mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-02-04 04:58:21 +00:00
Compare commits
1 Commits
gl/fix/hit
...
devin/1769
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
615f6ad9d6 |
63
.github/workflows/generate-tool-specs.yml
vendored
63
.github/workflows/generate-tool-specs.yml
vendored
@@ -1,63 +0,0 @@
|
||||
name: Generate Tool Specifications
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- 'lib/crewai-tools/src/crewai_tools/**'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
generate-specs:
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
PYTHONUNBUFFERED: 1
|
||||
|
||||
steps:
|
||||
- name: Generate GitHub App token
|
||||
id: app-token
|
||||
uses: tibdex/github-app-token@v2
|
||||
with:
|
||||
app_id: ${{ secrets.CREWAI_TOOL_SPECS_APP_ID }}
|
||||
private_key: ${{ secrets.CREWAI_TOOL_SPECS_PRIVATE_KEY }}
|
||||
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.head_ref }}
|
||||
token: ${{ steps.app-token.outputs.token }}
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
version: "0.8.4"
|
||||
python-version: "3.12"
|
||||
enable-cache: true
|
||||
|
||||
- name: Install the project
|
||||
working-directory: lib/crewai-tools
|
||||
run: uv sync --dev --all-extras
|
||||
|
||||
- name: Generate tool specifications
|
||||
working-directory: lib/crewai-tools
|
||||
run: uv run python src/crewai_tools/generate_tool_specs.py
|
||||
|
||||
- name: Check for changes and commit
|
||||
run: |
|
||||
git config user.name "github-actions[bot]"
|
||||
git config user.email "41898282+github-actions[bot]@users.noreply.github.com"
|
||||
|
||||
git add lib/crewai-tools/tool.specs.json
|
||||
|
||||
if git diff --quiet --staged; then
|
||||
echo "No changes detected in tool.specs.json"
|
||||
else
|
||||
echo "Changes detected in tool.specs.json, committing..."
|
||||
git commit -m "chore: update tool specifications"
|
||||
git push
|
||||
fi
|
||||
@@ -370,8 +370,7 @@
|
||||
"pages": [
|
||||
"en/enterprise/features/traces",
|
||||
"en/enterprise/features/webhook-streaming",
|
||||
"en/enterprise/features/hallucination-guardrail",
|
||||
"en/enterprise/features/flow-hitl-management"
|
||||
"en/enterprise/features/hallucination-guardrail"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -824,8 +823,7 @@
|
||||
"pages": [
|
||||
"pt-BR/enterprise/features/traces",
|
||||
"pt-BR/enterprise/features/webhook-streaming",
|
||||
"pt-BR/enterprise/features/hallucination-guardrail",
|
||||
"pt-BR/enterprise/features/flow-hitl-management"
|
||||
"pt-BR/enterprise/features/hallucination-guardrail"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1289,8 +1287,7 @@
|
||||
"pages": [
|
||||
"ko/enterprise/features/traces",
|
||||
"ko/enterprise/features/webhook-streaming",
|
||||
"ko/enterprise/features/hallucination-guardrail",
|
||||
"ko/enterprise/features/flow-hitl-management"
|
||||
"ko/enterprise/features/hallucination-guardrail"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -4,74 +4,6 @@ description: "Product updates, improvements, and bug fixes for CrewAI"
|
||||
icon: "clock"
|
||||
mode: "wide"
|
||||
---
|
||||
<Update label="Jan 26, 2026">
|
||||
## v1.9.0
|
||||
|
||||
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.9.0)
|
||||
|
||||
## What's Changed
|
||||
|
||||
### Features
|
||||
- Add structured outputs and response_format support across providers
|
||||
- Add response ID to streaming responses
|
||||
- Add event ordering with parent-child hierarchies
|
||||
- Add Keycloak SSO authentication support
|
||||
- Add multimodal file handling capabilities
|
||||
- Add native OpenAI responses API support
|
||||
- Add A2A task execution utilities
|
||||
- Add A2A server configuration and agent card generation
|
||||
- Enhance event system and expand transport options
|
||||
- Improve tool calling mechanisms
|
||||
|
||||
### Bug Fixes
|
||||
- Enhance file store with fallback memory cache when aiocache is not available
|
||||
- Ensure document list is not empty
|
||||
- Handle Bedrock stop sequences properly
|
||||
- Add Google Vertex API key support
|
||||
- Enhance Azure model stop word detection
|
||||
- Improve error handling for HumanFeedbackPending in flow execution
|
||||
- Fix execution span task unlinking
|
||||
|
||||
### Documentation
|
||||
- Add native file handling documentation
|
||||
- Add OpenAI responses API documentation
|
||||
- Add agent card implementation guidance
|
||||
- Refine A2A documentation
|
||||
- Update changelog for v1.8.0
|
||||
|
||||
### Contributors
|
||||
@Anaisdg, @GininDenis, @Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @koushiv777, @lorenzejay, @nicoferdi96, @vinibrsl
|
||||
|
||||
</Update>
|
||||
|
||||
<Update label="Jan 15, 2026">
|
||||
## v1.8.1
|
||||
|
||||
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.8.1)
|
||||
|
||||
## What's Changed
|
||||
|
||||
### Features
|
||||
- Add A2A task execution utilities
|
||||
- Add A2A server configuration and agent card generation
|
||||
- Add additional transport mechanisms
|
||||
- Add Galileo integration support
|
||||
|
||||
### Bug Fixes
|
||||
- Improve Azure model compatibility
|
||||
- Expand frame inspection depth to detect parent_flow
|
||||
- Resolve task execution span management issues
|
||||
- Enhance error handling for human feedback scenarios during flow execution
|
||||
|
||||
### Documentation
|
||||
- Add A2A agent card documentation
|
||||
- Add PII redaction feature documentation
|
||||
|
||||
### Contributors
|
||||
@Anaisdg, @GininDenis, @greysonlalonde, @joaomdmoura, @koushiv777, @lorenzejay, @vinibrsl
|
||||
|
||||
</Update>
|
||||
|
||||
<Update label="Jan 08, 2026">
|
||||
## v1.8.0
|
||||
|
||||
|
||||
@@ -401,58 +401,23 @@ crew = Crew(
|
||||
|
||||
### Vertex AI Embeddings
|
||||
|
||||
For Google Cloud users with Vertex AI access. Supports both legacy and new embedding models with automatic SDK selection.
|
||||
|
||||
<Note>
|
||||
**Deprecation Notice:** Legacy models (`textembedding-gecko*`) use the deprecated `vertexai.language_models` SDK which will be removed after June 24, 2026. Consider migrating to newer models like `gemini-embedding-001`. See the [Google migration guide](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/deprecations/genai-vertexai-sdk) for details.
|
||||
</Note>
|
||||
For Google Cloud users with Vertex AI access.
|
||||
|
||||
```python
|
||||
# Recommended: Using new models with google-genai SDK
|
||||
crew = Crew(
|
||||
memory=True,
|
||||
embedder={
|
||||
"provider": "google-vertex",
|
||||
"provider": "vertexai",
|
||||
"config": {
|
||||
"project_id": "your-gcp-project-id",
|
||||
"location": "us-central1",
|
||||
"model_name": "gemini-embedding-001", # or "text-embedding-005", "text-multilingual-embedding-002"
|
||||
"task_type": "RETRIEVAL_DOCUMENT", # Optional
|
||||
"output_dimensionality": 768 # Optional
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
# Using API key authentication (Exp)
|
||||
crew = Crew(
|
||||
memory=True,
|
||||
embedder={
|
||||
"provider": "google-vertex",
|
||||
"config": {
|
||||
"api_key": "your-google-api-key",
|
||||
"model_name": "gemini-embedding-001"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
# Legacy models (backwards compatible, emits deprecation warning)
|
||||
crew = Crew(
|
||||
memory=True,
|
||||
embedder={
|
||||
"provider": "google-vertex",
|
||||
"config": {
|
||||
"project_id": "your-gcp-project-id",
|
||||
"region": "us-central1", # or "location" (region is deprecated)
|
||||
"model_name": "textembedding-gecko" # Legacy model
|
||||
"region": "us-central1", # or your preferred region
|
||||
"api_key": "your-service-account-key",
|
||||
"model_name": "textembedding-gecko"
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
**Available models:**
|
||||
- **New SDK models** (recommended): `gemini-embedding-001`, `text-embedding-005`, `text-multilingual-embedding-002`
|
||||
- **Legacy models** (deprecated): `textembedding-gecko`, `textembedding-gecko@001`, `textembedding-gecko-multilingual`
|
||||
|
||||
### Ollama Embeddings (Local)
|
||||
|
||||
Run embeddings locally for privacy and cost savings.
|
||||
@@ -604,7 +569,7 @@ mem0_client_embedder_config = {
|
||||
"project_id": "my_project_id", # Optional
|
||||
"api_key": "custom-api-key" # Optional - overrides env var
|
||||
"run_id": "my_run_id", # Optional - for short-term memory
|
||||
"includes": "include1", # Optional
|
||||
"includes": "include1", # Optional
|
||||
"excludes": "exclude1", # Optional
|
||||
"infer": True # Optional defaults to True
|
||||
"custom_categories": new_categories # Optional - custom categories for user memory
|
||||
@@ -626,7 +591,7 @@ crew = Crew(
|
||||
|
||||
### Choosing the Right Embedding Provider
|
||||
|
||||
When selecting an embedding provider, consider factors like performance, privacy, cost, and integration needs.
|
||||
When selecting an embedding provider, consider factors like performance, privacy, cost, and integration needs.
|
||||
Below is a comparison to help you decide:
|
||||
|
||||
| Provider | Best For | Pros | Cons |
|
||||
@@ -784,7 +749,7 @@ Entity Memory supports batching when saving multiple entities at once. When you
|
||||
|
||||
This improves performance and observability when writing many entities in one operation.
|
||||
|
||||
## 2. External Memory
|
||||
## 2. External Memory
|
||||
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
|
||||
|
||||
### Basic External Memory with Mem0
|
||||
@@ -854,7 +819,7 @@ external_memory = ExternalMemory(
|
||||
"project_id": "my_project_id", # Optional
|
||||
"api_key": "custom-api-key" # Optional - overrides env var
|
||||
"run_id": "my_run_id", # Optional - for short-term memory
|
||||
"includes": "include1", # Optional
|
||||
"includes": "include1", # Optional
|
||||
"excludes": "exclude1", # Optional
|
||||
"infer": True # Optional defaults to True
|
||||
"custom_categories": new_categories # Optional - custom categories for user memory
|
||||
|
||||
@@ -1,563 +0,0 @@
|
||||
---
|
||||
title: "Flow HITL Management"
|
||||
description: "Enterprise-grade human review for Flows with email-first notifications, routing rules, and auto-response capabilities"
|
||||
icon: "users-gear"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
<Note>
|
||||
Flow HITL Management features require the `@human_feedback` decorator, available in **CrewAI version 1.8.0 or higher**. These features apply specifically to **Flows**, not Crews.
|
||||
</Note>
|
||||
|
||||
CrewAI Enterprise provides a comprehensive Human-in-the-Loop (HITL) management system for Flows that transforms AI workflows into collaborative human-AI processes. The platform uses an **email-first architecture** that enables anyone with an email address to respond to review requests—no platform account required.
|
||||
|
||||
## Overview
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Email-First Design" icon="envelope">
|
||||
Responders can reply directly to notification emails to provide feedback
|
||||
</Card>
|
||||
<Card title="Flexible Routing" icon="route">
|
||||
Route requests to specific emails based on method patterns or flow state
|
||||
</Card>
|
||||
<Card title="Auto-Response" icon="clock">
|
||||
Configure automatic fallback responses when no human replies in time
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Key Benefits
|
||||
|
||||
- **Simple mental model**: Email addresses are universal; no need to manage platform users or roles
|
||||
- **External responders**: Anyone with an email can respond, even non-platform users
|
||||
- **Dynamic assignment**: Pull assignee email directly from flow state (e.g., `sales_rep_email`)
|
||||
- **Reduced configuration**: Fewer settings to configure, faster time to value
|
||||
- **Email as primary channel**: Most users prefer responding via email over logging into a dashboard
|
||||
|
||||
## Setting Up Human Review Points in Flows
|
||||
|
||||
Configure human review checkpoints within your Flows using the `@human_feedback` decorator. When execution reaches a review point, the system pauses, notifies the assignee via email, and waits for a response.
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
|
||||
class ContentApprovalFlow(Flow):
|
||||
@start()
|
||||
def generate_content(self):
|
||||
# AI generates content
|
||||
return "Generated marketing copy for Q1 campaign..."
|
||||
|
||||
@listen(generate_content)
|
||||
@human_feedback(
|
||||
message="Please review this content for brand compliance:",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
)
|
||||
def review_content(self, content):
|
||||
return content
|
||||
|
||||
@listen("approved")
|
||||
def publish_content(self, result: HumanFeedbackResult):
|
||||
print(f"Publishing approved content. Reviewer notes: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def archive_content(self, result: HumanFeedbackResult):
|
||||
print(f"Content rejected. Reason: {result.feedback}")
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise_content(self, result: HumanFeedbackResult):
|
||||
print(f"Revision requested: {result.feedback}")
|
||||
```
|
||||
|
||||
For complete implementation details, see the [Human Feedback in Flows](/en/learn/human-feedback-in-flows) guide.
|
||||
|
||||
### Decorator Parameters
|
||||
|
||||
| Parameter | Type | Description |
|
||||
|-----------|------|-------------|
|
||||
| `message` | `str` | The message displayed to the human reviewer |
|
||||
| `emit` | `list[str]` | Valid response options (displayed as buttons in UI) |
|
||||
|
||||
## Platform Configuration
|
||||
|
||||
Access HITL configuration from: **Deployment → Settings → Human in the Loop Configuration**
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-overview.png" alt="HITL Configuration Settings" />
|
||||
</Frame>
|
||||
|
||||
### Email Notifications
|
||||
|
||||
Toggle to enable or disable email notifications for HITL requests.
|
||||
|
||||
| Setting | Default | Description |
|
||||
|---------|---------|-------------|
|
||||
| Email Notifications | Enabled | Send emails when feedback is requested |
|
||||
|
||||
<Note>
|
||||
When disabled, responders must use the dashboard UI or you must configure webhooks for custom notification systems.
|
||||
</Note>
|
||||
|
||||
### SLA Target
|
||||
|
||||
Set a target response time for tracking and metrics purposes.
|
||||
|
||||
| Setting | Description |
|
||||
|---------|-------------|
|
||||
| SLA Target (minutes) | Target response time. Used for dashboard metrics and SLA tracking |
|
||||
|
||||
Leave empty to disable SLA tracking.
|
||||
|
||||
## Email Notifications & Responses
|
||||
|
||||
The HITL system uses an email-first architecture where responders can reply directly to notification emails.
|
||||
|
||||
### How Email Responses Work
|
||||
|
||||
<Steps>
|
||||
<Step title="Notification Sent">
|
||||
When a HITL request is created, an email is sent to the assigned responder with the review content and context.
|
||||
</Step>
|
||||
<Step title="Reply-To Address">
|
||||
The email includes a special reply-to address with a signed token for authentication.
|
||||
</Step>
|
||||
<Step title="User Replies">
|
||||
The responder simply replies to the email with their feedback—no login required.
|
||||
</Step>
|
||||
<Step title="Token Validation">
|
||||
The platform receives the reply, verifies the signed token, and matches the sender email.
|
||||
</Step>
|
||||
<Step title="Flow Resumes">
|
||||
The feedback is recorded and the flow continues with the human's input.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Response Format
|
||||
|
||||
Responders can reply with:
|
||||
|
||||
- **Emit option**: If the reply matches an `emit` option (e.g., "approved"), it's used directly
|
||||
- **Free-form text**: Any text response is passed to the flow as feedback
|
||||
- **Plain text**: The first line of the reply body is used as feedback
|
||||
|
||||
### Confirmation Emails
|
||||
|
||||
After processing a reply, the responder receives a confirmation email indicating whether the feedback was successfully submitted or if an error occurred.
|
||||
|
||||
### Email Token Security
|
||||
|
||||
- Tokens are cryptographically signed for security
|
||||
- Tokens expire after 7 days
|
||||
- Sender email must match the token's authorized email
|
||||
- Confirmation/error emails are sent after processing
|
||||
|
||||
## Routing Rules
|
||||
|
||||
Route HITL requests to specific email addresses based on method patterns.
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-routing-rules.png" alt="HITL Routing Rules Configuration" />
|
||||
</Frame>
|
||||
|
||||
### Rule Structure
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "Approvals to Finance",
|
||||
"match": {
|
||||
"method_name": "approve_*"
|
||||
},
|
||||
"assign_to_email": "finance@company.com",
|
||||
"assign_from_input": "manager_email"
|
||||
}
|
||||
```
|
||||
|
||||
### Matching Patterns
|
||||
|
||||
| Pattern | Description | Example Match |
|
||||
|---------|-------------|---------------|
|
||||
| `approve_*` | Wildcard (any chars) | `approve_payment`, `approve_vendor` |
|
||||
| `review_?` | Single char | `review_a`, `review_1` |
|
||||
| `validate_payment` | Exact match | `validate_payment` only |
|
||||
|
||||
### Assignment Priority
|
||||
|
||||
1. **Dynamic assignment** (`assign_from_input`): If configured, pulls email from flow state
|
||||
2. **Static email** (`assign_to_email`): Falls back to configured email
|
||||
3. **Deployment creator**: If no rule matches, the deployment creator's email is used
|
||||
|
||||
### Dynamic Assignment Example
|
||||
|
||||
If your flow state contains `{"sales_rep_email": "alice@company.com"}`, configure:
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "Route to Sales Rep",
|
||||
"match": {
|
||||
"method_name": "review_*"
|
||||
},
|
||||
"assign_from_input": "sales_rep_email"
|
||||
}
|
||||
```
|
||||
|
||||
The request will be assigned to `alice@company.com` automatically.
|
||||
|
||||
<Tip>
|
||||
**Use Case**: Pull the assignee from your CRM, database, or previous flow step to dynamically route reviews to the right person.
|
||||
</Tip>
|
||||
|
||||
## Auto-Response
|
||||
|
||||
Automatically respond to HITL requests if no human responds within a timeout. This ensures flows don't hang indefinitely.
|
||||
|
||||
### Configuration
|
||||
|
||||
| Setting | Description |
|
||||
|---------|-------------|
|
||||
| Enabled | Toggle to enable auto-response |
|
||||
| Timeout (minutes) | Time to wait before auto-responding |
|
||||
| Default Outcome | The response value (must match an `emit` option) |
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-auto-respond.png" alt="HITL Auto-Response Configuration" />
|
||||
</Frame>
|
||||
|
||||
### Use Cases
|
||||
|
||||
- **SLA compliance**: Ensure flows don't hang indefinitely
|
||||
- **Default approval**: Auto-approve low-risk requests after timeout
|
||||
- **Graceful degradation**: Continue with a safe default when reviewers are unavailable
|
||||
|
||||
<Warning>
|
||||
Use auto-response carefully. Only enable it for non-critical reviews where a default response is acceptable.
|
||||
</Warning>
|
||||
|
||||
## Review Process
|
||||
|
||||
### Dashboard Interface
|
||||
|
||||
The HITL review interface provides a clean, focused experience for reviewers:
|
||||
|
||||
- **Markdown Rendering**: Rich formatting for review content with syntax highlighting
|
||||
- **Context Panel**: View flow state, execution history, and related information
|
||||
- **Feedback Input**: Provide detailed feedback and comments with your decision
|
||||
- **Quick Actions**: One-click emit option buttons with optional comments
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-list-pending-feedbacks.png" alt="HITL Pending Requests List" />
|
||||
</Frame>
|
||||
|
||||
### Response Methods
|
||||
|
||||
Reviewers can respond via three channels:
|
||||
|
||||
| Method | Description |
|
||||
|--------|-------------|
|
||||
| **Email Reply** | Reply directly to the notification email |
|
||||
| **Dashboard** | Use the Enterprise dashboard UI |
|
||||
| **API/Webhook** | Programmatic response via API |
|
||||
|
||||
### History & Audit Trail
|
||||
|
||||
Every HITL interaction is tracked with a complete timeline:
|
||||
|
||||
- Decision history (approve/reject/revise)
|
||||
- Reviewer identity and timestamp
|
||||
- Feedback and comments provided
|
||||
- Response method (email/dashboard/API)
|
||||
- Response time metrics
|
||||
|
||||
## Analytics & Monitoring
|
||||
|
||||
Track HITL performance with comprehensive analytics.
|
||||
|
||||
### Performance Dashboard
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-metrics.png" alt="HITL Metrics Dashboard" />
|
||||
</Frame>
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Response Times" icon="stopwatch">
|
||||
Monitor average and median response times by reviewer or flow.
|
||||
</Card>
|
||||
<Card title="Volume Trends" icon="chart-bar">
|
||||
Analyze review volume patterns to optimize team capacity.
|
||||
</Card>
|
||||
<Card title="Decision Distribution" icon="chart-pie">
|
||||
View approval/rejection rates across different review types.
|
||||
</Card>
|
||||
<Card title="SLA Tracking" icon="chart-line">
|
||||
Track percentage of reviews completed within SLA targets.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Audit & Compliance
|
||||
|
||||
Enterprise-ready audit capabilities for regulatory requirements:
|
||||
|
||||
- Complete decision history with timestamps
|
||||
- Reviewer identity verification
|
||||
- Immutable audit logs
|
||||
- Export capabilities for compliance reporting
|
||||
|
||||
## Common Use Cases
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="Security Reviews" icon="shield-halved">
|
||||
**Use Case**: Internal security questionnaire automation with human validation
|
||||
|
||||
- AI generates responses to security questionnaires
|
||||
- Security team reviews and validates accuracy via email
|
||||
- Approved responses are compiled into final submission
|
||||
- Full audit trail for compliance
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Content Approval" icon="file-lines">
|
||||
**Use Case**: Marketing content requiring legal/brand review
|
||||
|
||||
- AI generates marketing copy or social media content
|
||||
- Route to brand team email for voice/tone review
|
||||
- Automatic publishing upon approval
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Financial Approvals" icon="money-bill">
|
||||
**Use Case**: Expense reports, contract terms, budget allocations
|
||||
|
||||
- AI pre-processes and categorizes financial requests
|
||||
- Route based on amount thresholds using dynamic assignment
|
||||
- Maintain complete audit trail for financial compliance
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Dynamic Assignment from CRM" icon="database">
|
||||
**Use Case**: Route reviews to account owners from your CRM
|
||||
|
||||
- Flow fetches account owner email from CRM
|
||||
- Store email in flow state (e.g., `account_owner_email`)
|
||||
- Use `assign_from_input` to route to the right person automatically
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Quality Assurance" icon="magnifying-glass">
|
||||
**Use Case**: AI output validation before customer delivery
|
||||
|
||||
- AI generates customer-facing content or responses
|
||||
- QA team reviews via email notification
|
||||
- Feedback loops improve AI performance over time
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## Webhooks API
|
||||
|
||||
When your Flows pause for human feedback, you can configure webhooks to send request data to your own application. This enables:
|
||||
|
||||
- Building custom approval UIs
|
||||
- Integrating with internal tools (Jira, ServiceNow, custom dashboards)
|
||||
- Routing approvals to third-party systems
|
||||
- Mobile app notifications
|
||||
- Automated decision systems
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-webhook.png" alt="HITL Webhook Configuration" />
|
||||
</Frame>
|
||||
|
||||
### Configuring Webhooks
|
||||
|
||||
<Steps>
|
||||
<Step title="Navigate to Settings">
|
||||
Go to your **Deployment** → **Settings** → **Human in the Loop**
|
||||
</Step>
|
||||
<Step title="Expand Webhooks Section">
|
||||
Click to expand the **Webhooks** configuration
|
||||
</Step>
|
||||
<Step title="Add Your Webhook URL">
|
||||
Enter your webhook URL (must be HTTPS in production)
|
||||
</Step>
|
||||
<Step title="Save Configuration">
|
||||
Click **Save Configuration** to activate
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
You can configure multiple webhooks. Each active webhook receives all HITL events.
|
||||
|
||||
### Webhook Events
|
||||
|
||||
Your endpoint will receive HTTP POST requests for these events:
|
||||
|
||||
| Event Type | When Triggered |
|
||||
|------------|----------------|
|
||||
| `new_request` | A flow pauses and requests human feedback |
|
||||
|
||||
### Webhook Payload
|
||||
|
||||
All webhooks receive a JSON payload with this structure:
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "new_request",
|
||||
"request": {
|
||||
"id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"flow_id": "flow_abc123",
|
||||
"method_name": "review_article",
|
||||
"message": "Please review this article for publication.",
|
||||
"emit_options": ["approved", "rejected", "request_changes"],
|
||||
"state": {
|
||||
"article_id": 12345,
|
||||
"author": "john@example.com",
|
||||
"category": "technology"
|
||||
},
|
||||
"metadata": {},
|
||||
"created_at": "2026-01-14T12:00:00Z"
|
||||
},
|
||||
"deployment": {
|
||||
"id": 456,
|
||||
"name": "Content Review Flow",
|
||||
"organization_id": 789
|
||||
},
|
||||
"callback_url": "https://api.crewai.com/...",
|
||||
"assigned_to_email": "reviewer@company.com"
|
||||
}
|
||||
```
|
||||
|
||||
### Responding to Requests
|
||||
|
||||
To submit feedback, **POST to the `callback_url`** included in the webhook payload.
|
||||
|
||||
```http
|
||||
POST {callback_url}
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"feedback": "Approved. Great article!",
|
||||
"source": "my_custom_app"
|
||||
}
|
||||
```
|
||||
|
||||
### Security
|
||||
|
||||
<Info>
|
||||
All webhook requests are cryptographically signed using HMAC-SHA256 to ensure authenticity and prevent tampering.
|
||||
</Info>
|
||||
|
||||
#### Webhook Security
|
||||
|
||||
- **HMAC-SHA256 signatures**: Every webhook includes a cryptographic signature
|
||||
- **Per-webhook secrets**: Each webhook has its own unique signing secret
|
||||
- **Encrypted at rest**: Signing secrets are encrypted in our database
|
||||
- **Timestamp verification**: Prevents replay attacks
|
||||
|
||||
#### Signature Headers
|
||||
|
||||
Each webhook request includes these headers:
|
||||
|
||||
| Header | Description |
|
||||
|--------|-------------|
|
||||
| `X-Signature` | HMAC-SHA256 signature: `sha256=<hex_digest>` |
|
||||
| `X-Timestamp` | Unix timestamp when the request was signed |
|
||||
|
||||
#### Verification
|
||||
|
||||
Verify by computing:
|
||||
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
expected = hmac.new(
|
||||
signing_secret.encode(),
|
||||
f"{timestamp}.{payload}".encode(),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
if hmac.compare_digest(expected, signature):
|
||||
# Valid signature
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
|
||||
Your webhook endpoint should return a 2xx status code to acknowledge receipt:
|
||||
|
||||
| Your Response | Our Behavior |
|
||||
|---------------|--------------|
|
||||
| 2xx | Webhook delivered successfully |
|
||||
| 4xx/5xx | Logged as failed, no retry |
|
||||
| Timeout (30s) | Logged as failed, no retry |
|
||||
|
||||
## Security & RBAC
|
||||
|
||||
### Dashboard Access
|
||||
|
||||
HITL access is controlled at the deployment level:
|
||||
|
||||
| Permission | Capability |
|
||||
|------------|------------|
|
||||
| `manage_human_feedback` | Configure HITL settings, view all requests |
|
||||
| `respond_to_human_feedback` | Respond to requests, view assigned requests |
|
||||
|
||||
### Email Response Authorization
|
||||
|
||||
For email replies:
|
||||
1. The reply-to token encodes the authorized email
|
||||
2. Sender email must match the token's email
|
||||
3. Token must not be expired (7-day default)
|
||||
4. Request must still be pending
|
||||
|
||||
### Audit Trail
|
||||
|
||||
All HITL actions are logged:
|
||||
- Request creation
|
||||
- Assignment changes
|
||||
- Response submission (with source: dashboard/email/API)
|
||||
- Flow resume status
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Emails Not Sending
|
||||
|
||||
1. Check "Email Notifications" is enabled in configuration
|
||||
2. Verify routing rules match the method name
|
||||
3. Verify assignee email is valid
|
||||
4. Check deployment creator fallback if no routing rules match
|
||||
|
||||
### Email Replies Not Processing
|
||||
|
||||
1. Check token hasn't expired (7-day default)
|
||||
2. Verify sender email matches assigned email
|
||||
3. Ensure request is still pending (not already responded)
|
||||
|
||||
### Flow Not Resuming
|
||||
|
||||
1. Check request status in dashboard
|
||||
2. Verify callback URL is accessible
|
||||
3. Ensure deployment is still running
|
||||
|
||||
## Best Practices
|
||||
|
||||
<Tip>
|
||||
**Start Simple**: Begin with email notifications to deployment creator, then add routing rules as your workflows mature.
|
||||
</Tip>
|
||||
|
||||
1. **Use Dynamic Assignment**: Pull assignee emails from your flow state for flexible routing.
|
||||
|
||||
2. **Configure Auto-Response**: Set up a fallback for non-critical reviews to prevent flows from hanging.
|
||||
|
||||
3. **Monitor Response Times**: Use analytics to identify bottlenecks and optimize your review process.
|
||||
|
||||
4. **Keep Review Messages Clear**: Write clear, actionable messages in the `@human_feedback` decorator.
|
||||
|
||||
5. **Test Email Flow**: Send test requests to verify email delivery before going to production.
|
||||
|
||||
## Related Resources
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Human Feedback in Flows" icon="code" href="/en/learn/human-feedback-in-flows">
|
||||
Implementation guide for the `@human_feedback` decorator
|
||||
</Card>
|
||||
<Card title="Flow HITL Workflow Guide" icon="route" href="/en/enterprise/guides/human-in-the-loop">
|
||||
Step-by-step guide for setting up HITL workflows
|
||||
</Card>
|
||||
<Card title="RBAC Configuration" icon="shield-check" href="/en/enterprise/features/rbac">
|
||||
Configure role-based access control for your organization
|
||||
</Card>
|
||||
<Card title="Webhook Streaming" icon="bolt" href="/en/enterprise/features/webhook-streaming">
|
||||
Set up real-time event notifications
|
||||
</Card>
|
||||
</CardGroup>
|
||||
@@ -5,54 +5,9 @@ icon: "user-check"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
Human-In-The-Loop (HITL) is a powerful approach that combines artificial intelligence with human expertise to enhance decision-making and improve task outcomes. This guide shows you how to implement HITL within CrewAI Enterprise.
|
||||
Human-In-The-Loop (HITL) is a powerful approach that combines artificial intelligence with human expertise to enhance decision-making and improve task outcomes. This guide shows you how to implement HITL within CrewAI.
|
||||
|
||||
## HITL Approaches in CrewAI
|
||||
|
||||
CrewAI offers two approaches for implementing human-in-the-loop workflows:
|
||||
|
||||
| Approach | Best For | Version |
|
||||
|----------|----------|---------|
|
||||
| **Flow-based** (`@human_feedback` decorator) | Production with Enterprise UI, email-first workflows, full platform features | **1.8.0+** |
|
||||
| **Webhook-based** | Custom integrations, external systems (Slack, Teams, etc.), legacy setups | All versions |
|
||||
|
||||
## Flow-Based HITL with Enterprise Platform
|
||||
|
||||
<Note>
|
||||
The `@human_feedback` decorator requires **CrewAI version 1.8.0 or higher**.
|
||||
</Note>
|
||||
|
||||
When using the `@human_feedback` decorator in your Flows, CrewAI Enterprise provides an **email-first HITL system** that enables anyone with an email address to respond to review requests:
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Email-First Design" icon="envelope">
|
||||
Responders receive email notifications and can reply directly—no login required.
|
||||
</Card>
|
||||
<Card title="Dashboard Review" icon="desktop">
|
||||
Review and respond to HITL requests in the Enterprise dashboard when preferred.
|
||||
</Card>
|
||||
<Card title="Flexible Routing" icon="route">
|
||||
Route requests to specific emails based on method patterns or pull from flow state.
|
||||
</Card>
|
||||
<Card title="Auto-Response" icon="clock">
|
||||
Configure automatic fallback responses when no human replies within the timeout.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Key Benefits
|
||||
|
||||
- **External responders**: Anyone with an email can respond, even non-platform users
|
||||
- **Dynamic assignment**: Pull assignee email from flow state (e.g., `account_owner_email`)
|
||||
- **Simple configuration**: Email-based routing is easier to set up than user/role management
|
||||
- **Deployment creator fallback**: If no routing rule matches, the deployment creator is notified
|
||||
|
||||
<Tip>
|
||||
For implementation details on the `@human_feedback` decorator, see the [Human Feedback in Flows](/en/learn/human-feedback-in-flows) guide.
|
||||
</Tip>
|
||||
|
||||
## Setting Up Webhook-Based HITL Workflows
|
||||
|
||||
For custom integrations with external systems like Slack, Microsoft Teams, or your own applications, you can use the webhook-based approach:
|
||||
## Setting Up HITL Workflows
|
||||
|
||||
<Steps>
|
||||
<Step title="Configure Your Task">
|
||||
@@ -144,14 +99,3 @@ HITL workflows are particularly valuable for:
|
||||
- Sensitive or high-stakes operations
|
||||
- Creative tasks requiring human judgment
|
||||
- Compliance and regulatory reviews
|
||||
|
||||
## Learn More
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Flow HITL Management" icon="users-gear" href="/en/enterprise/features/flow-hitl-management">
|
||||
Explore the full Enterprise Flow HITL platform capabilities including email notifications, routing rules, auto-response, and analytics.
|
||||
</Card>
|
||||
<Card title="Human Feedback in Flows" icon="code" href="/en/learn/human-feedback-in-flows">
|
||||
Implementation guide for the `@human_feedback` decorator in your Flows.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
@@ -151,9 +151,3 @@ HITL workflows are particularly valuable for:
|
||||
- Sensitive or high-stakes operations
|
||||
- Creative tasks requiring human judgment
|
||||
- Compliance and regulatory reviews
|
||||
|
||||
## Enterprise Features
|
||||
|
||||
<Card title="Flow HITL Management Platform" icon="users-gear" href="/en/enterprise/features/flow-hitl-management">
|
||||
CrewAI Enterprise provides a comprehensive HITL management system for Flows with in-platform review, responder assignment, permissions, escalation policies, SLA management, dynamic routing, and full analytics. [Learn more →](/en/enterprise/features/flow-hitl-management)
|
||||
</Card>
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 251 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 263 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 55 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 405 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 156 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 83 KiB |
@@ -4,74 +4,6 @@ description: "CrewAI의 제품 업데이트, 개선 사항 및 버그 수정"
|
||||
icon: "clock"
|
||||
mode: "wide"
|
||||
---
|
||||
<Update label="2026년 1월 26일">
|
||||
## v1.9.0
|
||||
|
||||
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.9.0)
|
||||
|
||||
## 변경 사항
|
||||
|
||||
### 기능
|
||||
- 프로바이더 전반에 걸친 구조화된 출력 및 response_format 지원 추가
|
||||
- 스트리밍 응답에 응답 ID 추가
|
||||
- 부모-자식 계층 구조를 가진 이벤트 순서 추가
|
||||
- Keycloak SSO 인증 지원 추가
|
||||
- 멀티모달 파일 처리 기능 추가
|
||||
- 네이티브 OpenAI responses API 지원 추가
|
||||
- A2A 작업 실행 유틸리티 추가
|
||||
- A2A 서버 구성 및 에이전트 카드 생성 추가
|
||||
- 이벤트 시스템 향상 및 전송 옵션 확장
|
||||
- 도구 호출 메커니즘 개선
|
||||
|
||||
### 버그 수정
|
||||
- aiocache를 사용할 수 없을 때 폴백 메모리 캐시로 파일 저장소 향상
|
||||
- 문서 목록이 비어 있지 않도록 보장
|
||||
- Bedrock 중지 시퀀스 적절히 처리
|
||||
- Google Vertex API 키 지원 추가
|
||||
- Azure 모델 중지 단어 감지 향상
|
||||
- 흐름 실행 시 HumanFeedbackPending 오류 처리 개선
|
||||
- 실행 스팬 작업 연결 해제 수정
|
||||
|
||||
### 문서
|
||||
- 네이티브 파일 처리 문서 추가
|
||||
- OpenAI responses API 문서 추가
|
||||
- 에이전트 카드 구현 가이드 추가
|
||||
- A2A 문서 개선
|
||||
- v1.8.0 변경 로그 업데이트
|
||||
|
||||
### 기여자
|
||||
@Anaisdg, @GininDenis, @Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @koushiv777, @lorenzejay, @nicoferdi96, @vinibrsl
|
||||
|
||||
</Update>
|
||||
|
||||
<Update label="2026년 1월 15일">
|
||||
## v1.8.1
|
||||
|
||||
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.8.1)
|
||||
|
||||
## 변경 사항
|
||||
|
||||
### 기능
|
||||
- A2A 작업 실행 유틸리티 추가
|
||||
- A2A 서버 구성 및 에이전트 카드 생성 추가
|
||||
- 추가 전송 메커니즘 추가
|
||||
- Galileo 통합 지원 추가
|
||||
|
||||
### 버그 수정
|
||||
- Azure 모델 호환성 개선
|
||||
- parent_flow 감지를 위한 프레임 검사 깊이 확장
|
||||
- 작업 실행 스팬 관리 문제 해결
|
||||
- 흐름 실행 중 휴먼 피드백 시나리오에 대한 오류 처리 향상
|
||||
|
||||
### 문서
|
||||
- A2A 에이전트 카드 문서 추가
|
||||
- PII 삭제 기능 문서 추가
|
||||
|
||||
### 기여자
|
||||
@Anaisdg, @GininDenis, @greysonlalonde, @joaomdmoura, @koushiv777, @lorenzejay, @vinibrsl
|
||||
|
||||
</Update>
|
||||
|
||||
<Update label="2026년 1월 8일">
|
||||
## v1.8.0
|
||||
|
||||
|
||||
@@ -1,563 +0,0 @@
|
||||
---
|
||||
title: "Flow HITL 관리"
|
||||
description: "이메일 우선 알림, 라우팅 규칙 및 자동 응답 기능을 갖춘 Flow용 엔터프라이즈급 인간 검토"
|
||||
icon: "users-gear"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
<Note>
|
||||
Flow HITL 관리 기능은 `@human_feedback` 데코레이터가 필요하며, **CrewAI 버전 1.8.0 이상**에서 사용할 수 있습니다. 이 기능은 Crew가 아닌 **Flow**에만 적용됩니다.
|
||||
</Note>
|
||||
|
||||
CrewAI Enterprise는 AI 워크플로우를 협업적인 인간-AI 프로세스로 전환하는 Flow용 포괄적인 Human-in-the-Loop(HITL) 관리 시스템을 제공합니다. 플랫폼은 **이메일 우선 아키텍처**를 사용하여 이메일 주소가 있는 누구나 플랫폼 계정 없이도 검토 요청에 응답할 수 있습니다.
|
||||
|
||||
## 개요
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="이메일 우선 설계" icon="envelope">
|
||||
응답자가 알림 이메일에 직접 회신하여 피드백 제공 가능
|
||||
</Card>
|
||||
<Card title="유연한 라우팅" icon="route">
|
||||
메서드 패턴 또는 Flow 상태에 따라 특정 이메일로 요청 라우팅
|
||||
</Card>
|
||||
<Card title="자동 응답" icon="clock">
|
||||
시간 내에 인간이 응답하지 않을 경우 자동 대체 응답 구성
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### 주요 이점
|
||||
|
||||
- **간단한 멘탈 모델**: 이메일 주소는 보편적이며 플랫폼 사용자나 역할을 관리할 필요 없음
|
||||
- **외부 응답자**: 플랫폼 사용자가 아니어도 이메일이 있는 누구나 응답 가능
|
||||
- **동적 할당**: Flow 상태에서 직접 담당자 이메일 가져오기 (예: `sales_rep_email`)
|
||||
- **간소화된 구성**: 설정할 항목이 적어 더 빠르게 가치 실현
|
||||
- **이메일이 주요 채널**: 대부분의 사용자는 대시보드 로그인보다 이메일로 응답하는 것을 선호
|
||||
|
||||
## Flow에서 인간 검토 포인트 설정
|
||||
|
||||
`@human_feedback` 데코레이터를 사용하여 Flow 내에 인간 검토 체크포인트를 구성합니다. 실행이 검토 포인트에 도달하면 시스템이 일시 중지되고, 담당자에게 이메일로 알리며, 응답을 기다립니다.
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
|
||||
class ContentApprovalFlow(Flow):
|
||||
@start()
|
||||
def generate_content(self):
|
||||
# AI가 콘텐츠 생성
|
||||
return "Q1 캠페인용 마케팅 카피 생성..."
|
||||
|
||||
@listen(generate_content)
|
||||
@human_feedback(
|
||||
message="브랜드 준수를 위해 이 콘텐츠를 검토해 주세요:",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
)
|
||||
def review_content(self, content):
|
||||
return content
|
||||
|
||||
@listen("approved")
|
||||
def publish_content(self, result: HumanFeedbackResult):
|
||||
print(f"승인된 콘텐츠 게시 중. 검토자 노트: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def archive_content(self, result: HumanFeedbackResult):
|
||||
print(f"콘텐츠 거부됨. 사유: {result.feedback}")
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise_content(self, result: HumanFeedbackResult):
|
||||
print(f"수정 요청: {result.feedback}")
|
||||
```
|
||||
|
||||
완전한 구현 세부 사항은 [Flow에서 인간 피드백](/ko/learn/human-feedback-in-flows) 가이드를 참조하세요.
|
||||
|
||||
### 데코레이터 파라미터
|
||||
|
||||
| 파라미터 | 유형 | 설명 |
|
||||
|---------|------|------|
|
||||
| `message` | `str` | 인간 검토자에게 표시되는 메시지 |
|
||||
| `emit` | `list[str]` | 유효한 응답 옵션 (UI에서 버튼으로 표시) |
|
||||
|
||||
## 플랫폼 구성
|
||||
|
||||
HITL 구성에 접근: **배포** → **설정** → **Human in the Loop 구성**
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-overview.png" alt="HITL 구성 설정" />
|
||||
</Frame>
|
||||
|
||||
### 이메일 알림
|
||||
|
||||
HITL 요청에 대한 이메일 알림을 활성화하거나 비활성화하는 토글입니다.
|
||||
|
||||
| 설정 | 기본값 | 설명 |
|
||||
|-----|-------|------|
|
||||
| 이메일 알림 | 활성화됨 | 피드백 요청 시 이메일 전송 |
|
||||
|
||||
<Note>
|
||||
비활성화되면 응답자는 대시보드 UI를 사용하거나 커스텀 알림 시스템을 위해 webhook을 구성해야 합니다.
|
||||
</Note>
|
||||
|
||||
### SLA 목표
|
||||
|
||||
추적 및 메트릭 목적으로 목표 응답 시간을 설정합니다.
|
||||
|
||||
| 설정 | 설명 |
|
||||
|-----|------|
|
||||
| SLA 목표 (분) | 목표 응답 시간. 대시보드 메트릭 및 SLA 추적에 사용 |
|
||||
|
||||
SLA 추적을 비활성화하려면 비워 두세요.
|
||||
|
||||
## 이메일 알림 및 응답
|
||||
|
||||
HITL 시스템은 응답자가 알림 이메일에 직접 회신할 수 있는 이메일 우선 아키텍처를 사용합니다.
|
||||
|
||||
### 이메일 응답 작동 방식
|
||||
|
||||
<Steps>
|
||||
<Step title="알림 전송">
|
||||
HITL 요청이 생성되면 검토 콘텐츠와 컨텍스트가 포함된 이메일이 할당된 응답자에게 전송됩니다.
|
||||
</Step>
|
||||
<Step title="Reply-To 주소">
|
||||
이메일에는 인증을 위한 서명된 토큰이 포함된 특별한 reply-to 주소가 있습니다.
|
||||
</Step>
|
||||
<Step title="사용자 회신">
|
||||
응답자는 이메일에 피드백으로 회신하면 됩니다—로그인 필요 없음.
|
||||
</Step>
|
||||
<Step title="토큰 검증">
|
||||
플랫폼이 회신을 받고, 서명된 토큰을 확인하고, 발신자 이메일을 매칭합니다.
|
||||
</Step>
|
||||
<Step title="Flow 재개">
|
||||
피드백이 기록되고 인간의 입력으로 Flow가 계속됩니다.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### 응답 형식
|
||||
|
||||
응답자는 다음과 같이 회신할 수 있습니다:
|
||||
|
||||
- **Emit 옵션**: 회신이 `emit` 옵션과 일치하면 (예: "approved") 직접 사용됨
|
||||
- **자유 형식 텍스트**: 모든 텍스트 응답이 피드백으로 Flow에 전달됨
|
||||
- **일반 텍스트**: 회신 본문의 첫 번째 줄이 피드백으로 사용됨
|
||||
|
||||
### 확인 이메일
|
||||
|
||||
회신을 처리한 후 응답자는 피드백이 성공적으로 제출되었는지 또는 오류가 발생했는지 나타내는 확인 이메일을 받습니다.
|
||||
|
||||
### 이메일 토큰 보안
|
||||
|
||||
- 토큰은 보안을 위해 암호화 서명됨
|
||||
- 토큰은 7일 후 만료됨
|
||||
- 발신자 이메일은 토큰의 인증된 이메일과 일치해야 함
|
||||
- 처리 후 확인/오류 이메일 전송됨
|
||||
|
||||
## 라우팅 규칙
|
||||
|
||||
메서드 패턴에 따라 HITL 요청을 특정 이메일 주소로 라우팅합니다.
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-routing-rules.png" alt="HITL 라우팅 규칙 구성" />
|
||||
</Frame>
|
||||
|
||||
### 규칙 구조
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "재무팀으로 승인",
|
||||
"match": {
|
||||
"method_name": "approve_*"
|
||||
},
|
||||
"assign_to_email": "finance@company.com",
|
||||
"assign_from_input": "manager_email"
|
||||
}
|
||||
```
|
||||
|
||||
### 매칭 패턴
|
||||
|
||||
| 패턴 | 설명 | 매칭 예시 |
|
||||
|-----|------|----------|
|
||||
| `approve_*` | 와일드카드 (모든 문자) | `approve_payment`, `approve_vendor` |
|
||||
| `review_?` | 단일 문자 | `review_a`, `review_1` |
|
||||
| `validate_payment` | 정확히 일치 | `validate_payment`만 |
|
||||
|
||||
### 할당 우선순위
|
||||
|
||||
1. **동적 할당** (`assign_from_input`): 구성된 경우 Flow 상태에서 이메일 가져옴
|
||||
2. **정적 이메일** (`assign_to_email`): 구성된 이메일로 대체
|
||||
3. **배포 생성자**: 규칙이 일치하지 않으면 배포 생성자의 이메일이 사용됨
|
||||
|
||||
### 동적 할당 예제
|
||||
|
||||
Flow 상태에 `{"sales_rep_email": "alice@company.com"}`이 포함된 경우:
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "영업 담당자에게 라우팅",
|
||||
"match": {
|
||||
"method_name": "review_*"
|
||||
},
|
||||
"assign_from_input": "sales_rep_email"
|
||||
}
|
||||
```
|
||||
|
||||
요청이 자동으로 `alice@company.com`에 할당됩니다.
|
||||
|
||||
<Tip>
|
||||
**사용 사례**: CRM, 데이터베이스 또는 이전 Flow 단계에서 담당자를 가져와 적합한 사람에게 검토를 동적으로 라우팅하세요.
|
||||
</Tip>
|
||||
|
||||
## 자동 응답
|
||||
|
||||
시간 내에 인간이 응답하지 않으면 HITL 요청에 자동으로 응답합니다. 이를 통해 Flow가 무한정 중단되지 않도록 합니다.
|
||||
|
||||
### 구성
|
||||
|
||||
| 설정 | 설명 |
|
||||
|-----|------|
|
||||
| 활성화됨 | 자동 응답 활성화 토글 |
|
||||
| 타임아웃 (분) | 자동 응답 전 대기 시간 |
|
||||
| 기본 결과 | 응답 값 (`emit` 옵션과 일치해야 함) |
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-auto-respond.png" alt="HITL 자동 응답 구성" />
|
||||
</Frame>
|
||||
|
||||
### 사용 사례
|
||||
|
||||
- **SLA 준수**: Flow가 무한정 중단되지 않도록 보장
|
||||
- **기본 승인**: 타임아웃 후 저위험 요청 자동 승인
|
||||
- **우아한 저하**: 검토자가 없을 때 안전한 기본값으로 계속
|
||||
|
||||
<Warning>
|
||||
자동 응답을 신중하게 사용하세요. 기본 응답이 허용되는 중요하지 않은 검토에만 활성화하세요.
|
||||
</Warning>
|
||||
|
||||
## 검토 프로세스
|
||||
|
||||
### 대시보드 인터페이스
|
||||
|
||||
HITL 검토 인터페이스는 검토자에게 깔끔하고 집중된 경험을 제공합니다:
|
||||
|
||||
- **마크다운 렌더링**: 구문 강조가 포함된 풍부한 형식의 검토 콘텐츠
|
||||
- **컨텍스트 패널**: Flow 상태, 실행 기록 및 관련 정보 보기
|
||||
- **피드백 입력**: 결정과 함께 상세한 피드백 및 코멘트 제공
|
||||
- **빠른 작업**: 선택적 코멘트가 있는 원클릭 emit 옵션 버튼
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-list-pending-feedbacks.png" alt="HITL 대기 중인 요청 목록" />
|
||||
</Frame>
|
||||
|
||||
### 응답 방법
|
||||
|
||||
검토자는 세 가지 채널을 통해 응답할 수 있습니다:
|
||||
|
||||
| 방법 | 설명 |
|
||||
|-----|------|
|
||||
| **이메일 회신** | 알림 이메일에 직접 회신 |
|
||||
| **대시보드** | Enterprise 대시보드 UI 사용 |
|
||||
| **API/Webhook** | API를 통한 프로그래밍 방식 응답 |
|
||||
|
||||
### 기록 및 감사 추적
|
||||
|
||||
모든 HITL 상호작용은 완전한 타임라인으로 추적됩니다:
|
||||
|
||||
- 결정 기록 (승인/거부/수정)
|
||||
- 검토자 신원 및 타임스탬프
|
||||
- 제공된 피드백 및 코멘트
|
||||
- 응답 방법 (이메일/대시보드/API)
|
||||
- 응답 시간 메트릭
|
||||
|
||||
## 분석 및 모니터링
|
||||
|
||||
포괄적인 분석으로 HITL 성능을 추적합니다.
|
||||
|
||||
### 성능 대시보드
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-metrics.png" alt="HITL 메트릭 대시보드" />
|
||||
</Frame>
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="응답 시간" icon="stopwatch">
|
||||
검토자 또는 Flow별 평균 및 중앙값 응답 시간 모니터링.
|
||||
</Card>
|
||||
<Card title="볼륨 트렌드" icon="chart-bar">
|
||||
팀 용량 최적화를 위한 검토 볼륨 패턴 분석.
|
||||
</Card>
|
||||
<Card title="결정 분포" icon="chart-pie">
|
||||
다양한 검토 유형에 대한 승인/거부 비율 보기.
|
||||
</Card>
|
||||
<Card title="SLA 추적" icon="chart-line">
|
||||
SLA 목표 내에 완료된 검토 비율 추적.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### 감사 및 규정 준수
|
||||
|
||||
규제 요구 사항을 위한 엔터프라이즈급 감사 기능:
|
||||
|
||||
- 타임스탬프가 있는 완전한 결정 기록
|
||||
- 검토자 신원 확인
|
||||
- 불변 감사 로그
|
||||
- 규정 준수 보고를 위한 내보내기 기능
|
||||
|
||||
## 일반적인 사용 사례
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="보안 검토" icon="shield-halved">
|
||||
**사용 사례**: 인간 검증이 포함된 내부 보안 설문지 자동화
|
||||
|
||||
- AI가 보안 설문지에 대한 응답 생성
|
||||
- 보안팀이 이메일로 정확성 검토 및 검증
|
||||
- 승인된 응답이 최종 제출물로 편집
|
||||
- 규정 준수를 위한 완전한 감사 추적
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="콘텐츠 승인" icon="file-lines">
|
||||
**사용 사례**: 법무/브랜드 검토가 필요한 마케팅 콘텐츠
|
||||
|
||||
- AI가 마케팅 카피 또는 소셜 미디어 콘텐츠 생성
|
||||
- 브랜드팀 이메일로 목소리/톤 검토를 위해 라우팅
|
||||
- 승인 시 자동 게시
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="재무 승인" icon="money-bill">
|
||||
**사용 사례**: 경비 보고서, 계약 조건, 예산 배분
|
||||
|
||||
- AI가 재무 요청을 사전 처리하고 분류
|
||||
- 동적 할당을 사용하여 금액 임계값에 따라 라우팅
|
||||
- 재무 규정 준수를 위한 완전한 감사 추적 유지
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="CRM에서 동적 할당" icon="database">
|
||||
**사용 사례**: CRM에서 계정 담당자에게 검토 라우팅
|
||||
|
||||
- Flow가 CRM에서 계정 담당자 이메일 가져옴
|
||||
- 이메일을 Flow 상태에 저장 (예: `account_owner_email`)
|
||||
- `assign_from_input`을 사용하여 적합한 사람에게 자동 라우팅
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="품질 보증" icon="magnifying-glass">
|
||||
**사용 사례**: 고객 전달 전 AI 출력 검증
|
||||
|
||||
- AI가 고객 대면 콘텐츠 또는 응답 생성
|
||||
- QA팀이 이메일 알림을 통해 검토
|
||||
- 피드백 루프가 시간이 지남에 따라 AI 성능 개선
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## Webhook API
|
||||
|
||||
Flow가 인간 피드백을 위해 일시 중지되면, 요청 데이터를 자체 애플리케이션으로 보내도록 webhook을 구성할 수 있습니다. 이를 통해 다음이 가능합니다:
|
||||
|
||||
- 커스텀 승인 UI 구축
|
||||
- 내부 도구와 통합 (Jira, ServiceNow, 커스텀 대시보드)
|
||||
- 타사 시스템으로 승인 라우팅
|
||||
- 모바일 앱 알림
|
||||
- 자동화된 결정 시스템
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-webhook.png" alt="HITL Webhook 구성" />
|
||||
</Frame>
|
||||
|
||||
### Webhook 구성
|
||||
|
||||
<Steps>
|
||||
<Step title="설정으로 이동">
|
||||
**배포** → **설정** → **Human in the Loop**으로 이동
|
||||
</Step>
|
||||
<Step title="Webhook 섹션 확장">
|
||||
**Webhooks** 구성을 클릭하여 확장
|
||||
</Step>
|
||||
<Step title="Webhook URL 추가">
|
||||
webhook URL 입력 (프로덕션에서는 HTTPS 필수)
|
||||
</Step>
|
||||
<Step title="구성 저장">
|
||||
**구성 저장**을 클릭하여 활성화
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
여러 webhook을 구성할 수 있습니다. 각 활성 webhook은 모든 HITL 이벤트를 수신합니다.
|
||||
|
||||
### Webhook 이벤트
|
||||
|
||||
엔드포인트는 다음 이벤트에 대해 HTTP POST 요청을 수신합니다:
|
||||
|
||||
| 이벤트 유형 | 트리거 시점 |
|
||||
|------------|------------|
|
||||
| `new_request` | Flow가 일시 중지되고 인간 피드백을 요청할 때 |
|
||||
|
||||
### Webhook 페이로드
|
||||
|
||||
모든 webhook은 다음 구조의 JSON 페이로드를 수신합니다:
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "new_request",
|
||||
"request": {
|
||||
"id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"flow_id": "flow_abc123",
|
||||
"method_name": "review_article",
|
||||
"message": "이 기사의 게시를 검토해 주세요.",
|
||||
"emit_options": ["approved", "rejected", "request_changes"],
|
||||
"state": {
|
||||
"article_id": 12345,
|
||||
"author": "john@example.com",
|
||||
"category": "technology"
|
||||
},
|
||||
"metadata": {},
|
||||
"created_at": "2026-01-14T12:00:00Z"
|
||||
},
|
||||
"deployment": {
|
||||
"id": 456,
|
||||
"name": "Content Review Flow",
|
||||
"organization_id": 789
|
||||
},
|
||||
"callback_url": "https://api.crewai.com/...",
|
||||
"assigned_to_email": "reviewer@company.com"
|
||||
}
|
||||
```
|
||||
|
||||
### 요청에 응답하기
|
||||
|
||||
피드백을 제출하려면 webhook 페이로드에 포함된 **`callback_url`로 POST**합니다.
|
||||
|
||||
```http
|
||||
POST {callback_url}
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"feedback": "승인됨. 훌륭한 기사입니다!",
|
||||
"source": "my_custom_app"
|
||||
}
|
||||
```
|
||||
|
||||
### 보안
|
||||
|
||||
<Info>
|
||||
모든 webhook 요청은 HMAC-SHA256을 사용하여 암호화 서명되어 진위성을 보장하고 변조를 방지합니다.
|
||||
</Info>
|
||||
|
||||
#### Webhook 보안
|
||||
|
||||
- **HMAC-SHA256 서명**: 모든 webhook에 암호화 서명이 포함됨
|
||||
- **Webhook별 시크릿**: 각 webhook은 고유한 서명 시크릿을 가짐
|
||||
- **저장 시 암호화**: 서명 시크릿은 데이터베이스에서 암호화됨
|
||||
- **타임스탬프 검증**: 리플레이 공격 방지
|
||||
|
||||
#### 서명 헤더
|
||||
|
||||
각 webhook 요청에는 다음 헤더가 포함됩니다:
|
||||
|
||||
| 헤더 | 설명 |
|
||||
|------|------|
|
||||
| `X-Signature` | HMAC-SHA256 서명: `sha256=<hex_digest>` |
|
||||
| `X-Timestamp` | 요청이 서명된 Unix 타임스탬프 |
|
||||
|
||||
#### 검증
|
||||
|
||||
다음과 같이 계산하여 검증합니다:
|
||||
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
expected = hmac.new(
|
||||
signing_secret.encode(),
|
||||
f"{timestamp}.{payload}".encode(),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
if hmac.compare_digest(expected, signature):
|
||||
# 유효한 서명
|
||||
```
|
||||
|
||||
### 오류 처리
|
||||
|
||||
webhook 엔드포인트는 수신 확인을 위해 2xx 상태 코드를 반환해야 합니다:
|
||||
|
||||
| 응답 | 동작 |
|
||||
|------|------|
|
||||
| 2xx | Webhook 성공적으로 전달됨 |
|
||||
| 4xx/5xx | 실패로 기록됨, 재시도 없음 |
|
||||
| 타임아웃 (30초) | 실패로 기록됨, 재시도 없음 |
|
||||
|
||||
## 보안 및 RBAC
|
||||
|
||||
### 대시보드 접근
|
||||
|
||||
HITL 접근은 배포 수준에서 제어됩니다:
|
||||
|
||||
| 권한 | 기능 |
|
||||
|-----|------|
|
||||
| `manage_human_feedback` | HITL 설정 구성, 모든 요청 보기 |
|
||||
| `respond_to_human_feedback` | 요청에 응답, 할당된 요청 보기 |
|
||||
|
||||
### 이메일 응답 인증
|
||||
|
||||
이메일 회신의 경우:
|
||||
1. reply-to 토큰이 인증된 이메일을 인코딩
|
||||
2. 발신자 이메일이 토큰의 이메일과 일치해야 함
|
||||
3. 토큰이 만료되지 않아야 함 (기본 7일)
|
||||
4. 요청이 여전히 대기 중이어야 함
|
||||
|
||||
### 감사 추적
|
||||
|
||||
모든 HITL 작업이 기록됩니다:
|
||||
- 요청 생성
|
||||
- 할당 변경
|
||||
- 응답 제출 (소스: 대시보드/이메일/API)
|
||||
- Flow 재개 상태
|
||||
|
||||
## 문제 해결
|
||||
|
||||
### 이메일이 전송되지 않음
|
||||
|
||||
1. 구성에서 "이메일 알림"이 활성화되어 있는지 확인
|
||||
2. 라우팅 규칙이 메서드 이름과 일치하는지 확인
|
||||
3. 담당자 이메일이 유효한지 확인
|
||||
4. 라우팅 규칙이 일치하지 않는 경우 배포 생성자 대체 확인
|
||||
|
||||
### 이메일 회신이 처리되지 않음
|
||||
|
||||
1. 토큰이 만료되지 않았는지 확인 (기본 7일)
|
||||
2. 발신자 이메일이 할당된 이메일과 일치하는지 확인
|
||||
3. 요청이 여전히 대기 중인지 확인 (아직 응답되지 않음)
|
||||
|
||||
### Flow가 재개되지 않음
|
||||
|
||||
1. 대시보드에서 요청 상태 확인
|
||||
2. 콜백 URL에 접근 가능한지 확인
|
||||
3. 배포가 여전히 실행 중인지 확인
|
||||
|
||||
## 모범 사례
|
||||
|
||||
<Tip>
|
||||
**간단하게 시작**: 배포 생성자에게 이메일 알림으로 시작한 다음, 워크플로우가 성숙해지면 라우팅 규칙을 추가하세요.
|
||||
</Tip>
|
||||
|
||||
1. **동적 할당 사용**: 유연한 라우팅을 위해 Flow 상태에서 담당자 이메일을 가져오세요.
|
||||
|
||||
2. **자동 응답 구성**: 중요하지 않은 검토에 대해 Flow가 중단되지 않도록 대체를 설정하세요.
|
||||
|
||||
3. **응답 시간 모니터링**: 분석을 사용하여 병목 현상을 식별하고 검토 프로세스를 최적화하세요.
|
||||
|
||||
4. **검토 메시지를 명확하게 유지**: `@human_feedback` 데코레이터에 명확하고 실행 가능한 메시지를 작성하세요.
|
||||
|
||||
5. **이메일 흐름 테스트**: 프로덕션에 가기 전에 테스트 요청을 보내 이메일 전달을 확인하세요.
|
||||
|
||||
## 관련 리소스
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Flow에서 인간 피드백" icon="code" href="/ko/learn/human-feedback-in-flows">
|
||||
`@human_feedback` 데코레이터 구현 가이드
|
||||
</Card>
|
||||
<Card title="Flow HITL 워크플로우 가이드" icon="route" href="/ko/enterprise/guides/human-in-the-loop">
|
||||
HITL 워크플로우 설정을 위한 단계별 가이드
|
||||
</Card>
|
||||
<Card title="RBAC 구성" icon="shield-check" href="/ko/enterprise/features/rbac">
|
||||
조직을 위한 역할 기반 접근 제어 구성
|
||||
</Card>
|
||||
<Card title="Webhook 스트리밍" icon="bolt" href="/ko/enterprise/features/webhook-streaming">
|
||||
실시간 이벤트 알림 설정
|
||||
</Card>
|
||||
</CardGroup>
|
||||
@@ -5,54 +5,9 @@ icon: "user-check"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
인간-중심(Human-In-The-Loop, HITL)은 인공지능과 인간 전문 지식을 결합하여 의사결정을 강화하고 작업 결과를 향상시키는 강력한 접근 방식입니다. 이 가이드는 CrewAI Enterprise 내에서 HITL을 구현하는 방법을 보여줍니다.
|
||||
인간-중심(Human-In-The-Loop, HITL)은 인공지능과 인간 전문 지식을 결합하여 의사결정을 강화하고 작업 결과를 향상시키는 강력한 접근 방식입니다. 이 가이드는 CrewAI 내에서 HITL을 구현하는 방법을 보여줍니다.
|
||||
|
||||
## CrewAI의 HITL 접근 방식
|
||||
|
||||
CrewAI는 human-in-the-loop 워크플로우를 구현하기 위한 두 가지 접근 방식을 제공합니다:
|
||||
|
||||
| 접근 방식 | 적합한 용도 | 버전 |
|
||||
|----------|----------|---------|
|
||||
| **Flow 기반** (`@human_feedback` 데코레이터) | Enterprise UI를 사용한 프로덕션, 이메일 우선 워크플로우, 전체 플랫폼 기능 | **1.8.0+** |
|
||||
| **Webhook 기반** | 커스텀 통합, 외부 시스템 (Slack, Teams 등), 레거시 설정 | 모든 버전 |
|
||||
|
||||
## Enterprise 플랫폼과 Flow 기반 HITL
|
||||
|
||||
<Note>
|
||||
`@human_feedback` 데코레이터는 **CrewAI 버전 1.8.0 이상**이 필요합니다.
|
||||
</Note>
|
||||
|
||||
Flow에서 `@human_feedback` 데코레이터를 사용하면, CrewAI Enterprise는 이메일 주소가 있는 누구나 검토 요청에 응답할 수 있는 **이메일 우선 HITL 시스템**을 제공합니다:
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="이메일 우선 설계" icon="envelope">
|
||||
응답자가 이메일 알림을 받고 직접 회신할 수 있습니다—로그인이 필요 없습니다.
|
||||
</Card>
|
||||
<Card title="대시보드 검토" icon="desktop">
|
||||
원할 때 Enterprise 대시보드에서 HITL 요청을 검토하고 응답하세요.
|
||||
</Card>
|
||||
<Card title="유연한 라우팅" icon="route">
|
||||
메서드 패턴에 따라 특정 이메일로 요청을 라우팅하거나 Flow 상태에서 가져오세요.
|
||||
</Card>
|
||||
<Card title="자동 응답" icon="clock">
|
||||
타임아웃 내에 인간이 응답하지 않을 경우 자동 대체 응답을 구성하세요.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### 주요 이점
|
||||
|
||||
- **외부 응답자**: 플랫폼 사용자가 아니어도 이메일이 있는 누구나 응답 가능
|
||||
- **동적 할당**: Flow 상태에서 담당자 이메일 가져오기 (예: `account_owner_email`)
|
||||
- **간단한 구성**: 이메일 기반 라우팅은 사용자/역할 관리보다 설정이 쉬움
|
||||
- **배포 생성자 대체**: 라우팅 규칙이 일치하지 않으면 배포 생성자에게 알림
|
||||
|
||||
<Tip>
|
||||
`@human_feedback` 데코레이터의 구현 세부 사항은 [Flow에서 인간 피드백](/ko/learn/human-feedback-in-flows) 가이드를 참조하세요.
|
||||
</Tip>
|
||||
|
||||
## Webhook 기반 HITL 워크플로 설정
|
||||
|
||||
Slack, Microsoft Teams 또는 자체 애플리케이션과 같은 외부 시스템과의 커스텀 통합을 위해 webhook 기반 접근 방식을 사용할 수 있습니다:
|
||||
## HITL 워크플로 설정
|
||||
|
||||
<Steps>
|
||||
<Step title="작업 구성">
|
||||
@@ -144,14 +99,3 @@ HITL 워크플로우는 특히 다음과 같은 경우에 유용합니다:
|
||||
- 민감하거나 위험도가 높은 작업
|
||||
- 인간의 판단이 필요한 창의적 작업
|
||||
- 준수 및 규제 검토
|
||||
|
||||
## 자세히 알아보기
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Flow HITL 관리" icon="users-gear" href="/ko/enterprise/features/flow-hitl-management">
|
||||
이메일 알림, 라우팅 규칙, 자동 응답 및 분석을 포함한 전체 Enterprise Flow HITL 플랫폼 기능을 살펴보세요.
|
||||
</Card>
|
||||
<Card title="Flow에서 인간 피드백" icon="code" href="/ko/learn/human-feedback-in-flows">
|
||||
Flow에서 `@human_feedback` 데코레이터 구현 가이드.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
@@ -112,9 +112,3 @@ HITL 워크플로우는 다음과 같은 경우에 특히 유용합니다:
|
||||
- 민감하거나 고위험 작업
|
||||
- 인간의 판단이 필요한 창의적 과제
|
||||
- 컴플라이언스 및 규제 검토
|
||||
|
||||
## Enterprise 기능
|
||||
|
||||
<Card title="Flow HITL 관리 플랫폼" icon="users-gear" href="/ko/enterprise/features/flow-hitl-management">
|
||||
CrewAI Enterprise는 플랫폼 내 검토, 응답자 할당, 권한, 에스컬레이션 정책, SLA 관리, 동적 라우팅 및 전체 분석을 갖춘 Flow용 포괄적인 HITL 관리 시스템을 제공합니다. [자세히 알아보기 →](/ko/enterprise/features/flow-hitl-management)
|
||||
</Card>
|
||||
|
||||
@@ -4,74 +4,6 @@ description: "Atualizações de produto, melhorias e correções do CrewAI"
|
||||
icon: "clock"
|
||||
mode: "wide"
|
||||
---
|
||||
<Update label="26 jan 2026">
|
||||
## v1.9.0
|
||||
|
||||
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.9.0)
|
||||
|
||||
## O que Mudou
|
||||
|
||||
### Funcionalidades
|
||||
- Adicionar suporte a saídas estruturadas e response_format em vários provedores
|
||||
- Adicionar ID de resposta às respostas de streaming
|
||||
- Adicionar ordenação de eventos com hierarquias pai-filho
|
||||
- Adicionar suporte à autenticação SSO Keycloak
|
||||
- Adicionar capacidades de manipulação de arquivos multimodais
|
||||
- Adicionar suporte nativo à API de respostas OpenAI
|
||||
- Adicionar utilitários de execução de tarefas A2A
|
||||
- Adicionar configuração de servidor A2A e geração de cartão de agente
|
||||
- Aprimorar sistema de eventos e expandir opções de transporte
|
||||
- Melhorar mecanismos de chamada de ferramentas
|
||||
|
||||
### Correções de Bugs
|
||||
- Aprimorar armazenamento de arquivos com cache de memória de fallback quando aiocache não está disponível
|
||||
- Garantir que lista de documentos não esteja vazia
|
||||
- Tratar sequências de parada do Bedrock adequadamente
|
||||
- Adicionar suporte à chave de API do Google Vertex
|
||||
- Aprimorar detecção de palavras de parada do modelo Azure
|
||||
- Melhorar tratamento de erros para HumanFeedbackPending na execução de fluxo
|
||||
- Corrigir desvinculação de tarefa do span de execução
|
||||
|
||||
### Documentação
|
||||
- Adicionar documentação de manipulação nativa de arquivos
|
||||
- Adicionar documentação da API de respostas OpenAI
|
||||
- Adicionar orientação de implementação de cartão de agente
|
||||
- Refinar documentação A2A
|
||||
- Atualizar changelog para v1.8.0
|
||||
|
||||
### Contribuidores
|
||||
@Anaisdg, @GininDenis, @Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @koushiv777, @lorenzejay, @nicoferdi96, @vinibrsl
|
||||
|
||||
</Update>
|
||||
|
||||
<Update label="15 jan 2026">
|
||||
## v1.8.1
|
||||
|
||||
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.8.1)
|
||||
|
||||
## O que Mudou
|
||||
|
||||
### Funcionalidades
|
||||
- Adicionar utilitários de execução de tarefas A2A
|
||||
- Adicionar configuração de servidor A2A e geração de cartão de agente
|
||||
- Adicionar mecanismos de transporte adicionais
|
||||
- Adicionar suporte à integração Galileo
|
||||
|
||||
### Correções de Bugs
|
||||
- Melhorar compatibilidade do modelo Azure
|
||||
- Expandir profundidade de inspeção de frame para detectar parent_flow
|
||||
- Resolver problemas de gerenciamento de span de execução de tarefas
|
||||
- Aprimorar tratamento de erros para cenários de feedback humano durante execução de fluxo
|
||||
|
||||
### Documentação
|
||||
- Adicionar documentação de cartão de agente A2A
|
||||
- Adicionar documentação de recurso de redação de PII
|
||||
|
||||
### Contribuidores
|
||||
@Anaisdg, @GininDenis, @greysonlalonde, @joaomdmoura, @koushiv777, @lorenzejay, @vinibrsl
|
||||
|
||||
</Update>
|
||||
|
||||
<Update label="08 jan 2026">
|
||||
## v1.8.0
|
||||
|
||||
|
||||
@@ -1,563 +0,0 @@
|
||||
---
|
||||
title: "Gerenciamento HITL para Flows"
|
||||
description: "Revisão humana de nível empresarial para Flows com notificações por email, regras de roteamento e capacidades de resposta automática"
|
||||
icon: "users-gear"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
<Note>
|
||||
Os recursos de gerenciamento HITL para Flows requerem o decorador `@human_feedback`, disponível no **CrewAI versão 1.8.0 ou superior**. Estes recursos aplicam-se especificamente a **Flows**, não a Crews.
|
||||
</Note>
|
||||
|
||||
O CrewAI Enterprise oferece um sistema abrangente de gerenciamento Human-in-the-Loop (HITL) para Flows que transforma fluxos de trabalho de IA em processos colaborativos humano-IA. A plataforma usa uma **arquitetura email-first** que permite que qualquer pessoa com um endereço de email responda a solicitações de revisão—sem necessidade de conta na plataforma.
|
||||
|
||||
## Visão Geral
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Design Email-First" icon="envelope">
|
||||
Respondentes podem responder diretamente aos emails de notificação para fornecer feedback
|
||||
</Card>
|
||||
<Card title="Roteamento Flexível" icon="route">
|
||||
Direcione solicitações para emails específicos com base em padrões de método ou estado do flow
|
||||
</Card>
|
||||
<Card title="Resposta Automática" icon="clock">
|
||||
Configure respostas automáticas de fallback quando nenhum humano responder a tempo
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Principais Benefícios
|
||||
|
||||
- **Modelo mental simples**: Endereços de email são universais; não é necessário gerenciar usuários ou funções da plataforma
|
||||
- **Respondentes externos**: Qualquer pessoa com email pode responder, mesmo não sendo usuário da plataforma
|
||||
- **Atribuição dinâmica**: Obtenha o email do responsável diretamente do estado do flow (ex: `sales_rep_email`)
|
||||
- **Configuração reduzida**: Menos configurações para definir, tempo mais rápido para gerar valor
|
||||
- **Email como canal principal**: A maioria dos usuários prefere responder via email do que fazer login em um dashboard
|
||||
|
||||
## Configurando Pontos de Revisão Humana em Flows
|
||||
|
||||
Configure checkpoints de revisão humana em seus Flows usando o decorador `@human_feedback`. Quando a execução atinge um ponto de revisão, o sistema pausa, notifica o responsável via email e aguarda uma resposta.
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.flow.human_feedback import human_feedback, HumanFeedbackResult
|
||||
|
||||
class ContentApprovalFlow(Flow):
|
||||
@start()
|
||||
def generate_content(self):
|
||||
# IA gera conteúdo
|
||||
return "Texto de marketing gerado para campanha Q1..."
|
||||
|
||||
@listen(generate_content)
|
||||
@human_feedback(
|
||||
message="Por favor, revise este conteúdo para conformidade com a marca:",
|
||||
emit=["approved", "rejected", "needs_revision"],
|
||||
)
|
||||
def review_content(self, content):
|
||||
return content
|
||||
|
||||
@listen("approved")
|
||||
def publish_content(self, result: HumanFeedbackResult):
|
||||
print(f"Publicando conteúdo aprovado. Notas do revisor: {result.feedback}")
|
||||
|
||||
@listen("rejected")
|
||||
def archive_content(self, result: HumanFeedbackResult):
|
||||
print(f"Conteúdo rejeitado. Motivo: {result.feedback}")
|
||||
|
||||
@listen("needs_revision")
|
||||
def revise_content(self, result: HumanFeedbackResult):
|
||||
print(f"Revisão solicitada: {result.feedback}")
|
||||
```
|
||||
|
||||
Para detalhes completos de implementação, consulte o guia [Feedback Humano em Flows](/pt-BR/learn/human-feedback-in-flows).
|
||||
|
||||
### Parâmetros do Decorador
|
||||
|
||||
| Parâmetro | Tipo | Descrição |
|
||||
|-----------|------|-----------|
|
||||
| `message` | `str` | A mensagem exibida para o revisor humano |
|
||||
| `emit` | `list[str]` | Opções de resposta válidas (exibidas como botões na UI) |
|
||||
|
||||
## Configuração da Plataforma
|
||||
|
||||
Acesse a configuração HITL em: **Deployment** → **Settings** → **Human in the Loop Configuration**
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-overview.png" alt="Configurações HITL" />
|
||||
</Frame>
|
||||
|
||||
### Notificações por Email
|
||||
|
||||
Toggle para ativar ou desativar notificações por email para solicitações HITL.
|
||||
|
||||
| Configuração | Padrão | Descrição |
|
||||
|--------------|--------|-----------|
|
||||
| Notificações por Email | Ativado | Enviar emails quando feedback for solicitado |
|
||||
|
||||
<Note>
|
||||
Quando desativado, os respondentes devem usar a UI do dashboard ou você deve configurar webhooks para sistemas de notificação personalizados.
|
||||
</Note>
|
||||
|
||||
### Meta de SLA
|
||||
|
||||
Defina um tempo de resposta alvo para fins de rastreamento e métricas.
|
||||
|
||||
| Configuração | Descrição |
|
||||
|--------------|-----------|
|
||||
| Meta de SLA (minutos) | Tempo de resposta alvo. Usado para métricas do dashboard e rastreamento de SLA |
|
||||
|
||||
Deixe vazio para desativar o rastreamento de SLA.
|
||||
|
||||
## Notificações e Respostas por Email
|
||||
|
||||
O sistema HITL usa uma arquitetura email-first onde os respondentes podem responder diretamente aos emails de notificação.
|
||||
|
||||
### Como Funcionam as Respostas por Email
|
||||
|
||||
<Steps>
|
||||
<Step title="Notificação Enviada">
|
||||
Quando uma solicitação HITL é criada, um email é enviado ao respondente atribuído com o conteúdo e contexto da revisão.
|
||||
</Step>
|
||||
<Step title="Endereço Reply-To">
|
||||
O email inclui um endereço reply-to especial com um token assinado para autenticação.
|
||||
</Step>
|
||||
<Step title="Usuário Responde">
|
||||
O respondente simplesmente responde ao email com seu feedback—nenhum login necessário.
|
||||
</Step>
|
||||
<Step title="Validação do Token">
|
||||
A plataforma recebe a resposta, verifica o token assinado e corresponde o email do remetente.
|
||||
</Step>
|
||||
<Step title="Flow Continua">
|
||||
O feedback é registrado e o flow continua com a entrada humana.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Formato de Resposta
|
||||
|
||||
Respondentes podem responder com:
|
||||
|
||||
- **Opção emit**: Se a resposta corresponder a uma opção `emit` (ex: "approved"), ela é usada diretamente
|
||||
- **Texto livre**: Qualquer resposta de texto é passada para o flow como feedback
|
||||
- **Texto simples**: A primeira linha do corpo da resposta é usada como feedback
|
||||
|
||||
### Emails de Confirmação
|
||||
|
||||
Após processar uma resposta, o respondente recebe um email de confirmação indicando se o feedback foi enviado com sucesso ou se ocorreu um erro.
|
||||
|
||||
### Segurança do Token de Email
|
||||
|
||||
- Tokens são assinados criptograficamente para segurança
|
||||
- Tokens expiram após 7 dias
|
||||
- Email do remetente deve corresponder ao email autorizado do token
|
||||
- Emails de confirmação/erro são enviados após o processamento
|
||||
|
||||
## Regras de Roteamento
|
||||
|
||||
Direcione solicitações HITL para endereços de email específicos com base em padrões de método.
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-routing-rules.png" alt="Configuração de Regras de Roteamento HITL" />
|
||||
</Frame>
|
||||
|
||||
### Estrutura da Regra
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "Aprovações para Financeiro",
|
||||
"match": {
|
||||
"method_name": "approve_*"
|
||||
},
|
||||
"assign_to_email": "financeiro@empresa.com",
|
||||
"assign_from_input": "manager_email"
|
||||
}
|
||||
```
|
||||
|
||||
### Padrões de Correspondência
|
||||
|
||||
| Padrão | Descrição | Exemplo de Correspondência |
|
||||
|--------|-----------|---------------------------|
|
||||
| `approve_*` | Wildcard (qualquer caractere) | `approve_payment`, `approve_vendor` |
|
||||
| `review_?` | Caractere único | `review_a`, `review_1` |
|
||||
| `validate_payment` | Correspondência exata | apenas `validate_payment` |
|
||||
|
||||
### Prioridade de Atribuição
|
||||
|
||||
1. **Atribuição dinâmica** (`assign_from_input`): Se configurado, obtém email do estado do flow
|
||||
2. **Email estático** (`assign_to_email`): Fallback para email configurado
|
||||
3. **Criador do deployment**: Se nenhuma regra corresponder, o email do criador do deployment é usado
|
||||
|
||||
### Exemplo de Atribuição Dinâmica
|
||||
|
||||
Se seu estado do flow contém `{"sales_rep_email": "alice@empresa.com"}`, configure:
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "Direcionar para Representante de Vendas",
|
||||
"match": {
|
||||
"method_name": "review_*"
|
||||
},
|
||||
"assign_from_input": "sales_rep_email"
|
||||
}
|
||||
```
|
||||
|
||||
A solicitação será atribuída automaticamente para `alice@empresa.com`.
|
||||
|
||||
<Tip>
|
||||
**Caso de Uso**: Obtenha o responsável do seu CRM, banco de dados ou etapa anterior do flow para direcionar revisões dinamicamente para a pessoa certa.
|
||||
</Tip>
|
||||
|
||||
## Resposta Automática
|
||||
|
||||
Responda automaticamente a solicitações HITL se nenhum humano responder dentro do timeout. Isso garante que os flows não fiquem travados indefinidamente.
|
||||
|
||||
### Configuração
|
||||
|
||||
| Configuração | Descrição |
|
||||
|--------------|-----------|
|
||||
| Ativado | Toggle para ativar resposta automática |
|
||||
| Timeout (minutos) | Tempo de espera antes de responder automaticamente |
|
||||
| Resultado Padrão | O valor da resposta (deve corresponder a uma opção `emit`) |
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-auto-respond.png" alt="Configuração de Resposta Automática HITL" />
|
||||
</Frame>
|
||||
|
||||
### Casos de Uso
|
||||
|
||||
- **Conformidade com SLA**: Garante que flows não fiquem travados indefinidamente
|
||||
- **Aprovação padrão**: Aprove automaticamente solicitações de baixo risco após timeout
|
||||
- **Degradação graciosa**: Continue com um padrão seguro quando revisores não estiverem disponíveis
|
||||
|
||||
<Warning>
|
||||
Use resposta automática com cuidado. Ative apenas para revisões não críticas onde uma resposta padrão é aceitável.
|
||||
</Warning>
|
||||
|
||||
## Processo de Revisão
|
||||
|
||||
### Interface do Dashboard
|
||||
|
||||
A interface de revisão HITL oferece uma experiência limpa e focada para revisores:
|
||||
|
||||
- **Renderização Markdown**: Formatação rica para conteúdo de revisão com destaque de sintaxe
|
||||
- **Painel de Contexto**: Visualize estado do flow, histórico de execução e informações relacionadas
|
||||
- **Entrada de Feedback**: Forneça feedback detalhado e comentários com sua decisão
|
||||
- **Ações Rápidas**: Botões de opção emit com um clique com comentários opcionais
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-list-pending-feedbacks.png" alt="Lista de Solicitações HITL Pendentes" />
|
||||
</Frame>
|
||||
|
||||
### Métodos de Resposta
|
||||
|
||||
Revisores podem responder por três canais:
|
||||
|
||||
| Método | Descrição |
|
||||
|--------|-----------|
|
||||
| **Resposta por Email** | Responda diretamente ao email de notificação |
|
||||
| **Dashboard** | Use a UI do dashboard Enterprise |
|
||||
| **API/Webhook** | Resposta programática via API |
|
||||
|
||||
### Histórico e Trilha de Auditoria
|
||||
|
||||
Toda interação HITL é rastreada com uma linha do tempo completa:
|
||||
|
||||
- Histórico de decisões (aprovar/rejeitar/revisar)
|
||||
- Identidade do revisor e timestamp
|
||||
- Feedback e comentários fornecidos
|
||||
- Método de resposta (email/dashboard/API)
|
||||
- Métricas de tempo de resposta
|
||||
|
||||
## Análise e Monitoramento
|
||||
|
||||
Acompanhe o desempenho HITL com análises abrangentes.
|
||||
|
||||
### Dashboard de Desempenho
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-metrics.png" alt="Dashboard de Métricas HITL" />
|
||||
</Frame>
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Tempos de Resposta" icon="stopwatch">
|
||||
Monitore tempos de resposta médios e medianos por revisor ou flow.
|
||||
</Card>
|
||||
<Card title="Tendências de Volume" icon="chart-bar">
|
||||
Analise padrões de volume de revisão para otimizar capacidade da equipe.
|
||||
</Card>
|
||||
<Card title="Distribuição de Decisões" icon="chart-pie">
|
||||
Visualize taxas de aprovação/rejeição em diferentes tipos de revisão.
|
||||
</Card>
|
||||
<Card title="Rastreamento de SLA" icon="chart-line">
|
||||
Acompanhe a porcentagem de revisões concluídas dentro das metas de SLA.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Auditoria e Conformidade
|
||||
|
||||
Capacidades de auditoria prontas para empresas para requisitos regulatórios:
|
||||
|
||||
- Histórico completo de decisões com timestamps
|
||||
- Verificação de identidade do revisor
|
||||
- Logs de auditoria imutáveis
|
||||
- Capacidades de exportação para relatórios de conformidade
|
||||
|
||||
## Casos de Uso Comuns
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="Revisões de Segurança" icon="shield-halved">
|
||||
**Caso de Uso**: Automação de questionários de segurança internos com validação humana
|
||||
|
||||
- IA gera respostas para questionários de segurança
|
||||
- Equipe de segurança revisa e valida precisão via email
|
||||
- Respostas aprovadas são compiladas na submissão final
|
||||
- Trilha de auditoria completa para conformidade
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Aprovação de Conteúdo" icon="file-lines">
|
||||
**Caso de Uso**: Conteúdo de marketing que requer revisão legal/marca
|
||||
|
||||
- IA gera texto de marketing ou conteúdo de mídia social
|
||||
- Roteie para email da equipe de marca para revisão de voz/tom
|
||||
- Publicação automática após aprovação
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Aprovações Financeiras" icon="money-bill">
|
||||
**Caso de Uso**: Relatórios de despesas, termos de contrato, alocações de orçamento
|
||||
|
||||
- IA pré-processa e categoriza solicitações financeiras
|
||||
- Roteie com base em limites de valor usando atribuição dinâmica
|
||||
- Mantenha trilha de auditoria completa para conformidade financeira
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Atribuição Dinâmica do CRM" icon="database">
|
||||
**Caso de Uso**: Direcione revisões para proprietários de conta do seu CRM
|
||||
|
||||
- Flow obtém email do proprietário da conta do CRM
|
||||
- Armazene email no estado do flow (ex: `account_owner_email`)
|
||||
- Use `assign_from_input` para direcionar automaticamente para a pessoa certa
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Garantia de Qualidade" icon="magnifying-glass">
|
||||
**Caso de Uso**: Validação de saída de IA antes da entrega ao cliente
|
||||
|
||||
- IA gera conteúdo ou respostas voltadas ao cliente
|
||||
- Equipe de QA revisa via notificação por email
|
||||
- Loops de feedback melhoram desempenho da IA ao longo do tempo
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## API de Webhooks
|
||||
|
||||
Quando seus Flows pausam para feedback humano, você pode configurar webhooks para enviar dados da solicitação para sua própria aplicação. Isso permite:
|
||||
|
||||
- Construir UIs de aprovação personalizadas
|
||||
- Integrar com ferramentas internas (Jira, ServiceNow, dashboards personalizados)
|
||||
- Rotear aprovações para sistemas de terceiros
|
||||
- Notificações em apps mobile
|
||||
- Sistemas de decisão automatizados
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/hitl-settings-webhook.png" alt="Configuração de Webhook HITL" />
|
||||
</Frame>
|
||||
|
||||
### Configurando Webhooks
|
||||
|
||||
<Steps>
|
||||
<Step title="Navegue até Configurações">
|
||||
Vá para **Deployment** → **Settings** → **Human in the Loop**
|
||||
</Step>
|
||||
<Step title="Expanda a Seção Webhooks">
|
||||
Clique para expandir a configuração de **Webhooks**
|
||||
</Step>
|
||||
<Step title="Adicione sua URL de Webhook">
|
||||
Digite sua URL de webhook (deve ser HTTPS em produção)
|
||||
</Step>
|
||||
<Step title="Salve a Configuração">
|
||||
Clique em **Salvar Configuração** para ativar
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
Você pode configurar múltiplos webhooks. Cada webhook ativo recebe todos os eventos HITL.
|
||||
|
||||
### Eventos de Webhook
|
||||
|
||||
Seu endpoint receberá requisições HTTP POST para estes eventos:
|
||||
|
||||
| Tipo de Evento | Quando é Disparado |
|
||||
|----------------|-------------------|
|
||||
| `new_request` | Um flow pausa e solicita feedback humano |
|
||||
|
||||
### Payload do Webhook
|
||||
|
||||
Todos os webhooks recebem um payload JSON com esta estrutura:
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "new_request",
|
||||
"request": {
|
||||
"id": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"flow_id": "flow_abc123",
|
||||
"method_name": "review_article",
|
||||
"message": "Por favor, revise este artigo para publicação.",
|
||||
"emit_options": ["approved", "rejected", "request_changes"],
|
||||
"state": {
|
||||
"article_id": 12345,
|
||||
"author": "john@example.com",
|
||||
"category": "technology"
|
||||
},
|
||||
"metadata": {},
|
||||
"created_at": "2026-01-14T12:00:00Z"
|
||||
},
|
||||
"deployment": {
|
||||
"id": 456,
|
||||
"name": "Content Review Flow",
|
||||
"organization_id": 789
|
||||
},
|
||||
"callback_url": "https://api.crewai.com/...",
|
||||
"assigned_to_email": "reviewer@company.com"
|
||||
}
|
||||
```
|
||||
|
||||
### Respondendo a Solicitações
|
||||
|
||||
Para enviar feedback, **faça POST para a `callback_url`** incluída no payload do webhook.
|
||||
|
||||
```http
|
||||
POST {callback_url}
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"feedback": "Aprovado. Ótimo artigo!",
|
||||
"source": "my_custom_app"
|
||||
}
|
||||
```
|
||||
|
||||
### Segurança
|
||||
|
||||
<Info>
|
||||
Todas as requisições de webhook são assinadas criptograficamente usando HMAC-SHA256 para garantir autenticidade e prevenir adulteração.
|
||||
</Info>
|
||||
|
||||
#### Segurança do Webhook
|
||||
|
||||
- **Assinaturas HMAC-SHA256**: Todo webhook inclui uma assinatura criptográfica
|
||||
- **Secrets por webhook**: Cada webhook tem seu próprio secret de assinatura único
|
||||
- **Criptografado em repouso**: Os secrets de assinatura são criptografados no nosso banco de dados
|
||||
- **Verificação de timestamp**: Previne ataques de replay
|
||||
|
||||
#### Headers de Assinatura
|
||||
|
||||
Cada requisição de webhook inclui estes headers:
|
||||
|
||||
| Header | Descrição |
|
||||
|--------|-----------|
|
||||
| `X-Signature` | Assinatura HMAC-SHA256: `sha256=<hex_digest>` |
|
||||
| `X-Timestamp` | Timestamp Unix de quando a requisição foi assinada |
|
||||
|
||||
#### Verificação
|
||||
|
||||
Verifique computando:
|
||||
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
expected = hmac.new(
|
||||
signing_secret.encode(),
|
||||
f"{timestamp}.{payload}".encode(),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
if hmac.compare_digest(expected, signature):
|
||||
# Assinatura válida
|
||||
```
|
||||
|
||||
### Tratamento de Erros
|
||||
|
||||
Seu endpoint de webhook deve retornar um código de status 2xx para confirmar o recebimento:
|
||||
|
||||
| Sua Resposta | Nosso Comportamento |
|
||||
|--------------|---------------------|
|
||||
| 2xx | Webhook entregue com sucesso |
|
||||
| 4xx/5xx | Registrado como falha, sem retry |
|
||||
| Timeout (30s) | Registrado como falha, sem retry |
|
||||
|
||||
## Segurança e RBAC
|
||||
|
||||
### Acesso ao Dashboard
|
||||
|
||||
O acesso HITL é controlado no nível do deployment:
|
||||
|
||||
| Permissão | Capacidade |
|
||||
|-----------|------------|
|
||||
| `manage_human_feedback` | Configurar settings HITL, ver todas as solicitações |
|
||||
| `respond_to_human_feedback` | Responder a solicitações, ver solicitações atribuídas |
|
||||
|
||||
### Autorização de Resposta por Email
|
||||
|
||||
Para respostas por email:
|
||||
1. O token reply-to codifica o email autorizado
|
||||
2. Email do remetente deve corresponder ao email do token
|
||||
3. Token não deve estar expirado (padrão 7 dias)
|
||||
4. Solicitação ainda deve estar pendente
|
||||
|
||||
### Trilha de Auditoria
|
||||
|
||||
Todas as ações HITL são registradas:
|
||||
- Criação de solicitação
|
||||
- Mudanças de atribuição
|
||||
- Submissão de resposta (com fonte: dashboard/email/API)
|
||||
- Status de retomada do flow
|
||||
|
||||
## Solução de Problemas
|
||||
|
||||
### Emails Não Enviando
|
||||
|
||||
1. Verifique se "Notificações por Email" está ativado na configuração
|
||||
2. Verifique se as regras de roteamento correspondem ao nome do método
|
||||
3. Verifique se o email do responsável é válido
|
||||
4. Verifique o fallback do criador do deployment se nenhuma regra de roteamento corresponder
|
||||
|
||||
### Respostas de Email Não Processando
|
||||
|
||||
1. Verifique se o token não expirou (padrão 7 dias)
|
||||
2. Verifique se o email do remetente corresponde ao email atribuído
|
||||
3. Garanta que a solicitação ainda está pendente (não respondida ainda)
|
||||
|
||||
### Flow Não Retomando
|
||||
|
||||
1. Verifique o status da solicitação no dashboard
|
||||
2. Verifique se a URL de callback está acessível
|
||||
3. Garanta que o deployment ainda está rodando
|
||||
|
||||
## Melhores Práticas
|
||||
|
||||
<Tip>
|
||||
**Comece Simples**: Comece com notificações por email para o criador do deployment, depois adicione regras de roteamento conforme seus fluxos de trabalho amadurecem.
|
||||
</Tip>
|
||||
|
||||
1. **Use Atribuição Dinâmica**: Obtenha emails de responsáveis do seu estado do flow para roteamento flexível.
|
||||
|
||||
2. **Configure Resposta Automática**: Defina um fallback para revisões não críticas para evitar que flows fiquem travados.
|
||||
|
||||
3. **Monitore Tempos de Resposta**: Use análises para identificar gargalos e otimizar seu processo de revisão.
|
||||
|
||||
4. **Mantenha Mensagens de Revisão Claras**: Escreva mensagens claras e acionáveis no decorador `@human_feedback`.
|
||||
|
||||
5. **Teste o Fluxo de Email**: Envie solicitações de teste para verificar a entrega de email antes de ir para produção.
|
||||
|
||||
## Recursos Relacionados
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Feedback Humano em Flows" icon="code" href="/pt-BR/learn/human-feedback-in-flows">
|
||||
Guia de implementação para o decorador `@human_feedback`
|
||||
</Card>
|
||||
<Card title="Guia de Workflow HITL para Flows" icon="route" href="/pt-BR/enterprise/guides/human-in-the-loop">
|
||||
Guia passo a passo para configurar workflows HITL
|
||||
</Card>
|
||||
<Card title="Configuração RBAC" icon="shield-check" href="/pt-BR/enterprise/features/rbac">
|
||||
Configure controle de acesso baseado em função para sua organização
|
||||
</Card>
|
||||
<Card title="Streaming de Webhook" icon="bolt" href="/pt-BR/enterprise/features/webhook-streaming">
|
||||
Configure notificações de eventos em tempo real
|
||||
</Card>
|
||||
</CardGroup>
|
||||
@@ -5,54 +5,9 @@ icon: "user-check"
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
Human-In-The-Loop (HITL) é uma abordagem poderosa que combina inteligência artificial com expertise humana para aprimorar a tomada de decisão e melhorar os resultados das tarefas. Este guia mostra como implementar HITL dentro do CrewAI Enterprise.
|
||||
Human-In-The-Loop (HITL) é uma abordagem poderosa que combina inteligência artificial com expertise humana para aprimorar a tomada de decisão e melhorar os resultados das tarefas. Este guia mostra como implementar HITL dentro do CrewAI.
|
||||
|
||||
## Abordagens HITL no CrewAI
|
||||
|
||||
CrewAI oferece duas abordagens para implementar workflows human-in-the-loop:
|
||||
|
||||
| Abordagem | Melhor Para | Versão |
|
||||
|----------|----------|---------|
|
||||
| **Baseada em Flow** (decorador `@human_feedback`) | Produção com UI Enterprise, workflows email-first, recursos completos da plataforma | **1.8.0+** |
|
||||
| **Baseada em Webhook** | Integrações customizadas, sistemas externos (Slack, Teams, etc.), configurações legadas | Todas as versões |
|
||||
|
||||
## HITL Baseado em Flow com Plataforma Enterprise
|
||||
|
||||
<Note>
|
||||
O decorador `@human_feedback` requer **CrewAI versão 1.8.0 ou superior**.
|
||||
</Note>
|
||||
|
||||
Ao usar o decorador `@human_feedback` em seus Flows, o CrewAI Enterprise oferece um **sistema HITL email-first** que permite que qualquer pessoa com um endereço de email responda a solicitações de revisão:
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Design Email-First" icon="envelope">
|
||||
Respondentes recebem notificações por email e podem responder diretamente—nenhum login necessário.
|
||||
</Card>
|
||||
<Card title="Revisão no Dashboard" icon="desktop">
|
||||
Revise e responda a solicitações HITL no dashboard Enterprise quando preferir.
|
||||
</Card>
|
||||
<Card title="Roteamento Flexível" icon="route">
|
||||
Direcione solicitações para emails específicos com base em padrões de método ou obtenha do estado do flow.
|
||||
</Card>
|
||||
<Card title="Resposta Automática" icon="clock">
|
||||
Configure respostas automáticas de fallback quando nenhum humano responder dentro do timeout.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Principais Benefícios
|
||||
|
||||
- **Respondentes externos**: Qualquer pessoa com email pode responder, mesmo não sendo usuário da plataforma
|
||||
- **Atribuição dinâmica**: Obtenha o email do responsável do estado do flow (ex: `account_owner_email`)
|
||||
- **Configuração simples**: Roteamento baseado em email é mais fácil de configurar do que gerenciamento de usuários/funções
|
||||
- **Fallback do criador do deployment**: Se nenhuma regra de roteamento corresponder, o criador do deployment é notificado
|
||||
|
||||
<Tip>
|
||||
Para detalhes de implementação do decorador `@human_feedback`, consulte o guia [Feedback Humano em Flows](/pt-BR/learn/human-feedback-in-flows).
|
||||
</Tip>
|
||||
|
||||
## Configurando Workflows HITL Baseados em Webhook
|
||||
|
||||
Para integrações customizadas com sistemas externos como Slack, Microsoft Teams ou suas próprias aplicações, você pode usar a abordagem baseada em webhook:
|
||||
## Configurando Workflows HITL
|
||||
|
||||
<Steps>
|
||||
<Step title="Configure Sua Tarefa">
|
||||
@@ -144,14 +99,3 @@ Workflows HITL são particularmente valiosos para:
|
||||
- Operações sensíveis ou de alto risco
|
||||
- Tarefas criativas que exigem julgamento humano
|
||||
- Revisões de conformidade e regulatórias
|
||||
|
||||
## Saiba Mais
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Gerenciamento HITL para Flows" icon="users-gear" href="/pt-BR/enterprise/features/flow-hitl-management">
|
||||
Explore os recursos completos da plataforma HITL para Flows, incluindo notificações por email, regras de roteamento, resposta automática e análises.
|
||||
</Card>
|
||||
<Card title="Feedback Humano em Flows" icon="code" href="/pt-BR/learn/human-feedback-in-flows">
|
||||
Guia de implementação para o decorador `@human_feedback` em seus Flows.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
@@ -112,9 +112,3 @@ Workflows HITL são particularmente valiosos para:
|
||||
- Operações sensíveis ou de alto risco
|
||||
- Tarefas criativas que requerem julgamento humano
|
||||
- Revisões de conformidade e regulamentação
|
||||
|
||||
## Recursos Enterprise
|
||||
|
||||
<Card title="Plataforma de Gerenciamento HITL para Flows" icon="users-gear" href="/pt-BR/enterprise/features/flow-hitl-management">
|
||||
O CrewAI Enterprise oferece um sistema abrangente de gerenciamento HITL para Flows com revisão na plataforma, atribuição de respondentes, permissões, políticas de escalação, gerenciamento de SLA, roteamento dinâmico e análises completas. [Saiba mais →](/pt-BR/enterprise/features/flow-hitl-management)
|
||||
</Card>
|
||||
|
||||
@@ -152,4 +152,4 @@ __all__ = [
|
||||
"wrap_file_source",
|
||||
]
|
||||
|
||||
__version__ = "1.9.3"
|
||||
__version__ = "1.8.1"
|
||||
|
||||
@@ -12,7 +12,7 @@ dependencies = [
|
||||
"pytube~=15.0.0",
|
||||
"requests~=2.32.5",
|
||||
"docker~=7.1.0",
|
||||
"crewai==1.9.3",
|
||||
"crewai==1.8.1",
|
||||
"lancedb~=0.5.4",
|
||||
"tiktoken~=0.8.0",
|
||||
"beautifulsoup4~=4.13.4",
|
||||
|
||||
@@ -291,4 +291,4 @@ __all__ = [
|
||||
"ZapierActionTools",
|
||||
]
|
||||
|
||||
__version__ = "1.9.3"
|
||||
__version__ = "1.8.1"
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
"""Crewai Enterprise Tools."""
|
||||
|
||||
import json
|
||||
import os
|
||||
from typing import Any
|
||||
import json
|
||||
import re
|
||||
from typing import Any, Optional, Union, cast, get_origin
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.utilities.pydantic_schema_utils import create_model_from_schema
|
||||
from pydantic import Field, create_model
|
||||
import requests
|
||||
|
||||
@@ -15,6 +14,77 @@ from crewai_tools.tools.crewai_platform_tools.misc import (
|
||||
)
|
||||
|
||||
|
||||
class AllOfSchemaAnalyzer:
|
||||
"""Helper class to analyze and merge allOf schemas."""
|
||||
|
||||
def __init__(self, schemas: list[dict[str, Any]]):
|
||||
self.schemas = schemas
|
||||
self._explicit_types: list[str] = []
|
||||
self._merged_properties: dict[str, Any] = {}
|
||||
self._merged_required: list[str] = []
|
||||
self._analyze_schemas()
|
||||
|
||||
def _analyze_schemas(self) -> None:
|
||||
"""Analyze all schemas and extract relevant information."""
|
||||
for schema in self.schemas:
|
||||
if "type" in schema:
|
||||
self._explicit_types.append(schema["type"])
|
||||
|
||||
# Merge object properties
|
||||
if schema.get("type") == "object" and "properties" in schema:
|
||||
self._merged_properties.update(schema["properties"])
|
||||
if "required" in schema:
|
||||
self._merged_required.extend(schema["required"])
|
||||
|
||||
def has_consistent_type(self) -> bool:
|
||||
"""Check if all schemas have the same explicit type."""
|
||||
return len(set(self._explicit_types)) == 1 if self._explicit_types else False
|
||||
|
||||
def get_consistent_type(self) -> type[Any]:
|
||||
"""Get the consistent type if all schemas agree."""
|
||||
if not self.has_consistent_type():
|
||||
raise ValueError("No consistent type found")
|
||||
|
||||
type_mapping = {
|
||||
"string": str,
|
||||
"integer": int,
|
||||
"number": float,
|
||||
"boolean": bool,
|
||||
"array": list,
|
||||
"object": dict,
|
||||
"null": type(None),
|
||||
}
|
||||
return type_mapping.get(self._explicit_types[0], str)
|
||||
|
||||
def has_object_schemas(self) -> bool:
|
||||
"""Check if any schemas are object types with properties."""
|
||||
return bool(self._merged_properties)
|
||||
|
||||
def get_merged_properties(self) -> dict[str, Any]:
|
||||
"""Get merged properties from all object schemas."""
|
||||
return self._merged_properties
|
||||
|
||||
def get_merged_required_fields(self) -> list[str]:
|
||||
"""Get merged required fields from all object schemas."""
|
||||
return list(set(self._merged_required)) # Remove duplicates
|
||||
|
||||
def get_fallback_type(self) -> type[Any]:
|
||||
"""Get a fallback type when merging fails."""
|
||||
if self._explicit_types:
|
||||
# Use the first explicit type
|
||||
type_mapping = {
|
||||
"string": str,
|
||||
"integer": int,
|
||||
"number": float,
|
||||
"boolean": bool,
|
||||
"array": list,
|
||||
"object": dict,
|
||||
"null": type(None),
|
||||
}
|
||||
return type_mapping.get(self._explicit_types[0], str)
|
||||
return str
|
||||
|
||||
|
||||
class CrewAIPlatformActionTool(BaseTool):
|
||||
action_name: str = Field(default="", description="The name of the action")
|
||||
action_schema: dict[str, Any] = Field(
|
||||
@@ -27,19 +97,42 @@ class CrewAIPlatformActionTool(BaseTool):
|
||||
action_name: str,
|
||||
action_schema: dict[str, Any],
|
||||
):
|
||||
parameters = action_schema.get("function", {}).get("parameters", {})
|
||||
self._model_registry: dict[str, type[Any]] = {}
|
||||
self._base_name = self._sanitize_name(action_name)
|
||||
|
||||
schema_props, required = self._extract_schema_info(action_schema)
|
||||
|
||||
field_definitions: dict[str, Any] = {}
|
||||
for param_name, param_details in schema_props.items():
|
||||
param_desc = param_details.get("description", "")
|
||||
is_required = param_name in required
|
||||
|
||||
if parameters and parameters.get("properties"):
|
||||
try:
|
||||
if "title" not in parameters:
|
||||
parameters = {**parameters, "title": f"{action_name}Schema"}
|
||||
if "type" not in parameters:
|
||||
parameters = {**parameters, "type": "object"}
|
||||
args_schema = create_model_from_schema(parameters)
|
||||
field_type = self._process_schema_type(
|
||||
param_details, self._sanitize_name(param_name).title()
|
||||
)
|
||||
except Exception:
|
||||
args_schema = create_model(f"{action_name}Schema")
|
||||
field_type = str
|
||||
|
||||
field_definitions[param_name] = self._create_field_definition(
|
||||
field_type, is_required, param_desc
|
||||
)
|
||||
|
||||
if field_definitions:
|
||||
try:
|
||||
args_schema = create_model(
|
||||
f"{self._base_name}Schema", **field_definitions
|
||||
)
|
||||
except Exception:
|
||||
args_schema = create_model(
|
||||
f"{self._base_name}Schema",
|
||||
input_text=(str, Field(description="Input for the action")),
|
||||
)
|
||||
else:
|
||||
args_schema = create_model(f"{action_name}Schema")
|
||||
args_schema = create_model(
|
||||
f"{self._base_name}Schema",
|
||||
input_text=(str, Field(description="Input for the action")),
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
name=action_name.lower().replace(" ", "_"),
|
||||
@@ -49,12 +142,285 @@ class CrewAIPlatformActionTool(BaseTool):
|
||||
self.action_name = action_name
|
||||
self.action_schema = action_schema
|
||||
|
||||
def _run(self, **kwargs: Any) -> str:
|
||||
@staticmethod
|
||||
def _sanitize_name(name: str) -> str:
|
||||
name = name.lower().replace(" ", "_")
|
||||
sanitized = re.sub(r"[^a-zA-Z0-9_]", "", name)
|
||||
parts = sanitized.split("_")
|
||||
return "".join(word.capitalize() for word in parts if word)
|
||||
|
||||
@staticmethod
|
||||
def _extract_schema_info(
|
||||
action_schema: dict[str, Any],
|
||||
) -> tuple[dict[str, Any], list[str]]:
|
||||
schema_props = (
|
||||
action_schema.get("function", {})
|
||||
.get("parameters", {})
|
||||
.get("properties", {})
|
||||
)
|
||||
required = (
|
||||
action_schema.get("function", {}).get("parameters", {}).get("required", [])
|
||||
)
|
||||
return schema_props, required
|
||||
|
||||
def _process_schema_type(self, schema: dict[str, Any], type_name: str) -> type[Any]:
|
||||
"""
|
||||
Process a JSON Schema type definition into a Python type.
|
||||
|
||||
Handles complex schema constructs like anyOf, oneOf, allOf, enums, arrays, and objects.
|
||||
"""
|
||||
# Handle composite schema types (anyOf, oneOf, allOf)
|
||||
if composite_type := self._process_composite_schema(schema, type_name):
|
||||
return composite_type
|
||||
|
||||
# Handle primitive types and simple constructs
|
||||
return self._process_primitive_schema(schema, type_name)
|
||||
|
||||
def _process_composite_schema(
|
||||
self, schema: dict[str, Any], type_name: str
|
||||
) -> type[Any] | None:
|
||||
"""Process composite schema types: anyOf, oneOf, allOf."""
|
||||
if "anyOf" in schema:
|
||||
return self._process_any_of_schema(schema["anyOf"], type_name)
|
||||
if "oneOf" in schema:
|
||||
return self._process_one_of_schema(schema["oneOf"], type_name)
|
||||
if "allOf" in schema:
|
||||
return self._process_all_of_schema(schema["allOf"], type_name)
|
||||
return None
|
||||
|
||||
def _process_any_of_schema(
|
||||
self, any_of_types: list[dict[str, Any]], type_name: str
|
||||
) -> type[Any]:
|
||||
"""Process anyOf schema - creates Union of possible types."""
|
||||
is_nullable = any(t.get("type") == "null" for t in any_of_types)
|
||||
non_null_types = [t for t in any_of_types if t.get("type") != "null"]
|
||||
|
||||
if not non_null_types:
|
||||
return cast(
|
||||
type[Any], cast(object, str | None)
|
||||
) # fallback for only-null case
|
||||
|
||||
base_type = (
|
||||
self._process_schema_type(non_null_types[0], type_name)
|
||||
if len(non_null_types) == 1
|
||||
else self._create_union_type(non_null_types, type_name, "AnyOf")
|
||||
)
|
||||
return base_type | None if is_nullable else base_type # type: ignore[return-value]
|
||||
|
||||
def _process_one_of_schema(
|
||||
self, one_of_types: list[dict[str, Any]], type_name: str
|
||||
) -> type[Any]:
|
||||
"""Process oneOf schema - creates Union of mutually exclusive types."""
|
||||
return (
|
||||
self._process_schema_type(one_of_types[0], type_name)
|
||||
if len(one_of_types) == 1
|
||||
else self._create_union_type(one_of_types, type_name, "OneOf")
|
||||
)
|
||||
|
||||
def _process_all_of_schema(
|
||||
self, all_of_schemas: list[dict[str, Any]], type_name: str
|
||||
) -> type[Any]:
|
||||
"""Process allOf schema - merges schemas that must all be satisfied."""
|
||||
if len(all_of_schemas) == 1:
|
||||
return self._process_schema_type(all_of_schemas[0], type_name)
|
||||
return self._merge_all_of_schemas(all_of_schemas, type_name)
|
||||
|
||||
def _create_union_type(
|
||||
self, schemas: list[dict[str, Any]], type_name: str, prefix: str
|
||||
) -> type[Any]:
|
||||
"""Create a Union type from multiple schemas."""
|
||||
return Union[ # type: ignore # noqa: UP007
|
||||
tuple(
|
||||
self._process_schema_type(schema, f"{type_name}{prefix}{i}")
|
||||
for i, schema in enumerate(schemas)
|
||||
)
|
||||
]
|
||||
|
||||
def _process_primitive_schema(
|
||||
self, schema: dict[str, Any], type_name: str
|
||||
) -> type[Any]:
|
||||
"""Process primitive schema types: string, number, array, object, etc."""
|
||||
json_type = schema.get("type", "string")
|
||||
|
||||
if "enum" in schema:
|
||||
return self._process_enum_schema(schema, json_type)
|
||||
|
||||
if json_type == "array":
|
||||
return self._process_array_schema(schema, type_name)
|
||||
|
||||
if json_type == "object":
|
||||
return self._create_nested_model(schema, type_name)
|
||||
|
||||
return self._map_json_type_to_python(json_type)
|
||||
|
||||
def _process_enum_schema(self, schema: dict[str, Any], json_type: str) -> type[Any]:
|
||||
"""Process enum schema - currently falls back to base type."""
|
||||
enum_values = schema["enum"]
|
||||
if not enum_values:
|
||||
return self._map_json_type_to_python(json_type)
|
||||
|
||||
# For Literal types, we need to pass the values directly, not as a tuple
|
||||
# This is a workaround since we can't dynamically create Literal types easily
|
||||
# Fall back to the base JSON type for now
|
||||
return self._map_json_type_to_python(json_type)
|
||||
|
||||
def _process_array_schema(
|
||||
self, schema: dict[str, Any], type_name: str
|
||||
) -> type[Any]:
|
||||
items_schema = schema.get("items", {"type": "string"})
|
||||
item_type = self._process_schema_type(items_schema, f"{type_name}Item")
|
||||
return list[item_type] # type: ignore
|
||||
|
||||
def _merge_all_of_schemas(
|
||||
self, schemas: list[dict[str, Any]], type_name: str
|
||||
) -> type[Any]:
|
||||
schema_analyzer = AllOfSchemaAnalyzer(schemas)
|
||||
|
||||
if schema_analyzer.has_consistent_type():
|
||||
return schema_analyzer.get_consistent_type()
|
||||
|
||||
if schema_analyzer.has_object_schemas():
|
||||
return self._create_merged_object_model(
|
||||
schema_analyzer.get_merged_properties(),
|
||||
schema_analyzer.get_merged_required_fields(),
|
||||
type_name,
|
||||
)
|
||||
|
||||
return schema_analyzer.get_fallback_type()
|
||||
|
||||
def _create_merged_object_model(
|
||||
self, properties: dict[str, Any], required: list[str], model_name: str
|
||||
) -> type[Any]:
|
||||
full_model_name = f"{self._base_name}{model_name}AllOf"
|
||||
|
||||
if full_model_name in self._model_registry:
|
||||
return self._model_registry[full_model_name]
|
||||
|
||||
if not properties:
|
||||
return dict
|
||||
|
||||
field_definitions = self._build_field_definitions(
|
||||
properties, required, model_name
|
||||
)
|
||||
|
||||
try:
|
||||
merged_model = create_model(full_model_name, **field_definitions)
|
||||
self._model_registry[full_model_name] = merged_model
|
||||
return merged_model
|
||||
except Exception:
|
||||
return dict
|
||||
|
||||
def _build_field_definitions(
|
||||
self, properties: dict[str, Any], required: list[str], model_name: str
|
||||
) -> dict[str, Any]:
|
||||
field_definitions = {}
|
||||
|
||||
for prop_name, prop_schema in properties.items():
|
||||
prop_desc = prop_schema.get("description", "")
|
||||
is_required = prop_name in required
|
||||
|
||||
try:
|
||||
prop_type = self._process_schema_type(
|
||||
prop_schema, f"{model_name}{self._sanitize_name(prop_name).title()}"
|
||||
)
|
||||
except Exception:
|
||||
prop_type = str
|
||||
|
||||
field_definitions[prop_name] = self._create_field_definition(
|
||||
prop_type, is_required, prop_desc
|
||||
)
|
||||
|
||||
return field_definitions
|
||||
|
||||
def _create_nested_model(
|
||||
self, schema: dict[str, Any], model_name: str
|
||||
) -> type[Any]:
|
||||
full_model_name = f"{self._base_name}{model_name}"
|
||||
|
||||
if full_model_name in self._model_registry:
|
||||
return self._model_registry[full_model_name]
|
||||
|
||||
properties = schema.get("properties", {})
|
||||
required_fields = schema.get("required", [])
|
||||
|
||||
if not properties:
|
||||
return dict
|
||||
|
||||
field_definitions = {}
|
||||
for prop_name, prop_schema in properties.items():
|
||||
prop_desc = prop_schema.get("description", "")
|
||||
is_required = prop_name in required_fields
|
||||
|
||||
try:
|
||||
prop_type = self._process_schema_type(
|
||||
prop_schema, f"{model_name}{self._sanitize_name(prop_name).title()}"
|
||||
)
|
||||
except Exception:
|
||||
prop_type = str
|
||||
|
||||
field_definitions[prop_name] = self._create_field_definition(
|
||||
prop_type, is_required, prop_desc
|
||||
)
|
||||
|
||||
try:
|
||||
nested_model = create_model(full_model_name, **field_definitions) # type: ignore
|
||||
self._model_registry[full_model_name] = nested_model
|
||||
return nested_model
|
||||
except Exception:
|
||||
return dict
|
||||
|
||||
def _create_field_definition(
|
||||
self, field_type: type[Any], is_required: bool, description: str
|
||||
) -> tuple:
|
||||
if is_required:
|
||||
return (field_type, Field(description=description))
|
||||
if get_origin(field_type) is Union:
|
||||
return (field_type, Field(default=None, description=description))
|
||||
return (
|
||||
Optional[field_type], # noqa: UP045
|
||||
Field(default=None, description=description),
|
||||
)
|
||||
|
||||
def _map_json_type_to_python(self, json_type: str) -> type[Any]:
|
||||
type_mapping = {
|
||||
"string": str,
|
||||
"integer": int,
|
||||
"number": float,
|
||||
"boolean": bool,
|
||||
"array": list,
|
||||
"object": dict,
|
||||
"null": type(None),
|
||||
}
|
||||
return type_mapping.get(json_type, str)
|
||||
|
||||
def _get_required_nullable_fields(self) -> list[str]:
|
||||
schema_props, required = self._extract_schema_info(self.action_schema)
|
||||
|
||||
required_nullable_fields = []
|
||||
for param_name in required:
|
||||
param_details = schema_props.get(param_name, {})
|
||||
if self._is_nullable_type(param_details):
|
||||
required_nullable_fields.append(param_name)
|
||||
|
||||
return required_nullable_fields
|
||||
|
||||
def _is_nullable_type(self, schema: dict[str, Any]) -> bool:
|
||||
if "anyOf" in schema:
|
||||
return any(t.get("type") == "null" for t in schema["anyOf"])
|
||||
return schema.get("type") == "null"
|
||||
|
||||
def _run(self, **kwargs) -> str:
|
||||
try:
|
||||
cleaned_kwargs = {
|
||||
key: value for key, value in kwargs.items() if value is not None
|
||||
}
|
||||
|
||||
required_nullable_fields = self._get_required_nullable_fields()
|
||||
|
||||
for field_name in required_nullable_fields:
|
||||
if field_name not in cleaned_kwargs:
|
||||
cleaned_kwargs[field_name] = None
|
||||
|
||||
api_url = (
|
||||
f"{get_platform_api_base_url()}/actions/{self.action_name}/execute"
|
||||
)
|
||||
@@ -63,9 +429,7 @@ class CrewAIPlatformActionTool(BaseTool):
|
||||
"Authorization": f"Bearer {token}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
payload = {
|
||||
"integration": cleaned_kwargs if cleaned_kwargs else {"_noop": True}
|
||||
}
|
||||
payload = cleaned_kwargs
|
||||
|
||||
response = requests.post(
|
||||
url=api_url,
|
||||
@@ -77,14 +441,7 @@ class CrewAIPlatformActionTool(BaseTool):
|
||||
|
||||
data = response.json()
|
||||
if not response.ok:
|
||||
if isinstance(data, dict):
|
||||
error_info = data.get("error", {})
|
||||
if isinstance(error_info, dict):
|
||||
error_message = error_info.get("message", json.dumps(data))
|
||||
else:
|
||||
error_message = str(error_info)
|
||||
else:
|
||||
error_message = str(data)
|
||||
error_message = data.get("error", {}).get("message", json.dumps(data))
|
||||
return f"API request failed: {error_message}"
|
||||
|
||||
return json.dumps(data, indent=2)
|
||||
|
||||
@@ -1,10 +1,5 @@
|
||||
"""CrewAI platform tool builder for fetching and creating action tools."""
|
||||
|
||||
import logging
|
||||
import os
|
||||
from types import TracebackType
|
||||
from typing import Any
|
||||
|
||||
import os
|
||||
from crewai.tools import BaseTool
|
||||
import requests
|
||||
|
||||
@@ -17,29 +12,22 @@ from crewai_tools.tools.crewai_platform_tools.misc import (
|
||||
)
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CrewaiPlatformToolBuilder:
|
||||
"""Builds platform tools from remote action schemas."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
apps: list[str],
|
||||
) -> None:
|
||||
):
|
||||
self._apps = apps
|
||||
self._actions_schema: dict[str, dict[str, Any]] = {}
|
||||
self._tools: list[BaseTool] | None = None
|
||||
self._actions_schema = {} # type: ignore[var-annotated]
|
||||
self._tools = None
|
||||
|
||||
def tools(self) -> list[BaseTool]:
|
||||
"""Fetch actions and return built tools."""
|
||||
if self._tools is None:
|
||||
self._fetch_actions()
|
||||
self._create_tools()
|
||||
return self._tools if self._tools is not None else []
|
||||
|
||||
def _fetch_actions(self) -> None:
|
||||
"""Fetch action schemas from the platform API."""
|
||||
def _fetch_actions(self):
|
||||
actions_url = f"{get_platform_api_base_url()}/actions"
|
||||
headers = {"Authorization": f"Bearer {get_platform_integration_token()}"}
|
||||
|
||||
@@ -52,8 +40,7 @@ class CrewaiPlatformToolBuilder:
|
||||
verify=os.environ.get("CREWAI_FACTORY", "false").lower() != "true",
|
||||
)
|
||||
response.raise_for_status()
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to fetch platform tools for apps {self._apps}: {e}")
|
||||
except Exception:
|
||||
return
|
||||
|
||||
raw_data = response.json()
|
||||
@@ -64,8 +51,6 @@ class CrewaiPlatformToolBuilder:
|
||||
for app, action_list in action_categories.items():
|
||||
if isinstance(action_list, list):
|
||||
for action in action_list:
|
||||
if not isinstance(action, dict):
|
||||
continue
|
||||
if action_name := action.get("name"):
|
||||
action_schema = {
|
||||
"function": {
|
||||
@@ -79,16 +64,72 @@ class CrewaiPlatformToolBuilder:
|
||||
}
|
||||
self._actions_schema[action_name] = action_schema
|
||||
|
||||
def _create_tools(self) -> None:
|
||||
"""Create tool instances from fetched action schemas."""
|
||||
tools: list[BaseTool] = []
|
||||
def _generate_detailed_description(
|
||||
self, schema: dict[str, Any], indent: int = 0
|
||||
) -> list[str]:
|
||||
descriptions = []
|
||||
indent_str = " " * indent
|
||||
|
||||
schema_type = schema.get("type", "string")
|
||||
|
||||
if schema_type == "object":
|
||||
properties = schema.get("properties", {})
|
||||
required_fields = schema.get("required", [])
|
||||
|
||||
if properties:
|
||||
descriptions.append(f"{indent_str}Object with properties:")
|
||||
for prop_name, prop_schema in properties.items():
|
||||
prop_desc = prop_schema.get("description", "")
|
||||
is_required = prop_name in required_fields
|
||||
req_str = " (required)" if is_required else " (optional)"
|
||||
descriptions.append(
|
||||
f"{indent_str} - {prop_name}: {prop_desc}{req_str}"
|
||||
)
|
||||
|
||||
if prop_schema.get("type") == "object":
|
||||
descriptions.extend(
|
||||
self._generate_detailed_description(prop_schema, indent + 2)
|
||||
)
|
||||
elif prop_schema.get("type") == "array":
|
||||
items_schema = prop_schema.get("items", {})
|
||||
if items_schema.get("type") == "object":
|
||||
descriptions.append(f"{indent_str} Array of objects:")
|
||||
descriptions.extend(
|
||||
self._generate_detailed_description(
|
||||
items_schema, indent + 3
|
||||
)
|
||||
)
|
||||
elif "enum" in items_schema:
|
||||
descriptions.append(
|
||||
f"{indent_str} Array of enum values: {items_schema['enum']}"
|
||||
)
|
||||
elif "enum" in prop_schema:
|
||||
descriptions.append(
|
||||
f"{indent_str} Enum values: {prop_schema['enum']}"
|
||||
)
|
||||
|
||||
return descriptions
|
||||
|
||||
def _create_tools(self):
|
||||
tools = []
|
||||
|
||||
for action_name, action_schema in self._actions_schema.items():
|
||||
function_details = action_schema.get("function", {})
|
||||
description = function_details.get("description", f"Execute {action_name}")
|
||||
|
||||
parameters = function_details.get("parameters", {})
|
||||
param_descriptions = []
|
||||
|
||||
if parameters.get("properties"):
|
||||
param_descriptions.append("\nDetailed Parameter Structure:")
|
||||
param_descriptions.extend(
|
||||
self._generate_detailed_description(parameters)
|
||||
)
|
||||
|
||||
full_description = description + "\n".join(param_descriptions)
|
||||
|
||||
tool = CrewAIPlatformActionTool(
|
||||
description=description,
|
||||
description=full_description,
|
||||
action_name=action_name,
|
||||
action_schema=action_schema,
|
||||
)
|
||||
@@ -97,14 +138,8 @@ class CrewaiPlatformToolBuilder:
|
||||
|
||||
self._tools = tools
|
||||
|
||||
def __enter__(self) -> list[BaseTool]:
|
||||
"""Enter context manager and return tools."""
|
||||
def __enter__(self):
|
||||
return self.tools()
|
||||
|
||||
def __exit__(
|
||||
self,
|
||||
exc_type: type[BaseException] | None,
|
||||
exc_val: BaseException | None,
|
||||
exc_tb: TracebackType | None,
|
||||
) -> None:
|
||||
"""Exit context manager."""
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
@@ -137,7 +137,6 @@ class StagehandTool(BaseTool):
|
||||
- 'observe': For finding elements in a specific area
|
||||
"""
|
||||
args_schema: type[BaseModel] = StagehandToolSchema
|
||||
package_dependencies: list[str] = Field(default_factory=lambda: ["stagehand"])
|
||||
|
||||
# Stagehand configuration
|
||||
api_key: str | None = None
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from typing import Union, get_args, get_origin
|
||||
from unittest.mock import patch, Mock
|
||||
import os
|
||||
|
||||
@@ -6,6 +7,251 @@ from crewai_tools.tools.crewai_platform_tools.crewai_platform_action_tool import
|
||||
)
|
||||
|
||||
|
||||
class TestSchemaProcessing:
|
||||
|
||||
def setup_method(self):
|
||||
self.base_action_schema = {
|
||||
"function": {
|
||||
"parameters": {
|
||||
"properties": {},
|
||||
"required": []
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
def create_test_tool(self, action_name="test_action"):
|
||||
return CrewAIPlatformActionTool(
|
||||
description="Test tool",
|
||||
action_name=action_name,
|
||||
action_schema=self.base_action_schema
|
||||
)
|
||||
|
||||
def test_anyof_multiple_types(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"anyOf": [
|
||||
{"type": "string"},
|
||||
{"type": "number"},
|
||||
{"type": "integer"}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestField")
|
||||
|
||||
assert get_origin(result_type) is Union
|
||||
|
||||
args = get_args(result_type)
|
||||
expected_types = (str, float, int)
|
||||
|
||||
for expected_type in expected_types:
|
||||
assert expected_type in args
|
||||
|
||||
def test_anyof_with_null(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"anyOf": [
|
||||
{"type": "string"},
|
||||
{"type": "number"},
|
||||
{"type": "null"}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldNullable")
|
||||
|
||||
assert get_origin(result_type) is Union
|
||||
|
||||
args = get_args(result_type)
|
||||
assert type(None) in args
|
||||
assert str in args
|
||||
assert float in args
|
||||
|
||||
def test_anyof_single_type(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"anyOf": [
|
||||
{"type": "string"}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldSingle")
|
||||
|
||||
assert result_type is str
|
||||
|
||||
def test_oneof_multiple_types(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"oneOf": [
|
||||
{"type": "string"},
|
||||
{"type": "boolean"}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldOneOf")
|
||||
|
||||
assert get_origin(result_type) is Union
|
||||
|
||||
args = get_args(result_type)
|
||||
expected_types = (str, bool)
|
||||
|
||||
for expected_type in expected_types:
|
||||
assert expected_type in args
|
||||
|
||||
def test_oneof_single_type(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"oneOf": [
|
||||
{"type": "integer"}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldOneOfSingle")
|
||||
|
||||
assert result_type is int
|
||||
|
||||
def test_basic_types(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_cases = [
|
||||
({"type": "string"}, str),
|
||||
({"type": "integer"}, int),
|
||||
({"type": "number"}, float),
|
||||
({"type": "boolean"}, bool),
|
||||
({"type": "array", "items": {"type": "string"}}, list),
|
||||
]
|
||||
|
||||
for schema, expected_type in test_cases:
|
||||
result_type = tool._process_schema_type(schema, "TestField")
|
||||
if schema["type"] == "array":
|
||||
assert get_origin(result_type) is list
|
||||
else:
|
||||
assert result_type is expected_type
|
||||
|
||||
def test_enum_handling(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"type": "string",
|
||||
"enum": ["option1", "option2", "option3"]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldEnum")
|
||||
|
||||
assert result_type is str
|
||||
|
||||
def test_nested_anyof(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"anyOf": [
|
||||
{"type": "string"},
|
||||
{
|
||||
"anyOf": [
|
||||
{"type": "integer"},
|
||||
{"type": "boolean"}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldNested")
|
||||
|
||||
assert get_origin(result_type) is Union
|
||||
args = get_args(result_type)
|
||||
|
||||
assert str in args
|
||||
|
||||
if len(args) == 3:
|
||||
assert int in args
|
||||
assert bool in args
|
||||
else:
|
||||
nested_union = next(arg for arg in args if get_origin(arg) is Union)
|
||||
nested_args = get_args(nested_union)
|
||||
assert int in nested_args
|
||||
assert bool in nested_args
|
||||
|
||||
def test_allof_same_types(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"allOf": [
|
||||
{"type": "string"},
|
||||
{"type": "string", "maxLength": 100}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldAllOfSame")
|
||||
|
||||
assert result_type is str
|
||||
|
||||
def test_allof_object_merge(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"allOf": [
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"age": {"type": "integer"}
|
||||
},
|
||||
"required": ["name"]
|
||||
},
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"email": {"type": "string"},
|
||||
"age": {"type": "integer"}
|
||||
},
|
||||
"required": ["email"]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldAllOfMerged")
|
||||
|
||||
# Should create a merged model with all properties
|
||||
# The implementation might fall back to dict if model creation fails
|
||||
# Let's just verify it's not a basic scalar type
|
||||
assert result_type is not str
|
||||
assert result_type is not int
|
||||
assert result_type is not bool
|
||||
# It could be dict (fallback) or a proper model class
|
||||
assert result_type in (dict, type) or hasattr(result_type, '__name__')
|
||||
|
||||
def test_allof_single_schema(self):
|
||||
"""Test that allOf with single schema works correctly."""
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"allOf": [
|
||||
{"type": "boolean"}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldAllOfSingle")
|
||||
|
||||
# Should be just bool
|
||||
assert result_type is bool
|
||||
|
||||
def test_allof_mixed_types(self):
|
||||
tool = self.create_test_tool()
|
||||
|
||||
test_schema = {
|
||||
"allOf": [
|
||||
{"type": "string"},
|
||||
{"type": "integer"}
|
||||
]
|
||||
}
|
||||
|
||||
result_type = tool._process_schema_type(test_schema, "TestFieldAllOfMixed")
|
||||
|
||||
assert result_type is str
|
||||
|
||||
class TestCrewAIPlatformActionToolVerify:
|
||||
"""Test suite for SSL verification behavior based on CREWAI_FACTORY environment variable"""
|
||||
|
||||
|
||||
@@ -224,6 +224,43 @@ class TestCrewaiPlatformToolBuilder(unittest.TestCase):
|
||||
_, kwargs = mock_get.call_args
|
||||
assert kwargs["params"]["apps"] == ""
|
||||
|
||||
def test_detailed_description_generation(self):
|
||||
builder = CrewaiPlatformToolBuilder(apps=["test"])
|
||||
|
||||
complex_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"simple_string": {"type": "string", "description": "A simple string"},
|
||||
"nested_object": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"inner_prop": {
|
||||
"type": "integer",
|
||||
"description": "Inner property",
|
||||
}
|
||||
},
|
||||
"description": "Nested object",
|
||||
},
|
||||
"array_prop": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "Array of strings",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
descriptions = builder._generate_detailed_description(complex_schema)
|
||||
|
||||
assert isinstance(descriptions, list)
|
||||
assert len(descriptions) > 0
|
||||
|
||||
description_text = "\n".join(descriptions)
|
||||
assert "simple_string" in description_text
|
||||
assert "nested_object" in description_text
|
||||
assert "array_prop" in description_text
|
||||
|
||||
|
||||
|
||||
class TestCrewaiPlatformToolBuilderVerify(unittest.TestCase):
|
||||
"""Test suite for SSL verification behavior in CrewaiPlatformToolBuilder"""
|
||||
|
||||
|
||||
@@ -49,7 +49,7 @@ Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = [
|
||||
"crewai-tools==1.9.3",
|
||||
"crewai-tools==1.8.1",
|
||||
]
|
||||
embeddings = [
|
||||
"tiktoken~=0.8.0"
|
||||
@@ -90,7 +90,7 @@ azure-ai-inference = [
|
||||
"azure-ai-inference~=1.0.0b9",
|
||||
]
|
||||
anthropic = [
|
||||
"anthropic~=0.73.0",
|
||||
"anthropic~=0.71.0",
|
||||
]
|
||||
a2a = [
|
||||
"a2a-sdk~=0.3.10",
|
||||
|
||||
@@ -40,7 +40,7 @@ def _suppress_pydantic_deprecation_warnings() -> None:
|
||||
|
||||
_suppress_pydantic_deprecation_warnings()
|
||||
|
||||
__version__ = "1.9.3"
|
||||
__version__ = "1.8.1"
|
||||
_telemetry_submitted = False
|
||||
|
||||
|
||||
|
||||
@@ -1,36 +1,20 @@
|
||||
"""A2A authentication schemas."""
|
||||
|
||||
from crewai.a2a.auth.client_schemes import (
|
||||
from crewai.a2a.auth.schemas import (
|
||||
APIKeyAuth,
|
||||
AuthScheme,
|
||||
BearerTokenAuth,
|
||||
ClientAuthScheme,
|
||||
HTTPBasicAuth,
|
||||
HTTPDigestAuth,
|
||||
OAuth2AuthorizationCode,
|
||||
OAuth2ClientCredentials,
|
||||
TLSConfig,
|
||||
)
|
||||
from crewai.a2a.auth.server_schemes import (
|
||||
AuthenticatedUser,
|
||||
OIDCAuth,
|
||||
ServerAuthScheme,
|
||||
SimpleTokenAuth,
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"APIKeyAuth",
|
||||
"AuthScheme",
|
||||
"AuthenticatedUser",
|
||||
"BearerTokenAuth",
|
||||
"ClientAuthScheme",
|
||||
"HTTPBasicAuth",
|
||||
"HTTPDigestAuth",
|
||||
"OAuth2AuthorizationCode",
|
||||
"OAuth2ClientCredentials",
|
||||
"OIDCAuth",
|
||||
"ServerAuthScheme",
|
||||
"SimpleTokenAuth",
|
||||
"TLSConfig",
|
||||
]
|
||||
|
||||
@@ -1,550 +0,0 @@
|
||||
"""Authentication schemes for A2A protocol clients.
|
||||
|
||||
Supported authentication methods:
|
||||
- Bearer tokens
|
||||
- OAuth2 (Client Credentials, Authorization Code)
|
||||
- API Keys (header, query, cookie)
|
||||
- HTTP Basic authentication
|
||||
- HTTP Digest authentication
|
||||
- mTLS (mutual TLS) client certificate authentication
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
import asyncio
|
||||
import base64
|
||||
from collections.abc import Awaitable, Callable, MutableMapping
|
||||
from pathlib import Path
|
||||
import ssl
|
||||
import time
|
||||
from typing import TYPE_CHECKING, ClassVar, Literal
|
||||
import urllib.parse
|
||||
|
||||
import httpx
|
||||
from httpx import DigestAuth
|
||||
from pydantic import BaseModel, ConfigDict, Field, FilePath, PrivateAttr
|
||||
from typing_extensions import deprecated
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import grpc # type: ignore[import-untyped]
|
||||
|
||||
|
||||
class TLSConfig(BaseModel):
|
||||
"""TLS/mTLS configuration for secure client connections.
|
||||
|
||||
Supports mutual TLS (mTLS) where the client presents a certificate to the server,
|
||||
and standard TLS with custom CA verification.
|
||||
|
||||
Attributes:
|
||||
client_cert_path: Path to client certificate file (PEM format) for mTLS.
|
||||
client_key_path: Path to client private key file (PEM format) for mTLS.
|
||||
ca_cert_path: Path to CA certificate bundle for server verification.
|
||||
verify: Whether to verify server certificates. Set False only for development.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
client_cert_path: FilePath | None = Field(
|
||||
default=None,
|
||||
description="Path to client certificate file (PEM format) for mTLS",
|
||||
)
|
||||
client_key_path: FilePath | None = Field(
|
||||
default=None,
|
||||
description="Path to client private key file (PEM format) for mTLS",
|
||||
)
|
||||
ca_cert_path: FilePath | None = Field(
|
||||
default=None,
|
||||
description="Path to CA certificate bundle for server verification",
|
||||
)
|
||||
verify: bool = Field(
|
||||
default=True,
|
||||
description="Whether to verify server certificates. Set False only for development.",
|
||||
)
|
||||
|
||||
def get_httpx_ssl_context(self) -> ssl.SSLContext | bool | str:
|
||||
"""Build SSL context for httpx client.
|
||||
|
||||
Returns:
|
||||
SSL context if certificates configured, True for default verification,
|
||||
False if verification disabled, or path to CA bundle.
|
||||
"""
|
||||
if not self.verify:
|
||||
return False
|
||||
|
||||
if self.client_cert_path and self.client_key_path:
|
||||
context = ssl.create_default_context()
|
||||
|
||||
if self.ca_cert_path:
|
||||
context.load_verify_locations(cafile=str(self.ca_cert_path))
|
||||
|
||||
context.load_cert_chain(
|
||||
certfile=str(self.client_cert_path),
|
||||
keyfile=str(self.client_key_path),
|
||||
)
|
||||
return context
|
||||
|
||||
if self.ca_cert_path:
|
||||
return str(self.ca_cert_path)
|
||||
|
||||
return True
|
||||
|
||||
def get_grpc_credentials(self) -> grpc.ChannelCredentials | None: # type: ignore[no-any-unimported]
|
||||
"""Build gRPC channel credentials for secure connections.
|
||||
|
||||
Returns:
|
||||
gRPC SSL credentials if certificates configured, None otherwise.
|
||||
"""
|
||||
try:
|
||||
import grpc
|
||||
except ImportError:
|
||||
return None
|
||||
|
||||
if not self.verify and not self.client_cert_path:
|
||||
return None
|
||||
|
||||
root_certs: bytes | None = None
|
||||
private_key: bytes | None = None
|
||||
certificate_chain: bytes | None = None
|
||||
|
||||
if self.ca_cert_path:
|
||||
root_certs = Path(self.ca_cert_path).read_bytes()
|
||||
|
||||
if self.client_cert_path and self.client_key_path:
|
||||
private_key = Path(self.client_key_path).read_bytes()
|
||||
certificate_chain = Path(self.client_cert_path).read_bytes()
|
||||
|
||||
return grpc.ssl_channel_credentials(
|
||||
root_certificates=root_certs,
|
||||
private_key=private_key,
|
||||
certificate_chain=certificate_chain,
|
||||
)
|
||||
|
||||
|
||||
class ClientAuthScheme(ABC, BaseModel):
|
||||
"""Base class for client-side authentication schemes.
|
||||
|
||||
Client auth schemes apply credentials to outgoing requests.
|
||||
|
||||
Attributes:
|
||||
tls: Optional TLS/mTLS configuration for secure connections.
|
||||
"""
|
||||
|
||||
tls: TLSConfig | None = Field(
|
||||
default=None,
|
||||
description="TLS/mTLS configuration for secure connections",
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply authentication to request headers.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with authentication applied.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
@deprecated("Use ClientAuthScheme instead", category=FutureWarning)
|
||||
class AuthScheme(ClientAuthScheme):
|
||||
"""Deprecated: Use ClientAuthScheme instead."""
|
||||
|
||||
|
||||
class BearerTokenAuth(ClientAuthScheme):
|
||||
"""Bearer token authentication (Authorization: Bearer <token>).
|
||||
|
||||
Attributes:
|
||||
token: Bearer token for authentication.
|
||||
"""
|
||||
|
||||
token: str = Field(description="Bearer token")
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply Bearer token to Authorization header.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with Bearer token in Authorization header.
|
||||
"""
|
||||
headers["Authorization"] = f"Bearer {self.token}"
|
||||
return headers
|
||||
|
||||
|
||||
class HTTPBasicAuth(ClientAuthScheme):
|
||||
"""HTTP Basic authentication.
|
||||
|
||||
Attributes:
|
||||
username: Username for Basic authentication.
|
||||
password: Password for Basic authentication.
|
||||
"""
|
||||
|
||||
username: str = Field(description="Username")
|
||||
password: str = Field(description="Password")
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply HTTP Basic authentication.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with Basic auth in Authorization header.
|
||||
"""
|
||||
credentials = f"{self.username}:{self.password}"
|
||||
encoded = base64.b64encode(credentials.encode()).decode()
|
||||
headers["Authorization"] = f"Basic {encoded}"
|
||||
return headers
|
||||
|
||||
|
||||
class HTTPDigestAuth(ClientAuthScheme):
|
||||
"""HTTP Digest authentication.
|
||||
|
||||
Note: Uses httpx-auth library for digest implementation.
|
||||
|
||||
Attributes:
|
||||
username: Username for Digest authentication.
|
||||
password: Password for Digest authentication.
|
||||
"""
|
||||
|
||||
username: str = Field(description="Username")
|
||||
password: str = Field(description="Password")
|
||||
|
||||
_configured_client_id: int | None = PrivateAttr(default=None)
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Digest auth is handled by httpx auth flow, not headers.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Unchanged headers (Digest auth handled by httpx auth flow).
|
||||
"""
|
||||
return headers
|
||||
|
||||
def configure_client(self, client: httpx.AsyncClient) -> None:
|
||||
"""Configure client with Digest auth.
|
||||
|
||||
Idempotent: Only configures the client once. Subsequent calls on the same
|
||||
client instance are no-ops to prevent overwriting auth configuration.
|
||||
|
||||
Args:
|
||||
client: HTTP client to configure with Digest authentication.
|
||||
"""
|
||||
client_id = id(client)
|
||||
if self._configured_client_id == client_id:
|
||||
return
|
||||
|
||||
client.auth = DigestAuth(self.username, self.password)
|
||||
self._configured_client_id = client_id
|
||||
|
||||
|
||||
class APIKeyAuth(ClientAuthScheme):
|
||||
"""API Key authentication (header, query, or cookie).
|
||||
|
||||
Attributes:
|
||||
api_key: API key value for authentication.
|
||||
location: Where to send the API key (header, query, or cookie).
|
||||
name: Parameter name for the API key (default: X-API-Key).
|
||||
"""
|
||||
|
||||
api_key: str = Field(description="API key value")
|
||||
location: Literal["header", "query", "cookie"] = Field(
|
||||
default="header", description="Where to send the API key"
|
||||
)
|
||||
name: str = Field(default="X-API-Key", description="Parameter name for the API key")
|
||||
|
||||
_configured_client_ids: set[int] = PrivateAttr(default_factory=set)
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply API key authentication.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with API key (for header/cookie locations).
|
||||
"""
|
||||
if self.location == "header":
|
||||
headers[self.name] = self.api_key
|
||||
elif self.location == "cookie":
|
||||
headers["Cookie"] = f"{self.name}={self.api_key}"
|
||||
return headers
|
||||
|
||||
def configure_client(self, client: httpx.AsyncClient) -> None:
|
||||
"""Configure client for query param API keys.
|
||||
|
||||
Idempotent: Only adds the request hook once per client instance.
|
||||
Subsequent calls on the same client are no-ops to prevent hook accumulation.
|
||||
|
||||
Args:
|
||||
client: HTTP client to configure with query param API key hook.
|
||||
"""
|
||||
if self.location == "query":
|
||||
client_id = id(client)
|
||||
if client_id in self._configured_client_ids:
|
||||
return
|
||||
|
||||
async def _add_api_key_param(request: httpx.Request) -> None:
|
||||
url = httpx.URL(request.url)
|
||||
request.url = url.copy_add_param(self.name, self.api_key)
|
||||
|
||||
client.event_hooks["request"].append(_add_api_key_param)
|
||||
self._configured_client_ids.add(client_id)
|
||||
|
||||
|
||||
class OAuth2ClientCredentials(ClientAuthScheme):
|
||||
"""OAuth2 Client Credentials flow authentication.
|
||||
|
||||
Thread-safe implementation with asyncio.Lock to prevent concurrent token fetches
|
||||
when multiple requests share the same auth instance.
|
||||
|
||||
Attributes:
|
||||
token_url: OAuth2 token endpoint URL.
|
||||
client_id: OAuth2 client identifier.
|
||||
client_secret: OAuth2 client secret.
|
||||
scopes: List of required OAuth2 scopes.
|
||||
"""
|
||||
|
||||
token_url: str = Field(description="OAuth2 token endpoint")
|
||||
client_id: str = Field(description="OAuth2 client ID")
|
||||
client_secret: str = Field(description="OAuth2 client secret")
|
||||
scopes: list[str] = Field(
|
||||
default_factory=list, description="Required OAuth2 scopes"
|
||||
)
|
||||
|
||||
_access_token: str | None = PrivateAttr(default=None)
|
||||
_token_expires_at: float | None = PrivateAttr(default=None)
|
||||
_lock: asyncio.Lock = PrivateAttr(default_factory=asyncio.Lock)
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply OAuth2 access token to Authorization header.
|
||||
|
||||
Uses asyncio.Lock to ensure only one coroutine fetches tokens at a time,
|
||||
preventing race conditions when multiple concurrent requests use the same
|
||||
auth instance.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with OAuth2 access token in Authorization header.
|
||||
"""
|
||||
if (
|
||||
self._access_token is None
|
||||
or self._token_expires_at is None
|
||||
or time.time() >= self._token_expires_at
|
||||
):
|
||||
async with self._lock:
|
||||
if (
|
||||
self._access_token is None
|
||||
or self._token_expires_at is None
|
||||
or time.time() >= self._token_expires_at
|
||||
):
|
||||
await self._fetch_token(client)
|
||||
|
||||
if self._access_token:
|
||||
headers["Authorization"] = f"Bearer {self._access_token}"
|
||||
|
||||
return headers
|
||||
|
||||
async def _fetch_token(self, client: httpx.AsyncClient) -> None:
|
||||
"""Fetch OAuth2 access token using client credentials flow.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token request.
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If token request fails.
|
||||
"""
|
||||
data = {
|
||||
"grant_type": "client_credentials",
|
||||
"client_id": self.client_id,
|
||||
"client_secret": self.client_secret,
|
||||
}
|
||||
|
||||
if self.scopes:
|
||||
data["scope"] = " ".join(self.scopes)
|
||||
|
||||
response = await client.post(self.token_url, data=data)
|
||||
response.raise_for_status()
|
||||
|
||||
token_data = response.json()
|
||||
self._access_token = token_data["access_token"]
|
||||
expires_in = token_data.get("expires_in", 3600)
|
||||
self._token_expires_at = time.time() + expires_in - 60
|
||||
|
||||
|
||||
class OAuth2AuthorizationCode(ClientAuthScheme):
|
||||
"""OAuth2 Authorization Code flow authentication.
|
||||
|
||||
Thread-safe implementation with asyncio.Lock to prevent concurrent token operations.
|
||||
|
||||
Note: Requires interactive authorization.
|
||||
|
||||
Attributes:
|
||||
authorization_url: OAuth2 authorization endpoint URL.
|
||||
token_url: OAuth2 token endpoint URL.
|
||||
client_id: OAuth2 client identifier.
|
||||
client_secret: OAuth2 client secret.
|
||||
redirect_uri: OAuth2 redirect URI for callback.
|
||||
scopes: List of required OAuth2 scopes.
|
||||
"""
|
||||
|
||||
authorization_url: str = Field(description="OAuth2 authorization endpoint")
|
||||
token_url: str = Field(description="OAuth2 token endpoint")
|
||||
client_id: str = Field(description="OAuth2 client ID")
|
||||
client_secret: str = Field(description="OAuth2 client secret")
|
||||
redirect_uri: str = Field(description="OAuth2 redirect URI")
|
||||
scopes: list[str] = Field(
|
||||
default_factory=list, description="Required OAuth2 scopes"
|
||||
)
|
||||
|
||||
_access_token: str | None = PrivateAttr(default=None)
|
||||
_refresh_token: str | None = PrivateAttr(default=None)
|
||||
_token_expires_at: float | None = PrivateAttr(default=None)
|
||||
_authorization_callback: Callable[[str], Awaitable[str]] | None = PrivateAttr(
|
||||
default=None
|
||||
)
|
||||
_lock: asyncio.Lock = PrivateAttr(default_factory=asyncio.Lock)
|
||||
|
||||
def set_authorization_callback(
|
||||
self, callback: Callable[[str], Awaitable[str]] | None
|
||||
) -> None:
|
||||
"""Set callback to handle authorization URL.
|
||||
|
||||
Args:
|
||||
callback: Async function that receives authorization URL and returns auth code.
|
||||
"""
|
||||
self._authorization_callback = callback
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply OAuth2 access token to Authorization header.
|
||||
|
||||
Uses asyncio.Lock to ensure only one coroutine handles token operations
|
||||
(initial fetch or refresh) at a time.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with OAuth2 access token in Authorization header.
|
||||
|
||||
Raises:
|
||||
ValueError: If authorization callback is not set.
|
||||
"""
|
||||
if self._access_token is None:
|
||||
if self._authorization_callback is None:
|
||||
msg = "Authorization callback not set. Use set_authorization_callback()"
|
||||
raise ValueError(msg)
|
||||
async with self._lock:
|
||||
if self._access_token is None:
|
||||
await self._fetch_initial_token(client)
|
||||
elif self._token_expires_at and time.time() >= self._token_expires_at:
|
||||
async with self._lock:
|
||||
if self._token_expires_at and time.time() >= self._token_expires_at:
|
||||
await self._refresh_access_token(client)
|
||||
|
||||
if self._access_token:
|
||||
headers["Authorization"] = f"Bearer {self._access_token}"
|
||||
|
||||
return headers
|
||||
|
||||
async def _fetch_initial_token(self, client: httpx.AsyncClient) -> None:
|
||||
"""Fetch initial access token using authorization code flow.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token request.
|
||||
|
||||
Raises:
|
||||
ValueError: If authorization callback is not set.
|
||||
httpx.HTTPStatusError: If token request fails.
|
||||
"""
|
||||
params = {
|
||||
"response_type": "code",
|
||||
"client_id": self.client_id,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
"scope": " ".join(self.scopes),
|
||||
}
|
||||
auth_url = f"{self.authorization_url}?{urllib.parse.urlencode(params)}"
|
||||
|
||||
if self._authorization_callback is None:
|
||||
msg = "Authorization callback not set"
|
||||
raise ValueError(msg)
|
||||
auth_code = await self._authorization_callback(auth_url)
|
||||
|
||||
data = {
|
||||
"grant_type": "authorization_code",
|
||||
"code": auth_code,
|
||||
"client_id": self.client_id,
|
||||
"client_secret": self.client_secret,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
}
|
||||
|
||||
response = await client.post(self.token_url, data=data)
|
||||
response.raise_for_status()
|
||||
|
||||
token_data = response.json()
|
||||
self._access_token = token_data["access_token"]
|
||||
self._refresh_token = token_data.get("refresh_token")
|
||||
|
||||
expires_in = token_data.get("expires_in", 3600)
|
||||
self._token_expires_at = time.time() + expires_in - 60
|
||||
|
||||
async def _refresh_access_token(self, client: httpx.AsyncClient) -> None:
|
||||
"""Refresh the access token using refresh token.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token request.
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If token refresh request fails.
|
||||
"""
|
||||
if not self._refresh_token:
|
||||
await self._fetch_initial_token(client)
|
||||
return
|
||||
|
||||
data = {
|
||||
"grant_type": "refresh_token",
|
||||
"refresh_token": self._refresh_token,
|
||||
"client_id": self.client_id,
|
||||
"client_secret": self.client_secret,
|
||||
}
|
||||
|
||||
response = await client.post(self.token_url, data=data)
|
||||
response.raise_for_status()
|
||||
|
||||
token_data = response.json()
|
||||
self._access_token = token_data["access_token"]
|
||||
if "refresh_token" in token_data:
|
||||
self._refresh_token = token_data["refresh_token"]
|
||||
|
||||
expires_in = token_data.get("expires_in", 3600)
|
||||
self._token_expires_at = time.time() + expires_in - 60
|
||||
@@ -1,71 +1,392 @@
|
||||
"""Deprecated: Authentication schemes for A2A protocol agents.
|
||||
"""Authentication schemes for A2A protocol agents.
|
||||
|
||||
This module is deprecated. Import from crewai.a2a.auth instead:
|
||||
- crewai.a2a.auth.ClientAuthScheme (replaces AuthScheme)
|
||||
- crewai.a2a.auth.BearerTokenAuth
|
||||
- crewai.a2a.auth.HTTPBasicAuth
|
||||
- crewai.a2a.auth.HTTPDigestAuth
|
||||
- crewai.a2a.auth.APIKeyAuth
|
||||
- crewai.a2a.auth.OAuth2ClientCredentials
|
||||
- crewai.a2a.auth.OAuth2AuthorizationCode
|
||||
Supported authentication methods:
|
||||
- Bearer tokens
|
||||
- OAuth2 (Client Credentials, Authorization Code)
|
||||
- API Keys (header, query, cookie)
|
||||
- HTTP Basic authentication
|
||||
- HTTP Digest authentication
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing_extensions import deprecated
|
||||
from abc import ABC, abstractmethod
|
||||
import base64
|
||||
from collections.abc import Awaitable, Callable, MutableMapping
|
||||
import time
|
||||
from typing import Literal
|
||||
import urllib.parse
|
||||
|
||||
from crewai.a2a.auth.client_schemes import (
|
||||
APIKeyAuth as _APIKeyAuth,
|
||||
BearerTokenAuth as _BearerTokenAuth,
|
||||
ClientAuthScheme as _ClientAuthScheme,
|
||||
HTTPBasicAuth as _HTTPBasicAuth,
|
||||
HTTPDigestAuth as _HTTPDigestAuth,
|
||||
OAuth2AuthorizationCode as _OAuth2AuthorizationCode,
|
||||
OAuth2ClientCredentials as _OAuth2ClientCredentials,
|
||||
)
|
||||
import httpx
|
||||
from httpx import DigestAuth
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
|
||||
|
||||
@deprecated("Use ClientAuthScheme from crewai.a2a.auth instead", category=FutureWarning)
|
||||
class AuthScheme(_ClientAuthScheme):
|
||||
"""Deprecated: Use ClientAuthScheme from crewai.a2a.auth instead."""
|
||||
class AuthScheme(ABC, BaseModel):
|
||||
"""Base class for authentication schemes."""
|
||||
|
||||
@abstractmethod
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply authentication to request headers.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with authentication applied.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
@deprecated("Import from crewai.a2a.auth instead", category=FutureWarning)
|
||||
class BearerTokenAuth(_BearerTokenAuth):
|
||||
"""Deprecated: Import from crewai.a2a.auth instead."""
|
||||
class BearerTokenAuth(AuthScheme):
|
||||
"""Bearer token authentication (Authorization: Bearer <token>).
|
||||
|
||||
Attributes:
|
||||
token: Bearer token for authentication.
|
||||
"""
|
||||
|
||||
token: str = Field(description="Bearer token")
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply Bearer token to Authorization header.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with Bearer token in Authorization header.
|
||||
"""
|
||||
headers["Authorization"] = f"Bearer {self.token}"
|
||||
return headers
|
||||
|
||||
|
||||
@deprecated("Import from crewai.a2a.auth instead", category=FutureWarning)
|
||||
class HTTPBasicAuth(_HTTPBasicAuth):
|
||||
"""Deprecated: Import from crewai.a2a.auth instead."""
|
||||
class HTTPBasicAuth(AuthScheme):
|
||||
"""HTTP Basic authentication.
|
||||
|
||||
Attributes:
|
||||
username: Username for Basic authentication.
|
||||
password: Password for Basic authentication.
|
||||
"""
|
||||
|
||||
username: str = Field(description="Username")
|
||||
password: str = Field(description="Password")
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply HTTP Basic authentication.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with Basic auth in Authorization header.
|
||||
"""
|
||||
credentials = f"{self.username}:{self.password}"
|
||||
encoded = base64.b64encode(credentials.encode()).decode()
|
||||
headers["Authorization"] = f"Basic {encoded}"
|
||||
return headers
|
||||
|
||||
|
||||
@deprecated("Import from crewai.a2a.auth instead", category=FutureWarning)
|
||||
class HTTPDigestAuth(_HTTPDigestAuth):
|
||||
"""Deprecated: Import from crewai.a2a.auth instead."""
|
||||
class HTTPDigestAuth(AuthScheme):
|
||||
"""HTTP Digest authentication.
|
||||
|
||||
Note: Uses httpx-auth library for digest implementation.
|
||||
|
||||
Attributes:
|
||||
username: Username for Digest authentication.
|
||||
password: Password for Digest authentication.
|
||||
"""
|
||||
|
||||
username: str = Field(description="Username")
|
||||
password: str = Field(description="Password")
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Digest auth is handled by httpx auth flow, not headers.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Unchanged headers (Digest auth handled by httpx auth flow).
|
||||
"""
|
||||
return headers
|
||||
|
||||
def configure_client(self, client: httpx.AsyncClient) -> None:
|
||||
"""Configure client with Digest auth.
|
||||
|
||||
Args:
|
||||
client: HTTP client to configure with Digest authentication.
|
||||
"""
|
||||
client.auth = DigestAuth(self.username, self.password)
|
||||
|
||||
|
||||
@deprecated("Import from crewai.a2a.auth instead", category=FutureWarning)
|
||||
class APIKeyAuth(_APIKeyAuth):
|
||||
"""Deprecated: Import from crewai.a2a.auth instead."""
|
||||
class APIKeyAuth(AuthScheme):
|
||||
"""API Key authentication (header, query, or cookie).
|
||||
|
||||
Attributes:
|
||||
api_key: API key value for authentication.
|
||||
location: Where to send the API key (header, query, or cookie).
|
||||
name: Parameter name for the API key (default: X-API-Key).
|
||||
"""
|
||||
|
||||
api_key: str = Field(description="API key value")
|
||||
location: Literal["header", "query", "cookie"] = Field(
|
||||
default="header", description="Where to send the API key"
|
||||
)
|
||||
name: str = Field(default="X-API-Key", description="Parameter name for the API key")
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply API key authentication.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making auth requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with API key (for header/cookie locations).
|
||||
"""
|
||||
if self.location == "header":
|
||||
headers[self.name] = self.api_key
|
||||
elif self.location == "cookie":
|
||||
headers["Cookie"] = f"{self.name}={self.api_key}"
|
||||
return headers
|
||||
|
||||
def configure_client(self, client: httpx.AsyncClient) -> None:
|
||||
"""Configure client for query param API keys.
|
||||
|
||||
Args:
|
||||
client: HTTP client to configure with query param API key hook.
|
||||
"""
|
||||
if self.location == "query":
|
||||
|
||||
async def _add_api_key_param(request: httpx.Request) -> None:
|
||||
url = httpx.URL(request.url)
|
||||
request.url = url.copy_add_param(self.name, self.api_key)
|
||||
|
||||
client.event_hooks["request"].append(_add_api_key_param)
|
||||
|
||||
|
||||
@deprecated("Import from crewai.a2a.auth instead", category=FutureWarning)
|
||||
class OAuth2ClientCredentials(_OAuth2ClientCredentials):
|
||||
"""Deprecated: Import from crewai.a2a.auth instead."""
|
||||
class OAuth2ClientCredentials(AuthScheme):
|
||||
"""OAuth2 Client Credentials flow authentication.
|
||||
|
||||
Attributes:
|
||||
token_url: OAuth2 token endpoint URL.
|
||||
client_id: OAuth2 client identifier.
|
||||
client_secret: OAuth2 client secret.
|
||||
scopes: List of required OAuth2 scopes.
|
||||
"""
|
||||
|
||||
token_url: str = Field(description="OAuth2 token endpoint")
|
||||
client_id: str = Field(description="OAuth2 client ID")
|
||||
client_secret: str = Field(description="OAuth2 client secret")
|
||||
scopes: list[str] = Field(
|
||||
default_factory=list, description="Required OAuth2 scopes"
|
||||
)
|
||||
|
||||
_access_token: str | None = PrivateAttr(default=None)
|
||||
_token_expires_at: float | None = PrivateAttr(default=None)
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply OAuth2 access token to Authorization header.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with OAuth2 access token in Authorization header.
|
||||
"""
|
||||
if (
|
||||
self._access_token is None
|
||||
or self._token_expires_at is None
|
||||
or time.time() >= self._token_expires_at
|
||||
):
|
||||
await self._fetch_token(client)
|
||||
|
||||
if self._access_token:
|
||||
headers["Authorization"] = f"Bearer {self._access_token}"
|
||||
|
||||
return headers
|
||||
|
||||
async def _fetch_token(self, client: httpx.AsyncClient) -> None:
|
||||
"""Fetch OAuth2 access token using client credentials flow.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token request.
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If token request fails.
|
||||
"""
|
||||
data = {
|
||||
"grant_type": "client_credentials",
|
||||
"client_id": self.client_id,
|
||||
"client_secret": self.client_secret,
|
||||
}
|
||||
|
||||
if self.scopes:
|
||||
data["scope"] = " ".join(self.scopes)
|
||||
|
||||
response = await client.post(self.token_url, data=data)
|
||||
response.raise_for_status()
|
||||
|
||||
token_data = response.json()
|
||||
self._access_token = token_data["access_token"]
|
||||
expires_in = token_data.get("expires_in", 3600)
|
||||
self._token_expires_at = time.time() + expires_in - 60
|
||||
|
||||
|
||||
@deprecated("Import from crewai.a2a.auth instead", category=FutureWarning)
|
||||
class OAuth2AuthorizationCode(_OAuth2AuthorizationCode):
|
||||
"""Deprecated: Import from crewai.a2a.auth instead."""
|
||||
class OAuth2AuthorizationCode(AuthScheme):
|
||||
"""OAuth2 Authorization Code flow authentication.
|
||||
|
||||
Note: Requires interactive authorization.
|
||||
|
||||
__all__ = [
|
||||
"APIKeyAuth",
|
||||
"AuthScheme",
|
||||
"BearerTokenAuth",
|
||||
"HTTPBasicAuth",
|
||||
"HTTPDigestAuth",
|
||||
"OAuth2AuthorizationCode",
|
||||
"OAuth2ClientCredentials",
|
||||
]
|
||||
Attributes:
|
||||
authorization_url: OAuth2 authorization endpoint URL.
|
||||
token_url: OAuth2 token endpoint URL.
|
||||
client_id: OAuth2 client identifier.
|
||||
client_secret: OAuth2 client secret.
|
||||
redirect_uri: OAuth2 redirect URI for callback.
|
||||
scopes: List of required OAuth2 scopes.
|
||||
"""
|
||||
|
||||
authorization_url: str = Field(description="OAuth2 authorization endpoint")
|
||||
token_url: str = Field(description="OAuth2 token endpoint")
|
||||
client_id: str = Field(description="OAuth2 client ID")
|
||||
client_secret: str = Field(description="OAuth2 client secret")
|
||||
redirect_uri: str = Field(description="OAuth2 redirect URI")
|
||||
scopes: list[str] = Field(
|
||||
default_factory=list, description="Required OAuth2 scopes"
|
||||
)
|
||||
|
||||
_access_token: str | None = PrivateAttr(default=None)
|
||||
_refresh_token: str | None = PrivateAttr(default=None)
|
||||
_token_expires_at: float | None = PrivateAttr(default=None)
|
||||
_authorization_callback: Callable[[str], Awaitable[str]] | None = PrivateAttr(
|
||||
default=None
|
||||
)
|
||||
|
||||
def set_authorization_callback(
|
||||
self, callback: Callable[[str], Awaitable[str]] | None
|
||||
) -> None:
|
||||
"""Set callback to handle authorization URL.
|
||||
|
||||
Args:
|
||||
callback: Async function that receives authorization URL and returns auth code.
|
||||
"""
|
||||
self._authorization_callback = callback
|
||||
|
||||
async def apply_auth(
|
||||
self, client: httpx.AsyncClient, headers: MutableMapping[str, str]
|
||||
) -> MutableMapping[str, str]:
|
||||
"""Apply OAuth2 access token to Authorization header.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token requests.
|
||||
headers: Current request headers.
|
||||
|
||||
Returns:
|
||||
Updated headers with OAuth2 access token in Authorization header.
|
||||
|
||||
Raises:
|
||||
ValueError: If authorization callback is not set.
|
||||
"""
|
||||
|
||||
if self._access_token is None:
|
||||
if self._authorization_callback is None:
|
||||
msg = "Authorization callback not set. Use set_authorization_callback()"
|
||||
raise ValueError(msg)
|
||||
await self._fetch_initial_token(client)
|
||||
elif self._token_expires_at and time.time() >= self._token_expires_at:
|
||||
await self._refresh_access_token(client)
|
||||
|
||||
if self._access_token:
|
||||
headers["Authorization"] = f"Bearer {self._access_token}"
|
||||
|
||||
return headers
|
||||
|
||||
async def _fetch_initial_token(self, client: httpx.AsyncClient) -> None:
|
||||
"""Fetch initial access token using authorization code flow.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token request.
|
||||
|
||||
Raises:
|
||||
ValueError: If authorization callback is not set.
|
||||
httpx.HTTPStatusError: If token request fails.
|
||||
"""
|
||||
params = {
|
||||
"response_type": "code",
|
||||
"client_id": self.client_id,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
"scope": " ".join(self.scopes),
|
||||
}
|
||||
auth_url = f"{self.authorization_url}?{urllib.parse.urlencode(params)}"
|
||||
|
||||
if self._authorization_callback is None:
|
||||
msg = "Authorization callback not set"
|
||||
raise ValueError(msg)
|
||||
auth_code = await self._authorization_callback(auth_url)
|
||||
|
||||
data = {
|
||||
"grant_type": "authorization_code",
|
||||
"code": auth_code,
|
||||
"client_id": self.client_id,
|
||||
"client_secret": self.client_secret,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
}
|
||||
|
||||
response = await client.post(self.token_url, data=data)
|
||||
response.raise_for_status()
|
||||
|
||||
token_data = response.json()
|
||||
self._access_token = token_data["access_token"]
|
||||
self._refresh_token = token_data.get("refresh_token")
|
||||
|
||||
expires_in = token_data.get("expires_in", 3600)
|
||||
self._token_expires_at = time.time() + expires_in - 60
|
||||
|
||||
async def _refresh_access_token(self, client: httpx.AsyncClient) -> None:
|
||||
"""Refresh the access token using refresh token.
|
||||
|
||||
Args:
|
||||
client: HTTP client for making token request.
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If token refresh request fails.
|
||||
"""
|
||||
if not self._refresh_token:
|
||||
await self._fetch_initial_token(client)
|
||||
return
|
||||
|
||||
data = {
|
||||
"grant_type": "refresh_token",
|
||||
"refresh_token": self._refresh_token,
|
||||
"client_id": self.client_id,
|
||||
"client_secret": self.client_secret,
|
||||
}
|
||||
|
||||
response = await client.post(self.token_url, data=data)
|
||||
response.raise_for_status()
|
||||
|
||||
token_data = response.json()
|
||||
self._access_token = token_data["access_token"]
|
||||
if "refresh_token" in token_data:
|
||||
self._refresh_token = token_data["refresh_token"]
|
||||
|
||||
expires_in = token_data.get("expires_in", 3600)
|
||||
self._token_expires_at = time.time() + expires_in - 60
|
||||
|
||||
@@ -1,739 +0,0 @@
|
||||
"""Server-side authentication schemes for A2A protocol.
|
||||
|
||||
These schemes validate incoming requests to A2A server endpoints.
|
||||
|
||||
Supported authentication methods:
|
||||
- Simple token validation with static bearer tokens
|
||||
- OpenID Connect with JWT validation using JWKS
|
||||
- OAuth2 with JWT validation or token introspection
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Annotated, Any, ClassVar, Literal
|
||||
|
||||
import jwt
|
||||
from jwt import PyJWKClient
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
BeforeValidator,
|
||||
ConfigDict,
|
||||
Field,
|
||||
HttpUrl,
|
||||
PrivateAttr,
|
||||
SecretStr,
|
||||
model_validator,
|
||||
)
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from a2a.types import OAuth2SecurityScheme
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
try:
|
||||
from fastapi import HTTPException, status as http_status
|
||||
|
||||
HTTP_401_UNAUTHORIZED = http_status.HTTP_401_UNAUTHORIZED
|
||||
HTTP_500_INTERNAL_SERVER_ERROR = http_status.HTTP_500_INTERNAL_SERVER_ERROR
|
||||
HTTP_503_SERVICE_UNAVAILABLE = http_status.HTTP_503_SERVICE_UNAVAILABLE
|
||||
except ImportError:
|
||||
|
||||
class HTTPException(Exception): # type: ignore[no-redef] # noqa: N818
|
||||
"""Fallback HTTPException when FastAPI is not installed."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
status_code: int,
|
||||
detail: str | None = None,
|
||||
headers: dict[str, str] | None = None,
|
||||
) -> None:
|
||||
self.status_code = status_code
|
||||
self.detail = detail
|
||||
self.headers = headers
|
||||
super().__init__(detail)
|
||||
|
||||
HTTP_401_UNAUTHORIZED = 401
|
||||
HTTP_500_INTERNAL_SERVER_ERROR = 500
|
||||
HTTP_503_SERVICE_UNAVAILABLE = 503
|
||||
|
||||
|
||||
def _coerce_secret_str(v: str | SecretStr | None) -> SecretStr | None:
|
||||
"""Coerce string to SecretStr."""
|
||||
if v is None or isinstance(v, SecretStr):
|
||||
return v
|
||||
return SecretStr(v)
|
||||
|
||||
|
||||
CoercedSecretStr = Annotated[SecretStr, BeforeValidator(_coerce_secret_str)]
|
||||
|
||||
JWTAlgorithm = Literal[
|
||||
"RS256",
|
||||
"RS384",
|
||||
"RS512",
|
||||
"ES256",
|
||||
"ES384",
|
||||
"ES512",
|
||||
"PS256",
|
||||
"PS384",
|
||||
"PS512",
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class AuthenticatedUser:
|
||||
"""Result of successful authentication.
|
||||
|
||||
Attributes:
|
||||
token: The original token that was validated.
|
||||
scheme: Name of the authentication scheme used.
|
||||
claims: JWT claims from OIDC or OAuth2 authentication.
|
||||
"""
|
||||
|
||||
token: str
|
||||
scheme: str
|
||||
claims: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class ServerAuthScheme(ABC, BaseModel):
|
||||
"""Base class for server-side authentication schemes.
|
||||
|
||||
Each scheme validates incoming requests and returns an AuthenticatedUser
|
||||
on success, or raises HTTPException on failure.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
@abstractmethod
|
||||
async def authenticate(self, token: str) -> AuthenticatedUser:
|
||||
"""Authenticate the provided token.
|
||||
|
||||
Args:
|
||||
token: The bearer token to authenticate.
|
||||
|
||||
Returns:
|
||||
AuthenticatedUser on successful authentication.
|
||||
|
||||
Raises:
|
||||
HTTPException: If authentication fails.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
class SimpleTokenAuth(ServerAuthScheme):
|
||||
"""Simple bearer token authentication.
|
||||
|
||||
Validates tokens against a configured static token or AUTH_TOKEN env var.
|
||||
|
||||
Attributes:
|
||||
token: Expected token value. Falls back to AUTH_TOKEN env var if not set.
|
||||
"""
|
||||
|
||||
token: CoercedSecretStr | None = Field(
|
||||
default=None,
|
||||
description="Expected token. Falls back to AUTH_TOKEN env var.",
|
||||
)
|
||||
|
||||
def _get_expected_token(self) -> str | None:
|
||||
"""Get the expected token value."""
|
||||
if self.token:
|
||||
return self.token.get_secret_value()
|
||||
return os.environ.get("AUTH_TOKEN")
|
||||
|
||||
async def authenticate(self, token: str) -> AuthenticatedUser:
|
||||
"""Authenticate using simple token comparison.
|
||||
|
||||
Args:
|
||||
token: The bearer token to authenticate.
|
||||
|
||||
Returns:
|
||||
AuthenticatedUser on successful authentication.
|
||||
|
||||
Raises:
|
||||
HTTPException: If authentication fails.
|
||||
"""
|
||||
expected = self._get_expected_token()
|
||||
|
||||
if expected is None:
|
||||
logger.warning(
|
||||
"Simple token authentication failed",
|
||||
extra={"reason": "no_token_configured"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Authentication not configured",
|
||||
)
|
||||
|
||||
if token != expected:
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid or missing authentication credentials",
|
||||
)
|
||||
|
||||
return AuthenticatedUser(
|
||||
token=token,
|
||||
scheme="simple_token",
|
||||
)
|
||||
|
||||
|
||||
class OIDCAuth(ServerAuthScheme):
|
||||
"""OpenID Connect authentication.
|
||||
|
||||
Validates JWTs using JWKS with caching support via PyJWT.
|
||||
|
||||
Attributes:
|
||||
issuer: The OpenID Connect issuer URL.
|
||||
audience: The expected audience claim.
|
||||
jwks_url: Optional explicit JWKS URL. Derived from issuer if not set.
|
||||
algorithms: List of allowed signing algorithms.
|
||||
required_claims: List of claims that must be present in the token.
|
||||
jwks_cache_ttl: TTL for JWKS cache in seconds.
|
||||
clock_skew_seconds: Allowed clock skew for token validation.
|
||||
"""
|
||||
|
||||
issuer: HttpUrl = Field(
|
||||
description="OpenID Connect issuer URL (e.g., https://auth.example.com)"
|
||||
)
|
||||
audience: str = Field(description="Expected audience claim (e.g., api://my-agent)")
|
||||
jwks_url: HttpUrl | None = Field(
|
||||
default=None,
|
||||
description="Explicit JWKS URL. Derived from issuer if not set.",
|
||||
)
|
||||
algorithms: list[str] = Field(
|
||||
default_factory=lambda: ["RS256"],
|
||||
description="List of allowed signing algorithms (RS256, ES256, etc.)",
|
||||
)
|
||||
required_claims: list[str] = Field(
|
||||
default_factory=lambda: ["exp", "iat", "iss", "aud", "sub"],
|
||||
description="List of claims that must be present in the token",
|
||||
)
|
||||
jwks_cache_ttl: int = Field(
|
||||
default=3600,
|
||||
description="TTL for JWKS cache in seconds",
|
||||
ge=60,
|
||||
)
|
||||
clock_skew_seconds: float = Field(
|
||||
default=30.0,
|
||||
description="Allowed clock skew for token validation",
|
||||
ge=0.0,
|
||||
)
|
||||
|
||||
_jwk_client: PyJWKClient | None = PrivateAttr(default=None)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def _init_jwk_client(self) -> Self:
|
||||
"""Initialize the JWK client after model creation."""
|
||||
jwks_url = (
|
||||
str(self.jwks_url)
|
||||
if self.jwks_url
|
||||
else f"{str(self.issuer).rstrip('/')}/.well-known/jwks.json"
|
||||
)
|
||||
self._jwk_client = PyJWKClient(jwks_url, lifespan=self.jwks_cache_ttl)
|
||||
return self
|
||||
|
||||
async def authenticate(self, token: str) -> AuthenticatedUser:
|
||||
"""Authenticate using OIDC JWT validation.
|
||||
|
||||
Args:
|
||||
token: The JWT to authenticate.
|
||||
|
||||
Returns:
|
||||
AuthenticatedUser on successful authentication.
|
||||
|
||||
Raises:
|
||||
HTTPException: If authentication fails.
|
||||
"""
|
||||
if self._jwk_client is None:
|
||||
raise HTTPException(
|
||||
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail="OIDC not initialized",
|
||||
)
|
||||
|
||||
try:
|
||||
signing_key = self._jwk_client.get_signing_key_from_jwt(token)
|
||||
|
||||
claims = jwt.decode(
|
||||
token,
|
||||
signing_key.key,
|
||||
algorithms=self.algorithms,
|
||||
audience=self.audience,
|
||||
issuer=str(self.issuer).rstrip("/"),
|
||||
leeway=self.clock_skew_seconds,
|
||||
options={
|
||||
"require": self.required_claims,
|
||||
},
|
||||
)
|
||||
|
||||
return AuthenticatedUser(
|
||||
token=token,
|
||||
scheme="oidc",
|
||||
claims=claims,
|
||||
)
|
||||
|
||||
except jwt.ExpiredSignatureError:
|
||||
logger.debug(
|
||||
"OIDC authentication failed",
|
||||
extra={"reason": "token_expired", "scheme": "oidc"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Token has expired",
|
||||
) from None
|
||||
except jwt.InvalidAudienceError:
|
||||
logger.debug(
|
||||
"OIDC authentication failed",
|
||||
extra={"reason": "invalid_audience", "scheme": "oidc"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid token audience",
|
||||
) from None
|
||||
except jwt.InvalidIssuerError:
|
||||
logger.debug(
|
||||
"OIDC authentication failed",
|
||||
extra={"reason": "invalid_issuer", "scheme": "oidc"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid token issuer",
|
||||
) from None
|
||||
except jwt.MissingRequiredClaimError as e:
|
||||
logger.debug(
|
||||
"OIDC authentication failed",
|
||||
extra={"reason": "missing_claim", "claim": e.claim, "scheme": "oidc"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail=f"Missing required claim: {e.claim}",
|
||||
) from None
|
||||
except jwt.PyJWKClientError as e:
|
||||
logger.error(
|
||||
"OIDC authentication failed",
|
||||
extra={
|
||||
"reason": "jwks_client_error",
|
||||
"error": str(e),
|
||||
"scheme": "oidc",
|
||||
},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_503_SERVICE_UNAVAILABLE,
|
||||
detail="Unable to fetch signing keys",
|
||||
) from None
|
||||
except jwt.InvalidTokenError as e:
|
||||
logger.debug(
|
||||
"OIDC authentication failed",
|
||||
extra={"reason": "invalid_token", "error": str(e), "scheme": "oidc"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid or missing authentication credentials",
|
||||
) from None
|
||||
|
||||
|
||||
class OAuth2ServerAuth(ServerAuthScheme):
|
||||
"""OAuth2 authentication for A2A server.
|
||||
|
||||
Declares OAuth2 security scheme in AgentCard and validates tokens using
|
||||
either JWKS for JWT tokens or token introspection for opaque tokens.
|
||||
|
||||
This is distinct from OIDCAuth in that it declares an explicit OAuth2SecurityScheme
|
||||
with flows, rather than an OpenIdConnectSecurityScheme with discovery URL.
|
||||
|
||||
Attributes:
|
||||
token_url: OAuth2 token endpoint URL for client_credentials flow.
|
||||
authorization_url: OAuth2 authorization endpoint for authorization_code flow.
|
||||
refresh_url: Optional refresh token endpoint URL.
|
||||
scopes: Available OAuth2 scopes with descriptions.
|
||||
jwks_url: JWKS URL for JWT validation. Required if not using introspection.
|
||||
introspection_url: Token introspection endpoint (RFC 7662). Alternative to JWKS.
|
||||
introspection_client_id: Client ID for introspection endpoint authentication.
|
||||
introspection_client_secret: Client secret for introspection endpoint.
|
||||
audience: Expected audience claim for JWT validation.
|
||||
issuer: Expected issuer claim for JWT validation.
|
||||
algorithms: Allowed JWT signing algorithms.
|
||||
required_claims: Claims that must be present in the token.
|
||||
jwks_cache_ttl: TTL for JWKS cache in seconds.
|
||||
clock_skew_seconds: Allowed clock skew for token validation.
|
||||
"""
|
||||
|
||||
token_url: HttpUrl = Field(
|
||||
description="OAuth2 token endpoint URL",
|
||||
)
|
||||
authorization_url: HttpUrl | None = Field(
|
||||
default=None,
|
||||
description="OAuth2 authorization endpoint URL for authorization_code flow",
|
||||
)
|
||||
refresh_url: HttpUrl | None = Field(
|
||||
default=None,
|
||||
description="OAuth2 refresh token endpoint URL",
|
||||
)
|
||||
scopes: dict[str, str] = Field(
|
||||
default_factory=dict,
|
||||
description="Available OAuth2 scopes with descriptions",
|
||||
)
|
||||
jwks_url: HttpUrl | None = Field(
|
||||
default=None,
|
||||
description="JWKS URL for JWT validation. Required if not using introspection.",
|
||||
)
|
||||
introspection_url: HttpUrl | None = Field(
|
||||
default=None,
|
||||
description="Token introspection endpoint (RFC 7662). Alternative to JWKS.",
|
||||
)
|
||||
introspection_client_id: str | None = Field(
|
||||
default=None,
|
||||
description="Client ID for introspection endpoint authentication",
|
||||
)
|
||||
introspection_client_secret: CoercedSecretStr | None = Field(
|
||||
default=None,
|
||||
description="Client secret for introspection endpoint authentication",
|
||||
)
|
||||
audience: str | None = Field(
|
||||
default=None,
|
||||
description="Expected audience claim for JWT validation",
|
||||
)
|
||||
issuer: str | None = Field(
|
||||
default=None,
|
||||
description="Expected issuer claim for JWT validation",
|
||||
)
|
||||
algorithms: list[str] = Field(
|
||||
default_factory=lambda: ["RS256"],
|
||||
description="Allowed JWT signing algorithms",
|
||||
)
|
||||
required_claims: list[str] = Field(
|
||||
default_factory=lambda: ["exp", "iat"],
|
||||
description="Claims that must be present in the token",
|
||||
)
|
||||
jwks_cache_ttl: int = Field(
|
||||
default=3600,
|
||||
description="TTL for JWKS cache in seconds",
|
||||
ge=60,
|
||||
)
|
||||
clock_skew_seconds: float = Field(
|
||||
default=30.0,
|
||||
description="Allowed clock skew for token validation",
|
||||
ge=0.0,
|
||||
)
|
||||
|
||||
_jwk_client: PyJWKClient | None = PrivateAttr(default=None)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def _validate_and_init(self) -> Self:
|
||||
"""Validate configuration and initialize JWKS client if needed."""
|
||||
if not self.jwks_url and not self.introspection_url:
|
||||
raise ValueError(
|
||||
"Either jwks_url or introspection_url must be provided for token validation"
|
||||
)
|
||||
|
||||
if self.introspection_url:
|
||||
if not self.introspection_client_id or not self.introspection_client_secret:
|
||||
raise ValueError(
|
||||
"introspection_client_id and introspection_client_secret are required "
|
||||
"when using token introspection"
|
||||
)
|
||||
|
||||
if self.jwks_url:
|
||||
self._jwk_client = PyJWKClient(
|
||||
str(self.jwks_url), lifespan=self.jwks_cache_ttl
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
async def authenticate(self, token: str) -> AuthenticatedUser:
|
||||
"""Authenticate using OAuth2 token validation.
|
||||
|
||||
Uses JWKS validation if jwks_url is configured, otherwise falls back
|
||||
to token introspection.
|
||||
|
||||
Args:
|
||||
token: The OAuth2 access token to authenticate.
|
||||
|
||||
Returns:
|
||||
AuthenticatedUser on successful authentication.
|
||||
|
||||
Raises:
|
||||
HTTPException: If authentication fails.
|
||||
"""
|
||||
if self._jwk_client:
|
||||
return await self._authenticate_jwt(token)
|
||||
return await self._authenticate_introspection(token)
|
||||
|
||||
async def _authenticate_jwt(self, token: str) -> AuthenticatedUser:
|
||||
"""Authenticate using JWKS JWT validation."""
|
||||
if self._jwk_client is None:
|
||||
raise HTTPException(
|
||||
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail="OAuth2 JWKS not initialized",
|
||||
)
|
||||
|
||||
try:
|
||||
signing_key = self._jwk_client.get_signing_key_from_jwt(token)
|
||||
|
||||
decode_options: dict[str, Any] = {
|
||||
"require": self.required_claims,
|
||||
}
|
||||
|
||||
claims = jwt.decode(
|
||||
token,
|
||||
signing_key.key,
|
||||
algorithms=self.algorithms,
|
||||
audience=self.audience,
|
||||
issuer=self.issuer,
|
||||
leeway=self.clock_skew_seconds,
|
||||
options=decode_options,
|
||||
)
|
||||
|
||||
return AuthenticatedUser(
|
||||
token=token,
|
||||
scheme="oauth2",
|
||||
claims=claims,
|
||||
)
|
||||
|
||||
except jwt.ExpiredSignatureError:
|
||||
logger.debug(
|
||||
"OAuth2 authentication failed",
|
||||
extra={"reason": "token_expired", "scheme": "oauth2"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Token has expired",
|
||||
) from None
|
||||
except jwt.InvalidAudienceError:
|
||||
logger.debug(
|
||||
"OAuth2 authentication failed",
|
||||
extra={"reason": "invalid_audience", "scheme": "oauth2"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid token audience",
|
||||
) from None
|
||||
except jwt.InvalidIssuerError:
|
||||
logger.debug(
|
||||
"OAuth2 authentication failed",
|
||||
extra={"reason": "invalid_issuer", "scheme": "oauth2"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid token issuer",
|
||||
) from None
|
||||
except jwt.MissingRequiredClaimError as e:
|
||||
logger.debug(
|
||||
"OAuth2 authentication failed",
|
||||
extra={"reason": "missing_claim", "claim": e.claim, "scheme": "oauth2"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail=f"Missing required claim: {e.claim}",
|
||||
) from None
|
||||
except jwt.PyJWKClientError as e:
|
||||
logger.error(
|
||||
"OAuth2 authentication failed",
|
||||
extra={
|
||||
"reason": "jwks_client_error",
|
||||
"error": str(e),
|
||||
"scheme": "oauth2",
|
||||
},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_503_SERVICE_UNAVAILABLE,
|
||||
detail="Unable to fetch signing keys",
|
||||
) from None
|
||||
except jwt.InvalidTokenError as e:
|
||||
logger.debug(
|
||||
"OAuth2 authentication failed",
|
||||
extra={"reason": "invalid_token", "error": str(e), "scheme": "oauth2"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid or missing authentication credentials",
|
||||
) from None
|
||||
|
||||
async def _authenticate_introspection(self, token: str) -> AuthenticatedUser:
|
||||
"""Authenticate using OAuth2 token introspection (RFC 7662)."""
|
||||
import httpx
|
||||
|
||||
if not self.introspection_url:
|
||||
raise HTTPException(
|
||||
status_code=HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail="OAuth2 introspection not configured",
|
||||
)
|
||||
|
||||
try:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
str(self.introspection_url),
|
||||
data={"token": token},
|
||||
auth=(
|
||||
self.introspection_client_id or "",
|
||||
self.introspection_client_secret.get_secret_value()
|
||||
if self.introspection_client_secret
|
||||
else "",
|
||||
),
|
||||
)
|
||||
response.raise_for_status()
|
||||
introspection_result = response.json()
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(
|
||||
"OAuth2 introspection failed",
|
||||
extra={"reason": "http_error", "status_code": e.response.status_code},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_503_SERVICE_UNAVAILABLE,
|
||||
detail="Token introspection service unavailable",
|
||||
) from None
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"OAuth2 introspection failed",
|
||||
extra={"reason": "unexpected_error", "error": str(e)},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_503_SERVICE_UNAVAILABLE,
|
||||
detail="Token introspection failed",
|
||||
) from None
|
||||
|
||||
if not introspection_result.get("active", False):
|
||||
logger.debug(
|
||||
"OAuth2 authentication failed",
|
||||
extra={"reason": "token_not_active", "scheme": "oauth2"},
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Token is not active",
|
||||
)
|
||||
|
||||
return AuthenticatedUser(
|
||||
token=token,
|
||||
scheme="oauth2",
|
||||
claims=introspection_result,
|
||||
)
|
||||
|
||||
def to_security_scheme(self) -> OAuth2SecurityScheme:
|
||||
"""Generate OAuth2SecurityScheme for AgentCard declaration.
|
||||
|
||||
Creates an OAuth2SecurityScheme with appropriate flows based on
|
||||
the configured URLs. Includes client_credentials flow if token_url
|
||||
is set, and authorization_code flow if authorization_url is set.
|
||||
|
||||
Returns:
|
||||
OAuth2SecurityScheme suitable for use in AgentCard security_schemes.
|
||||
"""
|
||||
from a2a.types import (
|
||||
AuthorizationCodeOAuthFlow,
|
||||
ClientCredentialsOAuthFlow,
|
||||
OAuth2SecurityScheme,
|
||||
OAuthFlows,
|
||||
)
|
||||
|
||||
client_credentials = None
|
||||
authorization_code = None
|
||||
|
||||
if self.token_url:
|
||||
client_credentials = ClientCredentialsOAuthFlow(
|
||||
token_url=str(self.token_url),
|
||||
refresh_url=str(self.refresh_url) if self.refresh_url else None,
|
||||
scopes=self.scopes,
|
||||
)
|
||||
|
||||
if self.authorization_url:
|
||||
authorization_code = AuthorizationCodeOAuthFlow(
|
||||
authorization_url=str(self.authorization_url),
|
||||
token_url=str(self.token_url),
|
||||
refresh_url=str(self.refresh_url) if self.refresh_url else None,
|
||||
scopes=self.scopes,
|
||||
)
|
||||
|
||||
return OAuth2SecurityScheme(
|
||||
flows=OAuthFlows(
|
||||
client_credentials=client_credentials,
|
||||
authorization_code=authorization_code,
|
||||
),
|
||||
description="OAuth2 authentication",
|
||||
)
|
||||
|
||||
|
||||
class APIKeyServerAuth(ServerAuthScheme):
|
||||
"""API Key authentication for A2A server.
|
||||
|
||||
Validates requests using an API key in a header, query parameter, or cookie.
|
||||
|
||||
Attributes:
|
||||
name: The name of the API key parameter (default: X-API-Key).
|
||||
location: Where to look for the API key (header, query, or cookie).
|
||||
api_key: The expected API key value.
|
||||
"""
|
||||
|
||||
name: str = Field(
|
||||
default="X-API-Key",
|
||||
description="Name of the API key parameter",
|
||||
)
|
||||
location: Literal["header", "query", "cookie"] = Field(
|
||||
default="header",
|
||||
description="Where to look for the API key",
|
||||
)
|
||||
api_key: CoercedSecretStr = Field(
|
||||
description="Expected API key value",
|
||||
)
|
||||
|
||||
async def authenticate(self, token: str) -> AuthenticatedUser:
|
||||
"""Authenticate using API key comparison.
|
||||
|
||||
Args:
|
||||
token: The API key to authenticate.
|
||||
|
||||
Returns:
|
||||
AuthenticatedUser on successful authentication.
|
||||
|
||||
Raises:
|
||||
HTTPException: If authentication fails.
|
||||
"""
|
||||
if token != self.api_key.get_secret_value():
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
)
|
||||
|
||||
return AuthenticatedUser(
|
||||
token=token,
|
||||
scheme="api_key",
|
||||
)
|
||||
|
||||
|
||||
class MTLSServerAuth(ServerAuthScheme):
|
||||
"""Mutual TLS authentication marker for AgentCard declaration.
|
||||
|
||||
This scheme is primarily for AgentCard security_schemes declaration.
|
||||
Actual mTLS verification happens at the TLS/transport layer, not
|
||||
at the application layer via token validation.
|
||||
|
||||
When configured, this signals to clients that the server requires
|
||||
client certificates for authentication.
|
||||
"""
|
||||
|
||||
description: str = Field(
|
||||
default="Mutual TLS certificate authentication",
|
||||
description="Description for the security scheme",
|
||||
)
|
||||
|
||||
async def authenticate(self, token: str) -> AuthenticatedUser:
|
||||
"""Return authenticated user for mTLS.
|
||||
|
||||
mTLS verification happens at the transport layer before this is called.
|
||||
If we reach this point, the TLS handshake with client cert succeeded.
|
||||
|
||||
Args:
|
||||
token: Certificate subject or identifier (from TLS layer).
|
||||
|
||||
Returns:
|
||||
AuthenticatedUser indicating mTLS authentication.
|
||||
"""
|
||||
return AuthenticatedUser(
|
||||
token=token or "mtls-verified",
|
||||
scheme="mtls",
|
||||
)
|
||||
@@ -6,10 +6,8 @@ OAuth2, API keys, and HTTP authentication methods.
|
||||
|
||||
import asyncio
|
||||
from collections.abc import Awaitable, Callable, MutableMapping
|
||||
import hashlib
|
||||
import re
|
||||
import threading
|
||||
from typing import Final, Literal, cast
|
||||
from typing import Final
|
||||
|
||||
from a2a.client.errors import A2AClientHTTPError
|
||||
from a2a.types import (
|
||||
@@ -20,10 +18,10 @@ from a2a.types import (
|
||||
)
|
||||
from httpx import AsyncClient, Response
|
||||
|
||||
from crewai.a2a.auth.client_schemes import (
|
||||
from crewai.a2a.auth.schemas import (
|
||||
APIKeyAuth,
|
||||
AuthScheme,
|
||||
BearerTokenAuth,
|
||||
ClientAuthScheme,
|
||||
HTTPBasicAuth,
|
||||
HTTPDigestAuth,
|
||||
OAuth2AuthorizationCode,
|
||||
@@ -31,44 +29,12 @@ from crewai.a2a.auth.client_schemes import (
|
||||
)
|
||||
|
||||
|
||||
class _AuthStore:
|
||||
"""Store for authentication schemes with safe concurrent access."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._store: dict[str, ClientAuthScheme | None] = {}
|
||||
self._lock = threading.RLock()
|
||||
|
||||
@staticmethod
|
||||
def compute_key(auth_type: str, auth_data: str) -> str:
|
||||
"""Compute a collision-resistant key using SHA-256."""
|
||||
content = f"{auth_type}:{auth_data}"
|
||||
return hashlib.sha256(content.encode()).hexdigest()
|
||||
|
||||
def set(self, key: str, auth: ClientAuthScheme | None) -> None:
|
||||
"""Store an auth scheme."""
|
||||
with self._lock:
|
||||
self._store[key] = auth
|
||||
|
||||
def get(self, key: str) -> ClientAuthScheme | None:
|
||||
"""Retrieve an auth scheme by key."""
|
||||
with self._lock:
|
||||
return self._store.get(key)
|
||||
|
||||
def __setitem__(self, key: str, value: ClientAuthScheme | None) -> None:
|
||||
with self._lock:
|
||||
self._store[key] = value
|
||||
|
||||
def __getitem__(self, key: str) -> ClientAuthScheme | None:
|
||||
with self._lock:
|
||||
return self._store[key]
|
||||
|
||||
|
||||
_auth_store = _AuthStore()
|
||||
_auth_store: dict[int, AuthScheme | None] = {}
|
||||
|
||||
_SCHEME_PATTERN: Final[re.Pattern[str]] = re.compile(r"(\w+)\s+(.+?)(?=,\s*\w+\s+|$)")
|
||||
_PARAM_PATTERN: Final[re.Pattern[str]] = re.compile(r'(\w+)=(?:"([^"]*)"|([^\s,]+))')
|
||||
|
||||
_SCHEME_AUTH_MAPPING: Final[dict[type, tuple[type[ClientAuthScheme], ...]]] = {
|
||||
_SCHEME_AUTH_MAPPING: Final[dict[type, tuple[type[AuthScheme], ...]]] = {
|
||||
OAuth2SecurityScheme: (
|
||||
OAuth2ClientCredentials,
|
||||
OAuth2AuthorizationCode,
|
||||
@@ -77,9 +43,7 @@ _SCHEME_AUTH_MAPPING: Final[dict[type, tuple[type[ClientAuthScheme], ...]]] = {
|
||||
APIKeySecurityScheme: (APIKeyAuth,),
|
||||
}
|
||||
|
||||
_HTTPSchemeType = Literal["basic", "digest", "bearer"]
|
||||
|
||||
_HTTP_SCHEME_MAPPING: Final[dict[_HTTPSchemeType, type[ClientAuthScheme]]] = {
|
||||
_HTTP_SCHEME_MAPPING: Final[dict[str, type[AuthScheme]]] = {
|
||||
"basic": HTTPBasicAuth,
|
||||
"digest": HTTPDigestAuth,
|
||||
"bearer": BearerTokenAuth,
|
||||
@@ -87,8 +51,8 @@ _HTTP_SCHEME_MAPPING: Final[dict[_HTTPSchemeType, type[ClientAuthScheme]]] = {
|
||||
|
||||
|
||||
def _raise_auth_mismatch(
|
||||
expected_classes: type[ClientAuthScheme] | tuple[type[ClientAuthScheme], ...],
|
||||
provided_auth: ClientAuthScheme,
|
||||
expected_classes: type[AuthScheme] | tuple[type[AuthScheme], ...],
|
||||
provided_auth: AuthScheme,
|
||||
) -> None:
|
||||
"""Raise authentication mismatch error.
|
||||
|
||||
@@ -147,7 +111,7 @@ def parse_www_authenticate(header_value: str) -> dict[str, dict[str, str]]:
|
||||
|
||||
|
||||
def validate_auth_against_agent_card(
|
||||
agent_card: AgentCard, auth: ClientAuthScheme | None
|
||||
agent_card: AgentCard, auth: AuthScheme | None
|
||||
) -> None:
|
||||
"""Validate that provided auth matches AgentCard security requirements.
|
||||
|
||||
@@ -181,8 +145,7 @@ def validate_auth_against_agent_card(
|
||||
return
|
||||
|
||||
if isinstance(scheme, HTTPAuthSecurityScheme):
|
||||
scheme_key = cast(_HTTPSchemeType, scheme.scheme.lower())
|
||||
if required_class := _HTTP_SCHEME_MAPPING.get(scheme_key):
|
||||
if required_class := _HTTP_SCHEME_MAPPING.get(scheme.scheme.lower()):
|
||||
if not isinstance(auth, required_class):
|
||||
_raise_auth_mismatch(required_class, auth)
|
||||
return
|
||||
@@ -193,7 +156,7 @@ def validate_auth_against_agent_card(
|
||||
|
||||
async def retry_on_401(
|
||||
request_func: Callable[[], Awaitable[Response]],
|
||||
auth_scheme: ClientAuthScheme | None,
|
||||
auth_scheme: AuthScheme | None,
|
||||
client: AsyncClient,
|
||||
headers: MutableMapping[str, str],
|
||||
max_retries: int = 3,
|
||||
|
||||
@@ -5,25 +5,14 @@ This module is separate from experimental.a2a to avoid circular imports.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any, ClassVar, Literal, cast
|
||||
import warnings
|
||||
from importlib.metadata import version
|
||||
from typing import Any, ClassVar, Literal
|
||||
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
FilePath,
|
||||
PrivateAttr,
|
||||
SecretStr,
|
||||
model_validator,
|
||||
)
|
||||
from typing_extensions import Self, deprecated
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from crewai.a2a.auth.client_schemes import ClientAuthScheme
|
||||
from crewai.a2a.auth.server_schemes import ServerAuthScheme
|
||||
from crewai.a2a.extensions.base import ValidatedA2AExtension
|
||||
from crewai.a2a.types import ProtocolVersion, TransportType, Url
|
||||
from crewai.a2a.auth.schemas import AuthScheme
|
||||
from crewai.a2a.types import TransportType, Url
|
||||
|
||||
|
||||
try:
|
||||
@@ -36,17 +25,16 @@ try:
|
||||
SecurityScheme,
|
||||
)
|
||||
|
||||
from crewai.a2a.extensions.server import ServerExtension
|
||||
from crewai.a2a.updates import UpdateConfig
|
||||
except ImportError:
|
||||
UpdateConfig: Any = Any # type: ignore[no-redef]
|
||||
AgentCapabilities: Any = Any # type: ignore[no-redef]
|
||||
AgentCardSignature: Any = Any # type: ignore[no-redef]
|
||||
AgentInterface: Any = Any # type: ignore[no-redef]
|
||||
AgentProvider: Any = Any # type: ignore[no-redef]
|
||||
SecurityScheme: Any = Any # type: ignore[no-redef]
|
||||
AgentSkill: Any = Any # type: ignore[no-redef]
|
||||
ServerExtension: Any = Any # type: ignore[no-redef]
|
||||
UpdateConfig = Any
|
||||
AgentCapabilities = Any
|
||||
AgentCardSignature = Any
|
||||
AgentInterface = Any
|
||||
AgentProvider = Any
|
||||
SecurityScheme = Any
|
||||
AgentSkill = Any
|
||||
UpdateConfig = Any # type: ignore[misc,assignment]
|
||||
|
||||
|
||||
def _get_default_update_config() -> UpdateConfig:
|
||||
@@ -55,309 +43,6 @@ def _get_default_update_config() -> UpdateConfig:
|
||||
return StreamingConfig()
|
||||
|
||||
|
||||
SigningAlgorithm = Literal[
|
||||
"RS256",
|
||||
"RS384",
|
||||
"RS512",
|
||||
"ES256",
|
||||
"ES384",
|
||||
"ES512",
|
||||
"PS256",
|
||||
"PS384",
|
||||
"PS512",
|
||||
]
|
||||
|
||||
|
||||
class AgentCardSigningConfig(BaseModel):
|
||||
"""Configuration for AgentCard JWS signing.
|
||||
|
||||
Provides the private key and algorithm settings for signing AgentCards.
|
||||
Either private_key_path or private_key_pem must be provided, but not both.
|
||||
|
||||
Attributes:
|
||||
private_key_path: Path to a PEM-encoded private key file.
|
||||
private_key_pem: PEM-encoded private key as a secret string.
|
||||
key_id: Optional key identifier for the JWS header (kid claim).
|
||||
algorithm: Signing algorithm (RS256, ES256, PS256, etc.).
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
private_key_path: FilePath | None = Field(
|
||||
default=None,
|
||||
description="Path to PEM-encoded private key file",
|
||||
)
|
||||
private_key_pem: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="PEM-encoded private key",
|
||||
)
|
||||
key_id: str | None = Field(
|
||||
default=None,
|
||||
description="Key identifier for JWS header (kid claim)",
|
||||
)
|
||||
algorithm: SigningAlgorithm = Field(
|
||||
default="RS256",
|
||||
description="Signing algorithm (RS256, ES256, PS256, etc.)",
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def _validate_key_source(self) -> Self:
|
||||
"""Ensure exactly one key source is provided."""
|
||||
has_path = self.private_key_path is not None
|
||||
has_pem = self.private_key_pem is not None
|
||||
|
||||
if not has_path and not has_pem:
|
||||
raise ValueError(
|
||||
"Either private_key_path or private_key_pem must be provided"
|
||||
)
|
||||
if has_path and has_pem:
|
||||
raise ValueError(
|
||||
"Only one of private_key_path or private_key_pem should be provided"
|
||||
)
|
||||
return self
|
||||
|
||||
def get_private_key(self) -> str:
|
||||
"""Get the private key content.
|
||||
|
||||
Returns:
|
||||
The PEM-encoded private key as a string.
|
||||
"""
|
||||
if self.private_key_pem:
|
||||
return self.private_key_pem.get_secret_value()
|
||||
if self.private_key_path:
|
||||
return Path(self.private_key_path).read_text()
|
||||
raise ValueError("No private key configured")
|
||||
|
||||
|
||||
class GRPCServerConfig(BaseModel):
|
||||
"""gRPC server transport configuration.
|
||||
|
||||
Presence of this config in ServerTransportConfig.grpc enables gRPC transport.
|
||||
|
||||
Attributes:
|
||||
host: Hostname to advertise in agent cards (default: localhost).
|
||||
Use docker service name (e.g., 'web') for docker-compose setups.
|
||||
port: Port for the gRPC server.
|
||||
tls_cert_path: Path to TLS certificate file for gRPC.
|
||||
tls_key_path: Path to TLS private key file for gRPC.
|
||||
max_workers: Maximum number of workers for the gRPC thread pool.
|
||||
reflection_enabled: Whether to enable gRPC reflection for debugging.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
host: str = Field(
|
||||
default="localhost",
|
||||
description="Hostname to advertise in agent cards for gRPC connections",
|
||||
)
|
||||
port: int = Field(
|
||||
default=50051,
|
||||
description="Port for the gRPC server",
|
||||
)
|
||||
tls_cert_path: str | None = Field(
|
||||
default=None,
|
||||
description="Path to TLS certificate file for gRPC",
|
||||
)
|
||||
tls_key_path: str | None = Field(
|
||||
default=None,
|
||||
description="Path to TLS private key file for gRPC",
|
||||
)
|
||||
max_workers: int = Field(
|
||||
default=10,
|
||||
description="Maximum number of workers for the gRPC thread pool",
|
||||
)
|
||||
reflection_enabled: bool = Field(
|
||||
default=False,
|
||||
description="Whether to enable gRPC reflection for debugging",
|
||||
)
|
||||
|
||||
|
||||
class GRPCClientConfig(BaseModel):
|
||||
"""gRPC client transport configuration.
|
||||
|
||||
Attributes:
|
||||
max_send_message_length: Maximum size for outgoing messages in bytes.
|
||||
max_receive_message_length: Maximum size for incoming messages in bytes.
|
||||
keepalive_time_ms: Time between keepalive pings in milliseconds.
|
||||
keepalive_timeout_ms: Timeout for keepalive ping response in milliseconds.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
max_send_message_length: int | None = Field(
|
||||
default=None,
|
||||
description="Maximum size for outgoing messages in bytes",
|
||||
)
|
||||
max_receive_message_length: int | None = Field(
|
||||
default=None,
|
||||
description="Maximum size for incoming messages in bytes",
|
||||
)
|
||||
keepalive_time_ms: int | None = Field(
|
||||
default=None,
|
||||
description="Time between keepalive pings in milliseconds",
|
||||
)
|
||||
keepalive_timeout_ms: int | None = Field(
|
||||
default=None,
|
||||
description="Timeout for keepalive ping response in milliseconds",
|
||||
)
|
||||
|
||||
|
||||
class JSONRPCServerConfig(BaseModel):
|
||||
"""JSON-RPC server transport configuration.
|
||||
|
||||
Presence of this config in ServerTransportConfig.jsonrpc enables JSON-RPC transport.
|
||||
|
||||
Attributes:
|
||||
rpc_path: URL path for the JSON-RPC endpoint.
|
||||
agent_card_path: URL path for the agent card endpoint.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
rpc_path: str = Field(
|
||||
default="/a2a",
|
||||
description="URL path for the JSON-RPC endpoint",
|
||||
)
|
||||
agent_card_path: str = Field(
|
||||
default="/.well-known/agent-card.json",
|
||||
description="URL path for the agent card endpoint",
|
||||
)
|
||||
|
||||
|
||||
class JSONRPCClientConfig(BaseModel):
|
||||
"""JSON-RPC client transport configuration.
|
||||
|
||||
Attributes:
|
||||
max_request_size: Maximum request body size in bytes.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
max_request_size: int | None = Field(
|
||||
default=None,
|
||||
description="Maximum request body size in bytes",
|
||||
)
|
||||
|
||||
|
||||
class HTTPJSONConfig(BaseModel):
|
||||
"""HTTP+JSON transport configuration.
|
||||
|
||||
Presence of this config in ServerTransportConfig.http_json enables HTTP+JSON transport.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
|
||||
class ServerPushNotificationConfig(BaseModel):
|
||||
"""Configuration for outgoing webhook push notifications.
|
||||
|
||||
Controls how the server signs and delivers push notifications to clients.
|
||||
|
||||
Attributes:
|
||||
signature_secret: Shared secret for HMAC-SHA256 signing of outgoing webhooks.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
signature_secret: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="Shared secret for HMAC-SHA256 signing of outgoing push notifications",
|
||||
)
|
||||
|
||||
|
||||
class ServerTransportConfig(BaseModel):
|
||||
"""Transport configuration for A2A server.
|
||||
|
||||
Groups all transport-related settings including preferred transport
|
||||
and protocol-specific configurations.
|
||||
|
||||
Attributes:
|
||||
preferred: Transport protocol for the preferred endpoint.
|
||||
jsonrpc: JSON-RPC server transport configuration.
|
||||
grpc: gRPC server transport configuration.
|
||||
http_json: HTTP+JSON transport configuration.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
preferred: TransportType = Field(
|
||||
default="JSONRPC",
|
||||
description="Transport protocol for the preferred endpoint",
|
||||
)
|
||||
jsonrpc: JSONRPCServerConfig = Field(
|
||||
default_factory=JSONRPCServerConfig,
|
||||
description="JSON-RPC server transport configuration",
|
||||
)
|
||||
grpc: GRPCServerConfig | None = Field(
|
||||
default=None,
|
||||
description="gRPC server transport configuration",
|
||||
)
|
||||
http_json: HTTPJSONConfig | None = Field(
|
||||
default=None,
|
||||
description="HTTP+JSON transport configuration",
|
||||
)
|
||||
|
||||
|
||||
def _migrate_client_transport_fields(
|
||||
transport: ClientTransportConfig,
|
||||
transport_protocol: TransportType | None,
|
||||
supported_transports: list[TransportType] | None,
|
||||
) -> None:
|
||||
"""Migrate deprecated transport fields to new config."""
|
||||
if transport_protocol is not None:
|
||||
warnings.warn(
|
||||
"transport_protocol is deprecated, use transport=ClientTransportConfig(preferred=...) instead",
|
||||
FutureWarning,
|
||||
stacklevel=5,
|
||||
)
|
||||
object.__setattr__(transport, "preferred", transport_protocol)
|
||||
if supported_transports is not None:
|
||||
warnings.warn(
|
||||
"supported_transports is deprecated, use transport=ClientTransportConfig(supported=...) instead",
|
||||
FutureWarning,
|
||||
stacklevel=5,
|
||||
)
|
||||
object.__setattr__(transport, "supported", supported_transports)
|
||||
|
||||
|
||||
class ClientTransportConfig(BaseModel):
|
||||
"""Transport configuration for A2A client.
|
||||
|
||||
Groups all client transport-related settings including preferred transport,
|
||||
supported transports for negotiation, and protocol-specific configurations.
|
||||
|
||||
Transport negotiation logic:
|
||||
1. If `preferred` is set and server supports it → use client's preferred
|
||||
2. Otherwise, if server's preferred is in client's `supported` → use server's preferred
|
||||
3. Otherwise, find first match from client's `supported` in server's interfaces
|
||||
|
||||
Attributes:
|
||||
preferred: Client's preferred transport. If set, client preference takes priority.
|
||||
supported: Transports the client can use, in order of preference.
|
||||
jsonrpc: JSON-RPC client transport configuration.
|
||||
grpc: gRPC client transport configuration.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
preferred: TransportType | None = Field(
|
||||
default=None,
|
||||
description="Client's preferred transport. If set, takes priority over server preference.",
|
||||
)
|
||||
supported: list[TransportType] = Field(
|
||||
default_factory=lambda: cast(list[TransportType], ["JSONRPC"]),
|
||||
description="Transports the client can use, in order of preference",
|
||||
)
|
||||
jsonrpc: JSONRPCClientConfig = Field(
|
||||
default_factory=JSONRPCClientConfig,
|
||||
description="JSON-RPC client transport configuration",
|
||||
)
|
||||
grpc: GRPCClientConfig = Field(
|
||||
default_factory=GRPCClientConfig,
|
||||
description="gRPC client transport configuration",
|
||||
)
|
||||
|
||||
|
||||
@deprecated(
|
||||
"""
|
||||
`crewai.a2a.config.A2AConfig` is deprecated and will be removed in v2.0.0,
|
||||
@@ -380,14 +65,13 @@ class A2AConfig(BaseModel):
|
||||
fail_fast: If True, raise error when agent unreachable; if False, skip and continue.
|
||||
trust_remote_completion_status: If True, return A2A agent's result directly when completed.
|
||||
updates: Update mechanism config.
|
||||
client_extensions: Client-side processing hooks for tool injection and prompt augmentation.
|
||||
transport: Transport configuration (preferred, supported transports, gRPC settings).
|
||||
transport_protocol: A2A transport protocol (grpc, jsonrpc, http+json).
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
endpoint: Url = Field(description="A2A agent endpoint URL")
|
||||
auth: ClientAuthScheme | None = Field(
|
||||
auth: AuthScheme | None = Field(
|
||||
default=None,
|
||||
description="Authentication scheme",
|
||||
)
|
||||
@@ -411,48 +95,10 @@ class A2AConfig(BaseModel):
|
||||
default_factory=_get_default_update_config,
|
||||
description="Update mechanism config",
|
||||
)
|
||||
client_extensions: list[ValidatedA2AExtension] = Field(
|
||||
default_factory=list,
|
||||
description="Client-side processing hooks for tool injection and prompt augmentation",
|
||||
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"] = Field(
|
||||
default="JSONRPC",
|
||||
description="Specified mode of A2A transport protocol",
|
||||
)
|
||||
transport: ClientTransportConfig = Field(
|
||||
default_factory=ClientTransportConfig,
|
||||
description="Transport configuration (preferred, supported transports, gRPC settings)",
|
||||
)
|
||||
transport_protocol: TransportType | None = Field(
|
||||
default=None,
|
||||
description="Deprecated: Use transport.preferred instead",
|
||||
exclude=True,
|
||||
)
|
||||
supported_transports: list[TransportType] | None = Field(
|
||||
default=None,
|
||||
description="Deprecated: Use transport.supported instead",
|
||||
exclude=True,
|
||||
)
|
||||
use_client_preference: bool | None = Field(
|
||||
default=None,
|
||||
description="Deprecated: Set transport.preferred to enable client preference",
|
||||
exclude=True,
|
||||
)
|
||||
_parallel_delegation: bool = PrivateAttr(default=False)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def _migrate_deprecated_transport_fields(self) -> Self:
|
||||
"""Migrate deprecated transport fields to new config."""
|
||||
_migrate_client_transport_fields(
|
||||
self.transport, self.transport_protocol, self.supported_transports
|
||||
)
|
||||
if self.use_client_preference is not None:
|
||||
warnings.warn(
|
||||
"use_client_preference is deprecated, set transport.preferred to enable client preference",
|
||||
FutureWarning,
|
||||
stacklevel=4,
|
||||
)
|
||||
if self.use_client_preference and self.transport.supported:
|
||||
object.__setattr__(
|
||||
self.transport, "preferred", self.transport.supported[0]
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
class A2AClientConfig(BaseModel):
|
||||
@@ -468,15 +114,15 @@ class A2AClientConfig(BaseModel):
|
||||
trust_remote_completion_status: If True, return A2A agent's result directly when completed.
|
||||
updates: Update mechanism config.
|
||||
accepted_output_modes: Media types the client can accept in responses.
|
||||
extensions: Extension URIs the client supports (A2A protocol extensions).
|
||||
client_extensions: Client-side processing hooks for tool injection and prompt augmentation.
|
||||
transport: Transport configuration (preferred, supported transports, gRPC settings).
|
||||
supported_transports: Ordered list of transport protocols the client supports.
|
||||
use_client_preference: Whether to prioritize client transport preferences over server.
|
||||
extensions: Extension URIs the client supports.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
|
||||
endpoint: Url = Field(description="A2A agent endpoint URL")
|
||||
auth: ClientAuthScheme | None = Field(
|
||||
auth: AuthScheme | None = Field(
|
||||
default=None,
|
||||
description="Authentication scheme",
|
||||
)
|
||||
@@ -504,37 +150,22 @@ class A2AClientConfig(BaseModel):
|
||||
default_factory=lambda: ["application/json"],
|
||||
description="Media types the client can accept in responses",
|
||||
)
|
||||
supported_transports: list[str] = Field(
|
||||
default_factory=lambda: ["JSONRPC"],
|
||||
description="Ordered list of transport protocols the client supports",
|
||||
)
|
||||
use_client_preference: bool = Field(
|
||||
default=False,
|
||||
description="Whether to prioritize client transport preferences over server",
|
||||
)
|
||||
extensions: list[str] = Field(
|
||||
default_factory=list,
|
||||
description="Extension URIs the client supports",
|
||||
)
|
||||
client_extensions: list[ValidatedA2AExtension] = Field(
|
||||
default_factory=list,
|
||||
description="Client-side processing hooks for tool injection and prompt augmentation",
|
||||
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"] = Field(
|
||||
default="JSONRPC",
|
||||
description="Specified mode of A2A transport protocol",
|
||||
)
|
||||
transport: ClientTransportConfig = Field(
|
||||
default_factory=ClientTransportConfig,
|
||||
description="Transport configuration (preferred, supported transports, gRPC settings)",
|
||||
)
|
||||
transport_protocol: TransportType | None = Field(
|
||||
default=None,
|
||||
description="Deprecated: Use transport.preferred instead",
|
||||
exclude=True,
|
||||
)
|
||||
supported_transports: list[TransportType] | None = Field(
|
||||
default=None,
|
||||
description="Deprecated: Use transport.supported instead",
|
||||
exclude=True,
|
||||
)
|
||||
_parallel_delegation: bool = PrivateAttr(default=False)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def _migrate_deprecated_transport_fields(self) -> Self:
|
||||
"""Migrate deprecated transport fields to new config."""
|
||||
_migrate_client_transport_fields(
|
||||
self.transport, self.transport_protocol, self.supported_transports
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
class A2AServerConfig(BaseModel):
|
||||
@@ -551,6 +182,7 @@ class A2AServerConfig(BaseModel):
|
||||
default_input_modes: Default supported input MIME types.
|
||||
default_output_modes: Default supported output MIME types.
|
||||
capabilities: Declaration of optional capabilities.
|
||||
preferred_transport: Transport protocol for the preferred endpoint.
|
||||
protocol_version: A2A protocol version this agent supports.
|
||||
provider: Information about the agent's service provider.
|
||||
documentation_url: URL to the agent's documentation.
|
||||
@@ -560,12 +192,7 @@ class A2AServerConfig(BaseModel):
|
||||
security_schemes: Security schemes available to authorize requests.
|
||||
supports_authenticated_extended_card: Whether agent provides extended card to authenticated users.
|
||||
url: Preferred endpoint URL for the agent.
|
||||
signing_config: Configuration for signing the AgentCard with JWS.
|
||||
signatures: Deprecated. Pre-computed JWS signatures. Use signing_config instead.
|
||||
server_extensions: Server-side A2A protocol extensions with on_request/on_response hooks.
|
||||
push_notifications: Configuration for outgoing push notifications.
|
||||
transport: Transport configuration (preferred transport, gRPC, REST settings).
|
||||
auth: Authentication scheme for A2A endpoints.
|
||||
signatures: JSON Web Signatures for the AgentCard.
|
||||
"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
|
||||
@@ -601,8 +228,12 @@ class A2AServerConfig(BaseModel):
|
||||
),
|
||||
description="Declaration of optional capabilities supported by the agent",
|
||||
)
|
||||
protocol_version: ProtocolVersion = Field(
|
||||
default="0.3.0",
|
||||
preferred_transport: TransportType = Field(
|
||||
default="JSONRPC",
|
||||
description="Transport protocol for the preferred endpoint",
|
||||
)
|
||||
protocol_version: str = Field(
|
||||
default_factory=lambda: version("a2a-sdk"),
|
||||
description="A2A protocol version this agent supports",
|
||||
)
|
||||
provider: AgentProvider | None = Field(
|
||||
@@ -619,7 +250,7 @@ class A2AServerConfig(BaseModel):
|
||||
)
|
||||
additional_interfaces: list[AgentInterface] = Field(
|
||||
default_factory=list,
|
||||
description="Additional supported interfaces.",
|
||||
description="Additional supported interfaces (transport and URL combinations)",
|
||||
)
|
||||
security: list[dict[str, list[str]]] = Field(
|
||||
default_factory=list,
|
||||
@@ -637,54 +268,7 @@ class A2AServerConfig(BaseModel):
|
||||
default=None,
|
||||
description="Preferred endpoint URL for the agent. Set at runtime if not provided.",
|
||||
)
|
||||
signing_config: AgentCardSigningConfig | None = Field(
|
||||
default=None,
|
||||
description="Configuration for signing the AgentCard with JWS",
|
||||
)
|
||||
signatures: list[AgentCardSignature] | None = Field(
|
||||
default=None,
|
||||
description="Deprecated: Use signing_config instead. Pre-computed JWS signatures for the AgentCard.",
|
||||
exclude=True,
|
||||
deprecated=True,
|
||||
)
|
||||
server_extensions: list[ServerExtension] = Field(
|
||||
signatures: list[AgentCardSignature] = Field(
|
||||
default_factory=list,
|
||||
description="Server-side A2A protocol extensions that modify agent behavior",
|
||||
description="JSON Web Signatures for the AgentCard",
|
||||
)
|
||||
push_notifications: ServerPushNotificationConfig | None = Field(
|
||||
default=None,
|
||||
description="Configuration for outgoing push notifications",
|
||||
)
|
||||
transport: ServerTransportConfig = Field(
|
||||
default_factory=ServerTransportConfig,
|
||||
description="Transport configuration (preferred transport, gRPC, REST settings)",
|
||||
)
|
||||
preferred_transport: TransportType | None = Field(
|
||||
default=None,
|
||||
description="Deprecated: Use transport.preferred instead",
|
||||
exclude=True,
|
||||
deprecated=True,
|
||||
)
|
||||
auth: ServerAuthScheme | None = Field(
|
||||
default=None,
|
||||
description="Authentication scheme for A2A endpoints. Defaults to SimpleTokenAuth using AUTH_TOKEN env var.",
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def _migrate_deprecated_fields(self) -> Self:
|
||||
"""Migrate deprecated fields to new config."""
|
||||
if self.preferred_transport is not None:
|
||||
warnings.warn(
|
||||
"preferred_transport is deprecated, use transport=ServerTransportConfig(preferred=...) instead",
|
||||
FutureWarning,
|
||||
stacklevel=4,
|
||||
)
|
||||
object.__setattr__(self.transport, "preferred", self.preferred_transport)
|
||||
if self.signatures is not None:
|
||||
warnings.warn(
|
||||
"signatures is deprecated, use signing_config=AgentCardSigningConfig(...) instead. "
|
||||
"The signatures field will be removed in v2.0.0.",
|
||||
FutureWarning,
|
||||
stacklevel=4,
|
||||
)
|
||||
return self
|
||||
|
||||
@@ -1,491 +1,7 @@
|
||||
"""A2A error codes and error response utilities.
|
||||
|
||||
This module provides a centralized mapping of all A2A protocol error codes
|
||||
as defined in the A2A specification, plus custom CrewAI extensions.
|
||||
|
||||
Error codes follow JSON-RPC 2.0 conventions:
|
||||
- -32700 to -32600: Standard JSON-RPC errors
|
||||
- -32099 to -32000: Server errors (A2A-specific)
|
||||
- -32768 to -32100: Reserved for implementation-defined errors
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from enum import IntEnum
|
||||
from typing import Any
|
||||
"""A2A protocol error types."""
|
||||
|
||||
from a2a.client.errors import A2AClientTimeoutError
|
||||
|
||||
|
||||
class A2APollingTimeoutError(A2AClientTimeoutError):
|
||||
"""Raised when polling exceeds the configured timeout."""
|
||||
|
||||
|
||||
class A2AErrorCode(IntEnum):
|
||||
"""A2A protocol error codes.
|
||||
|
||||
Codes follow JSON-RPC 2.0 specification with A2A-specific extensions.
|
||||
"""
|
||||
|
||||
# JSON-RPC 2.0 Standard Errors (-32700 to -32600)
|
||||
JSON_PARSE_ERROR = -32700
|
||||
"""Invalid JSON was received by the server."""
|
||||
|
||||
INVALID_REQUEST = -32600
|
||||
"""The JSON sent is not a valid Request object."""
|
||||
|
||||
METHOD_NOT_FOUND = -32601
|
||||
"""The method does not exist / is not available."""
|
||||
|
||||
INVALID_PARAMS = -32602
|
||||
"""Invalid method parameter(s)."""
|
||||
|
||||
INTERNAL_ERROR = -32603
|
||||
"""Internal JSON-RPC error."""
|
||||
|
||||
# A2A-Specific Errors (-32099 to -32000)
|
||||
TASK_NOT_FOUND = -32001
|
||||
"""The specified task was not found."""
|
||||
|
||||
TASK_NOT_CANCELABLE = -32002
|
||||
"""The task cannot be canceled (already completed/failed)."""
|
||||
|
||||
PUSH_NOTIFICATION_NOT_SUPPORTED = -32003
|
||||
"""Push notifications are not supported by this agent."""
|
||||
|
||||
UNSUPPORTED_OPERATION = -32004
|
||||
"""The requested operation is not supported."""
|
||||
|
||||
CONTENT_TYPE_NOT_SUPPORTED = -32005
|
||||
"""Incompatible content types between client and server."""
|
||||
|
||||
INVALID_AGENT_RESPONSE = -32006
|
||||
"""The agent produced an invalid response."""
|
||||
|
||||
# CrewAI Custom Extensions (-32768 to -32100)
|
||||
UNSUPPORTED_VERSION = -32009
|
||||
"""The requested A2A protocol version is not supported."""
|
||||
|
||||
UNSUPPORTED_EXTENSION = -32010
|
||||
"""Client does not support required protocol extensions."""
|
||||
|
||||
AUTHENTICATION_REQUIRED = -32011
|
||||
"""Authentication is required for this operation."""
|
||||
|
||||
AUTHORIZATION_FAILED = -32012
|
||||
"""Authorization check failed (insufficient permissions)."""
|
||||
|
||||
RATE_LIMIT_EXCEEDED = -32013
|
||||
"""Rate limit exceeded for this client/operation."""
|
||||
|
||||
TASK_TIMEOUT = -32014
|
||||
"""Task execution timed out."""
|
||||
|
||||
TRANSPORT_NEGOTIATION_FAILED = -32015
|
||||
"""Failed to negotiate a compatible transport protocol."""
|
||||
|
||||
CONTEXT_NOT_FOUND = -32016
|
||||
"""The specified context was not found."""
|
||||
|
||||
SKILL_NOT_FOUND = -32017
|
||||
"""The specified skill was not found."""
|
||||
|
||||
ARTIFACT_NOT_FOUND = -32018
|
||||
"""The specified artifact was not found."""
|
||||
|
||||
|
||||
# Error code to default message mapping
|
||||
ERROR_MESSAGES: dict[int, str] = {
|
||||
A2AErrorCode.JSON_PARSE_ERROR: "Parse error",
|
||||
A2AErrorCode.INVALID_REQUEST: "Invalid Request",
|
||||
A2AErrorCode.METHOD_NOT_FOUND: "Method not found",
|
||||
A2AErrorCode.INVALID_PARAMS: "Invalid params",
|
||||
A2AErrorCode.INTERNAL_ERROR: "Internal error",
|
||||
A2AErrorCode.TASK_NOT_FOUND: "Task not found",
|
||||
A2AErrorCode.TASK_NOT_CANCELABLE: "Task not cancelable",
|
||||
A2AErrorCode.PUSH_NOTIFICATION_NOT_SUPPORTED: "Push Notification is not supported",
|
||||
A2AErrorCode.UNSUPPORTED_OPERATION: "This operation is not supported",
|
||||
A2AErrorCode.CONTENT_TYPE_NOT_SUPPORTED: "Incompatible content types",
|
||||
A2AErrorCode.INVALID_AGENT_RESPONSE: "Invalid agent response",
|
||||
A2AErrorCode.UNSUPPORTED_VERSION: "Unsupported A2A version",
|
||||
A2AErrorCode.UNSUPPORTED_EXTENSION: "Client does not support required extensions",
|
||||
A2AErrorCode.AUTHENTICATION_REQUIRED: "Authentication required",
|
||||
A2AErrorCode.AUTHORIZATION_FAILED: "Authorization failed",
|
||||
A2AErrorCode.RATE_LIMIT_EXCEEDED: "Rate limit exceeded",
|
||||
A2AErrorCode.TASK_TIMEOUT: "Task execution timed out",
|
||||
A2AErrorCode.TRANSPORT_NEGOTIATION_FAILED: "Transport negotiation failed",
|
||||
A2AErrorCode.CONTEXT_NOT_FOUND: "Context not found",
|
||||
A2AErrorCode.SKILL_NOT_FOUND: "Skill not found",
|
||||
A2AErrorCode.ARTIFACT_NOT_FOUND: "Artifact not found",
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class A2AError(Exception):
|
||||
"""Base exception for A2A protocol errors.
|
||||
|
||||
Attributes:
|
||||
code: The A2A/JSON-RPC error code.
|
||||
message: Human-readable error message.
|
||||
data: Optional additional error data.
|
||||
"""
|
||||
|
||||
code: int
|
||||
message: str | None = None
|
||||
data: Any = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None:
|
||||
self.message = ERROR_MESSAGES.get(self.code, "Unknown error")
|
||||
super().__init__(self.message)
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to JSON-RPC error object format."""
|
||||
error: dict[str, Any] = {
|
||||
"code": self.code,
|
||||
"message": self.message,
|
||||
}
|
||||
if self.data is not None:
|
||||
error["data"] = self.data
|
||||
return error
|
||||
|
||||
def to_response(self, request_id: str | int | None = None) -> dict[str, Any]:
|
||||
"""Convert to full JSON-RPC error response."""
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
"error": self.to_dict(),
|
||||
"id": request_id,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class JSONParseError(A2AError):
|
||||
"""Invalid JSON was received."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.JSON_PARSE_ERROR, init=False)
|
||||
|
||||
|
||||
@dataclass
|
||||
class InvalidRequestError(A2AError):
|
||||
"""The JSON sent is not a valid Request object."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.INVALID_REQUEST, init=False)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MethodNotFoundError(A2AError):
|
||||
"""The method does not exist / is not available."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.METHOD_NOT_FOUND, init=False)
|
||||
method: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.method:
|
||||
self.message = f"Method not found: {self.method}"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class InvalidParamsError(A2AError):
|
||||
"""Invalid method parameter(s)."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.INVALID_PARAMS, init=False)
|
||||
param: str | None = None
|
||||
reason: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None:
|
||||
if self.param and self.reason:
|
||||
self.message = f"Invalid parameter '{self.param}': {self.reason}"
|
||||
elif self.param:
|
||||
self.message = f"Invalid parameter: {self.param}"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class InternalError(A2AError):
|
||||
"""Internal JSON-RPC error."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.INTERNAL_ERROR, init=False)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TaskNotFoundError(A2AError):
|
||||
"""The specified task was not found."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.TASK_NOT_FOUND, init=False)
|
||||
task_id: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.task_id:
|
||||
self.message = f"Task not found: {self.task_id}"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class TaskNotCancelableError(A2AError):
|
||||
"""The task cannot be canceled."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.TASK_NOT_CANCELABLE, init=False)
|
||||
task_id: str | None = None
|
||||
reason: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None:
|
||||
if self.task_id and self.reason:
|
||||
self.message = f"Task {self.task_id} cannot be canceled: {self.reason}"
|
||||
elif self.task_id:
|
||||
self.message = f"Task {self.task_id} cannot be canceled"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class PushNotificationNotSupportedError(A2AError):
|
||||
"""Push notifications are not supported."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.PUSH_NOTIFICATION_NOT_SUPPORTED, init=False)
|
||||
|
||||
|
||||
@dataclass
|
||||
class UnsupportedOperationError(A2AError):
|
||||
"""The requested operation is not supported."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.UNSUPPORTED_OPERATION, init=False)
|
||||
operation: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.operation:
|
||||
self.message = f"Operation not supported: {self.operation}"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class ContentTypeNotSupportedError(A2AError):
|
||||
"""Incompatible content types."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.CONTENT_TYPE_NOT_SUPPORTED, init=False)
|
||||
requested_types: list[str] | None = None
|
||||
supported_types: list[str] | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.requested_types and self.supported_types:
|
||||
self.message = (
|
||||
f"Content type not supported. Requested: {self.requested_types}, "
|
||||
f"Supported: {self.supported_types}"
|
||||
)
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class InvalidAgentResponseError(A2AError):
|
||||
"""The agent produced an invalid response."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.INVALID_AGENT_RESPONSE, init=False)
|
||||
|
||||
|
||||
@dataclass
|
||||
class UnsupportedVersionError(A2AError):
|
||||
"""The requested A2A version is not supported."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.UNSUPPORTED_VERSION, init=False)
|
||||
requested_version: str | None = None
|
||||
supported_versions: list[str] | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.requested_version:
|
||||
msg = f"Unsupported A2A version: {self.requested_version}"
|
||||
if self.supported_versions:
|
||||
msg += f". Supported versions: {', '.join(self.supported_versions)}"
|
||||
self.message = msg
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class UnsupportedExtensionError(A2AError):
|
||||
"""Client does not support required extensions."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.UNSUPPORTED_EXTENSION, init=False)
|
||||
required_extensions: list[str] | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.required_extensions:
|
||||
self.message = f"Client does not support required extensions: {', '.join(self.required_extensions)}"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class AuthenticationRequiredError(A2AError):
|
||||
"""Authentication is required."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.AUTHENTICATION_REQUIRED, init=False)
|
||||
|
||||
|
||||
@dataclass
|
||||
class AuthorizationFailedError(A2AError):
|
||||
"""Authorization check failed."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.AUTHORIZATION_FAILED, init=False)
|
||||
required_scope: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.required_scope:
|
||||
self.message = (
|
||||
f"Authorization failed. Required scope: {self.required_scope}"
|
||||
)
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class RateLimitExceededError(A2AError):
|
||||
"""Rate limit exceeded."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.RATE_LIMIT_EXCEEDED, init=False)
|
||||
retry_after: int | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.retry_after:
|
||||
self.message = (
|
||||
f"Rate limit exceeded. Retry after {self.retry_after} seconds"
|
||||
)
|
||||
if self.retry_after:
|
||||
self.data = {"retry_after": self.retry_after}
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class TaskTimeoutError(A2AError):
|
||||
"""Task execution timed out."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.TASK_TIMEOUT, init=False)
|
||||
task_id: str | None = None
|
||||
timeout_seconds: float | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None:
|
||||
if self.task_id and self.timeout_seconds:
|
||||
self.message = (
|
||||
f"Task {self.task_id} timed out after {self.timeout_seconds}s"
|
||||
)
|
||||
elif self.task_id:
|
||||
self.message = f"Task {self.task_id} timed out"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class TransportNegotiationFailedError(A2AError):
|
||||
"""Failed to negotiate a compatible transport protocol."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.TRANSPORT_NEGOTIATION_FAILED, init=False)
|
||||
client_transports: list[str] | None = None
|
||||
server_transports: list[str] | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.client_transports and self.server_transports:
|
||||
self.message = (
|
||||
f"Transport negotiation failed. Client: {self.client_transports}, "
|
||||
f"Server: {self.server_transports}"
|
||||
)
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class ContextNotFoundError(A2AError):
|
||||
"""The specified context was not found."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.CONTEXT_NOT_FOUND, init=False)
|
||||
context_id: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.context_id:
|
||||
self.message = f"Context not found: {self.context_id}"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class SkillNotFoundError(A2AError):
|
||||
"""The specified skill was not found."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.SKILL_NOT_FOUND, init=False)
|
||||
skill_id: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.skill_id:
|
||||
self.message = f"Skill not found: {self.skill_id}"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
@dataclass
|
||||
class ArtifactNotFoundError(A2AError):
|
||||
"""The specified artifact was not found."""
|
||||
|
||||
code: int = field(default=A2AErrorCode.ARTIFACT_NOT_FOUND, init=False)
|
||||
artifact_id: str | None = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.message is None and self.artifact_id:
|
||||
self.message = f"Artifact not found: {self.artifact_id}"
|
||||
super().__post_init__()
|
||||
|
||||
|
||||
def create_error_response(
|
||||
code: int | A2AErrorCode,
|
||||
message: str | None = None,
|
||||
data: Any = None,
|
||||
request_id: str | int | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Create a JSON-RPC error response.
|
||||
|
||||
Args:
|
||||
code: Error code (A2AErrorCode or int).
|
||||
message: Optional error message (uses default if not provided).
|
||||
data: Optional additional error data.
|
||||
request_id: Request ID for correlation.
|
||||
|
||||
Returns:
|
||||
Dict in JSON-RPC error response format.
|
||||
"""
|
||||
error = A2AError(code=int(code), message=message, data=data)
|
||||
return error.to_response(request_id)
|
||||
|
||||
|
||||
def is_retryable_error(code: int) -> bool:
|
||||
"""Check if an error is potentially retryable.
|
||||
|
||||
Args:
|
||||
code: Error code to check.
|
||||
|
||||
Returns:
|
||||
True if the error might be resolved by retrying.
|
||||
"""
|
||||
retryable_codes = {
|
||||
A2AErrorCode.INTERNAL_ERROR,
|
||||
A2AErrorCode.RATE_LIMIT_EXCEEDED,
|
||||
A2AErrorCode.TASK_TIMEOUT,
|
||||
}
|
||||
return code in retryable_codes
|
||||
|
||||
|
||||
def is_client_error(code: int) -> bool:
|
||||
"""Check if an error is a client-side error.
|
||||
|
||||
Args:
|
||||
code: Error code to check.
|
||||
|
||||
Returns:
|
||||
True if the error is due to client request issues.
|
||||
"""
|
||||
client_error_codes = {
|
||||
A2AErrorCode.JSON_PARSE_ERROR,
|
||||
A2AErrorCode.INVALID_REQUEST,
|
||||
A2AErrorCode.METHOD_NOT_FOUND,
|
||||
A2AErrorCode.INVALID_PARAMS,
|
||||
A2AErrorCode.TASK_NOT_FOUND,
|
||||
A2AErrorCode.CONTENT_TYPE_NOT_SUPPORTED,
|
||||
A2AErrorCode.UNSUPPORTED_VERSION,
|
||||
A2AErrorCode.UNSUPPORTED_EXTENSION,
|
||||
A2AErrorCode.CONTEXT_NOT_FOUND,
|
||||
A2AErrorCode.SKILL_NOT_FOUND,
|
||||
A2AErrorCode.ARTIFACT_NOT_FOUND,
|
||||
}
|
||||
return code in client_error_codes
|
||||
|
||||
@@ -1,37 +1,4 @@
|
||||
"""A2A Protocol Extensions for CrewAI.
|
||||
|
||||
This module contains extensions to the A2A (Agent-to-Agent) protocol.
|
||||
|
||||
**Client-side extensions** (A2AExtension) allow customizing how the A2A wrapper
|
||||
processes requests and responses during delegation to remote agents. These provide
|
||||
hooks for tool injection, prompt augmentation, and response processing.
|
||||
|
||||
**Server-side extensions** (ServerExtension) allow agents to offer additional
|
||||
functionality beyond the core A2A specification. Clients activate extensions
|
||||
via the X-A2A-Extensions header.
|
||||
|
||||
See: https://a2a-protocol.org/latest/topics/extensions/
|
||||
"""
|
||||
|
||||
from crewai.a2a.extensions.base import (
|
||||
A2AExtension,
|
||||
ConversationState,
|
||||
ExtensionRegistry,
|
||||
ValidatedA2AExtension,
|
||||
)
|
||||
from crewai.a2a.extensions.server import (
|
||||
ExtensionContext,
|
||||
ServerExtension,
|
||||
ServerExtensionRegistry,
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"A2AExtension",
|
||||
"ConversationState",
|
||||
"ExtensionContext",
|
||||
"ExtensionRegistry",
|
||||
"ServerExtension",
|
||||
"ServerExtensionRegistry",
|
||||
"ValidatedA2AExtension",
|
||||
]
|
||||
|
||||
@@ -1,20 +1,14 @@
|
||||
"""Base extension interface for CrewAI A2A wrapper processing hooks.
|
||||
"""Base extension interface for A2A wrapper integrations.
|
||||
|
||||
This module defines the protocol for extending CrewAI's A2A wrapper functionality
|
||||
with custom logic for tool injection, prompt augmentation, and response processing.
|
||||
|
||||
Note: These are CrewAI-specific processing hooks, NOT A2A protocol extensions.
|
||||
A2A protocol extensions are capability declarations using AgentExtension objects
|
||||
in AgentCard.capabilities.extensions, activated via the A2A-Extensions HTTP header.
|
||||
See: https://a2a-protocol.org/latest/topics/extensions/
|
||||
This module defines the protocol for extending A2A wrapper functionality
|
||||
with custom logic for conversation processing, prompt augmentation, and
|
||||
agent response handling.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Sequence
|
||||
from typing import TYPE_CHECKING, Annotated, Any, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BeforeValidator
|
||||
from typing import TYPE_CHECKING, Any, Protocol
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -23,20 +17,6 @@ if TYPE_CHECKING:
|
||||
from crewai.agent.core import Agent
|
||||
|
||||
|
||||
def _validate_a2a_extension(v: Any) -> Any:
|
||||
"""Validate that value implements A2AExtension protocol."""
|
||||
if not isinstance(v, A2AExtension):
|
||||
raise ValueError(
|
||||
f"Value must implement A2AExtension protocol. "
|
||||
f"Got {type(v).__name__} which is missing required methods."
|
||||
)
|
||||
return v
|
||||
|
||||
|
||||
ValidatedA2AExtension = Annotated[Any, BeforeValidator(_validate_a2a_extension)]
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class ConversationState(Protocol):
|
||||
"""Protocol for extension-specific conversation state.
|
||||
|
||||
@@ -53,36 +33,11 @@ class ConversationState(Protocol):
|
||||
...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class A2AExtension(Protocol):
|
||||
"""Protocol for A2A wrapper extensions.
|
||||
|
||||
Extensions can implement this protocol to inject custom logic into
|
||||
the A2A conversation flow at various integration points.
|
||||
|
||||
Example:
|
||||
class MyExtension:
|
||||
def inject_tools(self, agent: Agent) -> None:
|
||||
# Add custom tools to the agent
|
||||
pass
|
||||
|
||||
def extract_state_from_history(
|
||||
self, conversation_history: Sequence[Message]
|
||||
) -> ConversationState | None:
|
||||
# Extract state from conversation
|
||||
return None
|
||||
|
||||
def augment_prompt(
|
||||
self, base_prompt: str, conversation_state: ConversationState | None
|
||||
) -> str:
|
||||
# Add custom instructions
|
||||
return base_prompt
|
||||
|
||||
def process_response(
|
||||
self, agent_response: Any, conversation_state: ConversationState | None
|
||||
) -> Any:
|
||||
# Modify response if needed
|
||||
return agent_response
|
||||
"""
|
||||
|
||||
def inject_tools(self, agent: Agent) -> None:
|
||||
|
||||
@@ -1,170 +1,34 @@
|
||||
"""A2A Protocol extension utilities.
|
||||
"""Extension registry factory for A2A configurations.
|
||||
|
||||
This module provides utilities for working with A2A protocol extensions as
|
||||
defined in the A2A specification. Extensions are capability declarations in
|
||||
AgentCard.capabilities.extensions using AgentExtension objects, activated
|
||||
via the X-A2A-Extensions HTTP header.
|
||||
|
||||
See: https://a2a-protocol.org/latest/topics/extensions/
|
||||
This module provides utilities for creating extension registries from A2A configurations.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from a2a.client.middleware import ClientCallContext, ClientCallInterceptor
|
||||
from a2a.extensions.common import (
|
||||
HTTP_EXTENSION_HEADER,
|
||||
)
|
||||
from a2a.types import AgentCard, AgentExtension
|
||||
|
||||
from crewai.a2a.config import A2AClientConfig, A2AConfig
|
||||
from crewai.a2a.extensions.base import ExtensionRegistry
|
||||
|
||||
|
||||
def get_extensions_from_config(
|
||||
a2a_config: list[A2AConfig | A2AClientConfig] | A2AConfig | A2AClientConfig,
|
||||
) -> list[str]:
|
||||
"""Extract extension URIs from A2A configuration.
|
||||
|
||||
Args:
|
||||
a2a_config: A2A configuration (single or list).
|
||||
|
||||
Returns:
|
||||
Deduplicated list of extension URIs from all configs.
|
||||
"""
|
||||
configs = a2a_config if isinstance(a2a_config, list) else [a2a_config]
|
||||
seen: set[str] = set()
|
||||
result: list[str] = []
|
||||
|
||||
for config in configs:
|
||||
if not isinstance(config, A2AClientConfig):
|
||||
continue
|
||||
for uri in config.extensions:
|
||||
if uri not in seen:
|
||||
seen.add(uri)
|
||||
result.append(uri)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class ExtensionsMiddleware(ClientCallInterceptor):
|
||||
"""Middleware to add X-A2A-Extensions header to requests.
|
||||
|
||||
This middleware adds the extensions header to all outgoing requests,
|
||||
declaring which A2A protocol extensions the client supports.
|
||||
"""
|
||||
|
||||
def __init__(self, extensions: list[str]) -> None:
|
||||
"""Initialize with extension URIs.
|
||||
|
||||
Args:
|
||||
extensions: List of extension URIs the client supports.
|
||||
"""
|
||||
self._extensions = extensions
|
||||
|
||||
async def intercept(
|
||||
self,
|
||||
method_name: str,
|
||||
request_payload: dict[str, Any],
|
||||
http_kwargs: dict[str, Any],
|
||||
agent_card: AgentCard | None,
|
||||
context: ClientCallContext | None,
|
||||
) -> tuple[dict[str, Any], dict[str, Any]]:
|
||||
"""Add extensions header to the request.
|
||||
|
||||
Args:
|
||||
method_name: The A2A method being called.
|
||||
request_payload: The JSON-RPC request payload.
|
||||
http_kwargs: HTTP request kwargs (headers, etc).
|
||||
agent_card: The target agent's card.
|
||||
context: Optional call context.
|
||||
|
||||
Returns:
|
||||
Tuple of (request_payload, modified_http_kwargs).
|
||||
"""
|
||||
if self._extensions:
|
||||
headers = http_kwargs.setdefault("headers", {})
|
||||
headers[HTTP_EXTENSION_HEADER] = ",".join(self._extensions)
|
||||
return request_payload, http_kwargs
|
||||
|
||||
|
||||
def validate_required_extensions(
|
||||
agent_card: AgentCard,
|
||||
client_extensions: list[str] | None,
|
||||
) -> list[AgentExtension]:
|
||||
"""Validate that client supports all required extensions from agent.
|
||||
|
||||
Args:
|
||||
agent_card: The agent's card with declared extensions.
|
||||
client_extensions: Extension URIs the client supports.
|
||||
|
||||
Returns:
|
||||
List of unsupported required extensions.
|
||||
|
||||
Raises:
|
||||
None - returns list of unsupported extensions for caller to handle.
|
||||
"""
|
||||
unsupported: list[AgentExtension] = []
|
||||
client_set = set(client_extensions or [])
|
||||
|
||||
if not agent_card.capabilities or not agent_card.capabilities.extensions:
|
||||
return unsupported
|
||||
|
||||
unsupported.extend(
|
||||
ext
|
||||
for ext in agent_card.capabilities.extensions
|
||||
if ext.required and ext.uri not in client_set
|
||||
)
|
||||
|
||||
return unsupported
|
||||
if TYPE_CHECKING:
|
||||
from crewai.a2a.config import A2AConfig
|
||||
|
||||
|
||||
def create_extension_registry_from_config(
|
||||
a2a_config: list[A2AConfig | A2AClientConfig] | A2AConfig | A2AClientConfig,
|
||||
a2a_config: list[A2AConfig] | A2AConfig,
|
||||
) -> ExtensionRegistry:
|
||||
"""Create an extension registry from A2A client configuration.
|
||||
|
||||
Extracts client_extensions from each A2AClientConfig and registers them
|
||||
with the ExtensionRegistry. These extensions provide CrewAI-specific
|
||||
processing hooks (tool injection, prompt augmentation, response processing).
|
||||
|
||||
Note: A2A protocol extensions (URI strings sent via X-A2A-Extensions header)
|
||||
are handled separately via get_extensions_from_config() and ExtensionsMiddleware.
|
||||
"""Create an extension registry from A2A configuration.
|
||||
|
||||
Args:
|
||||
a2a_config: A2A configuration (single or list).
|
||||
a2a_config: A2A configuration (single or list)
|
||||
|
||||
Returns:
|
||||
Extension registry with all client_extensions registered.
|
||||
|
||||
Example:
|
||||
class LoggingExtension:
|
||||
def inject_tools(self, agent): pass
|
||||
def extract_state_from_history(self, history): return None
|
||||
def augment_prompt(self, prompt, state): return prompt
|
||||
def process_response(self, response, state):
|
||||
print(f"Response: {response}")
|
||||
return response
|
||||
|
||||
config = A2AClientConfig(
|
||||
endpoint="https://agent.example.com",
|
||||
client_extensions=[LoggingExtension()],
|
||||
)
|
||||
registry = create_extension_registry_from_config(config)
|
||||
Configured extension registry with all applicable extensions
|
||||
"""
|
||||
registry = ExtensionRegistry()
|
||||
configs = a2a_config if isinstance(a2a_config, list) else [a2a_config]
|
||||
|
||||
seen: set[int] = set()
|
||||
|
||||
for config in configs:
|
||||
if isinstance(config, (A2AConfig, A2AClientConfig)):
|
||||
client_exts = getattr(config, "client_extensions", [])
|
||||
for extension in client_exts:
|
||||
ext_id = id(extension)
|
||||
if ext_id not in seen:
|
||||
seen.add(ext_id)
|
||||
registry.register(extension)
|
||||
for _ in configs:
|
||||
pass
|
||||
|
||||
return registry
|
||||
|
||||
@@ -1,305 +0,0 @@
|
||||
"""A2A protocol server extensions for CrewAI agents.
|
||||
|
||||
This module provides the base class and context for implementing A2A protocol
|
||||
extensions on the server side. Extensions allow agents to offer additional
|
||||
functionality beyond the core A2A specification.
|
||||
|
||||
See: https://a2a-protocol.org/latest/topics/extensions/
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass, field
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Annotated, Any
|
||||
|
||||
from a2a.types import AgentExtension
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from a2a.server.context import ServerCallContext
|
||||
from pydantic import GetCoreSchemaHandler
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ExtensionContext:
|
||||
"""Context passed to extension hooks during request processing.
|
||||
|
||||
Provides access to request metadata, client extensions, and shared state
|
||||
that extensions can read from and write to.
|
||||
|
||||
Attributes:
|
||||
metadata: Request metadata dict, includes extension-namespaced keys.
|
||||
client_extensions: Set of extension URIs the client declared support for.
|
||||
state: Mutable dict for extensions to share data during request lifecycle.
|
||||
server_context: The underlying A2A server call context.
|
||||
"""
|
||||
|
||||
metadata: dict[str, Any]
|
||||
client_extensions: set[str]
|
||||
state: dict[str, Any] = field(default_factory=dict)
|
||||
server_context: ServerCallContext | None = None
|
||||
|
||||
def get_extension_metadata(self, uri: str, key: str) -> Any | None:
|
||||
"""Get extension-specific metadata value.
|
||||
|
||||
Extension metadata uses namespaced keys in the format:
|
||||
"{extension_uri}/{key}"
|
||||
|
||||
Args:
|
||||
uri: The extension URI.
|
||||
key: The metadata key within the extension namespace.
|
||||
|
||||
Returns:
|
||||
The metadata value, or None if not present.
|
||||
"""
|
||||
full_key = f"{uri}/{key}"
|
||||
return self.metadata.get(full_key)
|
||||
|
||||
def set_extension_metadata(self, uri: str, key: str, value: Any) -> None:
|
||||
"""Set extension-specific metadata value.
|
||||
|
||||
Args:
|
||||
uri: The extension URI.
|
||||
key: The metadata key within the extension namespace.
|
||||
value: The value to set.
|
||||
"""
|
||||
full_key = f"{uri}/{key}"
|
||||
self.metadata[full_key] = value
|
||||
|
||||
|
||||
class ServerExtension(ABC):
|
||||
"""Base class for A2A protocol server extensions.
|
||||
|
||||
Subclass this to create custom extensions that modify agent behavior
|
||||
when clients activate them. Extensions are identified by URI and can
|
||||
be marked as required.
|
||||
|
||||
Example:
|
||||
class SamplingExtension(ServerExtension):
|
||||
uri = "urn:crewai:ext:sampling/v1"
|
||||
required = True
|
||||
|
||||
def __init__(self, max_tokens: int = 4096):
|
||||
self.max_tokens = max_tokens
|
||||
|
||||
@property
|
||||
def params(self) -> dict[str, Any]:
|
||||
return {"max_tokens": self.max_tokens}
|
||||
|
||||
async def on_request(self, context: ExtensionContext) -> None:
|
||||
limit = context.get_extension_metadata(self.uri, "limit")
|
||||
if limit:
|
||||
context.state["token_limit"] = int(limit)
|
||||
|
||||
async def on_response(self, context: ExtensionContext, result: Any) -> Any:
|
||||
return result
|
||||
"""
|
||||
|
||||
uri: Annotated[str, "Extension URI identifier. Must be unique."]
|
||||
required: Annotated[bool, "Whether clients must support this extension."] = False
|
||||
description: Annotated[
|
||||
str | None, "Human-readable description of the extension."
|
||||
] = None
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls,
|
||||
_source_type: Any,
|
||||
_handler: GetCoreSchemaHandler,
|
||||
) -> CoreSchema:
|
||||
"""Tell Pydantic how to validate ServerExtension instances."""
|
||||
return core_schema.is_instance_schema(cls)
|
||||
|
||||
@property
|
||||
def params(self) -> dict[str, Any] | None:
|
||||
"""Extension parameters to advertise in AgentCard.
|
||||
|
||||
Override this property to expose configuration that clients can read.
|
||||
|
||||
Returns:
|
||||
Dict of parameter names to values, or None.
|
||||
"""
|
||||
return None
|
||||
|
||||
def agent_extension(self) -> AgentExtension:
|
||||
"""Generate the AgentExtension object for the AgentCard.
|
||||
|
||||
Returns:
|
||||
AgentExtension with this extension's URI, required flag, and params.
|
||||
"""
|
||||
return AgentExtension(
|
||||
uri=self.uri,
|
||||
required=self.required if self.required else None,
|
||||
description=self.description,
|
||||
params=self.params,
|
||||
)
|
||||
|
||||
def is_active(self, context: ExtensionContext) -> bool:
|
||||
"""Check if this extension is active for the current request.
|
||||
|
||||
An extension is active if the client declared support for it.
|
||||
|
||||
Args:
|
||||
context: The extension context for the current request.
|
||||
|
||||
Returns:
|
||||
True if the client supports this extension.
|
||||
"""
|
||||
return self.uri in context.client_extensions
|
||||
|
||||
@abstractmethod
|
||||
async def on_request(self, context: ExtensionContext) -> None:
|
||||
"""Called before agent execution if extension is active.
|
||||
|
||||
Use this hook to:
|
||||
- Read extension-specific metadata from the request
|
||||
- Set up state for the execution
|
||||
- Modify execution parameters via context.state
|
||||
|
||||
Args:
|
||||
context: The extension context with request metadata and state.
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
async def on_response(self, context: ExtensionContext, result: Any) -> Any:
|
||||
"""Called after agent execution if extension is active.
|
||||
|
||||
Use this hook to:
|
||||
- Modify or enhance the result
|
||||
- Add extension-specific metadata to the response
|
||||
- Clean up any resources
|
||||
|
||||
Args:
|
||||
context: The extension context with request metadata and state.
|
||||
result: The agent execution result.
|
||||
|
||||
Returns:
|
||||
The result, potentially modified.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
class ServerExtensionRegistry:
|
||||
"""Registry for managing server-side A2A protocol extensions.
|
||||
|
||||
Collects extensions and provides methods to generate AgentCapabilities
|
||||
and invoke extension hooks during request processing.
|
||||
"""
|
||||
|
||||
def __init__(self, extensions: list[ServerExtension] | None = None) -> None:
|
||||
"""Initialize the registry with optional extensions.
|
||||
|
||||
Args:
|
||||
extensions: Initial list of extensions to register.
|
||||
"""
|
||||
self._extensions: list[ServerExtension] = list(extensions) if extensions else []
|
||||
self._by_uri: dict[str, ServerExtension] = {
|
||||
ext.uri: ext for ext in self._extensions
|
||||
}
|
||||
|
||||
def register(self, extension: ServerExtension) -> None:
|
||||
"""Register an extension.
|
||||
|
||||
Args:
|
||||
extension: The extension to register.
|
||||
|
||||
Raises:
|
||||
ValueError: If an extension with the same URI is already registered.
|
||||
"""
|
||||
if extension.uri in self._by_uri:
|
||||
raise ValueError(f"Extension already registered: {extension.uri}")
|
||||
self._extensions.append(extension)
|
||||
self._by_uri[extension.uri] = extension
|
||||
|
||||
def get_agent_extensions(self) -> list[AgentExtension]:
|
||||
"""Get AgentExtension objects for all registered extensions.
|
||||
|
||||
Returns:
|
||||
List of AgentExtension objects for the AgentCard.
|
||||
"""
|
||||
return [ext.agent_extension() for ext in self._extensions]
|
||||
|
||||
def get_extension(self, uri: str) -> ServerExtension | None:
|
||||
"""Get an extension by URI.
|
||||
|
||||
Args:
|
||||
uri: The extension URI.
|
||||
|
||||
Returns:
|
||||
The extension, or None if not found.
|
||||
"""
|
||||
return self._by_uri.get(uri)
|
||||
|
||||
@staticmethod
|
||||
def create_context(
|
||||
metadata: dict[str, Any],
|
||||
client_extensions: set[str],
|
||||
server_context: ServerCallContext | None = None,
|
||||
) -> ExtensionContext:
|
||||
"""Create an ExtensionContext for a request.
|
||||
|
||||
Args:
|
||||
metadata: Request metadata dict.
|
||||
client_extensions: Set of extension URIs from client.
|
||||
server_context: Optional server call context.
|
||||
|
||||
Returns:
|
||||
ExtensionContext for use in hooks.
|
||||
"""
|
||||
return ExtensionContext(
|
||||
metadata=metadata,
|
||||
client_extensions=client_extensions,
|
||||
server_context=server_context,
|
||||
)
|
||||
|
||||
async def invoke_on_request(self, context: ExtensionContext) -> None:
|
||||
"""Invoke on_request hooks for all active extensions.
|
||||
|
||||
Tracks activated extensions and isolates errors from individual hooks.
|
||||
|
||||
Args:
|
||||
context: The extension context for the request.
|
||||
"""
|
||||
for extension in self._extensions:
|
||||
if extension.is_active(context):
|
||||
try:
|
||||
await extension.on_request(context)
|
||||
if context.server_context is not None:
|
||||
context.server_context.activated_extensions.add(extension.uri)
|
||||
except Exception:
|
||||
logger.exception(
|
||||
"Extension on_request hook failed",
|
||||
extra={"extension": extension.uri},
|
||||
)
|
||||
|
||||
async def invoke_on_response(self, context: ExtensionContext, result: Any) -> Any:
|
||||
"""Invoke on_response hooks for all active extensions.
|
||||
|
||||
Isolates errors from individual hooks to prevent one failing extension
|
||||
from breaking the entire response.
|
||||
|
||||
Args:
|
||||
context: The extension context for the request.
|
||||
result: The agent execution result.
|
||||
|
||||
Returns:
|
||||
The result after all extensions have processed it.
|
||||
"""
|
||||
processed = result
|
||||
for extension in self._extensions:
|
||||
if extension.is_active(context):
|
||||
try:
|
||||
processed = await extension.on_response(context, processed)
|
||||
except Exception:
|
||||
logger.exception(
|
||||
"Extension on_response hook failed",
|
||||
extra={"extension": extension.uri},
|
||||
)
|
||||
return processed
|
||||
@@ -51,13 +51,6 @@ ACTIONABLE_STATES: frozenset[TaskState] = frozenset(
|
||||
}
|
||||
)
|
||||
|
||||
PENDING_STATES: frozenset[TaskState] = frozenset(
|
||||
{
|
||||
TaskState.submitted,
|
||||
TaskState.working,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class TaskStateResult(TypedDict):
|
||||
"""Result dictionary from processing A2A task state."""
|
||||
@@ -279,9 +272,6 @@ def process_task_state(
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
if a2a_task.status.state in PENDING_STATES:
|
||||
return None
|
||||
|
||||
return None
|
||||
|
||||
|
||||
|
||||
@@ -38,18 +38,3 @@ You MUST now:
|
||||
DO NOT send another request - the task is already done.
|
||||
</REMOTE_AGENT_STATUS>
|
||||
"""
|
||||
|
||||
REMOTE_AGENT_RESPONSE_NOTICE: Final[str] = """
|
||||
<REMOTE_AGENT_STATUS>
|
||||
STATUS: RESPONSE_RECEIVED
|
||||
The remote agent has responded. Their response is in the conversation history above.
|
||||
|
||||
You MUST now:
|
||||
1. Set is_a2a=false (the remote task is complete and cannot receive more messages)
|
||||
2. Provide YOUR OWN response to the original task based on the information received
|
||||
|
||||
IMPORTANT: Your response should be addressed to the USER who gave you the original task.
|
||||
Report what the remote agent told you in THIRD PERSON (e.g., "The remote agent said..." or "I learned that...").
|
||||
Do NOT address the remote agent directly or use "you" to refer to them.
|
||||
</REMOTE_AGENT_STATUS>
|
||||
"""
|
||||
|
||||
@@ -36,17 +36,6 @@ except ImportError:
|
||||
|
||||
|
||||
TransportType = Literal["JSONRPC", "GRPC", "HTTP+JSON"]
|
||||
ProtocolVersion = Literal[
|
||||
"0.2.0",
|
||||
"0.2.1",
|
||||
"0.2.2",
|
||||
"0.2.3",
|
||||
"0.2.4",
|
||||
"0.2.5",
|
||||
"0.2.6",
|
||||
"0.3.0",
|
||||
"0.4.0",
|
||||
]
|
||||
|
||||
http_url_adapter: TypeAdapter[HttpUrl] = TypeAdapter(HttpUrl)
|
||||
|
||||
|
||||
@@ -2,28 +2,12 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any, NamedTuple, Protocol, TypedDict
|
||||
from typing import TYPE_CHECKING, Any, Protocol, TypedDict
|
||||
|
||||
from pydantic import GetCoreSchemaHandler
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
|
||||
|
||||
class CommonParams(NamedTuple):
|
||||
"""Common parameters shared across all update handlers.
|
||||
|
||||
Groups the frequently-passed parameters to reduce duplication.
|
||||
"""
|
||||
|
||||
turn_number: int
|
||||
is_multiturn: bool
|
||||
agent_role: str | None
|
||||
endpoint: str
|
||||
a2a_agent_name: str | None
|
||||
context_id: str | None
|
||||
from_task: Any
|
||||
from_agent: Any
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from a2a.client import Client
|
||||
from a2a.types import AgentCard, Message, Task
|
||||
@@ -79,8 +63,8 @@ class PushNotificationResultStore(Protocol):
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls,
|
||||
_source_type: Any,
|
||||
_handler: GetCoreSchemaHandler,
|
||||
source_type: Any,
|
||||
handler: GetCoreSchemaHandler,
|
||||
) -> CoreSchema:
|
||||
return core_schema.any_schema()
|
||||
|
||||
@@ -146,31 +130,3 @@ class UpdateHandler(Protocol):
|
||||
Result dictionary with status, result/error, and history.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
def extract_common_params(kwargs: BaseHandlerKwargs) -> CommonParams:
|
||||
"""Extract common parameters from handler kwargs.
|
||||
|
||||
Args:
|
||||
kwargs: Handler kwargs dict.
|
||||
|
||||
Returns:
|
||||
CommonParams with extracted values.
|
||||
|
||||
Raises:
|
||||
ValueError: If endpoint is not provided.
|
||||
"""
|
||||
endpoint = kwargs.get("endpoint")
|
||||
if endpoint is None:
|
||||
raise ValueError("endpoint is required for update handlers")
|
||||
|
||||
return CommonParams(
|
||||
turn_number=kwargs.get("turn_number", 0),
|
||||
is_multiturn=kwargs.get("is_multiturn", False),
|
||||
agent_role=kwargs.get("agent_role"),
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=kwargs.get("a2a_agent_name"),
|
||||
context_id=kwargs.get("context_id"),
|
||||
from_task=kwargs.get("from_task"),
|
||||
from_agent=kwargs.get("from_agent"),
|
||||
)
|
||||
|
||||
@@ -94,7 +94,7 @@ async def _poll_task_until_complete(
|
||||
A2APollingStatusEvent(
|
||||
task_id=task_id,
|
||||
context_id=effective_context_id,
|
||||
state=str(task.status.state.value),
|
||||
state=str(task.status.state.value) if task.status.state else "unknown",
|
||||
elapsed_seconds=elapsed,
|
||||
poll_count=poll_count,
|
||||
endpoint=endpoint,
|
||||
@@ -325,7 +325,7 @@ class PollingHandler:
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint,
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="unexpected_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
|
||||
@@ -2,30 +2,10 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Annotated
|
||||
|
||||
from a2a.types import PushNotificationAuthenticationInfo
|
||||
from pydantic import AnyHttpUrl, BaseModel, BeforeValidator, Field
|
||||
from pydantic import AnyHttpUrl, BaseModel, Field
|
||||
|
||||
from crewai.a2a.updates.base import PushNotificationResultStore
|
||||
from crewai.a2a.updates.push_notifications.signature import WebhookSignatureConfig
|
||||
|
||||
|
||||
def _coerce_signature(
|
||||
value: str | WebhookSignatureConfig | None,
|
||||
) -> WebhookSignatureConfig | None:
|
||||
"""Convert string secret to WebhookSignatureConfig."""
|
||||
if value is None:
|
||||
return None
|
||||
if isinstance(value, str):
|
||||
return WebhookSignatureConfig.hmac_sha256(secret=value)
|
||||
return value
|
||||
|
||||
|
||||
SignatureInput = Annotated[
|
||||
WebhookSignatureConfig | None,
|
||||
BeforeValidator(_coerce_signature),
|
||||
]
|
||||
|
||||
|
||||
class PushNotificationConfig(BaseModel):
|
||||
@@ -39,8 +19,6 @@ class PushNotificationConfig(BaseModel):
|
||||
timeout: Max seconds to wait for task completion.
|
||||
interval: Seconds between result polling attempts.
|
||||
result_store: Store for receiving push notification results.
|
||||
signature: HMAC signature config. Pass a string (secret) for defaults,
|
||||
or WebhookSignatureConfig for custom settings.
|
||||
"""
|
||||
|
||||
url: AnyHttpUrl = Field(description="Callback URL for push notifications")
|
||||
@@ -58,8 +36,3 @@ class PushNotificationConfig(BaseModel):
|
||||
result_store: PushNotificationResultStore | None = Field(
|
||||
default=None, description="Result store for push notification handling"
|
||||
)
|
||||
signature: SignatureInput = Field(
|
||||
default=None,
|
||||
description="HMAC signature config. Pass a string (secret) for simple usage, "
|
||||
"or WebhookSignatureConfig for custom headers/tolerance.",
|
||||
)
|
||||
|
||||
@@ -24,10 +24,8 @@ from crewai.a2a.task_helpers import (
|
||||
send_message_and_get_task_id,
|
||||
)
|
||||
from crewai.a2a.updates.base import (
|
||||
CommonParams,
|
||||
PushNotificationHandlerKwargs,
|
||||
PushNotificationResultStore,
|
||||
extract_common_params,
|
||||
)
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
@@ -41,81 +39,10 @@ from crewai.events.types.a2a_events import (
|
||||
if TYPE_CHECKING:
|
||||
from a2a.types import Task as A2ATask
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _handle_push_error(
|
||||
error: Exception,
|
||||
error_msg: str,
|
||||
error_type: str,
|
||||
new_messages: list[Message],
|
||||
agent_branch: Any | None,
|
||||
params: CommonParams,
|
||||
task_id: str | None,
|
||||
status_code: int | None = None,
|
||||
) -> TaskStateResult:
|
||||
"""Handle push notification errors with consistent event emission.
|
||||
|
||||
Args:
|
||||
error: The exception that occurred.
|
||||
error_msg: Formatted error message for the result.
|
||||
error_type: Type of error for the event.
|
||||
new_messages: List to append error message to.
|
||||
agent_branch: Agent tree branch for events.
|
||||
params: Common handler parameters.
|
||||
task_id: A2A task ID.
|
||||
status_code: HTTP status code if applicable.
|
||||
|
||||
Returns:
|
||||
TaskStateResult with failed status.
|
||||
"""
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=params.context_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=params.endpoint,
|
||||
error=str(error),
|
||||
error_type=error_type,
|
||||
status_code=status_code,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=params.context_id,
|
||||
task_id=task_id,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=params.turn_number,
|
||||
context_id=params.context_id,
|
||||
is_multiturn=params.is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=params.agent_role,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
|
||||
async def _wait_for_push_result(
|
||||
task_id: str,
|
||||
result_store: PushNotificationResultStore,
|
||||
@@ -199,8 +126,15 @@ class PushNotificationHandler:
|
||||
polling_timeout = kwargs.get("polling_timeout", 300.0)
|
||||
polling_interval = kwargs.get("polling_interval", 2.0)
|
||||
agent_branch = kwargs.get("agent_branch")
|
||||
turn_number = kwargs.get("turn_number", 0)
|
||||
is_multiturn = kwargs.get("is_multiturn", False)
|
||||
agent_role = kwargs.get("agent_role")
|
||||
context_id = kwargs.get("context_id")
|
||||
task_id = kwargs.get("task_id")
|
||||
params = extract_common_params(kwargs)
|
||||
endpoint = kwargs.get("endpoint")
|
||||
a2a_agent_name = kwargs.get("a2a_agent_name")
|
||||
from_task = kwargs.get("from_task")
|
||||
from_agent = kwargs.get("from_agent")
|
||||
|
||||
if config is None:
|
||||
error_msg = (
|
||||
@@ -209,15 +143,15 @@ class PushNotificationHandler:
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=params.endpoint,
|
||||
endpoint=endpoint or "",
|
||||
error=error_msg,
|
||||
error_type="configuration_error",
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=params.context_id,
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
@@ -233,15 +167,15 @@ class PushNotificationHandler:
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=params.endpoint,
|
||||
endpoint=endpoint or "",
|
||||
error=error_msg,
|
||||
error_type="configuration_error",
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=params.context_id,
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
@@ -255,14 +189,14 @@ class PushNotificationHandler:
|
||||
event_stream=client.send_message(message),
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
agent_role=params.agent_role,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
context_id=params.context_id,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
context_id=context_id,
|
||||
)
|
||||
|
||||
if not isinstance(result_or_task_id, str):
|
||||
@@ -274,12 +208,12 @@ class PushNotificationHandler:
|
||||
agent_branch,
|
||||
A2APushNotificationRegisteredEvent(
|
||||
task_id=task_id,
|
||||
context_id=params.context_id,
|
||||
context_id=context_id,
|
||||
callback_url=str(config.url),
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -295,11 +229,11 @@ class PushNotificationHandler:
|
||||
timeout=polling_timeout,
|
||||
poll_interval=polling_interval,
|
||||
agent_branch=agent_branch,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
context_id=params.context_id,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
context_id=context_id,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
)
|
||||
|
||||
if final_task is None:
|
||||
@@ -313,13 +247,13 @@ class PushNotificationHandler:
|
||||
a2a_task=final_task,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
agent_role=params.agent_role,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
if result:
|
||||
return result
|
||||
@@ -331,24 +265,98 @@ class PushNotificationHandler:
|
||||
)
|
||||
|
||||
except A2AClientHTTPError as e:
|
||||
return _handle_push_error(
|
||||
error=e,
|
||||
error_msg=f"HTTP Error {e.status_code}: {e!s}",
|
||||
error_type="http_error",
|
||||
new_messages=new_messages,
|
||||
agent_branch=agent_branch,
|
||||
params=params,
|
||||
error_msg = f"HTTP Error {e.status_code}: {e!s}"
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
status_code=e.status_code,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="http_error",
|
||||
status_code=e.status_code,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return _handle_push_error(
|
||||
error=e,
|
||||
error_msg=f"Unexpected error during push notification: {e!s}",
|
||||
error_type="unexpected_error",
|
||||
new_messages=new_messages,
|
||||
agent_branch=agent_branch,
|
||||
params=params,
|
||||
error_msg = f"Unexpected error during push notification: {e!s}"
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="unexpected_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
@@ -1,87 +0,0 @@
|
||||
"""Webhook signature configuration for push notifications."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from enum import Enum
|
||||
import secrets
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class WebhookSignatureMode(str, Enum):
|
||||
"""Signature mode for webhook push notifications."""
|
||||
|
||||
NONE = "none"
|
||||
HMAC_SHA256 = "hmac_sha256"
|
||||
|
||||
|
||||
class WebhookSignatureConfig(BaseModel):
|
||||
"""Configuration for webhook signature verification.
|
||||
|
||||
Provides cryptographic integrity verification and replay attack protection
|
||||
for A2A push notifications.
|
||||
|
||||
Attributes:
|
||||
mode: Signature mode (none or hmac_sha256).
|
||||
secret: Shared secret for HMAC computation (required for hmac_sha256 mode).
|
||||
timestamp_tolerance_seconds: Max allowed age of timestamps for replay protection.
|
||||
header_name: HTTP header name for the signature.
|
||||
timestamp_header_name: HTTP header name for the timestamp.
|
||||
"""
|
||||
|
||||
mode: WebhookSignatureMode = Field(
|
||||
default=WebhookSignatureMode.NONE,
|
||||
description="Signature verification mode",
|
||||
)
|
||||
secret: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="Shared secret for HMAC computation",
|
||||
)
|
||||
timestamp_tolerance_seconds: int = Field(
|
||||
default=300,
|
||||
ge=0,
|
||||
description="Max allowed timestamp age in seconds (5 min default)",
|
||||
)
|
||||
header_name: str = Field(
|
||||
default="X-A2A-Signature",
|
||||
description="HTTP header name for the signature",
|
||||
)
|
||||
timestamp_header_name: str = Field(
|
||||
default="X-A2A-Signature-Timestamp",
|
||||
description="HTTP header name for the timestamp",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def generate_secret(cls, length: int = 32) -> str:
|
||||
"""Generate a cryptographically secure random secret.
|
||||
|
||||
Args:
|
||||
length: Number of random bytes to generate (default 32).
|
||||
|
||||
Returns:
|
||||
URL-safe base64-encoded secret string.
|
||||
"""
|
||||
return secrets.token_urlsafe(length)
|
||||
|
||||
@classmethod
|
||||
def hmac_sha256(
|
||||
cls,
|
||||
secret: str | SecretStr,
|
||||
timestamp_tolerance_seconds: int = 300,
|
||||
) -> WebhookSignatureConfig:
|
||||
"""Create an HMAC-SHA256 signature configuration.
|
||||
|
||||
Args:
|
||||
secret: Shared secret for HMAC computation.
|
||||
timestamp_tolerance_seconds: Max allowed timestamp age in seconds.
|
||||
|
||||
Returns:
|
||||
Configured WebhookSignatureConfig for HMAC-SHA256.
|
||||
"""
|
||||
if isinstance(secret, str):
|
||||
secret = SecretStr(secret)
|
||||
return cls(
|
||||
mode=WebhookSignatureMode.HMAC_SHA256,
|
||||
secret=secret,
|
||||
timestamp_tolerance_seconds=timestamp_tolerance_seconds,
|
||||
)
|
||||
@@ -2,9 +2,6 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Final
|
||||
import uuid
|
||||
|
||||
from a2a.client import Client
|
||||
@@ -14,10 +11,7 @@ from a2a.types import (
|
||||
Message,
|
||||
Part,
|
||||
Role,
|
||||
Task,
|
||||
TaskArtifactUpdateEvent,
|
||||
TaskIdParams,
|
||||
TaskQueryParams,
|
||||
TaskState,
|
||||
TaskStatusUpdateEvent,
|
||||
TextPart,
|
||||
@@ -30,10 +24,7 @@ from crewai.a2a.task_helpers import (
|
||||
TaskStateResult,
|
||||
process_task_state,
|
||||
)
|
||||
from crewai.a2a.updates.base import StreamingHandlerKwargs, extract_common_params
|
||||
from crewai.a2a.updates.streaming.params import (
|
||||
process_status_update,
|
||||
)
|
||||
from crewai.a2a.updates.base import StreamingHandlerKwargs
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AArtifactReceivedEvent,
|
||||
@@ -44,194 +35,9 @@ from crewai.events.types.a2a_events import (
|
||||
)
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MAX_RESUBSCRIBE_ATTEMPTS: Final[int] = 3
|
||||
RESUBSCRIBE_BACKOFF_BASE: Final[float] = 1.0
|
||||
|
||||
|
||||
class StreamingHandler:
|
||||
"""SSE streaming-based update handler."""
|
||||
|
||||
@staticmethod
|
||||
async def _try_recover_from_interruption( # type: ignore[misc]
|
||||
client: Client,
|
||||
task_id: str,
|
||||
new_messages: list[Message],
|
||||
agent_card: AgentCard,
|
||||
result_parts: list[str],
|
||||
**kwargs: Unpack[StreamingHandlerKwargs],
|
||||
) -> TaskStateResult | None:
|
||||
"""Attempt to recover from a stream interruption by checking task state.
|
||||
|
||||
If the task completed while we were disconnected, returns the result.
|
||||
If the task is still running, attempts to resubscribe and continue.
|
||||
|
||||
Args:
|
||||
client: A2A client instance.
|
||||
task_id: The task ID to recover.
|
||||
new_messages: List of collected messages.
|
||||
agent_card: The agent card.
|
||||
result_parts: Accumulated result text parts.
|
||||
**kwargs: Handler parameters.
|
||||
|
||||
Returns:
|
||||
TaskStateResult if recovery succeeded (task finished or resubscribe worked).
|
||||
None if recovery not possible (caller should handle failure).
|
||||
|
||||
Note:
|
||||
When None is returned, recovery failed and the original exception should
|
||||
be handled by the caller. All recovery attempts are logged.
|
||||
"""
|
||||
params = extract_common_params(kwargs) # type: ignore[arg-type]
|
||||
|
||||
try:
|
||||
a2a_task: Task = await client.get_task(TaskQueryParams(id=task_id))
|
||||
|
||||
if a2a_task.status.state in TERMINAL_STATES:
|
||||
logger.info(
|
||||
"Task completed during stream interruption",
|
||||
extra={"task_id": task_id, "state": str(a2a_task.status.state)},
|
||||
)
|
||||
return process_task_state(
|
||||
a2a_task=a2a_task,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
agent_role=params.agent_role,
|
||||
result_parts=result_parts,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
)
|
||||
|
||||
if a2a_task.status.state in ACTIONABLE_STATES:
|
||||
logger.info(
|
||||
"Task in actionable state during stream interruption",
|
||||
extra={"task_id": task_id, "state": str(a2a_task.status.state)},
|
||||
)
|
||||
return process_task_state(
|
||||
a2a_task=a2a_task,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
agent_role=params.agent_role,
|
||||
result_parts=result_parts,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
is_final=False,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Task still running, attempting resubscribe",
|
||||
extra={"task_id": task_id, "state": str(a2a_task.status.state)},
|
||||
)
|
||||
|
||||
for attempt in range(MAX_RESUBSCRIBE_ATTEMPTS):
|
||||
try:
|
||||
backoff = RESUBSCRIBE_BACKOFF_BASE * (2**attempt)
|
||||
if attempt > 0:
|
||||
await asyncio.sleep(backoff)
|
||||
|
||||
event_stream = client.resubscribe(TaskIdParams(id=task_id))
|
||||
|
||||
async for event in event_stream:
|
||||
if isinstance(event, tuple):
|
||||
resubscribed_task, update = event
|
||||
|
||||
is_final_update = (
|
||||
process_status_update(update, result_parts)
|
||||
if isinstance(update, TaskStatusUpdateEvent)
|
||||
else False
|
||||
)
|
||||
|
||||
if isinstance(update, TaskArtifactUpdateEvent):
|
||||
artifact = update.artifact
|
||||
result_parts.extend(
|
||||
part.root.text
|
||||
for part in artifact.parts
|
||||
if part.root.kind == "text"
|
||||
)
|
||||
|
||||
if (
|
||||
is_final_update
|
||||
or resubscribed_task.status.state
|
||||
in TERMINAL_STATES | ACTIONABLE_STATES
|
||||
):
|
||||
return process_task_state(
|
||||
a2a_task=resubscribed_task,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
agent_role=params.agent_role,
|
||||
result_parts=result_parts,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
is_final=is_final_update,
|
||||
)
|
||||
|
||||
elif isinstance(event, Message):
|
||||
new_messages.append(event)
|
||||
result_parts.extend(
|
||||
part.root.text
|
||||
for part in event.parts
|
||||
if part.root.kind == "text"
|
||||
)
|
||||
|
||||
final_task = await client.get_task(TaskQueryParams(id=task_id))
|
||||
return process_task_state(
|
||||
a2a_task=final_task,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
agent_role=params.agent_role,
|
||||
result_parts=result_parts,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
)
|
||||
|
||||
except Exception as resubscribe_error: # noqa: PERF203
|
||||
logger.warning(
|
||||
"Resubscribe attempt failed",
|
||||
extra={
|
||||
"task_id": task_id,
|
||||
"attempt": attempt + 1,
|
||||
"max_attempts": MAX_RESUBSCRIBE_ATTEMPTS,
|
||||
"error": str(resubscribe_error),
|
||||
},
|
||||
)
|
||||
if attempt == MAX_RESUBSCRIBE_ATTEMPTS - 1:
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to recover from stream interruption due to unexpected error",
|
||||
extra={
|
||||
"task_id": task_id,
|
||||
"error": str(e),
|
||||
"error_type": type(e).__name__,
|
||||
},
|
||||
exc_info=True,
|
||||
)
|
||||
return None
|
||||
|
||||
logger.warning(
|
||||
"Recovery exhausted all resubscribe attempts without success",
|
||||
extra={"task_id": task_id, "max_attempts": MAX_RESUBSCRIBE_ATTEMPTS},
|
||||
)
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
async def execute(
|
||||
client: Client,
|
||||
@@ -252,40 +58,42 @@ class StreamingHandler:
|
||||
Returns:
|
||||
Dictionary with status, result/error, and history.
|
||||
"""
|
||||
context_id = kwargs.get("context_id")
|
||||
task_id = kwargs.get("task_id")
|
||||
turn_number = kwargs.get("turn_number", 0)
|
||||
is_multiturn = kwargs.get("is_multiturn", False)
|
||||
agent_role = kwargs.get("agent_role")
|
||||
endpoint = kwargs.get("endpoint")
|
||||
a2a_agent_name = kwargs.get("a2a_agent_name")
|
||||
from_task = kwargs.get("from_task")
|
||||
from_agent = kwargs.get("from_agent")
|
||||
agent_branch = kwargs.get("agent_branch")
|
||||
params = extract_common_params(kwargs)
|
||||
|
||||
result_parts: list[str] = []
|
||||
final_result: TaskStateResult | None = None
|
||||
event_stream = client.send_message(message)
|
||||
chunk_index = 0
|
||||
current_task_id: str | None = task_id
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AStreamingStartedEvent(
|
||||
task_id=task_id,
|
||||
context_id=params.context_id,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
agent_role=params.agent_role,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
context_id=context_id,
|
||||
endpoint=endpoint or "",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
async for event in event_stream:
|
||||
if isinstance(event, tuple):
|
||||
a2a_task, _ = event
|
||||
current_task_id = a2a_task.id
|
||||
|
||||
if isinstance(event, Message):
|
||||
new_messages.append(event)
|
||||
message_context_id = event.context_id or params.context_id
|
||||
message_context_id = event.context_id or context_id
|
||||
for part in event.parts:
|
||||
if part.root.kind == "text":
|
||||
text = part.root.text
|
||||
@@ -297,12 +105,12 @@ class StreamingHandler:
|
||||
context_id=message_context_id,
|
||||
chunk=text,
|
||||
chunk_index=chunk_index,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
chunk_index += 1
|
||||
@@ -320,12 +128,12 @@ class StreamingHandler:
|
||||
artifact_size = None
|
||||
if artifact.parts:
|
||||
artifact_size = sum(
|
||||
len(p.root.text.encode())
|
||||
len(p.root.text.encode("utf-8"))
|
||||
if p.root.kind == "text"
|
||||
else len(getattr(p.root, "data", b""))
|
||||
for p in artifact.parts
|
||||
)
|
||||
effective_context_id = a2a_task.context_id or params.context_id
|
||||
effective_context_id = a2a_task.context_id or context_id
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AArtifactReceivedEvent(
|
||||
@@ -339,21 +147,29 @@ class StreamingHandler:
|
||||
size_bytes=artifact_size,
|
||||
append=update.append or False,
|
||||
last_chunk=update.last_chunk or False,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
context_id=effective_context_id,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
is_final_update = (
|
||||
process_status_update(update, result_parts)
|
||||
if isinstance(update, TaskStatusUpdateEvent)
|
||||
else False
|
||||
)
|
||||
is_final_update = False
|
||||
if isinstance(update, TaskStatusUpdateEvent):
|
||||
is_final_update = update.final
|
||||
if (
|
||||
update.status
|
||||
and update.status.message
|
||||
and update.status.message.parts
|
||||
):
|
||||
result_parts.extend(
|
||||
part.root.text
|
||||
for part in update.status.message.parts
|
||||
if part.root.kind == "text" and part.root.text
|
||||
)
|
||||
|
||||
if (
|
||||
not is_final_update
|
||||
@@ -366,68 +182,27 @@ class StreamingHandler:
|
||||
a2a_task=a2a_task,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
turn_number=params.turn_number,
|
||||
is_multiturn=params.is_multiturn,
|
||||
agent_role=params.agent_role,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
result_parts=result_parts,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
is_final=is_final_update,
|
||||
)
|
||||
if final_result:
|
||||
break
|
||||
|
||||
except A2AClientHTTPError as e:
|
||||
if current_task_id:
|
||||
logger.info(
|
||||
"Stream interrupted with HTTP error, attempting recovery",
|
||||
extra={
|
||||
"task_id": current_task_id,
|
||||
"error": str(e),
|
||||
"status_code": e.status_code,
|
||||
},
|
||||
)
|
||||
recovery_kwargs = {k: v for k, v in kwargs.items() if k != "task_id"}
|
||||
recovered_result = (
|
||||
await StreamingHandler._try_recover_from_interruption(
|
||||
client=client,
|
||||
task_id=current_task_id,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
result_parts=result_parts,
|
||||
**recovery_kwargs,
|
||||
)
|
||||
)
|
||||
if recovered_result:
|
||||
logger.info(
|
||||
"Successfully recovered task after HTTP error",
|
||||
extra={
|
||||
"task_id": current_task_id,
|
||||
"status": str(recovered_result.get("status")),
|
||||
},
|
||||
)
|
||||
return recovered_result
|
||||
|
||||
logger.warning(
|
||||
"Failed to recover from HTTP error, returning failure",
|
||||
extra={
|
||||
"task_id": current_task_id,
|
||||
"status_code": e.status_code,
|
||||
"original_error": str(e),
|
||||
},
|
||||
)
|
||||
|
||||
error_msg = f"HTTP Error {e.status_code}: {e!s}"
|
||||
error_type = "http_error"
|
||||
status_code = e.status_code
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=params.context_id,
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
@@ -435,118 +210,32 @@ class StreamingHandler:
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=params.endpoint,
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type=error_type,
|
||||
status_code=status_code,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
error_type="http_error",
|
||||
status_code=e.status_code,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="streaming",
|
||||
context_id=params.context_id,
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=params.turn_number,
|
||||
context_id=params.context_id,
|
||||
is_multiturn=params.is_multiturn,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=params.agent_role,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
except (asyncio.TimeoutError, asyncio.CancelledError, ConnectionError) as e:
|
||||
error_type = type(e).__name__.lower()
|
||||
if current_task_id:
|
||||
logger.info(
|
||||
f"Stream interrupted with {error_type}, attempting recovery",
|
||||
extra={"task_id": current_task_id, "error": str(e)},
|
||||
)
|
||||
recovery_kwargs = {k: v for k, v in kwargs.items() if k != "task_id"}
|
||||
recovered_result = (
|
||||
await StreamingHandler._try_recover_from_interruption(
|
||||
client=client,
|
||||
task_id=current_task_id,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
result_parts=result_parts,
|
||||
**recovery_kwargs,
|
||||
)
|
||||
)
|
||||
if recovered_result:
|
||||
logger.info(
|
||||
f"Successfully recovered task after {error_type}",
|
||||
extra={
|
||||
"task_id": current_task_id,
|
||||
"status": str(recovered_result.get("status")),
|
||||
},
|
||||
)
|
||||
return recovered_result
|
||||
|
||||
logger.warning(
|
||||
f"Failed to recover from {error_type}, returning failure",
|
||||
extra={
|
||||
"task_id": current_task_id,
|
||||
"error_type": error_type,
|
||||
"original_error": str(e),
|
||||
},
|
||||
)
|
||||
|
||||
error_msg = f"Connection error during streaming: {e!s}"
|
||||
status_code = None
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=params.context_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=params.endpoint,
|
||||
error=str(e),
|
||||
error_type=error_type,
|
||||
status_code=status_code,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
operation="streaming",
|
||||
context_id=params.context_id,
|
||||
task_id=task_id,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=params.turn_number,
|
||||
context_id=params.context_id,
|
||||
is_multiturn=params.is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=params.agent_role,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
@@ -556,23 +245,13 @@ class StreamingHandler:
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Unexpected error during streaming",
|
||||
extra={
|
||||
"task_id": current_task_id,
|
||||
"error_type": type(e).__name__,
|
||||
"endpoint": params.endpoint,
|
||||
},
|
||||
)
|
||||
error_msg = f"Unexpected error during streaming: {type(e).__name__}: {e!s}"
|
||||
error_type = "unexpected_error"
|
||||
status_code = None
|
||||
error_msg = f"Unexpected error during streaming: {e!s}"
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=params.context_id,
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
@@ -580,32 +259,31 @@ class StreamingHandler:
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=params.endpoint,
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type=error_type,
|
||||
status_code=status_code,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
error_type="unexpected_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="streaming",
|
||||
context_id=params.context_id,
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=params.turn_number,
|
||||
context_id=params.context_id,
|
||||
is_multiturn=params.is_multiturn,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=params.agent_role,
|
||||
endpoint=params.endpoint,
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
@@ -623,15 +301,15 @@ class StreamingHandler:
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=params.endpoint,
|
||||
endpoint=endpoint or "",
|
||||
error=str(close_error),
|
||||
error_type="stream_close_error",
|
||||
a2a_agent_name=params.a2a_agent_name,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="stream_close",
|
||||
context_id=params.context_id,
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=params.from_task,
|
||||
from_agent=params.from_agent,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -1,28 +0,0 @@
|
||||
"""Common parameter extraction for streaming handlers."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from a2a.types import TaskStatusUpdateEvent
|
||||
|
||||
|
||||
def process_status_update(
|
||||
update: TaskStatusUpdateEvent,
|
||||
result_parts: list[str],
|
||||
) -> bool:
|
||||
"""Process a status update event and extract text parts.
|
||||
|
||||
Args:
|
||||
update: The status update event.
|
||||
result_parts: List to append text parts to (modified in place).
|
||||
|
||||
Returns:
|
||||
True if this is a final update, False otherwise.
|
||||
"""
|
||||
is_final = update.final
|
||||
if update.status and update.status.message and update.status.message.parts:
|
||||
result_parts.extend(
|
||||
part.root.text
|
||||
for part in update.status.message.parts
|
||||
if part.root.kind == "text" and part.root.text
|
||||
)
|
||||
return is_final
|
||||
@@ -5,7 +5,6 @@ from __future__ import annotations
|
||||
import asyncio
|
||||
from collections.abc import MutableMapping
|
||||
from functools import lru_cache
|
||||
import ssl
|
||||
import time
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING
|
||||
@@ -16,7 +15,7 @@ from aiocache import cached # type: ignore[import-untyped]
|
||||
from aiocache.serializers import PickleSerializer # type: ignore[import-untyped]
|
||||
import httpx
|
||||
|
||||
from crewai.a2a.auth.client_schemes import APIKeyAuth, HTTPDigestAuth
|
||||
from crewai.a2a.auth.schemas import APIKeyAuth, HTTPDigestAuth
|
||||
from crewai.a2a.auth.utils import (
|
||||
_auth_store,
|
||||
configure_auth_client,
|
||||
@@ -33,51 +32,11 @@ from crewai.events.types.a2a_events import (
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.a2a.auth.client_schemes import ClientAuthScheme
|
||||
from crewai.a2a.auth.schemas import AuthScheme
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
|
||||
|
||||
def _get_tls_verify(auth: ClientAuthScheme | None) -> ssl.SSLContext | bool | str:
|
||||
"""Get TLS verify parameter from auth scheme.
|
||||
|
||||
Args:
|
||||
auth: Optional authentication scheme with TLS config.
|
||||
|
||||
Returns:
|
||||
SSL context, CA cert path, True for default verification,
|
||||
or False if verification disabled.
|
||||
"""
|
||||
if auth and auth.tls:
|
||||
return auth.tls.get_httpx_ssl_context()
|
||||
return True
|
||||
|
||||
|
||||
async def _prepare_auth_headers(
|
||||
auth: ClientAuthScheme | None,
|
||||
timeout: int,
|
||||
) -> tuple[MutableMapping[str, str], ssl.SSLContext | bool | str]:
|
||||
"""Prepare authentication headers and TLS verification settings.
|
||||
|
||||
Args:
|
||||
auth: Optional authentication scheme.
|
||||
timeout: Request timeout in seconds.
|
||||
|
||||
Returns:
|
||||
Tuple of (headers dict, TLS verify setting).
|
||||
"""
|
||||
headers: MutableMapping[str, str] = {}
|
||||
verify = _get_tls_verify(auth)
|
||||
if auth:
|
||||
async with httpx.AsyncClient(
|
||||
timeout=timeout, verify=verify
|
||||
) as temp_auth_client:
|
||||
if isinstance(auth, (HTTPDigestAuth, APIKeyAuth)):
|
||||
configure_auth_client(auth, temp_auth_client)
|
||||
headers = await auth.apply_auth(temp_auth_client, {})
|
||||
return headers, verify
|
||||
|
||||
|
||||
def _get_server_config(agent: Agent) -> A2AServerConfig | None:
|
||||
"""Get A2AServerConfig from an agent's a2a configuration.
|
||||
|
||||
@@ -100,7 +59,7 @@ def _get_server_config(agent: Agent) -> A2AServerConfig | None:
|
||||
|
||||
def fetch_agent_card(
|
||||
endpoint: str,
|
||||
auth: ClientAuthScheme | None = None,
|
||||
auth: AuthScheme | None = None,
|
||||
timeout: int = 30,
|
||||
use_cache: bool = True,
|
||||
cache_ttl: int = 300,
|
||||
@@ -109,7 +68,7 @@ def fetch_agent_card(
|
||||
|
||||
Args:
|
||||
endpoint: A2A agent endpoint URL (AgentCard URL).
|
||||
auth: Optional ClientAuthScheme for authentication.
|
||||
auth: Optional AuthScheme for authentication.
|
||||
timeout: Request timeout in seconds.
|
||||
use_cache: Whether to use caching (default True).
|
||||
cache_ttl: Cache TTL in seconds (default 300 = 5 minutes).
|
||||
@@ -131,10 +90,10 @@ def fetch_agent_card(
|
||||
"_authorization_callback",
|
||||
}
|
||||
)
|
||||
auth_hash = _auth_store.compute_key(type(auth).__name__, auth_data)
|
||||
auth_hash = hash((type(auth).__name__, auth_data))
|
||||
else:
|
||||
auth_hash = _auth_store.compute_key("none", "")
|
||||
_auth_store.set(auth_hash, auth)
|
||||
auth_hash = 0
|
||||
_auth_store[auth_hash] = auth
|
||||
ttl_hash = int(time.time() // cache_ttl)
|
||||
return _fetch_agent_card_cached(endpoint, auth_hash, timeout, ttl_hash)
|
||||
|
||||
@@ -150,7 +109,7 @@ def fetch_agent_card(
|
||||
|
||||
async def afetch_agent_card(
|
||||
endpoint: str,
|
||||
auth: ClientAuthScheme | None = None,
|
||||
auth: AuthScheme | None = None,
|
||||
timeout: int = 30,
|
||||
use_cache: bool = True,
|
||||
) -> AgentCard:
|
||||
@@ -160,7 +119,7 @@ async def afetch_agent_card(
|
||||
|
||||
Args:
|
||||
endpoint: A2A agent endpoint URL (AgentCard URL).
|
||||
auth: Optional ClientAuthScheme for authentication.
|
||||
auth: Optional AuthScheme for authentication.
|
||||
timeout: Request timeout in seconds.
|
||||
use_cache: Whether to use caching (default True).
|
||||
|
||||
@@ -181,10 +140,10 @@ async def afetch_agent_card(
|
||||
"_authorization_callback",
|
||||
}
|
||||
)
|
||||
auth_hash = _auth_store.compute_key(type(auth).__name__, auth_data)
|
||||
auth_hash = hash((type(auth).__name__, auth_data))
|
||||
else:
|
||||
auth_hash = _auth_store.compute_key("none", "")
|
||||
_auth_store.set(auth_hash, auth)
|
||||
auth_hash = 0
|
||||
_auth_store[auth_hash] = auth
|
||||
agent_card: AgentCard = await _afetch_agent_card_cached(
|
||||
endpoint, auth_hash, timeout
|
||||
)
|
||||
@@ -196,7 +155,7 @@ async def afetch_agent_card(
|
||||
@lru_cache()
|
||||
def _fetch_agent_card_cached(
|
||||
endpoint: str,
|
||||
auth_hash: str,
|
||||
auth_hash: int,
|
||||
timeout: int,
|
||||
_ttl_hash: int,
|
||||
) -> AgentCard:
|
||||
@@ -216,7 +175,7 @@ def _fetch_agent_card_cached(
|
||||
@cached(ttl=300, serializer=PickleSerializer()) # type: ignore[untyped-decorator]
|
||||
async def _afetch_agent_card_cached(
|
||||
endpoint: str,
|
||||
auth_hash: str,
|
||||
auth_hash: int,
|
||||
timeout: int,
|
||||
) -> AgentCard:
|
||||
"""Cached async implementation of AgentCard fetching."""
|
||||
@@ -226,7 +185,7 @@ async def _afetch_agent_card_cached(
|
||||
|
||||
async def _afetch_agent_card_impl(
|
||||
endpoint: str,
|
||||
auth: ClientAuthScheme | None,
|
||||
auth: AuthScheme | None,
|
||||
timeout: int,
|
||||
) -> AgentCard:
|
||||
"""Internal async implementation of AgentCard fetching."""
|
||||
@@ -238,17 +197,16 @@ async def _afetch_agent_card_impl(
|
||||
else:
|
||||
url_parts = endpoint.split("/", 3)
|
||||
base_url = f"{url_parts[0]}//{url_parts[2]}"
|
||||
agent_card_path = (
|
||||
f"/{url_parts[3]}"
|
||||
if len(url_parts) > 3 and url_parts[3]
|
||||
else "/.well-known/agent-card.json"
|
||||
)
|
||||
agent_card_path = f"/{url_parts[3]}" if len(url_parts) > 3 else "/"
|
||||
|
||||
headers, verify = await _prepare_auth_headers(auth, timeout)
|
||||
headers: MutableMapping[str, str] = {}
|
||||
if auth:
|
||||
async with httpx.AsyncClient(timeout=timeout) as temp_auth_client:
|
||||
if isinstance(auth, (HTTPDigestAuth, APIKeyAuth)):
|
||||
configure_auth_client(auth, temp_auth_client)
|
||||
headers = await auth.apply_auth(temp_auth_client, {})
|
||||
|
||||
async with httpx.AsyncClient(
|
||||
timeout=timeout, headers=headers, verify=verify
|
||||
) as temp_client:
|
||||
async with httpx.AsyncClient(timeout=timeout, headers=headers) as temp_client:
|
||||
if auth and isinstance(auth, (HTTPDigestAuth, APIKeyAuth)):
|
||||
configure_auth_client(auth, temp_client)
|
||||
|
||||
@@ -476,7 +434,6 @@ def _agent_to_agent_card(agent: Agent, url: str) -> AgentCard:
|
||||
"""Generate an A2A AgentCard from an Agent instance.
|
||||
|
||||
Uses A2AServerConfig values when available, falling back to agent properties.
|
||||
If signing_config is provided, the card will be signed with JWS.
|
||||
|
||||
Args:
|
||||
agent: The Agent instance to generate a card for.
|
||||
@@ -485,8 +442,6 @@ def _agent_to_agent_card(agent: Agent, url: str) -> AgentCard:
|
||||
Returns:
|
||||
AgentCard describing the agent's capabilities.
|
||||
"""
|
||||
from crewai.a2a.utils.agent_card_signing import sign_agent_card
|
||||
|
||||
server_config = _get_server_config(agent) or A2AServerConfig()
|
||||
|
||||
name = server_config.name or agent.role
|
||||
@@ -517,31 +472,15 @@ def _agent_to_agent_card(agent: Agent, url: str) -> AgentCard:
|
||||
)
|
||||
)
|
||||
|
||||
capabilities = server_config.capabilities
|
||||
if server_config.server_extensions:
|
||||
from crewai.a2a.extensions.server import ServerExtensionRegistry
|
||||
|
||||
registry = ServerExtensionRegistry(server_config.server_extensions)
|
||||
ext_list = registry.get_agent_extensions()
|
||||
|
||||
existing_exts = list(capabilities.extensions) if capabilities.extensions else []
|
||||
existing_uris = {e.uri for e in existing_exts}
|
||||
for ext in ext_list:
|
||||
if ext.uri not in existing_uris:
|
||||
existing_exts.append(ext)
|
||||
|
||||
capabilities = capabilities.model_copy(update={"extensions": existing_exts})
|
||||
|
||||
card = AgentCard(
|
||||
return AgentCard(
|
||||
name=name,
|
||||
description=description,
|
||||
url=server_config.url or url,
|
||||
version=server_config.version,
|
||||
capabilities=capabilities,
|
||||
capabilities=server_config.capabilities,
|
||||
default_input_modes=server_config.default_input_modes,
|
||||
default_output_modes=server_config.default_output_modes,
|
||||
skills=skills,
|
||||
preferred_transport=server_config.transport.preferred,
|
||||
protocol_version=server_config.protocol_version,
|
||||
provider=server_config.provider,
|
||||
documentation_url=server_config.documentation_url,
|
||||
@@ -550,21 +489,9 @@ def _agent_to_agent_card(agent: Agent, url: str) -> AgentCard:
|
||||
security=server_config.security,
|
||||
security_schemes=server_config.security_schemes,
|
||||
supports_authenticated_extended_card=server_config.supports_authenticated_extended_card,
|
||||
signatures=server_config.signatures,
|
||||
)
|
||||
|
||||
if server_config.signing_config:
|
||||
signature = sign_agent_card(
|
||||
card,
|
||||
private_key=server_config.signing_config.get_private_key(),
|
||||
key_id=server_config.signing_config.key_id,
|
||||
algorithm=server_config.signing_config.algorithm,
|
||||
)
|
||||
card = card.model_copy(update={"signatures": [signature]})
|
||||
elif server_config.signatures:
|
||||
card = card.model_copy(update={"signatures": server_config.signatures})
|
||||
|
||||
return card
|
||||
|
||||
|
||||
def inject_a2a_server_methods(agent: Agent) -> None:
|
||||
"""Inject A2A server methods onto an Agent instance.
|
||||
|
||||
@@ -1,236 +0,0 @@
|
||||
"""AgentCard JWS signing utilities.
|
||||
|
||||
This module provides functions for signing and verifying AgentCards using
|
||||
JSON Web Signatures (JWS) as per RFC 7515. Signed agent cards allow clients
|
||||
to verify the authenticity and integrity of agent card information.
|
||||
|
||||
Example:
|
||||
>>> from crewai.a2a.utils.agent_card_signing import sign_agent_card
|
||||
>>> signature = sign_agent_card(agent_card, private_key_pem, key_id="key-1")
|
||||
>>> card_with_sig = card.model_copy(update={"signatures": [signature]})
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Literal
|
||||
|
||||
from a2a.types import AgentCard, AgentCardSignature
|
||||
import jwt
|
||||
from pydantic import SecretStr
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
SigningAlgorithm = Literal[
|
||||
"RS256", "RS384", "RS512", "ES256", "ES384", "ES512", "PS256", "PS384", "PS512"
|
||||
]
|
||||
|
||||
|
||||
def _normalize_private_key(private_key: str | bytes | SecretStr) -> bytes:
|
||||
"""Normalize private key to bytes format.
|
||||
|
||||
Args:
|
||||
private_key: PEM-encoded private key as string, bytes, or SecretStr.
|
||||
|
||||
Returns:
|
||||
Private key as bytes.
|
||||
"""
|
||||
if isinstance(private_key, SecretStr):
|
||||
private_key = private_key.get_secret_value()
|
||||
if isinstance(private_key, str):
|
||||
private_key = private_key.encode()
|
||||
return private_key
|
||||
|
||||
|
||||
def _serialize_agent_card(agent_card: AgentCard) -> str:
|
||||
"""Serialize AgentCard to canonical JSON for signing.
|
||||
|
||||
Excludes the signatures field to avoid circular reference during signing.
|
||||
Uses sorted keys and compact separators for deterministic output.
|
||||
|
||||
Args:
|
||||
agent_card: The AgentCard to serialize.
|
||||
|
||||
Returns:
|
||||
Canonical JSON string representation.
|
||||
"""
|
||||
card_dict = agent_card.model_dump(exclude={"signatures"}, exclude_none=True)
|
||||
return json.dumps(card_dict, sort_keys=True, separators=(",", ":"))
|
||||
|
||||
|
||||
def _base64url_encode(data: bytes | str) -> str:
|
||||
"""Encode data to URL-safe base64 without padding.
|
||||
|
||||
Args:
|
||||
data: Data to encode.
|
||||
|
||||
Returns:
|
||||
URL-safe base64 encoded string without padding.
|
||||
"""
|
||||
if isinstance(data, str):
|
||||
data = data.encode()
|
||||
return base64.urlsafe_b64encode(data).rstrip(b"=").decode("ascii")
|
||||
|
||||
|
||||
def sign_agent_card(
|
||||
agent_card: AgentCard,
|
||||
private_key: str | bytes | SecretStr,
|
||||
key_id: str | None = None,
|
||||
algorithm: SigningAlgorithm = "RS256",
|
||||
) -> AgentCardSignature:
|
||||
"""Sign an AgentCard using JWS (RFC 7515).
|
||||
|
||||
Creates a detached JWS signature for the AgentCard. The signature covers
|
||||
all fields except the signatures field itself.
|
||||
|
||||
Args:
|
||||
agent_card: The AgentCard to sign.
|
||||
private_key: PEM-encoded private key (RSA, EC, or RSA-PSS).
|
||||
key_id: Optional key identifier for the JWS header (kid claim).
|
||||
algorithm: Signing algorithm (RS256, ES256, PS256, etc.).
|
||||
|
||||
Returns:
|
||||
AgentCardSignature with protected header and signature.
|
||||
|
||||
Raises:
|
||||
jwt.exceptions.InvalidKeyError: If the private key is invalid.
|
||||
ValueError: If the algorithm is not supported for the key type.
|
||||
|
||||
Example:
|
||||
>>> signature = sign_agent_card(
|
||||
... agent_card,
|
||||
... private_key_pem="-----BEGIN PRIVATE KEY-----...",
|
||||
... key_id="my-key-id",
|
||||
... )
|
||||
"""
|
||||
key_bytes = _normalize_private_key(private_key)
|
||||
payload = _serialize_agent_card(agent_card)
|
||||
|
||||
protected_header: dict[str, Any] = {"typ": "JWS"}
|
||||
if key_id:
|
||||
protected_header["kid"] = key_id
|
||||
|
||||
jws_token = jwt.api_jws.encode(
|
||||
payload.encode(),
|
||||
key_bytes,
|
||||
algorithm=algorithm,
|
||||
headers=protected_header,
|
||||
)
|
||||
|
||||
parts = jws_token.split(".")
|
||||
protected_b64 = parts[0]
|
||||
signature_b64 = parts[2]
|
||||
|
||||
header: dict[str, Any] | None = None
|
||||
if key_id:
|
||||
header = {"kid": key_id}
|
||||
|
||||
return AgentCardSignature(
|
||||
protected=protected_b64,
|
||||
signature=signature_b64,
|
||||
header=header,
|
||||
)
|
||||
|
||||
|
||||
def verify_agent_card_signature(
|
||||
agent_card: AgentCard,
|
||||
signature: AgentCardSignature,
|
||||
public_key: str | bytes,
|
||||
algorithms: list[str] | None = None,
|
||||
) -> bool:
|
||||
"""Verify an AgentCard JWS signature.
|
||||
|
||||
Validates that the signature was created with the corresponding private key
|
||||
and that the AgentCard content has not been modified.
|
||||
|
||||
Args:
|
||||
agent_card: The AgentCard to verify.
|
||||
signature: The AgentCardSignature to validate.
|
||||
public_key: PEM-encoded public key (RSA, EC, or RSA-PSS).
|
||||
algorithms: List of allowed algorithms. Defaults to common asymmetric algorithms.
|
||||
|
||||
Returns:
|
||||
True if signature is valid, False otherwise.
|
||||
|
||||
Example:
|
||||
>>> is_valid = verify_agent_card_signature(
|
||||
... agent_card, signature, public_key_pem="-----BEGIN PUBLIC KEY-----..."
|
||||
... )
|
||||
"""
|
||||
if algorithms is None:
|
||||
algorithms = [
|
||||
"RS256",
|
||||
"RS384",
|
||||
"RS512",
|
||||
"ES256",
|
||||
"ES384",
|
||||
"ES512",
|
||||
"PS256",
|
||||
"PS384",
|
||||
"PS512",
|
||||
]
|
||||
|
||||
if isinstance(public_key, str):
|
||||
public_key = public_key.encode()
|
||||
|
||||
payload = _serialize_agent_card(agent_card)
|
||||
payload_b64 = _base64url_encode(payload)
|
||||
jws_token = f"{signature.protected}.{payload_b64}.{signature.signature}"
|
||||
|
||||
try:
|
||||
jwt.api_jws.decode(
|
||||
jws_token,
|
||||
public_key,
|
||||
algorithms=algorithms,
|
||||
)
|
||||
return True
|
||||
except jwt.InvalidSignatureError:
|
||||
logger.debug(
|
||||
"AgentCard signature verification failed",
|
||||
extra={"reason": "invalid_signature"},
|
||||
)
|
||||
return False
|
||||
except jwt.DecodeError as e:
|
||||
logger.debug(
|
||||
"AgentCard signature verification failed",
|
||||
extra={"reason": "decode_error", "error": str(e)},
|
||||
)
|
||||
return False
|
||||
except jwt.InvalidAlgorithmError as e:
|
||||
logger.debug(
|
||||
"AgentCard signature verification failed",
|
||||
extra={"reason": "algorithm_error", "error": str(e)},
|
||||
)
|
||||
return False
|
||||
|
||||
|
||||
def get_key_id_from_signature(signature: AgentCardSignature) -> str | None:
|
||||
"""Extract the key ID (kid) from an AgentCardSignature.
|
||||
|
||||
Checks both the unprotected header and the protected header for the kid claim.
|
||||
|
||||
Args:
|
||||
signature: The AgentCardSignature to extract from.
|
||||
|
||||
Returns:
|
||||
The key ID if present, None otherwise.
|
||||
"""
|
||||
if signature.header and "kid" in signature.header:
|
||||
kid: str = signature.header["kid"]
|
||||
return kid
|
||||
|
||||
try:
|
||||
protected = signature.protected
|
||||
padding_needed = 4 - (len(protected) % 4)
|
||||
if padding_needed != 4:
|
||||
protected += "=" * padding_needed
|
||||
|
||||
protected_json = base64.urlsafe_b64decode(protected).decode()
|
||||
protected_header: dict[str, Any] = json.loads(protected_json)
|
||||
return protected_header.get("kid")
|
||||
except (ValueError, json.JSONDecodeError):
|
||||
return None
|
||||
@@ -1,339 +0,0 @@
|
||||
"""Content type negotiation for A2A protocol.
|
||||
|
||||
This module handles negotiation of input/output MIME types between A2A clients
|
||||
and servers based on AgentCard capabilities.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Annotated, Final, Literal, cast
|
||||
|
||||
from a2a.types import Part
|
||||
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import A2AContentTypeNegotiatedEvent
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from a2a.types import AgentCard, AgentSkill
|
||||
|
||||
|
||||
TEXT_PLAIN: Literal["text/plain"] = "text/plain"
|
||||
APPLICATION_JSON: Literal["application/json"] = "application/json"
|
||||
IMAGE_PNG: Literal["image/png"] = "image/png"
|
||||
IMAGE_JPEG: Literal["image/jpeg"] = "image/jpeg"
|
||||
IMAGE_WILDCARD: Literal["image/*"] = "image/*"
|
||||
APPLICATION_PDF: Literal["application/pdf"] = "application/pdf"
|
||||
APPLICATION_OCTET_STREAM: Literal["application/octet-stream"] = (
|
||||
"application/octet-stream"
|
||||
)
|
||||
|
||||
DEFAULT_CLIENT_INPUT_MODES: Final[list[Literal["text/plain", "application/json"]]] = [
|
||||
TEXT_PLAIN,
|
||||
APPLICATION_JSON,
|
||||
]
|
||||
DEFAULT_CLIENT_OUTPUT_MODES: Final[list[Literal["text/plain", "application/json"]]] = [
|
||||
TEXT_PLAIN,
|
||||
APPLICATION_JSON,
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class NegotiatedContentTypes:
|
||||
"""Result of content type negotiation."""
|
||||
|
||||
input_modes: Annotated[list[str], "Negotiated input MIME types the client can send"]
|
||||
output_modes: Annotated[
|
||||
list[str], "Negotiated output MIME types the server will produce"
|
||||
]
|
||||
effective_input_modes: Annotated[list[str], "Server's effective input modes"]
|
||||
effective_output_modes: Annotated[list[str], "Server's effective output modes"]
|
||||
skill_name: Annotated[
|
||||
str | None, "Skill name if negotiation was skill-specific"
|
||||
] = None
|
||||
|
||||
|
||||
class ContentTypeNegotiationError(Exception):
|
||||
"""Raised when no compatible content types can be negotiated."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
client_input_modes: list[str],
|
||||
client_output_modes: list[str],
|
||||
server_input_modes: list[str],
|
||||
server_output_modes: list[str],
|
||||
direction: str = "both",
|
||||
message: str | None = None,
|
||||
) -> None:
|
||||
self.client_input_modes = client_input_modes
|
||||
self.client_output_modes = client_output_modes
|
||||
self.server_input_modes = server_input_modes
|
||||
self.server_output_modes = server_output_modes
|
||||
self.direction = direction
|
||||
|
||||
if message is None:
|
||||
if direction == "input":
|
||||
message = (
|
||||
f"No compatible input content types. "
|
||||
f"Client supports: {client_input_modes}, "
|
||||
f"Server accepts: {server_input_modes}"
|
||||
)
|
||||
elif direction == "output":
|
||||
message = (
|
||||
f"No compatible output content types. "
|
||||
f"Client accepts: {client_output_modes}, "
|
||||
f"Server produces: {server_output_modes}"
|
||||
)
|
||||
else:
|
||||
message = (
|
||||
f"No compatible content types. "
|
||||
f"Input - Client: {client_input_modes}, Server: {server_input_modes}. "
|
||||
f"Output - Client: {client_output_modes}, Server: {server_output_modes}"
|
||||
)
|
||||
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
def _normalize_mime_type(mime_type: str) -> str:
|
||||
"""Normalize MIME type for comparison (lowercase, strip whitespace)."""
|
||||
return mime_type.lower().strip()
|
||||
|
||||
|
||||
def _mime_types_compatible(client_type: str, server_type: str) -> bool:
|
||||
"""Check if two MIME types are compatible.
|
||||
|
||||
Handles wildcards like image/* matching image/png.
|
||||
"""
|
||||
client_normalized = _normalize_mime_type(client_type)
|
||||
server_normalized = _normalize_mime_type(server_type)
|
||||
|
||||
if client_normalized == server_normalized:
|
||||
return True
|
||||
|
||||
if "*" in client_normalized or "*" in server_normalized:
|
||||
client_parts = client_normalized.split("/")
|
||||
server_parts = server_normalized.split("/")
|
||||
|
||||
if len(client_parts) == 2 and len(server_parts) == 2:
|
||||
type_match = (
|
||||
client_parts[0] == server_parts[0]
|
||||
or client_parts[0] == "*"
|
||||
or server_parts[0] == "*"
|
||||
)
|
||||
subtype_match = (
|
||||
client_parts[1] == server_parts[1]
|
||||
or client_parts[1] == "*"
|
||||
or server_parts[1] == "*"
|
||||
)
|
||||
return type_match and subtype_match
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def _find_compatible_modes(
|
||||
client_modes: list[str], server_modes: list[str]
|
||||
) -> list[str]:
|
||||
"""Find compatible MIME types between client and server.
|
||||
|
||||
Returns modes in client preference order.
|
||||
"""
|
||||
compatible = []
|
||||
for client_mode in client_modes:
|
||||
for server_mode in server_modes:
|
||||
if _mime_types_compatible(client_mode, server_mode):
|
||||
if "*" in client_mode and "*" not in server_mode:
|
||||
if server_mode not in compatible:
|
||||
compatible.append(server_mode)
|
||||
else:
|
||||
if client_mode not in compatible:
|
||||
compatible.append(client_mode)
|
||||
break
|
||||
return compatible
|
||||
|
||||
|
||||
def _get_effective_modes(
|
||||
agent_card: AgentCard,
|
||||
skill_name: str | None = None,
|
||||
) -> tuple[list[str], list[str], AgentSkill | None]:
|
||||
"""Get effective input/output modes from agent card.
|
||||
|
||||
If skill_name is provided and the skill has custom modes, those are used.
|
||||
Otherwise, falls back to agent card defaults.
|
||||
"""
|
||||
skill: AgentSkill | None = None
|
||||
|
||||
if skill_name and agent_card.skills:
|
||||
for s in agent_card.skills:
|
||||
if s.name == skill_name or s.id == skill_name:
|
||||
skill = s
|
||||
break
|
||||
|
||||
if skill:
|
||||
input_modes = (
|
||||
skill.input_modes if skill.input_modes else agent_card.default_input_modes
|
||||
)
|
||||
output_modes = (
|
||||
skill.output_modes
|
||||
if skill.output_modes
|
||||
else agent_card.default_output_modes
|
||||
)
|
||||
else:
|
||||
input_modes = agent_card.default_input_modes
|
||||
output_modes = agent_card.default_output_modes
|
||||
|
||||
return input_modes, output_modes, skill
|
||||
|
||||
|
||||
def negotiate_content_types(
|
||||
agent_card: AgentCard,
|
||||
client_input_modes: list[str] | None = None,
|
||||
client_output_modes: list[str] | None = None,
|
||||
skill_name: str | None = None,
|
||||
emit_event: bool = True,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
strict: bool = False,
|
||||
) -> NegotiatedContentTypes:
|
||||
"""Negotiate content types between client and server.
|
||||
|
||||
Args:
|
||||
agent_card: The remote agent's card with capability info.
|
||||
client_input_modes: MIME types the client can send. Defaults to text/plain and application/json.
|
||||
client_output_modes: MIME types the client can accept. Defaults to text/plain and application/json.
|
||||
skill_name: Optional skill to use for mode lookup.
|
||||
emit_event: Whether to emit a content type negotiation event.
|
||||
endpoint: Agent endpoint (for event metadata).
|
||||
a2a_agent_name: Agent name (for event metadata).
|
||||
strict: If True, raises error when no compatible types found.
|
||||
If False, returns empty lists for incompatible directions.
|
||||
|
||||
Returns:
|
||||
NegotiatedContentTypes with compatible input and output modes.
|
||||
|
||||
Raises:
|
||||
ContentTypeNegotiationError: If strict=True and no compatible types found.
|
||||
"""
|
||||
if client_input_modes is None:
|
||||
client_input_modes = cast(list[str], DEFAULT_CLIENT_INPUT_MODES.copy())
|
||||
if client_output_modes is None:
|
||||
client_output_modes = cast(list[str], DEFAULT_CLIENT_OUTPUT_MODES.copy())
|
||||
|
||||
server_input_modes, server_output_modes, skill = _get_effective_modes(
|
||||
agent_card, skill_name
|
||||
)
|
||||
|
||||
compatible_input = _find_compatible_modes(client_input_modes, server_input_modes)
|
||||
compatible_output = _find_compatible_modes(client_output_modes, server_output_modes)
|
||||
|
||||
if strict:
|
||||
if not compatible_input and not compatible_output:
|
||||
raise ContentTypeNegotiationError(
|
||||
client_input_modes=client_input_modes,
|
||||
client_output_modes=client_output_modes,
|
||||
server_input_modes=server_input_modes,
|
||||
server_output_modes=server_output_modes,
|
||||
)
|
||||
if not compatible_input:
|
||||
raise ContentTypeNegotiationError(
|
||||
client_input_modes=client_input_modes,
|
||||
client_output_modes=client_output_modes,
|
||||
server_input_modes=server_input_modes,
|
||||
server_output_modes=server_output_modes,
|
||||
direction="input",
|
||||
)
|
||||
if not compatible_output:
|
||||
raise ContentTypeNegotiationError(
|
||||
client_input_modes=client_input_modes,
|
||||
client_output_modes=client_output_modes,
|
||||
server_input_modes=server_input_modes,
|
||||
server_output_modes=server_output_modes,
|
||||
direction="output",
|
||||
)
|
||||
|
||||
result = NegotiatedContentTypes(
|
||||
input_modes=compatible_input,
|
||||
output_modes=compatible_output,
|
||||
effective_input_modes=server_input_modes,
|
||||
effective_output_modes=server_output_modes,
|
||||
skill_name=skill.name if skill else None,
|
||||
)
|
||||
|
||||
if emit_event:
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AContentTypeNegotiatedEvent(
|
||||
endpoint=endpoint or agent_card.url,
|
||||
a2a_agent_name=a2a_agent_name or agent_card.name,
|
||||
skill_name=skill_name,
|
||||
client_input_modes=client_input_modes,
|
||||
client_output_modes=client_output_modes,
|
||||
server_input_modes=server_input_modes,
|
||||
server_output_modes=server_output_modes,
|
||||
negotiated_input_modes=compatible_input,
|
||||
negotiated_output_modes=compatible_output,
|
||||
negotiation_success=bool(compatible_input and compatible_output),
|
||||
),
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def validate_content_type(
|
||||
content_type: str,
|
||||
allowed_modes: list[str],
|
||||
) -> bool:
|
||||
"""Validate that a content type is allowed by a list of modes.
|
||||
|
||||
Args:
|
||||
content_type: The MIME type to validate.
|
||||
allowed_modes: List of allowed MIME types (may include wildcards).
|
||||
|
||||
Returns:
|
||||
True if content_type is compatible with any allowed mode.
|
||||
"""
|
||||
for mode in allowed_modes:
|
||||
if _mime_types_compatible(content_type, mode):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def get_part_content_type(part: Part) -> str:
|
||||
"""Extract MIME type from an A2A Part.
|
||||
|
||||
Args:
|
||||
part: A Part object containing TextPart, DataPart, or FilePart.
|
||||
|
||||
Returns:
|
||||
The MIME type string for this part.
|
||||
"""
|
||||
root = part.root
|
||||
if root.kind == "text":
|
||||
return TEXT_PLAIN
|
||||
if root.kind == "data":
|
||||
return APPLICATION_JSON
|
||||
if root.kind == "file":
|
||||
return root.file.mime_type or APPLICATION_OCTET_STREAM
|
||||
return APPLICATION_OCTET_STREAM
|
||||
|
||||
|
||||
def validate_message_parts(
|
||||
parts: list[Part],
|
||||
allowed_modes: list[str],
|
||||
) -> list[str]:
|
||||
"""Validate that all message parts have allowed content types.
|
||||
|
||||
Args:
|
||||
parts: List of Parts from the incoming message.
|
||||
allowed_modes: List of allowed MIME types (from default_input_modes).
|
||||
|
||||
Returns:
|
||||
List of invalid content types found (empty if all valid).
|
||||
"""
|
||||
invalid_types: list[str] = []
|
||||
for part in parts:
|
||||
content_type = get_part_content_type(part)
|
||||
if not validate_content_type(content_type, allowed_modes):
|
||||
if content_type not in invalid_types:
|
||||
invalid_types.append(content_type)
|
||||
return invalid_types
|
||||
@@ -3,18 +3,14 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
from collections.abc import AsyncIterator, Callable, MutableMapping
|
||||
from collections.abc import AsyncIterator, MutableMapping
|
||||
from contextlib import asynccontextmanager
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Any, Final, Literal
|
||||
from typing import TYPE_CHECKING, Any, Literal
|
||||
import uuid
|
||||
|
||||
from a2a.client import Client, ClientConfig, ClientFactory
|
||||
from a2a.types import (
|
||||
AgentCard,
|
||||
FilePart,
|
||||
FileWithBytes,
|
||||
Message,
|
||||
Part,
|
||||
PushNotificationConfig as A2APushNotificationConfig,
|
||||
@@ -24,24 +20,18 @@ from a2a.types import (
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.a2a.auth.client_schemes import APIKeyAuth, HTTPDigestAuth
|
||||
from crewai.a2a.auth.schemas import APIKeyAuth, HTTPDigestAuth
|
||||
from crewai.a2a.auth.utils import (
|
||||
_auth_store,
|
||||
configure_auth_client,
|
||||
validate_auth_against_agent_card,
|
||||
)
|
||||
from crewai.a2a.config import ClientTransportConfig, GRPCClientConfig
|
||||
from crewai.a2a.extensions.registry import (
|
||||
ExtensionsMiddleware,
|
||||
validate_required_extensions,
|
||||
)
|
||||
from crewai.a2a.task_helpers import TaskStateResult
|
||||
from crewai.a2a.types import (
|
||||
HANDLER_REGISTRY,
|
||||
HandlerType,
|
||||
PartsDict,
|
||||
PartsMetadataDict,
|
||||
TransportType,
|
||||
)
|
||||
from crewai.a2a.updates import (
|
||||
PollingConfig,
|
||||
@@ -49,20 +39,7 @@ from crewai.a2a.updates import (
|
||||
StreamingHandler,
|
||||
UpdateConfig,
|
||||
)
|
||||
from crewai.a2a.utils.agent_card import (
|
||||
_afetch_agent_card_cached,
|
||||
_get_tls_verify,
|
||||
_prepare_auth_headers,
|
||||
)
|
||||
from crewai.a2a.utils.content_type import (
|
||||
DEFAULT_CLIENT_OUTPUT_MODES,
|
||||
negotiate_content_types,
|
||||
)
|
||||
from crewai.a2a.utils.transport import (
|
||||
NegotiatedTransport,
|
||||
TransportNegotiationError,
|
||||
negotiate_transport,
|
||||
)
|
||||
from crewai.a2a.utils.agent_card import _afetch_agent_card_cached
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AConversationStartedEvent,
|
||||
@@ -72,48 +49,10 @@ from crewai.events.types.a2a_events import (
|
||||
)
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from a2a.types import Message
|
||||
|
||||
from crewai.a2a.auth.client_schemes import ClientAuthScheme
|
||||
|
||||
|
||||
_DEFAULT_TRANSPORT: Final[TransportType] = "JSONRPC"
|
||||
|
||||
|
||||
def _create_file_parts(input_files: dict[str, Any] | None) -> list[Part]:
|
||||
"""Convert FileInput dictionary to FilePart objects.
|
||||
|
||||
Args:
|
||||
input_files: Dictionary mapping names to FileInput objects.
|
||||
|
||||
Returns:
|
||||
List of Part objects containing FilePart data.
|
||||
"""
|
||||
if not input_files:
|
||||
return []
|
||||
|
||||
try:
|
||||
import crewai_files # noqa: F401
|
||||
except ImportError:
|
||||
logger.debug("crewai_files not installed, skipping file parts")
|
||||
return []
|
||||
|
||||
parts: list[Part] = []
|
||||
for name, file_input in input_files.items():
|
||||
content_bytes = file_input.read()
|
||||
content_base64 = base64.b64encode(content_bytes).decode()
|
||||
file_with_bytes = FileWithBytes(
|
||||
bytes=content_base64,
|
||||
mimeType=file_input.content_type,
|
||||
name=file_input.filename or name,
|
||||
)
|
||||
parts.append(Part(root=FilePart(file=file_with_bytes)))
|
||||
|
||||
return parts
|
||||
from crewai.a2a.auth.schemas import AuthScheme
|
||||
|
||||
|
||||
def get_handler(config: UpdateConfig | None) -> HandlerType:
|
||||
@@ -132,7 +71,8 @@ def get_handler(config: UpdateConfig | None) -> HandlerType:
|
||||
|
||||
def execute_a2a_delegation(
|
||||
endpoint: str,
|
||||
auth: ClientAuthScheme | None,
|
||||
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"],
|
||||
auth: AuthScheme | None,
|
||||
timeout: int,
|
||||
task_description: str,
|
||||
context: str | None = None,
|
||||
@@ -151,24 +91,32 @@ def execute_a2a_delegation(
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
skill_id: str | None = None,
|
||||
client_extensions: list[str] | None = None,
|
||||
transport: ClientTransportConfig | None = None,
|
||||
accepted_output_modes: list[str] | None = None,
|
||||
input_files: dict[str, Any] | None = None,
|
||||
) -> TaskStateResult:
|
||||
"""Execute a task delegation to a remote A2A agent synchronously.
|
||||
|
||||
WARNING: This function blocks the entire thread by creating and running a new
|
||||
event loop. Prefer using 'await aexecute_a2a_delegation()' in async contexts
|
||||
for better performance and resource efficiency.
|
||||
|
||||
This is a synchronous wrapper around aexecute_a2a_delegation that creates a
|
||||
new event loop to run the async implementation. It is provided for compatibility
|
||||
with synchronous code paths only.
|
||||
This is the sync wrapper around aexecute_a2a_delegation. For async contexts,
|
||||
use aexecute_a2a_delegation directly.
|
||||
|
||||
Args:
|
||||
endpoint: A2A agent endpoint URL (AgentCard URL).
|
||||
auth: Optional ClientAuthScheme for authentication.
|
||||
endpoint: A2A agent endpoint URL (AgentCard URL)
|
||||
transport_protocol: Optional A2A transport protocol (grpc, jsonrpc, http+json)
|
||||
auth: Optional AuthScheme for authentication (Bearer, OAuth2, API Key, HTTP Basic/Digest)
|
||||
timeout: Request timeout in seconds
|
||||
task_description: The task to delegate
|
||||
context: Optional context information
|
||||
context_id: Context ID for correlating messages/tasks
|
||||
task_id: Specific task identifier
|
||||
reference_task_ids: List of related task IDs
|
||||
metadata: Additional metadata (external_id, request_id, etc.)
|
||||
extensions: Protocol extensions for custom fields
|
||||
conversation_history: Previous Message objects from conversation
|
||||
agent_id: Agent identifier for logging
|
||||
agent_role: Role of the CrewAI agent delegating the task
|
||||
agent_branch: Optional agent tree branch for logging
|
||||
response_model: Optional Pydantic model for structured outputs
|
||||
turn_number: Optional turn number for multi-turn conversations
|
||||
endpoint: A2A agent endpoint URL.
|
||||
auth: Optional AuthScheme for authentication.
|
||||
timeout: Request timeout in seconds.
|
||||
task_description: The task to delegate.
|
||||
context: Optional context information.
|
||||
@@ -187,27 +135,10 @@ def execute_a2a_delegation(
|
||||
from_task: Optional CrewAI Task object for event metadata.
|
||||
from_agent: Optional CrewAI Agent object for event metadata.
|
||||
skill_id: Optional skill ID to target a specific agent capability.
|
||||
client_extensions: A2A protocol extension URIs the client supports.
|
||||
transport: Transport configuration (preferred, supported transports, gRPC settings).
|
||||
accepted_output_modes: MIME types the client can accept in responses.
|
||||
input_files: Optional dictionary of files to send to remote agent.
|
||||
|
||||
Returns:
|
||||
TaskStateResult with status, result/error, history, and agent_card.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If called from an async context with a running event loop.
|
||||
"""
|
||||
try:
|
||||
asyncio.get_running_loop()
|
||||
raise RuntimeError(
|
||||
"execute_a2a_delegation() cannot be called from an async context. "
|
||||
"Use 'await aexecute_a2a_delegation()' instead."
|
||||
)
|
||||
except RuntimeError as e:
|
||||
if "no running event loop" not in str(e).lower():
|
||||
raise
|
||||
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
try:
|
||||
@@ -228,15 +159,12 @@ def execute_a2a_delegation(
|
||||
agent_role=agent_role,
|
||||
agent_branch=agent_branch,
|
||||
response_model=response_model,
|
||||
transport_protocol=transport_protocol,
|
||||
turn_number=turn_number,
|
||||
updates=updates,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
skill_id=skill_id,
|
||||
client_extensions=client_extensions,
|
||||
transport=transport,
|
||||
accepted_output_modes=accepted_output_modes,
|
||||
input_files=input_files,
|
||||
)
|
||||
)
|
||||
finally:
|
||||
@@ -248,7 +176,8 @@ def execute_a2a_delegation(
|
||||
|
||||
async def aexecute_a2a_delegation(
|
||||
endpoint: str,
|
||||
auth: ClientAuthScheme | None,
|
||||
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"],
|
||||
auth: AuthScheme | None,
|
||||
timeout: int,
|
||||
task_description: str,
|
||||
context: str | None = None,
|
||||
@@ -267,10 +196,6 @@ async def aexecute_a2a_delegation(
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
skill_id: str | None = None,
|
||||
client_extensions: list[str] | None = None,
|
||||
transport: ClientTransportConfig | None = None,
|
||||
accepted_output_modes: list[str] | None = None,
|
||||
input_files: dict[str, Any] | None = None,
|
||||
) -> TaskStateResult:
|
||||
"""Execute a task delegation to a remote A2A agent asynchronously.
|
||||
|
||||
@@ -278,8 +203,25 @@ async def aexecute_a2a_delegation(
|
||||
in an async context (e.g., with Crew.akickoff() or agent.aexecute_task()).
|
||||
|
||||
Args:
|
||||
endpoint: A2A agent endpoint URL
|
||||
transport_protocol: Optional A2A transport protocol (grpc, jsonrpc, http+json)
|
||||
auth: Optional AuthScheme for authentication
|
||||
timeout: Request timeout in seconds
|
||||
task_description: Task to delegate
|
||||
context: Optional context
|
||||
context_id: Context ID for correlation
|
||||
task_id: Specific task identifier
|
||||
reference_task_ids: Related task IDs
|
||||
metadata: Additional metadata
|
||||
extensions: Protocol extensions
|
||||
conversation_history: Previous Message objects
|
||||
turn_number: Current turn number
|
||||
agent_branch: Agent tree branch for logging
|
||||
agent_id: Agent identifier for logging
|
||||
agent_role: Agent role for logging
|
||||
response_model: Optional Pydantic model for structured outputs
|
||||
endpoint: A2A agent endpoint URL.
|
||||
auth: Optional ClientAuthScheme for authentication.
|
||||
auth: Optional AuthScheme for authentication.
|
||||
timeout: Request timeout in seconds.
|
||||
task_description: The task to delegate.
|
||||
context: Optional context information.
|
||||
@@ -298,10 +240,6 @@ async def aexecute_a2a_delegation(
|
||||
from_task: Optional CrewAI Task object for event metadata.
|
||||
from_agent: Optional CrewAI Agent object for event metadata.
|
||||
skill_id: Optional skill ID to target a specific agent capability.
|
||||
client_extensions: A2A protocol extension URIs the client supports.
|
||||
transport: Transport configuration (preferred, supported transports, gRPC settings).
|
||||
accepted_output_modes: MIME types the client can accept in responses.
|
||||
input_files: Optional dictionary of files to send to remote agent.
|
||||
|
||||
Returns:
|
||||
TaskStateResult with status, result/error, history, and agent_card.
|
||||
@@ -333,13 +271,10 @@ async def aexecute_a2a_delegation(
|
||||
agent_role=agent_role,
|
||||
response_model=response_model,
|
||||
updates=updates,
|
||||
transport_protocol=transport_protocol,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
skill_id=skill_id,
|
||||
client_extensions=client_extensions,
|
||||
transport=transport,
|
||||
accepted_output_modes=accepted_output_modes,
|
||||
input_files=input_files,
|
||||
)
|
||||
except Exception as e:
|
||||
crewai_event_bus.emit(
|
||||
@@ -359,7 +294,7 @@ async def aexecute_a2a_delegation(
|
||||
)
|
||||
raise
|
||||
|
||||
agent_card_data = result.get("agent_card")
|
||||
agent_card_data: dict[str, Any] = result.get("agent_card") or {}
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2ADelegationCompletedEvent(
|
||||
@@ -371,7 +306,7 @@ async def aexecute_a2a_delegation(
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=result.get("a2a_agent_name"),
|
||||
agent_card=agent_card_data,
|
||||
provider=agent_card_data.get("provider") if agent_card_data else None,
|
||||
provider=agent_card_data.get("provider"),
|
||||
metadata=metadata,
|
||||
extensions=list(extensions.keys()) if extensions else None,
|
||||
from_task=from_task,
|
||||
@@ -384,7 +319,8 @@ async def aexecute_a2a_delegation(
|
||||
|
||||
async def _aexecute_a2a_delegation_impl(
|
||||
endpoint: str,
|
||||
auth: ClientAuthScheme | None,
|
||||
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"],
|
||||
auth: AuthScheme | None,
|
||||
timeout: int,
|
||||
task_description: str,
|
||||
context: str | None,
|
||||
@@ -404,14 +340,8 @@ async def _aexecute_a2a_delegation_impl(
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
skill_id: str | None = None,
|
||||
client_extensions: list[str] | None = None,
|
||||
transport: ClientTransportConfig | None = None,
|
||||
accepted_output_modes: list[str] | None = None,
|
||||
input_files: dict[str, Any] | None = None,
|
||||
) -> TaskStateResult:
|
||||
"""Internal async implementation of A2A delegation."""
|
||||
if transport is None:
|
||||
transport = ClientTransportConfig()
|
||||
if auth:
|
||||
auth_data = auth.model_dump_json(
|
||||
exclude={
|
||||
@@ -421,70 +351,22 @@ async def _aexecute_a2a_delegation_impl(
|
||||
"_authorization_callback",
|
||||
}
|
||||
)
|
||||
auth_hash = _auth_store.compute_key(type(auth).__name__, auth_data)
|
||||
auth_hash = hash((type(auth).__name__, auth_data))
|
||||
else:
|
||||
auth_hash = _auth_store.compute_key("none", endpoint)
|
||||
_auth_store.set(auth_hash, auth)
|
||||
auth_hash = 0
|
||||
_auth_store[auth_hash] = auth
|
||||
agent_card = await _afetch_agent_card_cached(
|
||||
endpoint=endpoint, auth_hash=auth_hash, timeout=timeout
|
||||
)
|
||||
|
||||
validate_auth_against_agent_card(agent_card, auth)
|
||||
|
||||
unsupported_exts = validate_required_extensions(agent_card, client_extensions)
|
||||
if unsupported_exts:
|
||||
ext_uris = [ext.uri for ext in unsupported_exts]
|
||||
raise ValueError(
|
||||
f"Agent requires extensions not supported by client: {ext_uris}"
|
||||
)
|
||||
|
||||
negotiated: NegotiatedTransport | None = None
|
||||
effective_transport: TransportType = transport.preferred or _DEFAULT_TRANSPORT
|
||||
effective_url = endpoint
|
||||
|
||||
client_transports: list[str] = (
|
||||
list(transport.supported) if transport.supported else [_DEFAULT_TRANSPORT]
|
||||
)
|
||||
|
||||
try:
|
||||
negotiated = negotiate_transport(
|
||||
agent_card=agent_card,
|
||||
client_supported_transports=client_transports,
|
||||
client_preferred_transport=transport.preferred,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=agent_card.name,
|
||||
)
|
||||
effective_transport = negotiated.transport # type: ignore[assignment]
|
||||
effective_url = negotiated.url
|
||||
except TransportNegotiationError as e:
|
||||
logger.warning(
|
||||
"Transport negotiation failed, using fallback",
|
||||
extra={
|
||||
"error": str(e),
|
||||
"fallback_transport": effective_transport,
|
||||
"fallback_url": effective_url,
|
||||
"endpoint": endpoint,
|
||||
"client_transports": client_transports,
|
||||
"server_transports": [
|
||||
iface.transport for iface in agent_card.additional_interfaces or []
|
||||
]
|
||||
+ [agent_card.preferred_transport or "JSONRPC"],
|
||||
},
|
||||
)
|
||||
|
||||
effective_output_modes = accepted_output_modes or DEFAULT_CLIENT_OUTPUT_MODES.copy()
|
||||
|
||||
content_negotiated = negotiate_content_types(
|
||||
agent_card=agent_card,
|
||||
client_output_modes=accepted_output_modes,
|
||||
skill_name=skill_id,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=agent_card.name,
|
||||
)
|
||||
if content_negotiated.output_modes:
|
||||
effective_output_modes = content_negotiated.output_modes
|
||||
|
||||
headers, _ = await _prepare_auth_headers(auth, timeout)
|
||||
headers: MutableMapping[str, str] = {}
|
||||
if auth:
|
||||
async with httpx.AsyncClient(timeout=timeout) as temp_auth_client:
|
||||
if isinstance(auth, (HTTPDigestAuth, APIKeyAuth)):
|
||||
configure_auth_client(auth, temp_auth_client)
|
||||
headers = await auth.apply_auth(temp_auth_client, {})
|
||||
|
||||
a2a_agent_name = None
|
||||
if agent_card.name:
|
||||
@@ -559,13 +441,10 @@ async def _aexecute_a2a_delegation_impl(
|
||||
if skill_id:
|
||||
message_metadata["skill_id"] = skill_id
|
||||
|
||||
parts_list: list[Part] = [Part(root=TextPart(**parts))]
|
||||
parts_list.extend(_create_file_parts(input_files))
|
||||
|
||||
message = Message(
|
||||
role=Role.user,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=parts_list,
|
||||
parts=[Part(root=TextPart(**parts))],
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
reference_task_ids=reference_task_ids,
|
||||
@@ -634,22 +513,15 @@ async def _aexecute_a2a_delegation_impl(
|
||||
|
||||
use_streaming = not use_polling and push_config_for_client is None
|
||||
|
||||
client_agent_card = agent_card
|
||||
if effective_url != agent_card.url:
|
||||
client_agent_card = agent_card.model_copy(update={"url": effective_url})
|
||||
|
||||
async with _create_a2a_client(
|
||||
agent_card=client_agent_card,
|
||||
transport_protocol=effective_transport,
|
||||
agent_card=agent_card,
|
||||
transport_protocol=transport_protocol,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
streaming=use_streaming,
|
||||
auth=auth,
|
||||
use_polling=use_polling,
|
||||
push_notification_config=push_config_for_client,
|
||||
client_extensions=client_extensions,
|
||||
accepted_output_modes=effective_output_modes, # type: ignore[arg-type]
|
||||
grpc_config=transport.grpc,
|
||||
) as client:
|
||||
result = await handler.execute(
|
||||
client=client,
|
||||
@@ -663,245 +535,6 @@ async def _aexecute_a2a_delegation_impl(
|
||||
return result
|
||||
|
||||
|
||||
def _normalize_grpc_metadata(
|
||||
metadata: tuple[tuple[str, str], ...] | None,
|
||||
) -> tuple[tuple[str, str], ...] | None:
|
||||
"""Lowercase all gRPC metadata keys.
|
||||
|
||||
gRPC requires lowercase metadata keys, but some libraries (like the A2A SDK)
|
||||
use mixed-case headers like 'X-A2A-Extensions'. This normalizes them.
|
||||
"""
|
||||
if metadata is None:
|
||||
return None
|
||||
return tuple((key.lower(), value) for key, value in metadata)
|
||||
|
||||
|
||||
def _create_grpc_interceptors(
|
||||
auth_metadata: list[tuple[str, str]] | None = None,
|
||||
) -> list[Any]:
|
||||
"""Create gRPC interceptors for metadata normalization and auth injection.
|
||||
|
||||
Args:
|
||||
auth_metadata: Optional auth metadata to inject into all calls.
|
||||
Used for insecure channels that need auth (non-localhost without TLS).
|
||||
|
||||
Returns a list of interceptors that lowercase metadata keys for gRPC
|
||||
compatibility. Must be called after grpc is imported.
|
||||
"""
|
||||
import grpc.aio # type: ignore[import-untyped]
|
||||
|
||||
def _merge_metadata(
|
||||
existing: tuple[tuple[str, str], ...] | None,
|
||||
auth: list[tuple[str, str]] | None,
|
||||
) -> tuple[tuple[str, str], ...] | None:
|
||||
"""Merge existing metadata with auth metadata and normalize keys."""
|
||||
merged: list[tuple[str, str]] = []
|
||||
if existing:
|
||||
merged.extend(existing)
|
||||
if auth:
|
||||
merged.extend(auth)
|
||||
if not merged:
|
||||
return None
|
||||
return tuple((key.lower(), value) for key, value in merged)
|
||||
|
||||
def _inject_metadata(client_call_details: Any) -> Any:
|
||||
"""Inject merged metadata into call details."""
|
||||
return client_call_details._replace(
|
||||
metadata=_merge_metadata(client_call_details.metadata, auth_metadata)
|
||||
)
|
||||
|
||||
class MetadataUnaryUnary(grpc.aio.UnaryUnaryClientInterceptor): # type: ignore[misc,no-any-unimported]
|
||||
"""Interceptor for unary-unary calls that injects auth metadata."""
|
||||
|
||||
async def intercept_unary_unary( # type: ignore[no-untyped-def]
|
||||
self, continuation, client_call_details, request
|
||||
):
|
||||
"""Intercept unary-unary call and inject metadata."""
|
||||
return await continuation(_inject_metadata(client_call_details), request)
|
||||
|
||||
class MetadataUnaryStream(grpc.aio.UnaryStreamClientInterceptor): # type: ignore[misc,no-any-unimported]
|
||||
"""Interceptor for unary-stream calls that injects auth metadata."""
|
||||
|
||||
async def intercept_unary_stream( # type: ignore[no-untyped-def]
|
||||
self, continuation, client_call_details, request
|
||||
):
|
||||
"""Intercept unary-stream call and inject metadata."""
|
||||
return await continuation(_inject_metadata(client_call_details), request)
|
||||
|
||||
class MetadataStreamUnary(grpc.aio.StreamUnaryClientInterceptor): # type: ignore[misc,no-any-unimported]
|
||||
"""Interceptor for stream-unary calls that injects auth metadata."""
|
||||
|
||||
async def intercept_stream_unary( # type: ignore[no-untyped-def]
|
||||
self, continuation, client_call_details, request_iterator
|
||||
):
|
||||
"""Intercept stream-unary call and inject metadata."""
|
||||
return await continuation(
|
||||
_inject_metadata(client_call_details), request_iterator
|
||||
)
|
||||
|
||||
class MetadataStreamStream(grpc.aio.StreamStreamClientInterceptor): # type: ignore[misc,no-any-unimported]
|
||||
"""Interceptor for stream-stream calls that injects auth metadata."""
|
||||
|
||||
async def intercept_stream_stream( # type: ignore[no-untyped-def]
|
||||
self, continuation, client_call_details, request_iterator
|
||||
):
|
||||
"""Intercept stream-stream call and inject metadata."""
|
||||
return await continuation(
|
||||
_inject_metadata(client_call_details), request_iterator
|
||||
)
|
||||
|
||||
return [
|
||||
MetadataUnaryUnary(),
|
||||
MetadataUnaryStream(),
|
||||
MetadataStreamUnary(),
|
||||
MetadataStreamStream(),
|
||||
]
|
||||
|
||||
|
||||
def _create_grpc_channel_factory(
|
||||
grpc_config: GRPCClientConfig,
|
||||
auth: ClientAuthScheme | None = None,
|
||||
) -> Callable[[str], Any]:
|
||||
"""Create a gRPC channel factory with the given configuration.
|
||||
|
||||
Args:
|
||||
grpc_config: gRPC client configuration with channel options.
|
||||
auth: Optional ClientAuthScheme for TLS and auth configuration.
|
||||
|
||||
Returns:
|
||||
A callable that creates gRPC channels from URLs.
|
||||
"""
|
||||
try:
|
||||
import grpc
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"gRPC transport requires grpcio. Install with: pip install a2a-sdk[grpc]"
|
||||
) from e
|
||||
|
||||
auth_metadata: list[tuple[str, str]] = []
|
||||
|
||||
if auth is not None:
|
||||
from crewai.a2a.auth.client_schemes import (
|
||||
APIKeyAuth,
|
||||
BearerTokenAuth,
|
||||
HTTPBasicAuth,
|
||||
HTTPDigestAuth,
|
||||
OAuth2AuthorizationCode,
|
||||
OAuth2ClientCredentials,
|
||||
)
|
||||
|
||||
if isinstance(auth, HTTPDigestAuth):
|
||||
raise ValueError(
|
||||
"HTTPDigestAuth is not supported with gRPC transport. "
|
||||
"Digest authentication requires HTTP challenge-response flow. "
|
||||
"Use BearerTokenAuth, HTTPBasicAuth, APIKeyAuth (header), or OAuth2 instead."
|
||||
)
|
||||
if isinstance(auth, APIKeyAuth) and auth.location in ("query", "cookie"):
|
||||
raise ValueError(
|
||||
f"APIKeyAuth with location='{auth.location}' is not supported with gRPC transport. "
|
||||
"gRPC only supports header-based authentication. "
|
||||
"Use APIKeyAuth with location='header' instead."
|
||||
)
|
||||
|
||||
if isinstance(auth, BearerTokenAuth):
|
||||
auth_metadata.append(("authorization", f"Bearer {auth.token}"))
|
||||
elif isinstance(auth, HTTPBasicAuth):
|
||||
import base64
|
||||
|
||||
basic_credentials = f"{auth.username}:{auth.password}"
|
||||
encoded = base64.b64encode(basic_credentials.encode()).decode()
|
||||
auth_metadata.append(("authorization", f"Basic {encoded}"))
|
||||
elif isinstance(auth, APIKeyAuth) and auth.location == "header":
|
||||
header_name = auth.name.lower()
|
||||
auth_metadata.append((header_name, auth.api_key))
|
||||
elif isinstance(auth, (OAuth2ClientCredentials, OAuth2AuthorizationCode)):
|
||||
if auth._access_token:
|
||||
auth_metadata.append(("authorization", f"Bearer {auth._access_token}"))
|
||||
|
||||
def factory(url: str) -> Any:
|
||||
"""Create a gRPC channel for the given URL."""
|
||||
target = url
|
||||
use_tls = False
|
||||
|
||||
if url.startswith("grpcs://"):
|
||||
target = url[8:]
|
||||
use_tls = True
|
||||
elif url.startswith("grpc://"):
|
||||
target = url[7:]
|
||||
elif url.startswith("https://"):
|
||||
target = url[8:]
|
||||
use_tls = True
|
||||
elif url.startswith("http://"):
|
||||
target = url[7:]
|
||||
|
||||
options: list[tuple[str, Any]] = []
|
||||
if grpc_config.max_send_message_length is not None:
|
||||
options.append(
|
||||
("grpc.max_send_message_length", grpc_config.max_send_message_length)
|
||||
)
|
||||
if grpc_config.max_receive_message_length is not None:
|
||||
options.append(
|
||||
(
|
||||
"grpc.max_receive_message_length",
|
||||
grpc_config.max_receive_message_length,
|
||||
)
|
||||
)
|
||||
if grpc_config.keepalive_time_ms is not None:
|
||||
options.append(("grpc.keepalive_time_ms", grpc_config.keepalive_time_ms))
|
||||
if grpc_config.keepalive_timeout_ms is not None:
|
||||
options.append(
|
||||
("grpc.keepalive_timeout_ms", grpc_config.keepalive_timeout_ms)
|
||||
)
|
||||
|
||||
channel_credentials = None
|
||||
if auth and hasattr(auth, "tls") and auth.tls:
|
||||
channel_credentials = auth.tls.get_grpc_credentials()
|
||||
elif use_tls:
|
||||
channel_credentials = grpc.ssl_channel_credentials()
|
||||
|
||||
if channel_credentials and auth_metadata:
|
||||
|
||||
class AuthMetadataPlugin(grpc.AuthMetadataPlugin): # type: ignore[misc,no-any-unimported]
|
||||
"""gRPC auth metadata plugin that adds auth headers as metadata."""
|
||||
|
||||
def __init__(self, metadata: list[tuple[str, str]]) -> None:
|
||||
self._metadata = tuple(metadata)
|
||||
|
||||
def __call__( # type: ignore[no-any-unimported]
|
||||
self,
|
||||
context: grpc.AuthMetadataContext,
|
||||
callback: grpc.AuthMetadataPluginCallback,
|
||||
) -> None:
|
||||
callback(self._metadata, None)
|
||||
|
||||
call_creds = grpc.metadata_call_credentials(
|
||||
AuthMetadataPlugin(auth_metadata)
|
||||
)
|
||||
credentials = grpc.composite_channel_credentials(
|
||||
channel_credentials, call_creds
|
||||
)
|
||||
interceptors = _create_grpc_interceptors()
|
||||
return grpc.aio.secure_channel(
|
||||
target, credentials, options=options or None, interceptors=interceptors
|
||||
)
|
||||
if channel_credentials:
|
||||
interceptors = _create_grpc_interceptors()
|
||||
return grpc.aio.secure_channel(
|
||||
target,
|
||||
channel_credentials,
|
||||
options=options or None,
|
||||
interceptors=interceptors,
|
||||
)
|
||||
interceptors = _create_grpc_interceptors(
|
||||
auth_metadata=auth_metadata if auth_metadata else None
|
||||
)
|
||||
return grpc.aio.insecure_channel(
|
||||
target, options=options or None, interceptors=interceptors
|
||||
)
|
||||
|
||||
return factory
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def _create_a2a_client(
|
||||
agent_card: AgentCard,
|
||||
@@ -909,12 +542,9 @@ async def _create_a2a_client(
|
||||
timeout: int,
|
||||
headers: MutableMapping[str, str],
|
||||
streaming: bool,
|
||||
auth: ClientAuthScheme | None = None,
|
||||
auth: AuthScheme | None = None,
|
||||
use_polling: bool = False,
|
||||
push_notification_config: PushNotificationConfig | None = None,
|
||||
client_extensions: list[str] | None = None,
|
||||
accepted_output_modes: list[str] | None = None,
|
||||
grpc_config: GRPCClientConfig | None = None,
|
||||
) -> AsyncIterator[Client]:
|
||||
"""Create and configure an A2A client.
|
||||
|
||||
@@ -924,21 +554,16 @@ async def _create_a2a_client(
|
||||
timeout: Request timeout in seconds.
|
||||
headers: HTTP headers (already with auth applied).
|
||||
streaming: Enable streaming responses.
|
||||
auth: Optional ClientAuthScheme for client configuration.
|
||||
auth: Optional AuthScheme for client configuration.
|
||||
use_polling: Enable polling mode.
|
||||
push_notification_config: Optional push notification config.
|
||||
client_extensions: A2A protocol extension URIs to declare support for.
|
||||
accepted_output_modes: MIME types the client can accept in responses.
|
||||
grpc_config: Optional gRPC client configuration.
|
||||
|
||||
Yields:
|
||||
Configured A2A client instance.
|
||||
"""
|
||||
verify = _get_tls_verify(auth)
|
||||
async with httpx.AsyncClient(
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
verify=verify,
|
||||
) as httpx_client:
|
||||
if auth and isinstance(auth, (HTTPDigestAuth, APIKeyAuth)):
|
||||
configure_auth_client(auth, httpx_client)
|
||||
@@ -954,27 +579,15 @@ async def _create_a2a_client(
|
||||
)
|
||||
)
|
||||
|
||||
grpc_channel_factory = None
|
||||
if transport_protocol == "GRPC":
|
||||
grpc_channel_factory = _create_grpc_channel_factory(
|
||||
grpc_config or GRPCClientConfig(),
|
||||
auth=auth,
|
||||
)
|
||||
|
||||
config = ClientConfig(
|
||||
httpx_client=httpx_client,
|
||||
supported_transports=[transport_protocol],
|
||||
streaming=streaming and not use_polling,
|
||||
polling=use_polling,
|
||||
accepted_output_modes=accepted_output_modes or DEFAULT_CLIENT_OUTPUT_MODES, # type: ignore[arg-type]
|
||||
accepted_output_modes=["application/json"],
|
||||
push_notification_configs=push_configs,
|
||||
grpc_channel_factory=grpc_channel_factory,
|
||||
)
|
||||
|
||||
factory = ClientFactory(config)
|
||||
client = factory.create(agent_card)
|
||||
|
||||
if client_extensions:
|
||||
await client.add_request_middleware(ExtensionsMiddleware(client_extensions))
|
||||
|
||||
yield client
|
||||
|
||||
@@ -1,131 +0,0 @@
|
||||
"""Structured JSON logging utilities for A2A module."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from contextvars import ContextVar
|
||||
from datetime import datetime, timezone
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
|
||||
_log_context: ContextVar[dict[str, Any] | None] = ContextVar(
|
||||
"log_context", default=None
|
||||
)
|
||||
|
||||
|
||||
class JSONFormatter(logging.Formatter):
|
||||
"""JSON formatter for structured logging.
|
||||
|
||||
Outputs logs as JSON with consistent fields for log aggregators.
|
||||
"""
|
||||
|
||||
def format(self, record: logging.LogRecord) -> str:
|
||||
"""Format log record as JSON string."""
|
||||
log_data: dict[str, Any] = {
|
||||
"timestamp": datetime.now(timezone.utc).isoformat(),
|
||||
"level": record.levelname,
|
||||
"logger": record.name,
|
||||
"message": record.getMessage(),
|
||||
}
|
||||
|
||||
if record.exc_info:
|
||||
log_data["exception"] = self.formatException(record.exc_info)
|
||||
|
||||
context = _log_context.get()
|
||||
if context is not None:
|
||||
log_data.update(context)
|
||||
|
||||
if hasattr(record, "task_id"):
|
||||
log_data["task_id"] = record.task_id
|
||||
if hasattr(record, "context_id"):
|
||||
log_data["context_id"] = record.context_id
|
||||
if hasattr(record, "agent"):
|
||||
log_data["agent"] = record.agent
|
||||
if hasattr(record, "endpoint"):
|
||||
log_data["endpoint"] = record.endpoint
|
||||
if hasattr(record, "extension"):
|
||||
log_data["extension"] = record.extension
|
||||
if hasattr(record, "error"):
|
||||
log_data["error"] = record.error
|
||||
|
||||
for key, value in record.__dict__.items():
|
||||
if key.startswith("_") or key in (
|
||||
"name",
|
||||
"msg",
|
||||
"args",
|
||||
"created",
|
||||
"filename",
|
||||
"funcName",
|
||||
"levelname",
|
||||
"levelno",
|
||||
"lineno",
|
||||
"module",
|
||||
"msecs",
|
||||
"pathname",
|
||||
"process",
|
||||
"processName",
|
||||
"relativeCreated",
|
||||
"stack_info",
|
||||
"exc_info",
|
||||
"exc_text",
|
||||
"thread",
|
||||
"threadName",
|
||||
"taskName",
|
||||
"message",
|
||||
):
|
||||
continue
|
||||
if key not in log_data:
|
||||
log_data[key] = value
|
||||
|
||||
return json.dumps(log_data, default=str)
|
||||
|
||||
|
||||
class LogContext:
|
||||
"""Context manager for adding fields to all logs within a scope.
|
||||
|
||||
Example:
|
||||
with LogContext(task_id="abc", context_id="xyz"):
|
||||
logger.info("Processing task") # Includes task_id and context_id
|
||||
"""
|
||||
|
||||
def __init__(self, **fields: Any) -> None:
|
||||
self._fields = fields
|
||||
self._token: Any = None
|
||||
|
||||
def __enter__(self) -> LogContext:
|
||||
current = _log_context.get() or {}
|
||||
new_context = {**current, **self._fields}
|
||||
self._token = _log_context.set(new_context)
|
||||
return self
|
||||
|
||||
def __exit__(self, *args: Any) -> None:
|
||||
_log_context.reset(self._token)
|
||||
|
||||
|
||||
def configure_json_logging(logger_name: str = "crewai.a2a") -> None:
|
||||
"""Configure JSON logging for the A2A module.
|
||||
|
||||
Args:
|
||||
logger_name: Logger name to configure.
|
||||
"""
|
||||
logger = logging.getLogger(logger_name)
|
||||
|
||||
for handler in logger.handlers[:]:
|
||||
logger.removeHandler(handler)
|
||||
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(JSONFormatter())
|
||||
logger.addHandler(handler)
|
||||
|
||||
|
||||
def get_logger(name: str) -> logging.Logger:
|
||||
"""Get a logger configured for structured JSON output.
|
||||
|
||||
Args:
|
||||
name: Logger name.
|
||||
|
||||
Returns:
|
||||
Configured logger instance.
|
||||
"""
|
||||
return logging.getLogger(name)
|
||||
@@ -7,40 +7,26 @@ import base64
|
||||
from collections.abc import Callable, Coroutine
|
||||
from datetime import datetime
|
||||
from functools import wraps
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, ParamSpec, TypeVar, TypedDict, cast
|
||||
from typing import TYPE_CHECKING, Any, ParamSpec, TypeVar, cast
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from a2a.server.agent_execution import RequestContext
|
||||
from a2a.server.events import EventQueue
|
||||
from a2a.types import (
|
||||
Artifact,
|
||||
FileWithBytes,
|
||||
FileWithUri,
|
||||
InternalError,
|
||||
InvalidParamsError,
|
||||
Message,
|
||||
Part,
|
||||
Task as A2ATask,
|
||||
TaskState,
|
||||
TaskStatus,
|
||||
TaskStatusUpdateEvent,
|
||||
)
|
||||
from a2a.utils import (
|
||||
get_data_parts,
|
||||
get_file_parts,
|
||||
new_agent_text_message,
|
||||
new_data_artifact,
|
||||
new_text_artifact,
|
||||
)
|
||||
from a2a.utils import new_agent_text_message, new_text_artifact
|
||||
from a2a.utils.errors import ServerError
|
||||
from aiocache import SimpleMemoryCache, caches # type: ignore[import-untyped]
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.a2a.utils.agent_card import _get_server_config
|
||||
from crewai.a2a.utils.content_type import validate_message_parts
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AServerTaskCanceledEvent,
|
||||
@@ -49,11 +35,9 @@ from crewai.events.types.a2a_events import (
|
||||
A2AServerTaskStartedEvent,
|
||||
)
|
||||
from crewai.task import Task
|
||||
from crewai.utilities.pydantic_schema_utils import create_model_from_schema
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.a2a.extensions.server import ExtensionContext, ServerExtensionRegistry
|
||||
from crewai.agent import Agent
|
||||
|
||||
|
||||
@@ -63,17 +47,7 @@ P = ParamSpec("P")
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
class RedisCacheConfig(TypedDict, total=False):
|
||||
"""Configuration for aiocache Redis backend."""
|
||||
|
||||
cache: str
|
||||
endpoint: str
|
||||
port: int
|
||||
db: int
|
||||
password: str
|
||||
|
||||
|
||||
def _parse_redis_url(url: str) -> RedisCacheConfig:
|
||||
def _parse_redis_url(url: str) -> dict[str, Any]:
|
||||
"""Parse a Redis URL into aiocache configuration.
|
||||
|
||||
Args:
|
||||
@@ -82,8 +56,9 @@ def _parse_redis_url(url: str) -> RedisCacheConfig:
|
||||
Returns:
|
||||
Configuration dict for aiocache.RedisCache.
|
||||
"""
|
||||
|
||||
parsed = urlparse(url)
|
||||
config: RedisCacheConfig = {
|
||||
config: dict[str, Any] = {
|
||||
"cache": "aiocache.RedisCache",
|
||||
"endpoint": parsed.hostname or "localhost",
|
||||
"port": parsed.port or 6379,
|
||||
@@ -163,10 +138,7 @@ def cancellable(
|
||||
if message["type"] == "message":
|
||||
return True
|
||||
except (OSError, ConnectionError) as e:
|
||||
logger.warning(
|
||||
"Cancel watcher Redis error, falling back to polling",
|
||||
extra={"task_id": task_id, "error": str(e)},
|
||||
)
|
||||
logger.warning("Cancel watcher error for task_id=%s: %s", task_id, e)
|
||||
return await poll_for_cancel()
|
||||
return False
|
||||
|
||||
@@ -194,98 +166,7 @@ def cancellable(
|
||||
return wrapper
|
||||
|
||||
|
||||
def _convert_a2a_files_to_file_inputs(
|
||||
a2a_files: list[FileWithBytes | FileWithUri],
|
||||
) -> dict[str, Any]:
|
||||
"""Convert a2a file types to crewai FileInput dict.
|
||||
|
||||
Args:
|
||||
a2a_files: List of FileWithBytes or FileWithUri from a2a SDK.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping file names to FileInput objects.
|
||||
"""
|
||||
try:
|
||||
from crewai_files import File, FileBytes
|
||||
except ImportError:
|
||||
logger.debug("crewai_files not installed, returning empty file dict")
|
||||
return {}
|
||||
|
||||
file_dict: dict[str, Any] = {}
|
||||
for idx, a2a_file in enumerate(a2a_files):
|
||||
if isinstance(a2a_file, FileWithBytes):
|
||||
file_bytes = base64.b64decode(a2a_file.bytes)
|
||||
name = a2a_file.name or f"file_{idx}"
|
||||
file_source = FileBytes(data=file_bytes, filename=a2a_file.name)
|
||||
file_dict[name] = File(source=file_source)
|
||||
elif isinstance(a2a_file, FileWithUri):
|
||||
name = a2a_file.name or f"file_{idx}"
|
||||
file_dict[name] = File(source=a2a_file.uri)
|
||||
|
||||
return file_dict
|
||||
|
||||
|
||||
def _extract_response_schema(parts: list[Part]) -> dict[str, Any] | None:
|
||||
"""Extract response schema from message parts metadata.
|
||||
|
||||
The client may include a JSON schema in TextPart metadata to specify
|
||||
the expected response format (see delegation.py line 463).
|
||||
|
||||
Args:
|
||||
parts: List of message parts.
|
||||
|
||||
Returns:
|
||||
JSON schema dict if found, None otherwise.
|
||||
"""
|
||||
for part in parts:
|
||||
if part.root.kind == "text" and part.root.metadata:
|
||||
schema = part.root.metadata.get("schema")
|
||||
if schema and isinstance(schema, dict):
|
||||
return schema # type: ignore[no-any-return]
|
||||
return None
|
||||
|
||||
|
||||
def _create_result_artifact(
|
||||
result: Any,
|
||||
task_id: str,
|
||||
) -> Artifact:
|
||||
"""Create artifact from task result, using DataPart for structured data.
|
||||
|
||||
Args:
|
||||
result: The task execution result.
|
||||
task_id: The task ID for naming the artifact.
|
||||
|
||||
Returns:
|
||||
Artifact with appropriate part type (DataPart for dict/Pydantic, TextPart for strings).
|
||||
"""
|
||||
artifact_name = f"result_{task_id}"
|
||||
if isinstance(result, dict):
|
||||
return new_data_artifact(artifact_name, result)
|
||||
if isinstance(result, BaseModel):
|
||||
return new_data_artifact(artifact_name, result.model_dump())
|
||||
return new_text_artifact(artifact_name, str(result))
|
||||
|
||||
|
||||
def _build_task_description(
|
||||
user_message: str,
|
||||
structured_inputs: list[dict[str, Any]],
|
||||
) -> str:
|
||||
"""Build task description including structured data if present.
|
||||
|
||||
Args:
|
||||
user_message: The original user message text.
|
||||
structured_inputs: List of structured data from DataParts.
|
||||
|
||||
Returns:
|
||||
Task description with structured data appended if present.
|
||||
"""
|
||||
if not structured_inputs:
|
||||
return user_message
|
||||
|
||||
structured_json = json.dumps(structured_inputs, indent=2)
|
||||
return f"{user_message}\n\nStructured Data:\n{structured_json}"
|
||||
|
||||
|
||||
@cancellable
|
||||
async def execute(
|
||||
agent: Agent,
|
||||
context: RequestContext,
|
||||
@@ -297,54 +178,15 @@ async def execute(
|
||||
agent: The CrewAI agent to execute the task.
|
||||
context: The A2A request context containing the user's message.
|
||||
event_queue: The event queue for sending responses back.
|
||||
|
||||
TODOs:
|
||||
* need to impl both of structured output and file inputs, depends on `file_inputs` for
|
||||
`crewai.task.Task`, pass the below two to Task. both utils in `a2a.utils.parts`
|
||||
* structured outputs ingestion, `structured_inputs = get_data_parts(parts=context.message.parts)`
|
||||
* file inputs ingestion, `file_inputs = get_file_parts(parts=context.message.parts)`
|
||||
"""
|
||||
await _execute_impl(agent, context, event_queue, None, None)
|
||||
|
||||
|
||||
@cancellable
|
||||
async def _execute_impl(
|
||||
agent: Agent,
|
||||
context: RequestContext,
|
||||
event_queue: EventQueue,
|
||||
extension_registry: ServerExtensionRegistry | None,
|
||||
extension_context: ExtensionContext | None,
|
||||
) -> None:
|
||||
"""Internal implementation for task execution with optional extensions."""
|
||||
server_config = _get_server_config(agent)
|
||||
if context.message and context.message.parts and server_config:
|
||||
allowed_modes = server_config.default_input_modes
|
||||
invalid_types = validate_message_parts(context.message.parts, allowed_modes)
|
||||
if invalid_types:
|
||||
raise ServerError(
|
||||
InvalidParamsError(
|
||||
message=f"Unsupported content type(s): {', '.join(invalid_types)}. "
|
||||
f"Supported: {', '.join(allowed_modes)}"
|
||||
)
|
||||
)
|
||||
|
||||
if extension_registry and extension_context:
|
||||
await extension_registry.invoke_on_request(extension_context)
|
||||
|
||||
user_message = context.get_user_input()
|
||||
|
||||
response_model: type[BaseModel] | None = None
|
||||
structured_inputs: list[dict[str, Any]] = []
|
||||
a2a_files: list[FileWithBytes | FileWithUri] = []
|
||||
|
||||
if context.message and context.message.parts:
|
||||
schema = _extract_response_schema(context.message.parts)
|
||||
if schema:
|
||||
try:
|
||||
response_model = create_model_from_schema(schema)
|
||||
except Exception as e:
|
||||
logger.debug(
|
||||
"Failed to create response model from schema",
|
||||
extra={"error": str(e), "schema_title": schema.get("title")},
|
||||
)
|
||||
|
||||
structured_inputs = get_data_parts(context.message.parts)
|
||||
a2a_files = get_file_parts(context.message.parts)
|
||||
|
||||
task_id = context.task_id
|
||||
context_id = context.context_id
|
||||
if task_id is None or context_id is None:
|
||||
@@ -361,11 +203,9 @@ async def _execute_impl(
|
||||
raise ServerError(InvalidParamsError(message=msg)) from None
|
||||
|
||||
task = Task(
|
||||
description=_build_task_description(user_message, structured_inputs),
|
||||
description=user_message,
|
||||
expected_output="Response to the user's request",
|
||||
agent=agent,
|
||||
response_model=response_model,
|
||||
input_files=_convert_a2a_files_to_file_inputs(a2a_files),
|
||||
)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
@@ -380,10 +220,6 @@ async def _execute_impl(
|
||||
|
||||
try:
|
||||
result = await agent.aexecute_task(task=task, tools=agent.tools)
|
||||
if extension_registry and extension_context:
|
||||
result = await extension_registry.invoke_on_response(
|
||||
extension_context, result
|
||||
)
|
||||
result_str = str(result)
|
||||
history: list[Message] = [context.message] if context.message else []
|
||||
history.append(new_agent_text_message(result_str, context_id, task_id))
|
||||
@@ -391,8 +227,8 @@ async def _execute_impl(
|
||||
A2ATask(
|
||||
id=task_id,
|
||||
context_id=context_id,
|
||||
status=TaskStatus(state=TaskState.completed),
|
||||
artifacts=[_create_result_artifact(result, task_id)],
|
||||
status=TaskStatus(state=TaskState.input_required),
|
||||
artifacts=[new_text_artifact(result_str, f"result_{task_id}")],
|
||||
history=history,
|
||||
)
|
||||
)
|
||||
@@ -433,27 +269,6 @@ async def _execute_impl(
|
||||
) from e
|
||||
|
||||
|
||||
async def execute_with_extensions(
|
||||
agent: Agent,
|
||||
context: RequestContext,
|
||||
event_queue: EventQueue,
|
||||
extension_registry: ServerExtensionRegistry,
|
||||
extension_context: ExtensionContext,
|
||||
) -> None:
|
||||
"""Execute an A2A task with extension hooks.
|
||||
|
||||
Args:
|
||||
agent: The CrewAI agent to execute the task.
|
||||
context: The A2A request context containing the user's message.
|
||||
event_queue: The event queue for sending responses back.
|
||||
extension_registry: Registry of server extensions.
|
||||
extension_context: Context for extension hooks.
|
||||
"""
|
||||
await _execute_impl(
|
||||
agent, context, event_queue, extension_registry, extension_context
|
||||
)
|
||||
|
||||
|
||||
async def cancel(
|
||||
context: RequestContext,
|
||||
event_queue: EventQueue,
|
||||
|
||||
@@ -1,215 +0,0 @@
|
||||
"""Transport negotiation utilities for A2A protocol.
|
||||
|
||||
This module provides functionality for negotiating the transport protocol
|
||||
between an A2A client and server based on their respective capabilities
|
||||
and preferences.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Final, Literal
|
||||
|
||||
from a2a.types import AgentCard, AgentInterface
|
||||
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import A2ATransportNegotiatedEvent
|
||||
|
||||
|
||||
TransportProtocol = Literal["JSONRPC", "GRPC", "HTTP+JSON"]
|
||||
NegotiationSource = Literal["client_preferred", "server_preferred", "fallback"]
|
||||
|
||||
JSONRPC_TRANSPORT: Literal["JSONRPC"] = "JSONRPC"
|
||||
GRPC_TRANSPORT: Literal["GRPC"] = "GRPC"
|
||||
HTTP_JSON_TRANSPORT: Literal["HTTP+JSON"] = "HTTP+JSON"
|
||||
|
||||
DEFAULT_TRANSPORT_PREFERENCE: Final[list[TransportProtocol]] = [
|
||||
JSONRPC_TRANSPORT,
|
||||
GRPC_TRANSPORT,
|
||||
HTTP_JSON_TRANSPORT,
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class NegotiatedTransport:
|
||||
"""Result of transport negotiation.
|
||||
|
||||
Attributes:
|
||||
transport: The negotiated transport protocol.
|
||||
url: The URL to use for this transport.
|
||||
source: How the transport was selected ('preferred', 'additional', 'fallback').
|
||||
"""
|
||||
|
||||
transport: str
|
||||
url: str
|
||||
source: NegotiationSource
|
||||
|
||||
|
||||
class TransportNegotiationError(Exception):
|
||||
"""Raised when no compatible transport can be negotiated."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
client_transports: list[str],
|
||||
server_transports: list[str],
|
||||
message: str | None = None,
|
||||
) -> None:
|
||||
"""Initialize the error with negotiation details.
|
||||
|
||||
Args:
|
||||
client_transports: Transports supported by the client.
|
||||
server_transports: Transports supported by the server.
|
||||
message: Optional custom error message.
|
||||
"""
|
||||
self.client_transports = client_transports
|
||||
self.server_transports = server_transports
|
||||
if message is None:
|
||||
message = (
|
||||
f"No compatible transport found. "
|
||||
f"Client supports: {client_transports}. "
|
||||
f"Server supports: {server_transports}."
|
||||
)
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
def _get_server_interfaces(agent_card: AgentCard) -> list[AgentInterface]:
|
||||
"""Extract all available interfaces from an AgentCard.
|
||||
|
||||
Creates a unified list of interfaces including the primary URL and
|
||||
any additional interfaces declared by the agent.
|
||||
|
||||
Args:
|
||||
agent_card: The agent's card containing transport information.
|
||||
|
||||
Returns:
|
||||
List of AgentInterface objects representing all available endpoints.
|
||||
"""
|
||||
interfaces: list[AgentInterface] = []
|
||||
|
||||
primary_transport = agent_card.preferred_transport or JSONRPC_TRANSPORT
|
||||
interfaces.append(
|
||||
AgentInterface(
|
||||
transport=primary_transport,
|
||||
url=agent_card.url,
|
||||
)
|
||||
)
|
||||
|
||||
if agent_card.additional_interfaces:
|
||||
for interface in agent_card.additional_interfaces:
|
||||
is_duplicate = any(
|
||||
i.url == interface.url and i.transport == interface.transport
|
||||
for i in interfaces
|
||||
)
|
||||
if not is_duplicate:
|
||||
interfaces.append(interface)
|
||||
|
||||
return interfaces
|
||||
|
||||
|
||||
def negotiate_transport(
|
||||
agent_card: AgentCard,
|
||||
client_supported_transports: list[str] | None = None,
|
||||
client_preferred_transport: str | None = None,
|
||||
emit_event: bool = True,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
) -> NegotiatedTransport:
|
||||
"""Negotiate the transport protocol between client and server.
|
||||
|
||||
Compares the client's supported transports with the server's available
|
||||
interfaces to find a compatible transport and URL.
|
||||
|
||||
Negotiation logic:
|
||||
1. If client_preferred_transport is set and server supports it → use it
|
||||
2. Otherwise, if server's preferred is in client's supported → use server's
|
||||
3. Otherwise, find first match from client's supported in server's interfaces
|
||||
|
||||
Args:
|
||||
agent_card: The server's AgentCard with transport information.
|
||||
client_supported_transports: Transports the client can use.
|
||||
Defaults to ["JSONRPC"] if not specified.
|
||||
client_preferred_transport: Client's preferred transport. If set and
|
||||
server supports it, takes priority over server preference.
|
||||
emit_event: Whether to emit a transport negotiation event.
|
||||
endpoint: Original endpoint URL for event metadata.
|
||||
a2a_agent_name: Agent name for event metadata.
|
||||
|
||||
Returns:
|
||||
NegotiatedTransport with the selected transport, URL, and source.
|
||||
|
||||
Raises:
|
||||
TransportNegotiationError: If no compatible transport is found.
|
||||
"""
|
||||
if client_supported_transports is None:
|
||||
client_supported_transports = [JSONRPC_TRANSPORT]
|
||||
|
||||
client_transports = [t.upper() for t in client_supported_transports]
|
||||
client_preferred = (
|
||||
client_preferred_transport.upper() if client_preferred_transport else None
|
||||
)
|
||||
|
||||
server_interfaces = _get_server_interfaces(agent_card)
|
||||
server_transports = [i.transport.upper() for i in server_interfaces]
|
||||
|
||||
transport_to_interface: dict[str, AgentInterface] = {}
|
||||
for interface in server_interfaces:
|
||||
transport_upper = interface.transport.upper()
|
||||
if transport_upper not in transport_to_interface:
|
||||
transport_to_interface[transport_upper] = interface
|
||||
|
||||
result: NegotiatedTransport | None = None
|
||||
|
||||
if client_preferred and client_preferred in transport_to_interface:
|
||||
interface = transport_to_interface[client_preferred]
|
||||
result = NegotiatedTransport(
|
||||
transport=interface.transport,
|
||||
url=interface.url,
|
||||
source="client_preferred",
|
||||
)
|
||||
else:
|
||||
server_preferred = (agent_card.preferred_transport or JSONRPC_TRANSPORT).upper()
|
||||
if (
|
||||
server_preferred in client_transports
|
||||
and server_preferred in transport_to_interface
|
||||
):
|
||||
interface = transport_to_interface[server_preferred]
|
||||
result = NegotiatedTransport(
|
||||
transport=interface.transport,
|
||||
url=interface.url,
|
||||
source="server_preferred",
|
||||
)
|
||||
else:
|
||||
for transport in client_transports:
|
||||
if transport in transport_to_interface:
|
||||
interface = transport_to_interface[transport]
|
||||
result = NegotiatedTransport(
|
||||
transport=interface.transport,
|
||||
url=interface.url,
|
||||
source="fallback",
|
||||
)
|
||||
break
|
||||
|
||||
if result is None:
|
||||
raise TransportNegotiationError(
|
||||
client_transports=client_transports,
|
||||
server_transports=server_transports,
|
||||
)
|
||||
|
||||
if emit_event:
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2ATransportNegotiatedEvent(
|
||||
endpoint=endpoint or agent_card.url,
|
||||
a2a_agent_name=a2a_agent_name or agent_card.name,
|
||||
negotiated_transport=result.transport,
|
||||
negotiated_url=result.url,
|
||||
source=result.source,
|
||||
client_supported_transports=client_transports,
|
||||
server_supported_transports=server_transports,
|
||||
server_preferred_transport=agent_card.preferred_transport
|
||||
or JSONRPC_TRANSPORT,
|
||||
client_preferred_transport=client_preferred,
|
||||
),
|
||||
)
|
||||
|
||||
return result
|
||||
File diff suppressed because it is too large
Load Diff
@@ -94,12 +94,6 @@ from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
|
||||
try:
|
||||
from crewai.a2a.types import AgentResponseProtocol
|
||||
except ImportError:
|
||||
AgentResponseProtocol = None # type: ignore[assignment, misc]
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai_files import FileInput
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
@@ -496,22 +490,9 @@ class Agent(BaseAgent):
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
|
||||
result = process_tool_results(self, result)
|
||||
|
||||
output_for_event = result
|
||||
if (
|
||||
AgentResponseProtocol is not None
|
||||
and isinstance(result, BaseModel)
|
||||
and isinstance(result, AgentResponseProtocol)
|
||||
):
|
||||
output_for_event = str(result.message)
|
||||
elif not isinstance(result, str):
|
||||
output_for_event = str(result)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=AgentExecutionCompletedEvent(
|
||||
agent=self, task=task, output=output_for_event
|
||||
),
|
||||
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
|
||||
)
|
||||
|
||||
save_last_messages(self)
|
||||
@@ -728,22 +709,9 @@ class Agent(BaseAgent):
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
|
||||
result = process_tool_results(self, result)
|
||||
|
||||
output_for_event = result
|
||||
if (
|
||||
AgentResponseProtocol is not None
|
||||
and isinstance(result, BaseModel)
|
||||
and isinstance(result, AgentResponseProtocol)
|
||||
):
|
||||
output_for_event = str(result.message)
|
||||
elif not isinstance(result, str):
|
||||
output_for_event = str(result)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=AgentExecutionCompletedEvent(
|
||||
agent=self, task=task, output=output_for_event
|
||||
),
|
||||
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
|
||||
)
|
||||
|
||||
save_last_messages(self)
|
||||
@@ -1890,17 +1858,11 @@ class Agent(BaseAgent):
|
||||
|
||||
# Execute the agent (this is called from sync path, so invoke returns dict)
|
||||
result = cast(dict[str, Any], executor.invoke(inputs))
|
||||
output = result.get("output", "")
|
||||
raw_output = result.get("output", "")
|
||||
|
||||
# Handle response format conversion
|
||||
formatted_result: BaseModel | None = None
|
||||
raw_output: str
|
||||
|
||||
if isinstance(output, BaseModel):
|
||||
formatted_result = output
|
||||
raw_output = output.model_dump_json()
|
||||
elif response_format:
|
||||
raw_output = str(output) if not isinstance(output, str) else output
|
||||
if response_format:
|
||||
try:
|
||||
model_schema = generate_model_description(response_format)
|
||||
schema = json.dumps(model_schema, indent=2)
|
||||
@@ -1920,8 +1882,6 @@ class Agent(BaseAgent):
|
||||
formatted_result = conversion_result
|
||||
except ConverterError:
|
||||
pass # Keep raw output if conversion fails
|
||||
else:
|
||||
raw_output = str(output) if not isinstance(output, str) else output
|
||||
|
||||
# Get token usage metrics
|
||||
if isinstance(self.llm, BaseLLM):
|
||||
@@ -1929,16 +1889,8 @@ class Agent(BaseAgent):
|
||||
else:
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
|
||||
raw_str = (
|
||||
raw_output
|
||||
if isinstance(raw_output, str)
|
||||
else raw_output.model_dump_json()
|
||||
if isinstance(raw_output, BaseModel)
|
||||
else str(raw_output)
|
||||
)
|
||||
|
||||
return LiteAgentOutput(
|
||||
raw=raw_str,
|
||||
raw=raw_output,
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
@@ -1968,17 +1920,11 @@ class Agent(BaseAgent):
|
||||
|
||||
# Execute the agent asynchronously
|
||||
result = await executor.invoke_async(inputs)
|
||||
output = result.get("output", "")
|
||||
raw_output = result.get("output", "")
|
||||
|
||||
# Handle response format conversion
|
||||
formatted_result: BaseModel | None = None
|
||||
raw_output: str
|
||||
|
||||
if isinstance(output, BaseModel):
|
||||
formatted_result = output
|
||||
raw_output = output.model_dump_json()
|
||||
elif response_format:
|
||||
raw_output = str(output) if not isinstance(output, str) else output
|
||||
if response_format:
|
||||
try:
|
||||
model_schema = generate_model_description(response_format)
|
||||
schema = json.dumps(model_schema, indent=2)
|
||||
@@ -1998,8 +1944,6 @@ class Agent(BaseAgent):
|
||||
formatted_result = conversion_result
|
||||
except ConverterError:
|
||||
pass # Keep raw output if conversion fails
|
||||
else:
|
||||
raw_output = str(output) if not isinstance(output, str) else output
|
||||
|
||||
# Get token usage metrics
|
||||
if isinstance(self.llm, BaseLLM):
|
||||
@@ -2007,16 +1951,8 @@ class Agent(BaseAgent):
|
||||
else:
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
|
||||
raw_str = (
|
||||
raw_output
|
||||
if isinstance(raw_output, str)
|
||||
else raw_output.model_dump_json()
|
||||
if isinstance(raw_output, BaseModel)
|
||||
else str(raw_output)
|
||||
)
|
||||
|
||||
return LiteAgentOutput(
|
||||
raw=raw_str,
|
||||
raw=raw_output,
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
|
||||
@@ -37,8 +37,7 @@ class CrewAgentExecutorMixin:
|
||||
self.crew
|
||||
and self.agent
|
||||
and self.task
|
||||
and f"Action: {sanitize_tool_name('Delegate work to coworker')}"
|
||||
not in output.text
|
||||
and f"Action: {sanitize_tool_name('Delegate work to coworker')}" not in output.text
|
||||
):
|
||||
try:
|
||||
if (
|
||||
@@ -133,11 +132,10 @@ class CrewAgentExecutorMixin:
|
||||
and self.crew._long_term_memory
|
||||
and self.crew._entity_memory is None
|
||||
):
|
||||
if self.agent and self.agent.verbose:
|
||||
self._printer.print(
|
||||
content="Long term memory is enabled, but entity memory is not enabled. Please configure entity memory or set memory=True to automatically enable it.",
|
||||
color="bold_yellow",
|
||||
)
|
||||
self._printer.print(
|
||||
content="Long term memory is enabled, but entity memory is not enabled. Please configure entity memory or set memory=True to automatically enable it.",
|
||||
color="bold_yellow",
|
||||
)
|
||||
|
||||
def _ask_human_input(self, final_answer: str) -> str:
|
||||
"""Prompt human input with mode-appropriate messaging.
|
||||
|
||||
@@ -28,11 +28,6 @@ from crewai.hooks.llm_hooks import (
|
||||
get_after_llm_call_hooks,
|
||||
get_before_llm_call_hooks,
|
||||
)
|
||||
from crewai.hooks.tool_hooks import (
|
||||
ToolCallHookContext,
|
||||
get_after_tool_call_hooks,
|
||||
get_before_tool_call_hooks,
|
||||
)
|
||||
from crewai.utilities.agent_utils import (
|
||||
aget_llm_response,
|
||||
convert_tools_to_openai_schema,
|
||||
@@ -206,14 +201,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
try:
|
||||
formatted_answer = self._invoke_loop()
|
||||
except AssertionError:
|
||||
if self.agent.verbose:
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
raise
|
||||
except Exception as e:
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise
|
||||
|
||||
if self.ask_for_human_input:
|
||||
@@ -328,7 +322,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
messages=self.messages,
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
break
|
||||
|
||||
@@ -343,41 +336,22 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
executor_context=self,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
# breakpoint()
|
||||
if self.response_model is not None:
|
||||
try:
|
||||
if isinstance(answer, BaseModel):
|
||||
output_json = answer.model_dump_json()
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=output_json,
|
||||
)
|
||||
else:
|
||||
self.response_model.model_validate_json(answer)
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=answer,
|
||||
)
|
||||
except ValidationError:
|
||||
# If validation fails, convert BaseModel to JSON string for parsing
|
||||
answer_str = (
|
||||
answer.model_dump_json()
|
||||
if isinstance(answer, BaseModel)
|
||||
else str(answer)
|
||||
self.response_model.model_validate_json(answer)
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=answer,
|
||||
)
|
||||
except ValidationError:
|
||||
formatted_answer = process_llm_response(
|
||||
answer_str, self.use_stop_words
|
||||
answer, self.use_stop_words
|
||||
) # type: ignore[assignment]
|
||||
else:
|
||||
# When no response_model, answer should be a string
|
||||
answer_str = str(answer) if not isinstance(answer, str) else answer
|
||||
formatted_answer = process_llm_response(
|
||||
answer_str, self.use_stop_words
|
||||
) # type: ignore[assignment]
|
||||
formatted_answer = process_llm_response(answer, self.use_stop_words) # type: ignore[assignment]
|
||||
|
||||
if isinstance(formatted_answer, AgentAction):
|
||||
# Extract agent fingerprint if available
|
||||
@@ -420,7 +394,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
iterations=self.iterations,
|
||||
log_error_after=self.log_error_after,
|
||||
printer=self._printer,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -435,10 +408,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
i18n=self._i18n,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
continue
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise e
|
||||
finally:
|
||||
self.iterations += 1
|
||||
@@ -484,7 +456,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
messages=self.messages,
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
@@ -506,7 +477,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
executor_context=self,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
# Check if the response is a list of tool calls
|
||||
@@ -538,18 +508,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
if isinstance(answer, BaseModel):
|
||||
output_json = answer.model_dump_json()
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=output_json,
|
||||
)
|
||||
self._invoke_step_callback(formatted_answer)
|
||||
self._append_message(output_json)
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
# Unexpected response type, treat as final answer
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
@@ -572,10 +530,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
i18n=self._i18n,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
continue
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise e
|
||||
finally:
|
||||
self.iterations += 1
|
||||
@@ -597,23 +554,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
executor_context=self,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
if isinstance(answer, BaseModel):
|
||||
output_json = answer.model_dump_json()
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=output_json,
|
||||
)
|
||||
else:
|
||||
answer_str = answer if isinstance(answer, str) else str(answer)
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer_str,
|
||||
text=answer_str,
|
||||
)
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=str(answer),
|
||||
text=str(answer),
|
||||
)
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
@@ -802,42 +749,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
|
||||
track_delegation_if_needed(func_name, args_dict, self.task)
|
||||
|
||||
# Find the structured tool for hook context
|
||||
structured_tool: CrewStructuredTool | None = None
|
||||
for structured in self.tools or []:
|
||||
if sanitize_tool_name(structured.name) == func_name:
|
||||
structured_tool = structured
|
||||
break
|
||||
|
||||
# Execute before_tool_call hooks
|
||||
hook_blocked = False
|
||||
before_hook_context = ToolCallHookContext(
|
||||
tool_name=func_name,
|
||||
tool_input=args_dict,
|
||||
tool=structured_tool, # type: ignore[arg-type]
|
||||
agent=self.agent,
|
||||
task=self.task,
|
||||
crew=self.crew,
|
||||
)
|
||||
before_hooks = get_before_tool_call_hooks()
|
||||
try:
|
||||
for hook in before_hooks:
|
||||
hook_result = hook(before_hook_context)
|
||||
if hook_result is False:
|
||||
hook_blocked = True
|
||||
break
|
||||
except Exception as hook_error:
|
||||
if self.agent.verbose:
|
||||
self._printer.print(
|
||||
content=f"Error in before_tool_call hook: {hook_error}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
# If hook blocked execution, set result and skip tool execution
|
||||
if hook_blocked:
|
||||
result = f"Tool execution blocked by hook. Tool: {func_name}"
|
||||
# Execute the tool (only if not cached, not at max usage, and not blocked by hook)
|
||||
elif not from_cache and not max_usage_reached:
|
||||
# Execute the tool (only if not cached and not at max usage)
|
||||
if not from_cache and not max_usage_reached:
|
||||
result = "Tool not found"
|
||||
if func_name in available_functions:
|
||||
try:
|
||||
@@ -885,29 +798,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
# Return error message when max usage limit is reached
|
||||
result = f"Tool '{func_name}' has reached its usage limit of {original_tool.max_usage_count} times and cannot be used anymore."
|
||||
|
||||
after_hook_context = ToolCallHookContext(
|
||||
tool_name=func_name,
|
||||
tool_input=args_dict,
|
||||
tool=structured_tool, # type: ignore[arg-type]
|
||||
agent=self.agent,
|
||||
task=self.task,
|
||||
crew=self.crew,
|
||||
tool_result=result,
|
||||
)
|
||||
after_hooks = get_after_tool_call_hooks()
|
||||
try:
|
||||
for after_hook in after_hooks:
|
||||
after_hook_result = after_hook(after_hook_context)
|
||||
if after_hook_result is not None:
|
||||
result = after_hook_result
|
||||
after_hook_context.tool_result = result
|
||||
except Exception as hook_error:
|
||||
if self.agent.verbose:
|
||||
self._printer.print(
|
||||
content=f"Error in after_tool_call hook: {hook_error}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
# Emit tool usage finished event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
@@ -992,14 +882,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
try:
|
||||
formatted_answer = await self._ainvoke_loop()
|
||||
except AssertionError:
|
||||
if self.agent.verbose:
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
raise
|
||||
except Exception as e:
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise
|
||||
|
||||
if self.ask_for_human_input:
|
||||
@@ -1050,7 +939,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
messages=self.messages,
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
break
|
||||
|
||||
@@ -1065,41 +953,22 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
executor_context=self,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
if self.response_model is not None:
|
||||
try:
|
||||
if isinstance(answer, BaseModel):
|
||||
output_json = answer.model_dump_json()
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=output_json,
|
||||
)
|
||||
else:
|
||||
self.response_model.model_validate_json(answer)
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=answer,
|
||||
)
|
||||
except ValidationError:
|
||||
# If validation fails, convert BaseModel to JSON string for parsing
|
||||
answer_str = (
|
||||
answer.model_dump_json()
|
||||
if isinstance(answer, BaseModel)
|
||||
else str(answer)
|
||||
self.response_model.model_validate_json(answer)
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=answer,
|
||||
)
|
||||
except ValidationError:
|
||||
formatted_answer = process_llm_response(
|
||||
answer_str, self.use_stop_words
|
||||
answer, self.use_stop_words
|
||||
) # type: ignore[assignment]
|
||||
else:
|
||||
# When no response_model, answer should be a string
|
||||
answer_str = str(answer) if not isinstance(answer, str) else answer
|
||||
formatted_answer = process_llm_response(
|
||||
answer_str, self.use_stop_words
|
||||
) # type: ignore[assignment]
|
||||
formatted_answer = process_llm_response(answer, self.use_stop_words) # type: ignore[assignment]
|
||||
|
||||
if isinstance(formatted_answer, AgentAction):
|
||||
fingerprint_context = {}
|
||||
@@ -1141,7 +1010,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
iterations=self.iterations,
|
||||
log_error_after=self.log_error_after,
|
||||
printer=self._printer,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -1155,10 +1023,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
i18n=self._i18n,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
continue
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise e
|
||||
finally:
|
||||
self.iterations += 1
|
||||
@@ -1198,7 +1065,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
messages=self.messages,
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
@@ -1220,7 +1086,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
executor_context=self,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
# Check if the response is a list of tool calls
|
||||
if (
|
||||
@@ -1251,18 +1116,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
if isinstance(answer, BaseModel):
|
||||
output_json = answer.model_dump_json()
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=output_json,
|
||||
)
|
||||
self._invoke_step_callback(formatted_answer)
|
||||
self._append_message(output_json)
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
# Unexpected response type, treat as final answer
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
@@ -1285,10 +1138,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
i18n=self._i18n,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
continue
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise e
|
||||
finally:
|
||||
self.iterations += 1
|
||||
@@ -1310,23 +1162,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
executor_context=self,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
if isinstance(answer, BaseModel):
|
||||
output_json = answer.model_dump_json()
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=output_json,
|
||||
)
|
||||
else:
|
||||
answer_str = answer if isinstance(answer, str) else str(answer)
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer_str,
|
||||
text=answer_str,
|
||||
)
|
||||
formatted_answer = AgentFinish(
|
||||
thought="",
|
||||
output=str(answer),
|
||||
text=str(answer),
|
||||
)
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
@@ -1437,11 +1279,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
)
|
||||
|
||||
if train_iteration is None or not isinstance(train_iteration, int):
|
||||
if self.agent.verbose:
|
||||
self._printer.print(
|
||||
content="Invalid or missing train iteration. Cannot save training data.",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content="Invalid or missing train iteration. Cannot save training data.",
|
||||
color="red",
|
||||
)
|
||||
return
|
||||
|
||||
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
|
||||
@@ -1461,14 +1302,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
if train_iteration in agent_training_data:
|
||||
agent_training_data[train_iteration]["improved_output"] = result.output
|
||||
else:
|
||||
if self.agent.verbose:
|
||||
self._printer.print(
|
||||
content=(
|
||||
f"No existing training data for agent {agent_id} and iteration "
|
||||
f"{train_iteration}. Cannot save improved output."
|
||||
),
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=(
|
||||
f"No existing training data for agent {agent_id} and iteration "
|
||||
f"{train_iteration}. Cannot save improved output."
|
||||
),
|
||||
color="red",
|
||||
)
|
||||
return
|
||||
|
||||
# Update the training data and save
|
||||
@@ -1499,12 +1339,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
Returns:
|
||||
Final answer after feedback.
|
||||
"""
|
||||
output_str = (
|
||||
formatted_answer.output
|
||||
if isinstance(formatted_answer.output, str)
|
||||
else formatted_answer.output.model_dump_json()
|
||||
)
|
||||
human_feedback = self._ask_human_input(output_str)
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
|
||||
if self._is_training_mode():
|
||||
return self._handle_training_feedback(formatted_answer, human_feedback)
|
||||
@@ -1563,12 +1398,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self.ask_for_human_input = False
|
||||
else:
|
||||
answer = self._process_feedback_iteration(feedback)
|
||||
output_str = (
|
||||
answer.output
|
||||
if isinstance(answer.output, str)
|
||||
else answer.output.model_dump_json()
|
||||
)
|
||||
feedback = self._ask_human_input(output_str)
|
||||
feedback = self._ask_human_input(answer.output)
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
@@ -8,7 +8,6 @@ AgentAction or AgentFinish objects.
|
||||
from dataclasses import dataclass
|
||||
|
||||
from json_repair import repair_json # type: ignore[import-untyped]
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.agents.constants import (
|
||||
ACTION_INPUT_ONLY_REGEX,
|
||||
@@ -41,7 +40,7 @@ class AgentFinish:
|
||||
"""Represents the final answer from an agent."""
|
||||
|
||||
thought: str
|
||||
output: str | BaseModel
|
||||
output: str
|
||||
text: str
|
||||
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.14"
|
||||
dependencies = [
|
||||
"crewai[tools]==1.9.3"
|
||||
"crewai[tools]==1.8.1"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.14"
|
||||
dependencies = [
|
||||
"crewai[tools]==1.9.3"
|
||||
"crewai[tools]==1.8.1"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -654,165 +654,3 @@ class A2AParallelDelegationCompletedEvent(A2AEventBase):
|
||||
success_count: int
|
||||
failure_count: int
|
||||
results: dict[str, str] | None = None
|
||||
|
||||
|
||||
class A2ATransportNegotiatedEvent(A2AEventBase):
|
||||
"""Event emitted when transport protocol is negotiated with an A2A agent.
|
||||
|
||||
This event is emitted after comparing client and server transport capabilities
|
||||
to select the optimal transport protocol and endpoint URL.
|
||||
|
||||
Attributes:
|
||||
endpoint: Original A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
negotiated_transport: The transport protocol selected (JSONRPC, GRPC, HTTP+JSON).
|
||||
negotiated_url: The URL to use for the selected transport.
|
||||
source: How the transport was selected ('client_preferred', 'server_preferred', 'fallback').
|
||||
client_supported_transports: Transports the client can use.
|
||||
server_supported_transports: Transports the server supports.
|
||||
server_preferred_transport: The server's preferred transport from AgentCard.
|
||||
client_preferred_transport: The client's preferred transport if set.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_transport_negotiated"
|
||||
endpoint: str
|
||||
a2a_agent_name: str | None = None
|
||||
negotiated_transport: str
|
||||
negotiated_url: str
|
||||
source: str
|
||||
client_supported_transports: list[str]
|
||||
server_supported_transports: list[str]
|
||||
server_preferred_transport: str
|
||||
client_preferred_transport: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AContentTypeNegotiatedEvent(A2AEventBase):
|
||||
"""Event emitted when content types are negotiated with an A2A agent.
|
||||
|
||||
This event is emitted after comparing client and server input/output mode
|
||||
capabilities to determine compatible MIME types for communication.
|
||||
|
||||
Attributes:
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
skill_name: Skill name if negotiation was skill-specific.
|
||||
client_input_modes: MIME types the client can send.
|
||||
client_output_modes: MIME types the client can accept.
|
||||
server_input_modes: MIME types the server accepts.
|
||||
server_output_modes: MIME types the server produces.
|
||||
negotiated_input_modes: Compatible input MIME types selected.
|
||||
negotiated_output_modes: Compatible output MIME types selected.
|
||||
negotiation_success: Whether compatible types were found for both directions.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_content_type_negotiated"
|
||||
endpoint: str
|
||||
a2a_agent_name: str | None = None
|
||||
skill_name: str | None = None
|
||||
client_input_modes: list[str]
|
||||
client_output_modes: list[str]
|
||||
server_input_modes: list[str]
|
||||
server_output_modes: list[str]
|
||||
negotiated_input_modes: list[str]
|
||||
negotiated_output_modes: list[str]
|
||||
negotiation_success: bool = True
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Context Lifecycle Events
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class A2AContextCreatedEvent(A2AEventBase):
|
||||
"""Event emitted when an A2A context is created.
|
||||
|
||||
Contexts group related tasks in a conversation or workflow.
|
||||
|
||||
Attributes:
|
||||
context_id: Unique identifier for the context.
|
||||
created_at: Unix timestamp when context was created.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_context_created"
|
||||
context_id: str
|
||||
created_at: float
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AContextExpiredEvent(A2AEventBase):
|
||||
"""Event emitted when an A2A context expires due to TTL.
|
||||
|
||||
Attributes:
|
||||
context_id: The expired context identifier.
|
||||
created_at: Unix timestamp when context was created.
|
||||
age_seconds: How long the context existed before expiring.
|
||||
task_count: Number of tasks in the context when expired.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_context_expired"
|
||||
context_id: str
|
||||
created_at: float
|
||||
age_seconds: float
|
||||
task_count: int
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AContextIdleEvent(A2AEventBase):
|
||||
"""Event emitted when an A2A context becomes idle.
|
||||
|
||||
Idle contexts have had no activity for the configured threshold.
|
||||
|
||||
Attributes:
|
||||
context_id: The idle context identifier.
|
||||
idle_seconds: Seconds since last activity.
|
||||
task_count: Number of tasks in the context.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_context_idle"
|
||||
context_id: str
|
||||
idle_seconds: float
|
||||
task_count: int
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AContextCompletedEvent(A2AEventBase):
|
||||
"""Event emitted when all tasks in an A2A context complete.
|
||||
|
||||
Attributes:
|
||||
context_id: The completed context identifier.
|
||||
total_tasks: Total number of tasks that were in the context.
|
||||
duration_seconds: Total context lifetime in seconds.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_context_completed"
|
||||
context_id: str
|
||||
total_tasks: int
|
||||
duration_seconds: float
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AContextPrunedEvent(A2AEventBase):
|
||||
"""Event emitted when an A2A context is pruned (deleted).
|
||||
|
||||
Pruning removes the context metadata and optionally associated tasks.
|
||||
|
||||
Attributes:
|
||||
context_id: The pruned context identifier.
|
||||
task_count: Number of tasks that were in the context.
|
||||
age_seconds: How long the context existed before pruning.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_context_pruned"
|
||||
context_id: str
|
||||
task_count: int
|
||||
age_seconds: float
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
@@ -84,4 +84,3 @@ class LLMStreamChunkEvent(LLMEventBase):
|
||||
chunk: str
|
||||
tool_call: ToolCall | None = None
|
||||
call_type: LLMCallType | None = None
|
||||
response_id: str | None = None
|
||||
|
||||
@@ -36,12 +36,6 @@ from crewai.hooks.llm_hooks import (
|
||||
get_after_llm_call_hooks,
|
||||
get_before_llm_call_hooks,
|
||||
)
|
||||
from crewai.hooks.tool_hooks import (
|
||||
ToolCallHookContext,
|
||||
get_after_tool_call_hooks,
|
||||
get_before_tool_call_hooks,
|
||||
)
|
||||
from crewai.hooks.types import AfterLLMCallHookType, BeforeLLMCallHookType
|
||||
from crewai.utilities.agent_utils import (
|
||||
convert_tools_to_openai_schema,
|
||||
enforce_rpm_limit,
|
||||
@@ -191,8 +185,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
|
||||
self._instance_id = str(uuid4())[:8]
|
||||
|
||||
self.before_llm_call_hooks: list[BeforeLLMCallHookType] = []
|
||||
self.after_llm_call_hooks: list[AfterLLMCallHookType] = []
|
||||
self.before_llm_call_hooks: list[Callable] = []
|
||||
self.after_llm_call_hooks: list[Callable] = []
|
||||
self.before_llm_call_hooks.extend(get_before_llm_call_hooks())
|
||||
self.after_llm_call_hooks.extend(get_after_llm_call_hooks())
|
||||
|
||||
@@ -305,21 +299,11 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
"""Compatibility property for mixin - returns state messages."""
|
||||
return self._state.messages
|
||||
|
||||
@messages.setter
|
||||
def messages(self, value: list[LLMMessage]) -> None:
|
||||
"""Set state messages."""
|
||||
self._state.messages = value
|
||||
|
||||
@property
|
||||
def iterations(self) -> int:
|
||||
"""Compatibility property for mixin - returns state iterations."""
|
||||
return self._state.iterations
|
||||
|
||||
@iterations.setter
|
||||
def iterations(self, value: int) -> None:
|
||||
"""Set state iterations."""
|
||||
self._state.iterations = value
|
||||
|
||||
@start()
|
||||
def initialize_reasoning(self) -> Literal["initialized"]:
|
||||
"""Initialize the reasoning flow and emit agent start logs."""
|
||||
@@ -341,7 +325,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
messages=list(self.state.messages),
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
self.state.current_answer = formatted_answer
|
||||
@@ -365,20 +348,10 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
printer=self._printer,
|
||||
from_task=self.task,
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
response_model=None,
|
||||
executor_context=self,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
# If response is structured output (BaseModel), store it directly
|
||||
if isinstance(answer, BaseModel):
|
||||
self.state.current_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=str(answer),
|
||||
)
|
||||
return "parsed"
|
||||
|
||||
# Parse the LLM response
|
||||
formatted_answer = process_llm_response(answer, self.use_stop_words)
|
||||
|
||||
@@ -412,7 +385,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
return "context_error"
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
raise e
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise
|
||||
|
||||
@listen("continue_reasoning_native")
|
||||
@@ -445,9 +418,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
available_functions=None,
|
||||
from_task=self.task,
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
response_model=None,
|
||||
executor_context=self,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
# Check if the response is a list of tool calls
|
||||
@@ -457,16 +429,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
|
||||
return "native_tool_calls"
|
||||
|
||||
if isinstance(answer, BaseModel):
|
||||
self.state.current_answer = AgentFinish(
|
||||
thought="",
|
||||
output=answer,
|
||||
text=answer.model_dump_json(),
|
||||
)
|
||||
self._invoke_step_callback(self.state.current_answer)
|
||||
self._append_message_to_state(answer.model_dump_json())
|
||||
return "native_finished"
|
||||
|
||||
# Text response - this is the final answer
|
||||
if isinstance(answer, str):
|
||||
self.state.current_answer = AgentFinish(
|
||||
@@ -496,7 +458,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
return "context_error"
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
raise e
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise
|
||||
|
||||
@router(call_llm_and_parse)
|
||||
@@ -615,12 +577,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
"content": None,
|
||||
"tool_calls": tool_calls_to_report,
|
||||
}
|
||||
if all(
|
||||
type(tc).__qualname__ == "Part" for tc in self.state.pending_tool_calls
|
||||
):
|
||||
assistant_message["raw_tool_call_parts"] = list(
|
||||
self.state.pending_tool_calls
|
||||
)
|
||||
self.state.messages.append(assistant_message)
|
||||
|
||||
# Now execute each tool
|
||||
@@ -655,12 +611,14 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
|
||||
# Check if tool has reached max usage count
|
||||
max_usage_reached = False
|
||||
if (
|
||||
original_tool
|
||||
and original_tool.max_usage_count is not None
|
||||
and original_tool.current_usage_count >= original_tool.max_usage_count
|
||||
):
|
||||
max_usage_reached = True
|
||||
if original_tool:
|
||||
if (
|
||||
hasattr(original_tool, "max_usage_count")
|
||||
and original_tool.max_usage_count is not None
|
||||
and original_tool.current_usage_count
|
||||
>= original_tool.max_usage_count
|
||||
):
|
||||
max_usage_reached = True
|
||||
|
||||
# Check cache before executing
|
||||
from_cache = False
|
||||
@@ -692,38 +650,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
|
||||
track_delegation_if_needed(func_name, args_dict, self.task)
|
||||
|
||||
structured_tool: CrewStructuredTool | None = None
|
||||
for structured in self.tools or []:
|
||||
if sanitize_tool_name(structured.name) == func_name:
|
||||
structured_tool = structured
|
||||
break
|
||||
|
||||
hook_blocked = False
|
||||
before_hook_context = ToolCallHookContext(
|
||||
tool_name=func_name,
|
||||
tool_input=args_dict,
|
||||
tool=structured_tool, # type: ignore[arg-type]
|
||||
agent=self.agent,
|
||||
task=self.task,
|
||||
crew=self.crew,
|
||||
)
|
||||
before_hooks = get_before_tool_call_hooks()
|
||||
try:
|
||||
for hook in before_hooks:
|
||||
hook_result = hook(before_hook_context)
|
||||
if hook_result is False:
|
||||
hook_blocked = True
|
||||
break
|
||||
except Exception as hook_error:
|
||||
if self.agent.verbose:
|
||||
self._printer.print(
|
||||
content=f"Error in before_tool_call hook: {hook_error}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
if hook_blocked:
|
||||
result = f"Tool execution blocked by hook. Tool: {func_name}"
|
||||
elif not from_cache and not max_usage_reached:
|
||||
# Execute the tool (only if not cached and not at max usage)
|
||||
if not from_cache and not max_usage_reached:
|
||||
result = "Tool not found"
|
||||
if func_name in self._available_functions:
|
||||
try:
|
||||
@@ -733,7 +661,11 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
# Add to cache after successful execution (before string conversion)
|
||||
if self.tools_handler and self.tools_handler.cache:
|
||||
should_cache = True
|
||||
if original_tool:
|
||||
if (
|
||||
original_tool
|
||||
and hasattr(original_tool, "cache_function")
|
||||
and original_tool.cache_function
|
||||
):
|
||||
should_cache = original_tool.cache_function(
|
||||
args_dict, raw_result
|
||||
)
|
||||
@@ -764,34 +696,10 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
error=e,
|
||||
),
|
||||
)
|
||||
elif max_usage_reached and original_tool:
|
||||
elif max_usage_reached:
|
||||
# Return error message when max usage limit is reached
|
||||
result = f"Tool '{func_name}' has reached its usage limit of {original_tool.max_usage_count} times and cannot be used anymore."
|
||||
|
||||
# Execute after_tool_call hooks (even if blocked, to allow logging/monitoring)
|
||||
after_hook_context = ToolCallHookContext(
|
||||
tool_name=func_name,
|
||||
tool_input=args_dict,
|
||||
tool=structured_tool, # type: ignore[arg-type]
|
||||
agent=self.agent,
|
||||
task=self.task,
|
||||
crew=self.crew,
|
||||
tool_result=result,
|
||||
)
|
||||
after_hooks = get_after_tool_call_hooks()
|
||||
try:
|
||||
for after_hook in after_hooks:
|
||||
after_hook_result = after_hook(after_hook_context)
|
||||
if after_hook_result is not None:
|
||||
result = after_hook_result
|
||||
after_hook_context.tool_result = result
|
||||
except Exception as hook_error:
|
||||
if self.agent.verbose:
|
||||
self._printer.print(
|
||||
content=f"Error in after_tool_call hook: {hook_error}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
# Emit tool usage finished event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
@@ -838,6 +746,15 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
self.state.is_finished = True
|
||||
return "tool_result_is_final"
|
||||
|
||||
# Add reflection prompt once after all tools in the batch
|
||||
reasoning_prompt = self._i18n.slice("post_tool_reasoning")
|
||||
|
||||
reasoning_message: LLMMessage = {
|
||||
"role": "user",
|
||||
"content": reasoning_prompt,
|
||||
}
|
||||
self.state.messages.append(reasoning_message)
|
||||
|
||||
return "native_tool_completed"
|
||||
|
||||
def _extract_tool_name(self, tool_call: Any) -> str:
|
||||
@@ -916,17 +833,12 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
@listen("parser_error")
|
||||
def recover_from_parser_error(self) -> Literal["initialized"]:
|
||||
"""Recover from output parser errors and retry."""
|
||||
if not self._last_parser_error:
|
||||
self.state.iterations += 1
|
||||
return "initialized"
|
||||
|
||||
formatted_answer = handle_output_parser_exception(
|
||||
e=self._last_parser_error,
|
||||
messages=list(self.state.messages),
|
||||
iterations=self.state.iterations,
|
||||
log_error_after=self.log_error_after,
|
||||
printer=self._printer,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
if formatted_answer:
|
||||
@@ -946,7 +858,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
llm=self.llm,
|
||||
callbacks=self.callbacks,
|
||||
i18n=self._i18n,
|
||||
verbose=self.agent.verbose,
|
||||
)
|
||||
|
||||
self.state.iterations += 1
|
||||
@@ -1038,7 +949,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
self._console.print(fail_text)
|
||||
raise
|
||||
except Exception as e:
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise
|
||||
finally:
|
||||
self._is_executing = False
|
||||
@@ -1123,7 +1034,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
self._console.print(fail_text)
|
||||
raise
|
||||
except Exception as e:
|
||||
handle_unknown_error(self._printer, e, verbose=self.agent.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise
|
||||
finally:
|
||||
self._is_executing = False
|
||||
@@ -1319,12 +1230,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
Returns:
|
||||
Final answer after feedback.
|
||||
"""
|
||||
output_str = (
|
||||
str(formatted_answer.output)
|
||||
if isinstance(formatted_answer.output, BaseModel)
|
||||
else formatted_answer.output
|
||||
)
|
||||
human_feedback = self._ask_human_input(output_str)
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
|
||||
if self._is_training_mode():
|
||||
return self._handle_training_feedback(formatted_answer, human_feedback)
|
||||
@@ -1396,12 +1302,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
self.state.ask_for_human_input = False
|
||||
else:
|
||||
answer = self._process_feedback_iteration(feedback)
|
||||
output_str = (
|
||||
str(answer.output)
|
||||
if isinstance(answer.output, BaseModel)
|
||||
else answer.output
|
||||
)
|
||||
feedback = self._ask_human_input(output_str)
|
||||
feedback = self._ask_human_input(answer.output)
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
@@ -8,13 +8,11 @@ Example:
|
||||
from crewai.flow import Flow, start, human_feedback
|
||||
from crewai.flow.async_feedback import HumanFeedbackProvider, HumanFeedbackPending
|
||||
|
||||
|
||||
class SlackProvider(HumanFeedbackProvider):
|
||||
def request_feedback(self, context, flow):
|
||||
self.send_slack_notification(context)
|
||||
raise HumanFeedbackPending(context=context)
|
||||
|
||||
|
||||
class MyFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
@@ -28,13 +26,12 @@ Example:
|
||||
```
|
||||
"""
|
||||
|
||||
from crewai.flow.async_feedback.providers import ConsoleProvider
|
||||
from crewai.flow.async_feedback.types import (
|
||||
HumanFeedbackPending,
|
||||
HumanFeedbackProvider,
|
||||
PendingFeedbackContext,
|
||||
)
|
||||
|
||||
from crewai.flow.async_feedback.providers import ConsoleProvider
|
||||
|
||||
__all__ = [
|
||||
"ConsoleProvider",
|
||||
|
||||
@@ -6,11 +6,10 @@ provider that collects feedback via console input.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from crewai.flow.async_feedback.types import PendingFeedbackContext
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.flow.flow import Flow
|
||||
|
||||
@@ -28,7 +27,6 @@ class ConsoleProvider:
|
||||
```python
|
||||
from crewai.flow.async_feedback import ConsoleProvider
|
||||
|
||||
|
||||
# Explicitly use console provider
|
||||
@human_feedback(
|
||||
message="Review this:",
|
||||
@@ -51,7 +49,7 @@ class ConsoleProvider:
|
||||
def request_feedback(
|
||||
self,
|
||||
context: PendingFeedbackContext,
|
||||
flow: Flow[Any],
|
||||
flow: Flow,
|
||||
) -> str:
|
||||
"""Request feedback via console input (blocking).
|
||||
|
||||
|
||||
@@ -10,7 +10,6 @@ from dataclasses import dataclass, field
|
||||
from datetime import datetime
|
||||
from typing import TYPE_CHECKING, Any, Protocol, runtime_checkable
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.flow.flow import Flow
|
||||
|
||||
@@ -156,7 +155,7 @@ class HumanFeedbackPending(Exception): # noqa: N818 - Not an error, a control f
|
||||
callback_info={
|
||||
"slack_channel": "#reviews",
|
||||
"thread_id": ticket_id,
|
||||
},
|
||||
}
|
||||
)
|
||||
```
|
||||
"""
|
||||
@@ -233,7 +232,7 @@ class HumanFeedbackProvider(Protocol):
|
||||
callback_info={
|
||||
"channel": self.channel,
|
||||
"thread_id": thread_id,
|
||||
},
|
||||
}
|
||||
)
|
||||
```
|
||||
"""
|
||||
@@ -241,7 +240,7 @@ class HumanFeedbackProvider(Protocol):
|
||||
def request_feedback(
|
||||
self,
|
||||
context: PendingFeedbackContext,
|
||||
flow: Flow[Any],
|
||||
flow: Flow,
|
||||
) -> str:
|
||||
"""Request feedback from a human.
|
||||
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
from typing import Final, Literal
|
||||
|
||||
|
||||
AND_CONDITION: Final[Literal["AND"]] = "AND"
|
||||
OR_CONDITION: Final[Literal["OR"]] = "OR"
|
||||
|
||||
@@ -58,7 +58,6 @@ from crewai.events.types.flow_events import (
|
||||
MethodExecutionStartedEvent,
|
||||
)
|
||||
from crewai.flow.constants import AND_CONDITION, OR_CONDITION
|
||||
from crewai.flow.flow_context import current_flow_id, current_flow_request_id
|
||||
from crewai.flow.flow_wrappers import (
|
||||
FlowCondition,
|
||||
FlowConditions,
|
||||
@@ -513,17 +512,11 @@ class FlowMeta(type):
|
||||
and attr_value.__is_router__
|
||||
):
|
||||
routers.add(attr_name)
|
||||
if (
|
||||
hasattr(attr_value, "__router_paths__")
|
||||
and attr_value.__router_paths__
|
||||
):
|
||||
router_paths[attr_name] = attr_value.__router_paths__
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
else:
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
else:
|
||||
router_paths[attr_name] = []
|
||||
router_paths[attr_name] = []
|
||||
|
||||
# Handle start methods that are also routers (e.g., @human_feedback with emit)
|
||||
if (
|
||||
@@ -1547,13 +1540,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
ctx = baggage.set_baggage("flow_input_files", input_files or {}, context=ctx)
|
||||
flow_token = attach(ctx)
|
||||
|
||||
flow_id_token = None
|
||||
request_id_token = None
|
||||
if current_flow_id.get() is None:
|
||||
flow_id_token = current_flow_id.set(self.flow_id)
|
||||
if current_flow_request_id.get() is None:
|
||||
request_id_token = current_flow_request_id.set(self.flow_id)
|
||||
|
||||
try:
|
||||
# Reset flow state for fresh execution unless restoring from persistence
|
||||
is_restoring = inputs and "id" in inputs and self._persistence is not None
|
||||
@@ -1731,10 +1717,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
return final_output
|
||||
finally:
|
||||
if request_id_token is not None:
|
||||
current_flow_request_id.reset(request_id_token)
|
||||
if flow_id_token is not None:
|
||||
current_flow_id.reset(flow_id_token)
|
||||
detach(flow_token)
|
||||
|
||||
async def akickoff(
|
||||
|
||||
@@ -8,7 +8,6 @@ from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.flow.async_feedback.types import HumanFeedbackProvider
|
||||
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
"""Flow execution context management.
|
||||
|
||||
This module provides context variables for tracking flow execution state across
|
||||
async boundaries and nested function calls.
|
||||
"""
|
||||
|
||||
import contextvars
|
||||
|
||||
|
||||
current_flow_request_id: contextvars.ContextVar[str | None] = contextvars.ContextVar(
|
||||
"flow_request_id", default=None
|
||||
)
|
||||
|
||||
current_flow_id: contextvars.ContextVar[str | None] = contextvars.ContextVar(
|
||||
"flow_id", default=None
|
||||
)
|
||||
@@ -1,22 +1,46 @@
|
||||
from pydantic import BaseModel, model_validator
|
||||
import inspect
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, InstanceOf, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from crewai.flow.flow_context import current_flow_id, current_flow_request_id
|
||||
from crewai.flow.flow import Flow
|
||||
|
||||
|
||||
class FlowTrackable(BaseModel):
|
||||
"""Mixin that tracks flow execution context for objects created within flows.
|
||||
"""Mixin that tracks the Flow instance that instantiated the object, e.g. a
|
||||
Flow instance that created a Crew or Agent.
|
||||
|
||||
When a Crew or Agent is instantiated inside a flow execution, this mixin
|
||||
automatically captures the flow ID and request ID from context variables,
|
||||
enabling proper tracking and association with the parent flow execution.
|
||||
Automatically finds and stores a reference to the parent Flow instance by
|
||||
inspecting the call stack.
|
||||
"""
|
||||
|
||||
parent_flow: InstanceOf[Flow[Any]] | None = Field(
|
||||
default=None,
|
||||
description="The parent flow of the instance, if it was created inside a flow.",
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def _set_flow_context(self) -> Self:
|
||||
request_id = current_flow_request_id.get()
|
||||
if request_id:
|
||||
self._request_id = request_id
|
||||
self._flow_id = current_flow_id.get()
|
||||
def _set_parent_flow(self) -> Self:
|
||||
max_depth = 8
|
||||
frame = inspect.currentframe()
|
||||
|
||||
try:
|
||||
if frame is None:
|
||||
return self
|
||||
|
||||
frame = frame.f_back
|
||||
for _ in range(max_depth):
|
||||
if frame is None:
|
||||
break
|
||||
|
||||
candidate = frame.f_locals.get("self")
|
||||
if isinstance(candidate, Flow):
|
||||
self.parent_flow = candidate
|
||||
break
|
||||
|
||||
frame = frame.f_back
|
||||
finally:
|
||||
del frame
|
||||
|
||||
return self
|
||||
|
||||
@@ -11,7 +11,6 @@ Example (synchronous, default):
|
||||
```python
|
||||
from crewai.flow import Flow, start, listen, human_feedback
|
||||
|
||||
|
||||
class ReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
@@ -33,13 +32,11 @@ Example (asynchronous with custom provider):
|
||||
from crewai.flow import Flow, start, human_feedback
|
||||
from crewai.flow.async_feedback import HumanFeedbackProvider, HumanFeedbackPending
|
||||
|
||||
|
||||
class SlackProvider(HumanFeedbackProvider):
|
||||
def request_feedback(self, context, flow):
|
||||
self.send_notification(context)
|
||||
raise HumanFeedbackPending(context=context)
|
||||
|
||||
|
||||
class ReviewFlow(Flow):
|
||||
@start()
|
||||
@human_feedback(
|
||||
@@ -232,7 +229,6 @@ def human_feedback(
|
||||
def review_document(self):
|
||||
return document_content
|
||||
|
||||
|
||||
@listen("approved")
|
||||
def publish(self):
|
||||
print(f"Publishing: {self.last_human_feedback.output}")
|
||||
@@ -269,7 +265,7 @@ def human_feedback(
|
||||
def decorator(func: F) -> F:
|
||||
"""Inner decorator that wraps the function."""
|
||||
|
||||
def _request_feedback(flow_instance: Flow[Any], method_output: Any) -> str:
|
||||
def _request_feedback(flow_instance: Flow, method_output: Any) -> str:
|
||||
"""Request feedback using provider or default console."""
|
||||
from crewai.flow.async_feedback.types import PendingFeedbackContext
|
||||
|
||||
@@ -295,16 +291,19 @@ def human_feedback(
|
||||
effective_provider = flow_config.hitl_provider
|
||||
|
||||
if effective_provider is not None:
|
||||
# Use provider (may raise HumanFeedbackPending for async providers)
|
||||
return effective_provider.request_feedback(context, flow_instance)
|
||||
return flow_instance._request_human_feedback(
|
||||
message=message,
|
||||
output=method_output,
|
||||
metadata=metadata,
|
||||
emit=emit,
|
||||
)
|
||||
else:
|
||||
# Use default console input (local development)
|
||||
return flow_instance._request_human_feedback(
|
||||
message=message,
|
||||
output=method_output,
|
||||
metadata=metadata,
|
||||
emit=emit,
|
||||
)
|
||||
|
||||
def _process_feedback(
|
||||
flow_instance: Flow[Any],
|
||||
flow_instance: Flow,
|
||||
method_output: Any,
|
||||
raw_feedback: str,
|
||||
) -> HumanFeedbackResult | str:
|
||||
@@ -320,14 +319,12 @@ def human_feedback(
|
||||
# No default and no feedback - use first outcome
|
||||
collapsed_outcome = emit[0]
|
||||
elif emit:
|
||||
if llm is not None:
|
||||
collapsed_outcome = flow_instance._collapse_to_outcome(
|
||||
feedback=raw_feedback,
|
||||
outcomes=emit,
|
||||
llm=llm,
|
||||
)
|
||||
else:
|
||||
collapsed_outcome = emit[0]
|
||||
# Collapse feedback to outcome using LLM
|
||||
collapsed_outcome = flow_instance._collapse_to_outcome(
|
||||
feedback=raw_feedback,
|
||||
outcomes=emit,
|
||||
llm=llm,
|
||||
)
|
||||
|
||||
# Create result
|
||||
result = HumanFeedbackResult(
|
||||
@@ -352,7 +349,7 @@ def human_feedback(
|
||||
if asyncio.iscoroutinefunction(func):
|
||||
# Async wrapper
|
||||
@wraps(func)
|
||||
async def async_wrapper(self: Flow[Any], *args: Any, **kwargs: Any) -> Any:
|
||||
async def async_wrapper(self: Flow, *args: Any, **kwargs: Any) -> Any:
|
||||
# Execute the original method
|
||||
method_output = await func(self, *args, **kwargs)
|
||||
|
||||
@@ -366,7 +363,7 @@ def human_feedback(
|
||||
else:
|
||||
# Sync wrapper
|
||||
@wraps(func)
|
||||
def sync_wrapper(self: Flow[Any], *args: Any, **kwargs: Any) -> Any:
|
||||
def sync_wrapper(self: Flow, *args: Any, **kwargs: Any) -> Any:
|
||||
# Execute the original method
|
||||
method_output = func(self, *args, **kwargs)
|
||||
|
||||
@@ -400,10 +397,11 @@ def human_feedback(
|
||||
)
|
||||
wrapper.__is_flow_method__ = True
|
||||
|
||||
# Make it a router if emit specified
|
||||
if emit:
|
||||
wrapper.__is_router__ = True
|
||||
wrapper.__router_paths__ = list(emit)
|
||||
|
||||
return wrapper # type: ignore[no-any-return]
|
||||
return wrapper # type: ignore[return-value]
|
||||
|
||||
return decorator
|
||||
|
||||
@@ -7,7 +7,6 @@ from typing import TYPE_CHECKING, Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.flow.async_feedback.types import PendingFeedbackContext
|
||||
|
||||
@@ -104,3 +103,4 @@ class FlowPersistence(ABC):
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -118,20 +118,17 @@ class PersistenceDecorator:
|
||||
)
|
||||
except Exception as e:
|
||||
error_msg = LOG_MESSAGES["save_error"].format(method_name, str(e))
|
||||
if verbose:
|
||||
cls._printer.print(error_msg, color="red")
|
||||
cls._printer.print(error_msg, color="red")
|
||||
logger.error(error_msg)
|
||||
raise RuntimeError(f"State persistence failed: {e!s}") from e
|
||||
except AttributeError as e:
|
||||
error_msg = LOG_MESSAGES["state_missing"]
|
||||
if verbose:
|
||||
cls._printer.print(error_msg, color="red")
|
||||
cls._printer.print(error_msg, color="red")
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
except (TypeError, ValueError) as e:
|
||||
error_msg = LOG_MESSAGES["id_missing"]
|
||||
if verbose:
|
||||
cls._printer.print(error_msg, color="red")
|
||||
cls._printer.print(error_msg, color="red")
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
|
||||
@@ -15,7 +15,6 @@ from pydantic import BaseModel
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.flow.async_feedback.types import PendingFeedbackContext
|
||||
|
||||
@@ -177,8 +176,7 @@ class SQLiteFlowPersistence(FlowPersistence):
|
||||
row = cursor.fetchone()
|
||||
|
||||
if row:
|
||||
result = json.loads(row[0])
|
||||
return result if isinstance(result, dict) else None
|
||||
return json.loads(row[0])
|
||||
return None
|
||||
|
||||
def save_pending_feedback(
|
||||
@@ -198,6 +196,7 @@ class SQLiteFlowPersistence(FlowPersistence):
|
||||
state_data: Current state data
|
||||
"""
|
||||
# Import here to avoid circular imports
|
||||
from crewai.flow.async_feedback.types import PendingFeedbackContext
|
||||
|
||||
# Convert state_data to dict
|
||||
if isinstance(state_data, BaseModel):
|
||||
|
||||
@@ -151,9 +151,7 @@ def _unwrap_function(function: Any) -> Any:
|
||||
return function
|
||||
|
||||
|
||||
def get_possible_return_constants(
|
||||
function: Any, verbose: bool = True
|
||||
) -> list[str] | None:
|
||||
def get_possible_return_constants(function: Any) -> list[str] | None:
|
||||
"""Extract possible string return values from a function using AST parsing.
|
||||
|
||||
This function analyzes the source code of a router method to identify
|
||||
@@ -180,11 +178,10 @@ def get_possible_return_constants(
|
||||
# Can't get source code
|
||||
return None
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
_printer.print(
|
||||
f"Error retrieving source code for function {function.__name__}: {e}",
|
||||
color="red",
|
||||
)
|
||||
_printer.print(
|
||||
f"Error retrieving source code for function {function.__name__}: {e}",
|
||||
color="red",
|
||||
)
|
||||
return None
|
||||
|
||||
try:
|
||||
@@ -193,28 +190,25 @@ def get_possible_return_constants(
|
||||
# Parse the source code into an AST
|
||||
code_ast = ast.parse(source)
|
||||
except IndentationError as e:
|
||||
if verbose:
|
||||
_printer.print(
|
||||
f"IndentationError while parsing source code of {function.__name__}: {e}",
|
||||
color="red",
|
||||
)
|
||||
_printer.print(f"Source code:\n{source}", color="yellow")
|
||||
_printer.print(
|
||||
f"IndentationError while parsing source code of {function.__name__}: {e}",
|
||||
color="red",
|
||||
)
|
||||
_printer.print(f"Source code:\n{source}", color="yellow")
|
||||
return None
|
||||
except SyntaxError as e:
|
||||
if verbose:
|
||||
_printer.print(
|
||||
f"SyntaxError while parsing source code of {function.__name__}: {e}",
|
||||
color="red",
|
||||
)
|
||||
_printer.print(f"Source code:\n{source}", color="yellow")
|
||||
_printer.print(
|
||||
f"SyntaxError while parsing source code of {function.__name__}: {e}",
|
||||
color="red",
|
||||
)
|
||||
_printer.print(f"Source code:\n{source}", color="yellow")
|
||||
return None
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
_printer.print(
|
||||
f"Unexpected error while parsing source code of {function.__name__}: {e}",
|
||||
color="red",
|
||||
)
|
||||
_printer.print(f"Source code:\n{source}", color="yellow")
|
||||
_printer.print(
|
||||
f"Unexpected error while parsing source code of {function.__name__}: {e}",
|
||||
color="red",
|
||||
)
|
||||
_printer.print(f"Source code:\n{source}", color="yellow")
|
||||
return None
|
||||
|
||||
return_values: set[str] = set()
|
||||
@@ -394,17 +388,15 @@ def get_possible_return_constants(
|
||||
|
||||
StateAttributeVisitor().visit(class_ast)
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
_printer.print(
|
||||
f"Could not analyze class context for {function.__name__}: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
_printer.print(
|
||||
f"Could not analyze class context for {function.__name__}: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
_printer.print(
|
||||
f"Could not introspect class for {function.__name__}: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
_printer.print(
|
||||
f"Could not introspect class for {function.__name__}: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
VariableAssignmentVisitor().visit(code_ast)
|
||||
ReturnVisitor().visit(code_ast)
|
||||
|
||||
@@ -1025,7 +1025,7 @@ class TriggeredByHighlighter {
|
||||
|
||||
const isAndOrRouter = edge.dashes || edge.label === "AND";
|
||||
const highlightColor = isAndOrRouter
|
||||
? (edge.color?.color || "{{ CREWAI_ORANGE }}")
|
||||
? "{{ CREWAI_ORANGE }}"
|
||||
: getComputedStyle(document.documentElement).getPropertyValue('--edge-or-color').trim();
|
||||
|
||||
const updateData = {
|
||||
@@ -1080,7 +1080,7 @@ class TriggeredByHighlighter {
|
||||
// Keep the original edge color instead of turning gray
|
||||
const isAndOrRouter = edge.dashes || edge.label === "AND";
|
||||
const baseColor = isAndOrRouter
|
||||
? (edge.color?.color || "{{ CREWAI_ORANGE }}")
|
||||
? "{{ CREWAI_ORANGE }}"
|
||||
: getComputedStyle(document.documentElement).getPropertyValue('--edge-or-color').trim();
|
||||
|
||||
// Convert color to rgba with opacity for vis.js
|
||||
@@ -1142,7 +1142,7 @@ class TriggeredByHighlighter {
|
||||
|
||||
const defaultColor =
|
||||
edge.dashes || edge.label === "AND"
|
||||
? (edge.color?.color || "{{ CREWAI_ORANGE }}")
|
||||
? "{{ CREWAI_ORANGE }}"
|
||||
: getComputedStyle(document.documentElement).getPropertyValue('--edge-or-color').trim();
|
||||
const currentOpacity = edge.opacity !== undefined ? edge.opacity : 1.0;
|
||||
const currentWidth =
|
||||
@@ -1253,7 +1253,7 @@ class TriggeredByHighlighter {
|
||||
|
||||
const defaultColor =
|
||||
edge.dashes || edge.label === "AND"
|
||||
? (edge.color?.color || "{{ CREWAI_ORANGE }}")
|
||||
? "{{ CREWAI_ORANGE }}"
|
||||
: getComputedStyle(document.documentElement).getPropertyValue('--edge-or-color').trim();
|
||||
const currentOpacity = edge.opacity !== undefined ? edge.opacity : 1.0;
|
||||
const currentWidth =
|
||||
@@ -2370,7 +2370,7 @@ class NetworkManager {
|
||||
this.edges.forEach((edge) => {
|
||||
let edgeColor;
|
||||
if (edge.dashes || edge.label === "AND") {
|
||||
edgeColor = edge.color?.color || "{{ CREWAI_ORANGE }}";
|
||||
edgeColor = "{{ CREWAI_ORANGE }}";
|
||||
} else {
|
||||
edgeColor = orEdgeColor;
|
||||
}
|
||||
|
||||
@@ -129,7 +129,7 @@ def _create_edges_from_condition(
|
||||
edges: list[StructureEdge] = []
|
||||
|
||||
if isinstance(condition, str):
|
||||
if condition in nodes and condition != target:
|
||||
if condition in nodes:
|
||||
edges.append(
|
||||
StructureEdge(
|
||||
source=condition,
|
||||
@@ -140,7 +140,7 @@ def _create_edges_from_condition(
|
||||
)
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
method_name = condition.__name__
|
||||
if method_name in nodes and method_name != target:
|
||||
if method_name in nodes:
|
||||
edges.append(
|
||||
StructureEdge(
|
||||
source=method_name,
|
||||
@@ -163,7 +163,7 @@ def _create_edges_from_condition(
|
||||
is_router_path=False,
|
||||
)
|
||||
for trigger in triggers
|
||||
if trigger in nodes and trigger != target
|
||||
if trigger in nodes
|
||||
)
|
||||
else:
|
||||
for sub_cond in conditions_list:
|
||||
@@ -196,34 +196,9 @@ def build_flow_structure(flow: Flow[Any]) -> FlowStructure:
|
||||
node_metadata["type"] = "start"
|
||||
start_methods.append(method_name)
|
||||
|
||||
if (
|
||||
hasattr(method, "__human_feedback_config__")
|
||||
and method.__human_feedback_config__
|
||||
):
|
||||
config = method.__human_feedback_config__
|
||||
node_metadata["is_human_feedback"] = True
|
||||
node_metadata["human_feedback_message"] = config.message
|
||||
|
||||
if config.emit:
|
||||
node_metadata["human_feedback_emit"] = list(config.emit)
|
||||
|
||||
if config.llm:
|
||||
llm_str = (
|
||||
config.llm
|
||||
if isinstance(config.llm, str)
|
||||
else str(type(config.llm).__name__)
|
||||
)
|
||||
node_metadata["human_feedback_llm"] = llm_str
|
||||
|
||||
if config.default_outcome:
|
||||
node_metadata["human_feedback_default_outcome"] = config.default_outcome
|
||||
|
||||
if hasattr(method, "__is_router__") and method.__is_router__:
|
||||
node_metadata["is_router"] = True
|
||||
if "is_human_feedback" not in node_metadata:
|
||||
node_metadata["type"] = "router"
|
||||
else:
|
||||
node_metadata["type"] = "human_feedback"
|
||||
node_metadata["type"] = "router"
|
||||
router_methods.append(method_name)
|
||||
|
||||
if method_name in flow._router_paths:
|
||||
@@ -342,7 +317,7 @@ def build_flow_structure(flow: Flow[Any]) -> FlowStructure:
|
||||
is_router_path=False,
|
||||
)
|
||||
for trigger_method in methods
|
||||
if str(trigger_method) in nodes and str(trigger_method) != listener_name
|
||||
if str(trigger_method) in nodes
|
||||
)
|
||||
elif is_flow_condition_dict(condition_data):
|
||||
edges.extend(
|
||||
|
||||
@@ -81,7 +81,6 @@ class JSExtension(Extension):
|
||||
|
||||
|
||||
CREWAI_ORANGE = "#FF5A50"
|
||||
HITL_BLUE = "#4A90E2"
|
||||
DARK_GRAY = "#333333"
|
||||
WHITE = "#FFFFFF"
|
||||
GRAY = "#666666"
|
||||
@@ -226,7 +225,6 @@ def render_interactive(
|
||||
nodes_list: list[dict[str, Any]] = []
|
||||
for name, metadata in dag["nodes"].items():
|
||||
node_type: str = metadata.get("type", "listen")
|
||||
is_human_feedback: bool = metadata.get("is_human_feedback", False)
|
||||
|
||||
color_config: dict[str, Any]
|
||||
font_color: str
|
||||
@@ -243,17 +241,6 @@ def render_interactive(
|
||||
}
|
||||
font_color = "var(--node-text-color)"
|
||||
border_width = 3
|
||||
elif node_type == "human_feedback":
|
||||
color_config = {
|
||||
"background": "var(--node-bg-router)",
|
||||
"border": HITL_BLUE,
|
||||
"highlight": {
|
||||
"background": "var(--node-bg-router)",
|
||||
"border": HITL_BLUE,
|
||||
},
|
||||
}
|
||||
font_color = "var(--node-text-color)"
|
||||
border_width = 3
|
||||
elif node_type == "router":
|
||||
color_config = {
|
||||
"background": "var(--node-bg-router)",
|
||||
@@ -279,57 +266,16 @@ def render_interactive(
|
||||
|
||||
title_parts: list[str] = []
|
||||
|
||||
display_type = node_type
|
||||
type_badge_bg: str
|
||||
if node_type == "human_feedback":
|
||||
type_badge_bg = HITL_BLUE
|
||||
display_type = "HITL"
|
||||
elif node_type in ["start", "router"]:
|
||||
type_badge_bg = CREWAI_ORANGE
|
||||
else:
|
||||
type_badge_bg = DARK_GRAY
|
||||
|
||||
type_badge_bg: str = (
|
||||
CREWAI_ORANGE if node_type in ["start", "router"] else DARK_GRAY
|
||||
)
|
||||
title_parts.append(f"""
|
||||
<div style="border-bottom: 1px solid rgba(102,102,102,0.15); padding-bottom: 8px; margin-bottom: 10px;">
|
||||
<div style="font-size: 13px; font-weight: 700; color: {DARK_GRAY}; margin-bottom: 6px;">{name}</div>
|
||||
<span style="display: inline-block; background: {type_badge_bg}; color: white; padding: 2px 8px; border-radius: 4px; font-size: 10px; font-weight: 600; text-transform: uppercase; letter-spacing: 0.5px;">{display_type}</span>
|
||||
<span style="display: inline-block; background: {type_badge_bg}; color: white; padding: 2px 8px; border-radius: 4px; font-size: 10px; font-weight: 600; text-transform: uppercase; letter-spacing: 0.5px;">{node_type}</span>
|
||||
</div>
|
||||
""")
|
||||
|
||||
if is_human_feedback:
|
||||
feedback_msg = metadata.get("human_feedback_message", "")
|
||||
if feedback_msg:
|
||||
title_parts.append(f"""
|
||||
<div style="margin-bottom: 8px;">
|
||||
<div style="font-size: 10px; text-transform: uppercase; color: {GRAY}; letter-spacing: 0.5px; margin-bottom: 4px; font-weight: 600;">👤 Human Feedback</div>
|
||||
<div style="background: rgba(74,144,226,0.08); padding: 6px 8px; border-radius: 4px; font-size: 11px; color: {DARK_GRAY}; border: 1px solid rgba(74,144,226,0.2); line-height: 1.4;">{feedback_msg}</div>
|
||||
</div>
|
||||
""")
|
||||
|
||||
if metadata.get("human_feedback_emit"):
|
||||
emit_options = metadata["human_feedback_emit"]
|
||||
emit_items = "".join(
|
||||
[
|
||||
f'<li style="margin: 3px 0;"><code style="background: rgba(74,144,226,0.08); padding: 2px 6px; border-radius: 3px; font-size: 10px; color: {HITL_BLUE}; border: 1px solid rgba(74,144,226,0.2); font-weight: 600;">{opt}</code></li>'
|
||||
for opt in emit_options
|
||||
]
|
||||
)
|
||||
title_parts.append(f"""
|
||||
<div style="margin-bottom: 8px;">
|
||||
<div style="font-size: 10px; text-transform: uppercase; color: {GRAY}; letter-spacing: 0.5px; margin-bottom: 4px; font-weight: 600;">Outcomes</div>
|
||||
<ul style="list-style: none; padding: 0; margin: 0;">{emit_items}</ul>
|
||||
</div>
|
||||
""")
|
||||
|
||||
if metadata.get("human_feedback_llm"):
|
||||
llm_model = metadata["human_feedback_llm"]
|
||||
title_parts.append(f"""
|
||||
<div style="margin-bottom: 8px;">
|
||||
<div style="font-size: 10px; text-transform: uppercase; color: {GRAY}; letter-spacing: 0.5px; margin-bottom: 3px; font-weight: 600;">LLM</div>
|
||||
<span style="display: inline-block; background: rgba(102,102,102,0.08); padding: 3px 8px; border-radius: 4px; font-size: 10px; color: {DARK_GRAY}; border: 1px solid rgba(102,102,102,0.12);">{llm_model}</span>
|
||||
</div>
|
||||
""")
|
||||
|
||||
if metadata.get("condition_type"):
|
||||
condition = metadata["condition_type"]
|
||||
if condition == "AND":
|
||||
@@ -363,7 +309,7 @@ def render_interactive(
|
||||
</div>
|
||||
""")
|
||||
|
||||
if metadata.get("router_paths") and not is_human_feedback:
|
||||
if metadata.get("router_paths"):
|
||||
paths = metadata["router_paths"]
|
||||
paths_items = "".join(
|
||||
[
|
||||
@@ -419,11 +365,7 @@ def render_interactive(
|
||||
edge_dashes: bool | list[int] = False
|
||||
|
||||
if edge["is_router_path"]:
|
||||
source_node = dag["nodes"].get(edge["source"], {})
|
||||
if source_node.get("is_human_feedback", False):
|
||||
edge_color = HITL_BLUE
|
||||
else:
|
||||
edge_color = CREWAI_ORANGE
|
||||
edge_color = CREWAI_ORANGE
|
||||
edge_dashes = [15, 10]
|
||||
if "router_path_label" in edge:
|
||||
edge_label = edge["router_path_label"]
|
||||
@@ -475,7 +417,6 @@ def render_interactive(
|
||||
css_content = css_content.replace("'{{ DARK_GRAY }}'", DARK_GRAY)
|
||||
css_content = css_content.replace("'{{ GRAY }}'", GRAY)
|
||||
css_content = css_content.replace("'{{ CREWAI_ORANGE }}'", CREWAI_ORANGE)
|
||||
css_content = css_content.replace("'{{ HITL_BLUE }}'", HITL_BLUE)
|
||||
|
||||
css_output_path.write_text(css_content, encoding="utf-8")
|
||||
|
||||
@@ -489,7 +430,6 @@ def render_interactive(
|
||||
js_content = js_content.replace("{{ DARK_GRAY }}", DARK_GRAY)
|
||||
js_content = js_content.replace("{{ GRAY }}", GRAY)
|
||||
js_content = js_content.replace("{{ CREWAI_ORANGE }}", CREWAI_ORANGE)
|
||||
js_content = js_content.replace("{{ HITL_BLUE }}", HITL_BLUE)
|
||||
js_content = js_content.replace("'{{ nodeData }}'", dag_nodes_json)
|
||||
js_content = js_content.replace("'{{ dagData }}'", dag_full_json)
|
||||
js_content = js_content.replace("'{{ nodes_list_json }}'", json.dumps(nodes_list))
|
||||
@@ -501,7 +441,6 @@ def render_interactive(
|
||||
|
||||
html_content = template.render(
|
||||
CREWAI_ORANGE=CREWAI_ORANGE,
|
||||
HITL_BLUE=HITL_BLUE,
|
||||
DARK_GRAY=DARK_GRAY,
|
||||
WHITE=WHITE,
|
||||
GRAY=GRAY,
|
||||
|
||||
@@ -21,11 +21,6 @@ class NodeMetadata(TypedDict, total=False):
|
||||
class_signature: str
|
||||
class_name: str
|
||||
class_line_number: int
|
||||
is_human_feedback: bool
|
||||
human_feedback_message: str
|
||||
human_feedback_emit: list[str]
|
||||
human_feedback_llm: str
|
||||
human_feedback_default_outcome: str
|
||||
|
||||
|
||||
class StructureEdge(TypedDict, total=False):
|
||||
|
||||
@@ -9,7 +9,6 @@ from crewai.utilities.printer import Printer
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.experimental.agent_executor import AgentExecutor
|
||||
from crewai.lite_agent import LiteAgent
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.utilities.types import LLMMessage
|
||||
@@ -42,7 +41,7 @@ class LLMCallHookContext:
|
||||
Can be modified by returning a new string from after_llm_call hook.
|
||||
"""
|
||||
|
||||
executor: CrewAgentExecutor | AgentExecutor | LiteAgent | None
|
||||
executor: CrewAgentExecutor | LiteAgent | None
|
||||
messages: list[LLMMessage]
|
||||
agent: Any
|
||||
task: Any
|
||||
@@ -53,7 +52,7 @@ class LLMCallHookContext:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
executor: CrewAgentExecutor | AgentExecutor | LiteAgent | None = None,
|
||||
executor: CrewAgentExecutor | LiteAgent | None = None,
|
||||
response: str | None = None,
|
||||
messages: list[LLMMessage] | None = None,
|
||||
llm: BaseLLM | str | Any | None = None, # TODO: look into
|
||||
|
||||
@@ -2,10 +2,8 @@ from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
from collections.abc import Callable
|
||||
from functools import wraps
|
||||
import inspect
|
||||
import json
|
||||
from types import MethodType
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
@@ -32,8 +30,6 @@ from typing_extensions import Self
|
||||
if TYPE_CHECKING:
|
||||
from crewai_files import FileInput
|
||||
|
||||
from crewai.a2a.config import A2AClientConfig, A2AConfig, A2AServerConfig
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
@@ -76,93 +72,18 @@ from crewai.utilities.agent_utils import (
|
||||
from crewai.utilities.converter import (
|
||||
Converter,
|
||||
ConverterError,
|
||||
generate_model_description,
|
||||
)
|
||||
from crewai.utilities.guardrail import process_guardrail
|
||||
from crewai.utilities.guardrail_types import GuardrailCallable, GuardrailType
|
||||
from crewai.utilities.i18n import I18N, get_i18n
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
from crewai.utilities.printer import Printer
|
||||
from crewai.utilities.pydantic_schema_utils import generate_model_description
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.tool_utils import execute_tool_and_check_finality
|
||||
from crewai.utilities.types import LLMMessage
|
||||
|
||||
|
||||
def _kickoff_with_a2a_support(
|
||||
agent: LiteAgent,
|
||||
original_kickoff: Callable[..., LiteAgentOutput],
|
||||
messages: str | list[LLMMessage],
|
||||
response_format: type[BaseModel] | None,
|
||||
input_files: dict[str, FileInput] | None,
|
||||
extension_registry: Any,
|
||||
) -> LiteAgentOutput:
|
||||
"""Wrap kickoff with A2A delegation using Task adapter.
|
||||
|
||||
Args:
|
||||
agent: The LiteAgent instance.
|
||||
original_kickoff: The original kickoff method.
|
||||
messages: Input messages.
|
||||
response_format: Optional response format.
|
||||
input_files: Optional input files.
|
||||
extension_registry: A2A extension registry.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput from either local execution or A2A delegation.
|
||||
"""
|
||||
from crewai.a2a.utils.response_model import get_a2a_agents_and_response_model
|
||||
from crewai.a2a.wrapper import _execute_task_with_a2a
|
||||
from crewai.task import Task
|
||||
|
||||
a2a_agents, agent_response_model = get_a2a_agents_and_response_model(agent.a2a)
|
||||
|
||||
if not a2a_agents:
|
||||
return original_kickoff(messages, response_format, input_files)
|
||||
|
||||
if isinstance(messages, str):
|
||||
description = messages
|
||||
else:
|
||||
content = next(
|
||||
(m["content"] for m in reversed(messages) if m["role"] == "user"),
|
||||
None,
|
||||
)
|
||||
description = content if isinstance(content, str) else ""
|
||||
|
||||
if not description:
|
||||
return original_kickoff(messages, response_format, input_files)
|
||||
|
||||
fake_task = Task(
|
||||
description=description,
|
||||
agent=agent,
|
||||
expected_output="Result from A2A delegation",
|
||||
input_files=input_files or {},
|
||||
)
|
||||
|
||||
def task_to_kickoff_adapter(
|
||||
self: Any, task: Task, context: str | None, tools: list[Any] | None
|
||||
) -> str:
|
||||
result = original_kickoff(messages, response_format, input_files)
|
||||
return result.raw
|
||||
|
||||
result_str = _execute_task_with_a2a(
|
||||
self=agent, # type: ignore[arg-type]
|
||||
a2a_agents=a2a_agents,
|
||||
original_fn=task_to_kickoff_adapter,
|
||||
task=fake_task,
|
||||
agent_response_model=agent_response_model,
|
||||
context=None,
|
||||
tools=None,
|
||||
extension_registry=extension_registry,
|
||||
)
|
||||
|
||||
return LiteAgentOutput(
|
||||
raw=result_str,
|
||||
pydantic=None,
|
||||
agent_role=agent.role,
|
||||
usage_metrics=None,
|
||||
messages=[],
|
||||
)
|
||||
|
||||
|
||||
class LiteAgent(FlowTrackable, BaseModel):
|
||||
"""
|
||||
A lightweight agent that can process messages and use tools.
|
||||
@@ -233,17 +154,6 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
guardrail_max_retries: int = Field(
|
||||
default=3, description="Maximum number of retries when guardrail fails"
|
||||
)
|
||||
a2a: (
|
||||
list[A2AConfig | A2AServerConfig | A2AClientConfig]
|
||||
| A2AConfig
|
||||
| A2AServerConfig
|
||||
| A2AClientConfig
|
||||
| None
|
||||
) = Field(
|
||||
default=None,
|
||||
description="A2A (Agent-to-Agent) configuration for delegating tasks to remote agents. "
|
||||
"Can be a single A2AConfig/A2AClientConfig/A2AServerConfig, or a list of configurations.",
|
||||
)
|
||||
tools_results: list[dict[str, Any]] = Field(
|
||||
default_factory=list, description="Results of the tools used by the agent."
|
||||
)
|
||||
@@ -299,52 +209,6 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def setup_a2a_support(self) -> Self:
|
||||
"""Setup A2A extensions and server methods if a2a config exists."""
|
||||
if self.a2a:
|
||||
from crewai.a2a.config import A2AClientConfig, A2AConfig
|
||||
from crewai.a2a.extensions.registry import (
|
||||
create_extension_registry_from_config,
|
||||
)
|
||||
from crewai.a2a.utils.agent_card import inject_a2a_server_methods
|
||||
|
||||
configs = self.a2a if isinstance(self.a2a, list) else [self.a2a]
|
||||
client_configs = [
|
||||
config
|
||||
for config in configs
|
||||
if isinstance(config, (A2AConfig, A2AClientConfig))
|
||||
]
|
||||
|
||||
extension_registry = (
|
||||
create_extension_registry_from_config(client_configs)
|
||||
if client_configs
|
||||
else create_extension_registry_from_config([])
|
||||
)
|
||||
extension_registry.inject_all_tools(self) # type: ignore[arg-type]
|
||||
inject_a2a_server_methods(self) # type: ignore[arg-type]
|
||||
|
||||
original_kickoff = self.kickoff
|
||||
|
||||
@wraps(original_kickoff)
|
||||
def kickoff_with_a2a(
|
||||
messages: str | list[LLMMessage],
|
||||
response_format: type[BaseModel] | None = None,
|
||||
input_files: dict[str, FileInput] | None = None,
|
||||
) -> LiteAgentOutput:
|
||||
return _kickoff_with_a2a_support(
|
||||
self,
|
||||
original_kickoff,
|
||||
messages,
|
||||
response_format,
|
||||
input_files,
|
||||
extension_registry,
|
||||
)
|
||||
|
||||
object.__setattr__(self, "kickoff", MethodType(kickoff_with_a2a, self))
|
||||
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_guardrail_is_callable(self) -> Self:
|
||||
if callable(self.guardrail):
|
||||
@@ -480,12 +344,11 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
if self.verbose:
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
handle_unknown_error(self._printer, e, verbose=self.verbose)
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
handle_unknown_error(self._printer, e)
|
||||
# Emit error event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
@@ -533,11 +396,10 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
if isinstance(result, BaseModel):
|
||||
formatted_result = result
|
||||
except ConverterError as e:
|
||||
if self.verbose:
|
||||
self._printer.print(
|
||||
content=f"Failed to parse output into response format after retries: {e.message}",
|
||||
color="yellow",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"Failed to parse output into response format after retries: {e.message}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
# Calculate token usage metrics
|
||||
if isinstance(self.llm, BaseLLM):
|
||||
@@ -743,7 +605,6 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
messages=self._messages,
|
||||
llm=cast(LLM, self.llm),
|
||||
callbacks=self._callbacks,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
|
||||
enforce_rpm_limit(self.request_within_rpm_limit)
|
||||
@@ -756,15 +617,12 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
printer=self._printer,
|
||||
from_agent=self,
|
||||
executor_context=self,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
formatted_answer = process_llm_response(
|
||||
cast(str, answer), self.use_stop_words
|
||||
)
|
||||
formatted_answer = process_llm_response(answer, self.use_stop_words)
|
||||
|
||||
if isinstance(formatted_answer, AgentAction):
|
||||
try:
|
||||
@@ -788,18 +646,16 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
|
||||
self._append_message(formatted_answer.text, role="assistant")
|
||||
except OutputParserError as e: # noqa: PERF203
|
||||
if self.verbose:
|
||||
self._printer.print(
|
||||
content="Failed to parse LLM output. Retrying...",
|
||||
color="yellow",
|
||||
)
|
||||
self._printer.print(
|
||||
content="Failed to parse LLM output. Retrying...",
|
||||
color="yellow",
|
||||
)
|
||||
formatted_answer = handle_output_parser_exception(
|
||||
e=e,
|
||||
messages=self._messages,
|
||||
iterations=self._iterations,
|
||||
log_error_after=3,
|
||||
printer=self._printer,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -814,10 +670,9 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
llm=cast(LLM, self.llm),
|
||||
callbacks=self._callbacks,
|
||||
i18n=self.i18n,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
continue
|
||||
handle_unknown_error(self._printer, e, verbose=self.verbose)
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise e
|
||||
|
||||
finally:
|
||||
@@ -847,21 +702,3 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
) -> None:
|
||||
"""Append a message to the message list with the given role."""
|
||||
self._messages.append(format_message_for_llm(text, role=role))
|
||||
|
||||
|
||||
try:
|
||||
from crewai.a2a.config import (
|
||||
A2AClientConfig as _A2AClientConfig,
|
||||
A2AConfig as _A2AConfig,
|
||||
A2AServerConfig as _A2AServerConfig,
|
||||
)
|
||||
|
||||
LiteAgent.model_rebuild(
|
||||
_types_namespace={
|
||||
"A2AConfig": _A2AConfig,
|
||||
"A2AClientConfig": _A2AClientConfig,
|
||||
"A2AServerConfig": _A2AServerConfig,
|
||||
}
|
||||
)
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
@@ -768,10 +768,6 @@ class LLM(BaseLLM):
|
||||
|
||||
# Extract content from the chunk
|
||||
chunk_content = None
|
||||
response_id = None
|
||||
|
||||
if hasattr(chunk,'id'):
|
||||
response_id = chunk.id
|
||||
|
||||
# Safely extract content from various chunk formats
|
||||
try:
|
||||
@@ -827,7 +823,6 @@ class LLM(BaseLLM):
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id
|
||||
)
|
||||
|
||||
if result is not None:
|
||||
@@ -849,7 +844,6 @@ class LLM(BaseLLM):
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
response_id=response_id
|
||||
),
|
||||
)
|
||||
# --- 4) Fallback to non-streaming if no content received
|
||||
@@ -1027,7 +1021,6 @@ class LLM(BaseLLM):
|
||||
available_functions: dict[str, Any] | None = None,
|
||||
from_task: Task | None = None,
|
||||
from_agent: Agent | None = None,
|
||||
response_id: str | None = None,
|
||||
) -> Any:
|
||||
for tool_call in tool_calls:
|
||||
current_tool_accumulator = accumulated_tool_args[tool_call.index]
|
||||
@@ -1048,7 +1041,6 @@ class LLM(BaseLLM):
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id
|
||||
),
|
||||
)
|
||||
|
||||
@@ -1410,13 +1402,11 @@ class LLM(BaseLLM):
|
||||
|
||||
params["stream"] = True
|
||||
params["stream_options"] = {"include_usage": True}
|
||||
response_id = None
|
||||
|
||||
try:
|
||||
async for chunk in await litellm.acompletion(**params):
|
||||
chunk_count += 1
|
||||
chunk_content = None
|
||||
response_id = chunk.id if hasattr(chunk, "id") else None
|
||||
|
||||
try:
|
||||
choices = None
|
||||
@@ -1476,7 +1466,6 @@ class LLM(BaseLLM):
|
||||
chunk=chunk_content,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id
|
||||
),
|
||||
)
|
||||
|
||||
@@ -1514,7 +1503,6 @@ class LLM(BaseLLM):
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id,
|
||||
)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
@@ -404,7 +404,6 @@ class BaseLLM(ABC):
|
||||
from_agent: Agent | None = None,
|
||||
tool_call: dict[str, Any] | None = None,
|
||||
call_type: LLMCallType | None = None,
|
||||
response_id: str | None = None,
|
||||
) -> None:
|
||||
"""Emit stream chunk event.
|
||||
|
||||
@@ -414,7 +413,6 @@ class BaseLLM(ABC):
|
||||
from_agent: The agent that initiated the call.
|
||||
tool_call: Tool call information if this is a tool call chunk.
|
||||
call_type: The type of LLM call (LLM_CALL or TOOL_CALL).
|
||||
response_id: Unique ID for a particular LLM response, chunks have same response_id.
|
||||
"""
|
||||
if not hasattr(crewai_event_bus, "emit"):
|
||||
raise ValueError("crewai_event_bus does not have an emit method") from None
|
||||
@@ -427,7 +425,6 @@ class BaseLLM(ABC):
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
call_type=call_type,
|
||||
response_id=response_id,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -497,7 +494,7 @@ class BaseLLM(ABC):
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
return str(result) if not isinstance(result, str) else result
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Error executing function '{function_name}': {e!s}"
|
||||
@@ -737,25 +734,22 @@ class BaseLLM(ABC):
|
||||
task=None,
|
||||
crew=None,
|
||||
)
|
||||
verbose = getattr(from_agent, "verbose", True) if from_agent else True
|
||||
printer = Printer()
|
||||
|
||||
try:
|
||||
for hook in before_hooks:
|
||||
result = hook(hook_context)
|
||||
if result is False:
|
||||
if verbose:
|
||||
printer.print(
|
||||
content="LLM call blocked by before_llm_call hook",
|
||||
color="yellow",
|
||||
)
|
||||
printer.print(
|
||||
content="LLM call blocked by before_llm_call hook",
|
||||
color="yellow",
|
||||
)
|
||||
return False
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
printer.print(
|
||||
content=f"Error in before_llm_call hook: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
printer.print(
|
||||
content=f"Error in before_llm_call hook: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
return True
|
||||
|
||||
@@ -808,7 +802,6 @@ class BaseLLM(ABC):
|
||||
crew=None,
|
||||
response=response,
|
||||
)
|
||||
verbose = getattr(from_agent, "verbose", True) if from_agent else True
|
||||
printer = Printer()
|
||||
modified_response = response
|
||||
|
||||
@@ -819,10 +812,9 @@ class BaseLLM(ABC):
|
||||
modified_response = result
|
||||
hook_context.response = modified_response
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
printer.print(
|
||||
content=f"Error in after_llm_call hook: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
printer.print(
|
||||
content=f"Error in after_llm_call hook: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
return modified_response
|
||||
|
||||
@@ -3,8 +3,9 @@ from __future__ import annotations
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, Final, Literal, TypeGuard, cast
|
||||
from typing import TYPE_CHECKING, Any, Literal, cast
|
||||
|
||||
from anthropic.types import ThinkingBlock
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.events.types.llm_events import LLMCallType
|
||||
@@ -21,9 +22,8 @@ if TYPE_CHECKING:
|
||||
from crewai.llms.hooks.base import BaseInterceptor
|
||||
|
||||
try:
|
||||
from anthropic import Anthropic, AsyncAnthropic, transform_schema
|
||||
from anthropic import Anthropic, AsyncAnthropic
|
||||
from anthropic.types import Message, TextBlock, ThinkingBlock, ToolUseBlock
|
||||
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock
|
||||
import httpx
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
@@ -31,62 +31,7 @@ except ImportError:
|
||||
) from None
|
||||
|
||||
|
||||
ANTHROPIC_FILES_API_BETA: Final = "files-api-2025-04-14"
|
||||
ANTHROPIC_STRUCTURED_OUTPUTS_BETA: Final = "structured-outputs-2025-11-13"
|
||||
|
||||
NATIVE_STRUCTURED_OUTPUT_MODELS: Final[
|
||||
tuple[
|
||||
Literal["claude-sonnet-4-5"],
|
||||
Literal["claude-sonnet-4.5"],
|
||||
Literal["claude-opus-4-5"],
|
||||
Literal["claude-opus-4.5"],
|
||||
Literal["claude-opus-4-1"],
|
||||
Literal["claude-opus-4.1"],
|
||||
Literal["claude-haiku-4-5"],
|
||||
Literal["claude-haiku-4.5"],
|
||||
]
|
||||
] = (
|
||||
"claude-sonnet-4-5",
|
||||
"claude-sonnet-4.5",
|
||||
"claude-opus-4-5",
|
||||
"claude-opus-4.5",
|
||||
"claude-opus-4-1",
|
||||
"claude-opus-4.1",
|
||||
"claude-haiku-4-5",
|
||||
"claude-haiku-4.5",
|
||||
)
|
||||
|
||||
|
||||
def _supports_native_structured_outputs(model: str) -> bool:
|
||||
"""Check if the model supports native structured outputs.
|
||||
|
||||
Native structured outputs are only available for Claude 4.5 models
|
||||
(Sonnet 4.5, Opus 4.5, Opus 4.1, Haiku 4.5).
|
||||
Other models require the tool-based fallback approach.
|
||||
|
||||
Args:
|
||||
model: The model name/identifier.
|
||||
|
||||
Returns:
|
||||
True if the model supports native structured outputs.
|
||||
"""
|
||||
model_lower = model.lower()
|
||||
return any(prefix in model_lower for prefix in NATIVE_STRUCTURED_OUTPUT_MODELS)
|
||||
|
||||
|
||||
def _is_pydantic_model_class(obj: Any) -> TypeGuard[type[BaseModel]]:
|
||||
"""Check if an object is a Pydantic model class.
|
||||
|
||||
This distinguishes between Pydantic model classes that support structured
|
||||
outputs (have model_json_schema) and plain dicts like {"type": "json_object"}.
|
||||
|
||||
Args:
|
||||
obj: The object to check.
|
||||
|
||||
Returns:
|
||||
True if obj is a Pydantic model class.
|
||||
"""
|
||||
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
||||
ANTHROPIC_FILES_API_BETA = "files-api-2025-04-14"
|
||||
|
||||
|
||||
def _contains_file_id_reference(messages: list[dict[str, Any]]) -> bool:
|
||||
@@ -139,7 +84,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
client_params: dict[str, Any] | None = None,
|
||||
interceptor: BaseInterceptor[httpx.Request, httpx.Response] | None = None,
|
||||
thinking: AnthropicThinkingConfig | None = None,
|
||||
response_format: type[BaseModel] | None = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Initialize Anthropic chat completion client.
|
||||
@@ -157,8 +101,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
stream: Enable streaming responses
|
||||
client_params: Additional parameters for the Anthropic client
|
||||
interceptor: HTTP interceptor for modifying requests/responses at transport level.
|
||||
response_format: Pydantic model for structured output. When provided, responses
|
||||
will be validated against this model schema.
|
||||
**kwargs: Additional parameters
|
||||
"""
|
||||
super().__init__(
|
||||
@@ -189,7 +131,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
self.stop_sequences = stop_sequences or []
|
||||
self.thinking = thinking
|
||||
self.previous_thinking_blocks: list[ThinkingBlock] = []
|
||||
self.response_format = response_format
|
||||
# Model-specific settings
|
||||
self.is_claude_3 = "claude-3" in model.lower()
|
||||
self.supports_tools = True
|
||||
@@ -290,8 +231,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
formatted_messages, system_message, tools
|
||||
)
|
||||
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
# Handle streaming vs non-streaming
|
||||
if self.stream:
|
||||
return self._handle_streaming_completion(
|
||||
@@ -299,7 +238,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
return self._handle_completion(
|
||||
@@ -307,7 +246,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -337,7 +276,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
available_functions: Available functions for tool calling
|
||||
from_task: Task that initiated the call
|
||||
from_agent: Agent that initiated the call
|
||||
response_model: Optional response model.
|
||||
|
||||
Returns:
|
||||
Chat completion response or tool call result
|
||||
@@ -360,15 +298,13 @@ class AnthropicCompletion(BaseLLM):
|
||||
formatted_messages, system_message, tools
|
||||
)
|
||||
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
if self.stream:
|
||||
return await self._ahandle_streaming_completion(
|
||||
completion_params,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
return await self._ahandle_completion(
|
||||
@@ -376,7 +312,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -629,40 +565,22 @@ class AnthropicCompletion(BaseLLM):
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
"""Handle non-streaming message completion."""
|
||||
if response_model:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
uses_file_api = _contains_file_id_reference(params.get("messages", []))
|
||||
betas: list[str] = []
|
||||
use_native_structured_output = False
|
||||
|
||||
if uses_file_api:
|
||||
betas.append(ANTHROPIC_FILES_API_BETA)
|
||||
|
||||
extra_body: dict[str, Any] | None = None
|
||||
if _is_pydantic_model_class(response_model):
|
||||
schema = transform_schema(response_model.model_json_schema())
|
||||
if _supports_native_structured_outputs(self.model):
|
||||
use_native_structured_output = True
|
||||
betas.append(ANTHROPIC_STRUCTURED_OUTPUTS_BETA)
|
||||
extra_body = {
|
||||
"output_format": {
|
||||
"type": "json_schema",
|
||||
"schema": schema,
|
||||
}
|
||||
}
|
||||
else:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Output the structured response",
|
||||
"input_schema": schema,
|
||||
}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
try:
|
||||
if betas:
|
||||
params["betas"] = betas
|
||||
response = self.client.beta.messages.create(
|
||||
**params, extra_body=extra_body
|
||||
)
|
||||
if uses_file_api:
|
||||
params["betas"] = [ANTHROPIC_FILES_API_BETA]
|
||||
response = self.client.beta.messages.create(**params)
|
||||
else:
|
||||
response = self.client.messages.create(**params)
|
||||
|
||||
@@ -675,41 +593,27 @@ class AnthropicCompletion(BaseLLM):
|
||||
usage = self._extract_anthropic_token_usage(response)
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if _is_pydantic_model_class(response_model) and response.content:
|
||||
if use_native_structured_output:
|
||||
for block in response.content:
|
||||
if isinstance(block, (TextBlock, BetaTextBlock)):
|
||||
structured_data = response_model.model_validate_json(block.text)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_data
|
||||
else:
|
||||
for block in response.content:
|
||||
if (
|
||||
isinstance(block, (ToolUseBlock, BetaToolUseBlock))
|
||||
and block.name == "structured_output"
|
||||
):
|
||||
structured_data = response_model.model_validate(block.input)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_data
|
||||
if response_model and response.content:
|
||||
tool_uses = [
|
||||
block for block in response.content if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
if tool_uses and tool_uses[0].name == "structured_output":
|
||||
structured_data = tool_uses[0].input
|
||||
structured_json = json.dumps(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
|
||||
return structured_json
|
||||
|
||||
# Check if Claude wants to use tools
|
||||
if response.content:
|
||||
tool_uses = [
|
||||
block
|
||||
for block in response.content
|
||||
if isinstance(block, (ToolUseBlock, BetaToolUseBlock))
|
||||
block for block in response.content if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
|
||||
if tool_uses:
|
||||
@@ -774,31 +678,17 @@ class AnthropicCompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
) -> str:
|
||||
"""Handle streaming message completion."""
|
||||
betas: list[str] = []
|
||||
use_native_structured_output = False
|
||||
if response_model:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
|
||||
extra_body: dict[str, Any] | None = None
|
||||
if _is_pydantic_model_class(response_model):
|
||||
schema = transform_schema(response_model.model_json_schema())
|
||||
if _supports_native_structured_outputs(self.model):
|
||||
use_native_structured_output = True
|
||||
betas.append(ANTHROPIC_STRUCTURED_OUTPUTS_BETA)
|
||||
extra_body = {
|
||||
"output_format": {
|
||||
"type": "json_schema",
|
||||
"schema": schema,
|
||||
}
|
||||
}
|
||||
else:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Output the structured response",
|
||||
"input_schema": schema,
|
||||
}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
full_response = ""
|
||||
|
||||
@@ -806,22 +696,11 @@ class AnthropicCompletion(BaseLLM):
|
||||
# (the SDK sets it internally)
|
||||
stream_params = {k: v for k, v in params.items() if k != "stream"}
|
||||
|
||||
if betas:
|
||||
stream_params["betas"] = betas
|
||||
|
||||
current_tool_calls: dict[int, dict[str, Any]] = {}
|
||||
|
||||
stream_context = (
|
||||
self.client.beta.messages.stream(**stream_params, extra_body=extra_body)
|
||||
if betas
|
||||
else self.client.messages.stream(**stream_params)
|
||||
)
|
||||
with stream_context as stream:
|
||||
response_id = None
|
||||
# Make streaming API call
|
||||
with self.client.messages.stream(**stream_params) as stream:
|
||||
for event in stream:
|
||||
if hasattr(event, "message") and hasattr(event.message, "id"):
|
||||
response_id = event.message.id
|
||||
|
||||
if hasattr(event, "delta") and hasattr(event.delta, "text"):
|
||||
text_delta = event.delta.text
|
||||
full_response += text_delta
|
||||
@@ -829,7 +708,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
chunk=text_delta,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
if event.type == "content_block_start":
|
||||
@@ -856,7 +734,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
"index": block_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
elif event.type == "content_block_delta":
|
||||
if event.delta.type == "input_json_delta":
|
||||
@@ -880,10 +757,9 @@ class AnthropicCompletion(BaseLLM):
|
||||
"index": block_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
final_message = stream.get_final_message()
|
||||
final_message: Message = stream.get_final_message()
|
||||
|
||||
thinking_blocks: list[ThinkingBlock] = []
|
||||
if final_message.content:
|
||||
@@ -898,43 +774,39 @@ class AnthropicCompletion(BaseLLM):
|
||||
usage = self._extract_anthropic_token_usage(final_message)
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if _is_pydantic_model_class(response_model):
|
||||
if use_native_structured_output:
|
||||
structured_data = response_model.model_validate_json(full_response)
|
||||
if response_model and final_message.content:
|
||||
tool_uses = [
|
||||
block
|
||||
for block in final_message.content
|
||||
if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
if tool_uses and tool_uses[0].name == "structured_output":
|
||||
structured_data = tool_uses[0].input
|
||||
structured_json = json.dumps(structured_data)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_data
|
||||
for block in final_message.content:
|
||||
if (
|
||||
isinstance(block, ToolUseBlock)
|
||||
and block.name == "structured_output"
|
||||
):
|
||||
structured_data = response_model.model_validate(block.input)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_data
|
||||
|
||||
return structured_json
|
||||
|
||||
if final_message.content:
|
||||
tool_uses = [
|
||||
block
|
||||
for block in final_message.content
|
||||
if isinstance(block, (ToolUseBlock, BetaToolUseBlock))
|
||||
if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
|
||||
if tool_uses:
|
||||
# If no available_functions, return tool calls for executor to handle
|
||||
if not available_functions:
|
||||
return list(tool_uses)
|
||||
|
||||
# Handle tool use conversation flow internally
|
||||
return self._handle_tool_use_conversation(
|
||||
final_message,
|
||||
tool_uses,
|
||||
@@ -944,8 +816,10 @@ class AnthropicCompletion(BaseLLM):
|
||||
from_agent,
|
||||
)
|
||||
|
||||
# Apply stop words to full response
|
||||
full_response = self._apply_stop_words(full_response)
|
||||
|
||||
# Emit completion event and return full response
|
||||
self._emit_call_completed_event(
|
||||
response=full_response,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
@@ -960,7 +834,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
|
||||
def _execute_tools_and_collect_results(
|
||||
self,
|
||||
tool_uses: list[ToolUseBlock | BetaToolUseBlock],
|
||||
tool_uses: list[ToolUseBlock],
|
||||
available_functions: dict[str, Any],
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
@@ -968,7 +842,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
"""Execute tools and collect results in Anthropic format.
|
||||
|
||||
Args:
|
||||
tool_uses: List of tool use blocks from Claude's response (regular or beta API)
|
||||
tool_uses: List of tool use blocks from Claude's response
|
||||
available_functions: Available functions for tool calling
|
||||
from_task: Task that initiated the call
|
||||
from_agent: Agent that initiated the call
|
||||
@@ -1003,8 +877,8 @@ class AnthropicCompletion(BaseLLM):
|
||||
|
||||
def _handle_tool_use_conversation(
|
||||
self,
|
||||
initial_response: Message | BetaMessage,
|
||||
tool_uses: list[ToolUseBlock | BetaToolUseBlock],
|
||||
initial_response: Message,
|
||||
tool_uses: list[ToolUseBlock],
|
||||
params: dict[str, Any],
|
||||
available_functions: dict[str, Any],
|
||||
from_task: Any | None = None,
|
||||
@@ -1121,40 +995,22 @@ class AnthropicCompletion(BaseLLM):
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
"""Handle non-streaming async message completion."""
|
||||
if response_model:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
uses_file_api = _contains_file_id_reference(params.get("messages", []))
|
||||
betas: list[str] = []
|
||||
use_native_structured_output = False
|
||||
|
||||
if uses_file_api:
|
||||
betas.append(ANTHROPIC_FILES_API_BETA)
|
||||
|
||||
extra_body: dict[str, Any] | None = None
|
||||
if _is_pydantic_model_class(response_model):
|
||||
schema = transform_schema(response_model.model_json_schema())
|
||||
if _supports_native_structured_outputs(self.model):
|
||||
use_native_structured_output = True
|
||||
betas.append(ANTHROPIC_STRUCTURED_OUTPUTS_BETA)
|
||||
extra_body = {
|
||||
"output_format": {
|
||||
"type": "json_schema",
|
||||
"schema": schema,
|
||||
}
|
||||
}
|
||||
else:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Output the structured response",
|
||||
"input_schema": schema,
|
||||
}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
try:
|
||||
if betas:
|
||||
params["betas"] = betas
|
||||
response = await self.async_client.beta.messages.create(
|
||||
**params, extra_body=extra_body
|
||||
)
|
||||
if uses_file_api:
|
||||
params["betas"] = [ANTHROPIC_FILES_API_BETA]
|
||||
response = await self.async_client.beta.messages.create(**params)
|
||||
else:
|
||||
response = await self.async_client.messages.create(**params)
|
||||
|
||||
@@ -1167,41 +1023,27 @@ class AnthropicCompletion(BaseLLM):
|
||||
usage = self._extract_anthropic_token_usage(response)
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if _is_pydantic_model_class(response_model) and response.content:
|
||||
if use_native_structured_output:
|
||||
for block in response.content:
|
||||
if isinstance(block, (TextBlock, BetaTextBlock)):
|
||||
structured_data = response_model.model_validate_json(block.text)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_data
|
||||
else:
|
||||
for block in response.content:
|
||||
if (
|
||||
isinstance(block, ToolUseBlock)
|
||||
and block.name == "structured_output"
|
||||
):
|
||||
structured_data = response_model.model_validate(block.input)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_data
|
||||
if response_model and response.content:
|
||||
tool_uses = [
|
||||
block for block in response.content if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
if tool_uses and tool_uses[0].name == "structured_output":
|
||||
structured_data = tool_uses[0].input
|
||||
structured_json = json.dumps(structured_data)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
|
||||
return structured_json
|
||||
|
||||
# Handle both ToolUseBlock (regular API) and BetaToolUseBlock (beta API features)
|
||||
if response.content:
|
||||
tool_uses = [
|
||||
block
|
||||
for block in response.content
|
||||
if isinstance(block, (ToolUseBlock, BetaToolUseBlock))
|
||||
block for block in response.content if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
|
||||
if tool_uses:
|
||||
@@ -1253,54 +1095,26 @@ class AnthropicCompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
) -> str:
|
||||
"""Handle async streaming message completion."""
|
||||
betas: list[str] = []
|
||||
use_native_structured_output = False
|
||||
if response_model:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
|
||||
extra_body: dict[str, Any] | None = None
|
||||
if _is_pydantic_model_class(response_model):
|
||||
schema = transform_schema(response_model.model_json_schema())
|
||||
if _supports_native_structured_outputs(self.model):
|
||||
use_native_structured_output = True
|
||||
betas.append(ANTHROPIC_STRUCTURED_OUTPUTS_BETA)
|
||||
extra_body = {
|
||||
"output_format": {
|
||||
"type": "json_schema",
|
||||
"schema": schema,
|
||||
}
|
||||
}
|
||||
else:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Output the structured response",
|
||||
"input_schema": schema,
|
||||
}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
full_response = ""
|
||||
|
||||
stream_params = {k: v for k, v in params.items() if k != "stream"}
|
||||
|
||||
if betas:
|
||||
stream_params["betas"] = betas
|
||||
|
||||
current_tool_calls: dict[int, dict[str, Any]] = {}
|
||||
|
||||
stream_context = (
|
||||
self.async_client.beta.messages.stream(
|
||||
**stream_params, extra_body=extra_body
|
||||
)
|
||||
if betas
|
||||
else self.async_client.messages.stream(**stream_params)
|
||||
)
|
||||
async with stream_context as stream:
|
||||
response_id = None
|
||||
async with self.async_client.messages.stream(**stream_params) as stream:
|
||||
async for event in stream:
|
||||
if hasattr(event, "message") and hasattr(event.message, "id"):
|
||||
response_id = event.message.id
|
||||
|
||||
if hasattr(event, "delta") and hasattr(event.delta, "text"):
|
||||
text_delta = event.delta.text
|
||||
full_response += text_delta
|
||||
@@ -1308,7 +1122,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
chunk=text_delta,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
if event.type == "content_block_start":
|
||||
@@ -1335,7 +1148,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
"index": block_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
elif event.type == "content_block_delta":
|
||||
if event.delta.type == "input_json_delta":
|
||||
@@ -1359,48 +1171,42 @@ class AnthropicCompletion(BaseLLM):
|
||||
"index": block_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
final_message = await stream.get_final_message()
|
||||
final_message: Message = await stream.get_final_message()
|
||||
|
||||
usage = self._extract_anthropic_token_usage(final_message)
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if _is_pydantic_model_class(response_model):
|
||||
if use_native_structured_output:
|
||||
structured_data = response_model.model_validate_json(full_response)
|
||||
if response_model and final_message.content:
|
||||
tool_uses = [
|
||||
block
|
||||
for block in final_message.content
|
||||
if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
if tool_uses and tool_uses[0].name == "structured_output":
|
||||
structured_data = tool_uses[0].input
|
||||
structured_json = json.dumps(structured_data)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_data
|
||||
for block in final_message.content:
|
||||
if (
|
||||
isinstance(block, ToolUseBlock)
|
||||
and block.name == "structured_output"
|
||||
):
|
||||
structured_data = response_model.model_validate(block.input)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_data
|
||||
|
||||
return structured_json
|
||||
|
||||
if final_message.content:
|
||||
tool_uses = [
|
||||
block
|
||||
for block in final_message.content
|
||||
if isinstance(block, (ToolUseBlock, BetaToolUseBlock))
|
||||
if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
|
||||
if tool_uses:
|
||||
# If no available_functions, return tool calls for executor to handle
|
||||
if not available_functions:
|
||||
return list(tool_uses)
|
||||
|
||||
@@ -1427,8 +1233,8 @@ class AnthropicCompletion(BaseLLM):
|
||||
|
||||
async def _ahandle_tool_use_conversation(
|
||||
self,
|
||||
initial_response: Message | BetaMessage,
|
||||
tool_uses: list[ToolUseBlock | BetaToolUseBlock],
|
||||
initial_response: Message,
|
||||
tool_uses: list[ToolUseBlock],
|
||||
params: dict[str, Any],
|
||||
available_functions: dict[str, Any],
|
||||
from_task: Any | None = None,
|
||||
@@ -1536,9 +1342,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
return int(200000 * CONTEXT_WINDOW_USAGE_RATIO)
|
||||
|
||||
@staticmethod
|
||||
def _extract_anthropic_token_usage(
|
||||
response: Message | BetaMessage,
|
||||
) -> dict[str, Any]:
|
||||
def _extract_anthropic_token_usage(response: Message) -> dict[str, Any]:
|
||||
"""Extract token usage from Anthropic response."""
|
||||
if hasattr(response, "usage") and response.usage:
|
||||
usage = response.usage
|
||||
|
||||
@@ -92,7 +92,6 @@ class AzureCompletion(BaseLLM):
|
||||
stop: list[str] | None = None,
|
||||
stream: bool = False,
|
||||
interceptor: BaseInterceptor[Any, Any] | None = None,
|
||||
response_format: type[BaseModel] | None = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Initialize Azure AI Inference chat completion client.
|
||||
@@ -112,9 +111,6 @@ class AzureCompletion(BaseLLM):
|
||||
stop: Stop sequences
|
||||
stream: Enable streaming responses
|
||||
interceptor: HTTP interceptor (not yet supported for Azure).
|
||||
response_format: Pydantic model for structured output. Used as default when
|
||||
response_model is not passed to call()/acall() methods.
|
||||
Only works with OpenAI models deployed on Azure.
|
||||
**kwargs: Additional parameters
|
||||
"""
|
||||
if interceptor is not None:
|
||||
@@ -169,7 +165,6 @@ class AzureCompletion(BaseLLM):
|
||||
self.presence_penalty = presence_penalty
|
||||
self.max_tokens = max_tokens
|
||||
self.stream = stream
|
||||
self.response_format = response_format
|
||||
|
||||
self.is_openai_model = any(
|
||||
prefix in model.lower() for prefix in ["gpt-", "o1-", "text-"]
|
||||
@@ -303,7 +298,6 @@ class AzureCompletion(BaseLLM):
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
# Format messages for Azure
|
||||
formatted_messages = self._format_messages_for_azure(messages)
|
||||
@@ -313,7 +307,7 @@ class AzureCompletion(BaseLLM):
|
||||
|
||||
# Prepare completion parameters
|
||||
completion_params = self._prepare_completion_params(
|
||||
formatted_messages, tools, effective_response_model
|
||||
formatted_messages, tools, response_model
|
||||
)
|
||||
|
||||
# Handle streaming vs non-streaming
|
||||
@@ -323,7 +317,7 @@ class AzureCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
return self._handle_completion(
|
||||
@@ -331,7 +325,7 @@ class AzureCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -370,12 +364,11 @@ class AzureCompletion(BaseLLM):
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
formatted_messages = self._format_messages_for_azure(messages)
|
||||
|
||||
completion_params = self._prepare_completion_params(
|
||||
formatted_messages, tools, effective_response_model
|
||||
formatted_messages, tools, response_model
|
||||
)
|
||||
|
||||
if self.stream:
|
||||
@@ -384,7 +377,7 @@ class AzureCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
return await self._ahandle_completion(
|
||||
@@ -392,7 +385,7 @@ class AzureCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -557,7 +550,7 @@ class AzureCompletion(BaseLLM):
|
||||
params: AzureCompletionParams,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
) -> BaseModel:
|
||||
) -> str:
|
||||
"""Validate content against response model and emit completion event.
|
||||
|
||||
Args:
|
||||
@@ -568,23 +561,24 @@ class AzureCompletion(BaseLLM):
|
||||
from_agent: Agent that initiated the call
|
||||
|
||||
Returns:
|
||||
Validated Pydantic model instance
|
||||
Validated and serialized JSON string
|
||||
|
||||
Raises:
|
||||
ValueError: If validation fails
|
||||
"""
|
||||
try:
|
||||
structured_data = response_model.model_validate_json(content)
|
||||
structured_json = structured_data.model_dump_json()
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
|
||||
return structured_data
|
||||
return structured_json
|
||||
except Exception as e:
|
||||
error_msg = f"Failed to validate structured output with model {response_model.__name__}: {e}"
|
||||
logging.error(error_msg)
|
||||
@@ -622,6 +616,16 @@ class AzureCompletion(BaseLLM):
|
||||
usage = self._extract_azure_token_usage(response)
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if response_model and self.is_openai_model:
|
||||
content = message.content or ""
|
||||
return self._validate_and_emit_structured_output(
|
||||
content=content,
|
||||
response_model=response_model,
|
||||
params=params,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
# If there are tool_calls but no available_functions, return the tool_calls
|
||||
# This allows the caller (e.g., executor) to handle tool execution
|
||||
if message.tool_calls and not available_functions:
|
||||
@@ -661,15 +665,7 @@ class AzureCompletion(BaseLLM):
|
||||
# Extract content
|
||||
content = message.content or ""
|
||||
|
||||
if response_model and self.is_openai_model:
|
||||
return self._validate_and_emit_structured_output(
|
||||
content=content,
|
||||
response_model=response_model,
|
||||
params=params,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
# Apply stop words
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
# Emit completion event and return content
|
||||
@@ -730,7 +726,6 @@ class AzureCompletion(BaseLLM):
|
||||
"""
|
||||
if update.choices:
|
||||
choice = update.choices[0]
|
||||
response_id = update.id if hasattr(update, "id") else None
|
||||
if choice.delta and choice.delta.content:
|
||||
content_delta = choice.delta.content
|
||||
full_response += content_delta
|
||||
@@ -738,7 +733,6 @@ class AzureCompletion(BaseLLM):
|
||||
chunk=content_delta,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
if choice.delta and choice.delta.tool_calls:
|
||||
@@ -773,7 +767,6 @@ class AzureCompletion(BaseLLM):
|
||||
"index": idx,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
return full_response
|
||||
|
||||
@@ -16,7 +16,6 @@ from crewai.utilities.agent_utils import is_context_length_exceeded
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededError,
|
||||
)
|
||||
from crewai.utilities.pydantic_schema_utils import generate_model_description
|
||||
from crewai.utilities.types import LLMMessage
|
||||
|
||||
|
||||
@@ -45,78 +44,6 @@ except ImportError:
|
||||
'AWS Bedrock native provider not available, to install: uv add "crewai[bedrock]"'
|
||||
) from None
|
||||
|
||||
|
||||
STRUCTURED_OUTPUT_TOOL_NAME = "structured_output"
|
||||
|
||||
|
||||
def _preprocess_structured_data(
|
||||
data: dict[str, Any], response_model: type[BaseModel]
|
||||
) -> dict[str, Any]:
|
||||
"""Preprocess structured data to handle common LLM output format issues.
|
||||
|
||||
Some models (especially Claude on Bedrock) may return array fields as
|
||||
markdown-formatted strings instead of proper JSON arrays. This function
|
||||
attempts to convert such strings to arrays before validation.
|
||||
|
||||
Args:
|
||||
data: The raw structured data from the tool response
|
||||
response_model: The Pydantic model class to validate against
|
||||
|
||||
Returns:
|
||||
Preprocessed data with string-to-array conversions where needed
|
||||
"""
|
||||
import re
|
||||
from typing import get_origin
|
||||
|
||||
# Get model field annotations
|
||||
model_fields = response_model.model_fields
|
||||
|
||||
processed_data = dict(data)
|
||||
|
||||
for field_name, field_info in model_fields.items():
|
||||
if field_name not in processed_data:
|
||||
continue
|
||||
|
||||
value = processed_data[field_name]
|
||||
|
||||
# Check if the field expects a list type
|
||||
annotation = field_info.annotation
|
||||
origin = get_origin(annotation)
|
||||
|
||||
# Handle list[X] or List[X] types
|
||||
is_list_type = origin is list or (
|
||||
origin is not None and str(origin).startswith("list")
|
||||
)
|
||||
|
||||
if is_list_type and isinstance(value, str):
|
||||
# Try to parse markdown-style bullet points or numbered lists
|
||||
lines = value.strip().split("\n")
|
||||
parsed_items = []
|
||||
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
|
||||
# Remove common bullet point prefixes
|
||||
# Matches: "- item", "* item", "• item", "1. item", "1) item"
|
||||
cleaned = re.sub(r"^[-*•]\s*", "", line)
|
||||
cleaned = re.sub(r"^\d+[.)]\s*", "", cleaned)
|
||||
cleaned = cleaned.strip()
|
||||
|
||||
if cleaned:
|
||||
parsed_items.append(cleaned)
|
||||
|
||||
if parsed_items:
|
||||
processed_data[field_name] = parsed_items
|
||||
logging.debug(
|
||||
f"Converted markdown-formatted string to list for field '{field_name}': "
|
||||
f"{len(parsed_items)} items"
|
||||
)
|
||||
|
||||
return processed_data
|
||||
|
||||
|
||||
try:
|
||||
from aiobotocore.session import ( # type: ignore[import-untyped]
|
||||
get_session as get_aiobotocore_session,
|
||||
@@ -245,7 +172,6 @@ class BedrockCompletion(BaseLLM):
|
||||
additional_model_request_fields: dict[str, Any] | None = None,
|
||||
additional_model_response_field_paths: list[str] | None = None,
|
||||
interceptor: BaseInterceptor[Any, Any] | None = None,
|
||||
response_format: type[BaseModel] | None = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize AWS Bedrock completion client.
|
||||
@@ -266,8 +192,6 @@ class BedrockCompletion(BaseLLM):
|
||||
additional_model_request_fields: Model-specific request parameters
|
||||
additional_model_response_field_paths: Custom response field paths
|
||||
interceptor: HTTP interceptor (not yet supported for Bedrock).
|
||||
response_format: Pydantic model for structured output. Used as default when
|
||||
response_model is not passed to call()/acall() methods.
|
||||
**kwargs: Additional parameters
|
||||
"""
|
||||
if interceptor is not None:
|
||||
@@ -323,8 +247,7 @@ class BedrockCompletion(BaseLLM):
|
||||
self.top_p = top_p
|
||||
self.top_k = top_k
|
||||
self.stream = stream
|
||||
self.stop_sequences = stop_sequences
|
||||
self.response_format = response_format
|
||||
self.stop_sequences = stop_sequences or []
|
||||
|
||||
# Store advanced features (optional)
|
||||
self.guardrail_config = guardrail_config
|
||||
@@ -344,7 +267,7 @@ class BedrockCompletion(BaseLLM):
|
||||
@property
|
||||
def stop(self) -> list[str]:
|
||||
"""Get stop sequences sent to the API."""
|
||||
return [] if self.stop_sequences is None else list(self.stop_sequences)
|
||||
return list(self.stop_sequences)
|
||||
|
||||
@stop.setter
|
||||
def stop(self, value: Sequence[str] | str | None) -> None:
|
||||
@@ -376,8 +299,6 @@ class BedrockCompletion(BaseLLM):
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
"""Call AWS Bedrock Converse API."""
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
try:
|
||||
# Emit call started event
|
||||
self._emit_call_started_event(
|
||||
@@ -454,7 +375,6 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
return self._handle_converse(
|
||||
@@ -463,7 +383,6 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -506,8 +425,6 @@ class BedrockCompletion(BaseLLM):
|
||||
NotImplementedError: If aiobotocore is not installed.
|
||||
LLMContextLengthExceededError: If context window is exceeded.
|
||||
"""
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
if not AIOBOTOCORE_AVAILABLE:
|
||||
raise NotImplementedError(
|
||||
"Async support for AWS Bedrock requires aiobotocore. "
|
||||
@@ -577,21 +494,11 @@ class BedrockCompletion(BaseLLM):
|
||||
|
||||
if self.stream:
|
||||
return await self._ahandle_streaming_converse(
|
||||
formatted_messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
formatted_messages, body, available_functions, from_task, from_agent
|
||||
)
|
||||
|
||||
return await self._ahandle_converse(
|
||||
formatted_messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
formatted_messages, body, available_functions, from_task, from_agent
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -613,62 +520,10 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions: Mapping[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
) -> str:
|
||||
"""Handle non-streaming converse API call following AWS best practices."""
|
||||
if response_model:
|
||||
# Check if structured_output tool already exists (from a previous recursive call)
|
||||
existing_tool_config = body.get("toolConfig")
|
||||
existing_tools: list[Any] = []
|
||||
structured_output_already_exists = False
|
||||
|
||||
if existing_tool_config:
|
||||
existing_tools = list(existing_tool_config.get("tools", []))
|
||||
for tool in existing_tools:
|
||||
tool_spec = tool.get("toolSpec", {})
|
||||
if tool_spec.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_output_already_exists = True
|
||||
break
|
||||
|
||||
if not structured_output_already_exists:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
"description": (
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
if existing_tools:
|
||||
existing_tools.append(structured_tool)
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(object, {"tools": existing_tools}),
|
||||
)
|
||||
else:
|
||||
# No existing tools, use only structured_output with forced toolChoice
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {
|
||||
"tool": {"name": STRUCTURED_OUTPUT_TOOL_NAME}
|
||||
},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
# Validate messages format before API call
|
||||
if not messages:
|
||||
raise ValueError("Messages cannot be empty")
|
||||
|
||||
@@ -716,47 +571,15 @@ class BedrockCompletion(BaseLLM):
|
||||
|
||||
# If there are tool uses but no available_functions, return them for the executor to handle
|
||||
tool_uses = [block["toolUse"] for block in content if "toolUse" in block]
|
||||
|
||||
# Check for structured_output tool call first
|
||||
if response_model and tool_uses:
|
||||
for tool_use in tool_uses:
|
||||
if tool_use.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_data = tool_use.get("input", {})
|
||||
structured_data = _preprocess_structured_data(
|
||||
structured_data, response_model
|
||||
)
|
||||
try:
|
||||
result = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
# Filter out structured_output from tool_uses returned to executor
|
||||
non_structured_output_tool_uses = [
|
||||
tu for tu in tool_uses if tu.get("name") != STRUCTURED_OUTPUT_TOOL_NAME
|
||||
]
|
||||
|
||||
if non_structured_output_tool_uses and not available_functions:
|
||||
if tool_uses and not available_functions:
|
||||
self._emit_call_completed_event(
|
||||
response=non_structured_output_tool_uses,
|
||||
response=tool_uses,
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return non_structured_output_tool_uses
|
||||
return tool_uses
|
||||
|
||||
# Process content blocks and handle tool use correctly
|
||||
text_content = ""
|
||||
@@ -773,9 +596,6 @@ class BedrockCompletion(BaseLLM):
|
||||
function_name = tool_use_block["name"]
|
||||
function_args = tool_use_block.get("input", {})
|
||||
|
||||
if function_name == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
continue
|
||||
|
||||
logging.debug(
|
||||
f"Tool use requested: {function_name} with ID {tool_use_id}"
|
||||
)
|
||||
@@ -812,12 +632,7 @@ class BedrockCompletion(BaseLLM):
|
||||
)
|
||||
|
||||
return self._handle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
messages, body, available_functions, from_task, from_agent
|
||||
)
|
||||
|
||||
# Apply stop sequences if configured
|
||||
@@ -902,63 +717,8 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions: dict[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str:
|
||||
"""Handle streaming converse API call with comprehensive event handling."""
|
||||
if response_model:
|
||||
# Check if structured_output tool already exists (from a previous recursive call)
|
||||
existing_tool_config = body.get("toolConfig")
|
||||
existing_tools: list[Any] = []
|
||||
structured_output_already_exists = False
|
||||
|
||||
if existing_tool_config:
|
||||
existing_tools = list(existing_tool_config.get("tools", []))
|
||||
# Check if structured_output tool is already in the tools list
|
||||
for tool in existing_tools:
|
||||
tool_spec = tool.get("toolSpec", {})
|
||||
if tool_spec.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_output_already_exists = True
|
||||
break
|
||||
|
||||
if not structured_output_already_exists:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
"description": (
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
if existing_tools:
|
||||
# Append structured_output to existing tools, don't force toolChoice
|
||||
existing_tools.append(structured_tool)
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(object, {"tools": existing_tools}),
|
||||
)
|
||||
else:
|
||||
# No existing tools, use only structured_output with forced toolChoice
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {
|
||||
"tool": {"name": STRUCTURED_OUTPUT_TOOL_NAME}
|
||||
},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
full_response = ""
|
||||
current_tool_use: dict[str, Any] | None = None
|
||||
tool_use_id: str | None = None
|
||||
@@ -976,7 +736,6 @@ class BedrockCompletion(BaseLLM):
|
||||
)
|
||||
|
||||
stream = response.get("stream")
|
||||
response_id = None
|
||||
if stream:
|
||||
for event in stream:
|
||||
if "messageStart" in event:
|
||||
@@ -1008,7 +767,6 @@ class BedrockCompletion(BaseLLM):
|
||||
"index": tool_use_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
logging.debug(
|
||||
f"Tool use started in stream: {json.dumps(current_tool_use)} (ID: {tool_use_id})"
|
||||
@@ -1024,7 +782,6 @@ class BedrockCompletion(BaseLLM):
|
||||
chunk=text_chunk,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id,
|
||||
)
|
||||
elif "toolUse" in delta and current_tool_use:
|
||||
tool_input = delta["toolUse"].get("input", "")
|
||||
@@ -1045,83 +802,50 @@ class BedrockCompletion(BaseLLM):
|
||||
"index": tool_use_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
elif "contentBlockStop" in event:
|
||||
logging.debug("Content block stopped in stream")
|
||||
if current_tool_use:
|
||||
if current_tool_use and available_functions:
|
||||
function_name = current_tool_use["name"]
|
||||
function_args = cast(
|
||||
dict[str, Any], current_tool_use.get("input", {})
|
||||
)
|
||||
|
||||
# Check if this is the structured_output tool
|
||||
if (
|
||||
function_name == STRUCTURED_OUTPUT_TOOL_NAME
|
||||
and response_model
|
||||
):
|
||||
function_args = _preprocess_structured_data(
|
||||
function_args, response_model
|
||||
tool_result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
if tool_result is not None and tool_use_id:
|
||||
messages.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"toolUse": current_tool_use}],
|
||||
}
|
||||
)
|
||||
try:
|
||||
result = response_model.model_validate(
|
||||
function_args
|
||||
)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result # type: ignore[return-value]
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
# Handle regular tool execution
|
||||
if available_functions:
|
||||
tool_result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
if tool_result is not None and tool_use_id:
|
||||
messages.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"toolUse": current_tool_use}],
|
||||
}
|
||||
)
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"toolResult": {
|
||||
"toolUseId": tool_use_id,
|
||||
"content": [
|
||||
{"text": str(tool_result)}
|
||||
],
|
||||
}
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"toolResult": {
|
||||
"toolUseId": tool_use_id,
|
||||
"content": [
|
||||
{"text": str(tool_result)}
|
||||
],
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
return self._handle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
)
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
return self._handle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
)
|
||||
current_tool_use = None
|
||||
tool_use_id = None
|
||||
elif "messageStop" in event:
|
||||
@@ -1201,63 +925,8 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions: Mapping[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
) -> str:
|
||||
"""Handle async non-streaming converse API call."""
|
||||
if response_model:
|
||||
# Check if structured_output tool already exists (from a previous recursive call)
|
||||
existing_tool_config = body.get("toolConfig")
|
||||
existing_tools: list[Any] = []
|
||||
structured_output_already_exists = False
|
||||
|
||||
if existing_tool_config:
|
||||
existing_tools = list(existing_tool_config.get("tools", []))
|
||||
# Check if structured_output tool is already in the tools list
|
||||
for tool in existing_tools:
|
||||
tool_spec = tool.get("toolSpec", {})
|
||||
if tool_spec.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_output_already_exists = True
|
||||
break
|
||||
|
||||
if not structured_output_already_exists:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
"description": (
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
if existing_tools:
|
||||
# Append structured_output to existing tools, don't force toolChoice
|
||||
existing_tools.append(structured_tool)
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(object, {"tools": existing_tools}),
|
||||
)
|
||||
else:
|
||||
# No existing tools, use only structured_output with forced toolChoice
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {
|
||||
"tool": {"name": STRUCTURED_OUTPUT_TOOL_NAME}
|
||||
},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
if not messages:
|
||||
raise ValueError("Messages cannot be empty")
|
||||
@@ -1303,47 +972,15 @@ class BedrockCompletion(BaseLLM):
|
||||
|
||||
# If there are tool uses but no available_functions, return them for the executor to handle
|
||||
tool_uses = [block["toolUse"] for block in content if "toolUse" in block]
|
||||
|
||||
# Check for structured_output tool call first
|
||||
if response_model and tool_uses:
|
||||
for tool_use in tool_uses:
|
||||
if tool_use.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_data = tool_use.get("input", {})
|
||||
structured_data = _preprocess_structured_data(
|
||||
structured_data, response_model
|
||||
)
|
||||
try:
|
||||
result = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
# Filter out structured_output from tool_uses returned to executor
|
||||
non_structured_output_tool_uses = [
|
||||
tu for tu in tool_uses if tu.get("name") != STRUCTURED_OUTPUT_TOOL_NAME
|
||||
]
|
||||
|
||||
if non_structured_output_tool_uses and not available_functions:
|
||||
if tool_uses and not available_functions:
|
||||
self._emit_call_completed_event(
|
||||
response=non_structured_output_tool_uses,
|
||||
response=tool_uses,
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return non_structured_output_tool_uses
|
||||
return tool_uses
|
||||
|
||||
text_content = ""
|
||||
|
||||
@@ -1357,10 +994,6 @@ class BedrockCompletion(BaseLLM):
|
||||
function_name = tool_use_block["name"]
|
||||
function_args = tool_use_block.get("input", {})
|
||||
|
||||
# Skip structured_output - it's handled above
|
||||
if function_name == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
continue
|
||||
|
||||
logging.debug(
|
||||
f"Tool use requested: {function_name} with ID {tool_use_id}"
|
||||
)
|
||||
@@ -1396,12 +1029,7 @@ class BedrockCompletion(BaseLLM):
|
||||
)
|
||||
|
||||
return await self._ahandle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
messages, body, available_functions, from_task, from_agent
|
||||
)
|
||||
|
||||
text_content = self._apply_stop_words(text_content)
|
||||
@@ -1474,63 +1102,8 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions: dict[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str:
|
||||
"""Handle async streaming converse API call."""
|
||||
if response_model:
|
||||
# Check if structured_output tool already exists (from a previous recursive call)
|
||||
existing_tool_config = body.get("toolConfig")
|
||||
existing_tools: list[Any] = []
|
||||
structured_output_already_exists = False
|
||||
|
||||
if existing_tool_config:
|
||||
existing_tools = list(existing_tool_config.get("tools", []))
|
||||
# Check if structured_output tool is already in the tools list
|
||||
for tool in existing_tools:
|
||||
tool_spec = tool.get("toolSpec", {})
|
||||
if tool_spec.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_output_already_exists = True
|
||||
break
|
||||
|
||||
if not structured_output_already_exists:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
"description": (
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
if existing_tools:
|
||||
# Append structured_output to existing tools, don't force toolChoice
|
||||
existing_tools.append(structured_tool)
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(object, {"tools": existing_tools}),
|
||||
)
|
||||
else:
|
||||
# No existing tools, use only structured_output with forced toolChoice
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {
|
||||
"tool": {"name": STRUCTURED_OUTPUT_TOOL_NAME}
|
||||
},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
full_response = ""
|
||||
current_tool_use: dict[str, Any] | None = None
|
||||
tool_use_id: str | None = None
|
||||
@@ -1549,7 +1122,6 @@ class BedrockCompletion(BaseLLM):
|
||||
)
|
||||
|
||||
stream = response.get("stream")
|
||||
response_id = None
|
||||
if stream:
|
||||
async for event in stream:
|
||||
if "messageStart" in event:
|
||||
@@ -1581,7 +1153,6 @@ class BedrockCompletion(BaseLLM):
|
||||
"index": tool_use_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
logging.debug(
|
||||
f"Tool use started in stream: {current_tool_use.get('name')} (ID: {tool_use_id})"
|
||||
@@ -1597,7 +1168,6 @@ class BedrockCompletion(BaseLLM):
|
||||
chunk=text_chunk,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id,
|
||||
)
|
||||
elif "toolUse" in delta and current_tool_use:
|
||||
tool_input = delta["toolUse"].get("input", "")
|
||||
@@ -1618,89 +1188,58 @@ class BedrockCompletion(BaseLLM):
|
||||
"index": tool_use_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
elif "contentBlockStop" in event:
|
||||
logging.debug("Content block stopped in stream")
|
||||
if current_tool_use:
|
||||
if current_tool_use and available_functions:
|
||||
function_name = current_tool_use["name"]
|
||||
function_args = cast(
|
||||
dict[str, Any], current_tool_use.get("input", {})
|
||||
)
|
||||
|
||||
# Check if this is the structured_output tool
|
||||
if (
|
||||
function_name == STRUCTURED_OUTPUT_TOOL_NAME
|
||||
and response_model
|
||||
):
|
||||
function_args = _preprocess_structured_data(
|
||||
function_args, response_model
|
||||
)
|
||||
try:
|
||||
result = response_model.model_validate(
|
||||
function_args
|
||||
)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result # type: ignore[return-value]
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
tool_result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
# Handle regular tool execution
|
||||
if available_functions:
|
||||
tool_result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
if tool_result is not None and tool_use_id:
|
||||
messages.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"toolUse": current_tool_use}],
|
||||
}
|
||||
)
|
||||
|
||||
if tool_result is not None and tool_use_id:
|
||||
messages.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"toolUse": current_tool_use}],
|
||||
}
|
||||
)
|
||||
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"toolResult": {
|
||||
"toolUseId": tool_use_id,
|
||||
"content": [
|
||||
{"text": str(tool_result)}
|
||||
],
|
||||
}
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"toolResult": {
|
||||
"toolUseId": tool_use_id,
|
||||
"content": [
|
||||
{"text": str(tool_result)}
|
||||
],
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
return await self._ahandle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
)
|
||||
current_tool_use = None
|
||||
tool_use_id = None
|
||||
return await self._ahandle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
)
|
||||
|
||||
current_tool_use = None
|
||||
tool_use_id = None
|
||||
|
||||
elif "messageStop" in event:
|
||||
stop_reason = event["messageStop"].get("stopReason")
|
||||
|
||||
@@ -15,7 +15,6 @@ from crewai.utilities.agent_utils import is_context_length_exceeded
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededError,
|
||||
)
|
||||
from crewai.utilities.pydantic_schema_utils import generate_model_description
|
||||
from crewai.utilities.types import LLMMessage
|
||||
|
||||
|
||||
@@ -34,9 +33,6 @@ except ImportError:
|
||||
) from None
|
||||
|
||||
|
||||
STRUCTURED_OUTPUT_TOOL_NAME = "structured_output"
|
||||
|
||||
|
||||
class GeminiCompletion(BaseLLM):
|
||||
"""Google Gemini native completion implementation.
|
||||
|
||||
@@ -60,7 +56,6 @@ class GeminiCompletion(BaseLLM):
|
||||
client_params: dict[str, Any] | None = None,
|
||||
interceptor: BaseInterceptor[Any, Any] | None = None,
|
||||
use_vertexai: bool | None = None,
|
||||
response_format: type[BaseModel] | None = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Initialize Google Gemini chat completion client.
|
||||
@@ -91,8 +86,6 @@ class GeminiCompletion(BaseLLM):
|
||||
- None (default): Check GOOGLE_GENAI_USE_VERTEXAI env var
|
||||
When using Vertex AI with API key (Express mode), http_options with
|
||||
api_version="v1" is automatically configured.
|
||||
response_format: Pydantic model for structured output. Used as default when
|
||||
response_model is not passed to call()/acall() methods.
|
||||
**kwargs: Additional parameters
|
||||
"""
|
||||
if interceptor is not None:
|
||||
@@ -128,16 +121,12 @@ class GeminiCompletion(BaseLLM):
|
||||
self.safety_settings = safety_settings or {}
|
||||
self.stop_sequences = stop_sequences or []
|
||||
self.tools: list[dict[str, Any]] | None = None
|
||||
self.response_format = response_format
|
||||
|
||||
# Model-specific settings
|
||||
version_match = re.search(r"gemini-(\d+(?:\.\d+)?)", model.lower())
|
||||
self.supports_tools = bool(
|
||||
version_match and float(version_match.group(1)) >= 1.5
|
||||
)
|
||||
self.is_gemini_2_0 = bool(
|
||||
version_match and float(version_match.group(1)) >= 2.0
|
||||
)
|
||||
|
||||
@property
|
||||
def stop(self) -> list[str]:
|
||||
@@ -303,7 +292,6 @@ class GeminiCompletion(BaseLLM):
|
||||
from_agent=from_agent,
|
||||
)
|
||||
self.tools = tools
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
formatted_content, system_instruction = self._format_messages_for_gemini(
|
||||
messages
|
||||
@@ -315,7 +303,7 @@ class GeminiCompletion(BaseLLM):
|
||||
raise ValueError("LLM call blocked by before_llm_call hook")
|
||||
|
||||
config = self._prepare_generation_config(
|
||||
system_instruction, tools, effective_response_model
|
||||
system_instruction, tools, response_model
|
||||
)
|
||||
|
||||
if self.stream:
|
||||
@@ -325,7 +313,7 @@ class GeminiCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
return self._handle_completion(
|
||||
@@ -334,7 +322,7 @@ class GeminiCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
except APIError as e:
|
||||
@@ -386,14 +374,13 @@ class GeminiCompletion(BaseLLM):
|
||||
from_agent=from_agent,
|
||||
)
|
||||
self.tools = tools
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
formatted_content, system_instruction = self._format_messages_for_gemini(
|
||||
messages
|
||||
)
|
||||
|
||||
config = self._prepare_generation_config(
|
||||
system_instruction, tools, effective_response_model
|
||||
system_instruction, tools, response_model
|
||||
)
|
||||
|
||||
if self.stream:
|
||||
@@ -403,7 +390,7 @@ class GeminiCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
return await self._ahandle_completion(
|
||||
@@ -412,7 +399,7 @@ class GeminiCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
response_model,
|
||||
)
|
||||
|
||||
except APIError as e:
|
||||
@@ -445,14 +432,6 @@ class GeminiCompletion(BaseLLM):
|
||||
|
||||
Returns:
|
||||
GenerateContentConfig object for Gemini API
|
||||
|
||||
Note:
|
||||
Structured output support varies by model version:
|
||||
- Gemini 1.5 and earlier: Uses response_schema (Pydantic model)
|
||||
- Gemini 2.0+: Uses response_json_schema (JSON Schema) with propertyOrdering
|
||||
|
||||
When both tools AND response_model are present, we add a structured_output
|
||||
pseudo-tool since Gemini doesn't support tools + response_schema together.
|
||||
"""
|
||||
self.tools = tools
|
||||
config_params: dict[str, Any] = {}
|
||||
@@ -477,41 +456,13 @@ class GeminiCompletion(BaseLLM):
|
||||
if self.stop_sequences:
|
||||
config_params["stop_sequences"] = self.stop_sequences
|
||||
|
||||
if tools and self.supports_tools:
|
||||
gemini_tools = self._convert_tools_for_interference(tools)
|
||||
|
||||
if response_model:
|
||||
schema_output = generate_model_description(response_model)
|
||||
schema = schema_output.get("json_schema", {}).get("schema", {})
|
||||
if self.is_gemini_2_0:
|
||||
schema = self._add_property_ordering(schema)
|
||||
|
||||
structured_output_tool = types.Tool(
|
||||
function_declarations=[
|
||||
types.FunctionDeclaration(
|
||||
name=STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
description=(
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
parameters_json_schema=schema,
|
||||
)
|
||||
]
|
||||
)
|
||||
gemini_tools.append(structured_output_tool)
|
||||
|
||||
config_params["tools"] = gemini_tools
|
||||
elif response_model:
|
||||
if response_model:
|
||||
config_params["response_mime_type"] = "application/json"
|
||||
schema_output = generate_model_description(response_model)
|
||||
schema = schema_output.get("json_schema", {}).get("schema", {})
|
||||
config_params["response_schema"] = response_model.model_json_schema()
|
||||
|
||||
if self.is_gemini_2_0:
|
||||
schema = self._add_property_ordering(schema)
|
||||
config_params["response_json_schema"] = schema
|
||||
else:
|
||||
config_params["response_schema"] = response_model
|
||||
# Handle tools for supported models
|
||||
if tools and self.supports_tools:
|
||||
config_params["tools"] = self._convert_tools_for_interference(tools)
|
||||
|
||||
if self.safety_settings:
|
||||
config_params["safety_settings"] = self.safety_settings
|
||||
@@ -532,7 +483,7 @@ class GeminiCompletion(BaseLLM):
|
||||
function_declaration = types.FunctionDeclaration(
|
||||
name=name,
|
||||
description=description,
|
||||
parameters_json_schema=parameters if parameters else None,
|
||||
parameters=parameters if parameters else None,
|
||||
)
|
||||
|
||||
gemini_tool = types.Tool(function_declarations=[function_declaration])
|
||||
@@ -586,10 +537,11 @@ class GeminiCompletion(BaseLLM):
|
||||
else:
|
||||
parts.append(types.Part.from_text(text=str(content) if content else ""))
|
||||
|
||||
text_content: str = " ".join(p.text for p in parts if p.text is not None)
|
||||
|
||||
if role == "system":
|
||||
# Extract system instruction - Gemini handles it separately
|
||||
text_content = " ".join(
|
||||
p.text for p in parts if hasattr(p, "text") and p.text
|
||||
)
|
||||
if system_instruction:
|
||||
system_instruction += f"\n\n{text_content}"
|
||||
else:
|
||||
@@ -603,11 +555,7 @@ class GeminiCompletion(BaseLLM):
|
||||
|
||||
response_data: dict[str, Any]
|
||||
try:
|
||||
parsed = json.loads(text_content) if text_content else {}
|
||||
if isinstance(parsed, dict):
|
||||
response_data = parsed
|
||||
else:
|
||||
response_data = {"result": parsed}
|
||||
response_data = json.loads(text_content) if text_content else {}
|
||||
except (json.JSONDecodeError, TypeError):
|
||||
response_data = {"result": text_content}
|
||||
|
||||
@@ -618,42 +566,33 @@ class GeminiCompletion(BaseLLM):
|
||||
types.Content(role="user", parts=[function_response_part])
|
||||
)
|
||||
elif role == "assistant" and message.get("tool_calls"):
|
||||
raw_parts: list[Any] | None = message.get("raw_tool_call_parts")
|
||||
if raw_parts and all(isinstance(p, types.Part) for p in raw_parts):
|
||||
tool_parts: list[types.Part] = list(raw_parts)
|
||||
if text_content:
|
||||
tool_parts.insert(0, types.Part.from_text(text=text_content))
|
||||
else:
|
||||
tool_parts = []
|
||||
if text_content:
|
||||
tool_parts.append(types.Part.from_text(text=text_content))
|
||||
parts: list[types.Part] = []
|
||||
|
||||
tool_calls: list[dict[str, Any]] = message.get("tool_calls") or []
|
||||
for tool_call in tool_calls:
|
||||
func: dict[str, Any] = tool_call.get("function") or {}
|
||||
func_name: str = str(func.get("name") or "")
|
||||
func_args_raw: str | dict[str, Any] = (
|
||||
func.get("arguments") or {}
|
||||
)
|
||||
if text_content:
|
||||
parts.append(types.Part.from_text(text=text_content))
|
||||
|
||||
func_args: dict[str, Any]
|
||||
if isinstance(func_args_raw, str):
|
||||
try:
|
||||
func_args = (
|
||||
json.loads(func_args_raw) if func_args_raw else {}
|
||||
)
|
||||
except (json.JSONDecodeError, TypeError):
|
||||
func_args = {}
|
||||
else:
|
||||
func_args = func_args_raw
|
||||
tool_calls: list[dict[str, Any]] = message.get("tool_calls") or []
|
||||
for tool_call in tool_calls:
|
||||
func: dict[str, Any] = tool_call.get("function") or {}
|
||||
func_name: str = str(func.get("name") or "")
|
||||
func_args_raw: str | dict[str, Any] = func.get("arguments") or {}
|
||||
|
||||
tool_parts.append(
|
||||
types.Part.from_function_call(
|
||||
name=func_name, args=func_args
|
||||
func_args: dict[str, Any]
|
||||
if isinstance(func_args_raw, str):
|
||||
try:
|
||||
func_args = (
|
||||
json.loads(func_args_raw) if func_args_raw else {}
|
||||
)
|
||||
)
|
||||
except (json.JSONDecodeError, TypeError):
|
||||
func_args = {}
|
||||
else:
|
||||
func_args = func_args_raw
|
||||
|
||||
contents.append(types.Content(role="model", parts=tool_parts))
|
||||
parts.append(
|
||||
types.Part.from_function_call(name=func_name, args=func_args)
|
||||
)
|
||||
|
||||
contents.append(types.Content(role="model", parts=parts))
|
||||
else:
|
||||
# Convert role for Gemini (assistant -> model)
|
||||
gemini_role = "model" if role == "assistant" else "user"
|
||||
@@ -671,7 +610,7 @@ class GeminiCompletion(BaseLLM):
|
||||
messages_for_event: list[LLMMessage],
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
) -> BaseModel:
|
||||
) -> str:
|
||||
"""Validate content against response model and emit completion event.
|
||||
|
||||
Args:
|
||||
@@ -682,23 +621,24 @@ class GeminiCompletion(BaseLLM):
|
||||
from_agent: Agent that initiated the call
|
||||
|
||||
Returns:
|
||||
Validated Pydantic model instance
|
||||
Validated and serialized JSON string
|
||||
|
||||
Raises:
|
||||
ValueError: If validation fails
|
||||
"""
|
||||
try:
|
||||
structured_data = response_model.model_validate_json(content)
|
||||
structured_json = structured_data.model_dump_json()
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=structured_data.model_dump_json(),
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages_for_event,
|
||||
)
|
||||
|
||||
return structured_data
|
||||
return structured_json
|
||||
except Exception as e:
|
||||
error_msg = f"Failed to validate structured output with model {response_model.__name__}: {e}"
|
||||
logging.error(error_msg)
|
||||
@@ -711,7 +651,7 @@ class GeminiCompletion(BaseLLM):
|
||||
response_model: type[BaseModel] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
) -> str | BaseModel:
|
||||
) -> str:
|
||||
"""Finalize completion response with validation and event emission.
|
||||
|
||||
Args:
|
||||
@@ -722,7 +662,7 @@ class GeminiCompletion(BaseLLM):
|
||||
from_agent: Agent that initiated the call
|
||||
|
||||
Returns:
|
||||
Final response content after processing (str or Pydantic model if response_model provided)
|
||||
Final response content after processing
|
||||
"""
|
||||
messages_for_event = self._convert_contents_to_dict(contents)
|
||||
|
||||
@@ -748,47 +688,6 @@ class GeminiCompletion(BaseLLM):
|
||||
messages_for_event, content, from_agent
|
||||
)
|
||||
|
||||
def _handle_structured_output_tool_call(
|
||||
self,
|
||||
structured_data: dict[str, Any],
|
||||
response_model: type[BaseModel],
|
||||
contents: list[types.Content],
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
) -> BaseModel:
|
||||
"""Validate and emit event for structured_output tool call.
|
||||
|
||||
Args:
|
||||
structured_data: The arguments passed to the structured_output tool
|
||||
response_model: Pydantic model to validate against
|
||||
contents: Original contents for event conversion
|
||||
from_task: Task that initiated the call
|
||||
from_agent: Agent that initiated the call
|
||||
|
||||
Returns:
|
||||
Validated Pydantic model instance
|
||||
|
||||
Raises:
|
||||
ValueError: If validation fails
|
||||
"""
|
||||
try:
|
||||
validated_data = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=validated_data.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=self._convert_contents_to_dict(contents),
|
||||
)
|
||||
return validated_data
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
def _process_response_with_tools(
|
||||
self,
|
||||
response: GenerateContentResponse,
|
||||
@@ -819,47 +718,17 @@ class GeminiCompletion(BaseLLM):
|
||||
part for part in candidate.content.parts if part.function_call
|
||||
]
|
||||
|
||||
# Check for structured_output pseudo-tool call (used when tools + response_model)
|
||||
if response_model and function_call_parts:
|
||||
for part in function_call_parts:
|
||||
if (
|
||||
part.function_call
|
||||
and part.function_call.name == STRUCTURED_OUTPUT_TOOL_NAME
|
||||
):
|
||||
structured_data = (
|
||||
dict(part.function_call.args)
|
||||
if part.function_call.args
|
||||
else {}
|
||||
)
|
||||
return self._handle_structured_output_tool_call(
|
||||
structured_data=structured_data,
|
||||
response_model=response_model,
|
||||
contents=contents,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
# Filter out structured_output from function calls returned to executor
|
||||
non_structured_output_parts = [
|
||||
part
|
||||
for part in function_call_parts
|
||||
if not (
|
||||
part.function_call
|
||||
and part.function_call.name == STRUCTURED_OUTPUT_TOOL_NAME
|
||||
)
|
||||
]
|
||||
|
||||
# If there are function calls but no available_functions,
|
||||
# return them for the executor to handle (like OpenAI/Anthropic)
|
||||
if non_structured_output_parts and not available_functions:
|
||||
if function_call_parts and not available_functions:
|
||||
self._emit_call_completed_event(
|
||||
response=non_structured_output_parts,
|
||||
response=function_call_parts,
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=self._convert_contents_to_dict(contents),
|
||||
)
|
||||
return non_structured_output_parts
|
||||
return function_call_parts
|
||||
|
||||
# Otherwise execute the tools internally
|
||||
for part in candidate.content.parts:
|
||||
@@ -867,9 +736,6 @@ class GeminiCompletion(BaseLLM):
|
||||
function_name = part.function_call.name
|
||||
if function_name is None:
|
||||
continue
|
||||
# Skip structured_output - it's handled above
|
||||
if function_name == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
continue
|
||||
function_args = (
|
||||
dict(part.function_call.args)
|
||||
if part.function_call.args
|
||||
@@ -888,15 +754,12 @@ class GeminiCompletion(BaseLLM):
|
||||
return result
|
||||
|
||||
content = self._extract_text_from_response(response)
|
||||
|
||||
effective_response_model = None if self.tools else response_model
|
||||
if not effective_response_model:
|
||||
content = self._apply_stop_words(content)
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
return self._finalize_completion_response(
|
||||
content=content,
|
||||
contents=contents,
|
||||
response_model=effective_response_model,
|
||||
response_model=response_model,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
@@ -923,7 +786,6 @@ class GeminiCompletion(BaseLLM):
|
||||
Returns:
|
||||
Tuple of (updated full_response, updated function_calls, updated usage_data)
|
||||
"""
|
||||
response_id = chunk.response_id if hasattr(chunk, "response_id") else None
|
||||
if chunk.usage_metadata:
|
||||
usage_data = self._extract_token_usage(chunk)
|
||||
|
||||
@@ -933,7 +795,6 @@ class GeminiCompletion(BaseLLM):
|
||||
chunk=chunk.text,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
if chunk.candidates:
|
||||
@@ -970,7 +831,6 @@ class GeminiCompletion(BaseLLM):
|
||||
"index": call_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
return full_response, function_calls, usage_data
|
||||
@@ -985,7 +845,7 @@ class GeminiCompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | BaseModel | list[dict[str, Any]]:
|
||||
) -> str | list[dict[str, Any]]:
|
||||
"""Finalize streaming response with usage tracking, function execution, and events.
|
||||
|
||||
Args:
|
||||
@@ -1003,27 +863,9 @@ class GeminiCompletion(BaseLLM):
|
||||
"""
|
||||
self._track_token_usage_internal(usage_data)
|
||||
|
||||
if response_model and function_calls:
|
||||
for call_data in function_calls.values():
|
||||
if call_data.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_data = call_data.get("args", {})
|
||||
return self._handle_structured_output_tool_call(
|
||||
structured_data=structured_data,
|
||||
response_model=response_model,
|
||||
contents=contents,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
non_structured_output_calls = {
|
||||
idx: call_data
|
||||
for idx, call_data in function_calls.items()
|
||||
if call_data.get("name") != STRUCTURED_OUTPUT_TOOL_NAME
|
||||
}
|
||||
|
||||
# If there are function calls but no available_functions,
|
||||
# return them for the executor to handle
|
||||
if non_structured_output_calls and not available_functions:
|
||||
if function_calls and not available_functions:
|
||||
formatted_function_calls = [
|
||||
{
|
||||
"id": call_data["id"],
|
||||
@@ -1033,7 +875,7 @@ class GeminiCompletion(BaseLLM):
|
||||
},
|
||||
"type": "function",
|
||||
}
|
||||
for call_data in non_structured_output_calls.values()
|
||||
for call_data in function_calls.values()
|
||||
]
|
||||
self._emit_call_completed_event(
|
||||
response=formatted_function_calls,
|
||||
@@ -1044,9 +886,9 @@ class GeminiCompletion(BaseLLM):
|
||||
)
|
||||
return formatted_function_calls
|
||||
|
||||
# Handle completed function calls (excluding structured_output)
|
||||
if non_structured_output_calls and available_functions:
|
||||
for call_data in non_structured_output_calls.values():
|
||||
# Handle completed function calls
|
||||
if function_calls and available_functions:
|
||||
for call_data in function_calls.values():
|
||||
function_name = call_data["name"]
|
||||
function_args = call_data["args"]
|
||||
|
||||
@@ -1070,15 +912,10 @@ class GeminiCompletion(BaseLLM):
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
# When tools are present, structured output should come via the structured_output
|
||||
# pseudo-tool, not via direct text response. If we reach here with tools present,
|
||||
# the LLM chose to return plain text instead of calling structured_output.
|
||||
effective_response_model = None if self.tools else response_model
|
||||
|
||||
return self._finalize_completion_response(
|
||||
content=full_response,
|
||||
contents=contents,
|
||||
response_model=effective_response_model,
|
||||
response_model=response_model,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
@@ -1128,7 +965,7 @@ class GeminiCompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | BaseModel | list[dict[str, Any]] | Any:
|
||||
) -> str:
|
||||
"""Handle streaming content generation."""
|
||||
full_response = ""
|
||||
function_calls: dict[int, dict[str, Any]] = {}
|
||||
@@ -1206,7 +1043,7 @@ class GeminiCompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
) -> str:
|
||||
"""Handle async streaming content generation."""
|
||||
full_response = ""
|
||||
function_calls: dict[int, dict[str, Any]] = {}
|
||||
@@ -1328,36 +1165,6 @@ class GeminiCompletion(BaseLLM):
|
||||
|
||||
return "".join(text_parts)
|
||||
|
||||
@staticmethod
|
||||
def _add_property_ordering(schema: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Add propertyOrdering to JSON schema for Gemini 2.0 compatibility.
|
||||
|
||||
Gemini 2.0 models require an explicit propertyOrdering list to define
|
||||
the preferred structure of JSON objects. This recursively adds
|
||||
propertyOrdering to all objects in the schema.
|
||||
|
||||
Args:
|
||||
schema: JSON schema dictionary.
|
||||
|
||||
Returns:
|
||||
Modified schema with propertyOrdering added to all objects.
|
||||
"""
|
||||
if isinstance(schema, dict):
|
||||
if schema.get("type") == "object" and "properties" in schema:
|
||||
properties = schema["properties"]
|
||||
if properties and "propertyOrdering" not in schema:
|
||||
schema["propertyOrdering"] = list(properties.keys())
|
||||
|
||||
for value in schema.values():
|
||||
if isinstance(value, dict):
|
||||
GeminiCompletion._add_property_ordering(value)
|
||||
elif isinstance(value, list):
|
||||
for item in value:
|
||||
if isinstance(item, dict):
|
||||
GeminiCompletion._add_property_ordering(item)
|
||||
|
||||
return schema
|
||||
|
||||
@staticmethod
|
||||
def _convert_contents_to_dict(
|
||||
contents: list[types.Content],
|
||||
|
||||
@@ -693,14 +693,14 @@ class OpenAICompletion(BaseLLM):
|
||||
if response_model or self.response_format:
|
||||
format_model = response_model or self.response_format
|
||||
if isinstance(format_model, type) and issubclass(format_model, BaseModel):
|
||||
schema_output = generate_model_description(format_model)
|
||||
json_schema = schema_output.get("json_schema", {})
|
||||
schema = format_model.model_json_schema()
|
||||
schema["additionalProperties"] = False
|
||||
params["text"] = {
|
||||
"format": {
|
||||
"type": "json_schema",
|
||||
"name": json_schema.get("name", format_model.__name__),
|
||||
"strict": json_schema.get("strict", True),
|
||||
"schema": json_schema.get("schema", {}),
|
||||
"name": format_model.__name__,
|
||||
"strict": True,
|
||||
"schema": schema,
|
||||
}
|
||||
}
|
||||
elif isinstance(format_model, dict):
|
||||
@@ -848,6 +848,7 @@ class OpenAICompletion(BaseLLM):
|
||||
return result
|
||||
|
||||
content = response.output_text or ""
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
if response_model:
|
||||
try:
|
||||
@@ -865,8 +866,6 @@ class OpenAICompletion(BaseLLM):
|
||||
except ValueError as e:
|
||||
logging.warning(f"Structured output validation failed: {e}")
|
||||
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=content,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
@@ -980,6 +979,7 @@ class OpenAICompletion(BaseLLM):
|
||||
return result
|
||||
|
||||
content = response.output_text or ""
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
if response_model:
|
||||
try:
|
||||
@@ -997,8 +997,6 @@ class OpenAICompletion(BaseLLM):
|
||||
except ValueError as e:
|
||||
logging.warning(f"Structured output validation failed: {e}")
|
||||
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=content,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
@@ -1049,12 +1047,8 @@ class OpenAICompletion(BaseLLM):
|
||||
final_response: Response | None = None
|
||||
|
||||
stream = self.client.responses.create(**params)
|
||||
response_id_stream = None
|
||||
|
||||
for event in stream:
|
||||
if event.type == "response.created":
|
||||
response_id_stream = event.response.id
|
||||
|
||||
if event.type == "response.output_text.delta":
|
||||
delta_text = event.delta or ""
|
||||
full_response += delta_text
|
||||
@@ -1062,7 +1056,6 @@ class OpenAICompletion(BaseLLM):
|
||||
chunk=delta_text,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id_stream,
|
||||
)
|
||||
|
||||
elif event.type == "response.function_call_arguments.delta":
|
||||
@@ -1133,6 +1126,8 @@ class OpenAICompletion(BaseLLM):
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
full_response = self._apply_stop_words(full_response)
|
||||
|
||||
if response_model:
|
||||
try:
|
||||
structured_result = self._validate_structured_output(
|
||||
@@ -1149,8 +1144,6 @@ class OpenAICompletion(BaseLLM):
|
||||
except ValueError as e:
|
||||
logging.warning(f"Structured output validation failed: {e}")
|
||||
|
||||
full_response = self._apply_stop_words(full_response)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=full_response,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
@@ -1177,12 +1170,8 @@ class OpenAICompletion(BaseLLM):
|
||||
final_response: Response | None = None
|
||||
|
||||
stream = await self.async_client.responses.create(**params)
|
||||
response_id_stream = None
|
||||
|
||||
async for event in stream:
|
||||
if event.type == "response.created":
|
||||
response_id_stream = event.response.id
|
||||
|
||||
if event.type == "response.output_text.delta":
|
||||
delta_text = event.delta or ""
|
||||
full_response += delta_text
|
||||
@@ -1190,7 +1179,6 @@ class OpenAICompletion(BaseLLM):
|
||||
chunk=delta_text,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id_stream,
|
||||
)
|
||||
|
||||
elif event.type == "response.function_call_arguments.delta":
|
||||
@@ -1261,6 +1249,8 @@ class OpenAICompletion(BaseLLM):
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
full_response = self._apply_stop_words(full_response)
|
||||
|
||||
if response_model:
|
||||
try:
|
||||
structured_result = self._validate_structured_output(
|
||||
@@ -1277,8 +1267,6 @@ class OpenAICompletion(BaseLLM):
|
||||
except ValueError as e:
|
||||
logging.warning(f"Structured output validation failed: {e}")
|
||||
|
||||
full_response = self._apply_stop_words(full_response)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=full_response,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
@@ -1532,7 +1520,6 @@ class OpenAICompletion(BaseLLM):
|
||||
"function": {
|
||||
"name": name,
|
||||
"description": description,
|
||||
"strict": True,
|
||||
},
|
||||
}
|
||||
|
||||
@@ -1573,14 +1560,15 @@ class OpenAICompletion(BaseLLM):
|
||||
|
||||
parsed_object = parsed_response.choices[0].message.parsed
|
||||
if parsed_object:
|
||||
structured_json = parsed_object.model_dump_json()
|
||||
self._emit_call_completed_event(
|
||||
response=parsed_object.model_dump_json(),
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return parsed_object
|
||||
return structured_json
|
||||
|
||||
response: ChatCompletion = self.client.chat.completions.create(**params)
|
||||
|
||||
@@ -1626,6 +1614,7 @@ class OpenAICompletion(BaseLLM):
|
||||
return result
|
||||
|
||||
content = message.content or ""
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
if self.response_format and isinstance(self.response_format, type):
|
||||
try:
|
||||
@@ -1643,8 +1632,6 @@ class OpenAICompletion(BaseLLM):
|
||||
except ValueError as e:
|
||||
logging.warning(f"Structured output validation failed: {e}")
|
||||
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=content,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
@@ -1695,7 +1682,7 @@ class OpenAICompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | BaseModel:
|
||||
) -> str:
|
||||
"""Handle streaming chat completion."""
|
||||
full_response = ""
|
||||
tool_calls: dict[int, dict[str, Any]] = {}
|
||||
@@ -1712,8 +1699,6 @@ class OpenAICompletion(BaseLLM):
|
||||
**parse_params, response_format=response_model
|
||||
) as stream:
|
||||
for chunk in stream:
|
||||
response_id_stream = chunk.id if hasattr(chunk, "id") else None
|
||||
|
||||
if chunk.type == "content.delta":
|
||||
delta_content = chunk.delta
|
||||
if delta_content:
|
||||
@@ -1721,7 +1706,6 @@ class OpenAICompletion(BaseLLM):
|
||||
chunk=delta_content,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id_stream,
|
||||
)
|
||||
|
||||
final_completion = stream.get_final_completion()
|
||||
@@ -1731,14 +1715,15 @@ class OpenAICompletion(BaseLLM):
|
||||
if final_completion.choices:
|
||||
parsed_result = final_completion.choices[0].message.parsed
|
||||
if parsed_result:
|
||||
structured_json = parsed_result.model_dump_json()
|
||||
self._emit_call_completed_event(
|
||||
response=parsed_result.model_dump_json(),
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return parsed_result
|
||||
return structured_json
|
||||
|
||||
logging.error("Failed to get parsed result from stream")
|
||||
return ""
|
||||
@@ -1750,10 +1735,6 @@ class OpenAICompletion(BaseLLM):
|
||||
usage_data = {"total_tokens": 0}
|
||||
|
||||
for completion_chunk in completion_stream:
|
||||
response_id_stream = (
|
||||
completion_chunk.id if hasattr(completion_chunk, "id") else None
|
||||
)
|
||||
|
||||
if hasattr(completion_chunk, "usage") and completion_chunk.usage:
|
||||
usage_data = self._extract_openai_token_usage(completion_chunk)
|
||||
continue
|
||||
@@ -1770,7 +1751,6 @@ class OpenAICompletion(BaseLLM):
|
||||
chunk=chunk_delta.content,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id_stream,
|
||||
)
|
||||
|
||||
if chunk_delta.tool_calls:
|
||||
@@ -1809,7 +1789,6 @@ class OpenAICompletion(BaseLLM):
|
||||
"index": tool_calls[tool_index]["index"],
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id_stream,
|
||||
)
|
||||
|
||||
self._track_token_usage_internal(usage_data)
|
||||
@@ -1889,14 +1868,15 @@ class OpenAICompletion(BaseLLM):
|
||||
|
||||
parsed_object = parsed_response.choices[0].message.parsed
|
||||
if parsed_object:
|
||||
structured_json = parsed_object.model_dump_json()
|
||||
self._emit_call_completed_event(
|
||||
response=parsed_object.model_dump_json(),
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return parsed_object
|
||||
return structured_json
|
||||
|
||||
response: ChatCompletion = await self.async_client.chat.completions.create(
|
||||
**params
|
||||
@@ -1944,6 +1924,7 @@ class OpenAICompletion(BaseLLM):
|
||||
return result
|
||||
|
||||
content = message.content or ""
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
if self.response_format and isinstance(self.response_format, type):
|
||||
try:
|
||||
@@ -1961,8 +1942,6 @@ class OpenAICompletion(BaseLLM):
|
||||
except ValueError as e:
|
||||
logging.warning(f"Structured output validation failed: {e}")
|
||||
|
||||
content = self._apply_stop_words(content)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=content,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
@@ -2008,7 +1987,7 @@ class OpenAICompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | BaseModel:
|
||||
) -> str:
|
||||
"""Handle async streaming chat completion."""
|
||||
full_response = ""
|
||||
tool_calls: dict[int, dict[str, Any]] = {}
|
||||
@@ -2021,8 +2000,6 @@ class OpenAICompletion(BaseLLM):
|
||||
accumulated_content = ""
|
||||
usage_data = {"total_tokens": 0}
|
||||
async for chunk in completion_stream:
|
||||
response_id_stream = chunk.id if hasattr(chunk, "id") else None
|
||||
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
usage_data = self._extract_openai_token_usage(chunk)
|
||||
continue
|
||||
@@ -2039,23 +2016,23 @@ class OpenAICompletion(BaseLLM):
|
||||
chunk=delta.content,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id_stream,
|
||||
)
|
||||
|
||||
self._track_token_usage_internal(usage_data)
|
||||
|
||||
try:
|
||||
parsed_object = response_model.model_validate_json(accumulated_content)
|
||||
structured_json = parsed_object.model_dump_json()
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=parsed_object.model_dump_json(),
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
|
||||
return parsed_object
|
||||
return structured_json
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to parse structured output from stream: {e}")
|
||||
self._emit_call_completed_event(
|
||||
@@ -2074,8 +2051,6 @@ class OpenAICompletion(BaseLLM):
|
||||
usage_data = {"total_tokens": 0}
|
||||
|
||||
async for chunk in stream:
|
||||
response_id_stream = chunk.id if hasattr(chunk, "id") else None
|
||||
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
usage_data = self._extract_openai_token_usage(chunk)
|
||||
continue
|
||||
@@ -2092,7 +2067,6 @@ class OpenAICompletion(BaseLLM):
|
||||
chunk=chunk_delta.content,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id_stream,
|
||||
)
|
||||
|
||||
if chunk_delta.tool_calls:
|
||||
@@ -2131,7 +2105,6 @@ class OpenAICompletion(BaseLLM):
|
||||
"index": tool_calls[tool_index]["index"],
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id_stream,
|
||||
)
|
||||
|
||||
self._track_token_usage_internal(usage_data)
|
||||
|
||||
@@ -2,7 +2,6 @@ import logging
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from crewai.utilities.pydantic_schema_utils import generate_model_description
|
||||
from crewai.utilities.string_utils import sanitize_tool_name
|
||||
|
||||
|
||||
@@ -78,8 +77,7 @@ def extract_tool_info(tool: dict[str, Any]) -> tuple[str, str, dict[str, Any]]:
|
||||
# Also check for args_schema (Pydantic format)
|
||||
if not parameters and "args_schema" in tool:
|
||||
if hasattr(tool["args_schema"], "model_json_schema"):
|
||||
schema_output = generate_model_description(tool["args_schema"])
|
||||
parameters = schema_output.get("json_schema", {}).get("schema", {})
|
||||
parameters = tool["args_schema"].model_json_schema()
|
||||
|
||||
return name, description, parameters
|
||||
|
||||
|
||||
@@ -12,17 +12,15 @@ from crewai.utilities.paths import db_storage_path
|
||||
class LTMSQLiteStorage:
|
||||
"""SQLite storage class for long-term memory data."""
|
||||
|
||||
def __init__(self, db_path: str | None = None, verbose: bool = True) -> None:
|
||||
def __init__(self, db_path: str | None = None) -> None:
|
||||
"""Initialize the SQLite storage.
|
||||
|
||||
Args:
|
||||
db_path: Optional path to the database file.
|
||||
verbose: Whether to print error messages.
|
||||
"""
|
||||
if db_path is None:
|
||||
db_path = str(Path(db_storage_path()) / "long_term_memory_storage.db")
|
||||
self.db_path = db_path
|
||||
self._verbose = verbose
|
||||
self._printer: Printer = Printer()
|
||||
Path(self.db_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
self._initialize_db()
|
||||
@@ -46,11 +44,10 @@ class LTMSQLiteStorage:
|
||||
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
if self._verbose:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred during database initialization: {e}",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred during database initialization: {e}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
def save(
|
||||
self,
|
||||
@@ -72,11 +69,10 @@ class LTMSQLiteStorage:
|
||||
)
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
if self._verbose:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while saving to LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while saving to LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
def load(self, task_description: str, latest_n: int) -> list[dict[str, Any]] | None:
|
||||
"""Queries the LTM table by task description with error handling."""
|
||||
@@ -105,11 +101,10 @@ class LTMSQLiteStorage:
|
||||
]
|
||||
|
||||
except sqlite3.Error as e:
|
||||
if self._verbose:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while querying LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while querying LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
return None
|
||||
|
||||
def reset(self) -> None:
|
||||
@@ -121,11 +116,10 @@ class LTMSQLiteStorage:
|
||||
conn.commit()
|
||||
|
||||
except sqlite3.Error as e:
|
||||
if self._verbose:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while deleting all rows in LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while deleting all rows in LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
async def asave(
|
||||
self,
|
||||
@@ -153,11 +147,10 @@ class LTMSQLiteStorage:
|
||||
)
|
||||
await conn.commit()
|
||||
except aiosqlite.Error as e:
|
||||
if self._verbose:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while saving to LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while saving to LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
async def aload(
|
||||
self, task_description: str, latest_n: int
|
||||
@@ -194,11 +187,10 @@ class LTMSQLiteStorage:
|
||||
for row in rows
|
||||
]
|
||||
except aiosqlite.Error as e:
|
||||
if self._verbose:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while querying LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while querying LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
return None
|
||||
|
||||
async def areset(self) -> None:
|
||||
@@ -208,8 +200,7 @@ class LTMSQLiteStorage:
|
||||
await conn.execute("DELETE FROM long_term_memories")
|
||||
await conn.commit()
|
||||
except aiosqlite.Error as e:
|
||||
if self._verbose:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while deleting all rows in LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while deleting all rows in LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
@@ -41,7 +41,6 @@ def _default_settings() -> Settings:
|
||||
persist_directory=DEFAULT_STORAGE_PATH,
|
||||
allow_reset=True,
|
||||
is_persistent=True,
|
||||
anonymized_telemetry=False,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -18,6 +18,7 @@ if TYPE_CHECKING:
|
||||
)
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleGenerativeAiEmbeddingFunction,
|
||||
GoogleVertexEmbeddingFunction,
|
||||
)
|
||||
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
|
||||
HuggingFaceEmbeddingFunction,
|
||||
@@ -51,9 +52,6 @@ if TYPE_CHECKING:
|
||||
from crewai.rag.embeddings.providers.aws.types import BedrockProviderSpec
|
||||
from crewai.rag.embeddings.providers.cohere.types import CohereProviderSpec
|
||||
from crewai.rag.embeddings.providers.custom.types import CustomProviderSpec
|
||||
from crewai.rag.embeddings.providers.google.genai_vertex_embedding import (
|
||||
GoogleGenAIVertexEmbeddingFunction,
|
||||
)
|
||||
from crewai.rag.embeddings.providers.google.types import (
|
||||
GenerativeAiProviderSpec,
|
||||
VertexAIProviderSpec,
|
||||
@@ -165,7 +163,7 @@ def build_embedder_from_dict(spec: OpenAIProviderSpec) -> OpenAIEmbeddingFunctio
|
||||
@overload
|
||||
def build_embedder_from_dict(
|
||||
spec: VertexAIProviderSpec,
|
||||
) -> GoogleGenAIVertexEmbeddingFunction: ...
|
||||
) -> GoogleVertexEmbeddingFunction: ...
|
||||
|
||||
|
||||
@overload
|
||||
@@ -298,9 +296,7 @@ def build_embedder(spec: OpenAIProviderSpec) -> OpenAIEmbeddingFunction: ...
|
||||
|
||||
|
||||
@overload
|
||||
def build_embedder(
|
||||
spec: VertexAIProviderSpec,
|
||||
) -> GoogleGenAIVertexEmbeddingFunction: ...
|
||||
def build_embedder(spec: VertexAIProviderSpec) -> GoogleVertexEmbeddingFunction: ...
|
||||
|
||||
|
||||
@overload
|
||||
|
||||
@@ -1,8 +1,5 @@
|
||||
"""Google embedding providers."""
|
||||
|
||||
from crewai.rag.embeddings.providers.google.genai_vertex_embedding import (
|
||||
GoogleGenAIVertexEmbeddingFunction,
|
||||
)
|
||||
from crewai.rag.embeddings.providers.google.generative_ai import (
|
||||
GenerativeAiProvider,
|
||||
)
|
||||
@@ -21,7 +18,6 @@ __all__ = [
|
||||
"GenerativeAiProvider",
|
||||
"GenerativeAiProviderConfig",
|
||||
"GenerativeAiProviderSpec",
|
||||
"GoogleGenAIVertexEmbeddingFunction",
|
||||
"VertexAIProvider",
|
||||
"VertexAIProviderConfig",
|
||||
"VertexAIProviderSpec",
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user