMVIaG0bG4uy9Et2iGSYhTeJqEEyARpwbgEt
|
||||
fzpMxzJXU9bImBBMrPAicq0fwCyP9wiGaWsRR481jeNRCZHD8pG348i7IurdyaE9iRTHha1X0yeE
|
||||
NbicCPCK19j063LnYvSxK5+oxyWshHE3y2h/CD/kfrjXdEaVFIL3y9fwbQWHgApiPMGnM2U4gotf
|
||||
rZ/1nKNkskqcWfRTrXUytNBlfAWr5VD1rak4ETSWm4iVsLxt+8tVwDlaOfWqg7XlfHY6cDjfPGIy
|
||||
4EFJveg+1JsHxmnzzgDl35IHDwafeKabnYLRmXoXamJ1m+ZoDTQara0OOTVZsHr21YoviMHCV9w2
|
||||
Xhyo0Fma0VZh/dXfON9HRTV/7vMAFpFeJxbnZ20Rs28L+x0YiFcKNzDj21P95SexzvRYcVejYNHL
|
||||
3p9w6l15ZzaGYQZWc7gQo/rMKQEr1P+s12KUOD+8gU/9ir193EcVh3mkwnF3eGDjcbS1LV9l8aiE
|
||||
lbfU4hqMtzd6S8X3POFnBStnNPtbjcDbqLGm0n06n77BCkrCD948wBDMDjY8+L7vWRztmSPoLobs
|
||||
/fCAaLN67eeMnxKYHFWJHOpFTvlQEfcwPpWLR7+T6nBPHQ9S9MI6ceprH0yrM/OI8IDBTs6jdNu/
|
||||
DN9WTr3yzmgaX5ATD3fr0/R4tjlWbCmuMlpPOSTqnak0sgPGHo6vm7bhs619j3KhIsKLzDT/8EeV
|
||||
1hpe4nkhF+HtaLPNtTnkXo2LtUA2KUfDD4SscAUY21nSc339iVEYXiSiAuAEfKu9BnSa9hl+HG4i
|
||||
WMTs1aGT3p/w7z7wL7dc0RLgAeMrbKtB08gM7kdXw9nexVrfiZGOPs9uT3R6PmksFWUT1dXxhuWD
|
||||
++l7duVnMGVqiPVdGjpcC+YHhF+uw9bK7bWFrcIYct54xGcd2g6b9t7lT71zGdpRKl2frhTXkeJ9
|
||||
TEnVKDafDxh0yteD3rOp1rgp3uiZ2Tnxjq2vsVdrlKRLvC5Y9vRLT+tFv6DrpZ+JWoHIWVRpfcMt
|
||||
HsSNn2oq3OsgRiqlAbaSl+1wVXSckWv6N5I43Q3wrfdkwHzTHyRWXyxYSb/av/wg3m6t6cJPsJTU
|
||||
lDFxoE2rs6T3ywxD+rxO+8ukpUIowTesh9kh0fhM6dqy1IXtM9OxfBtdwKUjTuA8ePrEcrmiCTwT
|
||||
STCTvSvOZOPjbPjeIvdFHeKJitivfqDP6G7CjBzN/KSNuyV4w21/WAuA3As69GPIvT4uPsx2oq1R
|
||||
zQ+wegGbGLWJtCH83k0QNKHhzVnUpHzifh4ofz1PHmdKpdOuB30AeUY/3jc+Tz2NKrH9xYPkr7Oh
|
||||
Cca7f0PXOb2wdXocA5Zw7AOBV6wSP9bHtPM5wkrIHQdispqv0fNBidD3XJUT3zHYoW7nQyh809Hb
|
||||
H42vI2QobaEa+0+c4XB11putTSA5yhLxrDFKZ41QHd4WDXit8S2rqTo+HvA1zphoPP4GRHncV4jl
|
||||
YzR9g2oE81l+mGLTgpToVcqAWc7LPUpQhDzY2FfA8rkO4Wjw2OOy+FEtmjBc4GMML0S1StXhbOH1
|
||||
RkrTavhxApPGqcevDleddYhy+egBOUmCj2q3GT3JSz/BELGi+wd/5LfHBvRY7WTYIQETXDSPlN3w
|
||||
AgyJhXDEAEgH7RTLcOc5KjlcTueeFtkl+lMPsEISh33czh26z7gnp8K9g29/kic0WAMkh8WgQBh0
|
||||
5gKKy74ix0vLassrjy5o6d4SkfkP0eawuEyQu5V3YufKBcyXbIboy6bvaTl1di+8IzRImSWY09kl
|
||||
PhAI/A6QdbuBKLcG9QMPvrzQTt8nztr6VbHzwJhSFKcslmP9lAp5UXQIjFPiOUTrwWqpX+tP/mtc
|
||||
iPvJCZZQcly+J9rXtirhtexZIJhVTzb8C9aIGy1YfS8x8T7tJ2gMl1/h/az4ntBbRb9AtS7gEoEA
|
||||
O80bgd/9hnyvCuQQJp+eWnp5kXhcatOeQwZdNHy2YWsZPLbXz6tarvfrAz1hKGKv65j+veEV5BhT
|
||||
nahzKpxZqqMVupNRYVvMvJ7/Sv0FbnhHrLpfHHrX5hB+PE8gWos9sAiP3Sy1RnzBxzQK+3l9v2oQ
|
||||
0uyKQ3RuANH8kw6/kxzjbOOXQmSGK/RVTCdwMqtq3Yn6/MtPbL1fOhBOr0uNBll38F2LngHHFZ4O
|
||||
F/4wEcv4qpUQa14Ob2eh8Fgdvx1ivKs3xPWww7kIg2BelEcLLr4tT8vjyqRrVS/RH34h2+2gLexq
|
||||
s7DjvHxipUJK6cangcZxM06uwSWgOHcvcMoDwXvkDy7o+ciZ4XqpP8RRHezwQ/JiID/bxSS6vaJ9
|
||||
X/arQyKBPTGGbglG4SGscPceBhzQQ9ovtzf3hvU1QRPParO27KWwg/zJ2OHj1B6D9ZuZMVQiV8VB
|
||||
9DgFg8a8CpAnB8YTZlvSfvkNtXlf4xv4HgArpW0BNzwm6l37BlRT8g4wnxudqslQg8mLAhOZgoG8
|
||||
9cdHEsRDIKwumnapmPbzQJMJHoKaxcrGX3/4iMDpBYnmfc1KcLsYwvq4PxLtNA2UCF3ng+h10qdd
|
||||
nRFap50aojJPeqx+TnPaSb26R8wcf7G/C0j1zbuOgXs3IB6bjExA90dBB32sF95Mj1YvbN/Rxk9I
|
||||
Yow64HOQFKChzJngJv72q6r2rOSwbIQV5VgFg4dWH5k3scTu+q0Ambs3A1fR8vBt/I7BPBwOCdyJ
|
||||
fEiMV6pro+d9JVCY94FYXzcDvaWXPkpFGeN4qY2eqyJlRnBfH7yPfmTpwOc6I92mMMJX5MQVbYyO
|
||||
lcbbxd/yray2/V/g5/o2cZ7qi7a691eC1FoVf3yhmp+q+YbvCjUkQ/lXowa9qHA9PSBR7WFK5/KR
|
||||
WX/qXYfYCfQ5m13gGLy/2FuPQz/o+rlD6mwM5NZbcs9zXlLD4/1IyHH+wIrGZ1aCA7l88AlWJFjk
|
||||
OjQRMydfD5qDDFojYyL44+PO+lyDRa1OM7zlzh5rytugQh2QGEz6ycAGcvbV+sZ6iXKDuU/rwW/o
|
||||
d+MbwJyHFWdfjnVmfgAJ+O4PDnHzB5cSK/AHwJeJOQmrPFakbNccJRwi2OqRo/G96Tykl1buvPHw
|
||||
clK2ZVAJxITTSJ4chWAKqBPDTb8RV3zNdEnvyQq9em9h88GE/WrRtQU/fXXAg06Xj36SITeKb2Ie
|
||||
P0Ww6GaygmOUO8RwzmUwd/xLRdM9GsnJrJd+0x8h2PALO1nTASp/Yhvm/JvDxySVwAgnkUcbvyWG
|
||||
SC4O6198HlbOtcAGhiCYHkzBI2ZiGqw97RP9jNXThGlkn7APhKPDO8ESAeMqGMTK0Fwt+nOXgy6S
|
||||
NSID4aiRXVyyUGVYi4RZ7lA+oE4CZRrJRNvPvEM13zChJr5u3szEVzoPV8SDa6Iy+CSpaiXgQZog
|
||||
aOgJK2fz7FBWGX3QS7DE2vHm9iy+3VT49mJ54saPowmPq1xA4SSJZLu/gGbJ/EblmwrePn1UYCK7
|
||||
eoYnK2KJ9uNb2KgKVLZZThyLVMEsj+fwd37TaxrELV8T9Yd3WJ51tV+b8+RDJN/DTZ/LgQAPlxYq
|
||||
OU+J+Rk4rVX2hxruibNMHGNeAqGLqIys0rLIvTqCYH6xCgPZ83rFch+9wNAyXAmsTH16/J75gtWF
|
||||
7gPmXmOTw+GLUrryJxPeB93A12BXgpmmvQtxpcX48OHNfnnqeIK/88eTH/XLcjR4KJbu5efngHm3
|
||||
93kwOe+AeJirwLpOwR5BE7XE84vM4YmX+fAwV19vJ5lvSpMskyHoZIpl6B37ae/DCGqWBIjiiZlG
|
||||
iywJYQpG6rH53ajmvBRXsHfPBGNmycDS5EHNFfYhmCStmOliGZMLW2Xq8UkJb9Wq3ezo5/8Qyw7T
|
||||
fmzBPof5x2L/3C9CSz9H3rMQt/yWA77eKwWsDl+RHGuurKZz0/vQct45OZiaXa0JtSZo4zEmj/Rt
|
||||
pbN/vOSIUZ8L0eXqQckS7UNkZfKThPdD3xP541uIpHebeIOwVpueV9FTv2FsVB8/ZfscenCPUYST
|
||||
p2AGwtwNDEj1ycWHwOpTOuj8Bb7qu4LtyXsFlG2tEpYscyVHxaXOUvrnAaaXR01wRnC62rtklTa+
|
||||
hR1hGdI581Ifci2TTNLkKcH8uJ1bBKvHk+SPqA8oLeMc6L6h4OTerRUlju8iIn0+5KkQyVm3+waR
|
||||
LVv48PMn9kfNhsGS7DF2A+/P+6Dn6fuJ9xqxmupvasKyKsNpOZtnjQaXVw43vj7B6kaccfN34GGI
|
||||
NXw5LmxFJLDm6E7BBePzxwros/Yn1LRiSix/jyk7MRIPzVGzscmVWspl+6aAnkk6rL9V2elEET+A
|
||||
wWkFUTAbAbI2UQdTLmwnfsOrmR9oAn5+1MZXNYrIZwbnqSqwBaq4GqD8SX7xxNiBI/3hF6yk4U4y
|
||||
G52BUAdNjN479eEtHybu1+SdXODiFxYxjF2bzk3UxaAy44hc47HqOU6Q9rC7hA/y03NLt+/sP3h0
|
||||
P9xNSoB/lmHER8MEnsvNmdeDPv38S2IEO5XysGFruOHHJLEO2087f+mQJl9sfCx0Lp2E9mVLDfz8
|
||||
H3z9+Y+92T5J0N1TjRejdwKb2e+wB0eZCoo+MPBz3j9JnD4qOvO2HyI218epZ773dGaZvSVKTvbE
|
||||
zmRdnMU2YxNsfi22FokJ6DU/1jDx4yOJDFF0Vv0hJbBdbwdyXIoo5cluWiHiISLKs/s4czHd9/B0
|
||||
OjPeromPlaDloICptzJTtfEvfqsvUHbCK85pvNPWTI8hXKAMiBJBvRLq3TpA53jUsXWm34rW5ZWF
|
||||
9sFsiCwUFqDrTsvBhic/Pzcgh1PRIl5/etNSlhdnLcx1QMHBabB5CWQgiPpeguvudfeks9CDGV01
|
||||
CRJhrxDsxGGwgK8yo9N95TwmONvpli8xOuFBxUotrikVTkYsbviDbZsw2urm5A0vjnojxqbvOYja
|
||||
C9TOk7Pxt5VOh+fDhrITXYlyMPlgIl52gT7lLwTv/XMw9zl0oV0HKsafMtJ6rRH3YNPHHkpz0SEO
|
||||
c6rBFl8PHm4inU971UM/v3njc/1YKr0PkuQBMN78ofVjehbIh0KdOss79/RCwgeaUWdgIypwRa/D
|
||||
Xv35H8T/HCetu+elBze/yqNB+OxX7aaG6B4OAlZrq3MWOC0s2vQrPi4Fn071/ljCULAhdkKxC4Tj
|
||||
3Vp//yd4ifV0OUlaKL5cZ/akMI77OWsECAfxGk/DdQrB/LAqV9rwHpt6V1fLK899wIZPcfps/IGA
|
||||
t9FC/eN+SSSKVT/sv6MJvOvjgI/bfRluJcx/+OsJwuVQkW1/8OcnRZ/hqpEhGAawOMmTyGe3SJfY
|
||||
st9wjdGM5UEBThMOng02PMHpeIrTdZ1SCT7vuYCtpf5Um1/jwWU3lfiw3yf9eH5KJuSr73d68c8d
|
||||
HZ5CfIGJ2EdeluC6H+7+bpB0r9thNb9qwdLg0Yab3+S9SLMC2j3F5Fff8LFdOUCYizTDyzv4bHpP
|
||||
6ac6eXfwgFh92vCkWhRNVCWPNyti2/rH+cMHNj1JsNoFlHuN7gB/eu6w6c25a9Y3PPUePzEgrau5
|
||||
H8sWfs+vkiiS0zgr2U3zD3+J+wVawLMiq4p5qitb/jt0nC+6h+BYnT1287/G5XhioWDjCza+Xgfo
|
||||
O+ImOEGXkOweukDoxFwH0XNRsU+Pbb/A8wMC9TsU5K64VBuDR79CY/QCchIPLaBRtbTIL+Mz9oJz
|
||||
l87v0OrgtH9Zf/g0a+CDBJ4NPhNN2ec9laPXgPKhVLE5JdeKX0x5RUNfM8S5srrDea1Xw+FCCXFD
|
||||
CrRe5NUYNpa/89Ys+VYziBMXuJ5oEWVcdsEqioccNP1RmVB9P1V00BkfIvKZsDKadUA2fQ/XhcrE
|
||||
PJNDwNvzOwTIJQO2ETvR9YVYH8nXu0WwA0+UZRIA4bQcpenr9i9tuJvHHAYnk8XWk+oOnYzWRvVR
|
||||
OmI1HL7OWl4SHsTCqnprBXhtBfPK/PETVLK8gxXoTQt/9ce1rUOwvtxuhTrfdjgUOSXd+jUR4n1o
|
||||
kNvVYPqhOQAIG9ioRFWYkfbV1JVQNdl8i9/ozBoBJpS6XvLKPnlr9BBHe9hO/dMT/UNTzbS7t+Cn
|
||||
f8yBVakwn+UL0voZYVUyBNpMT52Hm77CrtAjbfzohiotXS0RXSqkYNz8Ydg4TE0co7lWa/SwHrAX
|
||||
fEDOF8WmA2aphGqp/GAVnYyK/eknTG4zdrf+Bx837RvWt64izidZKpKhtIOWjn1vTU9cvw4OKP74
|
||||
G27y9SqujqvyT3ycnM+C+aenLkXDTEAzW0B//mckqQGxxPuQbniXw7NPD9P+ZlT93BwoA5Rl4rFN
|
||||
Mgp+fgtqC2AS75kuwXjlpQhKB7qfaIwkrb37wgCUnKWbuXTUtn5OCX563rt7WbVemb6Al0cee4Ji
|
||||
zXRuojL+g/+O63zBuvVv4MjnPTGKwk6XJCgH4BhZNoHhwlS02KEYZucu8sQDklN+5y8t2urptLjE
|
||||
p+MLExaQUztjL3T1YN09CxMpjOYRZ/emv35E9/N7sBeNM/0mQTdB8WR+seXga7pgoy/h7/w3Pkzn
|
||||
PNQiKO/PNn7gRAl+/BSuzXTC0fgEdG57aw+as4mx7J/NXiidaw09XTbxTx99Gc/rwOPb9eTg3phf
|
||||
P6aFy90WPenD3qtl67cARTR1bJH7uZ/rZ7GiD7u+iMWhD5imW9BB/l7zxFJq4AxN1CVQi/rrNOtp
|
||||
nC7P1/AGSuFzePOHqzk9f99w81vxIXqfKf1IdvvTo+QEKxyspfSB0OpmER8SsDrLvm5l2Do0m3a+
|
||||
eXXW2pxldLw7hDjbeQ9bPwKW7TPHbrC8Kirydgw7WUqJcUw9IJCR+n/8Gquw39Xy45PdyaNbf0yv
|
||||
eNeWINSDucUGIUK6/PrV/bd4TWCrH6yUFgXqtM8O6+cdAtMtsHW4a5OAWN6t0pYqPUAoNUzk9bJS
|
||||
/vRVDiRDD6dff41w4/wGh3Z4ELvwTMpLvSr9/GmibPySpgstkYZcxoNKYlLaRUCFW78HywNk6fLh
|
||||
8lL6Puob1hP1E7TNATDQGTST2JE3ONRIPy6MmF3mwQ0vh7h9F1B+zBGJk5et8Y3bmpDgffTzryjX
|
||||
vp0WTiz3msRVJ2CuVWcPHGXhyeH2dCrOlDwVdIXJEwdNu75Tzxcf7YziTDJ2bqu1Fx4Q/v2bCvjP
|
||||
f/311//4TRjUbZZ/tsGAMV/Gf//XqMC/hX8PdfL5/BlDmIakyP/+539PIPz97dv6O/7PsX3nzfD3
|
||||
P38Jf0YN/h7bMfn8P4//tb3oP//1vwAAAP//AwDPjjDU3iAAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 93c2407849cb943e-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 07 May 2025 16:56:39 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=iRcThWdZ.NO0HPhZg.pUV1AiG0u.0Dkd58N9HGucKdQ-1746636999-1.0.1.1-Cswtia9bUNC0npExHV2GcZLT2MVo6tEQbFU_dsKpjNN5R3s37B6JGWTE1IIZV9V0UGLhiy04og474anpJW4c6yLw0.9q5F4MPcxtAOjwBvo;
|
||||
path=/; expires=Wed, 07-May-25 17:26:39 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=rvDDZbBWaissP0luvtyuyyAWcPx3AiaoZS9LkAuK4sM-1746636999152-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- text-embedding-3-small
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '116'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
via:
|
||||
- envoy-router-6b78fbf94c-z6prb
|
||||
x-envoy-upstream-service-time:
|
||||
- '123'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '10000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '9999996'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_3f67e7a1b90d845c25e9cef31147aba0
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
|
||||
I have access to knowledge sources\nYour personal goal is: Provide information
|
||||
based on knowledge sources\nTo give my best complete final answer to the task
|
||||
respond using the exact following format:\n\nThought: I now can give a great
|
||||
answer\nFinal Answer: Your final answer must be the great and the most complete
|
||||
as possible, it must be outcome described.\n\nI MUST use these formats, my job
|
||||
depends on it!"}, {"role": "user", "content": "\nCurrent Task: What is the capital
|
||||
of France?\n\nThis is the expected criteria for your final answer: The capital
|
||||
of France is Paris.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '911'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSwW7bMAy9+ysIXXpJgmbN0iW3DEPQAtswDBt2WAuDlWhbjSxpEt00KPLvg+Uk
|
||||
drYeetGBj3x6fHwvGYDQSixByApZ1t6MP/6UX75vV82n7Yf17uvKX4dVuXn/Sxc3n2+uxKidcA+P
|
||||
JPk4NZGu9oZYO9vBMhAytazT69l8fjVfLBYJqJ0i046Vnsez8eV8eiCUldOSoljC7wwA4CW9rTar
|
||||
6Fks4XJ0rNQUI5YklqcmABGcaSsCY9SR0bIY9aB0lskmubcg0VrH4IN70ooA7Q4cVxRA28KFGtst
|
||||
ACNwRcAYNyANYTA7iIxMXZ2ePUkmBYW2aABt3FIAtAqUo2gvGAL9aXQgQKV0y4hmyD+BW4iVa4w6
|
||||
6ehoUfKR7cCgJnf2zq7TP6uELOFHRSDRa0YDroB1QCsJdIRvGHScDFcPVDQRW8ttY8wASC4kMcn0
|
||||
+wOyP9lsXOmDe4j/jIpCWx2rPBBGZ1tLIzsvErrPAO7TOZuzCwkfXO05Z7eh9N10vuj4RJ+cHp1N
|
||||
DyA7RtPX300PITjnyxUxahMHgRASZUWqH+3Tg43SbgBkg63/V/Mad7e5tuVb6HtASvJMKveBlJbn
|
||||
G/dtgR5Tsl5vO7mcBItI4UlLyllTaC+hqMDGdNEXcReZ6rzQtqTgg075by+Z7bO/AAAA//8DAI9H
|
||||
rN32AwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 93c2407d5cfaface-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 07 May 2025 16:56:41 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=g.ZMxB8fB7ZSkwD6w5ws93pGGw6nEi3uFVh.JDp2OOU-1746637001-1.0.1.1-59mPPW0bDWyD6ngFx6m9LdHurrdN9Kaem.eFcKAwWp_H_4kabp2CzCRiEaW2QhRYYPWE6fZPgqWU8amQtZqpRZHtEjTyoL8t6UtyzyTCoAQ;
|
||||
path=/; expires=Wed, 07-May-25 17:26:41 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=WOtfHIloFTPkupN1gC2z.3cExzObgfz.p4fXYpCK0aI-1746637001631-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2084'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '2086'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '1000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '999805'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 11ms
|
||||
x-request-id:
|
||||
- req_1ff0f0c079f8e7f5feb17fe762b5e40a
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -2,22 +2,18 @@
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
import os
|
||||
import tempfile
|
||||
from concurrent.futures import Future
|
||||
from unittest import mock
|
||||
from unittest.mock import MagicMock, patch
|
||||
from unittest.mock import ANY, MagicMock, patch
|
||||
|
||||
import pydantic_core
|
||||
import pytest
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.crew import Crew
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.flow import Flow, listen, start
|
||||
from crewai.flow import Flow, start
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
@@ -3141,6 +3137,30 @@ def test_replay_with_context():
|
||||
assert crew.tasks[1].context[0].output.raw == "context raw output"
|
||||
|
||||
|
||||
def test_replay_with_context_set_to_nullable():
|
||||
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
|
||||
task1 = Task(
|
||||
description="Context Task", expected_output="Say Task Output", agent=agent
|
||||
)
|
||||
task2 = Task(
|
||||
description="Test Task", expected_output="Say Hi", agent=agent, context=[]
|
||||
)
|
||||
task3 = Task(
|
||||
description="Test Task 3", expected_output="Say Hi", agent=agent, context=None
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task1, task2, task3], process=Process.sequential)
|
||||
with patch("crewai.task.Task.execute_sync") as mock_execute_task:
|
||||
mock_execute_task.return_value = TaskOutput(
|
||||
description="Test Task Output",
|
||||
raw="test raw output",
|
||||
agent="test_agent",
|
||||
)
|
||||
crew.kickoff()
|
||||
|
||||
mock_execute_task.assert_called_with(agent=ANY, context="", tools=ANY)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_replay_with_invalid_task_id():
|
||||
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -357,14 +357,7 @@ def test_convert_with_instructions():
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
# Skip tests that call external APIs when running in CI/CD
|
||||
skip_external_api = pytest.mark.skipif(
|
||||
os.getenv("CI") is not None, reason="Skipping tests that call external API in CI/CD"
|
||||
)
|
||||
|
||||
|
||||
@skip_external_api
|
||||
@pytest.mark.vcr(filter_headers=["authorization"], record_mode="once")
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_llama3_2_model():
|
||||
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
|
||||
sample_text = "Name: Alice Llama, Age: 30"
|
||||
@@ -381,8 +374,7 @@ def test_converter_with_llama3_2_model():
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
@skip_external_api
|
||||
@pytest.mark.vcr(filter_headers=["authorization"], record_mode="once")
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_llama3_1_model():
|
||||
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
|
||||
sample_text = "Name: Alice Llama, Age: 30"
|
||||
@@ -399,13 +391,6 @@ def test_converter_with_llama3_1_model():
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
# Skip tests that call external APIs when running in CI/CD
|
||||
skip_external_api = pytest.mark.skipif(
|
||||
os.getenv("CI") is not None, reason="Skipping tests that call external API in CI/CD"
|
||||
)
|
||||
|
||||
|
||||
@skip_external_api
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_nested_model():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
10
uv.lock
generated
10
uv.lock
generated
@@ -738,7 +738,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai"
|
||||
version = "0.118.0"
|
||||
version = "0.119.0"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "appdirs" },
|
||||
@@ -828,7 +828,7 @@ requires-dist = [
|
||||
{ name = "blinker", specifier = ">=1.9.0" },
|
||||
{ name = "chromadb", specifier = ">=0.5.23" },
|
||||
{ name = "click", specifier = ">=8.1.7" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.42.2" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.44.0" },
|
||||
{ name = "docling", marker = "extra == 'docling'", specifier = ">=2.12.0" },
|
||||
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
|
||||
{ name = "instructor", specifier = ">=1.3.3" },
|
||||
@@ -879,7 +879,7 @@ dev = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai-tools"
|
||||
version = "0.42.2"
|
||||
version = "0.44.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "chromadb" },
|
||||
@@ -894,9 +894,9 @@ dependencies = [
|
||||
{ name = "pytube" },
|
||||
{ name = "requests" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/17/34/9e63e2db53d8f5c30353f271a3240687a48e55204bbd176a057c0b7658c8/crewai_tools-0.42.2.tar.gz", hash = "sha256:69365ffb168cccfea970e09b308905aa5007cfec60024d731ffac1362a0153c0", size = 754967 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b8/1f/2977dc72628c1225bf5788ae22a65e5a53df384d19b197646d2c4760684e/crewai_tools-0.44.0.tar.gz", hash = "sha256:44e0c26079396503a326efdd9ff34bf369d410cbf95c362cc523db65b18f3c3a", size = 892004 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/4e/43/0f70b95350084e5cb1e1d74e9acb9e18a89ba675b1d579c787c2662baba7/crewai_tools-0.42.2-py3-none-any.whl", hash = "sha256:13727fb68f0efefd21edeb281be3d66ff2f5a3b5029d4e6adef388b11fd5846a", size = 583933 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ba/80/b91aa837d06edbb472445ea3c92d7619518894fd3049d480e5fffbf0c21b/crewai_tools-0.44.0-py3-none-any.whl", hash = "sha256:119e2365fe66ee16e18a5e8e222994b19f76bafcc8c1bb87f61609c1e39b2463", size = 583462 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
Reference in New Issue
Block a user