Compare commits

...

23 Commits

Author SHA1 Message Date
Brandon Hancock
040e5a78d2 Add back in Gui's tool_usage fix 2024-07-15 09:21:21 -04:00
Gui Vieira
b93632a53a [DO NOT MERGE] Provide inputs on crew creation (#898)
* Provide inputs on crew creation

* Better naming

* Add crew id and task index to tasks

* Fix type again
2024-07-15 09:00:02 -03:00
Eduardo Chiarotti
09938641cd feat: add max retry limit to agent execution (#899)
* feat: add max retry limit to agent execution

* feat: add test to max retry limit feature

* feat: add code execution docstring

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-15 08:58:50 -03:00
Brandon Hancock (bhancock_ai)
7acf0b2107 Feature/use converter instead of manually trimming (#894)
* Exploring output being passed to tool selector to see if we can better format data

* WIP. Adding JSON repair functionality

* Almost done implementing JSON repair. Testing fixes vs current base case.

* More action cleanup with additional tests

* WIP. Trying to figure out what is going on with tool descriptions

* Update tool description generation

* WIP. Trying to find out what is causing the tools to duplicate

* Replacing tools properly instead of duplicating them accidentally

* Fixing issues for MR

* Update dependencies for JSON_REPAIR

* More cleaning up pull request

* preppering for call

* Fix type-checking issues

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-15 08:53:41 -03:00
OP (oppenheimer)
4eb4073661 Add Groq - OpenAI Compatible API - details (#934) 2024-07-14 16:11:54 -03:00
Brandon Hancock (bhancock_ai)
7b53457ef3 Feature/kickoff consistent output (#847)
* Cleaned up task execution to now have separate paths for async and sync execution. Updating all kickoff functions to return CrewOutput. WIP. Waiting for Joao feedback on async task execution with task_output

* Consistently storing async and sync output for context

* outline tests I need to create going forward

* Major rehaul of TaskOutput and CrewOutput. Updated all tests to work with new change. Need to add in a few final tricky async tests and add a few more to verify output types on TaskOutput and CrewOutput.

* Encountering issues with callback. Need to test on main. WIP

* working on tests. WIP

* WIP. Figuring out disconnect issue.

* Cleaned up logs now that I've isolated the issue to the LLM

* more wip.

* WIP. It looks like usage metrics has always been broken for async

* Update parent crew who is managing for_each loop

* Merge in main to bugfix/kickoff-for-each-usage-metrics

* Clean up code for review

* Add new tests

* Final cleanup. Ready for review.

* Moving copy functionality from Agent to BaseAgent

* Fix renaming issue

* Fix linting errors

* use BaseAgent instead of Agent where applicable

* Fixing missing function. Working on tests.

* WIP. Needing team to review change

* Fixing issues brought about by merge

* WIP

* Implement major fixes from yesterdays group conversation. Now working on tests.

* The majority of tasks are working now. Need to fix converter class

* Fix final failing test

* Fix linting and type-checker issues

* Add more tests to fully test CrewOutput and TaskOutput changes

* Add in validation for async cannot depend on other async tasks.

* Update validators and tests
2024-07-11 00:35:02 -03:00
João Moura
691b094a40 adding new docs 2024-07-08 03:15:14 -04:00
prime-computing-lab
68e9e54c88 Update MDXSearchTool.md (#745)
description fixed to markdown language instead of marketing search
2024-07-08 02:21:00 -03:00
João Moura
d0d99125c4 updating crewAI-tools verison 2024-07-08 01:17:22 -04:00
Taleb
129000d01f Performed spell check across most of code base (#882)
* Performed spell check across the entire documentation

Thank you once again!

* Performed spell check across the most of code base
Folders been checked:
- agents
- cli
- memory
- project
- tasks
- telemetry
- tools
- translations
2024-07-07 13:00:05 -03:00
WellyngtonF
47f9d026dd passing cloned agents when copying context (#885) 2024-07-07 12:58:38 -03:00
Gui Vieira
b75b0b5552 Emit task created (#875)
* Emit task created

* Limit data to shared crews
2024-07-07 12:58:24 -03:00
João Moura
3dd6249f1e TYPO 2024-07-06 20:03:54 -04:00
João Moura
8451113039 new docs 2024-07-06 16:32:00 -04:00
João Moura
a79b216875 preparing new version 2024-07-06 12:26:41 -04:00
João Moura
52217c2f63 updating dependencies and fixing tests (#878) 2024-07-06 02:14:52 -03:00
Eelke van den Bos
7edacf6e24 Add converter_cls option to Task (#800)
* Add converter_cls option to Task

Fixes #799

* Update task_test.py

* Update task.py

* Update task.py

* Update task_test.py

* Update task.py

* Update task.py

* Update task.py

* Update task.py

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-06 02:01:39 -03:00
João Moura
58558a1950 TYPO 2024-07-06 00:34:50 -04:00
Ikko Eltociear Ashimine
1607c85ae5 chore: fix typo (#810)
* chore: update converter.py

attemps -> attempts

* chore: update tool_usage.py

attemps -> attempts
2024-07-06 01:33:48 -03:00
Alex Brinsmead
a6ff342948 Fix incorrect definition of RAG in GithubTool docs (#864) 2024-07-06 01:31:51 -03:00
Taleb
d2eb54ebf8 Performed spell check across the entire documentation (#872)
Thank you once again!
2024-07-06 01:30:40 -03:00
Eduardo Chiarotti
a41bd18599 Fix/async tasks (#877)
* fix: async tasks calls

* fix: some issue along with some type check errors

* fix: some issue along with some type check errors

* fix: async test
2024-07-06 01:30:07 -03:00
Eduardo Chiarotti
bb64c80964 fix: Fix tests (#873)
* fix: call asserts

* fix: test_increment_tool_errors

* fix: test_increment_delegations_for_sequential_process

* fix: test_increment_delegations_for_hierarchical_process

* fix: test_code_execution_flag_adds_code_tool_upon_kickoff

* fix: test_tool_usage_information_is_appended_to_agent

* fix: try to fix test_crew_full_output

* fix: try to fix test_crew_full_output

* fix: test remove vcr to test crew_test test

* fix: comment test to see if ci passes

* fix: comment test to see if ci passes

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test new approach

* fix: comment funciont not working in CI

* fix: github python version

* fix: remove need of vcr

* fix: fix and add comments for all type checking errors
2024-07-05 09:06:56 -03:00
64 changed files with 266033 additions and 9643 deletions

View File

@@ -19,7 +19,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
python-version: "3.11.9"
- name: Install Requirements
run: |
@@ -28,4 +28,4 @@ jobs:
poetry install
- name: Run tests
run: poetry run pytest tests
run: poetry run pytest

View File

@@ -12,7 +12,7 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
| Component | Description |
| :------------------- | :----------------------------------------------------------- |
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes, enabling agents to recall and utilize information relevant to their current context during the current executions. |
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. So Agents can remeber what they did right and wrong across multiple executions |
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. So Agents can remember what they did right and wrong across multiple executions |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |

View File

@@ -51,7 +51,7 @@ To optimize tool performance with caching, define custom caching strategies usin
@tool("Tool with Caching")
def cached_tool(argument: str) -> str:
"""Tool functionality description."""
return "Cachable result"
return "Cacheable result"
def my_cache_strategy(arguments: dict, result: str) -> bool:
# Define custom caching logic

View File

@@ -79,5 +79,4 @@ manager = Agent(
1. `allow_code_execution`: Enable or disable code execution capabilities for the agent (default is False).
2. `max_execution_time`: Set a maximum execution time (in seconds) for the agent to complete a task.
3. `function_calling_llm`: Specify a separate language model for function calling.
4
3. `function_calling_llm`: Specify a separate language model for function calling.

View File

@@ -0,0 +1,31 @@
---
title: Forcing Tool Output as Result
description: Learn how to force tool output as the result in of an Agent's task in crewAI.
---
## Introduction
In CrewAI, you can force the output of a tool as the result of an agent's task. This feature is useful when you want to ensure that the tool output is captured and returned as the task result, and avoid the agent modifying the output during the task execution.
## Forcing Tool Output as Result
To force the tool output as the result of an agent's task, you can set the `force_tool_output` parameter to `True` when creating the task. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent.
Here's an example of how to force the tool output as the result of an agent's task:
```python
# ...
# Define a custom tool that returns the result as the answer
coding_agent =Agent(
role="Data Scientist",
goal="Product amazing resports on AI",
backstory="You work with data and AI",
tools=[MyCustomTool(result_as_answer=True)],
)
# ...
```
### Workflow in Action
1. **Task Execution**: The agent executes the task using the tool provided.
2. **Tool Output**: The tool generates the output, which is captured as the task result.
3. **Agent Interaction**: The agent my reflect and take learnings from the tool but the output is not modified.
4. **Result Return**: The tool output is returned as the task result without any modifications.

View File

@@ -127,7 +127,7 @@ llm = HuggingFaceHub(
```
## OpenAI Compatible API Endpoints
Switch between APIs and models seamlessly using environment variables, supporting platforms like FastChat, LM Studio, and Mistral AI.
Switch between APIs and models seamlessly using environment variables, supporting platforms like FastChat, LM Studio, Groq, and Mistral AI.
### Configuration Examples
#### FastChat
@@ -144,6 +144,13 @@ OPENAI_API_BASE="http://localhost:1234/v1"
OPENAI_API_KEY="lm-studio"
```
#### Groq API
```sh
OPENAI_API_KEY=your-groq-api-key
OPENAI_MODEL_NAME='llama3-8b-8192'
OPENAI_API_BASE=https://api.groq.com/openai/v1
```
#### Mistral API
```sh
OPENAI_API_KEY=your-mistral-api-key
@@ -211,4 +218,4 @@ azure_agent = Agent(
```
## Conclusion
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.

View File

@@ -0,0 +1,137 @@
---
title: Starting a New CrewAI Project
description: A comprehensive guide to starting a new CrewAI project, including the latest updates and project setup methods.
---
# Starting Your CrewAI Project
Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started.
## Prerequisites
We assume you have already installed CrewAI. If not, please refer to the [installation guide](how-to/Installing-CrewAI.md) to install CrewAI and its dependencies.
## Creating a New Project
To create a new project, run the following CLI command:
```shell
$ crewai create my_project
```
This command will create a new project folder with the following structure:
```shell
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
You can now start developing your project by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of your project, and the `crew.py` file is where you define your agents and tasks.
## Customizing Your Project
To customize your project, you can:
- Modify `src/my_project/config/agents.yaml` to define your agents.
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
- Add your environment variables into the `.env` file.
### Example: Defining Agents and Tasks
#### agents.yaml
```yaml
researcher:
role: >
Job Candidate Researcher
goal: >
Find potential candidates for the job
backstory: >
You are adept at finding the right candidates by exploring various online
resources. Your skill in identifying suitable candidates ensures the best
match for job positions.
```
#### tasks.yaml
```yaml
research_candidates_task:
description: >
Conduct thorough research to find potential candidates for the specified job.
Utilize various online resources and databases to gather a comprehensive list of potential candidates.
Ensure that the candidates meet the job requirements provided.
Job Requirements:
{job_requirements}
expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
```
## Installing Dependencies
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:
```shell
$ cd my_project
$ poetry lock
$ poetry install
```
This will install the dependencies specified in the `pyproject.toml` file.
## Interpolating Variables
Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{variable}` will be replaced by the value of the variable in the `main.py` file.
#### agents.yaml
```yaml
research_task:
description: >
Conduct a thorough research about the customer and competitors in the context
of {customer_domain}.
Make sure you find any interesting and relevant information given the
current year is 2024.
expected_output: >
A complete report on the customer and their customers and competitors,
including their demographics, preferences, market positioning and audience engagement.
```
#### main.py
```python
# main.py
def run():
inputs = {
"customer_domain": "crewai.com"
}
MyProjectCrew(inputs).crew().kickoff(inputs=inputs)
```
## Running Your Project
To run your project, use the following command:
```shell
$ poetry run my_project
```
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.

View File

@@ -48,6 +48,11 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
<div style="width:30%">
<h2>How-To Guides</h2>
<ul>
<li>
<a href="./how-to/Start-a-New-CrewAI-Project">
Starting Your crewAI Project
</a>
</li>
<li>
<a href="./how-to/Installing-CrewAI">
Installing crewAI
@@ -88,6 +93,11 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Coding Agents
</a>
</li>
<li>
<a href="./how-to/Force-Tool-Ouput-as-Result">
Forcing Tool Output as Result
</a>
</li>
<li>
<a href="./how-to/Human-Input-on-Execution">
Human Input on Execution

View File

@@ -4,7 +4,7 @@
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
## Description
The GithubSearchTool is a Read, Append, and Generate (RAG) tool specifically designed for conducting semantic searches within GitHub repositories. Utilizing advanced semantic search capabilities, it sifts through code, pull requests, issues, and repositories, making it an essential tool for developers, researchers, or anyone in need of precise information from GitHub.
The GithubSearchTool is a Retrieval-Augmented Generation (RAG) tool specifically designed for conducting semantic searches within GitHub repositories. Utilizing advanced semantic search capabilities, it sifts through code, pull requests, issues, and repositories, making it an essential tool for developers, researchers, or anyone in need of precise information from GitHub.
## Installation
To use the GithubSearchTool, first ensure the crewai_tools package is installed in your Python environment:

View File

@@ -4,7 +4,7 @@
The MDXSearchTool is in continuous development. Features may be added or removed, and functionality could change unpredictably as we refine the tool.
## Description
The MDX Search Tool is a component of the `crewai_tools` package aimed at facilitating advanced market data extraction. This tool is invaluable for researchers and analysts seeking quick access to market insights, especially within the AI sector. It simplifies the task of acquiring, interpreting, and organizing market data by interfacing with various data sources.
The MDX Search Tool is a component of the `crewai_tools` package aimed at facilitating advanced markdown language extraction. It enables users to effectively search and extract relevant information from MD files using query-based searches. This tool is invaluable for data analysis, information management, and research tasks, streamlining the process of finding specific information within large document collections.
## Installation
Before using the MDX Search Tool, ensure the `crewai_tools` package is installed. If it is not, you can install it with the following command:
@@ -59,4 +59,4 @@ tool = MDXSearchTool(
),
)
)
```
```

View File

@@ -31,7 +31,7 @@ tool = TXTSearchTool(txt='path/to/text/file.txt')
```
## Arguments
- `txt` (str): **Optinal**. The path to the text file you want to search. This argument is only required if the tool was not initialized with a specific text file; otherwise, the search will be conducted within the initially provided text file.
- `txt` (str): **Optional**. The path to the text file you want to search. This argument is only required if the tool was not initialized with a specific text file; otherwise, the search will be conducted within the initially provided text file.
## Custom model and embeddings

View File

@@ -131,6 +131,7 @@ nav:
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
- How to Guides:
- Starting Your crewAI Project: 'how-to/Start-a-New-CrewAI-Project.md'
- Installing CrewAI: 'how-to/Installing-CrewAI.md'
- Getting Started: 'how-to/Creating-a-Crew-and-kick-it-off.md'
- Create Custom Tools: 'how-to/Create-Custom-Tools.md'
@@ -140,6 +141,7 @@ nav:
- Connecting to any LLM: 'how-to/LLM-Connections.md'
- Customizing Agents: 'how-to/Customizing-Agents.md'
- Coding Agents: 'how-to/Coding-Agents.md'
- Forcing Tool Output as Result: 'how-to/Force-Tool-Ouput-as-Result.md'
- Human Input on Execution: 'how-to/Human-Input-on-Execution.md'
- Kickoff a Crew Asynchronously: 'how-to/Kickoff-async.md'
- Kickoff a Crew for a List: 'how-to/Kickoff-for-each.md'

172
poetry.lock generated
View File

@@ -343,17 +343,17 @@ lxml = ["lxml"]
[[package]]
name = "boto3"
version = "1.34.139"
version = "1.34.140"
description = "The AWS SDK for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "boto3-1.34.139-py3-none-any.whl", hash = "sha256:98b2a12bcb30e679fa9f60fc74145a39db5ec2ca7b7c763f42896e3bd9b3a38d"},
{file = "boto3-1.34.139.tar.gz", hash = "sha256:32b99f0d76ec81fdca287ace2c9744a2eb8b92cb62bf4d26d52a4f516b63a6bf"},
{file = "boto3-1.34.140-py3-none-any.whl", hash = "sha256:23ca8d8f7a30c3bbd989808056b5fc5d68ff5121c02c722c6167b6b1bb7f8726"},
{file = "boto3-1.34.140.tar.gz", hash = "sha256:578bbd5e356005719b6b610d03edff7ea1b0824d078afe62d3fb8bea72f83a87"},
]
[package.dependencies]
botocore = ">=1.34.139,<1.35.0"
botocore = ">=1.34.140,<1.35.0"
jmespath = ">=0.7.1,<2.0.0"
s3transfer = ">=0.10.0,<0.11.0"
@@ -362,13 +362,13 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
[[package]]
name = "botocore"
version = "1.34.139"
version = "1.34.140"
description = "Low-level, data-driven core of boto 3."
optional = false
python-versions = ">=3.8"
files = [
{file = "botocore-1.34.139-py3-none-any.whl", hash = "sha256:dd1e085d4caa2a4c1b7d83e3bc51416111c8238a35d498e9d3b04f3b63b086ba"},
{file = "botocore-1.34.139.tar.gz", hash = "sha256:df023d8cf8999d574214dad4645cb90f9d2ccd1494f6ee2b57b1ab7522f6be77"},
{file = "botocore-1.34.140-py3-none-any.whl", hash = "sha256:43940d3a67d946ba3301631ba4078476a75f1015d4fb0fb0272d0b754b2cf9de"},
{file = "botocore-1.34.140.tar.gz", hash = "sha256:86302b2226c743b9eec7915a4c6cfaffd338ae03989cd9ee181078ef39d1ab39"},
]
[package.dependencies]
@@ -747,13 +747,13 @@ all = ["pycocotools (==2.0.6)"]
[[package]]
name = "clarifai-grpc"
version = "10.5.4"
version = "10.6.1"
description = "Clarifai gRPC API Client"
optional = false
python-versions = ">=3.8"
files = [
{file = "clarifai_grpc-10.5.4-py3-none-any.whl", hash = "sha256:ae4c4d8985fdd2bf326cec27ee834571e44d0e989fb12686dd681f9b553ae218"},
{file = "clarifai_grpc-10.5.4.tar.gz", hash = "sha256:c67ce0dde186e8bab0d42a9923d28ddb4a05017b826c8e52ac7a86ec6df5f12a"},
{file = "clarifai_grpc-10.6.1-py3-none-any.whl", hash = "sha256:7f07c262f46042995b11af10cdd552718c4487e955db1b3f1253fcb0c2ab1ce1"},
{file = "clarifai_grpc-10.6.1.tar.gz", hash = "sha256:f692e3d6a051a1228ca371c3a9dc705cc9a61334eecc454d056f7af0b6f4dbad"},
]
[package.dependencies]
@@ -840,13 +840,13 @@ files = [
[[package]]
name = "crewai-tools"
version = "0.4.7"
version = "0.4.8"
description = "Set of tools for the crewAI framework"
optional = false
python-versions = "<=3.13,>=3.10"
files = [
{file = "crewai_tools-0.4.7-py3-none-any.whl", hash = "sha256:3ff04b2da07d2c48e72f898511295b4a10038dd3e4fe859baa93fec1fb8baf8e"},
{file = "crewai_tools-0.4.7.tar.gz", hash = "sha256:4502a5e0ab94a7dae6638d000768f80049918909ca5338cdebc280351b3ce003"},
{file = "crewai_tools-0.4.8-py3-none-any.whl", hash = "sha256:628b08515ee0e06c751da1dd66b0cff70c9b2644775891c8f59883cb5debfef4"},
{file = "crewai_tools-0.4.8.tar.gz", hash = "sha256:ae190bd187f980163523c86ee7e1eb2ed78896f935d6caff98908dd7ab6c982b"},
]
[package.dependencies]
@@ -884,6 +884,21 @@ webencodings = "*"
doc = ["sphinx", "sphinx_rtd_theme"]
test = ["flake8", "isort", "pytest"]
[[package]]
name = "dataclasses-json"
version = "0.6.7"
description = "Easily serialize dataclasses to and from JSON."
optional = false
python-versions = "<4.0,>=3.7"
files = [
{file = "dataclasses_json-0.6.7-py3-none-any.whl", hash = "sha256:0dbf33f26c8d5305befd61b39d2b3414e8a407bedc2834dea9b8d642666fb40a"},
{file = "dataclasses_json-0.6.7.tar.gz", hash = "sha256:b6b3e528266ea45b9535223bc53ca645f5208833c29229e847b3f26a1cc55fc0"},
]
[package.dependencies]
marshmallow = ">=3.18.0,<4.0.0"
typing-inspect = ">=0.4.0,<1"
[[package]]
name = "decorator"
version = "5.1.1"
@@ -1039,13 +1054,13 @@ idna = ">=2.0.0"
[[package]]
name = "embedchain"
version = "0.1.114"
version = "0.1.116"
description = "Simplest open source retrieval (RAG) framework"
optional = false
python-versions = "<=3.13,>=3.9"
files = [
{file = "embedchain-0.1.114-py3-none-any.whl", hash = "sha256:ce1b16196bcf53c679cacead0551a5466c33a9080a82be63f973e4437b0823ca"},
{file = "embedchain-0.1.114.tar.gz", hash = "sha256:fa5c4a29dd3c6b1137c772e1bc3e2d7ca489c58f46f4c7f7de133b3b9fc56e72"},
{file = "embedchain-0.1.116-py3-none-any.whl", hash = "sha256:388835d047f9ff4542ebf50e3fa633ef596db262cbe506195ee4976b91a49172"},
{file = "embedchain-0.1.116.tar.gz", hash = "sha256:3e4d6418df2e749c2bd3cd3153c3857cbecd7227afe40b87d5ac3df629c394b2"},
]
[package.dependencies]
@@ -1053,11 +1068,14 @@ alembic = ">=1.13.1,<2.0.0"
beautifulsoup4 = ">=4.12.2,<5.0.0"
chromadb = ">=0.4.24,<0.5.0"
clarifai = ">=10.0.1,<11.0.0"
cohere = ">=5.3,<6.0"
google-cloud-aiplatform = ">=1.26.1,<2.0.0"
gptcache = ">=0.1.43,<0.2.0"
langchain = ">0.2,<=0.3"
langchain-cohere = ">=0.1.4,<0.2.0"
langchain-community = ">=0.2.6,<0.3.0"
langchain-openai = ">=0.1.7,<0.2.0"
memzero = ">=0.0.7,<0.0.8"
openai = ">=1.1.1"
posthog = ">=3.0.2,<4.0.0"
pypdf = ">=4.0.1,<5.0.0"
@@ -1070,7 +1088,6 @@ tiktoken = ">=0.7.0,<0.8.0"
[package.extras]
aws-bedrock = ["boto3 (>=1.34.20,<2.0.0)"]
cohere = ["cohere (>=5.3,<6.0)"]
dataloaders = ["docx2txt (>=0.8,<0.9)", "duckduckgo-search (>=6.1.5,<7.0.0)", "pytube (>=15.0.0,<16.0.0)", "sentence-transformers (>=2.2.2,<3.0.0)", "youtube-transcript-api (>=0.6.1,<0.7.0)"]
discord = ["discord (>=2.3.2,<3.0.0)"]
dropbox = ["dropbox (>=11.36.2,<12.0.0)"]
@@ -2035,13 +2052,13 @@ pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_ve
[[package]]
name = "identify"
version = "2.5.36"
version = "2.6.0"
description = "File identification library for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "identify-2.5.36-py2.py3-none-any.whl", hash = "sha256:37d93f380f4de590500d9dba7db359d0d3da95ffe7f9de1753faa159e71e7dfa"},
{file = "identify-2.5.36.tar.gz", hash = "sha256:e5e00f54165f9047fbebeb4a560f9acfb8af4c88232be60a488e9b68d122745d"},
{file = "identify-2.6.0-py2.py3-none-any.whl", hash = "sha256:e79ae4406387a9d300332b5fd366d8994f1525e8414984e1a59e058b2eda2dd0"},
{file = "identify-2.6.0.tar.gz", hash = "sha256:cb171c685bdc31bcc4c1734698736a7d5b6c8bf2e0c15117f4d469c8640ae5cf"},
]
[package.extras]
@@ -2265,6 +2282,17 @@ files = [
{file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"},
]
[[package]]
name = "json-repair"
version = "0.25.2"
description = "A package to repair broken json strings"
optional = false
python-versions = ">=3.7"
files = [
{file = "json_repair-0.25.2-py3-none-any.whl", hash = "sha256:51d67295c3184b6c41a3572689661c6128cef6cfc9fb04db63130709adfc5bf0"},
{file = "json_repair-0.25.2.tar.gz", hash = "sha256:161a56d7e6bbfd4cad3a614087e3e0dbd0e10d402dd20dc7db418432428cb32b"},
]
[[package]]
name = "jsonpatch"
version = "1.33"
@@ -2378,8 +2406,8 @@ langchain-core = ">=0.2.10,<0.3.0"
langchain-text-splitters = ">=0.2.0,<0.3.0"
langsmith = ">=0.1.17,<0.2.0"
numpy = [
{version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""},
{version = ">=1,<2", markers = "python_version < \"3.12\""},
{version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""},
]
pydantic = ">=1,<3"
PyYAML = ">=5.3"
@@ -2402,6 +2430,32 @@ files = [
cohere = ">=5.5.6,<6.0"
langchain-core = ">=0.2.0,<0.3"
[[package]]
name = "langchain-community"
version = "0.2.6"
description = "Community contributed LangChain integrations."
optional = false
python-versions = "<4.0,>=3.8.1"
files = [
{file = "langchain_community-0.2.6-py3-none-any.whl", hash = "sha256:758cc800acfe5dd396bf8ba1b57c4792639ead0eab48ed0367f0732ec6ee1f68"},
{file = "langchain_community-0.2.6.tar.gz", hash = "sha256:40ce09a50ed798aa651ddb34c8978200fa8589b9813c7a28ce8af027bbf249f0"},
]
[package.dependencies]
aiohttp = ">=3.8.3,<4.0.0"
dataclasses-json = ">=0.5.7,<0.7"
langchain = ">=0.2.6,<0.3.0"
langchain-core = ">=0.2.10,<0.3.0"
langsmith = ">=0.1.0,<0.2.0"
numpy = [
{version = ">=1,<2", markers = "python_version < \"3.12\""},
{version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""},
]
PyYAML = ">=5.3"
requests = ">=2,<3"
SQLAlchemy = ">=1.4,<3"
tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0"
[[package]]
name = "langchain-core"
version = "0.2.11"
@@ -2418,8 +2472,8 @@ jsonpatch = ">=1.33,<2.0"
langsmith = ">=0.1.75,<0.2.0"
packaging = ">=23.2,<25"
pydantic = [
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
{version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
]
PyYAML = ">=5.3"
tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0"
@@ -2456,20 +2510,20 @@ langchain-core = ">=0.2.10,<0.3.0"
[[package]]
name = "langsmith"
version = "0.1.83"
version = "0.1.84"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = "<4.0,>=3.8.1"
files = [
{file = "langsmith-0.1.83-py3-none-any.whl", hash = "sha256:f54d8cd8479b648b6339f3f735d19292c3516d080f680933ecdca3eab4b67ed3"},
{file = "langsmith-0.1.83.tar.gz", hash = "sha256:5cdd947212c8ad19adb992c06471c860185a777daa6859bb47150f90daf64bf3"},
{file = "langsmith-0.1.84-py3-none-any.whl", hash = "sha256:01f3c6390dba26c583bac8dd0e551ce3d0509c7f55cad714db0b5c8d36e4c7ff"},
{file = "langsmith-0.1.84.tar.gz", hash = "sha256:5220c0439838b9a5bd320fd3686be505c5083dcee22d2452006c23891153bea1"},
]
[package.dependencies]
orjson = ">=3.9.14,<4.0.0"
pydantic = [
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
{version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
]
requests = ">=2,<3"
@@ -2600,6 +2654,25 @@ files = [
{file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
]
[[package]]
name = "marshmallow"
version = "3.21.3"
description = "A lightweight library for converting complex datatypes to and from native Python datatypes."
optional = false
python-versions = ">=3.8"
files = [
{file = "marshmallow-3.21.3-py3-none-any.whl", hash = "sha256:86ce7fb914aa865001a4b2092c4c2872d13bc347f3d42673272cabfdbad386f1"},
{file = "marshmallow-3.21.3.tar.gz", hash = "sha256:4f57c5e050a54d66361e826f94fba213eb10b67b2fdb02c3e0343ce207ba1662"},
]
[package.dependencies]
packaging = ">=17.0"
[package.extras]
dev = ["marshmallow[tests]", "pre-commit (>=3.5,<4.0)", "tox"]
docs = ["alabaster (==0.7.16)", "autodocsumm (==0.2.12)", "sphinx (==7.3.7)", "sphinx-issues (==4.1.0)", "sphinx-version-warning (==1.1.2)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "mdurl"
version = "0.1.2"
@@ -2611,6 +2684,22 @@ files = [
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "memzero"
version = "0.0.7"
description = "Long-term memory for AI Agents"
optional = false
python-versions = "<4.0,>=3.9"
files = [
{file = "memzero-0.0.7-py3-none-any.whl", hash = "sha256:65f6da88d46263dbc05621fcd01bd09616d0e7f082d55ed9899dc2152491ffd2"},
{file = "memzero-0.0.7.tar.gz", hash = "sha256:0c1f413d8ee0ade955fe9f8b8f5aff2cf58bc94869537aca62139db3d9f50725"},
]
[package.dependencies]
httpx = ">=0.27.0,<0.28.0"
posthog = ">=3.5.0,<4.0.0"
pydantic = ">=2.7.3,<3.0.0"
[[package]]
name = "mergedeep"
version = "1.3.4"
@@ -3911,8 +4000,8 @@ files = [
annotated-types = ">=0.4.0"
pydantic-core = "2.20.1"
typing-extensions = [
{version = ">=4.12.2", markers = "python_version >= \"3.13\""},
{version = ">=4.6.1", markers = "python_version < \"3.13\""},
{version = ">=4.12.2", markers = "python_version >= \"3.13\""},
]
[package.extras]
@@ -4972,13 +5061,13 @@ widechars = ["wcwidth"]
[[package]]
name = "tenacity"
version = "8.4.2"
version = "8.5.0"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.8"
files = [
{file = "tenacity-8.4.2-py3-none-any.whl", hash = "sha256:9e6f7cf7da729125c7437222f8a522279751cdfbe6b67bfe64f75d3a348661b2"},
{file = "tenacity-8.4.2.tar.gz", hash = "sha256:cd80a53a79336edba8489e767f729e4f391c896956b57140b5d7511a64bbd3ef"},
{file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"},
{file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"},
]
[package.extras]
@@ -5205,13 +5294,13 @@ telegram = ["requests"]
[[package]]
name = "trio"
version = "0.25.1"
version = "0.26.0"
description = "A friendly Python library for async concurrency and I/O"
optional = false
python-versions = ">=3.8"
files = [
{file = "trio-0.25.1-py3-none-any.whl", hash = "sha256:e42617ba091e7b2e50c899052e83a3c403101841de925187f61e7b7eaebdf3fb"},
{file = "trio-0.25.1.tar.gz", hash = "sha256:9f5314f014ea3af489e77b001861c535005c3858d38ec46b6b071ebfa339d7fb"},
{file = "trio-0.26.0-py3-none-any.whl", hash = "sha256:bb9c1b259591af941fccfbabbdc65bc7ed764bd2db76428454c894cd5e3d2032"},
{file = "trio-0.26.0.tar.gz", hash = "sha256:67c5ec3265dd4abc7b1d1ab9ca4fe4c25b896f9c93dac73713778adab487f9c4"},
]
[package.dependencies]
@@ -5314,6 +5403,21 @@ files = [
{file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
]
[[package]]
name = "typing-inspect"
version = "0.9.0"
description = "Runtime inspection utilities for typing module."
optional = false
python-versions = "*"
files = [
{file = "typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f"},
{file = "typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78"},
]
[package.dependencies]
mypy-extensions = ">=0.3.0"
typing-extensions = ">=3.7.4"
[[package]]
name = "ujson"
version = "5.10.0"
@@ -5997,4 +6101,4 @@ tools = ["crewai-tools"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<=3.13"
content-hash = "4f3e5fddb5f0fc8fd143a8abe947ecac443213d595bd0eeed745ccb82dac2312"
content-hash = "2cf5a3904e7cbcfebb85e198b6035252d47213a9b0dd3dd51837516e03b38d3e"

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "crewai"
version = "0.35.8"
version = "0.36.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
authors = ["Joao Moura <joao@crewai.com>"]
readme = "README.md"
@@ -21,13 +21,14 @@ opentelemetry-sdk = "^1.22.0"
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
instructor = "1.3.3"
regex = "^2023.12.25"
crewai-tools = { version = "^0.4.7", optional = true }
crewai-tools = { version = "^0.4.8", optional = true }
click = "^8.1.7"
python-dotenv = "^1.0.0"
appdirs = "^1.4.4"
jsonref = "^1.1.0"
agentops = { version = "^0.1.9", optional = true }
embedchain = "^0.1.114"
json-repair = "^0.25.2"
[tool.poetry.extras]
tools = ["crewai-tools"]
@@ -45,7 +46,7 @@ mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
mkdocs-material-extensions = "^1.3.1"
pillow = "^10.2.0"
cairosvg = "^2.7.1"
crewai-tools = "^0.4.7"
crewai-tools = "^0.4.8"
[tool.poetry.group.test.dependencies]
pytest = "^8.0.0"

View File

@@ -1,13 +1,14 @@
import os
from inspect import signature
from typing import Any, List, Optional, Tuple
from langchain.agents.agent import RunnableAgent
from langchain.agents.tools import BaseTool
from langchain.agents.tools import tool as LangChainTool
from langchain.tools.render import render_text_description
from langchain_core.agents import AgentAction
from langchain_core.callbacks import BaseCallbackHandler
from langchain_openai import ChatOpenAI
from pydantic import Field, InstanceOf, model_validator
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -20,7 +21,7 @@ from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
try:
import agentops
import agentops # type: ignore # Name "agentops" already defined on line 21
from agentops import track_agent
except ImportError:
@@ -54,14 +55,17 @@ class Agent(BaseAgent):
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
allow_code_execution: Enable code execution for the agent.
max_retry_limit: Maximum number of retries for an agent to execute a task when an error occurs.
"""
_times_executed: int = PrivateAttr(default=0)
max_execution_time: Optional[int] = Field(
default=None,
description="Maximum execution time for an agent to execute a task",
)
agent_ops_agent_name: str = None
agent_ops_agent_id: str = None
agent_ops_agent_name: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
agent_ops_agent_id: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
cache_handler: InstanceOf[CacheHandler] = Field(
default=None, description="An instance of the CacheHandler class."
)
@@ -96,6 +100,10 @@ class Agent(BaseAgent):
allow_code_execution: Optional[bool] = Field(
default=False, description="Enable code execution for the agent."
)
max_retry_limit: int = Field(
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
@@ -148,8 +156,7 @@ class Agent(BaseAgent):
Output of the agent
"""
if self.tools_handler:
# type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
self.tools_handler.last_used_tool = {}
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
task_prompt = task.prompt()
@@ -168,14 +175,15 @@ class Agent(BaseAgent):
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
tools = tools or self.tools
# type: ignore # Argument 1 to "_parse_tools" of "Agent" has incompatible type "list[Any] | None"; expected "list[Any]"
parsed_tools = self._parse_tools(tools or [])
tools = tools or self.tools or []
parsed_tools = self._parse_tools(tools)
self.create_agent_executor(tools=tools)
self.agent_executor.tools = parsed_tools
self.agent_executor.task = task
self.agent_executor.tools_description = render_text_description(parsed_tools)
self.agent_executor.tools_description = self._render_text_description_and_args(
parsed_tools
)
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
if self.crew and self.crew._train:
@@ -183,20 +191,27 @@ class Agent(BaseAgent):
else:
task_prompt = self._use_trained_data(task_prompt=task_prompt)
result = self.agent_executor.invoke(
{
"input": task_prompt,
"tool_names": self.agent_executor.tools_names,
"tools": self.agent_executor.tools_description,
}
)["output"]
try:
result = self.agent_executor.invoke(
{
"input": task_prompt,
"tool_names": self.agent_executor.tools_names,
"tools": self.agent_executor.tools_description,
}
)["output"]
except Exception as e:
self._times_executed += 1
if self._times_executed > self.max_retry_limit:
raise e
self.execute_task(task, context, tools)
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
# If there was any tool in self.tools_results that had result_as_answer
# set to True, return the results of the last tool that had
# result_as_answer set to True
for tool_result in self.tools_results:
for tool_result in self.tools_results: # type: ignore # Item "None" of "list[Any] | None" has no attribute "__iter__" (not iterable)
if tool_result.get("result_as_answer", False):
result = tool_result["result"]
@@ -221,7 +236,7 @@ class Agent(BaseAgent):
Returns:
An instance of the CrewAgentExecutor class.
"""
tools = tools or self.tools
tools = tools or self.tools or []
agent_args = {
"input": lambda x: x["input"],
@@ -300,7 +315,7 @@ class Agent(BaseAgent):
def get_output_converter(self, llm, text, model, instructions):
return Converter(llm=llm, text=text, model=model, instructions=instructions)
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]: # type: ignore # Function "langchain_core.tools.tool" is not valid as a type
"""Parse tools to be used for the task."""
tools_list = []
try:
@@ -316,6 +331,7 @@ class Agent(BaseAgent):
tools_list = []
for tool in tools:
tools_list.append(tool)
return tools_list
def _training_handler(self, task_prompt: str) -> str:
@@ -342,6 +358,52 @@ class Agent(BaseAgent):
)
return task_prompt
def _render_text_description(self, tools: List[BaseTool]) -> str:
"""Render the tool name and description in plain text.
Output will be in the format of:
.. code-block:: markdown
search: This tool is used for search
calculator: This tool is used for math
"""
description = "\n".join(
[
f"Tool name: {tool.name}\nTool description:\n{tool.description}"
for tool in tools
]
)
return description
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
"""Render the tool name, description, and args in plain text.
Output will be in the format of:
.. code-block:: markdown
search: This tool is used for search, args: {"query": {"type": "string"}}
calculator: This tool is used for math, \
args: {"expression": {"type": "string"}}
"""
tool_strings = []
for tool in tools:
args_schema = str(tool.args)
if hasattr(tool, "func") and tool.func:
sig = signature(tool.func)
description = (
f"Tool Name: {tool.name}{sig}\nTool Description: {tool.description}"
)
else:
description = (
f"Tool Name: {tool.name}\nTool Description: {tool.description}"
)
tool_strings.append(f"{description}\nTool Arguments: {args_schema}")
return "\n".join(tool_strings)
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])

View File

@@ -191,7 +191,7 @@ class BaseAgent(ABC, BaseModel):
"""Get the converter class for the agent to create json/pydantic outputs."""
pass
def copy(self: T) -> T:
def copy(self: T) -> T: # type: ignore # Signature of "copy" incompatible with supertype "BaseModel"
"""Create a deep copy of the Agent."""
exclude = {
"id",

View File

@@ -1,6 +1,8 @@
from abc import ABC, abstractmethod
from typing import List, Optional, Union
from pydantic import BaseModel, Field
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.task import Task
from crewai.utilities import I18N
@@ -22,6 +24,7 @@ class BaseAgentTools(BaseModel, ABC):
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return coworker
def delegate_work(
@@ -38,11 +41,13 @@ class BaseAgentTools(BaseModel, ABC):
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, question, context)
def _execute(self, agent: Union[str, None], task: str, context: Union[str, None]):
def _execute(
self, agent_name: Union[str, None], task: str, context: Union[str, None]
):
"""Execute the command."""
try:
if agent is None:
agent = ""
if agent_name is None:
agent_name = ""
# It is important to remove the quotes from the agent name.
# The reason we have to do this is because less-powerful LLM's
@@ -51,9 +56,9 @@ class BaseAgentTools(BaseModel, ABC):
# {"task": "....", "coworker": "....
# when it should look like this:
# {"task": "....", "coworker": "...."}
agent_name = agent.casefold().replace('"', "").replace("\n", "")
agent_name = agent_name.casefold().replace('"', "").replace("\n", "")
agent = [
agent = [ # type: ignore # Incompatible types in assignment (expression has type "list[BaseAgent]", variable has type "str | None")
available_agent
for available_agent in self.agents
if available_agent.role.casefold().replace("\n", "") == agent_name
@@ -73,9 +78,9 @@ class BaseAgentTools(BaseModel, ABC):
)
agent = agent[0]
task = Task(
task_with_assigned_agent = Task( # type: ignore # Incompatible types in assignment (expression has type "Task", variable has type "str")
description=task,
agent=agent,
expected_output="Your best answer to your coworker asking you this, accounting for the context shared.",
)
return agent.execute_task(task, context)
return agent.execute_task(task_with_assigned_agent, context)

View File

@@ -1,8 +1,7 @@
from abc import ABC, abstractmethod
from typing import Any, Optional
from pydantic import BaseModel, Field, PrivateAttr
from pydantic import BaseModel, Field
class OutputConverter(BaseModel, ABC):
@@ -22,13 +21,12 @@ class OutputConverter(BaseModel, ABC):
max_attempts (int): Maximum number of conversion attempts (default: 3).
"""
_is_gpt: bool = PrivateAttr(default=True)
text: str = Field(description="Text to be converted.")
llm: Any = Field(description="The language model to be used to convert the text.")
model: Any = Field(description="The model to be used to convert the text.")
instructions: str = Field(description="Conversion instructions to the LLM.")
max_attempts: Optional[int] = Field(
description="Max number of attemps to try to get the output formated.",
description="Max number of attempts to try to get the output formatted.",
default=3,
)
@@ -42,7 +40,8 @@ class OutputConverter(BaseModel, ABC):
"""Convert text to json."""
pass
@property
@abstractmethod
def _is_gpt(self, llm):
def is_gpt(self) -> bool:
"""Return if llm provided is of gpt from openai."""
pass

View File

@@ -1,33 +1,22 @@
import threading
import time
from typing import (
Any,
Dict,
Iterator,
List,
Optional,
Tuple,
Union,
)
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
from langchain.agents import AgentExecutor
from langchain.agents.agent import ExceptionTool
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
from langchain_core.exceptions import OutputParserException
from langchain_core.tools import BaseTool
from langchain_core.utils.input import get_color_mapping
from pydantic import InstanceOf
from crewai.agents.agent_builder.base_agent_executor_mixin import (
CrewAgentExecutorMixin,
)
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.utilities import I18N
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
@@ -46,7 +35,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
tools_handler: Optional[InstanceOf[ToolsHandler]] = None
max_iterations: Optional[int] = 15
have_forced_answer: bool = False
force_answer_max_iterations: Optional[int] = None
force_answer_max_iterations: Optional[int] = None # type: ignore # Incompatible types in assignment (expression has type "int | None", base class "CrewAgentExecutorMixin" defined the type as "int")
step_callback: Optional[Any] = None
system_template: Optional[str] = None
prompt_template: Optional[str] = None

View File

@@ -1,6 +1,7 @@
import re
from typing import Any, Union
from json_repair import repair_json
from langchain.agents.output_parsers import ReActSingleInputOutputParser
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.exceptions import OutputParserException
@@ -48,11 +49,15 @@ class CrewAgentParser(ReActSingleInputOutputParser):
raise OutputParserException(
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}"
)
action = action_match.group(1).strip()
action_input = action_match.group(2)
tool_input = action_input.strip(" ")
tool_input = tool_input.strip('"')
return AgentAction(action, tool_input, text)
action = action_match.group(1)
clean_action = self._clean_action(action)
action_input = action_match.group(2).strip()
tool_input = action_input.strip(" ").strip('"')
safe_tool_input = self._safe_repair_json(tool_input)
return AgentAction(clean_action, safe_tool_input, text)
elif includes_answer:
return AgentFinish(
@@ -87,3 +92,30 @@ class CrewAgentParser(ReActSingleInputOutputParser):
llm_output=text,
send_to_llm=True,
)
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()
def _safe_repair_json(self, tool_input: str) -> str:
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]
# Skip repair if the input starts and ends with square brackets
# Explanation: The JSON parser has issues handling inputs that are enclosed in square brackets ('[]').
# These are typically valid JSON arrays or strings that do not require repair. Attempting to repair such inputs
# might lead to unintended alterations, such as wrapping the entire input in additional layers or modifying
# the structure in a way that changes its meaning. By skipping the repair for inputs that start and end with
# square brackets, we preserve the integrity of these valid JSON structures and avoid unnecessary modifications.
if tool_input.startswith("[") and tool_input.endswith("]"):
return tool_input
# Before repair, handle common LLM issues:
# 1. Replace """ with " to avoid JSON parser errors
tool_input = tool_input.replace('"""', '"')
result = repair_json(tool_input)
if result in UNABLE_TO_REPAIR_JSON_RESULTS:
return tool_input
return str(result)

View File

@@ -12,4 +12,4 @@ reporting_task:
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formated as markdown with out '```'
Formatted as markdown without '```'

View File

@@ -1,35 +1,42 @@
import asyncio
import json
import uuid
from concurrent.futures import Future
from typing import Any, Dict, List, Optional, Tuple, Union
from langchain_core.callbacks import BaseCallbackHandler
from pydantic import (
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
Json,
PrivateAttr,
field_validator,
model_validator,
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
Json,
PrivateAttr,
field_validator,
model_validator,
)
from pydantic_core import PydanticCustomError
from crewai.agent import Agent
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.cache import CacheHandler
from crewai.crews.crew_output import CrewOutput
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools import AgentTools
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
)
from crewai.utilities.training_handler import CrewTrainingHandler
try:
@@ -57,7 +64,6 @@ class Crew(BaseModel):
max_rpm: Maximum number of requests per minute for the crew execution to be respected.
prompt_file: Path to the prompt json file to be used for the crew.
id: A unique identifier for the crew instance.
full_output: Whether the crew should return the full output with all tasks outputs and token usage metrics or just the final output.
task_callback: Callback to be executed after each task for every agents execution.
step_callback: Callback to be executed after each step for every agents execution.
share_crew: Whether you want to share the complete crew information and execution with crewAI to make the library better, and allow us to train models.
@@ -93,10 +99,6 @@ class Crew(BaseModel):
default=None,
description="Metrics for the LLM usage during all tasks execution.",
)
full_output: Optional[bool] = Field(
default=False,
description="Whether the crew should return the full output with all tasks outputs and token usage metrics or just the final output.",
)
manager_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
@@ -168,7 +170,6 @@ class Crew(BaseModel):
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
self._telemetry = Telemetry()
self._telemetry.set_tracer()
self._telemetry.crew_creation(self)
return self
@model_validator(mode="after")
@@ -232,7 +233,7 @@ class Crew(BaseModel):
if task.agent is None:
raise PydanticCustomError(
"missing_agent_in_task",
f"Sequential process error: Agent is missing in the task with the following description: {task.description}", # type: ignore Argument of type "str" cannot be assigned to parameter "message_template" of type "LiteralString"
f"Sequential process error: Agent is missing in the task with the following description: {task.description}", # type: ignore # Argument of type "str" cannot be assigned to parameter "message_template" of type "LiteralString"
{},
)
@@ -252,6 +253,63 @@ class Crew(BaseModel):
return self
@model_validator(mode="after")
def validate_end_with_at_most_one_async_task(self):
"""Validates that the crew ends with at most one asynchronous task."""
final_async_task_count = 0
# Traverse tasks backward
for task in reversed(self.tasks):
if task.async_execution:
final_async_task_count += 1
else:
break # Stop traversing as soon as a non-async task is encountered
if final_async_task_count > 1:
raise PydanticCustomError(
"async_task_count",
"The crew must end with at most one asynchronous task.",
{},
)
return self
@model_validator(mode="after")
def validate_async_task_cannot_include_sequential_async_tasks_in_context(self):
"""
Validates that if a task is set to be executed asynchronously,
it cannot include other asynchronous tasks in its context unless
separated by a synchronous task.
"""
for i, task in enumerate(self.tasks):
if task.async_execution and task.context:
for context_task in task.context:
if context_task.async_execution:
for j in range(i - 1, -1, -1):
if self.tasks[j] == context_task:
raise ValueError(
f"Task '{task.description}' is asynchronous and cannot include other sequential asynchronous tasks in its context."
)
if not self.tasks[j].async_execution:
break
return self
@model_validator(mode="after")
def validate_context_no_future_tasks(self):
"""Validates that a task's context does not include future tasks."""
task_indices = {id(task): i for i, task in enumerate(self.tasks)}
for task in self.tasks:
if task.context:
for context_task in task.context:
if id(context_task) not in task_indices:
continue # Skip context tasks not in the main tasks list
if task_indices[id(context_task)] > task_indices[id(task)]:
raise ValueError(
f"Task '{task.description}' has a context dependency on a future task '{context_task.description}', which is not allowed."
)
return self
def _setup_from_config(self):
assert self.config is not None, "Config should not be None."
@@ -314,30 +372,29 @@ class Crew(BaseModel):
def kickoff(
self,
inputs: Optional[Dict[str, Any]] = {},
) -> Union[str, Dict[str, Any]]:
inputs: Optional[Dict[str, Any]] = None,
) -> CrewOutput:
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
# type: ignore # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
self._interpolate_inputs(inputs)
if inputs is not None:
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
i18n = I18N(prompt_file=self.prompt_file)
for agent in self.agents:
# type: ignore # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.i18n = i18n
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if not agent.function_calling_llm:
agent.function_calling_llm = self.function_calling_llm
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
if agent.allow_code_execution:
agent.tools += agent.get_code_execution_tools()
if agent.allow_code_execution: # type: ignore # BaseAgent" has no attribute "allow_code_execution"
agent.tools += agent.get_code_execution_tools() # type: ignore # "BaseAgent" has no attribute "get_code_execution_tools"; maybe "get_delegation_tools"?
if not agent.step_callback:
agent.step_callback = self.step_callback
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.create_agent_executor()
@@ -346,8 +403,7 @@ class Crew(BaseModel):
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result, manager_metrics = self._run_hierarchical_process()
metrics.append(manager_metrics)
result = self._run_hierarchical_process() # type: ignore # Incompatible types in assignment (expression has type "str | dict[str, Any]", variable has type "str")
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
@@ -360,11 +416,9 @@ class Crew(BaseModel):
return result
def kickoff_for_each(
self, inputs: List[Dict[str, Any]]
) -> List[Union[str, Dict[str, Any]]]:
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List[CrewOutput]:
"""Executes the Crew's workflow for each input in the list and aggregates results."""
results = []
results: List[CrewOutput] = []
# Initialize the parent crew's usage metrics
total_usage_metrics = {
@@ -388,13 +442,11 @@ class Crew(BaseModel):
self.usage_metrics = total_usage_metrics
return results
async def kickoff_async(
self, inputs: Optional[Dict[str, Any]] = {}
) -> Union[str, Dict]:
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = {}) -> CrewOutput:
"""Asynchronous kickoff method to start the crew execution."""
return await asyncio.to_thread(self.kickoff, inputs)
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[Any]:
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[CrewOutput]:
crew_copies = [self.copy() for _ in inputs]
async def run_crew(crew, input_data):
@@ -404,6 +456,10 @@ class Crew(BaseModel):
asyncio.create_task(run_crew(crew_copies[i], inputs[i]))
for i in range(len(inputs))
]
tasks = [
asyncio.create_task(run_crew(crew_copies[i], inputs[i]))
for i in range(len(inputs))
]
results = await asyncio.gather(*tasks)
@@ -420,19 +476,56 @@ class Crew(BaseModel):
self.usage_metrics = total_usage_metrics
total_usage_metrics = {
"total_tokens": 0,
"prompt_tokens": 0,
"completion_tokens": 0,
"successful_requests": 0,
}
for crew in crew_copies:
if crew.usage_metrics:
for key in total_usage_metrics:
total_usage_metrics[key] += crew.usage_metrics.get(key, 0)
self.usage_metrics = total_usage_metrics
return results
def _run_sequential_process(self) -> str:
def _run_sequential_process(self) -> CrewOutput:
"""Executes tasks sequentially and returns the final output."""
task_output = ""
task_outputs: List[TaskOutput] = []
futures: List[Tuple[Task, Future[TaskOutput]]] = []
for task in self.tasks:
if task.agent.allow_delegation: # type: ignore # Item "None" of "Agent | None" has no attribute "allow_delegation"
if task.agent and task.agent.allow_delegation:
agents_for_delegation = [
agent for agent in self.agents if agent != task.agent
]
if len(self.agents) > 1 and len(agents_for_delegation) > 0:
task.tools += task.agent.get_delegation_tools(agents_for_delegation)
delegation_tools = task.agent.get_delegation_tools(
agents_for_delegation
)
# Add tools if they are not already in task.tools
for new_tool in delegation_tools:
# Find the index of the tool with the same name
existing_tool_index = next(
(
index
for index, tool in enumerate(task.tools or [])
if tool.name == new_tool.name
),
None,
)
if not task.tools:
task.tools = []
if existing_tool_index is not None:
# Replace the existing tool
task.tools[existing_tool_index] = new_tool
else:
# Add the new tool
task.tools.append(new_tool)
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== Working Agent: {role}", color="bold_purple")
@@ -444,29 +537,80 @@ class Crew(BaseModel):
self._file_handler.log(
agent=role, task=task.description, status="started"
)
output = task.execute(context=task_output)
if not task.async_execution:
task_output = output
if task.async_execution:
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
future = task.execute_async(
agent=task.agent, context=context, tools=task.tools
)
futures.append((task, future))
else:
# Before executing a synchronous task, wait for all async tasks to complete
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== [{role}] Task output: {task_output}\n\n")
# Clear the futures list after processing all async results
futures.clear()
if self.output_log_file:
self._file_handler.log(agent=role, task=task_output, status="completed")
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
task_output = task.execute_sync(
agent=task.agent, context=context, tools=task.tools
)
task_outputs = [task_output]
self._process_task_result(task, task_output)
self._finish_execution(task_output)
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Important: There should only be one task output in the list
# If there are more or 0, something went wrong.
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
# type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
return self._format_output(task_output, token_usage)
return CrewOutput(
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=[task.output for task in self.tasks if task.output],
token_usage=token_usage,
)
def _run_hierarchical_process(
self,
) -> Tuple[Union[str, Dict[str, Any]], Dict[str, Any]]:
def _process_task_result(self, task: Task, output: TaskOutput) -> None:
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== [{role}] Task output: {output}\n\n")
if self.output_log_file:
self._file_handler.log(agent=role, task=output, status="completed")
# TODO: @joao, Breaking change. Changed return type. Usage metrics is included in crewoutput
def _run_hierarchical_process(self) -> CrewOutput:
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
i18n = I18N(prompt_file=self.prompt_file)
if self.manager_agent is not None:
self.manager_agent.allow_delegation = True
@@ -485,8 +629,10 @@ class Crew(BaseModel):
)
self.manager_agent = manager
task_output = ""
task_outputs: List[TaskOutput] = []
futures: List[Tuple[Task, Future[TaskOutput]]] = []
# TODO: IF USER OVERRIDE THE CONTEXT, PASS THAT
for task in self.tasks:
self._logger.log("debug", f"Working Agent: {manager.role}")
self._logger.log("info", f"Starting Task: {task.description}")
@@ -496,26 +642,70 @@ class Crew(BaseModel):
agent=manager.role, task=task.description, status="started"
)
if task.agent:
manager.tools = task.agent.get_delegation_tools([task.agent])
if task.async_execution:
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
future = task.execute_async(
agent=manager, context=context, tools=manager.tools
)
futures.append((task, future))
else:
manager.tools = manager.get_delegation_tools(self.agents)
task_output = task.execute(
agent=manager, context=task_output, tools=manager.tools
# Before executing a synchronous task, wait for all async tasks to complete
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Clear the futures list after processing all async results
futures.clear()
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
task_output = task.execute_sync(
agent=manager, context=context, tools=manager.tools
)
task_outputs = [task_output]
self._process_task_result(task, task_output)
# Process any remaining async results
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Important: There should only be one task output in the list
# If there are more or 0, something went wrong.
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
self._logger.log("debug", f"[{manager.role}] Task output: {task_output}")
if self.output_log_file:
self._file_handler.log(
agent=manager.role, task=task_output, status="completed"
)
final_task_output = task_outputs[0]
self._finish_execution(task_output)
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
# type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
token_usage = self.calculate_usage_metrics()
return self._format_output(task_output, token_usage), token_usage
return CrewOutput(
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=[task.output for task in self.tasks if task.output],
token_usage=token_usage,
)
def copy(self):
"""Create a deep copy of the Crew."""
@@ -567,31 +757,15 @@ class Crew(BaseModel):
for agent in self.agents:
agent.interpolate_inputs(inputs)
def _format_output(
self, output: str, token_usage: Optional[Dict[str, Any]] = None
) -> Union[str, Dict[str, Any]]:
"""
Formats the output of the crew execution.
If full_output is True, then returned data type will be a dictionary else returned outputs are string
"""
if self.full_output:
return { # type: ignore # Incompatible return value type (got "dict[str, Sequence[str | TaskOutput | None]]", expected "str")
"final_output": output,
"tasks_outputs": [task.output for task in self.tasks if task],
"usage_metrics": token_usage,
}
else:
return output
def _finish_execution(self, output) -> None:
def _finish_execution(self, final_string_output: str) -> None:
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
if agentops:
agentops.end_session(
end_state="Success", end_state_reason="Finished Execution"
end_state="Success",
end_state_reason="Finished Execution",
)
self._telemetry.end_crew(self, output)
self._telemetry.end_crew(self, final_string_output)
def calculate_usage_metrics(self) -> Dict[str, int]:
"""Calculates and returns the usage metrics."""

View File

@@ -0,0 +1 @@
from .crew_output import CrewOutput

View File

@@ -0,0 +1,60 @@
import json
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
class CrewOutput(BaseModel):
"""Class that represents the result of a crew."""
raw: str = Field(description="Raw output of crew", default="")
pydantic: Optional[BaseModel] = Field(
description="Pydantic output of Crew", default=None
)
json_dict: Optional[Dict[str, Any]] = Field(
description="JSON dict output of Crew", default=None
)
tasks_output: list[TaskOutput] = Field(
description="Output of each task", default=[]
)
token_usage: Dict[str, Any] = Field(
description="Processed token summary", default={}
)
# TODO: Joao - Adding this safety check breakes when people want to see
# The full output of a CrewOutput.
# @property
# def pydantic(self) -> Optional[BaseModel]:
# # Check if the final task output included a pydantic model
# if self.tasks_output[-1].output_format != OutputFormat.PYDANTIC:
# raise ValueError(
# "No pydantic model found in the final task. Please make sure to set the output_pydantic property in the final task in your crew."
# )
# return self._pydantic
@property
def json(self) -> Optional[str]:
if self.tasks_output[-1].output_format != OutputFormat.JSON:
raise ValueError(
"No JSON output found in the final task. Please make sure to set the output_json property in the final task in your crew."
)
return json.dumps(self.json_dict)
def to_dict(self) -> Dict[str, Any]:
if self.json_dict:
return self.json_dict
if self.pydantic:
return self.pydantic.model_dump()
raise ValueError("No output to convert to dictionary")
def __str__(self):
if self.pydantic:
return str(self.pydantic)
if self.json_dict:
return str(self.json_dict)
return self.raw

View File

@@ -1,9 +1,11 @@
import json
import os
import re
import threading
import uuid
from concurrent.futures import Future
from copy import copy
from typing import Any, Dict, List, Optional, Type, Union
from typing import Any, Dict, List, Optional, Tuple, Type, Union
from langchain_openai import ChatOpenAI
from opentelemetry.trace import Span
@@ -11,9 +13,10 @@ from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
from crewai.utilities.converter import ConverterError
from crewai.utilities.converter import Converter, ConverterError
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
@@ -97,6 +100,10 @@ class Task(BaseModel):
description="Whether the task should have a human review the final answer of the agent",
default=False,
)
converter_cls: Optional[Type[Converter]] = Field(
description="A converter class used to export structured output",
default=None,
)
_telemetry: Telemetry
_execution_span: Span | None = None
@@ -157,82 +164,74 @@ class Task(BaseModel):
)
return self
def wait_for_completion(self) -> str | BaseModel:
"""Wait for asynchronous task completion and return the output."""
assert self.async_execution, "Task is not set to be executed asynchronously."
def execute_sync(
self,
agent: Optional[BaseAgent] = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> TaskOutput:
"""Execute the task synchronously."""
return self._execute_core(agent, context, tools)
if self._thread:
self._thread.join()
self._thread = None
assert self.output, "Task output is not set."
return self.output.exported_output
def execute( # type: ignore # Missing return statement
def execute_async(
self,
agent: BaseAgent | None = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> str:
"""Execute the task.
) -> Future[TaskOutput]:
"""Execute the task asynchronously."""
future: Future[TaskOutput] = Future()
threading.Thread(
target=self._execute_task_async, args=(agent, context, tools, future)
).start()
return future
Returns:
Output of the task.
"""
self._execution_span = self._telemetry.task_started(self)
def _execute_task_async(
self,
agent: Optional[BaseAgent],
context: Optional[str],
tools: Optional[List[Any]],
future: Future[TaskOutput],
) -> None:
"""Execute the task asynchronously with context handling."""
result = self._execute_core(agent, context, tools)
future.set_result(result)
def _execute_core(
self,
agent: Optional[BaseAgent],
context: Optional[str],
tools: Optional[List[Any]],
) -> TaskOutput:
"""Run the core execution logic of the task."""
agent = agent or self.agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
)
if self.context:
# type: ignore # Incompatible types in assignment (expression has type "list[Never]", variable has type "str | None")
context = []
for task in self.context:
if task.async_execution:
task.wait_for_completion()
if task.output:
# type: ignore # Item "str" of "str | None" has no attribute "append"
context.append(task.output.raw_output)
# type: ignore # Argument 1 to "join" of "str" has incompatible type "str | None"; expected "Iterable[str]"
context = "\n".join(context)
self._execution_span = self._telemetry.task_started(crew=agent.crew, task=self)
self.prompt_context = context
tools = tools or self.tools
tools = tools or self.tools or []
if self.async_execution:
self._thread = threading.Thread(
target=self._execute, args=(agent, self, context, tools)
)
self._thread.start()
else:
result = self._execute(
task=self,
agent=agent,
context=context,
tools=tools,
)
return result
def _execute(self, agent: "BaseAgent", task, context, tools):
result = agent.execute_task(
task=task,
task=self,
context=context,
tools=tools,
)
exported_output = self._export_output(result)
# type: ignore # the responses are usually str but need to figure out a more elegant solution here
self.output = TaskOutput(
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
description=self.description,
exported_output=exported_output,
raw_output=result,
raw=result,
pydantic=pydantic_output,
json_dict=json_output,
agent=agent.role,
output_format=self._get_output_format(),
)
self.output = task_output
if self.callback:
self.callback(self.output)
@@ -241,7 +240,15 @@ class Task(BaseModel):
self._telemetry.task_ended(self._execution_span, self)
self._execution_span = None
return exported_output
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json() if pydantic_output else result
)
self._save_file(content)
return task_output
def prompt(self) -> str:
"""Prompt the task.
@@ -276,7 +283,7 @@ class Task(BaseModel):
"""Increment the delegations counter."""
self.delegations += 1
def copy(self, agents: Optional[List["BaseAgent"]] = None) -> "Task":
def copy(self, agents: List["BaseAgent"]) -> "Task":
"""Create a deep copy of the Task."""
exclude = {
"id",
@@ -289,7 +296,7 @@ class Task(BaseModel):
copied_data = {k: v for k, v in copied_data.items() if v is not None}
cloned_context = (
[task.copy() for task in self.context] if self.context else None
[task.copy(agents) for task in self.context] if self.context else None
)
def get_agent_by_role(role: str) -> Union["BaseAgent", None]:
@@ -307,81 +314,123 @@ class Task(BaseModel):
return copied_task
def _export_output(self, result: str) -> Any:
exported_result = result
instructions = "I'm gonna convert this raw text into valid JSON."
def _create_converter(self, *args, **kwargs) -> Converter:
"""Create a converter instance."""
converter = self.agent.get_output_converter(*args, **kwargs)
if self.converter_cls:
converter = self.converter_cls(*args, **kwargs)
return converter
def _export_output(
self, result: str
) -> Tuple[Optional[BaseModel], Optional[Dict[str, Any]]]:
pydantic_output: Optional[BaseModel] = None
json_output: Optional[Dict[str, Any]] = None
if self.output_pydantic or self.output_json:
model = self.output_pydantic or self.output_json
model_output = self._convert_to_model(result)
pydantic_output = (
model_output if isinstance(model_output, BaseModel) else None
)
if isinstance(model_output, str):
try:
json_output = json.loads(model_output)
except json.JSONDecodeError:
json_output = None
else:
json_output = model_output if isinstance(model_output, dict) else None
# try to convert task_output directly to pydantic/json
return pydantic_output, json_output
def _convert_to_model(self, result: str) -> Union[dict, BaseModel, str]:
model = self.output_pydantic or self.output_json
if model is None:
return result
try:
return self._validate_model(result, model)
except Exception:
return self._handle_partial_json(result, model)
def _validate_model(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel]:
exported_result = model.model_validate_json(result)
if self.output_json:
return exported_result.model_dump()
return exported_result
def _handle_partial_json(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel, str]:
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
# type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
exported_result = model.model_validate_json(result)
exported_result = model.model_validate_json(match.group(0))
if self.output_json:
# type: ignore # "str" has no attribute "model_dump"
return exported_result.model_dump()
return exported_result
except Exception:
# sometimes the response contains valid JSON in the middle of text
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
# type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
exported_result = model.model_validate_json(match.group(0))
if self.output_json:
# type: ignore # "str" has no attribute "model_dump"
return exported_result.model_dump()
return exported_result
except Exception:
pass
pass
# type: ignore # Item "None" of "BaseAgent | None" has no attribute "function_calling_llm"
llm = getattr(self.agent, "function_calling_llm", None) or self.agent.llm
if not self._is_gpt(llm):
# type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
return self._convert_with_instructions(result, model)
converter = self.agent.get_output_converter(
llm=llm, text=result, model=model, instructions=instructions
def _convert_with_instructions(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel, str]:
llm = self.agent.function_calling_llm or self.agent.llm
instructions = self._get_conversion_instructions(model, llm)
converter = self._create_converter(
llm=llm, text=result, model=model, instructions=instructions
)
exported_result = (
converter.to_pydantic() if self.output_pydantic else converter.to_json()
)
if isinstance(exported_result, ConverterError):
Printer().print(
content=f"{exported_result.message} Using raw output instead.",
color="red",
)
if self.output_pydantic:
exported_result = converter.to_pydantic()
elif self.output_json:
exported_result = converter.to_json()
if isinstance(exported_result, ConverterError):
Printer().print(
content=f"{exported_result.message} Using raw output instead.",
color="red",
)
exported_result = result
if self.output_file:
content = (
# type: ignore # "str" has no attribute "json"
exported_result
if not self.output_pydantic
else exported_result.model_dump_json()
)
self._save_file(content)
return result
return exported_result
def _get_output_format(self) -> OutputFormat:
if self.output_json:
return OutputFormat.JSON
if self.output_pydantic:
return OutputFormat.PYDANTIC
return OutputFormat.RAW
def _get_conversion_instructions(self, model: Type[BaseModel], llm: Any) -> str:
instructions = "I'm gonna convert this raw text into valid JSON."
if not self._is_gpt(llm):
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
return instructions
def _save_output(self, content: str) -> None:
if not self.output_file:
raise Exception("Output file path is not set.")
directory = os.path.dirname(self.output_file)
if directory and not os.path.exists(directory):
os.makedirs(directory)
with open(self.output_file, "w", encoding="utf-8") as file:
file.write(content)
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def _save_file(self, result: Any) -> None:
# type: ignore # Value of type variable "AnyOrLiteralStr" of "dirname" cannot be "str | None"
directory = os.path.dirname(self.output_file)
directory = os.path.dirname(self.output_file) # type: ignore # Value of type variable "AnyOrLiteralStr" of "dirname" cannot be "str | None"
if directory and not os.path.exists(directory):
os.makedirs(directory)
# type: ignore # Argument 1 to "open" has incompatible type "str | None"; expected "int | str | bytes | PathLike[str] | PathLike[bytes]"
with open(self.output_file, "w", encoding="utf-8") as file:
with open(self.output_file, "w", encoding="utf-8") as file: # type: ignore # Argument 1 to "open" has incompatible type "str | None"; expected "int | str | bytes | PathLike[str] | PathLike[bytes]"
file.write(result)
return None

View File

@@ -0,0 +1,4 @@
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
__all__ = ["OutputFormat", "TaskOutput"]

View File

@@ -0,0 +1,9 @@
from enum import Enum
class OutputFormat(str, Enum):
"""Enum that represents the output format of a task."""
JSON = "json"
PYDANTIC = "pydantic"
RAW = "raw"

View File

@@ -1,24 +1,78 @@
from typing import Optional, Union
import json
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, model_validator
from crewai.tasks.output_format import OutputFormat
class TaskOutput(BaseModel):
"""Class that represents the result of a task."""
description: str = Field(description="Description of the task")
summary: Optional[str] = Field(description="Summary of the task", default=None)
exported_output: Union[str, BaseModel] = Field(
description="Output of the task", default=None
raw: str = Field(
description="Raw output of the task", default=""
) # TODO: @joao: breaking change, by renaming raw_output to raw, but now consistent with CrewOutput
pydantic: Optional[BaseModel] = Field(
description="Pydantic output of task", default=None
)
json_dict: Optional[Dict[str, Any]] = Field(
description="JSON dictionary of task", default=None
)
agent: str = Field(description="Agent that executed the task")
raw_output: str = Field(description="Result of the task")
output_format: OutputFormat = Field(
description="Output format of the task", default=OutputFormat.RAW
)
@model_validator(mode="after")
def set_summary(self):
"""Set the summary field based on the description."""
excerpt = " ".join(self.description.split(" ")[:10])
self.summary = f"{excerpt}..."
return self
def result(self):
return self.exported_output
# TODO: Joao - Adding this safety check breakes when people want to see
# The full output of a TaskOutput or CrewOutput.
# @property
# def pydantic(self) -> Optional[BaseModel]:
# # Check if the final task output included a pydantic model
# if self.output_format != OutputFormat.PYDANTIC:
# raise ValueError(
# """
# Invalid output format requested.
# If you would like to access the pydantic model,
# please make sure to set the output_pydantic property for the task.
# """
# )
# return self._pydantic
@property
def json(self) -> Optional[str]:
if self.output_format != OutputFormat.JSON:
raise ValueError(
"""
Invalid output format requested.
If you would like to access the JSON output,
please make sure to set the output_json property for the task
"""
)
return json.dumps(self.json_dict)
def to_dict(self) -> Dict[str, Any]:
"""Convert json_output and pydantic_output to a dictionary."""
output_dict = {}
if self.json_dict:
output_dict.update(self.json_dict)
if self.pydantic:
output_dict.update(self.pydantic.model_dump())
return output_dict
def __str__(self) -> str:
if self.pydantic:
return str(self.pydantic)
if self.json_dict:
return str(self.json_dict)
return self.raw

View File

@@ -80,7 +80,7 @@ class Telemetry:
self.ready = False
self.trace_set = False
def crew_creation(self, crew):
def crew_creation(self, crew: Crew, inputs: dict[str, Any] | None):
"""Records the creation of a crew."""
if self.ready:
try:
@@ -93,6 +93,12 @@ class Telemetry:
)
self._add_attribute(span, "python_version", platform.python_version())
self._add_attribute(span, "crew_id", str(crew.id))
if crew.share_crew:
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
self._add_attribute(span, "crew_process", crew.process)
self._add_attribute(span, "crew_memory", crew.memory)
self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
@@ -114,7 +120,7 @@ class Telemetry:
"llm": json.dumps(self._safe_llm_attributes(agent.llm)),
"delegation_enabled?": agent.allow_delegation,
"tools_names": [
tool.name.casefold() for tool in agent.tools
tool.name.casefold() for tool in agent.tools or []
],
}
for agent in crew.agents
@@ -139,7 +145,7 @@ class Telemetry:
else None
),
"tools_names": [
tool.name.casefold() for tool in task.tools
tool.name.casefold() for tool in task.tools or []
],
}
for task in crew.tasks
@@ -156,18 +162,40 @@ class Telemetry:
except Exception:
pass
def task_started(self, task: Task) -> Span | None:
def task_started(self, crew: Crew, task: Task) -> Span | None:
"""Records task started in a crew."""
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
created_span = tracer.start_span("Task Created")
self._add_attribute(created_span, "crew_id", str(crew.id))
self._add_attribute(created_span, "task_index", crew.tasks.index(task))
self._add_attribute(created_span, "task_id", str(task.id))
if crew.share_crew:
self._add_attribute(
created_span, "formatted_description", task.description
)
self._add_attribute(
created_span, "formatted_expected_output", task.expected_output
)
created_span.set_status(Status(StatusCode.OK))
created_span.end()
span = tracer.start_span("Task Execution")
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "task_index", crew.tasks.index(task))
self._add_attribute(span, "task_id", str(task.id))
self._add_attribute(span, "formatted_description", task.description)
self._add_attribute(
span, "formatted_expected_output", task.expected_output
)
if crew.share_crew:
self._add_attribute(span, "formatted_description", task.description)
self._add_attribute(
span, "formatted_expected_output", task.expected_output
)
return span
except Exception:
@@ -258,6 +286,8 @@ class Telemetry:
"""
if (self.ready) and (crew.share_crew):
try:
self.crew_creation(crew, inputs)
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Execution")
self._add_attribute(
@@ -266,7 +296,9 @@ class Telemetry:
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "inputs", json.dumps(inputs))
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
self._add_attribute(
span,
"crew_agents",
@@ -320,7 +352,7 @@ class Telemetry:
except Exception:
pass
def end_crew(self, crew, output):
def end_crew(self, crew, final_string_output):
if (self.ready) and (crew.share_crew):
try:
self._add_attribute(
@@ -328,7 +360,9 @@ class Telemetry:
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(crew._execution_span, "crew_output", output)
self._add_attribute(
crew._execution_span, "crew_output", final_string_output
)
self._add_attribute(
crew._execution_span,
"crew_tasks_output",

View File

@@ -7,7 +7,7 @@ class AgentTools(BaseAgentTools):
"""Default tools around agent delegation"""
def tools(self):
coworkers = f"[{', '.join([f'{agent.role}' for agent in self.agents])}]"
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
tools = [
StructuredTool.from_function(
func=self.delegate_work,

View File

@@ -8,7 +8,7 @@ from pydantic.v1 import BaseModel, Field
class ToolCalling(BaseModel):
tool_name: str = Field(..., description="The name of the tool to be called.")
arguments: Optional[Dict[str, Any]] = Field(
..., description="A dictinary of arguments to be passed to the tool."
..., description="A dictionary of arguments to be passed to the tool."
)
@@ -17,5 +17,5 @@ class InstructorToolCalling(PydanticBaseModel):
..., description="The name of the tool to be called."
)
arguments: Optional[Dict[str, Any]] = PydanticField(
..., description="A dictinary of arguments to be passed to the tool."
..., description="A dictionary of arguments to be passed to the tool."
)

View File

@@ -11,11 +11,10 @@ from crewai.telemetry import Telemetry
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.utilities import I18N, Converter, ConverterError, Printer
agentops = None
try:
import agentops
except ImportError:
pass
agentops = None
OPENAI_BIGGER_MODELS = ["gpt-4"]
@@ -120,7 +119,7 @@ class ToolUsage:
attempts=self._run_attempts,
)
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
return result # type: ignore # Fix the reutrn type of this function
return result # type: ignore # Fix the return type of this function
except Exception:
self.task.increment_tools_errors()
@@ -152,16 +151,12 @@ class ToolUsage:
for k, v in calling.arguments.items()
if k in acceptable_args
}
result = tool._run(**arguments)
result = tool.invoke(input=arguments)
except Exception:
if tool.args_schema:
arguments = calling.arguments
result = tool._run(**arguments)
else:
arguments = calling.arguments.values() # type: ignore # Incompatible types in assignment (expression has type "dict_values[str, Any]", variable has type "dict[str, Any]")
result = tool._run(*arguments)
arguments = calling.arguments
result = tool.invoke(input=arguments)
else:
result = tool._run()
result = tool.invoke(input={})
except Exception as e:
self._run_attempts += 1
if self._run_attempts > self._max_parsing_attempts:
@@ -216,7 +211,7 @@ class ToolUsage:
hasattr(original_tool, "result_as_answer")
and original_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
):
result_as_answer = original_tool.result_as_answer
result_as_answer = original_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "result_as_answer"
data["result_as_answer"] = result_as_answer
self.agent.tools_results.append(data)

View File

@@ -16,7 +16,7 @@
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output} \n you MUST return the actual complete content as the final answer, not a summary.",
"human_feedback": "You got human feedback on your work, re-avaluate it and give a new Final Answer when ready.\n {human_feedback}",
"human_feedback": "You got human feedback on your work, re-evaluate it and give a new Final Answer when ready.\n {human_feedback}",
"getting_input": "This is the agent's final answer: {final_answer}\nPlease provide feedback: "
},
"errors": {

View File

@@ -2,10 +2,8 @@ import json
from langchain.schema import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from pydantic import model_validator
from crewai.agents.agent_builder.utilities.base_output_converter_base import (
OutputConverter,
)
from crewai.agents.agent_builder.utilities.base_output_converter import OutputConverter
class ConverterError(Exception):
@@ -19,15 +17,10 @@ class ConverterError(Exception):
class Converter(OutputConverter):
"""Class that converts text into either pydantic or json."""
@model_validator(mode="after")
def check_llm_provider(self):
if not self._is_gpt(self.llm):
self._is_gpt = False
def to_pydantic(self, current_attempt=1):
"""Convert text to pydantic."""
try:
if self._is_gpt:
if self.is_gpt:
return self._create_instructor().to_pydantic()
else:
return self._create_chain().invoke({})
@@ -41,7 +34,7 @@ class Converter(OutputConverter):
def to_json(self, current_attempt=1):
"""Convert text to json."""
try:
if self._is_gpt:
if self.is_gpt:
return self._create_instructor().to_json()
else:
return json.dumps(self._create_chain().invoke({}).model_dump())
@@ -75,5 +68,7 @@ class Converter(OutputConverter):
)
return new_prompt | self.llm | parser
def _is_gpt(self, llm) -> bool: # type: ignore # BUG? Name "_is_gpt" defined on line 20 hides name from outer scope
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
@property
def is_gpt(self) -> bool:
"""Return if llm provided is of gpt from openai."""
return isinstance(self.llm, ChatOpenAI) and self.llm.openai_api_base is None

View File

@@ -0,0 +1,20 @@
from typing import List
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
def aggregate_raw_outputs_from_task_outputs(task_outputs: List[TaskOutput]) -> str:
"""Generate string context from the task outputs."""
dividers = "\n\n----------\n\n"
# Join task outputs with dividers
context = dividers.join(output.raw for output in task_outputs)
return context
def aggregate_raw_outputs_from_tasks(tasks: List[Task]) -> str:
"""Generate string context from the tasks."""
task_outputs = [task.output for task in tasks if task.output is not None]
return aggregate_raw_outputs_from_task_outputs(task_outputs)

View File

@@ -631,8 +631,9 @@ def test_agent_use_specific_tasks_output_as_context(capsys):
crew = Crew(agents=[agent1, agent2], tasks=tasks)
result = crew.kickoff()
assert "bye" not in result.lower()
assert "hi" in result.lower() or "hello" in result.lower()
print("LOWER RESULT", result.raw)
assert "bye" not in result.raw.lower()
assert "hi" in result.raw.lower() or "hello" in result.raw.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -644,7 +645,7 @@ def test_agent_step_callback():
with patch.object(StepCallback, "callback") as callback:
@tool
def learn_about_AI(topic) -> float:
def learn_about_AI(topic) -> str:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
@@ -678,7 +679,7 @@ def test_agent_function_calling_llm():
with patch.object(llm.client, "create", wraps=llm.client.create) as private_mock:
@tool
def learn_about_AI(topic) -> float:
def learn_about_AI(topic) -> str:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
@@ -750,12 +751,11 @@ def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
crew = Crew(agents=[agent1], tasks=tasks)
result = crew.kickoff()
assert result == "Howdy!"
pytest.mark.vcr(filter_headers=["authorization"])
print("RESULT: ", result.raw)
assert result.raw == "Howdy!"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_usage_information_is_appended_to_agent():
from crewai_tools import BaseTool
@@ -963,3 +963,54 @@ def test_agent_use_trained_data(crew_training_handler):
crew_training_handler.assert_has_calls(
[mock.call(), mock.call("trained_agents_data.pkl"), mock.call().load()]
)
def test_agent_max_retry_limit():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_retry_limit=1,
)
task = Task(
agent=agent,
description="Say the word: Hi",
expected_output="The word: Hi",
human_input=True,
)
error_message = "Error happening while sending prompt to model."
with patch.object(
CrewAgentExecutor, "invoke", wraps=agent.agent_executor.invoke
) as invoke_mock:
invoke_mock.side_effect = Exception(error_message)
assert agent._times_executed == 0
assert agent.max_retry_limit == 1
with pytest.raises(Exception) as e:
agent.execute_task(
task=task,
)
assert e.value.args[0] == error_message
assert agent._times_executed == 2
invoke_mock.assert_has_calls(
[
mock.call(
{
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi \n you MUST return the actual complete content as the final answer, not a summary.",
"tool_names": "",
"tools": "",
}
),
mock.call(
{
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi \n you MUST return the actual complete content as the final answer, not a summary.",
"tool_names": "",
"tools": "",
}
),
]
)

0
tests/agents/__init__.py Normal file
View File

View File

@@ -0,0 +1,378 @@
import pytest
from crewai.agents.parser import CrewAgentParser
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.exceptions import OutputParserException
@pytest.fixture
def parser():
p = CrewAgentParser()
p.agent = MockAgent()
return p
def test_valid_action_parsing_special_characters(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: what's the temperature in SF?"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what's the temperature in SF?"
def test_valid_action_parsing_with_json_tool_input(parser):
text = """
Thought: Let's find the information
Action: query
Action Input: ** {"task": "What are some common challenges or barriers that you have observed or experienced when implementing AI-powered solutions in healthcare settings?", "context": "As we've discussed recent advancements in AI applications in healthcare, it's crucial to acknowledge the potential hurdles. Some possible obstacles include...", "coworker": "Senior Researcher"}
"""
result = parser.parse(text)
assert isinstance(result, AgentAction)
expected_tool_input = '{"task": "What are some common challenges or barriers that you have observed or experienced when implementing AI-powered solutions in healthcare settings?", "context": "As we\'ve discussed recent advancements in AI applications in healthcare, it\'s crucial to acknowledge the potential hurdles. Some possible obstacles include...", "coworker": "Senior Researcher"}'
assert result.tool == "query"
assert result.tool_input == expected_tool_input
def test_valid_action_parsing_with_quotes(parser):
text = 'Thought: Let\'s find the temperature\nAction: search\nAction Input: "temperature in SF"'
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "temperature in SF"
def test_valid_action_parsing_with_curly_braces(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: {temperature in SF}"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "{temperature in SF}"
def test_valid_action_parsing_with_angle_brackets(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: <temperature in SF>"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "<temperature in SF>"
def test_valid_action_parsing_with_parentheses(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: (temperature in SF)"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "(temperature in SF)"
def test_valid_action_parsing_with_mixed_brackets(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: [temperature in {SF}]"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "[temperature in {SF}]"
def test_valid_action_parsing_with_nested_quotes(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: \"what's the temperature in 'SF'?\""
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what's the temperature in 'SF'?"
def test_valid_action_parsing_with_incomplete_json(parser):
text = 'Thought: Let\'s find the temperature\nAction: search\nAction Input: {"query": "temperature in SF"'
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == '{"query": "temperature in SF"}'
def test_valid_action_parsing_with_special_characters(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: what is the temperature in SF? @$%^&*"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what is the temperature in SF? @$%^&*"
def test_valid_action_parsing_with_combination(parser):
text = 'Thought: Let\'s find the temperature\nAction: search\nAction Input: "[what is the temperature in SF?]"'
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "[what is the temperature in SF?]"
def test_valid_action_parsing_with_mixed_quotes(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: \"what's the temperature in SF?\""
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what's the temperature in SF?"
def test_valid_action_parsing_with_newlines(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: what is\nthe temperature in SF?"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what is\nthe temperature in SF?"
def test_valid_action_parsing_with_escaped_characters(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: what is the temperature in SF? \\n"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what is the temperature in SF? \\n"
def test_valid_action_parsing_with_json_string(parser):
text = 'Thought: Let\'s find the temperature\nAction: search\nAction Input: {"query": "temperature in SF"}'
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == '{"query": "temperature in SF"}'
def test_valid_action_parsing_with_unbalanced_quotes(parser):
text = "Thought: Let's find the temperature\nAction: search\nAction Input: \"what is the temperature in SF?"
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what is the temperature in SF?"
def test_clean_action_no_formatting(parser):
action = "Ask question to senior researcher"
cleaned_action = parser._clean_action(action)
assert cleaned_action == "Ask question to senior researcher"
def test_clean_action_with_leading_asterisks(parser):
action = "** Ask question to senior researcher"
cleaned_action = parser._clean_action(action)
assert cleaned_action == "Ask question to senior researcher"
def test_clean_action_with_trailing_asterisks(parser):
action = "Ask question to senior researcher **"
cleaned_action = parser._clean_action(action)
assert cleaned_action == "Ask question to senior researcher"
def test_clean_action_with_leading_and_trailing_asterisks(parser):
action = "** Ask question to senior researcher **"
cleaned_action = parser._clean_action(action)
assert cleaned_action == "Ask question to senior researcher"
def test_clean_action_with_multiple_leading_asterisks(parser):
action = "**** Ask question to senior researcher"
cleaned_action = parser._clean_action(action)
assert cleaned_action == "Ask question to senior researcher"
def test_clean_action_with_multiple_trailing_asterisks(parser):
action = "Ask question to senior researcher ****"
cleaned_action = parser._clean_action(action)
assert cleaned_action == "Ask question to senior researcher"
def test_clean_action_with_spaces_and_asterisks(parser):
action = " ** Ask question to senior researcher ** "
cleaned_action = parser._clean_action(action)
print(f"Original action: '{action}'")
print(f"Cleaned action: '{cleaned_action}'")
assert cleaned_action == "Ask question to senior researcher"
def test_clean_action_with_only_asterisks(parser):
action = "****"
cleaned_action = parser._clean_action(action)
assert cleaned_action == ""
def test_clean_action_with_empty_string(parser):
action = ""
cleaned_action = parser._clean_action(action)
assert cleaned_action == ""
def test_valid_final_answer_parsing(parser):
text = (
"Thought: I found the information\nFinal Answer: The temperature is 100 degrees"
)
result = parser.parse(text)
assert isinstance(result, AgentFinish)
assert result.return_values["output"] == "The temperature is 100 degrees"
def test_missing_action_error(parser):
text = "Thought: Let's find the temperature\nAction Input: what is the temperature in SF?"
with pytest.raises(OutputParserException) as exc_info:
parser.parse(text)
assert "Could not parse LLM output" in str(exc_info.value)
def test_missing_action_input_error(parser):
text = "Thought: Let's find the temperature\nAction: search"
with pytest.raises(OutputParserException) as exc_info:
parser.parse(text)
assert "Could not parse LLM output" in str(exc_info.value)
def test_action_and_final_answer_error(parser):
text = "Thought: I found the information\nAction: search\nAction Input: what is the temperature in SF?\nFinal Answer: The temperature is 100 degrees"
with pytest.raises(OutputParserException) as exc_info:
parser.parse(text)
assert "both perform Action and give a Final Answer" in str(exc_info.value)
def test_safe_repair_json(parser):
invalid_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": Senior Researcher'
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_unrepairable(parser):
invalid_json = "{invalid_json"
result = parser._safe_repair_json(invalid_json)
print("result:", invalid_json)
assert result == invalid_json # Should return the original if unrepairable
def test_safe_repair_json_missing_quotes(parser):
invalid_json = (
'{task: "Research XAI", context: "Explainable AI", coworker: Senior Researcher}'
)
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_unclosed_brackets(parser):
invalid_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"'
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_extra_commas(parser):
invalid_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher",}'
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_trailing_commas(parser):
invalid_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher",}'
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_single_quotes(parser):
invalid_json = "{'task': 'Research XAI', 'context': 'Explainable AI', 'coworker': 'Senior Researcher'}"
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_mixed_quotes(parser):
invalid_json = "{'task': \"Research XAI\", 'context': \"Explainable AI\", 'coworker': 'Senior Researcher'}"
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_unescaped_characters(parser):
invalid_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher\n"}'
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
print("result:", result)
assert result == expected_repaired_json
def test_safe_repair_json_missing_colon(parser):
invalid_json = '{"task" "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_missing_comma(parser):
invalid_json = '{"task": "Research XAI" "context": "Explainable AI", "coworker": "Senior Researcher"}'
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_unexpected_trailing_characters(parser):
invalid_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"} random text'
expected_repaired_json = '{"task": "Research XAI", "context": "Explainable AI", "coworker": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_safe_repair_json_special_characters_key(parser):
invalid_json = '{"task!@#": "Research XAI", "context$%^": "Explainable AI", "coworker&*()": "Senior Researcher"}'
expected_repaired_json = '{"task!@#": "Research XAI", "context$%^": "Explainable AI", "coworker&*()": "Senior Researcher"}'
result = parser._safe_repair_json(invalid_json)
assert result == expected_repaired_json
def test_parsing_with_whitespace(parser):
text = " Thought: Let's find the temperature \n Action: search \n Action Input: what is the temperature in SF? "
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what is the temperature in SF?"
def test_parsing_with_special_characters(parser):
text = 'Thought: Let\'s find the temperature\nAction: search\nAction Input: "what is the temperature in SF?"'
result = parser.parse(text)
assert isinstance(result, AgentAction)
assert result.tool == "search"
assert result.tool_input == "what is the temperature in SF?"
def test_integration_valid_and_invalid(parser):
text = """
Thought: Let's find the temperature
Action: search
Action Input: what is the temperature in SF?
Thought: I found the information
Final Answer: The temperature is 100 degrees
Thought: Missing action
Action Input: invalid
Thought: Missing action input
Action: invalid
"""
parts = text.strip().split("\n\n")
results = []
for part in parts:
try:
result = parser.parse(part.strip())
results.append(result)
except OutputParserException as e:
results.append(e)
assert isinstance(results[0], AgentAction)
assert isinstance(results[1], AgentFinish)
assert isinstance(results[2], OutputParserException)
assert isinstance(results[3], OutputParserException)
class MockAgent:
def increment_formatting_errors(self):
pass
# TODO: ADD TEST TO MAKE SURE ** REMOVAL DOESN'T MESS UP ANYTHING

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,591 @@
interactions:
- request:
body: '{"messages": [{"content": "You are dog Researcher. You have a lot of experience
with dog.\nYour personal goal is: Express hot takes on dog.To give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an analysis around dog.\n\nThis is the expect criteria for your
final answer: 1 bullet point about dog that''s under 15 words. \n you MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '951'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.34.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.34.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Dogs"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
are"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
incredibly"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
loyal"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
provide"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
unmatched"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
companionship"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
to"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
humans"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXYXcf53VmxfiC6Q2NBDG2bPci","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89d0fa4e7abf53db-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 02 Jul 2024 19:17:45 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=6Xl2nvdsXT4uSfQ3C1ZK.LWKGYekVs5ErrLDZOdI.50-1719947865-1.0.1.1-6RQoTCznxe7H868MoxghRegIZaElbG_bN_jbs94hmnsnuR1P9bptoj8o2DbOSvj48ubewyvy8L16mOZHlMLw_A;
path=/; expires=Tue, 02-Jul-24 19:47:45 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=kPTMOkGHQp0ytgVUrm3jFNiB9I.DDI2ONPRTr6IMTeo-1719947865623-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '102'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9997'
x-ratelimit-remaining-tokens:
- '15999783'
x-ratelimit-reset-requests:
- 14ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2c5219e228ce79f0131c497230904013
status:
code: 200
message: OK
- request:
body: '{"messages": [{"content": "You are apple Researcher. You have a lot of
experience with apple.\nYour personal goal is: Express hot takes on apple.To
give my best complete final answer to the task use the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: my best complete final answer to
the task.\nYour final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!\nCurrent Task: Give me an analysis around apple.\n\nThis is the expect criteria
for your final answer: 1 bullet point about apple that''s under 15 words. \n
you MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '961'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.34.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.34.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Apple"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
revolution"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"izes"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
technology"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
with"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
sleek"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
designs"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
seamless"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
integration"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
innovative"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
user"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
experiences"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXaXAntrwdA2E5Bhxgz9p7q5Nc","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89d0fa4e7ca907e6-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 02 Jul 2024 19:17:45 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=wf2ozMjr46sG0EhuZjpiDNagwTxC05ct3Hn7Y9Rs5AI-1719947865-1.0.1.1-uckxTTr7Yfe6sv4ZznqqrGTEz9E3_Cpp7OAWBIEeNz1Smdjwijw8YV5oYPe_6W4DrEtwVzRDxaqIHlWP55O0QA;
path=/; expires=Tue, 02-Jul-24 19:47:45 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=F9pWw4TeoPa8puOm5RN9Gp2oY0lRoN53ChZ1qFYx1S8-1719947865726-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '168'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9998'
x-ratelimit-remaining-tokens:
- '15999780'
x-ratelimit-reset-requests:
- 10ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_e6dfeda5935eae030bcc2da526234635
status:
code: 200
message: OK
- request:
body: '{"messages": [{"content": "You are cat Researcher. You have a lot of experience
with cat.\nYour personal goal is: Express hot takes on cat.To give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an analysis around cat.\n\nThis is the expect criteria for your
final answer: 1 bullet point about cat that''s under 15 words. \n you MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '951'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.34.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.34.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Cats"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
are"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
master"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"ful"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
hunters"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
brilliant"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
problem"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-sol"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"vers"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gdIXPfC85ZAgbI0KqvS9z396XBKw","object":"chat.completion.chunk","created":1719947865,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89d0fa4e7ae912d7-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 02 Jul 2024 19:17:45 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=y7JNZ8WEp.q5pMXLi79ajfcI.F6MfE0GeYLw34Apkf0-1719947865-1.0.1.1-QKklGeYuOnsQROgqMs42XwqKNvW.mPrmcbtaxMnUg3eSgI7TRnRq4qPuSan0ynDt4Hd9NMuls2FR.Caa1MVr9Q;
path=/; expires=Tue, 02-Jul-24 19:47:45 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=FVQoSgcvVyiB_o43X6y5MGYgzGojmsQqS.nPObW3JYU-1719947865679-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '132'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999783'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a06bde4044d3ee75edf08f333139679c
status:
code: 200
message: OK
version: 1

View File

@@ -1,314 +0,0 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test role. test backstory\nYour personal
goal is: test goalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: just say hi!\n\nThis is
the expect criteria for your final answer: your greeting \n you MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '853'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.34.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.34.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvixvu2sSTjML4oN3fsoMeTHbew","object":"chat.completion.chunk","created":1719861882,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89c8c71ccad81823-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Mon, 01 Jul 2024 19:24:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=uU.2MR0L4Mv3xs4DzFlWOQLVId1dJXQBlWffhr9mqxU-1719861882-1.0.1.1-JSKN2_O9iYj8QCZjy0IGiunZxvXimz5Kzv5wQJedVua5E6WIl1UvP.wguXbK0cds7ayJReYnR8v8oAN2rmtnNQ;
path=/; expires=Mon, 01-Jul-24 19:54:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=yc5Q7WKbO5zoiGNQx86HpHNM3HeXi2HxCxw31lL_UuU-1719861882665-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '86'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999808'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_25d95f35048bf71e28d73fbed6576a6c
status:
code: 200
message: OK
- request:
body: '{"messages": [{"content": "You are test role. test backstory\nYour personal
goal is: test goalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: just say hello!\n\nThis
is the expect criteria for your final answer: your greeting \n you MUST return
the actual complete content as the final answer, not a summary.\n\nThis is the
context you''re working with:\nHi!\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '905'
content-type:
- application/json
cookie:
- __cf_bm=uU.2MR0L4Mv3xs4DzFlWOQLVId1dJXQBlWffhr9mqxU-1719861882-1.0.1.1-JSKN2_O9iYj8QCZjy0IGiunZxvXimz5Kzv5wQJedVua5E6WIl1UvP.wguXbK0cds7ayJReYnR8v8oAN2rmtnNQ;
_cfuvid=yc5Q7WKbO5zoiGNQx86HpHNM3HeXi2HxCxw31lL_UuU-1719861882665-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.34.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.34.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Hello"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gGvjRHciTPrlyXWRGu5z5C56L10c","object":"chat.completion.chunk","created":1719861883,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89c8c7202e0f1823-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Mon, 01 Jul 2024 19:24:43 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '82'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999794'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_754b5067e8f56d5c1182dc0f57be0e45
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,258 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Scorer. You''re an expert scorer, specialized
in scoring titles.\nYour personal goal is: Score the titleTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an integer score between 1-5 for the following title: ''The impact
of AI in the future of work''\n\nThis is the expect criteria for your final
answer: The score of the title. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '997'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89ed0cf0dc05741a-MIA
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Sat, 06 Jul 2024 05:03:50 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=JI76H4xxreAnMx1JJoPragplAdYdjbDNA68Hr3Cs_0k-1720242230-1.0.1.1-oHSrtm.ejkvCiAHC11lg0MnvmopYZayTZRq09IcH2yh5BA6FyyufGH7Rm59BAz.gdZHc0izmjElXfLiu2bZ_jQ;
path=/; expires=Sat, 06-Jul-24 05:33:50 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=X4.n0cNP9j1jseIPV4H1aDJu2xrsAwcUI8rY0tbLc40-1720242230210-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '71'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999772'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8dc1d49d85fcf8e39601e32ca80abd6b
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "4"}, {"role": "system", "content":
"I''m gonna convert this raw text into valid JSON."}], "model": "gpt-4o", "tool_choice":
{"type": "function", "function": {"name": "ScoreOutput"}}, "tools": [{"type":
"function", "function": {"name": "ScoreOutput", "description": "Correctly extracted
`ScoreOutput` with all the required parameters with correct types", "parameters":
{"properties": {"score": {"title": "Score", "type": "integer"}}, "required":
["score"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '519'
content-type:
- application/json
cookie:
- __cf_bm=JI76H4xxreAnMx1JJoPragplAdYdjbDNA68Hr3Cs_0k-1720242230-1.0.1.1-oHSrtm.ejkvCiAHC11lg0MnvmopYZayTZRq09IcH2yh5BA6FyyufGH7Rm59BAz.gdZHc0izmjElXfLiu2bZ_jQ;
_cfuvid=X4.n0cNP9j1jseIPV4H1aDJu2xrsAwcUI8rY0tbLc40-1720242230210-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA2xSS2/bMAy++1cIPNeF81pT34YBG9A13aHAgL5gKArtKJVFTaKBtkH++yDFi91g
PggEP34PkN5nQoDeQClAbSWr1pn8euvD6id9OP3V3C6bzZ2qd7eT1f3DykgFF5FB6x0q/se6VNQ6
g6zJHmHlUTJG1cnVtJjOp9NZkYCWNmgirXGczymPYF4s8smsJ25JKwxQiqdMCCH26Y0R7QbfoBRJ
JnVaDEE2COVpSAjwZGIHZAg6sLQMFwOoyDLamNp2xowAJjKVksYMxsdvP6qHPUljqsI2duX13ePN
w2/7HT/+8Lfd45cfYeR3lH53KVDdWXXazwg/9cszMyHAyjZx7xV5/NWx6/iMLgRI33QtWo7RYf8M
IQ4/Qzk/wKfRQ/a/+qWvDqe1Gmqcp3U42xLU2uqwrTzKkNJCYHJHiyj3ks7XfboIOE+t44rpFW0U
XPbXg+F/GcBFjzGxNCPOIuvjQXgPjG1Va9ugd16nU0LtqnlRLHG2vppcQ3bI/gIAAP//AwCtLU45
0wIAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89ed0cf40ebc741a-MIA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 06 Jul 2024 05:03:50 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '186'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999969'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5da164d15ccb331864aeb5d3562969aa
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,193 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Researcher. You''re an expert researcher,
specialized in technology, software engineering, AI and startups. You work as
a freelancer and is now working on doing research and analysis for a new customer.\nYour
personal goal is: Make the best research and analysis on content about AI and
AI agentsTo give my best complete final answer to the task use the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete
final answer to the task.\nYour final answer must be the great and the most
complete as possible, it must be outcome described.\n\nI MUST use these formats,
my job depends on it!\nCurrent Task: Look at the available data nd give me a
sense on the total number of sales.\n\nThis is the expect criteria for your
final answer: The total number of sales as an integer \n you MUST return the
actual complete content as the final answer, not a summary.\n\nBegin! This is
VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '1178'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.34.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.34.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
The"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
total"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
number"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
sales"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
is"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"150"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"0"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9gJkkQs40FNqD9UjPrPbDEUN4XeLR","object":"chat.completion.chunk","created":1719872734,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89c9d0107c8abd30-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Mon, 01 Jul 2024 22:25:35 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=xIvvDveyc7bpEywphx5N4EscKoZiGAT_yDVu3aFAWZ4-1719872735-1.0.1.1-ZOUYc2kEes8fxrMFgGdVppzOh9nPbl4y1Syv73ORt38FBXePWFSTJrFZCZRU.zob6ks9nWzr2vBIZbBQdAOOGQ;
path=/; expires=Mon, 01-Jul-24 22:55:35 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=aG1BGRRkNAyxmctM98.DLqSNJ2Cx_OQYsMRQbd03.bo-1719872735091-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '80'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999725'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_c90015b7584729268f48a8b33ff7c5ea
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,192 @@
interactions:
- request:
body: '{"messages": [{"content": "You are dog Researcher. You have a lot of experience
with dog.\nYour personal goal is: Express hot takes on dog.To give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an analysis around dog.\n\nThis is the expect criteria for your
final answer: 1 bullet point about dog that''s under 15 words. \n you MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '951'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
Dogs"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
are"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
unparalleled"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
loyalty"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
companionship"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
to"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
humans"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j74gJiY9YxFxbeZ5jmpPclWEeaiP","object":"chat.completion.chunk","created":1720538982,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a0959de6b916783-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 09 Jul 2024 15:29:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=LA.xC.jE_aMjiSgGgU6kDsBPhb_akgqn_4Rx.jXYfnQ-1720538982-1.0.1.1-l5Q1BHprIz5Jxb4HWyYsMfbg6mEnP2H95Vxt89ez24pKOb__90s8LJBBqK52zmPNcPYSSUcaR0wRAaSVFoa4Fw;
path=/; expires=Tue, 09-Jul-24 15:59:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=zzJ51X.VwRkIq7VLCg9xPQGbXoUmAH6b.2g6sf6Y58Y-1720538982657-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '240'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999783'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_abdec68aded596628dfd5b999919447d
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,453 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Scorer. You''re an expert scorer, specialized
in scoring titles.\nYour personal goal is: Score the titleTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an integer score between 1-5 for the following title: ''The impact
of AI in the future of work''\n\nThis is the expect criteria for your final
answer: The score of the title. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '997'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJmkP063CQ01vF8ENhkPSwN9BQH","object":"chat.completion.chunk","created":1720559138,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a0b45f368ab6734-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 09 Jul 2024 21:05:38 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=43lNOCqE3W6gMhKEVIvu20BhU4nI7wyQYcgn28hcb3o-1720559138-1.0.1.1-2pdG6KFn0J2AHC_tnhcxXCqmZ_RyZfwthLi5ET6Aq4v1L9z3EcYxV1D1CeKjOgEBJPLD9GUDdMmIR3h86QYx7w;
path=/; expires=Tue, 09-Jul-24 21:35:38 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=T4YvZnF6fWjq7JTPVyPFDIHaXBpT8E23GcG55Q0Ky6A-1720559138248-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '159'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999771'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a58604fe17d3de5d4491ec972e98312b
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "4"}, {"role": "system", "content":
"I''m gonna convert this raw text into valid JSON."}], "model": "gpt-4o", "tool_choice":
{"type": "function", "function": {"name": "ScoreOutput"}}, "tools": [{"type":
"function", "function": {"name": "ScoreOutput", "description": "Correctly extracted
`ScoreOutput` with all the required parameters with correct types", "parameters":
{"properties": {"score": {"title": "Score", "type": "integer"}}, "required":
["score"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '519'
content-type:
- application/json
cookie:
- __cf_bm=43lNOCqE3W6gMhKEVIvu20BhU4nI7wyQYcgn28hcb3o-1720559138-1.0.1.1-2pdG6KFn0J2AHC_tnhcxXCqmZ_RyZfwthLi5ET6Aq4v1L9z3EcYxV1D1CeKjOgEBJPLD9GUDdMmIR3h86QYx7w;
_cfuvid=T4YvZnF6fWjq7JTPVyPFDIHaXBpT8E23GcG55Q0Ky6A-1720559138248-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA2xSTW/bMAy9+1cIPMeDncRL7Gt2GNJhOWzdDmthKIriqJFETaK7FkH++yDHjd2g
PggEH98HSJ8SxkDtoGIgDpyEcTotn1Zr8/1lvViV9+rY6ru/zhW/8i+HpvA/YRIZuH2Sgt5YnwQa
pyUptBdYeMlJRtV8Mc2Kosxnyw4wuJM60hpH6RzTaTadp1mR5rOeeEAlZICK/UkYY+zUvTGi3ckX
qFg2eesYGQJvJFTXIcbAo44d4CGoQNwSTAZQoCVpY2rbaj0CCFHXgms9GF++06ge9sS1rk3Y/Cvv
Nq75upx+Pj7/vsfnb2ta6ZHfRfrVdYH2rRXX/Yzwa7+6MWMMLDcd94dALzctuZZu6IwB901rpKUY
HU4PEOLwA1TzM7wbPScf1Y99db6uVWPjPG7DzZZgr6wKh9pLHrq0EAjdxSLKPXbna99dBJxH46gm
PEobBZf99WD4Xwaw6DFC4nrEKZI+HoTXQNLUe2Ub6Z1X3Slh7+p5li3lbLvIS0jOyX8AAAD//wMA
s5wGAdMCAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a0b45f828146734-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 09 Jul 2024 21:05:38 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '215'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999969'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_34b28faf23b6422bb0855e6a45c65e92
status:
code: 200
message: OK
- request:
body: '{"input": ["examples(Examples): Specific scenarios used to explain counting,
addition, and subtraction through the zoo theme, such as counting animals, adding
new ones, and subtracting adopted ones."], "model": "text-embedding-ada-002",
"encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '265'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SaWw+ySrel779fsbJu6R0RkJp8d5xEzoWAp06nI4gIHpBDFVA7+7938F3Z3X1j
IqJgMWvMMZ6q//zXX3/93WR1kQ9///uvv19VP/z9P5Zjt+tw/fvff/3Pf/31119//efv9f87s3hn
xe1Wfcrf6b8Pq8+tmP7+91/8fx/5vyf9+6+/VYHbhcL5EyZzUN8aML+TT5g+ChmrzjYPH2qdqV16
NJs25BtD8dhUNEg1pR4Cch2RP6wE0kRo302x9m3Q7szJ2L+nvTG/n+crsl3BDVfRZtMRg/Yc+C+L
Yeu6vhutK+VXANs9U0fdoK6b73YK3Hq6UfxJPWOyZuEIlmGq+PguPh6zelMAe/0s6GV7S7O+7KIG
ykDwcDhfOI+W77UKHRdeCXev3Hq0nSEFzVUm6l73WrceGt6HQ+cOWOVQ5TFV7wU4HXFDt63uGIMT
PZ9Qa8YzXPUfL+PHQn6iyTZHjIdcTGj1Snj0WrMXmfzLyOj1Is2Q8NsbNdHNYEL+KACJWeOH6101
dGzFgw7aLUiJ2IgVm070WCD3LFZEMK4zm3lfrUDdWmIoK5PYjbO4OkOaoYSGZG4yOpbfEsSQAxwE
5ith2cZ2kTvLQC13XGejkY25YlnnEW+V2yGZBe3hgiWoN5ybpPe+cGlLeAzzPeSJa6BRTZMCRcpO
wrosZAYrKfLh+0pkqgnsk8zHtpNlr7v0VNsaJOu82W7AxMNMQ8/NsqlrD2e4yDGlu/dDZqM1Njka
PXND8nNVdTNv6EflNO51nB2dNxtxFnNK9LVC6ho7u2aOChLacs8NmeIjyZb3MioMoQjl6/5R06Fy
e5jl6EN3JlfVM9ud7E1l7SPs9onjMecWtUqBIo0mrKuT+cOf1N/9hxtL2BhL/bUQfqsA42izqWmG
L2e4bC1KHZrE3hhYFcB6iv1wIpve6/OrkqP5dHSJGO/1WjBfwRMa0Rewtn/o2VTZDxeqGErsdjQy
xmMw+eDfy3v4+n45NpshXFHP1doynsgYss3HQtv+dAzncXOrl/GUQN7v7FBM0LWm35NsotXr4mJd
tT71yMeyitBaXoeSEBy7uX86LUqMUcDqYH6zLoJ9pHAgX4jUf+tkIPL4hPrOHbHn3R6IdXUtK438
eGNsr4rs0R1FHm3K+YHDZu0i8RXdLGjCfou3icHVQ3bUJRhb8sZO3588BqWvgutePTJ+zgWbIkMX
Vk/jQ8JeKF7e6MkbC+7WtcF+P8ts1OGhorXsYLqr6eRNj1UrgRNDg/2vt/XmWTznMEihTfhEbVHb
zooAe3zKiHLy99nkSbIL/OtUYWwFfMdC8SOBZVjqn+fNzDJREc3uPrYUc5ew7niW4SNIGO93rZOR
Tf10ZXm/tel2Vw31/HBXKqJDT/HZYys2rlhggRKXF3xEnZ7N7aviFaabBb3GJysZQZZ4eKjXI/Zj
zTfaJ7gj2nBuiwM+aQy2PuVPZGUrI5T2o1KzbW210O9tiazN0fS+oRgB3L6Tid0iH43R+yQVrF6Z
S6rI22e9NJY+mPR0p8ZFxll7UhUXdaWwp76SKcn0WeUu2pXzFEKEb8Zyf4LyVrCNfSnTmfjTE8k6
l4SdH209evy7gqlyXRxcuMybHjV2QeTeX6xd+ohNduZxaChcQjWOOyAm2c0ZsFyTUHj2kjc2pjXC
5B4TrN8jNREOZ1oikXcVIrGsR2xbhy0I78Kn+Pqq2cjHs76RPGBklE/fZMzFfajcHMul7k+fzG5l
oa3Bv7F5eWjZ4FnbEGrExKU+jWQdXte+sq3zhO4ORp/NpW1cYW9uKIGjL9fMDrGE9iaidJtTxxBi
4VmAa7sN1qZujYbWmnwF02yHLc3XjenL8zNc11TBWHpY9cRpkgvm6fGl3rh16rHzuhlN5ecRNvGg
duOjnCJE3olP0FeVkzF7qKq8C/gE/+lX3PxJIUo/NtWy7bobz8ZFgETihHCEdOfxfXg/o7aILGoV
zw7N8rosf3pMSlc9GKNS3Cx0DLcuVZsyqmnuhAJSWJAQcV4R9md+zlC5dNcUUkepez5C7B9ibH2j
kU3qS7bAi8sv3ZbbrpvTYrZguX8yiU2SsPUpfQOVxCPFz2H05u9GvSo61+9JVb11Nh9FQZIFx9Jx
OD1nj0G80QHNzy1VyY14Sz8o0KbWzZAzz3s0QzhcEWrnEHuNR5L5a2U5BLYRhUJsiYz0wZgrN/nG
YXsDRiLM4rmAbH9Uw7WbiskgT6mM3DsU/3y/eKsp3M+Nh4+n8Jv86kHWdl+NBvSp1u3TufHQhGRL
3T75GtQVbgUseoJNSWgY23ipCtNdelO3VhvEPnkoAzqXXTgx81ozQag59NLtkNoW22b0N/+W64cg
f1lHxc39CWouDyHbSR80a8fSBs8lM+F29aseeeHoo/dGPtPtMYzr8XN6piiMPELkm9ElM3SOK28o
FonUJlnCppUkw2SOKk77M486vp1doAOh2KroNZnWRWihfN9+sA1kMHo1TXLo6P7zxz/M/PtdAhsQ
F8rne9xNlX58w3i+GXhbyqea3LMG0IV5LJTl7GCM61V+hnXOttjGld/NR5GT0XHoRew/P37Sc0qf
o3vfrQmf0dl4fT/fGeqgZ1Rjply3p9tZhql8PULQoMpYaI0E8X1RhKOaa6yjA1/BvohC6pgmrunO
SyO40oJSD2UdGnqn59EYSyO2tY6xLxiXI/Iv4FM3s4J6GBOlAPn9zbC7eTvGog8N4u4VJqKprTr6
yS1ZttBzJKg7Vl6v3S4NxCV/oUt/QEu9SPKvP666+6abH3vnKXvru4Ut25EzKnzPIN8Lv6D7m84y
ZtllAxm2cqIM89TNZhe5cE/FFXngp1nzdNW5kDmVQ7fu8Ojoos9wXFcE48gc6lYZ+FFmulVQjXO+
jOyZxCuX7gCEIe2FaIb3//R/977PvW/RzrKyyiuLoJ5+jGn5v6ih1xXdWk6DxmSj2QrMck8S1hnJ
HKWPXDESKab7qTugIbqkKmh+ecWWcY3ZvHddC1Q5FnEwH9tk5IUiRIczcgnHU8vgm7IqlaEedKo/
+QTxxir9U89UT6lr9Ja16SG0TyJRnINUs6HSCaw+7YC32ms05n7KWwApX1Gt2VVLPfdHGT7zlvp7
X/Wms3aVZencGtT5+R9+x8vwdElLd8oOGdNlWMco/g45xtuz3c195uXwXMlt2C56zjbnjwp1+d2T
9vExPdE0xBhQJmakDJ8BYnzacH/0xTqszW50hB0B45u/8K/fiOdn5IKWpnt6/+4bNEWGK4DRswN1
hu0jGfOgyoF3Kg3v5lWIJhT1R1Tf4Rj+9Lmr90IM1fwOqBbM627xU2d0XpUZtpb+1Xg8KeUjSzxq
vvlHws47/grkvNFDbrjU9bxabVy4c5vzMj8Doze+RgE5IirWHm/fYLu1p4N94Ca8i/dVN6+lVoak
QDkp/ZljBD/44ucXqWHnJRtxnI8oPMUtdb7ykExVHxyBvz067HoCZfNmo6RIf51mImxPYz0+0CkC
lqYaPoXVGs2GVNuw3z9X1BeTyWgvq0QCfrc608A5nOvRPdxteV8LFd2lYZnNyNvM6Ms1F7IK6pMx
zfdPDGLW+j9/4C3+SIYROIeG4aYxJv+VvjfPoduF4vtxZUwWhTOg/YViSzwDmlLzECEH3c9U3ytl
NvsC8yGn+ki3+hWMwXrVR+B25EKQrH+88VsXNnpmlyfWymCXre+ufgSp7wasfg9Qz4fPGEHmlA6+
ZWPrzfvTzYT6MwbUIPWElv7HI3v9LsgLmm9CZjEqlJVJIqL+/OTih2Fci0EozOcqG7StVipLv8M7
DR8YwVwUol8+Wt1OQd1/nmIKsbh7412Crh2pW+sMtnouyOa2Nup+6edQ+vsqnL3cYbTIjPDndzB+
oHfW7Ivwidbf4kCG2FyhITB7HQTRs2g4XIxOtOyyRUt+xQbStox9ckuC+/6BsX8dk4Qh9ngD17ZC
KJqc3o3bTxujJR+GXIloN9bHvbx56W5IvfgqG/S0VWc5cU4OduPTO5lf2TUEtmumUOLghkZPniyk
9znBuG2Hbnx3mqRsAt7AJ/f0SabjZRuhvtikVJ/iHRqK9NHD97FyCUsuEhtmMFTw4uqLHbOxE3pr
ihD0ytDDEtKP0Zuz1ipL3qSn/EIQ6Z9OA8/G4rG5/7w9NnibEtQoKOiWrt71mO3FGB0b90n95Doy
usw/tOWdgO7K5y1h1SsT0KMQe2yo1atjt6bwUcg3PJF1UiRTkT6I4l84H//8Fzu+plRJ6mtNABX3
ej7dIklJW8EiPNyK+htdUh1c6Y7pUp9s7B7AIZu7PwhHQtwt9T9Ck0YXqnY7r+uaV2BBLDWYFsOl
7qZcfx3ltW96OOO/ejbNdxojJbvk1ORwUPfh/TPC9WUYVC8j5LEvKiJIv/sbDZ2yzpb+XMG4Xgfk
OJ+rZL7Mqgxzd+CpRkzVI/1TaxRnf1lRVwrMRAz2kaUsfo2G/BGh+arv3qh8H4GakmAj5gqHHJb8
To3kIv3jX7wcDjiknzRh18s4Qyc1uz9+elCkjSQv/TwEJVMy4qRSCGbRvjCuxjiblYFf+jth2Ajy
LGMHXNowqOOLbqP92iPtrPDoI/sr6vqc1s3H9Eog4WoHb4dz1xHl1L0h3d8/Cy+wk97ZRhXksncK
5V/e1tNvCL/rK9pK8PpiParKz384h4ozaDW/BTRVtov1S1Kxhn73nLLWmjs55nOOxvQcPeF8ZjOZ
0En1GD6ujmhjDTsiba9lNzpxXaLH+1tjez/e6qmxr2ewz2EaKsO8r/sVC0x4cLcLWc1qZLAoriql
PlQt2ROzNJpn31noaHwLshK8oh7PfqSDswnW1OAaVLPYNlzIpzgNJW43McrZlxZmKF2adnyGxrp+
SrCyDTUcL1GMpp0pj9D0JqYu52pI/J5mE6r5GdCtcltnk3U+p3DjYpeMMYVsNDvRhLk78RRP3tMY
m2/TQ/KmCXUfH9OY8O7UIkWNhVDBsWAM2tYp4YPzDoeX1+D1XnFLIcx5hVqP46Ebvp6lonbyn9Rs
AivrP8/VEXZDoWJVb+du8QsmuvX6B1vZXHn0x7PMSHbwtssC9EmVjsB7nvLwsoK0Zvus6ZFGczHk
5OSSjaX2ldA3/ahEUd9TRh6uqMq/6wfVXu3mfkpbOB6Q9uNv/+i7mfob3N2suzfVa69E1T4TsZee
Tmh04q6Ex/p9XPqj3s07VQ3/8DQf4yqbLBzb8Fg/j9SZv3zd2pdAl8NcUOjumu+90R/3BITLDHRr
cTzrl/wFDTAnRGYcevM53lRwcTsdO2iyjNE9nFzonYOG/SUPDqfKyJGBLx4N4fvIZkRvnHyI1B01
rLvhiRm+XNHi/0J58aPLfHzC51tucd6qk0eb19b8k3dZrKYGU756iI5cNi3jqxtD1W+P4D9GA+cX
tEvE8w6ukG2EkchsO9ekShQf7b/XdcjvQ8TI9TDYiBYMQuG11ZO5fbU8WvI5kYRAqKfH90JgJz0/
WJc16jWCfW3lZxRzZLwH0cLnVBsKFGsEkOgwslPtELzGBKpuuLu38CodPpH3pta7+BhzapcyIGJy
eJepX8ayvL/CfXKBoGjUvTHAX/eXt6i20aRsmf89nMvXd+GLQcfehm7CBm121PDut25G9MABlh+E
4qRMa6bM9hmc+X0IF96WMOEbcfD5VluqvlzizZjucqW27RL7k+wnbF5fSkj2nkpEh7t5M3mvI9gx
NaVqdTYzatlNi8IpNan5EotkUKqGwDVmJQ7U9z6bd6rt/8l/6ou82cTIqCLZ2e+pUWYvRHnNO//8
U6gEm33Snhx0hOt6UKiaiQGbs8+jVMaXm1B74QnTzesqOBze15ArnBeazp3WgpdzB2rifWHMxzQm
cIolibQL35mEyyb66WM4h2HSTStyrcB7zv7CT5DHrkoOv/HBW/N0QWPn1bNy9zhEvUIiBlv0BT1D
7Up1X61Q/6tXXvHOZJ0YXDf9/D+/U850121Zx/RWvgJmUkhDnlre5FHEwdUvY+psXM+Ta9xcNws/
I1xp1V0v2HH748NU69xVMmvR4Q2SygfUK9cdG44RNqHth9vCw/SOn9MsRPhdmVQN6IMN/PPcQmUl
UbhZ83YtWKIDUBh8geMV53csbFMJPRuTx0G3Zqi/VA8f1lPkY1XbB4wRKZEQ7s0Tva5FyMiejQJS
c2lYeFpQv9dbhYP6MwcY319FNu3Io0L2zuBCODtS0ueT1YB+lDO8ZQfHm7fEm2FuDJO0931uDMLo
5kCe2peajx6j+VHk7x8/JFTXLY8v1qMOcp121D8756TnrnaMIq590O1bXBt9q7/ecCuaG1n8Vz1N
VlUo+/17FYpj8EqoUq1adC9znZqZd8kmr2oALsxhNIyxu/SbrYliR6+ovnLK+sdHAesqh7WC1xMh
7QMTbb/qm4bBbrPki3cF5aHV6Y83iWNgcL88FK5b3fHma1GncPJ2Ghm1/YBodF+XKJyOJpEurcTm
B/+af3yWumaXe+yXNy0pUnEUPgdGo7tSwaZWTXx9zXP38wtoqW/sr4I+6XmH8Sg2cowTtXrVJLUb
CX48BrNLysTf+ou8fobYiD40GZTkxMlNGl9CaeT3jBW7ofkzH4KUK7tesqYciXoyhGKp7Or1zy95
8NZJaRri8vmmQMrWxWTUrQ3il/4ny+fQJPLifyaeE1p4XcAk4i+flN3nCepKdKnph1qyduTkCKcg
fdLdog/jvYpzFHN+hR0tfiHCXU8hLL8fZv4tr0lw1BvgCdHw8rwz4j45HuiKi6n9PN7Qn37xelkd
WeWMZ/TAzBQMQaAhe/Ft3ZMymwE5Hyl89fyM5vkK/e//UL9d37xZcc9PiJSthHfPpPXmn37Pcvwh
YjA4bLo9eAJKXF2w8eLbf/SASusjtlXhgwatGQgwECYayn1d0x8PtQ0aEv4lcskcrmP9x5ewufAY
tjlTFf14kbXfd2zw8uKKvMYCrFvSZEyPA7iyyjwU3r4fw1t7kmzDku+wgUM3m/I+tcBbSXO4+R7T
bj54eQlIJWuqGSivx+srF8DVtJ6qpnGqmbhqXbir/OGXR7MlT5nyst5Cd1sW1vPCO2BZv8OuvArY
6GzPJXpvpHNYlu9Dxvr3qYRnlj3D9Qqbmfjrj7xTajQINvts0uK0gsMMz4WvvuuZf5MKKJd9yaf4
rLpp7zsqoG/wCpF305DQxUGElvmCA+EhsUHMe/kPL+Qur8Cbx1dqKfNKkLG61Bd7X5IIdoGQULzw
oMlVQkDISmxy8kbfmFD0TGGLYge7axESqt7tJzxcXsfRLvSSZX5zcIzfe7rku2R8nJiFwtV0DVcO
aMma2F4Lx4GIIRfsNsYvf2wU7rQh/LIeN0kIYrT40d/6hMHfZFP4h7dE1w+L71nJKVb/VajndDFj
U31wodiHDXbmLULUuZ0bdE1TB9uhs2N/+NlMXZXaW+2YzBMaYvjxvTV9QzIARf3P74WKt/vU4/SR
RvmXT+1lPaHXyyCGV7y2ybS+6h07NT38+CdWkX/I1sLoFnCVP0dS773GG25clAOuBgk7jv/wRrN4
WsAdnTGcRsFB7FE1PvDiZ4uxT7pffeqQOAcHq0yzmHDgtAJyq1Lp8rzQoGVxD/qtRkRY9K7vW+ai
rXPdUP/oX7u+1B4yHLNbuuQBnY3HYBNCHm25JU9axthRDCjUyCmciFl6Q1JOOlr0NxSWfLfk0Qb4
Pi9oVE9fY9jF21H55TnjQEvUkIHMP71b+P/Xm8ihaODef9fYvl1eHbnq+A3b644Reck7bKhcAj+9
9LTymbRTg3vg9cv2x3Pq0REwgYWnhPIl5bqmKdsKLfyJIOXsdHNw1FuAz7jFP94/65dslslwtbE9
67YxPz7xqDQXoQ83jc1lrSVq8NObhb9HBtuvfAmC4FPjYAesm+LXVgCejw74sKwHjWQgIyrClUmU
+ehmbMlTctdxIjVqvWTMOKUCMk5YDzn64ZMxM58xRFcnw4ffetxPb68vzaA7aafWE+43b1juj6q0
ey58VyLglOlMf7x//o0Pp9vWwu9OHW2vL/KHh8HTYDUp4mqG1ldrMmvjqiOKe35D7psJNYTb4P1Z
f22mtl74kJoxvxMs5e/froD/+tdff/2v3w6Dd3MrXsvGgKGYhv/4760C/3G9Xf+D54U/2xBIfy2L
v//9zw6Ev79d8/4O/3tonsWn//vff4mbP3sN/h6a4fr6f4//a7nUf/3r/wAAAP//AwCfQckA4CAA
AA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a0b45f9bc6c4589-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 09 Jul 2024 21:05:39 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=IuvCm3DYH_Yj2KCjQfa873zjAj_2TgaF47eD6tQ4Mhs-1720559139-1.0.1.1-fWDjNt6ARNNwSwU4ZoyX.VoMhynDVIi97V54zsXBMuMg_KjRGid.vTsH.YWP4cEbPWj_vdlZjnfl3ef4S90Eog;
path=/; expires=Tue, 09-Jul-24 21:35:39 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=uolQOZ2C52Hd5W7TXNWyFaYk4FEIIwP0B2MH49GGYtA-1720559139009-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400
openai-model:
- text-embedding-ada-002
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '18'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999953'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5f80532d772393d55159f71cbd4e8211
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,258 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Scorer. You''re an expert scorer, specialized
in scoring titles.\nYour personal goal is: Score the titleTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an integer score between 1-5 for the following title: ''The impact
of AI in the future of work''\n\nThis is the expect criteria for your final
answer: The score of the title. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '997'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJkXh6z3EfmS24VIKd3az5QmUI6","object":"chat.completion.chunk","created":1720559136,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a0b45eb19a3c00b-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 09 Jul 2024 21:05:36 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=pA7SjF9QjLel4TzQ_lNj63W_TlcZBVsYreOxByhCguY-1720559136-1.0.1.1-HZhSIVb4ZIrgcL3DwhR7q53vNdieKNmEv_0ZAHDbmBBkD891hDrzxqLpBZSw7j_mFtCPQEjxpAMjD5JI3o8NEw;
path=/; expires=Tue, 09-Jul-24 21:35:36 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=OblnrTSQSq8R858tQhKPz9cFRCWv.MPPI1wxnvjeHJI-1720559136855-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '96'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999771'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ee2fc8fd37b03ee0bcf92ff34f91a51c
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "4"}, {"role": "system", "content":
"I''m gonna convert this raw text into valid JSON."}], "model": "gpt-4o", "tool_choice":
{"type": "function", "function": {"name": "ScoreOutput"}}, "tools": [{"type":
"function", "function": {"name": "ScoreOutput", "description": "Correctly extracted
`ScoreOutput` with all the required parameters with correct types", "parameters":
{"properties": {"score": {"title": "Score", "type": "integer"}}, "required":
["score"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '519'
content-type:
- application/json
cookie:
- __cf_bm=pA7SjF9QjLel4TzQ_lNj63W_TlcZBVsYreOxByhCguY-1720559136-1.0.1.1-HZhSIVb4ZIrgcL3DwhR7q53vNdieKNmEv_0ZAHDbmBBkD891hDrzxqLpBZSw7j_mFtCPQEjxpAMjD5JI3o8NEw;
_cfuvid=OblnrTSQSq8R858tQhKPz9cFRCWv.MPPI1wxnvjeHJI-1720559136855-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA2xS22rjMBB991eIeY4X5+K68WsoXbplt6WUQjfFKIp8SWSNkMabpiH/XuS4sRvW
D2KYM+fCjA8BY1CtIWUgSk6iNiqcbxZ3anfPy6sPnu92k23iVvttUl7/XPz+BSPPwNVGCvpi/RBY
GyWpQn2ChZWcpFcdJ5MojufjadICNa6l8rTCUDjDcBJNZmEUh+NpRyyxEtJByv4GjDF2aF8fUa/l
O6QsGn11aukcLySk5yHGwKLyHeDOVY64Jhj1oEBNUvvUulFqABCiygRXqjc+fYdB3e+JK5Wtdrc3
L83Y7h8Xm4/7l3/b13nx8Hz3MPA7Se9NGyhvtDjvZ4Cf++mFGWOged1ynwRa+ach09AFnTHgtmhq
qclHh8MSnB9eQjo7wrfRY/C/+q2rjue1KiyMxZW72BLkla5cmVnJXZsWHKE5WXi5t/Z8zbeLgLFY
G8oIt1J7wevuetD/Lz0YdxghcTXgxEEXD9zekayzvNKFtMZW7SkhN9k6Tq6mUZLPIwiOwScAAAD/
/wMAE8hqg9MCAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a0b45ef8871c00b-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 09 Jul 2024 21:05:37 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '298'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999969'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_cea16690999d7a4128fd55687dc31397
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,258 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Scorer. You''re an expert scorer, specialized
in scoring titles.\nYour personal goal is: Score the titleTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an integer score between 1-5 for the following title: ''The impact
of AI in the future of work''\n\nThis is the expect criteria for your final
answer: The score of the title. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '997'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9jCJjSE1CUTbcdPQgWhGnINQBfDJr","object":"chat.completion.chunk","created":1720559135,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a0b45e24b19bd4d-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 09 Jul 2024 21:05:35 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=N7yNe.ilaHt2MJPusthFVyL5PrE._f_nyf4RfU.oIv0-1720559135-1.0.1.1-oCOj_tvpNYp16zBvNbxW.TwSHAFXRiB_i23X4XBw_o01D1_7OKj_HwRNZWdwg9DjDh_C_FSMKTonmzQmsUmtdg;
path=/; expires=Tue, 09-Jul-24 21:35:35 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=aiUOV0PnMjHles7YFoHcFY7PK2Ag6MdKr0GWZzZ_rZo-1720559135403-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '105'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999771'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_759b74b995b84a531eae7df3eddf1196
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "4"}, {"role": "system", "content":
"I''m gonna convert this raw text into valid JSON."}], "model": "gpt-4o", "tool_choice":
{"type": "function", "function": {"name": "ScoreOutput"}}, "tools": [{"type":
"function", "function": {"name": "ScoreOutput", "description": "Correctly extracted
`ScoreOutput` with all the required parameters with correct types", "parameters":
{"properties": {"score": {"title": "Score", "type": "integer"}}, "required":
["score"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '519'
content-type:
- application/json
cookie:
- __cf_bm=N7yNe.ilaHt2MJPusthFVyL5PrE._f_nyf4RfU.oIv0-1720559135-1.0.1.1-oCOj_tvpNYp16zBvNbxW.TwSHAFXRiB_i23X4XBw_o01D1_7OKj_HwRNZWdwg9DjDh_C_FSMKTonmzQmsUmtdg;
_cfuvid=aiUOV0PnMjHles7YFoHcFY7PK2Ag6MdKr0GWZzZ_rZo-1720559135403-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA2xS22rcMBB991eIeV4XX9ZJ1m8lEGgKSZtSUnLBKPLYq40sCWmcdFn234u8ztpZ
6gcxzJlzYca7iDGQNZQMxJqT6KyKV5vL680mzX58Xd4l773D7O63vMjP7rfrKwuLwDAvGxT0wfoi
TGcVkjT6AAuHnDCopudZUhSrNC8GoDM1qkBrLcVLE2dJtoyTIk7zkbg2UqCHkj1GjDG2G94QUdf4
F0qWLD46HXrPW4TyOMQYOKNCB7j30hPXBIsJFEYT6pBa90rNADJGVYIrNRkfvt2snvbElareb27S
b28/v7/VRXtP13X75+GMF+hmfgfprR0CNb0Wx/3M8GO/PDFjDDTvBu4vYRze9mR7OqEzBty1fYea
QnTYPYEPw09QLvfwaXQf/a9+Hqv9ca3KtNaZF3+yJWikln5dOeR+SAuejD1YBLnn4Xz9p4uAdaaz
VJF5RR0EL8brwfS/TGAxYmSIqxmniMZ44LeesKsaqVt01snhlNDYSmByvsrzPGkg2kf/AAAA//8D
AKtPZkLTAgAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a0b45e5ffd7bd4d-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 09 Jul 2024 21:05:36 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '153'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999969'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_36cd16b74a2085c72139d09309d21e39
status:
code: 200
message: OK
version: 1

View File

@@ -46,64 +46,64 @@ interactions:
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
string: 'data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
@@ -114,20 +114,20 @@ interactions:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89de7fa17ed72878-MIA
- 89ed158b8bf0a566-MIA
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Thu, 04 Jul 2024 10:40:41 GMT
- Sat, 06 Jul 2024 05:09:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=m9ZbE3d_dSMsckOHqfK8mMIzKxCRI4vqsIelidShwVc-1720089641-1.0.1.1-xigQSnpNWopswY4gNuGCIgc2MR64bcUc6bpFwdeThTINo0jBkROlwHpIGyjOBQo3goJboqk_kUa_XZby0or19g;
path=/; expires=Thu, 04-Jul-24 11:10:41 GMT; domain=.api.openai.com; HttpOnly;
- __cf_bm=5C3MG9ni0I5bZoHGzfXZq16obGaD1INR3_.wX4CRPAk-1720242582-1.0.1.1-fZiD6L1FdBiC0gqcmBK9_IaHhbHPQi4z04fxYQtoDc9KbYqPvxm_sxP_RkuZX_AyPkHgu85IRq9E6MUAZJGzwQ;
path=/; expires=Sat, 06-Jul-24 05:39:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=NgRTBkQl5NRUhXSdkH3Y7qNaA.KrG7PvxiuoOp9ip8w-1720089641502-0.0.1.1-604800000;
- _cfuvid=YP7Z3XnHPKQDU2nOhrLzkxr8InOv42HLWchJd1ogneQ-1720242582534-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
@@ -136,7 +136,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '109'
- '90'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -154,7 +154,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2d7ac1e1ca6d58559a236046b682021e
- req_36d283adbca77945609f0da658047ba0
status:
code: 200
message: OK
@@ -178,8 +178,8 @@ interactions:
content-type:
- application/json
cookie:
- __cf_bm=m9ZbE3d_dSMsckOHqfK8mMIzKxCRI4vqsIelidShwVc-1720089641-1.0.1.1-xigQSnpNWopswY4gNuGCIgc2MR64bcUc6bpFwdeThTINo0jBkROlwHpIGyjOBQo3goJboqk_kUa_XZby0or19g;
_cfuvid=NgRTBkQl5NRUhXSdkH3Y7qNaA.KrG7PvxiuoOp9ip8w-1720089641502-0.0.1.1-604800000
- __cf_bm=5C3MG9ni0I5bZoHGzfXZq16obGaD1INR3_.wX4CRPAk-1720242582-1.0.1.1-fZiD6L1FdBiC0gqcmBK9_IaHhbHPQi4z04fxYQtoDc9KbYqPvxm_sxP_RkuZX_AyPkHgu85IRq9E6MUAZJGzwQ;
_cfuvid=YP7Z3XnHPKQDU2nOhrLzkxr8InOv42HLWchJd1ogneQ-1720242582534-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
@@ -203,19 +203,19 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA2xS32vbMBB+918h7jkuTuwktd/WkcCgI6zdRmEtRlVkR5usU6UzbQj534scN3bD
/CCO++77wZ0PEWOgtlAwEDtOorE6znermzXiPr+xv17vVtn++636PcNNmrw8/IRJYODzXynog3Ul
sLFakkJzgoWTnGRQnS5nSXKdL7JpBzS4lTrQaktxhvEsmWVxMo+naU/coRLSQ8H+RIwxdujeENFs
5RsULJl8dBrpPa8lFOchxsChDh3g3itP3BBMBlCgIWlCatNqPQIIUZeCaz0Yn77DqB72xLUuza3W
i1SuV8vNw2L18m2dp/buy4+vI7+T9N52garWiPN+Rvi5X1yYMQaGNx33XqCTm5ZsSxd0xoC7um2k
oRAdDo/gw/AjFNkRPo0eo//VT311PK9VY20dPvuLLUGljPK70knuu7TgCe3JIsg9dedrP10ErMPG
Ukn4T5ogeN1fD4b/ZQDnPUZIXI8486iPB37vSTZlpUwtnXWqOyVUthQyWeZpmiYVRMfoHQAA//8D
ADLpRvfTAgAA
H4sIAAAAAAAAA2xS30/bMBB+z19h3XMzhbShJW8wiW1MGogixDRQ5DpOanB8ln1hK1X/d+Q0NKFa
HqzTfff90F22EWOgSsgZiDUn0Vgdn63dJl3d3rSv5xuf/b7Di/PLq/JUVYub5wwmgYGrZynog/VF
YGO1JIVmDwsnOcmgejJPk3SWZou0AxospQ602lI8wziAcZLFJ9OeuEYlpIec/YkYY2zbvSGiKeU/
yFky+eg00nteS8gPQ4yBQx06wL1XnrghmAygQEPShNSm1XoEEKIuBNd6MN5/21E97IlrXdxePlzN
/s6/rpZv3x+WF9P7nz++vdz/8iO/vfTGdoGq1ojDfkb4oZ8fmTEGhjcddynQyeuWbEtHdMaAu7pt
pKEQHbaP4MPwI+SzHXwa3UX/q5/6andYq8baOlz5oy1BpYzy68JJ7ru04Ant3iLIPXXnaz9dBKzD
xlJB+CJNEFz014PhfxnArMcIiesRJ4v6eOA3nmRTVMrU0lmnulNCZYsym59Ok3l1lkC0i94BAAD/
/wMAylx2sdMCAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89de7fa4e8742878-MIA
- 89ed158dee46a566-MIA
Connection:
- keep-alive
Content-Encoding:
@@ -223,7 +223,7 @@ interactions:
Content-Type:
- application/json
Date:
- Thu, 04 Jul 2024 10:40:42 GMT
- Sat, 06 Jul 2024 05:09:42 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -233,7 +233,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '209'
- '144'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -251,7 +251,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a66f76bc016b3f8752bac8c393e60578
- req_990566332b9b1851c581486c0a4da0e6
status:
code: 200
message: OK

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,333 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Researcher. You''re an expert researcher,
specialized in technology, software engineering, AI and startups. You work as
a freelancer and is now working on doing research and analysis for a new customer.\nYour
personal goal is: Make the best research and analysis on content about AI and
AI agentsTo give my best complete final answer to the task use the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete
final answer to the task.\nYour final answer must be the great and the most
complete as possible, it must be outcome described.\n\nI MUST use these formats,
my job depends on it!\nCurrent Task: Generate a list of 5 interesting ideas
to explore for an article, where each bulletpoint is under 15 words.\n\nThis
is the expect criteria for your final answer: Bullet point list of 5 important
events. No additional commentary. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '1237'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.34.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.34.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
The"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
impact"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
agents"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
on"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
remote"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
work"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
productivity"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
Ethical"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
considerations"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"-driven"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
decision"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"-making"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
How"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
agents"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
are"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
transforming"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
customer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
service"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
The"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
role"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
personalized"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
learning"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
experiences"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
advancements"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
healthcare"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"
diagnostics"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ce1Nupvw1SEEUL1MxkSS1S2KMYoY","object":"chat.completion.chunk","created":1718997333,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3e7d703517","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 897653f3e8ba7ba2-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Fri, 21 Jun 2024 19:15:33 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=9ch02HraQXiYJx8jBtYzKXOBjm4nToP.1sBISDFt9Gc-1718997333-1.0.1.1-Ykz1rbMzc2Zo8VV5rBwixPedTuO8s_38psrpuLCSy2B.YIyCCXWMGI_JT5WGQVp2gacOcxjWMSVhOOY85gf9QQ;
path=/; expires=Fri, 21-Jun-24 19:45:33 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=0srdhmUvYEBaQ2xn7BzySIPRoIiEPWzmvngtQRdnpUY-1718997333518-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '165'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '12000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '11999712'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- 92f00e3ecc754086e0ddf2d998f6f671
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,335 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Friendly Neighbor. You are the friendly
neighbor\nYour personal goal is: Make everyone feel welcome\nYou ONLY have access
to the following tools, and should NEVER make up tools that are not listed here:\n\nDecide
Greetings() -> str - Decide Greetings() - Decide what is the appropriate greeting
to use\n\nUse the following format:\n\nThought: you should always think about
what to do\nAction: the action to take, only one name of [Decide Greetings],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n\nCurrent Task: Say an appropriate
greeting.\n\nThis is the expect criteria for your final answer: The greeting.
\n you MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '1289'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
need"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
to"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
decide"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
on"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
an"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
appropriate"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
greeting"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
Decide"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
Greetings"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
Input"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
{}\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89e305e3c8e382f5-GIG
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Thu, 04 Jul 2024 23:51:24 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=y7BtDW9RWNaYoBExulKsMw50ppqr1itieWbcStDWqVc-1720137084-1.0.1.1-EYCEQ9jOimP45.FgXjdzWftUrV1HHm49W4wbcxFhbrj2DVC1LnMbz9.l.c._AqBRgFAE3xVolosvjmoFDAMPYQ;
path=/; expires=Fri, 05-Jul-24 00:21:24 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=pZBoWQ1_gTeUh2oe6ta.S2mxWtdaHvAtn6m2HszLdwk-1720137084219-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '335'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999700'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_b3f7e3c47df2641d6bef704ef3ae8a0f
status:
code: 200
message: OK
- request:
body: '{"messages": [{"content": "You are Friendly Neighbor. You are the friendly
neighbor\nYour personal goal is: Make everyone feel welcome\nYou ONLY have access
to the following tools, and should NEVER make up tools that are not listed here:\n\nDecide
Greetings() -> str - Decide Greetings() - Decide what is the appropriate greeting
to use\n\nUse the following format:\n\nThought: you should always think about
what to do\nAction: the action to take, only one name of [Decide Greetings],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n\nCurrent Task: Say an appropriate
greeting.\n\nThis is the expect criteria for your final answer: The greeting.
\n you MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:\nI need to decide on an appropriate
greeting.\n\nAction: Decide Greetings\nAction Input: {}\n\nObservation: Howdy!\n",
"role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"], "stream":
true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '1404'
content-type:
- application/json
cookie:
- __cf_bm=y7BtDW9RWNaYoBExulKsMw50ppqr1itieWbcStDWqVc-1720137084-1.0.1.1-EYCEQ9jOimP45.FgXjdzWftUrV1HHm49W4wbcxFhbrj2DVC1LnMbz9.l.c._AqBRgFAE3xVolosvjmoFDAMPYQ;
_cfuvid=pZBoWQ1_gTeUh2oe6ta.S2mxWtdaHvAtn6m2HszLdwk-1720137084219-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
know"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
the"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
How"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"dy"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89e305ea4abc82f5-GIG
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Thu, 04 Jul 2024 23:51:24 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '91'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999673'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_10032db16fa190e8435947a6aaa700ff
status:
code: 200
message: OK
version: 1

View File

@@ -1,6 +1,7 @@
"""Test Agent creation and execution basic functionality."""
import json
from concurrent.futures import Future
from unittest import mock
from unittest.mock import patch
@@ -10,9 +11,11 @@ import pytest
from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities import Logger, RPMController
ceo = Agent(
@@ -84,6 +87,87 @@ def test_crew_config_conditional_requirement():
]
def test_async_task_cannot_include_sequential_async_tasks_in_context():
task1 = Task(
description="Task 1",
async_execution=True,
expected_output="output",
agent=researcher,
)
task2 = Task(
description="Task 2",
async_execution=True,
expected_output="output",
agent=researcher,
context=[task1],
)
task3 = Task(
description="Task 3",
async_execution=True,
expected_output="output",
agent=researcher,
context=[task2],
)
task4 = Task(
description="Task 4",
expected_output="output",
agent=writer,
)
task5 = Task(
description="Task 5",
async_execution=True,
expected_output="output",
agent=researcher,
context=[task4],
)
# This should raise an error because task2 is async and has task1 in its context without a sync task in between
with pytest.raises(
ValueError,
match="Task 'Task 2' is asynchronous and cannot include other sequential asynchronous tasks in its context.",
):
Crew(tasks=[task1, task2, task3, task4, task5], agents=[researcher, writer])
# This should not raise an error because task5 has a sync task (task4) in its context
try:
Crew(tasks=[task1, task4, task5], agents=[researcher, writer])
except ValueError:
pytest.fail("Unexpected ValidationError raised")
def test_context_no_future_tasks():
task2 = Task(
description="Task 2",
expected_output="output",
agent=researcher,
)
task3 = Task(
description="Task 3",
expected_output="output",
agent=researcher,
context=[task2],
)
task4 = Task(
description="Task 4",
expected_output="output",
agent=researcher,
)
task1 = Task(
description="Task 1",
expected_output="output",
agent=researcher,
context=[task4],
)
# This should raise an error because task1 has a context dependency on a future task (task4)
with pytest.raises(
ValueError,
match="Task 'Task 1' has a context dependency on a future task 'Task 4', which is not allowed.",
):
Crew(tasks=[task1, task2, task3, task4], agents=[researcher, writer])
def test_crew_config_with_wrong_keys():
no_tasks_config = json.dumps(
{
@@ -136,11 +220,57 @@ def test_crew_creation():
tasks=tasks,
)
assert (
crew.kickoff()
== "1. **The Rise of AI in Healthcare**: The convergence of AI and healthcare is a promising frontier, offering unprecedented opportunities for disease diagnosis and patient outcome prediction. AI's potential to revolutionize healthcare lies in its capacity to synthesize vast amounts of data, generating precise and efficient results. This technological breakthrough, however, is not just about improving accuracy and efficiency; it's about saving lives. As we stand on the precipice of this transformative era, we must prepare for the complex challenges and ethical questions it poses, while embracing its ability to reshape healthcare as we know it.\n\n2. **Ethical Implications of AI**: As AI intertwines with our daily lives, it presents a complex web of ethical dilemmas. This fusion of technology, philosophy, and ethics is not merely academically intriguing but profoundly impacts the fabric of our society. The questions raised range from decision-making transparency to accountability, and from privacy to potential biases. As we navigate this ethical labyrinth, it is crucial to establish robust frameworks and regulations to ensure that AI serves humanity, and not the other way around.\n\n3. **AI and Data Privacy**: The rise of AI brings with it an insatiable appetite for data, spawning new debates around privacy rights. Balancing the potential benefits of AI with the right to privacy is a unique challenge that intersects technology, law, and human rights. In an increasingly digital world, where personal information forms the backbone of many services, we must grapple with these issues. It's time to redefine the concept of privacy and devise innovative solutions that ensure our digital footprints are not abused.\n\n4. **AI in Job Market**: The discourse around AI's impact on employment is a narrative of contrast, a tale of displacement and creation. On one hand, AI threatens to automate a multitude of jobs, on the other, it promises to create new roles that we cannot yet imagine. This intersection of technology, economics, and labor rights is a critical dialogue that will shape our future. As we stand at this crossroads, we must not only brace ourselves for the changes but also seize the opportunities that this technological wave brings.\n\n5. **Future of AI Agents**: The evolution of AI agents signifies a leap towards a future where AI is not just a tool, but a partner. These sophisticated AI agents, employed in customer service to personal assistants, are redefining our interactions with technology. As we gaze into the future of AI agents, we see a landscape of possibilities and challenges. This journey will be about harnessing the potential of AI agents while navigating the issues of trust, dependence, and ethical use."
result = crew.kickoff()
expected_string_output = "1. **The Rise of AI in Healthcare**: The convergence of AI and healthcare is a promising frontier, offering unprecedented opportunities for disease diagnosis and patient outcome prediction. AI's potential to revolutionize healthcare lies in its capacity to synthesize vast amounts of data, generating precise and efficient results. This technological breakthrough, however, is not just about improving accuracy and efficiency; it's about saving lives. As we stand on the precipice of this transformative era, we must prepare for the complex challenges and ethical questions it poses, while embracing its ability to reshape healthcare as we know it.\n\n2. **Ethical Implications of AI**: As AI intertwines with our daily lives, it presents a complex web of ethical dilemmas. This fusion of technology, philosophy, and ethics is not merely academically intriguing but profoundly impacts the fabric of our society. The questions raised range from decision-making transparency to accountability, and from privacy to potential biases. As we navigate this ethical labyrinth, it is crucial to establish robust frameworks and regulations to ensure that AI serves humanity, and not the other way around.\n\n3. **AI and Data Privacy**: The rise of AI brings with it an insatiable appetite for data, spawning new debates around privacy rights. Balancing the potential benefits of AI with the right to privacy is a unique challenge that intersects technology, law, and human rights. In an increasingly digital world, where personal information forms the backbone of many services, we must grapple with these issues. It's time to redefine the concept of privacy and devise innovative solutions that ensure our digital footprints are not abused.\n\n4. **AI in Job Market**: The discourse around AI's impact on employment is a narrative of contrast, a tale of displacement and creation. On one hand, AI threatens to automate a multitude of jobs, on the other, it promises to create new roles that we cannot yet imagine. This intersection of technology, economics, and labor rights is a critical dialogue that will shape our future. As we stand at this crossroads, we must not only brace ourselves for the changes but also seize the opportunities that this technological wave brings.\n\n5. **Future of AI Agents**: The evolution of AI agents signifies a leap towards a future where AI is not just a tool, but a partner. These sophisticated AI agents, employed in customer service to personal assistants, are redefining our interactions with technology. As we gaze into the future of AI agents, we see a landscape of possibilities and challenges. This journey will be about harnessing the potential of AI agents while navigating the issues of trust, dependence, and ethical use."
assert str(result) == expected_string_output
assert result.raw == expected_string_output
assert isinstance(result, CrewOutput)
assert len(result.tasks_output) == len(tasks)
assert result.raw == expected_string_output
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sync_task_execution():
from unittest.mock import patch
tasks = [
Task(
description="Give me a list of 5 interesting ideas to explore for an article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
),
Task(
description="Write an amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
),
]
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=tasks,
)
mock_task_output = TaskOutput(
description="Mock description", raw="mocked output", agent="mocked agent"
)
# Because we are mocking execute_sync, we never hit the underlying _execute_core
# which sets the output attribute of the task
for task in tasks:
task.output = mock_task_output
with patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync:
crew.kickoff()
# Assert that execute_sync was called for each task
assert mock_execute_sync.call_count == len(tasks)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_process():
@@ -157,9 +287,11 @@ def test_hierarchical_process():
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"),
tasks=[task],
)
result = crew.kickoff()
assert (
result
result.raw
== "1. 'Demystifying AI: An in-depth exploration of Artificial Intelligence for the layperson' - In this piece, we will unravel the enigma of AI, simplifying its complexities into digestible information for the everyday individual. By using relatable examples and analogies, we will journey through the neural networks and machine learning algorithms that define AI, without the jargon and convoluted explanations that often accompany such topics.\n\n2. 'The Role of AI in Startups: A Game Changer?' - Startups today are harnessing the power of AI to revolutionize their businesses. This article will delve into how AI, as an innovative force, is shaping the startup ecosystem, transforming everything from customer service to product development. We'll explore real-life case studies of startups that have leveraged AI to accelerate their growth and disrupt their respective industries.\n\n3. 'AI and Ethics: Navigating the Complex Landscape' - AI brings with it not just technological advancements, but ethical dilemmas as well. This article will engage readers in a thought-provoking discussion on the ethical implications of AI, exploring issues like bias in algorithms, privacy concerns, job displacement, and the moral responsibility of AI developers. We will also discuss potential solutions and frameworks to address these challenges.\n\n4. 'Unveiling the AI Agents: The Future of Customer Service' - AI agents are poised to reshape the customer service landscape, offering businesses the ability to provide round-the-clock support and personalized experiences. In this article, we'll dive deep into the world of AI agents, examining how they work, their benefits and limitations, and how they're set to redefine customer interactions in the digital age.\n\n5. 'From Science Fiction to Reality: AI in Everyday Life' - AI, once a concept limited to the realm of sci-fi, has now permeated our daily lives. This article will highlight the ubiquitous presence of AI, from voice assistants and recommendation algorithms, to autonomous vehicles and smart homes. We'll explore how AI, in its various forms, is transforming our everyday experiences, making the future seem a lot closer than we imagined."
)
@@ -194,8 +326,10 @@ def test_crew_with_delegating_agents():
tasks=tasks,
)
result = crew.kickoff()
assert (
crew.kickoff()
result.raw
== "AI Agents, simply put, are intelligent systems that can perceive their environment and take actions to reach specific goals. Imagine them as digital assistants that can learn, adapt and make decisions. They operate in the realms of software or hardware, like a chatbot on a website or a self-driving car. The key to their intelligence is their ability to learn from their experiences, making them better at their tasks over time. In today's interconnected world, AI agents are transforming our lives. They enhance customer service experiences, streamline business processes, and even predict trends in data. Vehicles equipped with AI agents are making transportation safer. In healthcare, AI agents are helping to diagnose diseases, personalizing treatment plans, and monitoring patient health. As we embrace the digital era, these AI agents are not just important, they're becoming indispensable, shaping a future where technology works intuitively and intelligently to meet our needs."
)
@@ -360,44 +494,7 @@ def test_api_calls_throttling(capsys):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_full_output():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
allow_delegation=False,
verbose=True,
)
task1 = Task(
description="just say hi!",
expected_output="your greeting",
agent=agent,
)
task2 = Task(
description="just say hello!",
expected_output="your greeting",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task1, task2], full_output=True)
result = crew.kickoff()
assert result == {
"final_output": "Hello!",
"tasks_outputs": [task1.output, task2.output],
"usage_metrics": {
"total_tokens": 348,
"prompt_tokens": 314,
"completion_tokens": 34,
"successful_requests": 2,
},
}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_kickoff_for_each_full_ouput():
def test_crew_kickoff_usage_metrics():
inputs = [
{"topic": "dog"},
{"topic": "cat"},
@@ -416,14 +513,11 @@ def test_crew_kickoff_for_each_full_ouput():
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], full_output=True)
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
assert len(results) == len(inputs)
for result in results:
assert "usage_metrics" in result
assert isinstance(result["usage_metrics"], dict)
# Assert that all required keys are in usage_metrics and their values are not None
for key in [
"total_tokens",
@@ -431,49 +525,8 @@ def test_crew_kickoff_for_each_full_ouput():
"completion_tokens",
"successful_requests",
]:
assert key in result["usage_metrics"]
assert result["usage_metrics"][key] > 0
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.asyncio
async def test_crew_async_kickoff_for_each_full_ouput():
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], full_output=True)
results = await crew.kickoff_for_each_async(inputs=inputs)
assert len(results) == len(inputs)
for result in results:
assert "usage_metrics" in result
assert isinstance(result["usage_metrics"], dict)
# Assert that all required keys are in usage_metrics and their values are not None
for key in [
"total_tokens",
"prompt_tokens",
"completion_tokens",
"successful_requests",
]:
assert key in result["usage_metrics"]
# TODO: FIX THIS WHEN USAGE METRICS ARE RE-DONE
# assert result["usage_metrics"][key] > 0
assert key in result.token_usage
assert result.token_usage[key] > 0
def test_agents_rpm_is_never_set_if_crew_max_RPM_is_not_set():
@@ -496,14 +549,10 @@ def test_agents_rpm_is_never_set_if_crew_max_RPM_is_not_set():
assert agent._rpm_controller is None
def test_async_task_execution():
import threading
from unittest.mock import patch
from crewai.tasks.task_output import TaskOutput
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sequential_async_task_execution_completion():
list_ideas = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
description="Give me a list of 5 interesting ideas to explore for an article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
async_execution=True,
@@ -521,40 +570,188 @@ def test_async_task_execution():
context=[list_ideas, list_important_history],
)
sequential_crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[list_ideas, list_important_history, write_article],
)
sequential_result = sequential_crew.kickoff()
assert sequential_result.raw.startswith(
"**The Evolution of Artificial Intelligence: A Journey Through Milestones**"
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_single_task_with_async_execution():
researcher_agent = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
list_ideas = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Bullet point list of 5 important events. No additional commentary.",
agent=researcher_agent,
async_execution=True,
)
crew = Crew(
agents=[researcher_agent],
process=Process.sequential,
tasks=[list_ideas],
)
result = crew.kickoff()
assert result.raw.startswith(
"- The impact of AI agents on remote work productivity."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_three_task_with_async_execution():
researcher_agent = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
bullet_list = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Bullet point list of 5 important events. No additional commentary.",
agent=researcher_agent,
async_execution=True,
)
numbered_list = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Numbered list of 5 important events. No additional commentary.",
agent=researcher_agent,
async_execution=True,
)
letter_list = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Numbered list using [A), B), C)] list of 5 important events. No additional commentary.",
agent=researcher_agent,
async_execution=True,
)
# Expected result is that we will get an error
# because a crew can end only end with one or less
# async tasks
with pytest.raises(pydantic_core._pydantic_core.ValidationError) as error:
Crew(
agents=[researcher_agent],
process=Process.sequential,
tasks=[bullet_list, numbered_list, letter_list],
)
assert error.value.errors()[0]["type"] == "async_task_count"
assert (
"The crew must end with at most one asynchronous task."
in error.value.errors()[0]["msg"]
)
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.asyncio
async def test_crew_async_kickoff():
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
results = await crew.kickoff_for_each_async(inputs=inputs)
assert len(results) == len(inputs)
for result in results:
# Assert that all required keys are in usage_metrics and their values are not None
for key in [
"total_tokens",
"prompt_tokens",
"completion_tokens",
"successful_requests",
]:
assert key in result.token_usage
assert result.token_usage[key] > 0
@pytest.mark.vcr(filter_headers=["authorization"])
def test_async_task_execution_call_count():
from unittest.mock import MagicMock, patch
list_ideas = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
async_execution=True,
)
list_important_history = Task(
description="Research the history of AI and give me the 5 most important events that shaped the technology.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
async_execution=True,
)
write_article = Task(
description="Write an article about the history of AI and its most important events.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
)
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[list_ideas, list_important_history, write_article],
)
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
with patch.object(threading.Thread, "start") as start:
thread = threading.Thread(target=lambda: None, args=()).start()
start.return_value = thread
with patch.object(threading.Thread, "join", wraps=thread.join()) as join:
list_ideas.output = TaskOutput(
description="A 4 paragraph article about AI.",
raw_output="ok",
agent="writer",
)
list_important_history.output = TaskOutput(
description="A 4 paragraph article about AI.",
raw_output="ok",
agent="writer",
)
crew.kickoff()
start.assert_called()
join.assert_called()
# Create a valid TaskOutput instance to mock the return value
mock_task_output = TaskOutput(
description="Mock description", raw="mocked output", agent="mocked agent"
)
# Create a MagicMock Future instance
mock_future = MagicMock(spec=Future)
mock_future.result.return_value = mock_task_output
# Directly set the output attribute for each task
list_ideas.output = mock_task_output
list_important_history.output = mock_task_output
write_article.output = mock_task_output
with patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync, patch.object(
Task, "execute_async", return_value=mock_future
) as mock_execute_async:
crew.kickoff()
assert mock_execute_async.call_count == 2
assert mock_execute_sync.call_count == 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_single_input():
"""Tests if kickoff_for_each works with a single input."""
from unittest.mock import patch
inputs = [{"topic": "dog"}]
expected_outputs = ["Dogs are loyal companions and popular pets."]
agent = Agent(
role="{topic} Researcher",
@@ -568,30 +765,21 @@ def test_kickoff_for_each_single_input():
agent=agent,
)
with patch.object(Agent, "execute_task") as mock_execute_task:
mock_execute_task.side_effect = expected_outputs
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
assert len(results) == 1
assert results == expected_outputs
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_multiple_inputs():
"""Tests if kickoff_for_each works with multiple inputs."""
from unittest.mock import patch
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
expected_outputs = [
"Dogs are loyal companions and popular pets.",
"Cats are independent and low-maintenance pets.",
"Apples are a rich source of dietary fiber and vitamin C.",
]
agent = Agent(
role="{topic} Researcher",
@@ -605,14 +793,10 @@ def test_kickoff_for_each_multiple_inputs():
agent=agent,
)
with patch.object(Agent, "execute_task") as mock_execute_task:
mock_execute_task.side_effect = expected_outputs
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
assert len(results) == len(inputs)
for i, res in enumerate(results):
assert res == expected_outputs[i]
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -884,7 +1068,7 @@ def test_crew_function_calling_llm():
with patch.object(llm.client, "create", wraps=llm.client.create) as private_mock:
@tool
def learn_about_AI(topic) -> float:
def learn_about_AI(topic) -> str:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
@@ -933,7 +1117,7 @@ def test_task_with_no_arguments():
crew = Crew(agents=[researcher], tasks=[task])
result = crew.kickoff()
assert result == "75"
assert result.raw == "75"
def test_code_execution_flag_adds_code_tool_upon_kickoff():
@@ -954,14 +1138,16 @@ def test_code_execution_flag_adds_code_tool_upon_kickoff():
)
crew = Crew(agents=[programmer], tasks=[task])
crew.kickoff()
assert len(programmer.tools) == 1
assert programmer.tools[0].__class__ == CodeInterpreterTool
with patch.object(Agent, "execute_task") as executor:
executor.return_value = "ok"
crew.kickoff()
assert len(programmer.tools) == 1
assert programmer.tools[0].__class__ == CodeInterpreterTool
@pytest.mark.vcr(filter_headers=["authorization"])
def test_delegation_is_not_enabled_if_there_are_only_one_agent():
from unittest.mock import patch
researcher = Agent(
role="Researcher",
@@ -977,10 +1163,9 @@ def test_delegation_is_not_enabled_if_there_are_only_one_agent():
)
crew = Crew(agents=[researcher], tasks=[task])
with patch.object(Task, "execute") as execute:
execute.return_value = "ok"
crew.kickoff()
assert task.tools == []
crew.kickoff()
assert task.tools == []
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -998,35 +1183,12 @@ def test_agents_do_not_get_delegation_tools_with_there_is_only_one_agent():
result = crew.kickoff()
assert (
result
result.raw
== "Howdy! I hope this message finds you well and brings a smile to your face. Have a fantastic day!"
)
assert len(agent.tools) == 0
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_usage_metrics_are_captured_for_sequential_process():
agent = Agent(
role="Researcher",
goal="Be super empathetic.",
backstory="You're love to sey howdy.",
allow_delegation=False,
)
task = Task(description="say howdy", expected_output="Howdy!", agent=agent)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
assert result == "Howdy!"
assert crew.usage_metrics == {
"completion_tokens": 17,
"prompt_tokens": 158,
"successful_requests": 1,
"total_tokens": 175,
}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sequential_crew_creation_tasks_without_agents():
task = Task(
@@ -1071,11 +1233,13 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
)
result = crew.kickoff()
assert result == '"Howdy!"'
assert result.raw == '"Howdy!"'
print(crew.usage_metrics)
assert crew.usage_metrics == {
"total_tokens": 1927,
"prompt_tokens": 1557,
"total_tokens": 2217,
"prompt_tokens": 1847,
"completion_tokens": 370,
"successful_requests": 4,
}
@@ -1102,15 +1266,17 @@ def test_hierarchical_crew_creation_tasks_with_agents():
manager_llm=ChatOpenAI(model="gpt-4o"),
)
crew.kickoff()
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
print("TOOL DESCRIPTION", crew.manager_agent.tools[0].description)
assert crew.manager_agent.tools[0].description.startswith(
"Delegate a specific task to one of the following coworkers: [Senior Writer]"
"Delegate a specific task to one of the following coworkers: Senior Writer"
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_crew_creation_tasks_without_async_execution():
def test_hierarchical_crew_creation_tasks_with_async_execution():
from langchain_openai import ChatOpenAI
task = Task(
@@ -1190,9 +1356,81 @@ def test_crew_inputs_interpolate_both_agents_and_tasks_diff():
interpolate_task_inputs.assert_called()
def test_task_callback_on_crew():
def test_crew_does_not_interpolate_without_inputs():
from unittest.mock import patch
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="{points} bullet points about {topic}.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
with patch.object(Agent, "interpolate_inputs") as interpolate_agent_inputs:
with patch.object(Task, "interpolate_inputs") as interpolate_task_inputs:
crew.kickoff()
interpolate_agent_inputs.assert_not_called()
interpolate_task_inputs.assert_not_called()
# TODO: Ask @joao if we want to start throwing errors if inputs are not provided
# def test_crew_partial_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"topic": "AI"})
# inputs = {"topic": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around AI."
# assert crew.tasks[0].expected_output == "{points} bullet points about AI."
# assert crew.agents[0].role == "AI Researcher"
# assert crew.agents[0].goal == "Express hot takes on AI."
# assert crew.agents[0].backstory == "You have a lot of experience with AI."
# TODO: If we do want ot throw errors if we are missing inputs. Add in this test.
# def test_crew_invalid_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"subject": "AI"})
# inputs = {"subject": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around {topic}."
# assert crew.tasks[0].expected_output == "{points} bullet points about {topic}."
# assert crew.agents[0].role == "{topic} Researcher"
# assert crew.agents[0].goal == "Express hot takes on {topic}."
# assert crew.agents[0].backstory == "You have a lot of experience with {topic}."
def test_task_callback_on_crew():
from unittest.mock import MagicMock, patch
researcher_agent = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
@@ -1207,17 +1445,23 @@ def test_task_callback_on_crew():
async_execution=True,
)
mock_callback = MagicMock()
crew = Crew(
agents=[researcher_agent],
process=Process.sequential,
tasks=[list_ideas],
task_callback=lambda: None,
task_callback=mock_callback,
)
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
crew.kickoff()
assert list_ideas.callback is not None
mock_callback.assert_called_once()
args, _ = mock_callback.call_args
assert isinstance(args[0], TaskOutput)
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -1227,7 +1471,7 @@ def test_tools_with_custom_caching():
from crewai_tools import tool
@tool
def multiplcation_tool(first_number: int, second_number: int) -> str:
def multiplcation_tool(first_number: int, second_number: int) -> int:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
@@ -1289,7 +1533,7 @@ def test_tools_with_custom_caching():
input={"first_number": 2, "second_number": 6},
output=12,
)
assert result == "3"
assert result.raw == "3"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -1387,10 +1631,20 @@ def test_manager_agent():
tasks=[task],
)
with patch.object(Task, "execute") as execute:
mock_task_output = TaskOutput(
description="Mock description", raw="mocked output", agent="mocked agent"
)
# Because we are mocking execute_sync, we never hit the underlying _execute_core
# which sets the output attribute of the task
task.output = mock_task_output
with patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync:
crew.kickoff()
assert manager.allow_delegation is True
execute.assert_called()
mock_execute_sync.assert_called()
def test_manager_agent_in_agents_raises_exception():

View File

@@ -9,6 +9,7 @@ from pydantic_core import ValidationError
from crewai import Agent, Crew, Process, Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.converter import Converter
def test_task_tool_reflect_agent_tools():
@@ -80,7 +81,7 @@ def test_task_prompt_includes_expected_output():
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
task.execute()
task.execute_sync()
execute.assert_called_once_with(task=task, context=None, tools=[])
@@ -103,11 +104,13 @@ def test_task_callback():
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
task.execute()
task.execute_sync()
task_completed.assert_called_once_with(task.output)
def test_task_callback_returns_task_ouput():
from crewai.tasks.output_format import OutputFormat
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
@@ -126,7 +129,7 @@ def test_task_callback_returns_task_ouput():
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "exported_ok"
task.execute()
task.execute_sync()
# Ensure the callback is called with a TaskOutput object serialized to JSON
task_completed.assert_called_once()
callback_data = task_completed.call_args[0][0]
@@ -139,10 +142,12 @@ def test_task_callback_returns_task_ouput():
output_dict = json.loads(callback_data)
expected_output = {
"description": task.description,
"exported_output": "exported_ok",
"raw_output": "exported_ok",
"raw": "exported_ok",
"pydantic": None,
"json_dict": None,
"agent": researcher.role,
"summary": "Give me a list of 5 interesting ideas to explore...",
"output_format": OutputFormat.RAW,
}
assert output_dict == expected_output
@@ -161,7 +166,7 @@ def test_execute_with_agent():
)
with patch.object(Agent, "execute_task", return_value="ok") as execute:
task.execute(agent=researcher)
task.execute_sync(agent=researcher)
execute.assert_called_once_with(task=task, context=None, tools=[])
@@ -181,7 +186,7 @@ def test_async_execution():
)
with patch.object(Agent, "execute_task", return_value="ok") as execute:
task.execute(agent=researcher)
task.execute_async(agent=researcher)
execute.assert_called_once_with(task=task, context=None, tools=[])
@@ -199,7 +204,7 @@ def test_multiple_output_type_error():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_pydantic():
def test_output_pydantic_sequential():
class ScoreOutput(BaseModel):
score: int
@@ -217,13 +222,46 @@ def test_output_pydantic():
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task])
crew = Crew(agents=[scorer], tasks=[task], process=Process.sequential)
result = crew.kickoff()
assert isinstance(result, ScoreOutput)
assert isinstance(result.pydantic, ScoreOutput)
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json():
def test_output_pydantic_hierarchical():
from langchain_openai import ChatOpenAI
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput,
agent=scorer,
)
crew = Crew(
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm=ChatOpenAI(model="gpt-4o"),
)
result = crew.kickoff()
assert isinstance(result.pydantic, ScoreOutput)
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_sequential():
class ScoreOutput(BaseModel):
score: int
@@ -241,9 +279,126 @@ def test_output_json():
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task])
crew = Crew(agents=[scorer], tasks=[task], process=Process.sequential)
result = crew.kickoff()
assert '{\n "score": 4\n}' == result
assert '{"score": 4}' == result.json
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_hierarchical():
from langchain_openai import ChatOpenAI
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_json=ScoreOutput,
agent=scorer,
)
crew = Crew(
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm=ChatOpenAI(model="gpt-4o"),
)
result = crew.kickoff()
assert '{"score": 4}' == result.json
assert result.to_dict() == {"score": 4}
def test_json_property_without_output_json():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput, # Using output_pydantic instead of output_json
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task], process=Process.sequential)
result = crew.kickoff()
with pytest.raises(ValueError) as excinfo:
_ = result.json # Attempt to access the json property
assert "No JSON output found in the final task." in str(excinfo.value)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_dict_sequential():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_json=ScoreOutput,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task], process=Process.sequential)
result = crew.kickoff()
assert {"score": 4} == result.json_dict
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_dict_hierarchical():
from langchain_openai import ChatOpenAI
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_json=ScoreOutput,
agent=scorer,
)
crew = Crew(
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm=ChatOpenAI(model="gpt-4o"),
)
result = crew.kickoff()
assert {"score": 4} == result.json_dict
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -279,7 +434,11 @@ def test_output_pydantic_to_another_task():
crew = Crew(agents=[scorer], tasks=[task1, task2], verbose=2)
result = crew.kickoff()
assert 5 == result.score
pydantic_result = result.pydantic
assert isinstance(
pydantic_result, ScoreOutput
), "Expected pydantic result to be of type ScoreOutput"
assert 5 == pydantic_result.score
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -310,7 +469,7 @@ def test_output_json_to_another_task():
crew = Crew(agents=[scorer], tasks=[task1, task2])
result = crew.kickoff()
assert '{\n "score": 5\n}' == result
assert '{"score": 5}' == result.json
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -362,7 +521,9 @@ def test_save_task_json_output():
with patch.object(Task, "_save_file") as save_file:
save_file.return_value = None
crew.kickoff()
save_file.assert_called_once_with('{\n "score": 4\n}')
save_file.assert_called_once_with(
{"score": 4}
) # TODO: @Joao, should this be a dict or a json string?
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -393,6 +554,38 @@ def test_save_task_pydantic_output():
save_file.assert_called_once_with('{"score":4}')
@pytest.mark.vcr(filter_headers=["authorization"])
def test_custom_converter_cls():
class ScoreOutput(BaseModel):
score: int
class ScoreConverter(Converter):
pass
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput,
converter_cls=ScoreConverter,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task])
with patch.object(
ScoreConverter, "to_pydantic", return_value=ScoreOutput(score=5)
) as mock_to_pydantic:
crew.kickoff()
mock_to_pydantic.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_increment_delegations_for_hierarchical_process():
from langchain_openai import ChatOpenAI
@@ -413,31 +606,29 @@ def test_increment_delegations_for_hierarchical_process():
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm=ChatOpenAI(model="gpt-4-0125-preview"),
manager_llm=ChatOpenAI(model="gpt-4o"),
)
with patch.object(Task, "increment_delegations") as increment_delegations:
increment_delegations.return_value = None
crew.kickoff()
increment_delegations.assert_called_once
increment_delegations.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_increment_delegations_for_sequential_process():
pass
manager = Agent(
role="Manager",
goal="Coordinate scoring processes",
backstory="You're great at delegating work about scoring.",
allow_delegation=False,
allow_delegation=True,
)
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
allow_delegation=True,
)
task = Task(
@@ -455,7 +646,7 @@ def test_increment_delegations_for_sequential_process():
with patch.object(Task, "increment_delegations") as increment_delegations:
increment_delegations.return_value = None
crew.kickoff()
increment_delegations.assert_called_once
increment_delegations.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -490,7 +681,7 @@ def test_increment_tool_errors():
with patch.object(Task, "increment_tools_errors") as increment_tools_errors:
increment_tools_errors.return_value = None
crew.kickoff()
increment_tools_errors.assert_called_once
assert len(increment_tools_errors.mock_calls) == 3
def test_task_definition_based_on_dict():
@@ -525,3 +716,80 @@ def test_interpolate_inputs():
== "Give me a list of 5 interesting ideas about ML to explore for an article, what makes them unique and interesting."
)
assert task.expected_output == "Bullet point list of 5 interesting ideas about ML."
def test_task_output_str_with_pydantic():
from crewai.tasks.output_format import OutputFormat
class ScoreOutput(BaseModel):
score: int
score_output = ScoreOutput(score=4)
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
pydantic=score_output,
output_format=OutputFormat.PYDANTIC,
)
assert str(task_output) == str(score_output)
def test_task_output_str_with_json_dict():
from crewai.tasks.output_format import OutputFormat
json_dict = {"score": 4}
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
json_dict=json_dict,
output_format=OutputFormat.JSON,
)
assert str(task_output) == str(json_dict)
def test_task_output_str_with_raw():
from crewai.tasks.output_format import OutputFormat
raw_output = "Raw task output"
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
raw=raw_output,
output_format=OutputFormat.RAW,
)
assert str(task_output) == raw_output
def test_task_output_str_with_pydantic_and_json_dict():
from crewai.tasks.output_format import OutputFormat
class ScoreOutput(BaseModel):
score: int
score_output = ScoreOutput(score=4)
json_dict = {"score": 4}
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
pydantic=score_output,
json_dict=json_dict,
output_format=OutputFormat.PYDANTIC,
)
# When both pydantic and json_dict are present, pydantic should take precedence
assert str(task_output) == str(score_output)
def test_task_output_str_with_none():
from crewai.tasks.output_format import OutputFormat
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
output_format=OutputFormat.RAW,
)
assert str(task_output) == ""