mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 20:38:29 +00:00
Compare commits
9 Commits
improvemen
...
devin/1745
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f4e61ae714 | ||
|
|
958751fe36 | ||
|
|
3c838f16ff | ||
|
|
6c08e6062a | ||
|
|
2e4c97661a | ||
|
|
16eb4df556 | ||
|
|
3d9000495c | ||
|
|
6d0039b117 | ||
|
|
311a078ca6 |
@@ -4,6 +4,36 @@ description: View the latest updates and changes to CrewAI
|
||||
icon: timeline
|
||||
---
|
||||
|
||||
<Update label="2025-04-07" description="v0.114.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/v01140.png" />
|
||||
</Frame>
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Agents as an atomic unit. (`Agent(...).kickoff()`)
|
||||
- Support for [Custom LLM implementations](https://docs.crewai.com/guides/advanced/custom-llm).
|
||||
- Integrated External Memory and [Opik observability](https://docs.crewai.com/how-to/opik-observability).
|
||||
- Enhanced YAML extraction.
|
||||
- Multimodal agent validation.
|
||||
- Added Secure fingerprints for agents and crews.
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Improved serialization, agent copying, and Python compatibility.
|
||||
- Added wildcard support to `emit()`
|
||||
- Added support for additional router calls and context window adjustments.
|
||||
- Fixed typing issues, validation, and import statements.
|
||||
- Improved method performance.
|
||||
- Enhanced agent task handling, event emissions, and memory management.
|
||||
- Fixed CLI issues, conditional tasks, cloning behavior, and tool outputs.
|
||||
|
||||
**Documentation & Guides**
|
||||
- Improved documentation structure, theme, and organization.
|
||||
- Added guides for Local NVIDIA NIM with WSL2, W&B Weave, and Arize Phoenix.
|
||||
- Updated tool configuration examples, prompts, and observability docs.
|
||||
- Guide on using singular agents within Flows.
|
||||
</Update>
|
||||
|
||||
<Update label="2025-03-17" description="v0.108.0">
|
||||
**Features**
|
||||
- Converted tabs to spaces in `crew.py` template
|
||||
|
||||
@@ -179,7 +179,78 @@ def crew(self) -> Crew:
|
||||
```
|
||||
</Note>
|
||||
|
||||
### 10. API Keys
|
||||
### 10. Deploy
|
||||
|
||||
Deploy the crew or flow to [CrewAI Enterprise](https://app.crewai.com).
|
||||
|
||||
- **Authentication**: You need to be authenticated to deploy to CrewAI Enterprise.
|
||||
```shell Terminal
|
||||
crewai signup
|
||||
```
|
||||
If you already have an account, you can login with:
|
||||
```shell Terminal
|
||||
crewai login
|
||||
```
|
||||
|
||||
- **Create a deployment**: Once you are authenticated, you can create a deployment for your crew or flow from the root of your localproject.
|
||||
```shell Terminal
|
||||
crewai deploy create
|
||||
```
|
||||
- Reads your local project configuration.
|
||||
- Prompts you to confirm the environment variables (like `OPENAI_API_KEY`, `SERPER_API_KEY`) found locally. These will be securely stored with the deployment on the Enterprise platform. Ensure your sensitive keys are correctly configured locally (e.g., in a `.env` file) before running this.
|
||||
- Links the deployment to the corresponding remote GitHub repository (it usually detects this automatically).
|
||||
|
||||
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI Enterprise.
|
||||
```shell Terminal
|
||||
crewai deploy push
|
||||
```
|
||||
- Initiates the deployment process on the CrewAI Enterprise platform.
|
||||
- Upon successful initiation, it will output the Deployment created successfully! message along with the Deployment Name and a unique Deployment ID (UUID).
|
||||
|
||||
- **Deployment Status**: You can check the status of your deployment with:
|
||||
```shell Terminal
|
||||
crewai deploy status
|
||||
```
|
||||
This fetches the latest deployment status of your most recent deployment attempt (e.g., `Building Images for Crew`, `Deploy Enqueued`, `Online`).
|
||||
|
||||
- **Deployment Logs**: You can check the logs of your deployment with:
|
||||
```shell Terminal
|
||||
crewai deploy logs
|
||||
```
|
||||
This streams the deployment logs to your terminal.
|
||||
|
||||
- **List deployments**: You can list all your deployments with:
|
||||
```shell Terminal
|
||||
crewai deploy list
|
||||
```
|
||||
This lists all your deployments.
|
||||
|
||||
- **Delete a deployment**: You can delete a deployment with:
|
||||
```shell Terminal
|
||||
crewai deploy remove
|
||||
```
|
||||
This deletes the deployment from the CrewAI Enterprise platform.
|
||||
|
||||
- **Help Command**: You can get help with the CLI with:
|
||||
```shell Terminal
|
||||
crewai deploy --help
|
||||
```
|
||||
This shows the help message for the CrewAI Deploy CLI.
|
||||
|
||||
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI Enterprise](http://app.crewai.com) using the CLI.
|
||||
|
||||
<iframe
|
||||
width="100%"
|
||||
height="400"
|
||||
src="https://www.youtube.com/embed/3EqSV-CYDZA"
|
||||
title="CrewAI Deployment Guide"
|
||||
frameborder="0"
|
||||
style={{ borderRadius: '10px' }}
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
||||
allowfullscreen
|
||||
></iframe>
|
||||
|
||||
### 11. API Keys
|
||||
|
||||
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.
|
||||
|
||||
|
||||
@@ -42,6 +42,16 @@ CrewAI supports various types of knowledge sources out of the box:
|
||||
| `collection_name` | **str** | No | Name of the collection where the knowledge will be stored. Used to identify different sets of knowledge. Defaults to "knowledge" if not provided. |
|
||||
| `storage` | **Optional[KnowledgeStorage]** | No | Custom storage configuration for managing how the knowledge is stored and retrieved. If not provided, a default storage will be created. |
|
||||
|
||||
|
||||
<Tip>
|
||||
Unlike retrieval from a vector database using a tool, agents preloaded with knowledge will not need a retrieval persona or task.
|
||||
Simply add the relevant knowledge sources your agent or crew needs to function.
|
||||
|
||||
Knowledge sources can be added at the agent or crew level.
|
||||
Crew level knowledge sources will be used by **all agents** in the crew.
|
||||
Agent level knowledge sources will be used by the **specific agent** that is preloaded with the knowledge.
|
||||
</Tip>
|
||||
|
||||
## Quickstart Example
|
||||
|
||||
<Tip>
|
||||
@@ -146,6 +156,26 @@ result = crew.kickoff(
|
||||
)
|
||||
```
|
||||
|
||||
## Knowledge Configuration
|
||||
|
||||
You can configure the knowledge configuration for the crew or agent.
|
||||
|
||||
```python Code
|
||||
from crewai.knowledge.knowledge_config import KnowledgeConfig
|
||||
|
||||
knowledge_config = KnowledgeConfig(results_limit=10, score_threshold=0.5)
|
||||
|
||||
agent = Agent(
|
||||
...
|
||||
knowledge_config=knowledge_config
|
||||
)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
`results_limit`: is the number of relevant documents to return. Default is 3.
|
||||
`score_threshold`: is the minimum score for a document to be considered relevant. Default is 0.35.
|
||||
</Tip>
|
||||
|
||||
## More Examples
|
||||
|
||||
Here are examples of how to use different types of knowledge sources:
|
||||
|
||||
@@ -1,71 +0,0 @@
|
||||
---
|
||||
title: Using LlamaIndex Tools
|
||||
description: Learn how to integrate LlamaIndex tools with CrewAI agents to enhance search-based queries and more.
|
||||
icon: toolbox
|
||||
---
|
||||
|
||||
## Using LlamaIndex Tools
|
||||
|
||||
<Info>
|
||||
CrewAI seamlessly integrates with LlamaIndex’s comprehensive toolkit for RAG (Retrieval-Augmented Generation) and agentic pipelines, enabling advanced search-based queries and more.
|
||||
</Info>
|
||||
|
||||
Here are the available built-in tools offered by LlamaIndex.
|
||||
|
||||
```python Code
|
||||
from crewai import Agent
|
||||
from crewai_tools import LlamaIndexTool
|
||||
|
||||
# Example 1: Initialize from FunctionTool
|
||||
from llama_index.core.tools import FunctionTool
|
||||
|
||||
your_python_function = lambda ...: ...
|
||||
og_tool = FunctionTool.from_defaults(
|
||||
your_python_function,
|
||||
name="<name>",
|
||||
description='<description>'
|
||||
)
|
||||
tool = LlamaIndexTool.from_tool(og_tool)
|
||||
|
||||
# Example 2: Initialize from LlamaHub Tools
|
||||
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
|
||||
wolfram_spec = WolframAlphaToolSpec(app_id="<app_id>")
|
||||
wolfram_tools = wolfram_spec.to_tool_list()
|
||||
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
|
||||
|
||||
# Example 3: Initialize Tool from a LlamaIndex Query Engine
|
||||
query_engine = index.as_query_engine()
|
||||
query_tool = LlamaIndexTool.from_query_engine(
|
||||
query_engine,
|
||||
name="Uber 2019 10K Query Tool",
|
||||
description="Use this tool to lookup the 2019 Uber 10K Annual Report"
|
||||
)
|
||||
|
||||
# Create and assign the tools to an agent
|
||||
agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[tool, *tools, query_tool]
|
||||
)
|
||||
|
||||
# rest of the code ...
|
||||
```
|
||||
|
||||
## Steps to Get Started
|
||||
|
||||
To effectively use the LlamaIndexTool, follow these steps:
|
||||
|
||||
<Steps>
|
||||
<Step title="Package Installation">
|
||||
Make sure that `crewai[tools]` package is installed in your Python environment:
|
||||
<CodeGroup>
|
||||
```shell Terminal
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
</CodeGroup>
|
||||
</Step>
|
||||
<Step title="Install and Use LlamaIndex">
|
||||
Follow the LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
|
||||
</Step>
|
||||
</Steps>
|
||||
117
docs/docs.json
117
docs/docs.json
@@ -8,25 +8,27 @@
|
||||
"dark": "#C94C3C"
|
||||
},
|
||||
"favicon": "favicon.svg",
|
||||
"contextual": {
|
||||
"options": ["copy", "view", "chatgpt", "claude"]
|
||||
},
|
||||
"navigation": {
|
||||
"tabs": [
|
||||
{
|
||||
"tab": "Get Started",
|
||||
"tab": "Documentation",
|
||||
"groups": [
|
||||
{
|
||||
"group": "Get Started",
|
||||
"pages": [
|
||||
"introduction",
|
||||
"installation",
|
||||
"quickstart",
|
||||
"changelog"
|
||||
"quickstart"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Guides",
|
||||
"pages": [
|
||||
{
|
||||
"group": "Concepts",
|
||||
"group": "Strategy",
|
||||
"pages": [
|
||||
"guides/concepts/evaluating-use-cases"
|
||||
]
|
||||
@@ -79,41 +81,6 @@
|
||||
"concepts/event-listener"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "How to Guides",
|
||||
"pages": [
|
||||
"how-to/create-custom-tools",
|
||||
"how-to/sequential-process",
|
||||
"how-to/hierarchical-process",
|
||||
"how-to/custom-manager-agent",
|
||||
"how-to/llm-connections",
|
||||
"how-to/customizing-agents",
|
||||
"how-to/multimodal-agents",
|
||||
"how-to/coding-agents",
|
||||
"how-to/force-tool-output-as-result",
|
||||
"how-to/human-input-on-execution",
|
||||
"how-to/kickoff-async",
|
||||
"how-to/kickoff-for-each",
|
||||
"how-to/replay-tasks-from-latest-crew-kickoff",
|
||||
"how-to/conditional-tasks",
|
||||
"how-to/langchain-tools",
|
||||
"how-to/llamaindex-tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Agent Monitoring & Observability",
|
||||
"pages": [
|
||||
"how-to/agentops-observability",
|
||||
"how-to/arize-phoenix-observability",
|
||||
"how-to/langfuse-observability",
|
||||
"how-to/langtrace-observability",
|
||||
"how-to/mlflow-observability",
|
||||
"how-to/openlit-observability",
|
||||
"how-to/opik-observability",
|
||||
"how-to/portkey-observability",
|
||||
"how-to/weave-integration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Tools",
|
||||
"pages": [
|
||||
@@ -141,6 +108,7 @@
|
||||
"tools/hyperbrowserloadtool",
|
||||
"tools/linkupsearchtool",
|
||||
"tools/llamaindextool",
|
||||
"tools/langchaintool",
|
||||
"tools/serperdevtool",
|
||||
"tools/s3readertool",
|
||||
"tools/s3writertool",
|
||||
@@ -170,6 +138,40 @@
|
||||
"tools/youtubevideosearchtool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Agent Monitoring & Observability",
|
||||
"pages": [
|
||||
"how-to/agentops-observability",
|
||||
"how-to/arize-phoenix-observability",
|
||||
"how-to/langfuse-observability",
|
||||
"how-to/langtrace-observability",
|
||||
"how-to/mlflow-observability",
|
||||
"how-to/openlit-observability",
|
||||
"how-to/opik-observability",
|
||||
"how-to/portkey-observability",
|
||||
"how-to/weave-integration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Learn",
|
||||
"pages": [
|
||||
"how-to/conditional-tasks",
|
||||
"how-to/coding-agents",
|
||||
"how-to/create-custom-tools",
|
||||
"how-to/custom-llm",
|
||||
"how-to/custom-manager-agent",
|
||||
"how-to/customizing-agents",
|
||||
"how-to/force-tool-output-as-result",
|
||||
"how-to/hierarchical-process",
|
||||
"how-to/human-input-on-execution",
|
||||
"how-to/kickoff-async",
|
||||
"how-to/kickoff-for-each",
|
||||
"how-to/llm-connections",
|
||||
"how-to/multimodal-agents",
|
||||
"how-to/replay-tasks-from-latest-crew-kickoff",
|
||||
"how-to/sequential-process"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Telemetry",
|
||||
"pages": [
|
||||
@@ -188,19 +190,35 @@
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"tab": "Releases",
|
||||
"groups": [
|
||||
{
|
||||
"group": "Releases",
|
||||
"pages": [
|
||||
"changelog"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"global": {
|
||||
"anchors": [
|
||||
{
|
||||
"anchor": "Community",
|
||||
"anchor": "Website",
|
||||
"href": "https://crewai.com",
|
||||
"icon": "globe"
|
||||
},
|
||||
{
|
||||
"anchor": "Forum",
|
||||
"href": "https://community.crewai.com",
|
||||
"icon": "discourse"
|
||||
},
|
||||
{
|
||||
"anchor": "Tutorials",
|
||||
"href": "https://www.youtube.com/@crewAIInc",
|
||||
"icon": "youtube"
|
||||
"anchor": "Get Help",
|
||||
"href": "mailto:support@crewai.com",
|
||||
"icon": "headset"
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -214,6 +232,12 @@
|
||||
"strict": false
|
||||
},
|
||||
"navbar": {
|
||||
"links": [
|
||||
{
|
||||
"label": "Start Free Trial",
|
||||
"href": "https://app.crewai.com"
|
||||
}
|
||||
],
|
||||
"primary": {
|
||||
"type": "github",
|
||||
"href": "https://github.com/crewAIInc/crewAI"
|
||||
@@ -223,7 +247,12 @@
|
||||
"prompt": "Search CrewAI docs"
|
||||
},
|
||||
"seo": {
|
||||
"indexing": "navigable"
|
||||
"indexing": "all"
|
||||
},
|
||||
"errors": {
|
||||
"404": {
|
||||
"redirect": true
|
||||
}
|
||||
},
|
||||
"footer": {
|
||||
"socials": {
|
||||
|
||||
@@ -1,9 +1,13 @@
|
||||
# Custom LLM Implementations
|
||||
---
|
||||
title: Custom LLM Implementation
|
||||
description: Learn how to create custom LLM implementations in CrewAI.
|
||||
icon: code
|
||||
---
|
||||
|
||||
## Custom LLM Implementations
|
||||
|
||||
CrewAI now supports custom LLM implementations through the `BaseLLM` abstract base class. This allows you to create your own LLM implementations that don't rely on litellm's authentication mechanism.
|
||||
|
||||
## Using Custom LLM Implementations
|
||||
|
||||
To create a custom LLM implementation, you need to:
|
||||
|
||||
1. Inherit from the `BaseLLM` abstract base class
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Create Your Own Manager Agent
|
||||
title: Custom Manager Agent
|
||||
description: Learn how to set a custom agent as the manager in CrewAI, providing more control over task management and coordination.
|
||||
icon: user-shield
|
||||
---
|
||||
|
||||
117
docs/how-to/elasticsearch-integration.md
Normal file
117
docs/how-to/elasticsearch-integration.md
Normal file
@@ -0,0 +1,117 @@
|
||||
# Elasticsearch Integration
|
||||
|
||||
CrewAI supports using Elasticsearch as an alternative to ChromaDB for RAG (Retrieval Augmented Generation) storage. This allows you to leverage Elasticsearch's powerful search capabilities and scalability for your AI agents.
|
||||
|
||||
## Installation
|
||||
|
||||
To use Elasticsearch with CrewAI, you need to install the Elasticsearch Python client:
|
||||
|
||||
```bash
|
||||
pip install elasticsearch
|
||||
```
|
||||
|
||||
## Using Elasticsearch for Memory
|
||||
|
||||
You can configure your crew to use Elasticsearch for memory storage:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Crew, Task
|
||||
|
||||
# Create agents and tasks
|
||||
agent = Agent(
|
||||
role="Researcher",
|
||||
goal="Research a topic",
|
||||
backstory="You are a researcher who loves to find information.",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Research about AI",
|
||||
expected_output="Information about AI",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Create a crew with Elasticsearch memory
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
memory_config={
|
||||
"provider": "elasticsearch",
|
||||
"host": "localhost", # Optional, defaults to localhost
|
||||
"port": 9200, # Optional, defaults to 9200
|
||||
"username": "user", # Optional
|
||||
"password": "pass", # Optional
|
||||
},
|
||||
)
|
||||
|
||||
# Execute the crew
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Using Elasticsearch for Knowledge
|
||||
|
||||
You can also use Elasticsearch for knowledge storage:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Crew, Task
|
||||
from crewai.knowledge import Knowledge
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
|
||||
# Create knowledge with Elasticsearch storage
|
||||
content = "AI is a field of computer science that focuses on creating machines that can perform tasks that typically require human intelligence."
|
||||
string_source = StringKnowledgeSource(
|
||||
content=content, metadata={"topic": "AI"}
|
||||
)
|
||||
|
||||
knowledge = Knowledge(
|
||||
collection_name="test",
|
||||
sources=[string_source],
|
||||
storage_provider="elasticsearch", # Use Elasticsearch
|
||||
# Optional Elasticsearch configuration
|
||||
host="localhost",
|
||||
port=9200,
|
||||
username="user",
|
||||
password="pass",
|
||||
)
|
||||
|
||||
# Create an agent with the knowledge
|
||||
agent = Agent(
|
||||
role="AI Expert",
|
||||
goal="Explain AI",
|
||||
backstory="You are an AI expert who loves to explain AI concepts.",
|
||||
knowledge=[knowledge],
|
||||
)
|
||||
|
||||
# Create a task
|
||||
task = Task(
|
||||
description="Explain what AI is",
|
||||
expected_output="Explanation of AI",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Create a crew
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
)
|
||||
|
||||
# Execute the crew
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
||||
The Elasticsearch integration supports the following configuration options:
|
||||
|
||||
- `host`: Elasticsearch host (default: "localhost")
|
||||
- `port`: Elasticsearch port (default: 9200)
|
||||
- `username`: Elasticsearch username (optional)
|
||||
- `password`: Elasticsearch password (optional)
|
||||
- Additional keyword arguments are passed directly to the Elasticsearch client
|
||||
|
||||
## Running Tests
|
||||
|
||||
To run the Elasticsearch tests, you need to set the `RUN_ELASTICSEARCH_TESTS` environment variable to `true`:
|
||||
|
||||
```bash
|
||||
RUN_ELASTICSEARCH_TESTS=true pytest tests/memory/elasticsearch_storage_test.py tests/knowledge/elasticsearch_knowledge_storage_test.py tests/integration/elasticsearch_integration_test.py
|
||||
```
|
||||
@@ -20,10 +20,8 @@ Here's an example of how to replay from a task:
|
||||
To use the replay feature, follow these steps:
|
||||
|
||||
<Steps>
|
||||
<Step title="Open your terminal or command prompt.">
|
||||
</Step>
|
||||
<Step title="Navigate to the directory where your CrewAI project is located.">
|
||||
</Step>
|
||||
<Step title="Open your terminal or command prompt."></Step>
|
||||
<Step title="Navigate to the directory where your CrewAI project is located."></Step>
|
||||
<Step title="Run the following commands:">
|
||||
To view the latest kickoff task_ids use:
|
||||
|
||||
|
||||
BIN
docs/images/v01140.png
Normal file
BIN
docs/images/v01140.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 2.4 MiB |
@@ -336,9 +336,22 @@ email_summarizer_task:
|
||||
- research_task
|
||||
```
|
||||
|
||||
## Deploying Your Project
|
||||
## Deploying Your Crew
|
||||
|
||||
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com), where you can deploy your crew in a few clicks.
|
||||
The easiest way to deploy your crew to production is through [CrewAI Enterprise](http://app.crewai.com).
|
||||
|
||||
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI Enterprise](http://app.crewai.com) using the CLI.
|
||||
|
||||
<iframe
|
||||
width="100%"
|
||||
height="400"
|
||||
src="https://www.youtube.com/embed/3EqSV-CYDZA"
|
||||
title="CrewAI Deployment Guide"
|
||||
frameborder="0"
|
||||
style={{ borderRadius: '10px' }}
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
||||
allowfullscreen
|
||||
></iframe>
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
---
|
||||
title: Using LangChain Tools
|
||||
description: Learn how to integrate LangChain tools with CrewAI agents to enhance search-based queries and more.
|
||||
title: LangChain Tool
|
||||
description: The `LangChainTool` is a wrapper for LangChain tools and query engines.
|
||||
icon: link
|
||||
---
|
||||
|
||||
## Using LangChain Tools
|
||||
## `LangChainTool`
|
||||
|
||||
<Info>
|
||||
CrewAI seamlessly integrates with LangChain's comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
|
||||
@@ -37,6 +37,7 @@ dependencies = [
|
||||
"tomli>=2.0.2",
|
||||
"blinker>=1.9.0",
|
||||
"json5>=0.10.0",
|
||||
"elasticsearch>=9.0.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
|
||||
@@ -114,6 +114,14 @@ class Agent(BaseAgent):
|
||||
default=None,
|
||||
description="Embedder configuration for the agent.",
|
||||
)
|
||||
agent_knowledge_context: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Knowledge context for the agent.",
|
||||
)
|
||||
crew_knowledge_context: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Knowledge context for the crew.",
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
@@ -234,22 +242,30 @@ class Agent(BaseAgent):
|
||||
memory = contextual_memory.build_context_for_task(task, context)
|
||||
if memory.strip() != "":
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
knowledge_config = (
|
||||
self.knowledge_config.model_dump() if self.knowledge_config else {}
|
||||
)
|
||||
if self.knowledge:
|
||||
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
|
||||
agent_knowledge_snippets = self.knowledge.query(
|
||||
[task.prompt()], **knowledge_config
|
||||
)
|
||||
if agent_knowledge_snippets:
|
||||
agent_knowledge_context = extract_knowledge_context(
|
||||
self.agent_knowledge_context = extract_knowledge_context(
|
||||
agent_knowledge_snippets
|
||||
)
|
||||
if agent_knowledge_context:
|
||||
task_prompt += agent_knowledge_context
|
||||
if self.agent_knowledge_context:
|
||||
task_prompt += self.agent_knowledge_context
|
||||
|
||||
if self.crew:
|
||||
knowledge_snippets = self.crew.query_knowledge([task.prompt()])
|
||||
knowledge_snippets = self.crew.query_knowledge(
|
||||
[task.prompt()], **knowledge_config
|
||||
)
|
||||
if knowledge_snippets:
|
||||
crew_knowledge_context = extract_knowledge_context(knowledge_snippets)
|
||||
if crew_knowledge_context:
|
||||
task_prompt += crew_knowledge_context
|
||||
self.crew_knowledge_context = extract_knowledge_context(
|
||||
knowledge_snippets
|
||||
)
|
||||
if self.crew_knowledge_context:
|
||||
task_prompt += self.crew_knowledge_context
|
||||
|
||||
tools = tools or self.tools or []
|
||||
self.create_agent_executor(tools=tools, task=task)
|
||||
|
||||
@@ -19,6 +19,7 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.knowledge_config import KnowledgeConfig
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.security.security_config import SecurityConfig
|
||||
from crewai.tools.base_tool import BaseTool, Tool
|
||||
@@ -155,6 +156,10 @@ class BaseAgent(ABC, BaseModel):
|
||||
adapted_agent: bool = Field(
|
||||
default=False, description="Whether the agent is adapted"
|
||||
)
|
||||
knowledge_config: Optional[KnowledgeConfig] = Field(
|
||||
default=None,
|
||||
description="Knowledge configuration for the agent such as limits and threshold",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
|
||||
@@ -117,7 +117,9 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
|
||||
published_handle = publish_response.json()["handle"]
|
||||
console.print(
|
||||
f"Successfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
|
||||
f"Successfully published `{published_handle}` ({project_version}).\n\n"
|
||||
+ "⚠️ Security checks are running in the background. Your tool will be available once these are complete.\n"
|
||||
+ f"You can monitor the status or access your tool here:\nhttps://app.crewai.com/crewai_plus/tools/{published_handle}",
|
||||
style="bold green",
|
||||
)
|
||||
|
||||
@@ -153,8 +155,12 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
login_response_json = login_response.json()
|
||||
|
||||
settings = Settings()
|
||||
settings.tool_repository_username = login_response_json["credential"]["username"]
|
||||
settings.tool_repository_password = login_response_json["credential"]["password"]
|
||||
settings.tool_repository_username = login_response_json["credential"][
|
||||
"username"
|
||||
]
|
||||
settings.tool_repository_password = login_response_json["credential"][
|
||||
"password"
|
||||
]
|
||||
settings.dump()
|
||||
|
||||
console.print(
|
||||
@@ -179,7 +185,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
capture_output=False,
|
||||
env=self._build_env_with_credentials(repository_handle),
|
||||
text=True,
|
||||
check=True
|
||||
check=True,
|
||||
)
|
||||
|
||||
if add_package_result.stderr:
|
||||
@@ -204,7 +210,11 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
settings = Settings()
|
||||
|
||||
env = os.environ.copy()
|
||||
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(settings.tool_repository_username or "")
|
||||
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(settings.tool_repository_password or "")
|
||||
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(
|
||||
settings.tool_repository_username or ""
|
||||
)
|
||||
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(
|
||||
settings.tool_repository_password or ""
|
||||
)
|
||||
|
||||
return env
|
||||
|
||||
@@ -304,9 +304,7 @@ class Crew(BaseModel):
|
||||
"""Initialize private memory attributes."""
|
||||
self._external_memory = (
|
||||
# External memory doesn’t support a default value since it was designed to be managed entirely externally
|
||||
self.external_memory.set_crew(self)
|
||||
if self.external_memory
|
||||
else None
|
||||
self.external_memory.set_crew(self) if self.external_memory else None
|
||||
)
|
||||
|
||||
self._long_term_memory = self.long_term_memory
|
||||
@@ -1136,9 +1134,13 @@ class Crew(BaseModel):
|
||||
result = self._execute_tasks(self.tasks, start_index, True)
|
||||
return result
|
||||
|
||||
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
|
||||
def query_knowledge(
|
||||
self, query: List[str], results_limit: int = 3, score_threshold: float = 0.35
|
||||
) -> Union[List[Dict[str, Any]], None]:
|
||||
if self.knowledge:
|
||||
return self.knowledge.query(query)
|
||||
return self.knowledge.query(
|
||||
query, results_limit=results_limit, score_threshold=score_threshold
|
||||
)
|
||||
return None
|
||||
|
||||
def fetch_inputs(self) -> Set[str]:
|
||||
@@ -1220,9 +1222,13 @@ class Crew(BaseModel):
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
if self.short_term_memory:
|
||||
copied_data["short_term_memory"] = self.short_term_memory.model_copy(deep=True)
|
||||
copied_data["short_term_memory"] = self.short_term_memory.model_copy(
|
||||
deep=True
|
||||
)
|
||||
if self.long_term_memory:
|
||||
copied_data["long_term_memory"] = self.long_term_memory.model_copy(deep=True)
|
||||
copied_data["long_term_memory"] = self.long_term_memory.model_copy(
|
||||
deep=True
|
||||
)
|
||||
if self.entity_memory:
|
||||
copied_data["entity_memory"] = self.entity_memory.model_copy(deep=True)
|
||||
if self.external_memory:
|
||||
@@ -1230,7 +1236,6 @@ class Crew(BaseModel):
|
||||
if self.user_memory:
|
||||
copied_data["user_memory"] = self.user_memory.model_copy(deep=True)
|
||||
|
||||
|
||||
copied_data.pop("agents", None)
|
||||
copied_data.pop("tasks", None)
|
||||
|
||||
@@ -1403,7 +1408,10 @@ class Crew(BaseModel):
|
||||
"short": (getattr(self, "_short_term_memory", None), "short term"),
|
||||
"entity": (getattr(self, "_entity_memory", None), "entity"),
|
||||
"knowledge": (getattr(self, "knowledge", None), "knowledge"),
|
||||
"kickoff_outputs": (getattr(self, "_task_output_handler", None), "task output"),
|
||||
"kickoff_outputs": (
|
||||
getattr(self, "_task_output_handler", None),
|
||||
"task output",
|
||||
),
|
||||
"external": (getattr(self, "_external_memory", None), "external"),
|
||||
}
|
||||
|
||||
|
||||
@@ -1,11 +1,18 @@
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List, Optional, cast
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
|
||||
try:
|
||||
from crewai.knowledge.storage.elasticsearch_knowledge_storage import (
|
||||
ElasticsearchKnowledgeStorage,
|
||||
)
|
||||
except ImportError:
|
||||
ElasticsearchKnowledgeStorage = None
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false" # removes logging from fastembed
|
||||
|
||||
|
||||
@@ -30,20 +37,34 @@ class Knowledge(BaseModel):
|
||||
sources: List[BaseKnowledgeSource],
|
||||
embedder: Optional[Dict[str, Any]] = None,
|
||||
storage: Optional[KnowledgeStorage] = None,
|
||||
storage_provider: str = "chromadb",
|
||||
**data,
|
||||
):
|
||||
super().__init__(**data)
|
||||
if storage:
|
||||
self.storage = storage
|
||||
else:
|
||||
self.storage = KnowledgeStorage(
|
||||
embedder=embedder, collection_name=collection_name
|
||||
)
|
||||
if storage_provider == "elasticsearch":
|
||||
try:
|
||||
self.storage = cast(KnowledgeStorage, self._create_elasticsearch_storage(
|
||||
embedder, collection_name
|
||||
))
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Elasticsearch is not installed. Please install it with `pip install elasticsearch`."
|
||||
)
|
||||
else:
|
||||
self.storage = KnowledgeStorage(
|
||||
embedder=embedder, collection_name=collection_name
|
||||
)
|
||||
self.sources = sources
|
||||
self.storage.initialize_knowledge_storage()
|
||||
if self.storage is not None:
|
||||
self.storage.initialize_knowledge_storage()
|
||||
self._add_sources()
|
||||
|
||||
def query(self, query: List[str], limit: int = 3) -> List[Dict[str, Any]]:
|
||||
def query(
|
||||
self, query: List[str], results_limit: int = 3, score_threshold: float = 0.35
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Query across all knowledge sources to find the most relevant information.
|
||||
Returns the top_k most relevant chunks.
|
||||
@@ -56,7 +77,8 @@ class Knowledge(BaseModel):
|
||||
|
||||
results = self.storage.search(
|
||||
query,
|
||||
limit,
|
||||
limit=results_limit,
|
||||
score_threshold=score_threshold,
|
||||
)
|
||||
return results
|
||||
|
||||
@@ -68,6 +90,16 @@ class Knowledge(BaseModel):
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def _create_elasticsearch_storage(self, embedder, collection_name):
|
||||
"""Create an Elasticsearch storage instance."""
|
||||
if ElasticsearchKnowledgeStorage is None:
|
||||
raise ImportError(
|
||||
"Elasticsearch is not installed. Please install it with `pip install elasticsearch`."
|
||||
)
|
||||
return ElasticsearchKnowledgeStorage(
|
||||
embedder_config=embedder, collection_name=collection_name
|
||||
)
|
||||
|
||||
def reset(self) -> None:
|
||||
if self.storage:
|
||||
self.storage.reset()
|
||||
|
||||
16
src/crewai/knowledge/knowledge_config.py
Normal file
16
src/crewai/knowledge/knowledge_config.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class KnowledgeConfig(BaseModel):
|
||||
"""Configuration for knowledge retrieval.
|
||||
|
||||
Args:
|
||||
results_limit (int): The number of relevant documents to return.
|
||||
score_threshold (float): The minimum score for a document to be considered relevant.
|
||||
"""
|
||||
|
||||
results_limit: int = Field(default=3, description="The number of results to return")
|
||||
score_threshold: float = Field(
|
||||
default=0.35,
|
||||
description="The minimum score for a result to be considered relevant",
|
||||
)
|
||||
268
src/crewai/knowledge/storage/elasticsearch_knowledge_storage.py
Normal file
268
src/crewai/knowledge/storage/elasticsearch_knowledge_storage.py
Normal file
@@ -0,0 +1,268 @@
|
||||
import contextlib
|
||||
import hashlib
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional, Union, cast
|
||||
|
||||
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_logging(logger_name="elasticsearch", level=logging.ERROR):
|
||||
logger = logging.getLogger(logger_name)
|
||||
original_level = logger.getEffectiveLevel()
|
||||
logger.setLevel(level)
|
||||
with (
|
||||
contextlib.redirect_stdout(io.StringIO()),
|
||||
contextlib.redirect_stderr(io.StringIO()),
|
||||
contextlib.suppress(UserWarning),
|
||||
):
|
||||
yield
|
||||
logger.setLevel(original_level)
|
||||
|
||||
|
||||
class ElasticsearchKnowledgeStorage(BaseKnowledgeStorage):
|
||||
"""
|
||||
Extends BaseKnowledgeStorage to use Elasticsearch for storing embeddings
|
||||
and improving search efficiency.
|
||||
"""
|
||||
|
||||
app: Any = None
|
||||
collection_name: Optional[str] = "knowledge"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedder_config: Optional[Dict[str, Any]] = None,
|
||||
collection_name: Optional[str] = None,
|
||||
host: str = "localhost",
|
||||
port: int = 9200,
|
||||
username: Optional[str] = None,
|
||||
password: Optional[str] = None,
|
||||
**kwargs: Any
|
||||
):
|
||||
self.collection_name = collection_name
|
||||
self._set_embedder_config(embedder_config)
|
||||
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.username = username
|
||||
self.password = password
|
||||
self.index_name = f"crewai_knowledge_{collection_name if collection_name else 'default'}".lower()
|
||||
self.additional_config = kwargs
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: List[str],
|
||||
limit: int = 3,
|
||||
filter: Optional[dict] = None,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Dict[str, Any]]:
|
||||
if not self.app:
|
||||
self.initialize_knowledge_storage()
|
||||
|
||||
try:
|
||||
embedding = self._get_embedding_for_text(query[0])
|
||||
|
||||
search_query: Dict[str, Any] = {
|
||||
"size": limit,
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": {"match_all": {}},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
|
||||
"params": {"query_vector": embedding}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if filter:
|
||||
query_obj = search_query.get("query", {})
|
||||
if isinstance(query_obj, dict):
|
||||
script_score_obj = query_obj.get("script_score", {})
|
||||
if isinstance(script_score_obj, dict):
|
||||
query_part = script_score_obj.get("query", {})
|
||||
if isinstance(query_part, dict):
|
||||
for key, value in filter.items():
|
||||
new_query = {
|
||||
"bool": {
|
||||
"must": [
|
||||
query_part,
|
||||
{"match": {f"metadata.{key}": value}}
|
||||
]
|
||||
}
|
||||
}
|
||||
if isinstance(script_score_obj, dict):
|
||||
script_score_obj["query"] = new_query
|
||||
|
||||
with suppress_logging():
|
||||
if self.app is not None and hasattr(self.app, "search") and callable(getattr(self.app, "search")):
|
||||
response = self.app.search(
|
||||
index=self.index_name,
|
||||
body=search_query
|
||||
)
|
||||
|
||||
results = []
|
||||
for hit in response["hits"]["hits"]:
|
||||
adjusted_score = (hit["_score"] - 1.0)
|
||||
|
||||
if adjusted_score >= score_threshold:
|
||||
results.append({
|
||||
"id": hit["_id"],
|
||||
"metadata": hit["_source"]["metadata"],
|
||||
"context": hit["_source"]["text"],
|
||||
"score": adjusted_score,
|
||||
})
|
||||
|
||||
return results
|
||||
else:
|
||||
Logger(verbose=True).log("error", "Elasticsearch client is not initialized", "red")
|
||||
return []
|
||||
except Exception as e:
|
||||
Logger(verbose=True).log("error", f"Search error: {e}", "red")
|
||||
raise Exception(f"Error during knowledge search: {str(e)}")
|
||||
|
||||
def initialize_knowledge_storage(self):
|
||||
try:
|
||||
from elasticsearch import Elasticsearch
|
||||
|
||||
es_auth = {}
|
||||
if self.username and self.password:
|
||||
es_auth = {"basic_auth": (self.username, self.password)}
|
||||
|
||||
self.app = Elasticsearch(
|
||||
[f"http://{self.host}:{self.port}"],
|
||||
**es_auth,
|
||||
**self.additional_config
|
||||
)
|
||||
|
||||
if not self.app.indices.exists(index=self.index_name):
|
||||
self.app.indices.create(
|
||||
index=self.index_name,
|
||||
body={
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"text": {"type": "text"},
|
||||
"embedding": {
|
||||
"type": "dense_vector",
|
||||
"dims": 1536, # Default for OpenAI embeddings
|
||||
"index": True,
|
||||
"similarity": "cosine"
|
||||
},
|
||||
"metadata": {"type": "object"}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Elasticsearch is not installed. Please install it with `pip install elasticsearch`."
|
||||
)
|
||||
except Exception as e:
|
||||
Logger(verbose=True).log(
|
||||
"error",
|
||||
f"Error initializing Elasticsearch: {str(e)}",
|
||||
"red"
|
||||
)
|
||||
raise Exception(f"Error initializing Elasticsearch: {str(e)}")
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
if self.app is not None:
|
||||
if self.app.indices.exists(index=self.index_name):
|
||||
self.app.indices.delete(index=self.index_name)
|
||||
|
||||
self.initialize_knowledge_storage()
|
||||
except Exception as e:
|
||||
raise Exception(
|
||||
f"An error occurred while resetting the knowledge storage: {e}"
|
||||
)
|
||||
|
||||
def save(
|
||||
self,
|
||||
documents: List[str],
|
||||
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
|
||||
) -> None:
|
||||
if not self.app:
|
||||
self.initialize_knowledge_storage()
|
||||
|
||||
try:
|
||||
unique_docs = {}
|
||||
|
||||
for idx, doc in enumerate(documents):
|
||||
doc_id = hashlib.sha256(doc.encode("utf-8")).hexdigest()
|
||||
doc_metadata = None
|
||||
if metadata is not None:
|
||||
if isinstance(metadata, list):
|
||||
doc_metadata = metadata[idx]
|
||||
else:
|
||||
doc_metadata = metadata
|
||||
unique_docs[doc_id] = (doc, doc_metadata)
|
||||
|
||||
for doc_id, (doc, meta) in unique_docs.items():
|
||||
embedding = self._get_embedding_for_text(doc)
|
||||
|
||||
doc_body = {
|
||||
"text": doc,
|
||||
"embedding": embedding,
|
||||
"metadata": meta or {},
|
||||
}
|
||||
|
||||
if self.app is not None and hasattr(self.app, "index") and callable(getattr(self.app, "index")):
|
||||
index_func = getattr(self.app, "index")
|
||||
index_func(
|
||||
index=self.index_name,
|
||||
id=doc_id,
|
||||
document=doc_body,
|
||||
refresh=True # Make the document immediately available for search
|
||||
)
|
||||
else:
|
||||
Logger(verbose=True).log("error", "Elasticsearch client is not initialized", "red")
|
||||
|
||||
except Exception as e:
|
||||
Logger(verbose=True).log("error", f"Save error: {e}", "red")
|
||||
raise Exception(f"Error during knowledge save: {str(e)}")
|
||||
|
||||
def _get_embedding_for_text(self, text: str) -> List[float]:
|
||||
"""Get embedding for text using the configured embedder."""
|
||||
if self.embedder_config is None:
|
||||
raise ValueError("Embedder configuration is not set")
|
||||
|
||||
embedder = self.embedder_config
|
||||
if hasattr(embedder, "embed_documents") and callable(getattr(embedder, "embed_documents")):
|
||||
embed_func = getattr(embedder, "embed_documents")
|
||||
return embed_func([text])[0]
|
||||
elif hasattr(embedder, "embed") and callable(getattr(embedder, "embed")):
|
||||
embed_func = getattr(embedder, "embed")
|
||||
return embed_func(text)
|
||||
else:
|
||||
raise ValueError("Invalid embedding function configuration")
|
||||
|
||||
def _create_default_embedding_function(self):
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingFunction(
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
|
||||
def _set_embedder_config(
|
||||
self, embedder: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""Set the embedding configuration for the knowledge storage.
|
||||
|
||||
Args:
|
||||
embedder (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
|
||||
If None or empty, defaults to the default embedding function.
|
||||
"""
|
||||
self.embedder_config = (
|
||||
EmbeddingConfigurator().configure_embedder(embedder)
|
||||
if embedder
|
||||
else self._create_default_embedding_function()
|
||||
)
|
||||
@@ -4,7 +4,7 @@ import io
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
from typing import Any, Dict, List, Optional, Union, cast
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import chromadb
|
||||
import chromadb.errors
|
||||
|
||||
@@ -22,7 +22,9 @@ class EntityMemory(Memory):
|
||||
else:
|
||||
memory_provider = None
|
||||
|
||||
if memory_provider == "mem0":
|
||||
if storage:
|
||||
pass
|
||||
elif memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
@@ -30,17 +32,26 @@ class EntityMemory(Memory):
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="entities", crew=crew)
|
||||
else:
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
elif memory_provider == "elasticsearch":
|
||||
try:
|
||||
storage = self._create_elasticsearch_storage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
path=path,
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Elasticsearch is not installed. Please install it with `pip install elasticsearch`."
|
||||
)
|
||||
else:
|
||||
storage = RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
path=path,
|
||||
)
|
||||
|
||||
super().__init__(storage=storage)
|
||||
@@ -59,6 +70,11 @@ class EntityMemory(Memory):
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata)
|
||||
|
||||
def _create_elasticsearch_storage(self, **kwargs):
|
||||
"""Create an Elasticsearch storage instance."""
|
||||
from crewai.memory.storage.elasticsearch_storage import ElasticsearchStorage
|
||||
return ElasticsearchStorage(**kwargs)
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
self.storage.reset()
|
||||
|
||||
@@ -24,7 +24,9 @@ class ShortTermMemory(Memory):
|
||||
else:
|
||||
memory_provider = None
|
||||
|
||||
if memory_provider == "mem0":
|
||||
if storage:
|
||||
pass
|
||||
elif memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
@@ -32,16 +34,24 @@ class ShortTermMemory(Memory):
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="short_term", crew=crew)
|
||||
else:
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
elif memory_provider == "elasticsearch":
|
||||
try:
|
||||
storage = self._create_elasticsearch_storage(
|
||||
type="short_term",
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
path=path,
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Elasticsearch is not installed. Please install it with `pip install elasticsearch`."
|
||||
)
|
||||
else:
|
||||
storage = RAGStorage(
|
||||
type="short_term",
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
path=path,
|
||||
)
|
||||
super().__init__(storage=storage)
|
||||
self._memory_provider = memory_provider
|
||||
@@ -68,6 +78,11 @@ class ShortTermMemory(Memory):
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
|
||||
|
||||
def _create_elasticsearch_storage(self, **kwargs):
|
||||
"""Create an Elasticsearch storage instance."""
|
||||
from crewai.memory.storage.elasticsearch_storage import ElasticsearchStorage
|
||||
return ElasticsearchStorage(**kwargs)
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
self.storage.reset()
|
||||
|
||||
275
src/crewai/memory/storage/elasticsearch_storage.py
Normal file
275
src/crewai/memory/storage/elasticsearch_storage.py
Normal file
@@ -0,0 +1,275 @@
|
||||
import contextlib
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, cast
|
||||
|
||||
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_logging(logger_name="elasticsearch", level=logging.ERROR):
|
||||
logger = logging.getLogger(logger_name)
|
||||
original_level = logger.getEffectiveLevel()
|
||||
logger.setLevel(level)
|
||||
with (
|
||||
contextlib.redirect_stdout(io.StringIO()),
|
||||
contextlib.redirect_stderr(io.StringIO()),
|
||||
contextlib.suppress(UserWarning),
|
||||
):
|
||||
yield
|
||||
logger.setLevel(original_level)
|
||||
|
||||
|
||||
class ElasticsearchStorage(BaseRAGStorage):
|
||||
"""
|
||||
Extends BaseRAGStorage to use Elasticsearch for storing embeddings
|
||||
and improving search efficiency.
|
||||
"""
|
||||
|
||||
app: Any = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
type: str,
|
||||
allow_reset: bool = True,
|
||||
embedder_config: Any = None,
|
||||
crew: Any = None,
|
||||
path: Optional[str] = None,
|
||||
host: str = "localhost",
|
||||
port: int = 9200,
|
||||
username: Optional[str] = None,
|
||||
password: Optional[str] = None,
|
||||
**kwargs: Any
|
||||
):
|
||||
super().__init__(type, allow_reset, embedder_config, crew)
|
||||
agents = crew.agents if crew else []
|
||||
agents = [self._sanitize_role(agent.role) for agent in agents]
|
||||
agents = "_".join(agents)
|
||||
self.agents = agents
|
||||
self.storage_file_name = self._build_storage_file_name(type, agents)
|
||||
|
||||
self.type = type
|
||||
self.allow_reset = allow_reset
|
||||
self.path = path
|
||||
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.username = username
|
||||
self.password = password
|
||||
self.index_name = f"crewai_{type}".lower()
|
||||
self.additional_config = kwargs
|
||||
|
||||
self._initialize_app()
|
||||
|
||||
def _sanitize_role(self, role: str) -> str:
|
||||
"""
|
||||
Sanitizes agent roles to ensure valid directory and index names.
|
||||
"""
|
||||
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
|
||||
|
||||
def _build_storage_file_name(self, type: str, file_name: str) -> str:
|
||||
"""
|
||||
Ensures file name does not exceed max allowed by OS
|
||||
"""
|
||||
base_path = f"{db_storage_path()}/{type}"
|
||||
|
||||
if len(file_name) > MAX_FILE_NAME_LENGTH:
|
||||
logging.warning(
|
||||
f"Trimming file name from {len(file_name)} to {MAX_FILE_NAME_LENGTH} characters."
|
||||
)
|
||||
file_name = file_name[:MAX_FILE_NAME_LENGTH]
|
||||
|
||||
return f"{base_path}/{file_name}"
|
||||
|
||||
def _set_embedder_config(self):
|
||||
configurator = EmbeddingConfigurator()
|
||||
self.embedder_config = configurator.configure_embedder(self.embedder_config)
|
||||
|
||||
def _initialize_app(self):
|
||||
try:
|
||||
from elasticsearch import Elasticsearch
|
||||
|
||||
self._set_embedder_config()
|
||||
|
||||
es_auth = {}
|
||||
if self.username and self.password:
|
||||
es_auth = {"basic_auth": (self.username, self.password)}
|
||||
|
||||
self.app = Elasticsearch(
|
||||
[f"http://{self.host}:{self.port}"],
|
||||
**es_auth,
|
||||
**self.additional_config
|
||||
)
|
||||
|
||||
if not self.app.indices.exists(index=self.index_name):
|
||||
self.app.indices.create(
|
||||
index=self.index_name,
|
||||
body={
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"text": {"type": "text"},
|
||||
"embedding": {
|
||||
"type": "dense_vector",
|
||||
"dims": 1536, # Default for OpenAI embeddings
|
||||
"index": True,
|
||||
"similarity": "cosine"
|
||||
},
|
||||
"metadata": {"type": "object"}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Elasticsearch is not installed. Please install it with `pip install elasticsearch`."
|
||||
)
|
||||
except Exception as e:
|
||||
Logger(verbose=True).log(
|
||||
"error",
|
||||
f"Error initializing Elasticsearch: {str(e)}",
|
||||
"red"
|
||||
)
|
||||
raise Exception(f"Error initializing Elasticsearch: {str(e)}")
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
if not hasattr(self, "app"):
|
||||
self._initialize_app()
|
||||
|
||||
try:
|
||||
self._generate_embedding(value, metadata)
|
||||
except Exception as e:
|
||||
logging.error(f"Error during {self.type} save: {str(e)}")
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
filter: Optional[dict] = None,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
if not hasattr(self, "app") or self.app is None:
|
||||
self._initialize_app()
|
||||
|
||||
try:
|
||||
embedding = self._get_embedding_for_text(query)
|
||||
|
||||
search_query: Dict[str, Any] = {
|
||||
"size": limit,
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": {"match_all": {}},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
|
||||
"params": {"query_vector": embedding}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if filter:
|
||||
query_obj = search_query.get("query", {})
|
||||
if isinstance(query_obj, dict):
|
||||
script_score_obj = query_obj.get("script_score", {})
|
||||
if isinstance(script_score_obj, dict):
|
||||
query_part = script_score_obj.get("query", {})
|
||||
if isinstance(query_part, dict):
|
||||
for key, value in filter.items():
|
||||
new_query = {
|
||||
"bool": {
|
||||
"must": [
|
||||
query_part,
|
||||
{"match": {f"metadata.{key}": value}}
|
||||
]
|
||||
}
|
||||
}
|
||||
if isinstance(script_score_obj, dict):
|
||||
script_score_obj["query"] = new_query
|
||||
|
||||
with suppress_logging():
|
||||
if self.app is not None and hasattr(self.app, "search") and callable(getattr(self.app, "search")):
|
||||
search_func = getattr(self.app, "search")
|
||||
response = search_func(
|
||||
index=self.index_name,
|
||||
body=search_query
|
||||
)
|
||||
|
||||
results = []
|
||||
for hit in response["hits"]["hits"]:
|
||||
adjusted_score = (hit["_score"] - 1.0)
|
||||
|
||||
if adjusted_score >= score_threshold:
|
||||
results.append({
|
||||
"id": hit["_id"],
|
||||
"metadata": hit["_source"]["metadata"],
|
||||
"context": hit["_source"]["text"],
|
||||
"score": adjusted_score,
|
||||
})
|
||||
|
||||
return results
|
||||
else:
|
||||
logging.error("Elasticsearch client is not initialized")
|
||||
return []
|
||||
except Exception as e:
|
||||
logging.error(f"Error during {self.type} search: {str(e)}")
|
||||
return []
|
||||
|
||||
def _get_embedding_for_text(self, text: str) -> List[float]:
|
||||
"""Get embedding for text using the configured embedder."""
|
||||
if self.embedder_config is None:
|
||||
raise ValueError("Embedder configuration is not set")
|
||||
|
||||
embedder = self.embedder_config
|
||||
if hasattr(embedder, "embed_documents") and callable(getattr(embedder, "embed_documents")):
|
||||
embed_func = getattr(embedder, "embed_documents")
|
||||
return embed_func([text])[0]
|
||||
elif hasattr(embedder, "embed") and callable(getattr(embedder, "embed")):
|
||||
embed_func = getattr(embedder, "embed")
|
||||
return embed_func(text)
|
||||
else:
|
||||
raise ValueError("Invalid embedding function configuration")
|
||||
|
||||
def _generate_embedding(self, text: str, metadata: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""Generate embedding for text and save to Elasticsearch.
|
||||
|
||||
This method overrides the BaseRAGStorage method to use Elasticsearch.
|
||||
"""
|
||||
if not hasattr(self, "app") or self.app is None:
|
||||
self._initialize_app()
|
||||
|
||||
embedding = self._get_embedding_for_text(text)
|
||||
|
||||
doc = {
|
||||
"text": text,
|
||||
"embedding": embedding,
|
||||
"metadata": metadata or {},
|
||||
}
|
||||
|
||||
if self.app is not None and hasattr(self.app, "index") and callable(getattr(self.app, "index")):
|
||||
index_func = getattr(self.app, "index")
|
||||
result = index_func(
|
||||
index=self.index_name,
|
||||
id=str(uuid.uuid4()),
|
||||
document=doc,
|
||||
refresh=True # Make the document immediately available for search
|
||||
)
|
||||
return result
|
||||
return None
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
if self.app is not None:
|
||||
if self.app.indices.exists(index=self.index_name):
|
||||
self.app.indices.delete(index=self.index_name)
|
||||
|
||||
self._initialize_app()
|
||||
except Exception as e:
|
||||
raise Exception(
|
||||
f"An error occurred while resetting the {self.type} memory: {e}"
|
||||
)
|
||||
81
src/crewai/memory/storage/storage_factory.py
Normal file
81
src/crewai/memory/storage/storage_factory.py
Normal file
@@ -0,0 +1,81 @@
|
||||
from typing import Any, Dict, Optional, Type, cast
|
||||
|
||||
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
from crewai.utilities.logger import Logger
|
||||
|
||||
try:
|
||||
from crewai.memory.storage.elasticsearch_storage import ElasticsearchStorage
|
||||
except ImportError:
|
||||
ElasticsearchStorage = None
|
||||
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
Mem0Storage = None
|
||||
|
||||
|
||||
class StorageFactory:
|
||||
"""Factory for creating storage instances based on provider type."""
|
||||
|
||||
@classmethod
|
||||
def create_storage(
|
||||
cls,
|
||||
provider: str,
|
||||
type: str,
|
||||
allow_reset: bool = True,
|
||||
embedder_config: Optional[Any] = None,
|
||||
crew: Any = None,
|
||||
path: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> BaseRAGStorage:
|
||||
"""Create a storage instance based on the provider type.
|
||||
|
||||
Args:
|
||||
provider: Type of storage provider ("chromadb", "elasticsearch", "mem0").
|
||||
type: Type of memory storage (e.g., "short_term", "entity").
|
||||
allow_reset: Whether to allow resetting the storage.
|
||||
embedder_config: Configuration for the embedder.
|
||||
crew: Crew instance.
|
||||
path: Path to the storage.
|
||||
**kwargs: Additional arguments.
|
||||
|
||||
Returns:
|
||||
Storage instance.
|
||||
"""
|
||||
if provider == "elasticsearch":
|
||||
if ElasticsearchStorage is None:
|
||||
Logger(verbose=True).log(
|
||||
"error",
|
||||
"Elasticsearch is not installed. Please install it with `pip install elasticsearch`.",
|
||||
"red",
|
||||
)
|
||||
raise ImportError(
|
||||
"Elasticsearch is not installed. Please install it with `pip install elasticsearch`."
|
||||
)
|
||||
return ElasticsearchStorage(
|
||||
type=type,
|
||||
allow_reset=allow_reset,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
path=path,
|
||||
**kwargs,
|
||||
)
|
||||
elif provider == "mem0":
|
||||
if Mem0Storage is None:
|
||||
Logger(verbose=True).log(
|
||||
"error",
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`.",
|
||||
"red",
|
||||
)
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
return cast(BaseRAGStorage, Mem0Storage(type=type, crew=crew))
|
||||
return RAGStorage(
|
||||
type=type,
|
||||
allow_reset=allow_reset,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
path=path,
|
||||
)
|
||||
@@ -10,6 +10,8 @@ from crewai import Agent, Crew, Task
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
|
||||
from crewai.agents.parser import CrewAgentParser, OutputParserException
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.knowledge_config import KnowledgeConfig
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
@@ -259,7 +261,9 @@ def test_cache_hitting():
|
||||
def handle_tool_end(source, event):
|
||||
received_events.append(event)
|
||||
|
||||
with (patch.object(CacheHandler, "read") as read,):
|
||||
with (
|
||||
patch.object(CacheHandler, "read") as read,
|
||||
):
|
||||
read.return_value = "0"
|
||||
task = Task(
|
||||
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
|
||||
@@ -1611,6 +1615,78 @@ def test_agent_with_knowledge_sources():
|
||||
assert "red" in result.raw.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
knowledge_config = KnowledgeConfig(results_limit=10, score_threshold=0.5)
|
||||
with patch(
|
||||
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
|
||||
) as MockKnowledge:
|
||||
mock_knowledge_instance = MockKnowledge.return_value
|
||||
mock_knowledge_instance.sources = [string_source]
|
||||
mock_knowledge_instance.query.return_value = [{"content": content}]
|
||||
with patch.object(Knowledge, "query") as mock_knowledge_query:
|
||||
agent = Agent(
|
||||
role="Information Agent",
|
||||
goal="Provide information based on knowledge sources",
|
||||
backstory="You have access to specific knowledge sources.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
knowledge_sources=[string_source],
|
||||
knowledge_config=knowledge_config,
|
||||
)
|
||||
task = Task(
|
||||
description="What is Brandon's favorite color?",
|
||||
expected_output="Brandon's favorite color.",
|
||||
agent=agent,
|
||||
)
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
crew.kickoff()
|
||||
|
||||
assert agent.knowledge is not None
|
||||
mock_knowledge_query.assert_called_once_with(
|
||||
[task.prompt()],
|
||||
**knowledge_config.model_dump(),
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold_default():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
knowledge_config = KnowledgeConfig()
|
||||
with patch(
|
||||
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
|
||||
) as MockKnowledge:
|
||||
mock_knowledge_instance = MockKnowledge.return_value
|
||||
mock_knowledge_instance.sources = [string_source]
|
||||
mock_knowledge_instance.query.return_value = [{"content": content}]
|
||||
with patch.object(Knowledge, "query") as mock_knowledge_query:
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
knowledge_config = KnowledgeConfig()
|
||||
agent = Agent(
|
||||
role="Information Agent",
|
||||
goal="Provide information based on knowledge sources",
|
||||
backstory="You have access to specific knowledge sources.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
knowledge_sources=[string_source],
|
||||
knowledge_config=knowledge_config,
|
||||
)
|
||||
task = Task(
|
||||
description="What is Brandon's favorite color?",
|
||||
expected_output="Brandon's favorite color.",
|
||||
agent=agent,
|
||||
)
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
crew.kickoff()
|
||||
|
||||
assert agent.knowledge is not None
|
||||
mock_knowledge_query.assert_called_once_with(
|
||||
[task.prompt()],
|
||||
**knowledge_config.model_dump(),
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources_extensive_role():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
|
||||
@@ -0,0 +1,330 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"input": ["Brandon''s favorite color is red and he likes Mexican food."],
|
||||
"model": "text-embedding-3-small", "encoding_format": "base64"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '137'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/embeddings
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1SaWw+yPtfmz59Pced/yrwR2bV9zhAQ2UkRFHEymYAiOxHZtEDfvN99ovdkNicm
|
||||
YiNpu1bXdf1W//Nff/7802V1fp/++feff17VOP3z377PHumU/vPvP//9X3/+/Pnzn7/P/29k3mb5
|
||||
41G9i9/w34/V+5Ev//z7D/9/nvzfQf/+889JZZQeb+UOCJHjaQqtRQfv1mXUaf0OTfTuHjx+CvAU
|
||||
CWC/KEik3pNeZScAwr5Zzkgne4Gqd6jX2+oDW3BxGx8nMkfrxaq0GM2PNaV5G6QZM0P1joRJl32W
|
||||
BVuXtTPPo02jZhRX8gjWdj7MgDz2D+wRexhoUHsaTN9P0RfLw5itFrmbCgzCHVFOdx/wQte1qJvK
|
||||
FxH556YeT0pqoJ0RTNhqPwiskhTe0T7qIpzrwS4arGS24D4uc6y90d4VpMq+wy7hntS8mG297p2B
|
||||
QNrwZ5pV1p4RZ6vPEHEPDtuWVA0L/w451CylgPUZBhFvXaQWWqXwwKobdNmavrcCyvDk4aRDezby
|
||||
2c5Hym33obtXgLKlioYGKUfZovrOBtkSu6cOQbHw6POcJoyE+vmMxtegUst+HNh2ZImhpFTNsJ4V
|
||||
73p1XlWO8NsSscGvH7asThqCqtoe6anKt+6SsI0K91Ef0UtGS5dIB8DD3QV2vtwaybB8lksCj5K7
|
||||
pTjWccSrU5igG+hfVOuSRl+4sPGhtJ4Qtfr4w4g0EQcaRfCgnrKxXVFD8hnSZ6jTk5PN9ax4JxU5
|
||||
T/5MsnTwskU6ARNOHnCJYHpsoPbgFfDzsRYaLe9dPbfLoiDTls800h+6vjruXYDSGiGs3fJFXw5Z
|
||||
2APLfh+ok3y2YDvrfQvLm3/x5fPervlV0QUUF5c33aFAzQRua0JwHeCKb5/FGITQVzsgc1KIg6vA
|
||||
Mmo+Xg5CiY/80LSf2UqSFwdOKDHoMVyBvk6jq0DzTRTs1uUHLFui9ciAyYGq8fHOhDqzzoCpgkE9
|
||||
Ta/q9aW/VnRO/IR6zaVjs8DvQ9Q/byvOji+YzUV7ztGHji4+b4t7LZqHuwO9+NRR9aZ0YFFWKQF8
|
||||
oXu+5D2rgfee2RlmG3/CO+mFXbq0SgJ35cGm+JxKjEnnY6vsjlOI9+aSsPUqdSNMj3FBD3qdMHHA
|
||||
UgCXpjj46xaeI6GBnAZtrfZJOLMKLKg6VrDCz5jaF6K6/LjWGpwt36FHS430JTwlHtrvYIL3q03d
|
||||
JUkWDWVaEtKLvglq9sj4HiRDHtFo3yjuyGe2D/nPY8ER4xwmtq/AQtvoptF7rdiAX9jdgRtn7+Bn
|
||||
tJEZJc2GgD4yNZz3YBjWu3ziAaFrhXenYwImk8wNpOrj/M13t+Y7wz/D3/57Lz0b2K1kHixsVceP
|
||||
ztUy8VYyH90e/AbvXU+sGZ8aDnKhc6LWu9nVPJp3CYqztfBbYCn6DDf9CG16+VBf9VswK6seI7h7
|
||||
nqirt5POrDOr4LC/ExoMssgmx6EzlCfv+s2fnS5e3vIM9VeX0YDfaUxs04EHhXb/4KPzJoC1ac2j
|
||||
jeltac5xgc5gd++B3PYI22Bmw1g9KgFZx+cdGynQMv7ilz7yDuFKkP351LMfTiYsJQCpLhIpWguN
|
||||
76FsiVd6cLRJX4LU5qEFOUQdt3OBGCfJHX7PD/x7H+9L1xThHJQYF+HiUrWYe6DvogzvTlKvM6OP
|
||||
EijuT5i01wcF7Pg6QvgK4pZ6vlzo82dzCmBAD4zuU7MfFvypHbRLREZku91ma5+PBfjGjz8e7mbN
|
||||
sFByKDkcInrs5Iv+oVDhoTppJTYI17LVHD4qvBBo4NB9lmyRDuYMt0bqkQWbJZteYsaBUpZNvFf7
|
||||
Su+cVQ5gr6YI+7u3A0Sev83KJowLXyzuwGV7N5jR68Zc6iWPoB71O63gwiqEtU9sR3wq2yG0nPZE
|
||||
ja7fuKuzmQ10PnUctriPysROHCtogQ3D+JPs3O1a1AGULo+SauHJ0XlpX8ZI350yeqCtmjFn4T0w
|
||||
SHyDz/xqg+2xnU3UZWJP7VURXHaDlgBHg8P00NhvfTy2rgqPRM1pvKIjmPwodNDU8neq2ydTZ2O7
|
||||
C1F5qFKKX8PFHRZvXGFV81eaBMou4wcOjzLwbk/qpxe1/uyMoEAmCc4Yl4GQrZzstsgq+Qe9D4cZ
|
||||
LFkbJCg6NjG9Wy8pWzj/3cBY7VSaymuf0eK2jnBXmRE+bZkJlqdp+NAf6gFbh9saPQ/d7Q6siTtg
|
||||
HG1ubDtLnA8/1fuK/TpfXVbO7gijGR7pQ3e2EVPA2qJ170v+FosWWEPf6iBRgI6dku7Z0ianM2Jl
|
||||
scWq4R/Z9qkd2l98YU3isD7z7UuBtw4V9Hbef+pZu2wEEE/3DCdFdXDF6j7NMOmftg99uXDFME1T
|
||||
MCX6SA/OvAGTcm4tlJ1uFoHzsdQZvxHu8BQ+eurtkiXrcuobMLzW2Tf+TCZka+8or+FpYqypDhBU
|
||||
5eahY3a54ftLBzULDTuF0f3t4X2N7+4QGrsUifHG8We0fdXzbCoOQHjzJlwbKFk/umYDMQsqmunt
|
||||
0RUDj2ko+/QP6ofSW19xoDVQUHHuw289YJf3MiM+vwQ+f5Xf9Xw3OwIT3eNwcu59sDruWUBjOQ/f
|
||||
/FPd+V0FDZKlWPrG71Nf1UJvYOyh2R+rUxQxL88D0KnUoeq8sfTV3+cBME6Pid5uPnDXZBOk6Fyf
|
||||
ZRxe02wQd6LdweOknzHu4zYj42WV0P5QddSbjzv3qydMEMutia3sHgOmk0CDnZ5gjO1HEwm9kUsg
|
||||
7R47cu6j7bBWwVlDfsy9sNHXls5jXV+R6sYt3hdSyJZQdAo4dvGeWtHJGeYUpzEUkpzhg3UT6l5c
|
||||
+hVAw4rxJeUfmejpQYAe7+6CdUM4ZGPt2wW4RvRBTtK2rCdD9yE8lUGK3fdJjNa++ljoKDsbsnkN
|
||||
F53pZyeF72U806h3OnfVpwqiOx8+fbEH2F1lv65QNhUrPp6FYGChsUuQ44QG+XyWpu72qOHhmi4W
|
||||
tqSLrI8lfOXwu/4EWcF+WPwK3OHNF2y8++UP90gq6LuCgdXyqkXisl5N+DS3D38cDjOb2LrpQYap
|
||||
R+1XvGckOz8lKB7gGVtNyA9MLeYO1uSe/I1/sm/kM4Q0FPAh4LfR3JwXH+7ulYbNfa6yZdqPBZyK
|
||||
k0b4Q5zrM4hUAscBB/7mUXRgtsU2hJvLcaDhV691b0uDCJ2G2lcS2YqEX/1Q93NMFi0wIuZTJYQf
|
||||
73yhd1Tm7Lee8Fffn2G0YyR5OTMEiiz81cNzNXkWKOjJwLio9IHXmm6Gh06JCVceLPbyo9BCttTY
|
||||
9EGHhz562zGGhnn1iOQLA1jj65BCw5NaelNnkTGzLGcknMDNp+c0ASztKgWN+mZPeLtvXbYTdx0q
|
||||
J5Zh4/OqgNhc5xWl92tMHca9I4L7xEPcqzDopdvfwGLnxxGQ15nhOMWSPj60xoROc8uwNRhwWC9Z
|
||||
pwFXwzufhMctYKdJilFrhyN1JbQOS+ExCV5KMaA4JUUtkkYkcHekId1J23KYPlc8Q6F+nbHpiAYT
|
||||
/H0cgqbY7nF2/SzDeidTAcXus6exvKsznvVVBWzcaVitLu+azP2OQ3nQ3vFR35rDSuswAN/zi6bc
|
||||
0XZnTnvwEOXrlSyXThyW4v7wIS5eDwJvAj98/VGOXpVWUvVkDBnLrZhAr4MTTQ63NXv1JTThZz8D
|
||||
ejZOlc7sgFNgs9SCr4xwBMOK3AQw8bDHTnhQ3fmcOxVQRVvyW+cdZrNw23RQTsuQXvdvEnXCTezg
|
||||
V/9jXyyFYU7eUwC+649x0A/Z2F6bEH52UovvrviKmGQ0AZQjJPn0W8+WROs0eNPGJ/7uV0ZO4baH
|
||||
7MnLOEorLZtruvGgbGw0uie3sl5W89Er6fFc0KvCDpHYEHuGj6zoaWC/FzDSOMqha60ZvcX3ldEw
|
||||
TRN48Z83ImSSP7ztfeijDzftyLwXm2hpa0GFtVFb1Lrtp3q2XC+AN5+38a1Gu2HN1spCfpC5fu1F
|
||||
Klubq05A9zIdvFPfE2P35xIgpQptvAOew8b+Up1RoEUJWVq31L/+xwKdOjk+SIcxG7/+BT6FmMM7
|
||||
3f/UyzbaqlAe8RG7toOG1RtTC87BpyXKc5gzej51K5DTOiTrz3+MrtlC7Xzf0MygOViFneEgTWMG
|
||||
EU/PdqDQxyr4xruvnP2rK1YCSGDPVkbk1dOjNS83IXynuUV2TjYPrBJYgooP4b/1XAbjwB0IspIX
|
||||
wvjrJxfjcW+g/RjI3/zeEsG1ABUqTNAeopppx5CgQx2bRA53Z33xo9SCX/9CQ6fh9NkQtg5U+qnx
|
||||
pcVadfbYvVV4lOwtdV3dHOayuvLwr5442DAah3uoAilsYuqm2Y0xv0g4aDTWilWeXob+5yerbRHS
|
||||
3OMXtvRjl8DoNu588P0/oVlOZyTprMWHT5jUc1xsW8QB80z3NYb6Kk2tBQzz4vmgrZuaeGNooe/+
|
||||
4Hs7hvo69zsICkuT8eGCz7qwSS0Ic1F442P08CIWJ0n+mx/OT3iumXB8KNAk4Zna25HLuqYJKyV/
|
||||
uRXWb29uIHxnqYg7jDmOv/p5xYHTgs/HWbB52PYubV2nAr1xCjEOoxIsFSYQds1B9cEwCvqH65Cn
|
||||
tLkAqblbeMZW2ZxBe3R3hKvzVV/VxvLh6SjVON9fpYg8thcffuOF7le+yJazUUL4He+DMDjWq9AK
|
||||
Ofz6bep/kBmtgfoJwM+P//QSAcPowcpUF2oNZ6zz2+nSwmePI+p847G/eKIJvzzG59zsOKzFsYOQ
|
||||
K7dbrOW2Fq3skRH48rueujh/RYufcwJMQ2nxV0n9AJ7TLgI8vh8G9oZr/eUxZwOs9v74t77MQWMb
|
||||
cFrhAf/4AlnDdwJrkifY9rpZnwu1smBwMix6KRxVF+JFVmFgCasv3MpXtBYPJ4Bf/uR/84P1nlZ7
|
||||
sDrZIba//n972BYB7ByXYrtGZT13ecYB4zNp1N33VT3xaOBgkjCf2l//skRPysHPTmmpcxzLaN4e
|
||||
hgA+5DjA9qrE7rLDyAdAgwrWpdsH9N94Adc0EPGVxRMYXwKRBN1PMVXdwIrGSpzv6PIIbGorh4e+
|
||||
3MP1DrlPevOVIi7ZOp24EH6su4rdp+nqc7o1eoBs74AzdXPK1s/q3OGzmAm9G45c08tbXuGrkUey
|
||||
kblRX81LoMIg2kRkMa4gm8N+nuFq+hrWw/RabzNPWxEHjDPeqWKRfeshgXypxv6WB9eMNRFvIWJ0
|
||||
2pff2GB94EpBT7uoaGRvJDAE6NSDn5/An6TUZ/JZUmgZqkj9n59Mt0YHvTeqMW5QFTFOnnv0KE3g
|
||||
S9JFdsku6EOIL3dINet4ZswwPsbPj1Kz6gX2V/898tsWm5F20lnwVjsISTQS5uAh+/kLkBi+hfeL
|
||||
a4P1Jdkqsh8f8ounaO2yJYeeax+wh5ZTti2ESoDILDVqA61gLdjLCrw/1AjnXaNFQmqqFpJkofzq
|
||||
rXMtPLJDAwf7qpNNGJVs1Squh0shSr5eTWRgnZYoP/5Hf/V9eegnBzk93JJlSSx3+3EH86/+TJxs
|
||||
0sePw2k/v4F97TW7rDrZBuTX8UT98HgBf+P9wlcXapy2a0Q9PQhhnM0FtnxhYKstqykiUS8RepR0
|
||||
ff6ej+jnv9WrEGWdwB9D+OODNnu9o+X1MM8wf9kVVu3rJluaUuNQuz1wVP2spfv14xU0p8ih2lfv
|
||||
j/1pGuH7cYmw7WIXTOZ+10FWVlsif/VmZa3JqHz1IE6Q2mdTzXcK+PmPmzpfmdjbaovW07mmh1sf
|
||||
slwB+wKi+pLjQ35p3JHgYYXvQr3R5+x8shliwwBBWkzU6U6gZkpshYB1Jv7LE8lbEO+wjo869SWv
|
||||
05dVkRQYO+aLajei12xrEg+ixEM07tddLcZJkENjy084v6V3MJfVk4dKTxu6S/U4E19GKoDlnYXY
|
||||
GODodibRq59/95tOWQZi9887hMcW+BsBnrKuv1Qxep42nE8bpGX0OSUdsvqT9NX7N3196dMK3jGT
|
||||
8Y8v0vvF4+DcKcDnC/rK2NVYC9gmUYXNuW3qsTnLPuT4QvnL36gZWjkgVnHF8VDw0ZJ06Rn89OXh
|
||||
y5/nYotm8KwH2R+Ss66z80hWeLZvnb9aj0O09pJigVbYW2TzfG/qL//t4fvVfDCWudFlfc8F4Fuv
|
||||
/RmUj+FvfP/48zGTXH3eo0aA3SFofHFNunruPlao6PcbwCY7qpFgrQGBJ0f18cXakujzOy/uZPTp
|
||||
MVVeTOQbKf/xJh8Yu1GfnFtC/uphR65EMCpVpaLwg2O6D8I3G7n7cIfh5xhT9cu/tk2pwb/n704o
|
||||
5ZrlUOb++m9POIvscxpzD/C6N/scM69s9kdlhPFbcrGfjL07J+uphfkwQiIAS3HZrAQxOoXPHtuq
|
||||
ttdZ6ZxS2NCtgs3XfaOz1H+EEE/jiUZZsNX71wOkcHFaAWP+1X39b5LA5elCbHCtNyyf10xgfUQT
|
||||
tsL2FgkuYHf441Xu+3TNVuUSeSDMjS3+zg9M9ypa4Tk71PjohoW7dNtUhd4hWKm1nwFgr7zI4U9f
|
||||
eN/6Roqu5cBV0yvy+vLHJXx/PAhvpMV6L6VsNHZlBcUYOfiIPM9d3pakKi+xWagfd+eBedIgKXUV
|
||||
E+zue60WY1LeUX1fH4Trmiqa72OmAtDGM7WGjZqtvixX8DQQ++cHojZLzhWyLmSlh52oAvLVI1Ai
|
||||
RPXnznZqwQTOGZJBOn737wAYy9UZXomI/K6Sg4wqh2sMPvsV+Eyyxay5pHsJSmEb00MPqD5yZnqH
|
||||
h13n+gVYAp0gq+GQ8nzr2KrkOXsqr7KFocZdsEfXSm+8/XGEsekH2NIClQnNoUrhV/9hz8nL7Dt/
|
||||
Dfn87OIo0P1sCuaUh6Of8Pi51FM04scpgYdOinE4LZa7ts1gQOsyrth5C3B4r9E5h29gyT48qaK+
|
||||
wh0KfvoIm6P7AsupWCowjKNMjU451bM1cw388lYfda4W8T//8tO3qL40NZ3C4QzltkMkXa5DvV7e
|
||||
xgjD7WVHrbCVo/Vz5Xl4dYMdPnz546/fBNVrfiLsNDZsLTTY/+XBzlu418365DyABK32pQDPOuOC
|
||||
HUGPdRWwffOBvn75E7D3fuRvP2TOft+V3/ltPOOdvrinZw7H10elKh7e+qwr8vyXJ+jLuxx+fAea
|
||||
B9X20bc/Jy7r0wT1W+KoSUI4rHC3DWBQrTr2PmQEM51LE3KPgFDHPmn1ll7VCpW9EhDu64f7Je16
|
||||
CPJDSv/y09/+QXIa8U14V+53fh3gdq5B/Uxn2boeNPJ3v3+8aL7HjgbsVvH9zVqGNVPNWkWFC3yM
|
||||
maeDWZ3SBB57y8YPN1RdsT4ad3iuY5kweZ3YlHnajMjj8PDrxlwZKVgWKN/8JLydsmGcH64FvvyG
|
||||
2l7yqIXJPDXw16+5uJ445C03E7Sl1egPYVHojNJGQy3sK7LVYkVfvL0yg/FWX+h+cT9gDo6z+ePZ
|
||||
1PsQD/A7fbgrWtH09FLWjT7LmRKD24frCT9fB33clpICnVug4PjC37J5rG0Cw3MXUHVBU0buZKqg
|
||||
9pAbIn/95dZpUAKNIvz2x6gwEJl/8Art04akzwyB1VkOFij8JvKRKZbRXDMmwFLv9vj2kMdo2Vyu
|
||||
IXwKZw5rEoEDO5eage7lOyVojsmwGn53/ulzwmXRC3Q/fbbi7o3d8fqu57MUWCiWGxMb57cyrPHE
|
||||
J3Cjdi+q7kUjEz+N3/x4Az7qzjZjiHox9Iz3RL/nq1v20tGAuXUx8SGWnJpwsttA8VE1VK0uh0E0
|
||||
9WsFke0fiJArn+jbLwgB7qwdVvFwcLfpLr//rV93NfV0QZ96CF3zEGMHZCoQxtkq4MtZL1g7GLo7
|
||||
f/UUcJos80EkGy7jnrWKmizkCbt4G7AU94uHCpBSAvNyD2axGTiYB82dgAFag6iatQY3jZZh/Cgs
|
||||
9u0H8gicu+2X56g1PxmbHF6r4ogvQjOBbhaDFZqmusEnutHB+uuH3o2Vo4ar9+58wKqCEsOzsMtX
|
||||
jM03q+pQrfYMHxVniZaW0zuknfPNr75m7CxGBrSLM4+vn2pwl3Qrj8BiRYKdahrc6ZhgCwqaUmNL
|
||||
/zRg+PYf//qLxxBw0fzrXzqiUdCQShyjXz+tpM6QUe/L9+kkXToI1nuGL1qc6uu9VgVk1G6HHRO/
|
||||
f/mz/vgNdpX247L+eWrR1WogVpOyAV9+3EKBozw2/L0BmKy+O0iiTsJJHL0yui0YD6XLsyTAdh71
|
||||
Mj9mH/7zuxXwX//68+d//G4YtN0jf30vBkz5Mv3H/7kq8B/if4xt+nr9vYZAxrTI//n3/76B8M9n
|
||||
6NrP9D+nrsnf4z///rMV/t41+GfqpvT1/z7/1/dV//Wv/wUAAP//AwBcfFVx4CAAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 931fcf607c16eb34-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 17 Apr 2025 23:47:53 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=CncSMPCav.9EJL3emmM0sTqugx5GN6_Oy8JPFBssVho-1744933673-1.0.1.1-Q1XMvHbQdrfEWkkCYeeNHwFdZ1NpjAGJ_0jOUYIk_APelFe7nCanjW_xlOj12b3JQql9.iWQDiHvCeYJDTWkdxnNiMQOEiFMYHX5YZXUuJs;
|
||||
path=/; expires=Fri, 18-Apr-25 00:17:53 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=unfPTYCpF5COtm5PuZDuaJqlhefP0iibfjsXHc9lKq0-1744933673515-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-model:
|
||||
- text-embedding-3-small
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '75'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
via:
|
||||
- envoy-router-8687b6cbdb-4qpmr
|
||||
x-envoy-upstream-service-time:
|
||||
- '46'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '10000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '9999986'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_b8c884a7fe2bd4732903ecbdc632576d
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
|
||||
You have access to specific knowledge sources.\nYour personal goal is: Provide
|
||||
information based on knowledge sources\nTo give my best complete final answer
|
||||
to the task respond using the exact following format:\n\nThought: I now can
|
||||
give a great answer\nFinal Answer: Your final answer must be the great and the
|
||||
most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
|
||||
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
|
||||
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '926'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jJNNi9swEIbv+RWDLr0ki/NBvm5NYUsplFK29NAuZiKNnWlkjVaSk02X
|
||||
/PdiJxtn2y30YrCeecfvvCM/9QAUG7UEpTeYdOXtYPXp7vbLw7evm4ePmObvt/jrsVgVn9/5dbhj
|
||||
1W8Usv5JOj2rbrRU3lJicSesA2GiputwNpksxuPpbNyCSgzZRlb6NJjIoGLHg1E2mgyy2WA4P6s3
|
||||
wpqiWsL3HgDAU/tsfDpDj2oJWf/5pKIYsSS1vBQBqCC2OVEYI8eELql+B7W4RK61/gGc7EGjg5J3
|
||||
BAhlYxvQxT0FgB/ulh1aeNu+L2EV0BlxbyIUuJPAiUCLlQAcwUkCX68ta3sAI7quyCUywA72bMge
|
||||
AHfIFteWYOtkb8mUBFHqoCneXPsLVNQRm4xcbe0VQOckYZNxm8z9mRwvWVgpfZB1/EOqCnYcN3kg
|
||||
jOKauWMSr1p67AHct5nXL2JUPkjlU55kS+3nhtP5qZ/qVt3R0fQMkyS0V6rFpP9Kv9xQQrbxamtK
|
||||
o96Q6aTdirE2LFegdzX1325e632anF35P+07oDX5RCb3gQzrlxN3ZYGaP+FfZZeUW8MqUtixpjwx
|
||||
hWYThgqs7el+qniIiaq8YFdS8IFPl7TweTZejOajUbbIVO/Y+w0AAP//AwA4a1/QsgMAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 931fcf649bdbed40-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 17 Apr 2025 23:47:54 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=8vySwO0xqpm0u93_1_rXQwTeEIWa2ei3_CD5sAdoo3o-1744933674-1.0.1.1-iqZDpH5poOUp4Rcnhfrb0N2Z0c2662RBiPEcx_gefNW.m3tBA3qyFa8tmFv7PitH8u9vyYK7jxUwy4lPiSi830QWNbTMgCMTbrJ7iaUV7hY;
|
||||
path=/; expires=Fri, 18-Apr-25 00:17:54 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=IXAyT8eWpFERM53ngcYNmaqhocfGbOHWSoe7SFNdoGI-1744933674288-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '489'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999801'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_151f9d0b786f2022f249ee20ea108b43
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,330 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"input": ["Brandon''s favorite color is red and he likes Mexican food."],
|
||||
"model": "text-embedding-3-small", "encoding_format": "base64"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '137'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/embeddings
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1SaWw+yPtfmz59Pced/yrwR2bV9zhAQ2UkRFHEymYAiOxHZtEDfvN99ovdkNicm
|
||||
YiNpu1bXdf1W//Nff/7802V1fp/++feff17VOP3z377PHumU/vPvP//9X3/+/Pnzn7/P/29k3mb5
|
||||
41G9i9/w34/V+5Ev//z7D/9/nvzfQf/+889JZZQeb+UOCJHjaQqtRQfv1mXUaf0OTfTuHjx+CvAU
|
||||
CWC/KEik3pNeZScAwr5Zzkgne4Gqd6jX2+oDW3BxGx8nMkfrxaq0GM2PNaV5G6QZM0P1joRJl32W
|
||||
BVuXtTPPo02jZhRX8gjWdj7MgDz2D+wRexhoUHsaTN9P0RfLw5itFrmbCgzCHVFOdx/wQte1qJvK
|
||||
FxH556YeT0pqoJ0RTNhqPwiskhTe0T7qIpzrwS4arGS24D4uc6y90d4VpMq+wy7hntS8mG297p2B
|
||||
QNrwZ5pV1p4RZ6vPEHEPDtuWVA0L/w451CylgPUZBhFvXaQWWqXwwKobdNmavrcCyvDk4aRDezby
|
||||
2c5Hym33obtXgLKlioYGKUfZovrOBtkSu6cOQbHw6POcJoyE+vmMxtegUst+HNh2ZImhpFTNsJ4V
|
||||
73p1XlWO8NsSscGvH7asThqCqtoe6anKt+6SsI0K91Ef0UtGS5dIB8DD3QV2vtwaybB8lksCj5K7
|
||||
pTjWccSrU5igG+hfVOuSRl+4sPGhtJ4Qtfr4w4g0EQcaRfCgnrKxXVFD8hnSZ6jTk5PN9ax4JxU5
|
||||
T/5MsnTwskU6ARNOHnCJYHpsoPbgFfDzsRYaLe9dPbfLoiDTls800h+6vjruXYDSGiGs3fJFXw5Z
|
||||
2APLfh+ok3y2YDvrfQvLm3/x5fPervlV0QUUF5c33aFAzQRua0JwHeCKb5/FGITQVzsgc1KIg6vA
|
||||
Mmo+Xg5CiY/80LSf2UqSFwdOKDHoMVyBvk6jq0DzTRTs1uUHLFui9ciAyYGq8fHOhDqzzoCpgkE9
|
||||
Ta/q9aW/VnRO/IR6zaVjs8DvQ9Q/byvOji+YzUV7ztGHji4+b4t7LZqHuwO9+NRR9aZ0YFFWKQF8
|
||||
oXu+5D2rgfee2RlmG3/CO+mFXbq0SgJ35cGm+JxKjEnnY6vsjlOI9+aSsPUqdSNMj3FBD3qdMHHA
|
||||
UgCXpjj46xaeI6GBnAZtrfZJOLMKLKg6VrDCz5jaF6K6/LjWGpwt36FHS430JTwlHtrvYIL3q03d
|
||||
JUkWDWVaEtKLvglq9sj4HiRDHtFo3yjuyGe2D/nPY8ER4xwmtq/AQtvoptF7rdiAX9jdgRtn7+Bn
|
||||
tJEZJc2GgD4yNZz3YBjWu3ziAaFrhXenYwImk8wNpOrj/M13t+Y7wz/D3/57Lz0b2K1kHixsVceP
|
||||
ztUy8VYyH90e/AbvXU+sGZ8aDnKhc6LWu9nVPJp3CYqztfBbYCn6DDf9CG16+VBf9VswK6seI7h7
|
||||
nqirt5POrDOr4LC/ExoMssgmx6EzlCfv+s2fnS5e3vIM9VeX0YDfaUxs04EHhXb/4KPzJoC1ac2j
|
||||
jeltac5xgc5gd++B3PYI22Bmw1g9KgFZx+cdGynQMv7ilz7yDuFKkP351LMfTiYsJQCpLhIpWguN
|
||||
76FsiVd6cLRJX4LU5qEFOUQdt3OBGCfJHX7PD/x7H+9L1xThHJQYF+HiUrWYe6DvogzvTlKvM6OP
|
||||
EijuT5i01wcF7Pg6QvgK4pZ6vlzo82dzCmBAD4zuU7MfFvypHbRLREZku91ma5+PBfjGjz8e7mbN
|
||||
sFByKDkcInrs5Iv+oVDhoTppJTYI17LVHD4qvBBo4NB9lmyRDuYMt0bqkQWbJZteYsaBUpZNvFf7
|
||||
Su+cVQ5gr6YI+7u3A0Sev83KJowLXyzuwGV7N5jR68Zc6iWPoB71O63gwiqEtU9sR3wq2yG0nPZE
|
||||
ja7fuKuzmQ10PnUctriPysROHCtogQ3D+JPs3O1a1AGULo+SauHJ0XlpX8ZI350yeqCtmjFn4T0w
|
||||
SHyDz/xqg+2xnU3UZWJP7VURXHaDlgBHg8P00NhvfTy2rgqPRM1pvKIjmPwodNDU8neq2ydTZ2O7
|
||||
C1F5qFKKX8PFHRZvXGFV81eaBMou4wcOjzLwbk/qpxe1/uyMoEAmCc4Yl4GQrZzstsgq+Qe9D4cZ
|
||||
LFkbJCg6NjG9Wy8pWzj/3cBY7VSaymuf0eK2jnBXmRE+bZkJlqdp+NAf6gFbh9saPQ/d7Q6siTtg
|
||||
HG1ubDtLnA8/1fuK/TpfXVbO7gijGR7pQ3e2EVPA2qJ170v+FosWWEPf6iBRgI6dku7Z0ianM2Jl
|
||||
scWq4R/Z9qkd2l98YU3isD7z7UuBtw4V9Hbef+pZu2wEEE/3DCdFdXDF6j7NMOmftg99uXDFME1T
|
||||
MCX6SA/OvAGTcm4tlJ1uFoHzsdQZvxHu8BQ+eurtkiXrcuobMLzW2Tf+TCZka+8or+FpYqypDhBU
|
||||
5eahY3a54ftLBzULDTuF0f3t4X2N7+4QGrsUifHG8We0fdXzbCoOQHjzJlwbKFk/umYDMQsqmunt
|
||||
0RUDj2ko+/QP6ofSW19xoDVQUHHuw289YJf3MiM+vwQ+f5Xf9Xw3OwIT3eNwcu59sDruWUBjOQ/f
|
||||
/FPd+V0FDZKlWPrG71Nf1UJvYOyh2R+rUxQxL88D0KnUoeq8sfTV3+cBME6Pid5uPnDXZBOk6Fyf
|
||||
ZRxe02wQd6LdweOknzHu4zYj42WV0P5QddSbjzv3qydMEMutia3sHgOmk0CDnZ5gjO1HEwm9kUsg
|
||||
7R47cu6j7bBWwVlDfsy9sNHXls5jXV+R6sYt3hdSyJZQdAo4dvGeWtHJGeYUpzEUkpzhg3UT6l5c
|
||||
+hVAw4rxJeUfmejpQYAe7+6CdUM4ZGPt2wW4RvRBTtK2rCdD9yE8lUGK3fdJjNa++ljoKDsbsnkN
|
||||
F53pZyeF72U806h3OnfVpwqiOx8+fbEH2F1lv65QNhUrPp6FYGChsUuQ44QG+XyWpu72qOHhmi4W
|
||||
tqSLrI8lfOXwu/4EWcF+WPwK3OHNF2y8++UP90gq6LuCgdXyqkXisl5N+DS3D38cDjOb2LrpQYap
|
||||
R+1XvGckOz8lKB7gGVtNyA9MLeYO1uSe/I1/sm/kM4Q0FPAh4LfR3JwXH+7ulYbNfa6yZdqPBZyK
|
||||
k0b4Q5zrM4hUAscBB/7mUXRgtsU2hJvLcaDhV691b0uDCJ2G2lcS2YqEX/1Q93NMFi0wIuZTJYQf
|
||||
73yhd1Tm7Lee8Fffn2G0YyR5OTMEiiz81cNzNXkWKOjJwLio9IHXmm6Gh06JCVceLPbyo9BCttTY
|
||||
9EGHhz562zGGhnn1iOQLA1jj65BCw5NaelNnkTGzLGcknMDNp+c0ASztKgWN+mZPeLtvXbYTdx0q
|
||||
J5Zh4/OqgNhc5xWl92tMHca9I4L7xEPcqzDopdvfwGLnxxGQ15nhOMWSPj60xoROc8uwNRhwWC9Z
|
||||
pwFXwzufhMctYKdJilFrhyN1JbQOS+ExCV5KMaA4JUUtkkYkcHekId1J23KYPlc8Q6F+nbHpiAYT
|
||||
/H0cgqbY7nF2/SzDeidTAcXus6exvKsznvVVBWzcaVitLu+azP2OQ3nQ3vFR35rDSuswAN/zi6bc
|
||||
0XZnTnvwEOXrlSyXThyW4v7wIS5eDwJvAj98/VGOXpVWUvVkDBnLrZhAr4MTTQ63NXv1JTThZz8D
|
||||
ejZOlc7sgFNgs9SCr4xwBMOK3AQw8bDHTnhQ3fmcOxVQRVvyW+cdZrNw23RQTsuQXvdvEnXCTezg
|
||||
V/9jXyyFYU7eUwC+649x0A/Z2F6bEH52UovvrviKmGQ0AZQjJPn0W8+WROs0eNPGJ/7uV0ZO4baH
|
||||
7MnLOEorLZtruvGgbGw0uie3sl5W89Er6fFc0KvCDpHYEHuGj6zoaWC/FzDSOMqha60ZvcX3ldEw
|
||||
TRN48Z83ImSSP7ztfeijDzftyLwXm2hpa0GFtVFb1Lrtp3q2XC+AN5+38a1Gu2HN1spCfpC5fu1F
|
||||
Klubq05A9zIdvFPfE2P35xIgpQptvAOew8b+Up1RoEUJWVq31L/+xwKdOjk+SIcxG7/+BT6FmMM7
|
||||
3f/UyzbaqlAe8RG7toOG1RtTC87BpyXKc5gzej51K5DTOiTrz3+MrtlC7Xzf0MygOViFneEgTWMG
|
||||
EU/PdqDQxyr4xruvnP2rK1YCSGDPVkbk1dOjNS83IXynuUV2TjYPrBJYgooP4b/1XAbjwB0IspIX
|
||||
wvjrJxfjcW+g/RjI3/zeEsG1ABUqTNAeopppx5CgQx2bRA53Z33xo9SCX/9CQ6fh9NkQtg5U+qnx
|
||||
pcVadfbYvVV4lOwtdV3dHOayuvLwr5442DAah3uoAilsYuqm2Y0xv0g4aDTWilWeXob+5yerbRHS
|
||||
3OMXtvRjl8DoNu588P0/oVlOZyTprMWHT5jUc1xsW8QB80z3NYb6Kk2tBQzz4vmgrZuaeGNooe/+
|
||||
4Hs7hvo69zsICkuT8eGCz7qwSS0Ic1F442P08CIWJ0n+mx/OT3iumXB8KNAk4Zna25HLuqYJKyV/
|
||||
uRXWb29uIHxnqYg7jDmOv/p5xYHTgs/HWbB52PYubV2nAr1xCjEOoxIsFSYQds1B9cEwCvqH65Cn
|
||||
tLkAqblbeMZW2ZxBe3R3hKvzVV/VxvLh6SjVON9fpYg8thcffuOF7le+yJazUUL4He+DMDjWq9AK
|
||||
Ofz6bep/kBmtgfoJwM+P//QSAcPowcpUF2oNZ6zz2+nSwmePI+p847G/eKIJvzzG59zsOKzFsYOQ
|
||||
K7dbrOW2Fq3skRH48rueujh/RYufcwJMQ2nxV0n9AJ7TLgI8vh8G9oZr/eUxZwOs9v74t77MQWMb
|
||||
cFrhAf/4AlnDdwJrkifY9rpZnwu1smBwMix6KRxVF+JFVmFgCasv3MpXtBYPJ4Bf/uR/84P1nlZ7
|
||||
sDrZIba//n972BYB7ByXYrtGZT13ecYB4zNp1N33VT3xaOBgkjCf2l//skRPysHPTmmpcxzLaN4e
|
||||
hgA+5DjA9qrE7rLDyAdAgwrWpdsH9N94Adc0EPGVxRMYXwKRBN1PMVXdwIrGSpzv6PIIbGorh4e+
|
||||
3MP1DrlPevOVIi7ZOp24EH6su4rdp+nqc7o1eoBs74AzdXPK1s/q3OGzmAm9G45c08tbXuGrkUey
|
||||
kblRX81LoMIg2kRkMa4gm8N+nuFq+hrWw/RabzNPWxEHjDPeqWKRfeshgXypxv6WB9eMNRFvIWJ0
|
||||
2pff2GB94EpBT7uoaGRvJDAE6NSDn5/An6TUZ/JZUmgZqkj9n59Mt0YHvTeqMW5QFTFOnnv0KE3g
|
||||
S9JFdsku6EOIL3dINet4ZswwPsbPj1Kz6gX2V/898tsWm5F20lnwVjsISTQS5uAh+/kLkBi+hfeL
|
||||
a4P1Jdkqsh8f8ounaO2yJYeeax+wh5ZTti2ESoDILDVqA61gLdjLCrw/1AjnXaNFQmqqFpJkofzq
|
||||
rXMtPLJDAwf7qpNNGJVs1Squh0shSr5eTWRgnZYoP/5Hf/V9eegnBzk93JJlSSx3+3EH86/+TJxs
|
||||
0sePw2k/v4F97TW7rDrZBuTX8UT98HgBf+P9wlcXapy2a0Q9PQhhnM0FtnxhYKstqykiUS8RepR0
|
||||
ff6ej+jnv9WrEGWdwB9D+OODNnu9o+X1MM8wf9kVVu3rJluaUuNQuz1wVP2spfv14xU0p8ih2lfv
|
||||
j/1pGuH7cYmw7WIXTOZ+10FWVlsif/VmZa3JqHz1IE6Q2mdTzXcK+PmPmzpfmdjbaovW07mmh1sf
|
||||
slwB+wKi+pLjQ35p3JHgYYXvQr3R5+x8shliwwBBWkzU6U6gZkpshYB1Jv7LE8lbEO+wjo869SWv
|
||||
05dVkRQYO+aLajei12xrEg+ixEM07tddLcZJkENjy084v6V3MJfVk4dKTxu6S/U4E19GKoDlnYXY
|
||||
GODodibRq59/95tOWQZi9887hMcW+BsBnrKuv1Qxep42nE8bpGX0OSUdsvqT9NX7N3196dMK3jGT
|
||||
8Y8v0vvF4+DcKcDnC/rK2NVYC9gmUYXNuW3qsTnLPuT4QvnL36gZWjkgVnHF8VDw0ZJ06Rn89OXh
|
||||
y5/nYotm8KwH2R+Ss66z80hWeLZvnb9aj0O09pJigVbYW2TzfG/qL//t4fvVfDCWudFlfc8F4Fuv
|
||||
/RmUj+FvfP/48zGTXH3eo0aA3SFofHFNunruPlao6PcbwCY7qpFgrQGBJ0f18cXakujzOy/uZPTp
|
||||
MVVeTOQbKf/xJh8Yu1GfnFtC/uphR65EMCpVpaLwg2O6D8I3G7n7cIfh5xhT9cu/tk2pwb/n704o
|
||||
5ZrlUOb++m9POIvscxpzD/C6N/scM69s9kdlhPFbcrGfjL07J+uphfkwQiIAS3HZrAQxOoXPHtuq
|
||||
ttdZ6ZxS2NCtgs3XfaOz1H+EEE/jiUZZsNX71wOkcHFaAWP+1X39b5LA5elCbHCtNyyf10xgfUQT
|
||||
tsL2FgkuYHf441Xu+3TNVuUSeSDMjS3+zg9M9ypa4Tk71PjohoW7dNtUhd4hWKm1nwFgr7zI4U9f
|
||||
eN/6Roqu5cBV0yvy+vLHJXx/PAhvpMV6L6VsNHZlBcUYOfiIPM9d3pakKi+xWagfd+eBedIgKXUV
|
||||
E+zue60WY1LeUX1fH4Trmiqa72OmAtDGM7WGjZqtvixX8DQQ++cHojZLzhWyLmSlh52oAvLVI1Ai
|
||||
RPXnznZqwQTOGZJBOn737wAYy9UZXomI/K6Sg4wqh2sMPvsV+Eyyxay5pHsJSmEb00MPqD5yZnqH
|
||||
h13n+gVYAp0gq+GQ8nzr2KrkOXsqr7KFocZdsEfXSm+8/XGEsekH2NIClQnNoUrhV/9hz8nL7Dt/
|
||||
Dfn87OIo0P1sCuaUh6Of8Pi51FM04scpgYdOinE4LZa7ts1gQOsyrth5C3B4r9E5h29gyT48qaK+
|
||||
wh0KfvoIm6P7AsupWCowjKNMjU451bM1cw388lYfda4W8T//8tO3qL40NZ3C4QzltkMkXa5DvV7e
|
||||
xgjD7WVHrbCVo/Vz5Xl4dYMdPnz546/fBNVrfiLsNDZsLTTY/+XBzlu418365DyABK32pQDPOuOC
|
||||
HUGPdRWwffOBvn75E7D3fuRvP2TOft+V3/ltPOOdvrinZw7H10elKh7e+qwr8vyXJ+jLuxx+fAea
|
||||
B9X20bc/Jy7r0wT1W+KoSUI4rHC3DWBQrTr2PmQEM51LE3KPgFDHPmn1ll7VCpW9EhDu64f7Je16
|
||||
CPJDSv/y09/+QXIa8U14V+53fh3gdq5B/Uxn2boeNPJ3v3+8aL7HjgbsVvH9zVqGNVPNWkWFC3yM
|
||||
maeDWZ3SBB57y8YPN1RdsT4ad3iuY5kweZ3YlHnajMjj8PDrxlwZKVgWKN/8JLydsmGcH64FvvyG
|
||||
2l7yqIXJPDXw16+5uJ445C03E7Sl1egPYVHojNJGQy3sK7LVYkVfvL0yg/FWX+h+cT9gDo6z+ePZ
|
||||
1PsQD/A7fbgrWtH09FLWjT7LmRKD24frCT9fB33clpICnVug4PjC37J5rG0Cw3MXUHVBU0buZKqg
|
||||
9pAbIn/95dZpUAKNIvz2x6gwEJl/8Art04akzwyB1VkOFij8JvKRKZbRXDMmwFLv9vj2kMdo2Vyu
|
||||
IXwKZw5rEoEDO5eage7lOyVojsmwGn53/ulzwmXRC3Q/fbbi7o3d8fqu57MUWCiWGxMb57cyrPHE
|
||||
J3Cjdi+q7kUjEz+N3/x4Az7qzjZjiHox9Iz3RL/nq1v20tGAuXUx8SGWnJpwsttA8VE1VK0uh0E0
|
||||
9WsFke0fiJArn+jbLwgB7qwdVvFwcLfpLr//rV93NfV0QZ96CF3zEGMHZCoQxtkq4MtZL1g7GLo7
|
||||
f/UUcJos80EkGy7jnrWKmizkCbt4G7AU94uHCpBSAvNyD2axGTiYB82dgAFag6iatQY3jZZh/Cgs
|
||||
9u0H8gicu+2X56g1PxmbHF6r4ogvQjOBbhaDFZqmusEnutHB+uuH3o2Vo4ar9+58wKqCEsOzsMtX
|
||||
jM03q+pQrfYMHxVniZaW0zuknfPNr75m7CxGBrSLM4+vn2pwl3Qrj8BiRYKdahrc6ZhgCwqaUmNL
|
||||
/zRg+PYf//qLxxBw0fzrXzqiUdCQShyjXz+tpM6QUe/L9+kkXToI1nuGL1qc6uu9VgVk1G6HHRO/
|
||||
f/mz/vgNdpX247L+eWrR1WogVpOyAV9+3EKBozw2/L0BmKy+O0iiTsJJHL0yui0YD6XLsyTAdh71
|
||||
Mj9mH/7zuxXwX//68+d//G4YtN0jf30vBkz5Mv3H/7kq8B/if4xt+nr9vYZAxrTI//n3/76B8M9n
|
||||
6NrP9D+nrsnf4z///rMV/t41+GfqpvT1/z7/1/dV//Wv/wUAAP//AwBcfFVx4CAAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 931fceef786ded38-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 17 Apr 2025 23:47:35 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=fj4RMXSXRDQjE2CFC6CGC3dVcJ8cl2Cbu8alijwMHA8-1744933655-1.0.1.1-M3c3AI4XQa.0GJoanNACuOm2aEL4xjqHR1grxIP3olFvq3e0eFHwQTvCF20YwR_OLiMJUH87eNUwgziawMccsxjR9OVZyDr5._5Wts6CrqA;
|
||||
path=/; expires=Fri, 18-Apr-25 00:17:35 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=MSkpJsQZtdyIGvrl2mIwy0a_We8H6CIrS7etFgRBl2Y-1744933655703-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-model:
|
||||
- text-embedding-3-small
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '140'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
via:
|
||||
- envoy-router-84959bbcd5-rzqvq
|
||||
x-envoy-upstream-service-time:
|
||||
- '110'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '10000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '9999986'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_dd3ef61c4765b46ed7db80ddfe261f41
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
|
||||
You have access to specific knowledge sources.\nYour personal goal is: Provide
|
||||
information based on knowledge sources\nTo give my best complete final answer
|
||||
to the task respond using the exact following format:\n\nThought: I now can
|
||||
give a great answer\nFinal Answer: Your final answer must be the great and the
|
||||
most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
|
||||
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
|
||||
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '926'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.68.2
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.68.2
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFLBbtswDL37KwhdeokLx0mbOLd2WIAC63YZdthWGIpMO9xkUZDkpEWR
|
||||
fx/kpLG7dUAvBszHR733yOcEQFAlViDUVgbVWp3efv66LvKPRd7Q/f57vtaf7m6ePjze774sv23E
|
||||
JDJ48wtVeGFdKm6txkBsjrByKAPGqdPFfF7MZtdXVz3QcoU60hob0jmnLRlK8yyfp9kinS5P7C2T
|
||||
Qi9W8CMBAHjuv1GnqfBRrCCbvFRa9F42KFbnJgDhWMeKkN6TD9IEMRlAxSag6aXfgeE9KGmgoR2C
|
||||
hCbKBmn8Hh3AT7MmIzXc9P8ruHXSVGwuPNRyx44CgmLNDsjDRnd4OX7GYd15Ga2aTusRII3hIGNU
|
||||
vcGHE3I4W9LcWMcb/xdV1GTIb0uH0rOJ8n1gK3r0kAA89NF1r9IQ1nFrQxn4N/bPTa+Xx3li2NgI
|
||||
LU5g4CD1qL5cTN6YV1YYJGk/Cl8oqbZYDdRhU7KriEdAMnL9r5q3Zh+dk2neM34AlEIbsCqtw4rU
|
||||
a8dDm8N40P9rO6fcCxYe3Y4UloHQxU1UWMtOH89M+CcfsC1rMg066+h4a7Uts1mRL/M8KzKRHJI/
|
||||
AAAA//8DALRhJdF5AwAA
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 931fcef51a67f947-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 17 Apr 2025 23:47:36 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=7agwu5JV1OJvEFNhvfvqdgWf.HoMyIni9D85soRl3WE-1744933656-1.0.1.1-dKUwAZnjjuuiswFKWGsxpwHNBJUpjhYlZvfZpyNQIejxEJrXMCppgPvtQ9wa4SKezLmKqftvn_H.bAx_AEFJD2EWm5V6R_uK8.odneErR6A;
|
||||
path=/; expires=Fri, 18-Apr-25 00:17:36 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=LdTrzwZYrB6ZyQLY7NdaaHVpDVFvIjYm3arSpNy87wU-1744933656504-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '540'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999802'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_8837be6510731522fd5ac4b75c11d486
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
90
tests/integration/elasticsearch_integration_test.py
Normal file
90
tests/integration/elasticsearch_integration_test.py
Normal file
@@ -0,0 +1,90 @@
|
||||
"""Integration test for Elasticsearch with CrewAI."""
|
||||
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai import Agent, Crew, Task
|
||||
from crewai.knowledge import Knowledge
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("RUN_ELASTICSEARCH_TESTS") != "true",
|
||||
reason="Elasticsearch tests require RUN_ELASTICSEARCH_TESTS=true"
|
||||
)
|
||||
class TestElasticsearchIntegration(unittest.TestCase):
|
||||
"""Integration test for Elasticsearch with CrewAI."""
|
||||
|
||||
def test_crew_with_elasticsearch_memory(self):
|
||||
"""Test a crew with Elasticsearch memory."""
|
||||
researcher = Agent(
|
||||
role="Researcher",
|
||||
goal="Research a topic",
|
||||
backstory="You are a researcher who loves to find information.",
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role="Writer",
|
||||
goal="Write about a topic",
|
||||
backstory="You are a writer who loves to write about topics.",
|
||||
)
|
||||
|
||||
research_task = Task(
|
||||
description="Research about AI",
|
||||
expected_output="Information about AI",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
write_task = Task(
|
||||
description="Write about AI",
|
||||
expected_output="Article about AI",
|
||||
agent=writer,
|
||||
context=[research_task],
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research_task, write_task],
|
||||
memory_config={"provider": "elasticsearch"},
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
self.assertIsNotNone(result)
|
||||
|
||||
def test_crew_with_elasticsearch_knowledge(self):
|
||||
"""Test a crew with Elasticsearch knowledge."""
|
||||
content = "AI is a field of computer science that focuses on creating machines that can perform tasks that typically require human intelligence."
|
||||
string_source = StringKnowledgeSource(
|
||||
content=content, metadata={"topic": "AI"}
|
||||
)
|
||||
|
||||
knowledge = Knowledge(
|
||||
collection_name="test",
|
||||
sources=[string_source],
|
||||
storage_provider="elasticsearch",
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role="AI Expert",
|
||||
goal="Explain AI",
|
||||
backstory="You are an AI expert who loves to explain AI concepts.",
|
||||
knowledge=[knowledge],
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Explain what AI is",
|
||||
expected_output="Explanation of AI",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
self.assertIsNotNone(result)
|
||||
94
tests/knowledge/elasticsearch_knowledge_storage_test.py
Normal file
94
tests/knowledge/elasticsearch_knowledge_storage_test.py
Normal file
@@ -0,0 +1,94 @@
|
||||
"""Test Elasticsearch knowledge storage functionality."""
|
||||
|
||||
import os
|
||||
import unittest
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.knowledge.storage.elasticsearch_knowledge_storage import (
|
||||
ElasticsearchKnowledgeStorage,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("RUN_ELASTICSEARCH_TESTS") != "true",
|
||||
reason="Elasticsearch tests require RUN_ELASTICSEARCH_TESTS=true"
|
||||
)
|
||||
class TestElasticsearchKnowledgeStorage(unittest.TestCase):
|
||||
"""Test Elasticsearch knowledge storage functionality."""
|
||||
|
||||
def setUp(self):
|
||||
"""Set up test fixtures."""
|
||||
self.es_mock = MagicMock()
|
||||
self.es_mock.indices.exists.return_value = False
|
||||
|
||||
self.embedder_mock = MagicMock()
|
||||
self.embedder_mock.embed_documents.return_value = [[0.1, 0.2, 0.3]]
|
||||
|
||||
self.es_patcher = patch(
|
||||
"crewai.knowledge.storage.elasticsearch_knowledge_storage.Elasticsearch",
|
||||
return_value=self.es_mock
|
||||
)
|
||||
self.es_class_mock = self.es_patcher.start()
|
||||
|
||||
self.storage = ElasticsearchKnowledgeStorage(
|
||||
embedder_config=self.embedder_mock,
|
||||
collection_name="test"
|
||||
)
|
||||
self.storage.initialize_knowledge_storage()
|
||||
|
||||
def tearDown(self):
|
||||
"""Tear down test fixtures."""
|
||||
self.es_patcher.stop()
|
||||
|
||||
def test_initialization(self):
|
||||
"""Test initialization of Elasticsearch knowledge storage."""
|
||||
self.es_class_mock.assert_called_once()
|
||||
|
||||
self.es_mock.indices.create.assert_called_once()
|
||||
|
||||
def test_save(self):
|
||||
"""Test saving to Elasticsearch knowledge storage."""
|
||||
self.storage.save(["Test document 1", "Test document 2"], {"source": "test"})
|
||||
|
||||
self.assertEqual(self.es_mock.index.call_count, 2)
|
||||
|
||||
self.assertEqual(self.embedder_mock.embed_documents.call_count, 2)
|
||||
|
||||
def test_search(self):
|
||||
"""Test searching in Elasticsearch knowledge storage."""
|
||||
self.es_mock.search.return_value = {
|
||||
"hits": {
|
||||
"hits": [
|
||||
{
|
||||
"_id": "test_id",
|
||||
"_score": 1.5, # Score between 1-2 (Elasticsearch range)
|
||||
"_source": {
|
||||
"text": "Test document",
|
||||
"metadata": {"source": "test"},
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
results = self.storage.search(["test query"])
|
||||
|
||||
self.es_mock.search.assert_called_once()
|
||||
|
||||
self.assertEqual(len(results), 1)
|
||||
self.assertEqual(results[0]["id"], "test_id")
|
||||
self.assertEqual(results[0]["context"], "Test document")
|
||||
self.assertEqual(results[0]["metadata"], {"source": "test"})
|
||||
self.assertEqual(results[0]["score"], 0.5) # Adjusted to 0-1 range
|
||||
|
||||
def test_reset(self):
|
||||
"""Test resetting Elasticsearch knowledge storage."""
|
||||
self.es_mock.indices.exists.return_value = True
|
||||
|
||||
self.storage.reset()
|
||||
|
||||
self.es_mock.indices.delete.assert_called_once()
|
||||
|
||||
self.assertEqual(self.es_mock.indices.create.call_count, 2)
|
||||
91
tests/memory/elasticsearch_storage_test.py
Normal file
91
tests/memory/elasticsearch_storage_test.py
Normal file
@@ -0,0 +1,91 @@
|
||||
"""Test Elasticsearch storage functionality."""
|
||||
|
||||
import os
|
||||
import unittest
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.memory.storage.elasticsearch_storage import ElasticsearchStorage
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("RUN_ELASTICSEARCH_TESTS") != "true",
|
||||
reason="Elasticsearch tests require RUN_ELASTICSEARCH_TESTS=true"
|
||||
)
|
||||
class TestElasticsearchStorage(unittest.TestCase):
|
||||
"""Test Elasticsearch storage functionality."""
|
||||
|
||||
def setUp(self):
|
||||
"""Set up test fixtures."""
|
||||
self.es_mock = MagicMock()
|
||||
self.es_mock.indices.exists.return_value = False
|
||||
|
||||
self.embedder_mock = MagicMock()
|
||||
self.embedder_mock.embed_documents.return_value = [[0.1, 0.2, 0.3]]
|
||||
|
||||
self.es_patcher = patch(
|
||||
"crewai.memory.storage.elasticsearch_storage.Elasticsearch",
|
||||
return_value=self.es_mock
|
||||
)
|
||||
self.es_class_mock = self.es_patcher.start()
|
||||
|
||||
self.storage = ElasticsearchStorage(
|
||||
type="test",
|
||||
embedder_config=self.embedder_mock
|
||||
)
|
||||
|
||||
def tearDown(self):
|
||||
"""Tear down test fixtures."""
|
||||
self.es_patcher.stop()
|
||||
|
||||
def test_initialization(self):
|
||||
"""Test initialization of Elasticsearch storage."""
|
||||
self.es_class_mock.assert_called_once()
|
||||
|
||||
self.es_mock.indices.create.assert_called_once()
|
||||
|
||||
def test_save(self):
|
||||
"""Test saving to Elasticsearch storage."""
|
||||
self.storage.save("Test document", {"source": "test"})
|
||||
|
||||
self.es_mock.index.assert_called_once()
|
||||
|
||||
self.embedder_mock.embed_documents.assert_called_once_with(["Test document"])
|
||||
|
||||
def test_search(self):
|
||||
"""Test searching in Elasticsearch storage."""
|
||||
self.es_mock.search.return_value = {
|
||||
"hits": {
|
||||
"hits": [
|
||||
{
|
||||
"_id": "test_id",
|
||||
"_score": 1.5, # Score between 1-2 (Elasticsearch range)
|
||||
"_source": {
|
||||
"text": "Test document",
|
||||
"metadata": {"source": "test"},
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
results = self.storage.search("test query")
|
||||
|
||||
self.es_mock.search.assert_called_once()
|
||||
|
||||
self.assertEqual(len(results), 1)
|
||||
self.assertEqual(results[0]["id"], "test_id")
|
||||
self.assertEqual(results[0]["context"], "Test document")
|
||||
self.assertEqual(results[0]["metadata"], {"source": "test"})
|
||||
self.assertEqual(results[0]["score"], 0.5) # Adjusted to 0-1 range
|
||||
|
||||
def test_reset(self):
|
||||
"""Test resetting Elasticsearch storage."""
|
||||
self.es_mock.indices.exists.return_value = True
|
||||
|
||||
self.storage.reset()
|
||||
|
||||
self.es_mock.indices.delete.assert_called_once()
|
||||
|
||||
self.assertEqual(self.es_mock.indices.create.call_count, 2)
|
||||
33
uv.lock
generated
33
uv.lock
generated
@@ -1,5 +1,4 @@
|
||||
version = 1
|
||||
revision = 1
|
||||
requires-python = ">=3.10, <3.13"
|
||||
resolution-markers = [
|
||||
"python_full_version < '3.11' and platform_python_implementation == 'PyPy' and sys_platform == 'darwin'",
|
||||
@@ -628,6 +627,7 @@ dependencies = [
|
||||
{ name = "blinker" },
|
||||
{ name = "chromadb" },
|
||||
{ name = "click" },
|
||||
{ name = "elasticsearch" },
|
||||
{ name = "instructor" },
|
||||
{ name = "json-repair" },
|
||||
{ name = "json5" },
|
||||
@@ -710,6 +710,7 @@ requires-dist = [
|
||||
{ name = "click", specifier = ">=8.1.7" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.40.1" },
|
||||
{ name = "docling", marker = "extra == 'docling'", specifier = ">=2.12.0" },
|
||||
{ name = "elasticsearch", specifier = ">=9.0.0" },
|
||||
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
|
||||
{ name = "instructor", specifier = ">=1.3.3" },
|
||||
{ name = "json-repair", specifier = ">=0.25.2" },
|
||||
@@ -735,7 +736,6 @@ requires-dist = [
|
||||
{ name = "tomli-w", specifier = ">=1.1.0" },
|
||||
{ name = "uv", specifier = ">=0.4.25" },
|
||||
]
|
||||
provides-extras = ["tools", "embeddings", "agentops", "fastembed", "pdfplumber", "pandas", "openpyxl", "mem0", "docling", "aisuite"]
|
||||
|
||||
[package.metadata.requires-dev]
|
||||
dev = [
|
||||
@@ -1097,6 +1097,33 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/bb/84/4a2cab0e6adde6a85e7ba543862e5fc0250c51f3ac721a078a55cdcff250/easyocr-1.7.2-py3-none-any.whl", hash = "sha256:5be12f9b0e595d443c9c3d10b0542074b50f0ec2d98b141a109cd961fd1c177c", size = 2870178 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "elastic-transport"
|
||||
version = "8.17.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "certifi" },
|
||||
{ name = "urllib3" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/6a/54/d498a766ac8fa475f931da85a154666cc81a70f8eb4a780bc8e4e934e9ac/elastic_transport-8.17.1.tar.gz", hash = "sha256:5edef32ac864dca8e2f0a613ef63491ee8d6b8cfb52881fa7313ba9290cac6d2", size = 73425 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/cf/cd/b71d5bc74cde7fc6fd9b2ff9389890f45d9762cbbbf81dc5e51fd7588c4a/elastic_transport-8.17.1-py3-none-any.whl", hash = "sha256:192718f498f1d10c5e9aa8b9cf32aed405e469a7f0e9d6a8923431dbb2c59fb8", size = 64969 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "elasticsearch"
|
||||
version = "9.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "elastic-transport" },
|
||||
{ name = "python-dateutil" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/26/ad/d76e88811e68d7bdd976c0ff6027e7c3b544a949c8d3de052adc5765e1a6/elasticsearch-9.0.0.tar.gz", hash = "sha256:c075ccdc7d5697e2a842a88418efdb6cf6732d7a62c77a25d60184db23fd1464", size = 823636 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/4b/b7/e85bdb8bed719dbf92780264d6c381186ced8eb7acc88bbe37a996f87b03/elasticsearch-9.0.0-py3-none-any.whl", hash = "sha256:295425172043e5db723d55cb3a5e28622696ca7739b466b812ab12ac938b6249", size = 895793 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "embedchain"
|
||||
version = "0.1.125"
|
||||
@@ -2988,6 +3015,7 @@ name = "nvidia-nccl-cu12"
|
||||
version = "2.20.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c1/bb/d09dda47c881f9ff504afd6f9ca4f502ded6d8fc2f572cacc5e39da91c28/nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1fc150d5c3250b170b29410ba682384b14581db722b2531b0d8d33c595f33d01", size = 176238458 },
|
||||
{ url = "https://files.pythonhosted.org/packages/4b/2a/0a131f572aa09f741c30ccd45a8e56316e8be8dfc7bc19bf0ab7cfef7b19/nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:057f6bf9685f75215d0c53bf3ac4a10b3e6578351de307abad9e18a99182af56", size = 176249402 },
|
||||
]
|
||||
|
||||
@@ -2997,6 +3025,7 @@ version = "12.6.85"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/9d/d7/c5383e47c7e9bf1c99d5bd2a8c935af2b6d705ad831a7ec5c97db4d82f4f/nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:eedc36df9e88b682efe4309aa16b5b4e78c2407eac59e8c10a6a47535164369a", size = 19744971 },
|
||||
{ url = "https://files.pythonhosted.org/packages/31/db/dc71113d441f208cdfe7ae10d4983884e13f464a6252450693365e166dcf/nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cf4eaa7d4b6b543ffd69d6abfb11efdeb2db48270d94dfd3a452c24150829e41", size = 19270338 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
Reference in New Issue
Block a user