Compare commits

..

1 Commits

Author SHA1 Message Date
Gui Vieira
9a210afd80 Fix types 2024-02-08 18:34:04 -03:00
1676 changed files with 20675 additions and 332231 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -1,14 +0,0 @@
# .editorconfig
root = true
# All files
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
# Python files
[*.py]
indent_style = space
indent_size = 2

View File

@@ -1,115 +0,0 @@
name: Bug report
description: Create a report to help us improve CrewAI
title: "[BUG]"
labels: ["bug"]
assignees: []
body:
- type: textarea
id: description
attributes:
label: Description
description: Provide a clear and concise description of what the bug is.
validations:
required: true
- type: textarea
id: steps-to-reproduce
attributes:
label: Steps to Reproduce
description: Provide a step-by-step process to reproduce the behavior.
placeholder: |
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
validations:
required: true
- type: textarea
id: expected-behavior
attributes:
label: Expected behavior
description: A clear and concise description of what you expected to happen.
validations:
required: true
- type: textarea
id: screenshots-code
attributes:
label: Screenshots/Code snippets
description: If applicable, add screenshots or code snippets to help explain your problem.
validations:
required: true
- type: dropdown
id: os
attributes:
label: Operating System
description: Select the operating system you're using
options:
- Ubuntu 20.04
- Ubuntu 22.04
- Ubuntu 24.04
- macOS Catalina
- macOS Big Sur
- macOS Monterey
- macOS Ventura
- macOS Sonoma
- Windows 10
- Windows 11
- Other (specify in additional context)
validations:
required: true
- type: dropdown
id: python-version
attributes:
label: Python Version
description: Version of Python your Crew is running on
options:
- '3.10'
- '3.11'
- '3.12'
validations:
required: true
- type: input
id: crewai-version
attributes:
label: crewAI Version
description: What version of CrewAI are you using
validations:
required: true
- type: input
id: crewai-tools-version
attributes:
label: crewAI Tools Version
description: What version of CrewAI Tools are you using
validations:
required: true
- type: dropdown
id: virtual-environment
attributes:
label: Virtual Environment
description: What Virtual Environment are you running your crew in.
options:
- Venv
- Conda
- Poetry
validations:
required: true
- type: textarea
id: evidence
attributes:
label: Evidence
description: Include relevant information, logs or error messages. These can be screenshots.
validations:
required: true
- type: textarea
id: possible-solution
attributes:
label: Possible Solution
description: Have a solution in mind? Please suggest it here, or write "None".
validations:
required: true
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Add any other context about the problem here.
validations:
required: true

View File

@@ -1 +0,0 @@
blank_issues_enabled: false

View File

@@ -1,65 +0,0 @@
name: Feature request
description: Suggest a new feature for CrewAI
title: "[FEATURE]"
labels: ["feature-request"]
assignees: []
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this feature request!
- type: dropdown
id: feature-area
attributes:
label: Feature Area
description: Which area of CrewAI does this feature primarily relate to?
options:
- Core functionality
- Agent capabilities
- Task management
- Integration with external tools
- Performance optimization
- Documentation
- Other (please specify in additional context)
validations:
required: true
- type: textarea
id: problem
attributes:
label: Is your feature request related to a an existing bug? Please link it here.
description: A link to the bug or NA if not related to an existing bug.
validations:
required: true
- type: textarea
id: solution
attributes:
label: Describe the solution you'd like
description: A clear and concise description of what you want to happen.
validations:
required: true
- type: textarea
id: alternatives
attributes:
label: Describe alternatives you've considered
description: A clear and concise description of any alternative solutions or features you've considered.
validations:
required: false
- type: textarea
id: context
attributes:
label: Additional context
description: Add any other context, screenshots, or examples about the feature request here.
validations:
required: false
- type: dropdown
id: willingness-to-contribute
attributes:
label: Willingness to Contribute
description: Would you be willing to contribute to the implementation of this feature?
options:
- Yes, I'd be happy to submit a pull request
- I could provide more detailed specifications
- I can test the feature once it's implemented
- No, I'm just suggesting the idea
validations:
required: true

View File

@@ -1,21 +0,0 @@
name: "CodeQL Config"
paths-ignore:
# Ignore template files - these are boilerplate code that shouldn't be analyzed
- "src/crewai/cli/templates/**"
# Ignore test cassettes - these are test fixtures/recordings
- "tests/cassettes/**"
# Ignore cache and build artifacts
- ".cache/**"
# Ignore documentation build artifacts
- "docs/.cache/**"
paths:
# Include all Python source code
- "src/**"
# Include tests (but exclude cassettes)
- "tests/**"
# Configure specific queries or packs if needed
# queries:
# - uses: security-and-quality

50
.github/security.md vendored
View File

@@ -1,50 +0,0 @@
## CrewAI Security Policy
We are committed to protecting the confidentiality, integrity, and availability of the CrewAI ecosystem. This policy explains how to report potential vulnerabilities and what you can expect from us when you do.
### Scope
We welcome reports for vulnerabilities that could impact:
- CrewAI-maintained source code and repositories
- CrewAI-operated infrastructure and services
- Official CrewAI releases, packages, and distributions
Issues affecting clearly unaffiliated third-party services or user-generated content are out of scope, unless you can demonstrate a direct impact on CrewAI systems or customers.
### How to Report
- **Please do not** disclose vulnerabilities via public GitHub issues, pull requests, or social media.
- Email detailed reports to **security@crewai.com** with the subject line `Security Report`.
- If you need to share large files or sensitive artifacts, mention it in your email and we will coordinate a secure transfer method.
### What to Include
Providing comprehensive information enables us to validate the issue quickly:
- **Vulnerability overview** — a concise description and classification (e.g., RCE, privilege escalation)
- **Affected components** — repository, branch, tag, or deployed service along with relevant file paths or endpoints
- **Reproduction steps** — detailed, step-by-step instructions; include logs, screenshots, or screen recordings when helpful
- **Proof-of-concept** — exploit details or code that demonstrates the impact (if available)
- **Impact analysis** — severity assessment, potential exploitation scenarios, and any prerequisites or special configurations
### Our Commitment
- **Acknowledgement:** We aim to acknowledge your report within two business days.
- **Communication:** We will keep you informed about triage results, remediation progress, and planned release timelines.
- **Resolution:** Confirmed vulnerabilities will be prioritized based on severity and fixed as quickly as possible.
- **Recognition:** We currently do not run a bug bounty program; any rewards or recognition are issued at CrewAI's discretion.
### Coordinated Disclosure
We ask that you allow us a reasonable window to investigate and remediate confirmed issues before any public disclosure. We will coordinate publication timelines with you whenever possible.
### Safe Harbor
We will not pursue or support legal action against individuals who, in good faith:
- Follow this policy and refrain from violating any applicable laws
- Avoid privacy violations, data destruction, or service disruption
- Limit testing to systems in scope and respect rate limits and terms of service
If you are unsure whether your testing is covered, please contact us at **security@crewai.com** before proceeding.

10
.github/workflows/black.yml vendored Normal file
View File

@@ -0,0 +1,10 @@
name: Lint
on: [pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: psf/black@stable

View File

@@ -1,48 +0,0 @@
name: Build uv cache
on:
push:
branches:
- main
paths:
- "uv.lock"
- "pyproject.toml"
schedule:
- cron: "0 0 */5 * *" # Run every 5 days at midnight UTC to prevent cache expiration
workflow_dispatch:
permissions:
contents: read
jobs:
build-cache:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install dependencies and populate cache
run: |
echo "Building global UV cache for Python ${{ matrix.python-version }}..."
uv sync --all-groups --all-extras --no-install-project
echo "Cache populated successfully"
- name: Save uv caches
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}

View File

@@ -1,103 +0,0 @@
# For most projects, this workflow file will not need changing; you simply need
# to commit it to your repository.
#
# You may wish to alter this file to override the set of languages analyzed,
# or to provide custom queries or build logic.
#
# ******** NOTE ********
# We have attempted to detect the languages in your repository. Please check
# the `language` matrix defined below to confirm you have the correct set of
# supported CodeQL languages.
#
name: "CodeQL Advanced"
on:
push:
branches: [ "main" ]
paths-ignore:
- "src/crewai/cli/templates/**"
pull_request:
branches: [ "main" ]
paths-ignore:
- "src/crewai/cli/templates/**"
jobs:
analyze:
name: Analyze (${{ matrix.language }})
# Runner size impacts CodeQL analysis time. To learn more, please see:
# - https://gh.io/recommended-hardware-resources-for-running-codeql
# - https://gh.io/supported-runners-and-hardware-resources
# - https://gh.io/using-larger-runners (GitHub.com only)
# Consider using larger runners or machines with greater resources for possible analysis time improvements.
runs-on: ${{ (matrix.language == 'swift' && 'macos-latest') || 'ubuntu-latest' }}
permissions:
# required for all workflows
security-events: write
# required to fetch internal or private CodeQL packs
packages: read
# only required for workflows in private repositories
actions: read
contents: read
strategy:
fail-fast: false
matrix:
include:
- language: actions
build-mode: none
- language: python
build-mode: none
# CodeQL supports the following values keywords for 'language': 'actions', 'c-cpp', 'csharp', 'go', 'java-kotlin', 'javascript-typescript', 'python', 'ruby', 'rust', 'swift'
# Use `c-cpp` to analyze code written in C, C++ or both
# Use 'java-kotlin' to analyze code written in Java, Kotlin or both
# Use 'javascript-typescript' to analyze code written in JavaScript, TypeScript or both
# To learn more about changing the languages that are analyzed or customizing the build mode for your analysis,
# see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/customizing-your-advanced-setup-for-code-scanning.
# If you are analyzing a compiled language, you can modify the 'build-mode' for that language to customize how
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v4
# Add any setup steps before running the `github/codeql-action/init` action.
# This includes steps like installing compilers or runtimes (`actions/setup-node`
# or others). This is typically only required for manual builds.
# - name: Setup runtime (example)
# uses: actions/setup-example@v1
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v3
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
config-file: ./.github/codeql/codeql-config.yml
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# For more details on CodeQL's query packs, refer to: https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
# queries: security-extended,security-and-quality
# If the analyze step fails for one of the languages you are analyzing with
# "We were unable to automatically build your code", modify the matrix above
# to set the build mode to "manual" for that language. Then modify this step
# to build your code.
# Command-line programs to run using the OS shell.
# 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
- if: matrix.build-mode == 'manual'
shell: bash
run: |
echo 'If you are using a "manual" build mode for one or more of the' \
'languages you are analyzing, replace this with the commands to build' \
'your code, for example:'
echo ' make bootstrap'
echo ' make release'
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v3
with:
category: "/language:${{matrix.language}}"

View File

@@ -1,68 +0,0 @@
name: Lint
on: [pull_request]
permissions:
contents: read
jobs:
lint:
runs-on: ubuntu-latest
env:
TARGET_BRANCH: ${{ github.event.pull_request.base.ref }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Fetch Target Branch
run: git fetch origin $TARGET_BRANCH --depth=1
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py3.11-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py3.11-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: "3.11"
enable-cache: false
- name: Install dependencies
run: uv sync --all-groups --all-extras --no-install-project
- name: Get Changed Python Files
id: changed-files
run: |
merge_base=$(git merge-base origin/"$TARGET_BRANCH" HEAD)
changed_files=$(git diff --name-only --diff-filter=ACMRTUB "$merge_base" | grep '\.py$' || true)
echo "files<<EOF" >> $GITHUB_OUTPUT
echo "$changed_files" >> $GITHUB_OUTPUT
echo "EOF" >> $GITHUB_OUTPUT
- name: Run Ruff on Changed Files
if: ${{ steps.changed-files.outputs.files != '' }}
run: |
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py3.11-${{ hashFiles('uv.lock') }}

47
.github/workflows/mkdocs.yml vendored Normal file
View File

@@ -0,0 +1,47 @@
name: Deploy MkDocs
on:
workflow_dispatch:
push:
branches:
- main
permissions:
contents: write
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Calculate requirements hash
id: req-hash
run: echo "::set-output name=hash::$(sha256sum requirements-doc.txt | awk '{print $1}')"
- name: Setup cache
uses: actions/cache@v3
with:
key: mkdocs-material-${{ steps.req-hash.outputs.hash }}
path: .cache
restore-keys: |
mkdocs-material-
- name: Install Requirements
run: |
sudo apt-get update &&
sudo apt-get install pngquant &&
pip install mkdocs-material mkdocs-material-extensions pillow cairosvg
env:
GH_TOKEN: ${{ secrets.GH_TOKEN }}
- name: Build and deploy MkDocs
run: mkdocs gh-deploy --force

View File

@@ -1,33 +0,0 @@
name: Notify Downstream
on:
push:
branches:
- main
permissions:
contents: read
jobs:
notify-downstream:
runs-on: ubuntu-latest
steps:
- name: Generate GitHub App token
id: app-token
uses: tibdex/github-app-token@v2
with:
app_id: ${{ secrets.OSS_SYNC_APP_ID }}
private_key: ${{ secrets.OSS_SYNC_APP_PRIVATE_KEY }}
- name: Notify Repo B
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ steps.app-token.outputs.token }}
repository: ${{ secrets.OSS_SYNC_DOWNSTREAM_REPO }}
event-type: upstream-commit
client-payload: |
{
"commit_sha": "${{ github.sha }}"
}

View File

@@ -1,29 +0,0 @@
name: Mark stale issues and pull requests
permissions:
contents: write
issues: write
pull-requests: write
on:
schedule:
- cron: '10 12 * * *'
workflow_dispatch:
jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v9
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-label: 'no-issue-activity'
stale-issue-message: 'This issue is stale because it has been open for 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
days-before-issue-stale: 30
days-before-issue-close: 5
stale-pr-label: 'no-pr-activity'
stale-pr-message: 'This PR is stale because it has been open for 45 days with no activity.'
days-before-pr-stale: 45
days-before-pr-close: -1
operations-per-run: 1200

View File

@@ -3,95 +3,30 @@ name: Run Tests
on: [pull_request]
permissions:
contents: read
contents: write
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
jobs:
tests:
name: tests (${{ matrix.python-version }})
deploy:
runs-on: ubuntu-latest
timeout-minutes: 15
strategy:
fail-fast: true
matrix:
python-version: ['3.10', '3.11', '3.12', '3.13']
group: [1, 2, 3, 4, 5, 6, 7, 8]
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v4
with:
fetch-depth: 0 # Fetch all history for proper diff
python-version: '3.10'
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install the project
run: uv sync --all-groups --all-extras
- name: Restore test durations
uses: actions/cache/restore@v4
with:
path: .test_durations_py*
key: test-durations-py${{ matrix.python-version }}
- name: Run tests (group ${{ matrix.group }} of 8)
- name: Install Requirements
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
DURATION_FILE=".test_durations_py${PYTHON_VERSION_SAFE}"
# Temporarily always skip cached durations to fix test splitting
# When durations don't match, pytest-split runs duplicate tests instead of splitting
echo "Using even test splitting (duration cache disabled until fix merged)"
DURATIONS_ARG=""
# Original logic (disabled temporarily):
# if [ ! -f "$DURATION_FILE" ]; then
# echo "No cached durations found, tests will be split evenly"
# DURATIONS_ARG=""
# elif git diff origin/${{ github.base_ref }}...HEAD --name-only 2>/dev/null | grep -q "^tests/.*\.py$"; then
# echo "Test files have changed, skipping cached durations to avoid mismatches"
# DURATIONS_ARG=""
# else
# echo "No test changes detected, using cached test durations for optimal splitting"
# DURATIONS_ARG="--durations-path=${DURATION_FILE}"
# fi
uv run pytest \
--block-network \
--timeout=30 \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
$DURATIONS_ARG \
--durations=10 \
-n auto \
--maxfail=3
sudo apt-get update &&
pip install poetry &&
poetry lock &&
poetry install
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
- name: Run tests
run: poetry run pytest

View File

@@ -1,101 +1,30 @@
name: Run Type Checks
on: [pull_request]
permissions:
contents: read
contents: write
jobs:
type-checker-matrix:
name: type-checker (${{ matrix.python-version }})
type-checker:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v4
with:
fetch-depth: 0 # Fetch all history for proper diff
python-version: '3.10'
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install dependencies
run: uv sync --all-groups --all-extras
- name: Get changed Python files
id: changed-files
- name: Install Requirements
run: |
# Get the list of changed Python files compared to the base branch
echo "Fetching changed files..."
git diff --name-only --diff-filter=ACMRT origin/${{ github.base_ref }}...HEAD -- '*.py' > changed_files.txt
sudo apt-get update &&
pip install poetry &&
poetry lock &&
poetry install
# Filter for files in src/ directory only (excluding tests/)
grep -E "^src/" changed_files.txt > filtered_changed_files.txt || true
# Check if there are any changed files
if [ -s filtered_changed_files.txt ]; then
echo "Changed Python files in src/:"
cat filtered_changed_files.txt
echo "has_changes=true" >> $GITHUB_OUTPUT
# Convert newlines to spaces for mypy command
echo "files=$(cat filtered_changed_files.txt | tr '\n' ' ')" >> $GITHUB_OUTPUT
else
echo "No Python files changed in src/"
echo "has_changes=false" >> $GITHUB_OUTPUT
fi
- name: Run type checks on changed files
if: steps.changed-files.outputs.has_changes == 'true'
run: |
echo "Running mypy on changed files with Python ${{ matrix.python-version }}..."
uv run mypy ${{ steps.changed-files.outputs.files }}
- name: No files to check
if: steps.changed-files.outputs.has_changes == 'false'
run: echo "No Python files in src/ were modified - skipping type checks"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
# Summary job to provide single status for branch protection
type-checker:
name: type-checker
runs-on: ubuntu-latest
needs: type-checker-matrix
if: always()
steps:
- name: Check matrix results
run: |
if [ "${{ needs.type-checker-matrix.result }}" == "success" ] || [ "${{ needs.type-checker-matrix.result }}" == "skipped" ]; then
echo "✅ All type checks passed"
else
echo "❌ Type checks failed"
exit 1
fi
- name: Run type checks
run: poetry run pyright

View File

@@ -1,71 +0,0 @@
name: Update Test Durations
on:
push:
branches:
- main
paths:
- 'tests/**/*.py'
workflow_dispatch:
permissions:
contents: read
jobs:
update-durations:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['3.10', '3.11', '3.12', '3.13']
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install the project
run: uv sync --all-groups --all-extras
- name: Run all tests and store durations
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
uv run pytest --store-durations --durations-path=.test_durations_py${PYTHON_VERSION_SAFE} -n auto
continue-on-error: true
- name: Save durations to cache
if: always()
uses: actions/cache/save@v4
with:
path: .test_durations_py*
key: test-durations-py${{ matrix.python-version }}
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}

23
.gitignore vendored
View File

@@ -2,28 +2,7 @@
.pytest_cache
__pycache__
dist/
lib/
.env
assets/*
.idea
test/
docs_crew/
chroma.sqlite3
old_en.json
db/
test.py
rc-tests/*
*.pkl
temp/*
.vscode/*
crew_tasks_output.json
.codesight
.mypy_cache
.ruff_cache
.venv
test_flow.html
crewairules.mdc
plan.md
conceptual_plan.md
build_image
chromadb-*.lock
test.py

View File

@@ -1,19 +1,21 @@
repos:
- repo: local
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 23.12.1
hooks:
- id: ruff
name: ruff
entry: uv run ruff check
language: system
types: [python]
- id: ruff-format
name: ruff-format
entry: uv run ruff format
language: system
types: [python]
- id: mypy
name: mypy
entry: uv run mypy
language: system
types: [python]
exclude: ^tests/
- id: black
language_version: python3.11
files: \.(py)$
- repo: https://github.com/pycqa/isort
rev: 5.13.2
hooks:
- id: isort
name: isort (python)
args: ["--profile", "black", "--filter-files"]
- repo: https://github.com/PyCQA/autoflake
rev: v2.2.1
hooks:
- id: autoflake
args: ['--in-place', '--remove-all-unused-imports', '--remove-unused-variables', '--ignore-init-module-imports']

View File

@@ -1,4 +1,4 @@
Copyright (c) 2025 crewAI, Inc.
Copyright (c) 2018 The Python Packaging Authority
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

745
README.md
View File

@@ -1,566 +1,191 @@
<p align="center">
<a href="https://github.com/crewAIInc/crewAI">
<img src="docs/images/crewai_logo.png" width="600px" alt="Open source Multi-AI Agent orchestration framework">
</a>
</p>
<p align="center" style="display: flex; justify-content: center; gap: 20px; align-items: center;">
<a href="https://trendshift.io/repositories/11239" target="_blank">
<img src="https://trendshift.io/api/badge/repositories/11239" alt="crewAIInc%2FcrewAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
</a>
</p>
<div align="center">
<p align="center">
<a href="https://crewai.com">Homepage</a>
·
<a href="https://docs.crewai.com">Docs</a>
·
<a href="https://app.crewai.com">Start Cloud Trial</a>
·
<a href="https://blog.crewai.com">Blog</a>
·
<a href="https://community.crewai.com">Forum</a>
</p>
![Logo of crewAI, two people rowing on a boat](./docs/crewai_logo.png)
<p align="center">
<a href="https://github.com/crewAIInc/crewAI">
<img src="https://img.shields.io/github/stars/crewAIInc/crewAI" alt="GitHub Repo stars">
</a>
<a href="https://github.com/crewAIInc/crewAI/network/members">
<img src="https://img.shields.io/github/forks/crewAIInc/crewAI" alt="GitHub forks">
</a>
<a href="https://github.com/crewAIInc/crewAI/issues">
<img src="https://img.shields.io/github/issues/crewAIInc/crewAI" alt="GitHub issues">
</a>
<a href="https://github.com/crewAIInc/crewAI/pulls">
<img src="https://img.shields.io/github/issues-pr/crewAIInc/crewAI" alt="GitHub pull requests">
</a>
<a href="https://opensource.org/licenses/MIT">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT">
</a>
</p>
# **crewAI**
<p align="center">
<a href="https://pypi.org/project/crewai/">
<img src="https://img.shields.io/pypi/v/crewai" alt="PyPI version">
</a>
<a href="https://pypi.org/project/crewai/">
<img src="https://img.shields.io/pypi/dm/crewai" alt="PyPI downloads">
</a>
<a href="https://twitter.com/crewAIInc">
<img src="https://img.shields.io/twitter/follow/crewAIInc?style=social" alt="Twitter Follow">
</a>
</p>
🤖 **crewAI**: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
### Fast and Flexible Multi-Agent Automation Framework
<h3>
> CrewAI is a lean, lightning-fast Python framework built entirely from scratch—completely **independent of LangChain or other agent frameworks**.
> It empowers developers with both high-level simplicity and precise low-level control, ideal for creating autonomous AI agents tailored to any scenario.
[Homepage](https://www.crewai.io/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/joaomdmoura/crewai-examples) | [Discord](https://discord.com/invite/X4JWnZnxPb)
- **CrewAI Crews**: Optimize for autonomy and collaborative intelligence.
- **CrewAI Flows**: Enable granular, event-driven control, single LLM calls for precise task orchestration and supports Crews natively
</h3>
With over 100,000 developers certified through our community courses at [learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
standard for enterprise-ready AI automation.
[![GitHub Repo stars](https://img.shields.io/github/stars/joaomdmoura/crewAI)](https://github.com/joaomdmoura/crewAI)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
# CrewAI AMP Suite
CrewAI AMP Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
You can try one part of the suite the [Crew Control Plane for free](https://app.crewai.com)
## Crew Control Plane Key Features:
- **Tracing & Observability**: Monitor and track your AI agents and workflows in real-time, including metrics, logs, and traces.
- **Unified Control Plane**: A centralized platform for managing, monitoring, and scaling your AI agents and workflows.
- **Seamless Integrations**: Easily connect with existing enterprise systems, data sources, and cloud infrastructure.
- **Advanced Security**: Built-in robust security and compliance measures ensuring safe deployment and management.
- **Actionable Insights**: Real-time analytics and reporting to optimize performance and decision-making.
- **24/7 Support**: Dedicated enterprise support to ensure uninterrupted operation and quick resolution of issues.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI AMP on-premise or in the cloud, depending on your security and compliance requirements.
CrewAI AMP is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
intelligent automations.
</div>
## Table of contents
- [Why CrewAI?](#why-crewai)
- [Getting Started](#getting-started)
- [Key Features](#key-features)
- [Understanding Flows and Crews](#understanding-flows-and-crews)
- [CrewAI vs LangGraph](#how-crewai-compares)
- [Examples](#examples)
- [Quick Tutorial](#quick-tutorial)
- [Write Job Descriptions](#write-job-descriptions)
- [Trip Planner](#trip-planner)
- [Stock Analysis](#stock-analysis)
- [Using Crews and Flows Together](#using-crews-and-flows-together)
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
- [How CrewAI Compares](#how-crewai-compares)
- [Frequently Asked Questions (FAQ)](#frequently-asked-questions-faq)
- [Contribution](#contribution)
- [Hire CrewAI](#hire-crewai)
- [Telemetry](#telemetry)
- [License](#license)
## Why CrewAI?
<div align="center" style="margin-bottom: 30px;">
<img src="docs/images/asset.png" alt="CrewAI Logo" width="100%">
</div>
CrewAI unlocks the true potential of multi-agent automation, delivering the best-in-class combination of speed, flexibility, and control with either Crews of AI Agents or Flows of Events:
- **Standalone Framework**: Built from scratch, independent of LangChain or any other agent framework.
- **High Performance**: Optimized for speed and minimal resource usage, enabling faster execution.
- **Flexible Low Level Customization**: Complete freedom to customize at both high and low levels - from overall workflows and system architecture to granular agent behaviors, internal prompts, and execution logic.
- **Ideal for Every Use Case**: Proven effective for both simple tasks and highly complex, real-world, enterprise-grade scenarios.
- **Robust Community**: Backed by a rapidly growing community of over **100,000 certified** developers offering comprehensive support and resources.
CrewAI empowers developers and enterprises to confidently build intelligent automations, bridging the gap between simplicity, flexibility, and performance.
The power of AI collaboration has too much to offer.
CrewAI is designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
## Getting Started
Setup and run your first CrewAI agents by following this tutorial.
[![CrewAI Getting Started Tutorial](https://img.youtube.com/vi/-kSOTtYzgEw/hqdefault.jpg)](https://www.youtube.com/watch?v=-kSOTtYzgEw "CrewAI Getting Started Tutorial")
###
Learning Resources
Learn CrewAI through our comprehensive courses:
- [Multi AI Agent Systems with CrewAI](https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/) - Master the fundamentals of multi-agent systems
- [Practical Multi AI Agents and Advanced Use Cases](https://www.deeplearning.ai/short-courses/practical-multi-ai-agents-and-advanced-use-cases-with-crewai/) - Deep dive into advanced implementations
### Understanding Flows and Crews
CrewAI offers two powerful, complementary approaches that work seamlessly together to build sophisticated AI applications:
1. **Crews**: Teams of AI agents with true autonomy and agency, working together to accomplish complex tasks through role-based collaboration. Crews enable:
- Natural, autonomous decision-making between agents
- Dynamic task delegation and collaboration
- Specialized roles with defined goals and expertise
- Flexible problem-solving approaches
2. **Flows**: Production-ready, event-driven workflows that deliver precise control over complex automations. Flows provide:
- Fine-grained control over execution paths for real-world scenarios
- Secure, consistent state management between tasks
- Clean integration of AI agents with production Python code
- Conditional branching for complex business logic
The true power of CrewAI emerges when combining Crews and Flows. This synergy allows you to:
- Build complex, production-grade applications
- Balance autonomy with precise control
- Handle sophisticated real-world scenarios
- Maintain clean, maintainable code structure
### Getting Started with Installation
To get started with CrewAI, follow these simple steps:
### 1. Installation
Ensure you have Python >=3.10 <3.14 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, install CrewAI:
```shell
pip install crewai
```
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command:
The example below also uses DuckDuckGo's Search. You can install it with `pip` too:
```shell
pip install 'crewai[tools]'
pip install duckduckgo-search
```
The command above installs the basic package and also adds extra components which require more dependencies to function.
### Troubleshooting Dependencies
If you encounter issues during installation or usage, here are some common solutions:
#### Common Issues
1. **ModuleNotFoundError: No module named 'tiktoken'**
- Install tiktoken explicitly: `pip install 'crewai[embeddings]'`
- If using embedchain or other tools: `pip install 'crewai[tools]'`
2. **Failed building wheel for tiktoken**
- Ensure Rust compiler is installed (see installation steps above)
- For Windows: Verify Visual C++ Build Tools are installed
- Try upgrading pip: `pip install --upgrade pip`
- If issues persist, use a pre-built wheel: `pip install tiktoken --prefer-binary`
### 2. Setting Up Your Crew with the YAML Configuration
To create a new CrewAI project, run the following CLI (Command Line Interface) command:
```shell
crewai create crew <project_name>
```
This command creates a new project folder with the following structure:
```
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
├── .env
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
You can now start developing your crew by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of the project, the `crew.py` file is where you define your crew, the `agents.yaml` file is where you define your agents, and the `tasks.yaml` file is where you define your tasks.
#### To customize your project, you can:
- Modify `src/my_project/config/agents.yaml` to define your agents.
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
- Add your environment variables into the `.env` file.
#### Example of a simple crew with a sequential process:
Instantiate your crew:
```shell
crewai create crew latest-ai-development
```
Modify the files as needed to fit your use case:
**agents.yaml**
```yaml
# src/my_project/config/agents.yaml
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.
```
**tasks.yaml**
```yaml
# src/my_project/config/tasks.yaml
research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2025.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst
output_file: report.md
```
**crew.py**
### 2. Setting Up Your Crew
```python
# src/my_project/crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
import os
from crewai import Agent, Task, Crew, Process
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
agents: List[BaseAgent]
tasks: List[Task]
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True,
tools=[SerperDevTool()]
)
# You can choose to use a local model through Ollama for example. See ./docs/how-to/llm-connections.md for more information.
# from langchain_community.llms import Ollama
# ollama_llm = Ollama(model="openhermes")
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
# Install duckduckgo-search for this example:
# !pip install -U duckduckgo-search
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
from langchain_community.tools import DuckDuckGoSearchRun
search_tool = DuckDuckGoSearchRun()
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_file='report.md'
)
# Define your agents with roles and goals
researcher = Agent(
role='Senior Research Analyst',
goal='Uncover cutting-edge developments in AI and data science',
backstory="""You work at a leading tech think tank.
Your expertise lies in identifying emerging trends.
You have a knack for dissecting complex data and presenting actionable insights.""",
verbose=True,
allow_delegation=False,
tools=[search_tool]
# You can pass an optional llm attribute specifying what mode you wanna use.
# It can be a local model through Ollama / LM Studio or a remote
# model like OpenAI, Mistral, Antrophic or others (https://python.langchain.com/docs/integrations/llms/)
#
# Examples:
#
# from langchain_community.llms import Ollama
# llm=ollama_llm # was defined above in the file
#
# from langchain_openai import ChatOpenAI
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7)
)
writer = Agent(
role='Tech Content Strategist',
goal='Craft compelling content on tech advancements',
backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
You transform complex concepts into compelling narratives.""",
verbose=True,
allow_delegation=True,
# (optional) llm=ollama_llm
)
@crew
def crew(self) -> Crew:
"""Creates the LatestAiDevelopment crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)
# Create tasks for your agents
task1 = Task(
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
Identify key trends, breakthrough technologies, and potential industry impacts.
Your final answer MUST be a full analysis report""",
agent=researcher
)
task2 = Task(
description="""Using the insights provided, develop an engaging blog
post that highlights the most significant AI advancements.
Your post should be informative yet accessible, catering to a tech-savvy audience.
Make it sound cool, avoid complex words so it doesn't sound like AI.
Your final answer MUST be the full blog post of at least 4 paragraphs.""",
agent=writer
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2, # You can set it to 1 or 2 to different logging levels
)
# Get your crew to work!
result = crew.kickoff()
print("######################")
print(result)
```
**main.py**
```python
#!/usr/bin/env python
# src/my_project/main.py
import sys
from latest_ai_development.crew import LatestAiDevelopmentCrew
def run():
"""
Run the crew.
"""
inputs = {
'topic': 'AI Agents'
}
LatestAiDevelopmentCrew().crew().kickoff(inputs=inputs)
```
### 3. Running Your Crew
Before running your crew, make sure you have the following keys set as environment variables in your `.env` file:
- An [OpenAI API key](https://platform.openai.com/account/api-keys) (or other LLM API key): `OPENAI_API_KEY=sk-...`
- A [Serper.dev](https://serper.dev/) API key: `SERPER_API_KEY=YOUR_KEY_HERE`
Lock the dependencies and install them by using the CLI command but first, navigate to your project directory:
```shell
cd my_project
crewai install (Optional)
```
To run your crew, execute the following command in the root of your project:
```bash
crewai run
```
or
```bash
python src/my_project/main.py
```
If an error happens due to the usage of poetry, please run the following command to update your crewai package:
```bash
crewai update
```
You should see the output in the console and the `report.md` file should be created in the root of your project with the full final report.
In addition to the sequential process, you can use the hierarchical process, which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results. [See more about the processes here](https://docs.crewai.com/core-concepts/Processes/).
## Key Features
CrewAI stands apart as a lean, standalone, high-performance multi-AI Agent framework delivering simplicity, flexibility, and precise control—free from the complexity and limitations found in other agent frameworks.
- **Role-Based Agent Design**: Customize agents with specific roles, goals, and tools.
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enhancing problem-solving efficiency.
- **Flexible Task Management**: Define tasks with customizable tools and assign them to agents dynamically.
- **Processes Driven**: Currently only supports `sequential` task execution and `hierarchical` processes, but more complex processes like consensual and autonomous are being worked on.
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring you agents' connections to models, even ones running locally!
- **Standalone & Lean**: Completely independent from other frameworks like LangChain, offering faster execution and lighter resource demands.
- **Flexible & Precise**: Easily orchestrate autonomous agents through intuitive [Crews](https://docs.crewai.com/concepts/crews) or precise [Flows](https://docs.crewai.com/concepts/flows), achieving perfect balance for your needs.
- **Seamless Integration**: Effortlessly combine Crews (autonomy) and Flows (precision) to create complex, real-world automations.
- **Deep Customization**: Tailor every aspect—from high-level workflows down to low-level internal prompts and agent behaviors.
- **Reliable Performance**: Consistent results across simple tasks and complex, enterprise-level automations.
- **Thriving Community**: Backed by robust documentation and over 100,000 certified developers, providing exceptional support and guidance.
Choose CrewAI to easily build powerful, adaptable, and production-ready AI automations.
![CrewAI Mind Map](./docs/crewAI-mindmap.png "CrewAI Mind Map")
## Examples
You can test different real life examples of AI crews in the [CrewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
You can test different real life examples of AI crews in the [crewAI-examples repo](https://github.com/joaomdmoura/crewAI-examples?tab=readme-ov-file):
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/landing_page_generator)
- [Landing Page Generator](https://github.com/joaomdmoura/crewAI-examples/tree/main/landing_page_generator)
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis)
- [Trip Planner](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner)
- [Stock Analysis](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis)
### Quick Tutorial
[![CrewAI Tutorial](https://img.youtube.com/vi/tnejrr-0a94/maxresdefault.jpg)](https://www.youtube.com/watch?v=tnejrr-0a94 "CrewAI Tutorial")
### Write Job Descriptions
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting) or watch a video below:
[![Jobs postings](https://img.youtube.com/vi/u98wEMz-9to/maxresdefault.jpg)](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
### Trip Planner
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner) or watch a video below:
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner) or watch a video below:
[![Trip Planner](https://img.youtube.com/vi/xis7rWp-hjs/maxresdefault.jpg)](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
### Stock Analysis
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis) or watch a video below:
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis) or watch a video below:
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
### Using Crews and Flows Together
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines.
CrewAI flows support logical operators like `or_` and `and_` to combine multiple conditions. This can be used with `@start`, `@listen`, or `@router` decorators to create complex triggering conditions.
- `or_`: Triggers when any of the specified conditions are met.
- `and_`Triggers when all of the specified conditions are met.
Here's how you can orchestrate multiple Crews within a Flow:
```python
from crewai.flow.flow import Flow, listen, start, router, or_
from crewai import Crew, Agent, Task, Process
from pydantic import BaseModel
# Define structured state for precise control
class MarketState(BaseModel):
sentiment: str = "neutral"
confidence: float = 0.0
recommendations: list = []
class AdvancedAnalysisFlow(Flow[MarketState]):
@start()
def fetch_market_data(self):
# Demonstrate low-level control with structured state
self.state.sentiment = "analyzing"
return {"sector": "tech", "timeframe": "1W"} # These parameters match the task description template
@listen(fetch_market_data)
def analyze_with_crew(self, market_data):
# Show crew agency through specialized roles
analyst = Agent(
role="Senior Market Analyst",
goal="Conduct deep market analysis with expert insight",
backstory="You're a veteran analyst known for identifying subtle market patterns"
)
researcher = Agent(
role="Data Researcher",
goal="Gather and validate supporting market data",
backstory="You excel at finding and correlating multiple data sources"
)
analysis_task = Task(
description="Analyze {sector} sector data for the past {timeframe}",
expected_output="Detailed market analysis with confidence score",
agent=analyst
)
research_task = Task(
description="Find supporting data to validate the analysis",
expected_output="Corroborating evidence and potential contradictions",
agent=researcher
)
# Demonstrate crew autonomy
analysis_crew = Crew(
agents=[analyst, researcher],
tasks=[analysis_task, research_task],
process=Process.sequential,
verbose=True
)
return analysis_crew.kickoff(inputs=market_data) # Pass market_data as named inputs
@router(analyze_with_crew)
def determine_next_steps(self):
# Show flow control with conditional routing
if self.state.confidence > 0.8:
return "high_confidence"
elif self.state.confidence > 0.5:
return "medium_confidence"
return "low_confidence"
@listen("high_confidence")
def execute_strategy(self):
# Demonstrate complex decision making
strategy_crew = Crew(
agents=[
Agent(role="Strategy Expert",
goal="Develop optimal market strategy")
],
tasks=[
Task(description="Create detailed strategy based on analysis",
expected_output="Step-by-step action plan")
]
)
return strategy_crew.kickoff()
@listen(or_("medium_confidence", "low_confidence"))
def request_additional_analysis(self):
self.state.recommendations.append("Gather more data")
return "Additional analysis required"
```
This example demonstrates how to:
1. Use Python code for basic data operations
2. Create and execute Crews as steps in your workflow
3. Use Flow decorators to manage the sequence of operations
4. Implement conditional branching based on Crew results
## Connecting Your Crew to a Model
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
crewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models.
Please refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring you agents' connections to models.
## How CrewAI Compares
**CrewAI's Advantage**: CrewAI combines autonomous agent intelligence with precise workflow control through its unique Crews and Flows architecture. The framework excels at both high-level orchestration and low-level customization, enabling complex, production-grade systems with granular control.
- **Autogen**: While Autogen excels in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **LangGraph**: While LangGraph provides a foundation for building agent workflows, its approach requires significant boilerplate code and complex state management patterns. The framework's tight coupling with LangChain can limit flexibility when implementing custom agent behaviors or integrating with external systems.
*P.S. CrewAI demonstrates significant performance advantages over LangGraph, executing 5.76x faster in certain cases like this QA task example ([see comparison](https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/QA%20Agent)) while achieving higher evaluation scores with faster completion times in certain coding tasks, like in this example ([detailed analysis](https://github.com/crewAIInc/crewAI-examples/blob/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/Coding%20Assistant/coding_assistant_eval.ipynb)).*
- **Autogen**: While Autogen excels at creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
## Contribution
CrewAI is open-source and we welcome contributions. If you're looking to contribute, please:
@@ -574,14 +199,14 @@ CrewAI is open-source and we welcome contributions. If you're looking to contrib
### Installing Dependencies
```bash
uv lock
uv sync
poetry lock
poetry install
```
### Virtual Env
```bash
uv venv
poetry shell
```
### Pre-commit hooks
@@ -593,19 +218,19 @@ pre-commit install
### Running Tests
```bash
uv run pytest .
poetry run pytest
```
### Running static type checks
```bash
uvx mypy src
poetry run pyright
```
### Packaging
```bash
uv build
poetry build
```
### Installing Locally
@@ -614,165 +239,29 @@ uv build
pip install dist/*.tar.gz
```
## Hire CrewAI
We're a company developing crewAI and crewAI Enterprise, we for a limited time are offer consulting with selected customers, to get them early access to our enterprise solution
If you are interested on having access to it and hiring weekly hours with our team, feel free to email us at [joao@crewai.com](mailto:joao@crewai.com).
## Telemetry
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
There is NO data being collected on the prompts, tasks descriptions agents backstories or goals nor tools usage, no API calls, nor responses nor any data that is being processed by the agents, nor any secrets and env vars.
Data collected includes:
- Version of CrewAI
- So we can understand how many users are using the latest version
- Version of crewAI
- Version of Python
- So we can decide on what versions to better support
- General OS (e.g. number of CPUs, macOS/Windows/Linux)
- So we know what OS we should focus on and if we could build specific OS related features
- Number of agents and tasks in a crew
- So we make sure we are testing internally with similar use cases and educate people on the best practices
- Crew Process being used
- Understand where we should focus our efforts
- If Agents are using memory or allowing delegation
- Understand if we improved the features or maybe even drop them
- If Tasks are being executed in parallel or sequentially
- Understand if we should focus more on parallel execution
- Language model being used
- Improved support on most used languages
- Roles of agents in a crew
- Understand high level use cases so we can build better tools, integrations and examples about it
- Tools names available
- Understand out of the publicly available tools, which ones are being used the most so we can improve them
Users can opt-in to Further Telemetry, sharing the complete telemetry data by setting the `share_crew` attribute to `True` on their Crews. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
## License
CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/blob/main/LICENSE).
## Frequently Asked Questions (FAQ)
### General
- [What exactly is CrewAI?](#q-what-exactly-is-crewai)
- [How do I install CrewAI?](#q-how-do-i-install-crewai)
- [Does CrewAI depend on LangChain?](#q-does-crewai-depend-on-langchain)
- [Is CrewAI open-source?](#q-is-crewai-open-source)
- [Does CrewAI collect data from users?](#q-does-crewai-collect-data-from-users)
### Features and Capabilities
- [Can CrewAI handle complex use cases?](#q-can-crewai-handle-complex-use-cases)
- [Can I use CrewAI with local AI models?](#q-can-i-use-crewai-with-local-ai-models)
- [What makes Crews different from Flows?](#q-what-makes-crews-different-from-flows)
- [How is CrewAI better than LangChain?](#q-how-is-crewai-better-than-langchain)
- [Does CrewAI support fine-tuning or training custom models?](#q-does-crewai-support-fine-tuning-or-training-custom-models)
### Resources and Community
- [Where can I find real-world CrewAI examples?](#q-where-can-i-find-real-world-crewai-examples)
- [How can I contribute to CrewAI?](#q-how-can-i-contribute-to-crewai)
### Enterprise Features
- [What additional features does CrewAI AMP offer?](#q-what-additional-features-does-crewai-amp-offer)
- [Is CrewAI AMP available for cloud and on-premise deployments?](#q-is-crewai-amp-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI AMP for free?](#q-can-i-try-crewai-amp-for-free)
### Q: What exactly is CrewAI?
A: CrewAI is a standalone, lean, and fast Python framework built specifically for orchestrating autonomous AI agents. Unlike frameworks like LangChain, CrewAI does not rely on external dependencies, making it leaner, faster, and simpler.
### Q: How do I install CrewAI?
A: Install CrewAI using pip:
```shell
pip install crewai
```
For additional tools, use:
```shell
pip install 'crewai[tools]'
```
### Q: Does CrewAI depend on LangChain?
A: No. CrewAI is built entirely from the ground up, with no dependencies on LangChain or other agent frameworks. This ensures a lean, fast, and flexible experience.
### Q: Can CrewAI handle complex use cases?
A: Yes. CrewAI excels at both simple and highly complex real-world scenarios, offering deep customization options at both high and low levels, from internal prompts to sophisticated workflow orchestration.
### Q: Can I use CrewAI with local AI models?
A: Absolutely! CrewAI supports various language models, including local ones. Tools like Ollama and LM Studio allow seamless integration. Check the [LLM Connections documentation](https://docs.crewai.com/how-to/LLM-Connections/) for more details.
### Q: What makes Crews different from Flows?
A: Crews provide autonomous agent collaboration, ideal for tasks requiring flexible decision-making and dynamic interaction. Flows offer precise, event-driven control, ideal for managing detailed execution paths and secure state management. You can seamlessly combine both for maximum effectiveness.
### Q: How is CrewAI better than LangChain?
A: CrewAI provides simpler, more intuitive APIs, faster execution speeds, more reliable and consistent results, robust documentation, and an active community—addressing common criticisms and limitations associated with LangChain.
### Q: Is CrewAI open-source?
A: Yes, CrewAI is open-source and actively encourages community contributions and collaboration.
### Q: Does CrewAI collect data from users?
A: CrewAI collects anonymous telemetry data strictly for improvement purposes. Sensitive data such as prompts, tasks, or API responses are never collected unless explicitly enabled by the user.
### Q: Where can I find real-world CrewAI examples?
A: Check out practical examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), covering use cases like trip planners, stock analysis, and job postings.
### Q: How can I contribute to CrewAI?
A: Contributions are warmly welcomed! Fork the repository, create your branch, implement your changes, and submit a pull request. See the Contribution section of the README for detailed guidelines.
### Q: What additional features does CrewAI AMP offer?
A: CrewAI AMP provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
### Q: Is CrewAI AMP available for cloud and on-premise deployments?
A: Yes, CrewAI AMP supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
### Q: Can I try CrewAI AMP for free?
A: Yes, you can explore part of the CrewAI AMP Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
### Q: Does CrewAI support fine-tuning or training custom models?
A: Yes, CrewAI can integrate with custom-trained or fine-tuned models, allowing you to enhance your agents with domain-specific knowledge and accuracy.
### Q: Can CrewAI agents interact with external tools and APIs?
A: Absolutely! CrewAI agents can easily integrate with external tools, APIs, and databases, empowering them to leverage real-world data and resources.
### Q: Is CrewAI suitable for production environments?
A: Yes, CrewAI is explicitly designed with production-grade standards, ensuring reliability, stability, and scalability for enterprise deployments.
### Q: How scalable is CrewAI?
A: CrewAI is highly scalable, supporting simple automations and large-scale enterprise workflows involving numerous agents and complex tasks simultaneously.
### Q: Does CrewAI offer debugging and monitoring tools?
A: Yes, CrewAI AMP includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
### Q: What programming languages does CrewAI support?
A: CrewAI is primarily Python-based but easily integrates with services and APIs written in any programming language through its flexible API integration capabilities.
### Q: Does CrewAI offer educational resources for beginners?
A: Yes, CrewAI provides extensive beginner-friendly tutorials, courses, and documentation through learn.crewai.com, supporting developers at all skill levels.
### Q: Can CrewAI automate human-in-the-loop workflows?
A: Yes, CrewAI fully supports human-in-the-loop workflows, allowing seamless collaboration between human experts and AI agents for enhanced decision-making.
# test
CrewAI is released under the MIT License.

1737
crewAI.excalidraw Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,18 +0,0 @@
(function() {
if (typeof window === 'undefined') return;
if (typeof window.signals !== 'undefined') return;
var script = document.createElement('script');
script.src = 'https://cdn.cr-relay.com/v1/site/883520f4-c431-44be-80e7-e123a1ee7a2b/signals.js';
script.async = true;
window.signals = Object.assign(
[],
['page', 'identify', 'form'].reduce(function (acc, method){
acc[method] = function () {
signals.push([method, arguments]);
return signals;
};
return acc;
}, {})
);
document.head.appendChild(script);
})();

View File

@@ -0,0 +1,58 @@
---
title: crewAI Agents
description: What are crewAI Agents and how to use them.
---
## What is an Agent?
!!! note "What is an Agent?"
An agent is an **autonomous unit** programmed to:
<ul>
<li class='leading-3'>Perform tasks</li>
<li class='leading-3'>Make decisions</li>
<li class='leading-3'>Communicate with other agents</li>
<br/>
Think of an agent as a member of a team, with specific skills and a particular job to do. Agents can have different roles like 'Researcher', 'Writer', or 'Customer Support', each contributing to the overall goal of the crew.
## Agent Attributes
| Attribute | Description |
| :---------- | :----------------------------------- |
| **Role** | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
| **Goal** | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
| **Backstory** | Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
| **Tools** | Set of capabilities or functions that the agent can use to perform tasks. Tools can be shared or exclusive to specific agents. |
| **Max Iter** | The maximum number of iterations the agent can perform before forced to give its best answer |
| **Max RPM** | The maximum number of requests per minute the agent can perform to avoid rate limits |
| **Verbose** | This allow you to actually see what is going on during the Crew execution. |
| **Allow Delegation** | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. |
## Creating an Agent
!!! note "Agent Interaction"
Agents can interact with each other using the CrewAI's built-in delegation and communication mechanisms.<br/>This allows for dynamic task management and problem-solving within the crew.
To create an agent, you would typically initialize an instance of the `Agent` class with the desired properties. Here's a conceptual example:
```python
# Example: Creating an agent with all attributes
from crewai import Agent
agent = Agent(
role='Data Analyst',
goal='Extract actionable insights',
backstory="""You're a data analyst at a large company.
You're responsible for analyzing data and providing insights
to the business.
You're currently working on a project to analyze the
performance of our marketing campaigns.""",
tools=[my_tool1, my_tool2],
max_iter=10,
max_rpm=10,
verbose=True,
allow_delegation=True
)
```
## Conclusion
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.

View File

@@ -0,0 +1,24 @@
---
title: How Agents Collaborate in CrewAI
description: Exploring the dynamics of agent collaboration within the CrewAI framework.
---
## Collaboration Fundamentals
!!! note "Core of Agent Interaction"
Collaboration in CrewAI is fundamental, enabling agents to combine their skills, share information, and assist each other in task execution, embodying a truly cooperative ecosystem.
- **Information Sharing**: Ensures all agents are well-informed and can contribute effectively by sharing data and findings.
- **Task Assistance**: Allows agents to seek help from peers with the required expertise for specific tasks.
- **Resource Allocation**: Optimizes task execution through the efficient distribution and sharing of resources among agents.
## Delegation: Dividing to Conquer
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.
## Implementing Collaboration and Delegation
Setting up a crew involves defining the roles and capabilities of each agent. CrewAI seamlessly manages their interactions, ensuring efficient collaboration and delegation.
## Example Scenario
Imagine a crew with a researcher agent tasked with data gathering and a writer agent responsible for compiling reports. The writer can delegate research tasks or ask questions to the researcher, facilitating a seamless workflow.
## Conclusion
Collaboration and delegation are pivotal, transforming individual AI agents into a coherent, intelligent crew capable of tackling complex tasks. CrewAI's framework not only simplifies these interactions but enhances their effectiveness, paving the way for sophisticated AI-driven solutions.

View File

@@ -0,0 +1,75 @@
---
title: crewAI Crews
description: Understanding and utilizing crews in the crewAI framework.
---
## What is a Crew?
!!! note "Definition of a Crew"
A crew in crewAI represents a collaborative group of agents working together to achieve a set of tasks. Each crew defines the strategy for task execution, agent collaboration, and the overall workflow.
## Crew Attributes
| Attribute | Description |
| :------------------- | :----------------------------------------------------------- |
| **Tasks** | A list of tasks assigned to the crew. |
| **Agents** | A list of agents that are part of the crew. |
| **Process** | The process flow (e.g., sequential, hierarchical) the crew follows. |
| **Verbose** | The verbosity level for logging during execution. |
| **Manager LLM** | The language model used by the manager agent in a hierarchical process. |
| **Config** | Configuration settings for the crew. |
| **Max RPM** | Maximum requests per minute the crew adheres to during execution. |
| **Language** | Language setting for the crew's operation. |
!!! note "Crew Max RPM"
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents `max_rpm` settings if you set it.
## Creating a Crew
!!! note "Crew Composition"
When assembling a crew, you combine agents with complementary roles and tools, assign tasks, and select a process that dictates their execution order and interaction.
### Example: Assembling a Crew
```python
from crewai import Crew, Agent, Task, Process
from langchain_community.tools import DuckDuckGoSearchRun
# Define agents with specific roles and tools
researcher = Agent(
role='Senior Research Analyst',
goal='Discover innovative AI technologies',
tools=[DuckDuckGoSearchRun()]
)
writer = Agent(
role='Content Writer',
goal='Write engaging articles on AI discoveries'
)
# Create tasks for the agents
research_task = Task(description='Identify breakthrough AI technologies', agent=researcher)
write_article_task = Task(description='Draft an article on the latest AI technologies', agent=writer)
# Assemble the crew with a sequential process
my_crew = Crew(
agents=[researcher, writer],
tasks=[research_task, write_article_task],
process=Process.sequential,
verbose=True
)
```
## Crew Execution Process
- **Sequential Process**: Tasks are executed one after another, allowing for a linear flow of work.
- **Hierarchical Process**: A manager agent coordinates the crew, delegating tasks and validating outcomes before proceeding.
### Kicking Off a Crew
Once your crew is assembled, initiate the workflow with the `kickoff()` method. This starts the execution process according to the defined process flow.
```python
# Start the crew's task execution
result = my_crew.kickoff()
print(result)
```

View File

@@ -0,0 +1,48 @@
---
title: Managing Processes in CrewAI
description: An overview of workflow management through processes in CrewAI.
---
## Understanding Processes
!!! note "Core Concept"
Processes in CrewAI orchestrate how tasks are executed by agents, akin to project management in human teams. They ensure tasks are distributed and completed efficiently, according to a predefined game plan.
## Process Implementations
- **Sequential**: Executes tasks one after another, ensuring a linear and orderly progression.
- **Hierarchical**: Implements a chain of command, where tasks are delegated and executed based on a managerial structure.
- **Consensual (WIP)**: Future process type aiming for collaborative decision-making among agents on task execution.
## The Role of Processes in Teamwork
Processes transform individual agents into a unified team, coordinating their efforts to achieve common goals with efficiency and harmony.
## Assigning Processes to a Crew
Specify the process during crew creation to determine the execution strategy:
```python
from crewai import Crew
from crewai.process import Process
# Example: Creating a crew with a sequential process
crew = Crew(agents=my_agents, tasks=my_tasks, process=Process.sequential)
# Example: Creating a crew with a hierarchical process
crew = Crew(agents=my_agents, tasks=my_tasks, process=Process.hierarchical)
```
## Sequential Process
Ensures a natural flow of work, mirroring human team dynamics by progressing through tasks thoughtfully and systematically.
Tasks need to be pre-assigned to agents, and the order of execution is determined by the order of the tasks in the list.
Tasks are executed one after another, ensuring a linear and orderly progression and the output of one task is automatically used as context into the next task.
You can also define specific task's outputs that should be used as context for another task by using the `context` parameter in the `Task` class.
## Hierarchical Process
Mimics a corporate hierarchy, where a manager oversees task execution, planning, delegation, and validation, enhancing task coordination.
In this process tasks don't need to be pre-assigned to agents, the manager will decide which agent will perform each task, review the output and decide if the task is completed or not.
## Conclusion
Processes are vital for structured collaboration within CrewAI, enabling agents to work together systematically. Future updates will introduce new processes, further mimicking the adaptability and complexity of human teamwork.

212
docs/core-concepts/Tasks.md Normal file
View File

@@ -0,0 +1,212 @@
---
title: crewAI Tasks
description: Overview and management of tasks within the crewAI framework.
---
## Overview of a Task
!!! note "What is a Task?"
In the CrewAI framework, tasks are individual assignments that agents complete. They encapsulate necessary information for execution, including a description, assigned agent, and required tools, offering flexibility for various action complexities.
Tasks in CrewAI can be designed to require collaboration between agents. For example, one agent might gather data while another analyzes it. This collaborative approach can be defined within the task properties and managed by the Crew's process.
## Task Attributes
| Attribute | Description |
| :---------- | :----------------------------------- |
| **Description** | A clear, concise statement of what the task entails. |
| **Agent** | Optionally, you can specify which agent is responsible for the task. If not, the crew's process will determine who takes it on. |
| **Expected Output** *(optional)* | Clear and detailed definition of expected output for the task. |
| **Tools** *(optional)* | These are the functions or capabilities the agent can utilize to perform the task. They can be anything from simple actions like 'search' to more complex interactions with other agents or APIs. |
| **Async Execution** *(optional)* | If the task should be executed asynchronously. |
| **Context** *(optional)* | Other tasks that will have their output used as context for this task, if one is an asynchronous task it will wait for that to finish |
| **Callback** *(optional)* | A function to be executed after the task is completed. |
## Creating a Task
This is the simpliest example for creating a task, it involves defining its scope and agent, but there are optional attributes that can provide a lot of flexibility:
```python
from crewai import Task
task = Task(
description='Find and summarize the latest and most relevant news on AI',
agent=sales_agent
)
```
!!! note "Task Assignment"
Tasks can be assigned directly by specifying an `agent` to them, or they can be assigned in run time if you are using the `hierarchical` through CrewAI's process, considering roles, availability, or other criteria.
## Integrating Tools with Tasks
Tools from the [crewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools) enhance task performance, allowing agents to interact more effectively with their environment. Assigning specific tools to tasks can tailor agent capabilities to particular needs.
## Creating a Task with Tools
```python
import os
os.environ["OPENAI_API_KEY"] = "Your Key"
from crewai import Agent, Task, Crew
from langchain.agents import Tool
from langchain_community.tools import DuckDuckGoSearchRun
research_agent = Agent(
role='Researcher',
goal='Find and summarize the latest AI news',
backstory="""You're a researcher at a large company.
You're responsible for analyzing data and providing insights
to the business."""
verbose=True
)
# Install duckduckgo-search for this example:
# !pip install -U duckduckgo-search
search_tool = DuckDuckGoSearchRun()
task = Task(
description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news',
agent=research_agent,
tools=[search_tool]
)
crew = Crew(
agents=[research_agent],
tasks=[task],
verbose=2
)
result = crew.kickoff()
print(result)
```
This demonstrates how tasks with specific tools can override an agent's default set for tailored task execution.
## Refering other Tasks
In crewAI the output of one task is automatically relayed into the next one, but you can specifically define what tasks output should be used as context for another task.
This is useful when you have a task that depends on the output of another task that is not performed immediately after it. This is done through the `context` attribute of the task:
```python
# ...
research_task = Task(
description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news',
agent=research_agent,
tools=[search_tool]
)
write_blog_task = Task(
description="Write a full blog post about the importante of AI and it's latest news",
expected_output='Full blog post that is 4 paragraphs long',
agent=writer_agent,
context=[research_task]
)
#...
```
## Asynchronous Execution
You can define a task to be executed asynchronously, this means that the crew will not wait for it to be completed to continue with the next task. This is useful for tasks that take a long time to be completed, or that are not crucial for the next tasks to be performed.
You can then use the `context` attribute to define in a future task that it should wait for the output of the asynchronous task to be completed.
```python
#...
list_ideas = Task(
description="List of 5 interesting ideas to explore for na article about AI.",
expected_output="Bullet point list of 5 ideas for an article.",
agent=researcher,
async_execution=True # Will be executed asynchronously
)
list_important_history = Task(
description="Research the history of AI and give me the 5 most important events.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
async_execution=True # Will be executed asynchronously
)
write_article = Task(
description="Write an article about AI, it's history and interesting ideas.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
context=[list_ideas, list_important_history] # Will wait for the output of the two tasks to be completed
)
#...
```
## Callback Mechanism
You can define a callback function that will be executed after the task is completed. This is useful for tasks that need to trigger some side effect after they are completed, while the crew is still running.
```python
# ...
def callback_function(output: TaskOutput):
# Do something after the task is completed
# Example: Send an email to the manager
print(f"""
Task completed!
Task: {output.description}
Output: {output.result}
""")
research_task = Task(
description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news',
agent=research_agent,
tools=[search_tool],
callback=callback_function
)
#...
```
## Accessing a specific Task Output
Once a crew finishes running, you can access the output of a specific task by using the `output` attribute of the task object:
```python
# ...
task1 = Task(
description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news',
agent=research_agent,
tools=[search_tool]
)
#...
crew = Crew(
agents=[research_agent],
tasks=[task1, task2, task3],
verbose=2
)
result = crew.kickoff()
# Returns a TaskOutput object with the description and results of the task
print(f"""
Task completed!
Task: {task1.output.description}
Output: {task1.output.result}
""")
```
## Tool Override Mechanism
Specifying tools in a task allows for dynamic adaptation of agent capabilities, emphasizing CrewAI's flexibility.
## Conclusion
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
Equipping tasks with appropriate tools is crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments.

View File

@@ -0,0 +1,83 @@
---
title: crewAI Tools
description: Understanding and leveraging tools within the crewAI framework.
---
## What is a Tool?
!!! note "Definition"
A tool in CrewAI, is a skill, something Agents can use perform tasks, right now those can be tools from the [crewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools), those are basically functions that an agent can utilize for various actions, from simple searches to complex interactions with external systems.
## Key Characteristics of Tools
- **Utility**: Designed for specific tasks such as web searching, data analysis, or content generation.
- **Integration**: Enhance agent capabilities by integrating tools directly into their workflow.
- **Customizability**: Offers the flexibility to develop custom tools or use existing ones from LangChain's ecosystem.
## Creating your own Tools
!!! example "Custom Tool Creation"
Developers can craft custom tools tailored for their agents needs or utilize pre-built options. Heres how to create one:
```python
import json
import requests
from crewai import Agent
from langchain.tools import tool
from unstructured.partition.html import partition_html
class BrowserTools():
# Anotate the fuction with the tool decorator from LangChain
@tool("Scrape website content")
def scrape_website(website):
# Write logic for the tool.
# In this case a function to scrape website content
url = f"https://chrome.browserless.io/content?token={config('BROWSERLESS_API_KEY')}"
payload = json.dumps({"url": website})
headers = {'cache-control': 'no-cache', 'content-type': 'application/json'}
response = requests.request("POST", url, headers=headers, data=payload)
elements = partition_html(text=response.text)
content = "\n\n".join([str(el) for el in elements])
return content[:5000]
# Assign the scraping tool to an agent
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[BrowserTools().scrape_website]
)
```
## Using LangChain Tools
!!! info "LangChain Integration"
CrewAI seamlessly integrates with LangChains comprehensive toolkit. Assigning an existing tool to an agent is straightforward:
```python
from crewai import Agent
from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper
import os
# Setup API keys
os.environ["OPENAI_API_KEY"] = "Your Key"
os.environ["SERPER_API_KEY"] = "Your Key"
search = GoogleSerperAPIWrapper()
# Create and assign the search tool to an agent
serper_tool = Tool(
name="Intermediate Answer",
func=search.run,
description="Useful for search-based queries",
)
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[serper_tool]
)
```
## Conclusion
Tools are crucial for extending the capabilities of CrewAI agents, allowing them to undertake a diverse array of tasks and collaborate efficiently. When building your AI solutions with CrewAI, consider both custom and existing tools to empower your agents and foster a dynamic AI ecosystem.

View File

Before

Width:  |  Height:  |  Size: 427 KiB

After

Width:  |  Height:  |  Size: 427 KiB

BIN
docs/crew_only_logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

BIN
docs/crewai_logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -1,8 +0,0 @@
---
title: "GET /inputs"
description: "Get required inputs for your crew"
openapi: "/enterprise-api.en.yaml GET /inputs"
mode: "wide"
---

View File

@@ -1,120 +0,0 @@
---
title: "Introduction"
description: "Complete reference for the CrewAI AMP REST API"
icon: "code"
mode: "wide"
---
# CrewAI AMP API
Welcome to the CrewAI AMP API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
## Quick Start
<Steps>
<Step title="Get Your API Credentials">
Navigate to your crew's detail page in the CrewAI AMP dashboard and copy your Bearer Token from the Status tab.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
</Step>
<Step title="Monitor Progress">
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
</Step>
</Steps>
## Authentication
All API requests require authentication using a Bearer token. Include your token in the `Authorization` header:
```bash
curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
https://your-crew-url.crewai.com/inputs
```
### Token Types
| Token Type | Scope | Use Case |
|:-----------|:--------|:----------|
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
<Tip>
You can find both token types in the Status tab of your crew's detail page in the CrewAI AMP dashboard.
</Tip>
## Base URL
Each deployed crew has its own unique API endpoint:
```
https://your-crew-name.crewai.com
```
Replace `your-crew-name` with your actual crew's URL from the dashboard.
## Typical Workflow
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
4. **Results**: Extract the final output from the completed response
## Error Handling
The API uses standard HTTP status codes:
| Code | Meaning |
|------|:--------|
| `200` | Success |
| `400` | Bad Request - Invalid input format |
| `401` | Unauthorized - Invalid bearer token |
| `404` | Not Found - Resource doesn't exist |
| `422` | Validation Error - Missing required inputs |
| `500` | Server Error - Contact support |
## Interactive Testing
<Info>
**Why no "Send" button?** Since each CrewAI AMP user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
</Info>
Each endpoint page shows you:
- ✅ **Exact request format** with all parameters
- ✅ **Response examples** for success and error cases
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
- ✅ **Authentication examples** with proper Bearer token format
### **To Test Your Actual API:**
<CardGroup cols={2}>
<Card title="Copy cURL Examples" icon="terminal">
Copy the cURL examples and replace the URL + token with your real values
</Card>
<Card title="Use Postman/Insomnia" icon="play">
Import the examples into your preferred API testing tool
</Card>
</CardGroup>
**Example workflow:**
1. **Copy this cURL example** from any endpoint page
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
3. **Replace the Bearer token** with your real token from the dashboard
4. **Run the request** in your terminal or API client
## Need Help?
<CardGroup cols={2}>
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
Get help with API integration and troubleshooting
</Card>
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
Manage your crews and view execution logs
</Card>
</CardGroup>

View File

@@ -1,8 +0,0 @@
---
title: "POST /kickoff"
description: "Start a crew execution"
openapi: "/enterprise-api.en.yaml POST /kickoff"
mode: "wide"
---

View File

@@ -1,6 +0,0 @@
---
title: "POST /resume"
description: "Resume crew execution with human feedback"
openapi: "/enterprise-api.en.yaml POST /resume"
mode: "wide"
---

View File

@@ -1,8 +0,0 @@
---
title: "GET /status/{kickoff_id}"
description: "Get execution status"
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
mode: "wide"
---

Some files were not shown because too many files have changed in this diff Show More