mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-04 21:58:29 +00:00
Compare commits
4 Commits
gl/chore/a
...
devin/1742
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ffa386e302 | ||
|
|
e73cf7b00f | ||
|
|
6b99aa4ca0 | ||
|
|
e6fba64939 |
@@ -134,25 +134,73 @@ class Agent(BaseAgent):
|
||||
self.cache_handler = CacheHandler()
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
|
||||
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
|
||||
def set_knowledge(
|
||||
self,
|
||||
knowledge_sources: Optional[List[BaseKnowledgeSource]] = None,
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""Set knowledge sources for the agent with optional embedder configuration.
|
||||
|
||||
This method allows agents to integrate external knowledge sources for enhanced
|
||||
contextual understanding and information retrieval during task execution.
|
||||
|
||||
Args:
|
||||
knowledge_sources: List of knowledge sources to integrate. These can include
|
||||
various data types such as text files, PDFs, CSV files, JSON files,
|
||||
web pages, YouTube videos, and documentation websites.
|
||||
embedder_config: Configuration for embedding generation. If not provided,
|
||||
a default configuration will be used.
|
||||
|
||||
Raises:
|
||||
ValueError: If the provided knowledge sources are invalid.
|
||||
TypeError: If knowledge_sources is not a list or None.
|
||||
ValueError: If embedder_config is missing required keys.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from crewai.knowledge.source import StringKnowledgeSource
|
||||
|
||||
content = "The capital of France is Paris."
|
||||
source = StringKnowledgeSource(content=content)
|
||||
|
||||
agent.set_knowledge(
|
||||
knowledge_sources=[source],
|
||||
embedder_config={"provider": "openai", "model": "text-embedding-3-small"}
|
||||
)
|
||||
```
|
||||
"""
|
||||
try:
|
||||
if self.embedder is None and crew_embedder:
|
||||
self.embedder = crew_embedder
|
||||
# Handle backward compatibility with crew_embedder
|
||||
if embedder_config and self.embedder is None:
|
||||
self.embedder = embedder_config
|
||||
|
||||
# Validate knowledge sources
|
||||
if knowledge_sources is not None:
|
||||
if not isinstance(knowledge_sources, list):
|
||||
raise TypeError("knowledge_sources must be a list or None")
|
||||
|
||||
if not all(isinstance(k, BaseKnowledgeSource) for k in knowledge_sources):
|
||||
raise ValueError("All knowledge sources must be instances of BaseKnowledgeSource")
|
||||
|
||||
self.knowledge_sources = knowledge_sources
|
||||
|
||||
# Create knowledge object if knowledge sources are provided
|
||||
if self.knowledge_sources:
|
||||
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
|
||||
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
|
||||
if isinstance(self.knowledge_sources, list) and all(
|
||||
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
|
||||
):
|
||||
self.knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder=self.embedder,
|
||||
collection_name=knowledge_agent_name,
|
||||
storage=self.knowledge_storage or None,
|
||||
)
|
||||
except (TypeError, ValueError) as e:
|
||||
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
|
||||
# Create a unique collection name based on agent role and id
|
||||
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}_{id(self)}"
|
||||
self.knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder=self.embedder,
|
||||
collection_name=knowledge_agent_name,
|
||||
storage=self.knowledge_storage or None,
|
||||
)
|
||||
except TypeError as e:
|
||||
raise TypeError(f"Invalid Knowledge Configuration Type: {str(e)}")
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Invalid Knowledge Configuration Value: {str(e)}")
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error setting knowledge: {str(e)}")
|
||||
|
||||
def execute_task(
|
||||
self,
|
||||
|
||||
@@ -2,7 +2,7 @@ import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from copy import copy as shallow_copy
|
||||
from hashlib import md5
|
||||
from typing import Any, Dict, List, Optional, TypeVar
|
||||
from typing import Any, Dict, List, Optional, TypeVar, Union, cast
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
@@ -148,6 +148,10 @@ class BaseAgent(ABC, BaseModel):
|
||||
default=None,
|
||||
description="Custom knowledge storage for the agent.",
|
||||
)
|
||||
embedder_config: Optional[Dict[str, Any]] = Field(
|
||||
default=None,
|
||||
description="Configuration for embedding generation.",
|
||||
)
|
||||
security_config: SecurityConfig = Field(
|
||||
default_factory=SecurityConfig,
|
||||
description="Security configuration for the agent, including fingerprinting.",
|
||||
@@ -362,5 +366,74 @@ class BaseAgent(ABC, BaseModel):
|
||||
self._rpm_controller = rpm_controller
|
||||
self.create_agent_executor()
|
||||
|
||||
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
|
||||
pass
|
||||
def set_knowledge(
|
||||
self,
|
||||
knowledge_sources: Optional[List[BaseKnowledgeSource]] = None,
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""Set knowledge sources for the agent with optional embedder configuration.
|
||||
|
||||
This method allows agents to integrate external knowledge sources for enhanced
|
||||
contextual understanding and information retrieval during task execution.
|
||||
|
||||
Args:
|
||||
knowledge_sources: List of knowledge sources to integrate. These can include
|
||||
various data types such as text files, PDFs, CSV files, JSON files,
|
||||
web pages, YouTube videos, and documentation websites.
|
||||
embedder_config: Configuration for embedding generation. If not provided,
|
||||
a default configuration will be used.
|
||||
|
||||
Raises:
|
||||
ValueError: If the provided knowledge sources are invalid.
|
||||
TypeError: If knowledge_sources is not a list or None.
|
||||
ValueError: If embedder_config is missing required keys.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from crewai.knowledge.source import StringKnowledgeSource
|
||||
|
||||
content = "The capital of France is Paris."
|
||||
source = StringKnowledgeSource(content=content)
|
||||
|
||||
agent.set_knowledge(
|
||||
knowledge_sources=[source],
|
||||
embedder_config={"provider": "openai", "model": "text-embedding-3-small"}
|
||||
)
|
||||
```
|
||||
"""
|
||||
try:
|
||||
# Validate knowledge sources first
|
||||
if knowledge_sources is not None:
|
||||
if not isinstance(knowledge_sources, list):
|
||||
raise TypeError("knowledge_sources must be a list or None")
|
||||
|
||||
if not all(isinstance(k, BaseKnowledgeSource) for k in knowledge_sources):
|
||||
raise ValueError("All knowledge sources must be instances of BaseKnowledgeSource")
|
||||
|
||||
self.knowledge_sources = knowledge_sources
|
||||
|
||||
# Validate embedder configuration
|
||||
if embedder_config is not None:
|
||||
if not isinstance(embedder_config, dict):
|
||||
raise TypeError("embedder_config must be a dictionary or None")
|
||||
|
||||
if "provider" not in embedder_config:
|
||||
raise ValueError("embedder_config must contain a 'provider' key")
|
||||
|
||||
self.embedder_config = embedder_config
|
||||
|
||||
# Create knowledge object if knowledge sources are provided
|
||||
if self.knowledge_sources:
|
||||
# Create a unique collection name based on agent role and id
|
||||
knowledge_agent_name = f"{self.role.replace(' ', '_')}_{id(self)}"
|
||||
self.knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder_config=self.embedder_config,
|
||||
collection_name=knowledge_agent_name,
|
||||
)
|
||||
except TypeError as e:
|
||||
raise TypeError(f"Invalid Knowledge Configuration Type: {str(e)}")
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Invalid Knowledge Configuration Value: {str(e)}")
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error setting knowledge: {str(e)}")
|
||||
|
||||
@@ -621,7 +621,7 @@ class Crew(BaseModel):
|
||||
agent.i18n = i18n
|
||||
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
|
||||
agent.crew = self # type: ignore[attr-defined]
|
||||
agent.set_knowledge(crew_embedder=self.embedder)
|
||||
agent.set_knowledge(embedder_config=self.embedder)
|
||||
# TODO: Create an AgentFunctionCalling protocol for future refactoring
|
||||
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
|
||||
@@ -1586,6 +1586,76 @@ def test_agent_execute_task_with_ollama():
|
||||
assert "AI" in result or "artificial intelligence" in result.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_base_agent_set_knowledge():
|
||||
"""Test that set_knowledge correctly sets knowledge sources and creates a Knowledge object."""
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
|
||||
# Create a test implementation of BaseAgent
|
||||
class TestAgent(BaseAgent):
|
||||
def execute_task(self, task, context=None, tools=None):
|
||||
return "Test execution"
|
||||
|
||||
def create_agent_executor(self, tools=None):
|
||||
pass
|
||||
|
||||
def _parse_tools(self, tools):
|
||||
return tools
|
||||
|
||||
def get_delegation_tools(self, agents):
|
||||
return []
|
||||
|
||||
def get_output_converter(self, llm, text, model, instructions):
|
||||
return None
|
||||
|
||||
# Create a knowledge source with some content
|
||||
content = "The capital of France is Paris."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
# Create an agent
|
||||
agent = TestAgent(
|
||||
role="Test Agent",
|
||||
goal="Test Goal",
|
||||
backstory="Test Backstory",
|
||||
)
|
||||
|
||||
# Mock the Knowledge class to avoid API calls
|
||||
with patch("crewai.agents.agent_builder.base_agent.Knowledge") as MockKnowledge:
|
||||
mock_knowledge_instance = MockKnowledge.return_value
|
||||
mock_knowledge_instance.sources = [string_source]
|
||||
|
||||
# Test setting knowledge
|
||||
agent.set_knowledge(knowledge_sources=[string_source])
|
||||
|
||||
# Verify that knowledge was set correctly
|
||||
assert agent.knowledge_sources == [string_source]
|
||||
assert agent.knowledge is not None
|
||||
assert MockKnowledge.called
|
||||
# Check that collection name starts with the agent role (now includes unique ID)
|
||||
assert MockKnowledge.call_args[1]["collection_name"].startswith("Test_Agent_")
|
||||
|
||||
# Test with embedder config
|
||||
embedder_config = {
|
||||
"provider": "openai",
|
||||
"model": "text-embedding-3-small"
|
||||
}
|
||||
|
||||
agent.set_knowledge(
|
||||
knowledge_sources=[string_source],
|
||||
embedder_config=embedder_config
|
||||
)
|
||||
|
||||
assert agent.embedder_config == embedder_config
|
||||
assert MockKnowledge.call_args[1]["embedder_config"] == embedder_config
|
||||
|
||||
# Test with invalid knowledge source - we need to directly test the validation logic
|
||||
# rather than relying on the Knowledge class to raise an error
|
||||
with pytest.raises(ValueError):
|
||||
# This will trigger the validation check in set_knowledge
|
||||
agent.set_knowledge(knowledge_sources=["invalid source"])
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources():
|
||||
# Create a knowledge source with some content
|
||||
|
||||
77
tests/cassettes/test_base_agent_set_knowledge.yaml
Normal file
77
tests/cassettes/test_base_agent_set_knowledge.yaml
Normal file
@@ -0,0 +1,77 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"input": ["The capital of France is Paris."], "model": "text-embedding-3-small",
|
||||
"encoding_format": "base64"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '110'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/embeddings
|
||||
response:
|
||||
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
|
||||
sk-proj-********************************************************************************************************************************************************sLcA.
|
||||
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
|
||||
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
|
||||
\"invalid_api_key\"\n }\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 9219d2095edc680f-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '414'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Mon, 17 Mar 2025 04:41:52 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=VL2xCt_SZgziztqb6CFL0smPGPhRpbELZKUdSHPmfLQ-1742186512-1.0.1.1-UFayToBt3jFkEkjQwZJ7A4KLy0.uZK9sqwbNqpMQ75dMEz2hycNU3NwtXor0NmM7k7XsdxtcXPfv.JcVjYatku_yE3I6qMEMGsgoog.guDU;
|
||||
path=/; expires=Mon, 17-Mar-25 05:11:52 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=O4ymzjmuwsEutsmbHpzKDz4uyyZNA1tSUX0M.FNCjro-1742186512991-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
vary:
|
||||
- Origin
|
||||
x-request-id:
|
||||
- req_62700144d22a58e93c0464aa643af3ec
|
||||
http_version: HTTP/1.1
|
||||
status_code: 401
|
||||
version: 1
|
||||
Reference in New Issue
Block a user