mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-07 07:08:31 +00:00
Compare commits
2 Commits
gl/fix/add
...
devin/1748
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
264e2b01fd | ||
|
|
faddb7dca2 |
@@ -181,13 +181,10 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
raise
|
||||
|
||||
def _create_default_embedding_function(self):
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingFunction(
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
|
||||
|
||||
configurator = EmbeddingConfigurator()
|
||||
return configurator.create_default_embedding_with_fallback()
|
||||
|
||||
def _set_embedder_config(self, embedder: Optional[Dict[str, Any]] = None) -> None:
|
||||
"""Set the embedding configuration for the knowledge storage.
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import contextlib
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional
|
||||
@@ -57,7 +56,10 @@ class RAGStorage(BaseRAGStorage):
|
||||
|
||||
def _set_embedder_config(self):
|
||||
configurator = EmbeddingConfigurator()
|
||||
self.embedder_config = configurator.configure_embedder(self.embedder_config)
|
||||
if self.embedder_config:
|
||||
self.embedder_config = configurator.configure_embedder(self.embedder_config)
|
||||
else:
|
||||
self.embedder_config = configurator.create_default_embedding_with_fallback()
|
||||
|
||||
def _initialize_app(self):
|
||||
import chromadb
|
||||
@@ -165,10 +167,7 @@ class RAGStorage(BaseRAGStorage):
|
||||
)
|
||||
|
||||
def _create_default_embedding_function(self):
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingFunction(
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
|
||||
|
||||
configurator = EmbeddingConfigurator()
|
||||
return configurator.create_default_embedding_with_fallback()
|
||||
|
||||
@@ -55,6 +55,40 @@ class EmbeddingConfigurator:
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
|
||||
def create_default_embedding_with_fallback(self) -> EmbeddingFunction:
|
||||
"""Create an embedding function with fallback providers when OpenAI API key is not available."""
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if os.getenv("OPENAI_API_KEY"):
|
||||
logger.info("Using OpenAI embeddings")
|
||||
return self._create_default_embedding_function()
|
||||
|
||||
logger.warning("OpenAI API key not found, attempting fallback providers")
|
||||
|
||||
try:
|
||||
logger.info("Attempting Ollama embedding provider")
|
||||
return self.configure_embedder({
|
||||
"provider": "ollama",
|
||||
"config": {"url": "http://localhost:11434/api/embeddings"},
|
||||
"model": "nomic-embed-text"
|
||||
})
|
||||
except (ConnectionError, ImportError, ValueError) as e:
|
||||
logger.warning(f"Ollama fallback failed: {str(e)}, trying HuggingFace")
|
||||
try:
|
||||
logger.info("Attempting HuggingFace embedding provider")
|
||||
return self.configure_embedder({
|
||||
"provider": "huggingface",
|
||||
"config": {"api_url": "https://api-inference.huggingface.co/pipeline/feature-extraction/sentence-transformers/all-MiniLM-L6-v2"}
|
||||
})
|
||||
except (ConnectionError, ImportError, ValueError) as e:
|
||||
logger.warning(f"HuggingFace fallback failed: {str(e)}, using local SentenceTransformers")
|
||||
from chromadb.utils.embedding_functions.sentence_transformer_embedding_function import (
|
||||
SentenceTransformerEmbeddingFunction,
|
||||
)
|
||||
logger.info("Using local SentenceTransformers embedding provider")
|
||||
return SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
|
||||
|
||||
@staticmethod
|
||||
def _configure_openai(config, model_name):
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
|
||||
@@ -110,6 +110,40 @@ def test_crew_config_conditional_requirement():
|
||||
with pytest.raises(ValueError):
|
||||
Crew(process=Process.sequential)
|
||||
|
||||
|
||||
def test_crew_creation_with_memory_true_no_openai_key():
|
||||
"""Test that crew can be created with memory=True when no OpenAI API key is available."""
|
||||
import os
|
||||
from unittest.mock import patch
|
||||
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
if 'OPENAI_API_KEY' in os.environ:
|
||||
del os.environ['OPENAI_API_KEY']
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory"
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
process=Process.sequential,
|
||||
memory=True
|
||||
)
|
||||
|
||||
assert crew.memory is True
|
||||
assert crew._short_term_memory is not None
|
||||
assert crew._entity_memory is not None
|
||||
assert crew._long_term_memory is not None
|
||||
|
||||
config = json.dumps(
|
||||
{
|
||||
"agents": [
|
||||
|
||||
110
tests/test_memory_fallback.py
Normal file
110
tests/test_memory_fallback.py
Normal file
@@ -0,0 +1,110 @@
|
||||
import os
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
|
||||
|
||||
|
||||
def test_crew_creation_with_memory_true_no_openai_key():
|
||||
"""Test that crew can be created with memory=True when no OpenAI API key is available."""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
if 'OPENAI_API_KEY' in os.environ:
|
||||
del os.environ['OPENAI_API_KEY']
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory"
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
process=Process.sequential,
|
||||
memory=True
|
||||
)
|
||||
|
||||
assert crew.memory is True
|
||||
assert crew._short_term_memory is not None
|
||||
assert crew._entity_memory is not None
|
||||
assert crew._long_term_memory is not None
|
||||
|
||||
|
||||
def test_short_term_memory_initialization_without_openai():
|
||||
"""Test that ShortTermMemory can be initialized without OpenAI API key."""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
if 'OPENAI_API_KEY' in os.environ:
|
||||
del os.environ['OPENAI_API_KEY']
|
||||
|
||||
memory = ShortTermMemory()
|
||||
assert memory is not None
|
||||
assert memory.storage is not None
|
||||
|
||||
|
||||
def test_entity_memory_initialization_without_openai():
|
||||
"""Test that EntityMemory can be initialized without OpenAI API key."""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
if 'OPENAI_API_KEY' in os.environ:
|
||||
del os.environ['OPENAI_API_KEY']
|
||||
|
||||
memory = EntityMemory()
|
||||
assert memory is not None
|
||||
assert memory.storage is not None
|
||||
|
||||
|
||||
def test_embedding_configurator_fallback():
|
||||
"""Test that EmbeddingConfigurator provides fallback when OpenAI API key is not available."""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
if 'OPENAI_API_KEY' in os.environ:
|
||||
del os.environ['OPENAI_API_KEY']
|
||||
|
||||
configurator = EmbeddingConfigurator()
|
||||
embedding_function = configurator.create_default_embedding_with_fallback()
|
||||
assert embedding_function is not None
|
||||
|
||||
|
||||
def test_embedding_configurator_uses_openai_when_available():
|
||||
"""Test that EmbeddingConfigurator uses OpenAI when API key is available."""
|
||||
with patch.dict(os.environ, {'OPENAI_API_KEY': 'test-key'}):
|
||||
configurator = EmbeddingConfigurator()
|
||||
embedding_function = configurator.create_default_embedding_with_fallback()
|
||||
assert embedding_function is not None
|
||||
assert hasattr(embedding_function, '_api_key')
|
||||
|
||||
|
||||
def test_crew_memory_functionality_without_openai():
|
||||
"""Test that crew memory functionality works without OpenAI API key."""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
if 'OPENAI_API_KEY' in os.environ:
|
||||
del os.environ['OPENAI_API_KEY']
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory"
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
process=Process.sequential,
|
||||
memory=True
|
||||
)
|
||||
|
||||
crew._short_term_memory.save("test data", {"test": "metadata"})
|
||||
results = crew._short_term_memory.search("test")
|
||||
assert isinstance(results, list)
|
||||
Reference in New Issue
Block a user