Compare commits

...

9 Commits

Author SHA1 Message Date
Eduardo Chiarotti
6694cf3858 feat: add tests 2024-07-25 14:02:54 -03:00
Eduardo Chiarotti
a20452a57c docs: change message to ChatOpenAI llm 2024-07-25 13:55:59 -03:00
Eduardo Chiarotti
d6033337e2 docs: add docs for the planning_llm new parameter 2024-07-25 11:55:19 -03:00
Eduardo Chiarotti
ddcefe1364 feat: fixes issue on instantiating the ChatOpenAI on the crew 2024-07-25 11:43:55 -03:00
Eduardo Chiarotti
562b0d7d1e feat: add ability to set LLM for AgentPLanner on Crew 2024-07-24 17:03:46 -03:00
Brandon Hancock (bhancock_ai)
2d086ab596 Merge pull request #994 from crewAIInc/fix/getting-started-docs
fixed bullet points for crew yaml annoations
2024-07-23 14:36:45 -04:00
Lorenze Jay
776c67cc0f clearer usage for crewai create command 2024-07-23 11:32:25 -07:00
Lorenze Jay
78ef490646 fixed bullet points for crew yaml annoations 2024-07-23 11:31:09 -07:00
Lorenze Jay
4da5cc9778 Feat yaml config all attributes (#985)
* WIP: yaml proper mapping for agents and agent

* WIP: added output_json and output_pydantic setup

* WIP: core logic added, need cleanup

* code cleanup

* updated docs and example template to use yaml to reference agents within tasks

* cleanup type errors

* Update Start-a-New-CrewAI-Project.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-23 00:21:01 -03:00
11 changed files with 350 additions and 24 deletions

View File

@@ -33,6 +33,7 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description.
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
!!! note "Crew Max RPM"
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.

View File

@@ -23,6 +23,25 @@ my_crew = Crew(
From this point on, your crew will have planning enabled, and the tasks will be planned before each iteration.
#### Planning LLM
Now you can define the LLM that will be used to plan the tasks. You can use any ChatOpenAI LLM model available.
```python
from crewai import Crew, Agent, Task, Process
from langchain_openai import ChatOpenAI
# Assemble your crew with planning capabilities and custom LLM
my_crew = Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
planning=True,
planning_llm=ChatOpenAI(model="gpt-4o")
)
```
### Example
When running the base case example, you will see something like the following output, which represents the output of the AgentPlanner responsible for creating the step-by-step logic to add to the Agents tasks.

View File

@@ -16,7 +16,7 @@ We assume you have already installed CrewAI. If not, please refer to the [instal
To create a new project, run the following CLI command:
```shell
$ crewai create my_project
$ crewai create <project_name>
```
This command will create a new project folder with the following structure:
@@ -79,8 +79,77 @@ research_candidates_task:
{job_requirements}
expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE Crew.PY FILE
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE Crew.PY FILE
- researcher
```
### Referencing Variables:
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task wont recognize the reference properly.
#### Example References
agent.yaml
```yaml
email_summarizer:
role: >
Email Summarizer
goal: >
Summarize emails into a concise and clear summary
backstory: >
You will create a 5 bullet point summary of the report
llm: mixtal_llm
```
task.yaml
```yaml
email_summarizer_task:
description: >
Summarize the email into a 5 bullet point summary
expected_output: >
A 5 bullet point summary of the email
agent: email_summarizer
context:
- reporting_task
- research_task
```
Use the annotations are used to properly reference the agent and task in the crew.py file.
### Annotations include:
* @agent
* @task
* @crew
* @llm
* @tool
* @callback
* @output_json
* @output_pydantic
* @cache_handler
crew.py
```py
...
@llm
def mixtal_llm(self):
return ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
@agent
def email_summarizer(self) -> Agent:
return Agent(
config=self.agents_config["email_summarizer"],
)
## ...other tasks defined
@task
def email_summarizer_task(self) -> Task:
return Task(
config=self.tasks_config["email_summarizer_task"],
)
...
```
## Installing Dependencies
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:

View File

@@ -5,6 +5,7 @@ research_task:
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
@@ -13,3 +14,4 @@ reporting_task:
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst

View File

@@ -32,14 +32,12 @@ class {{crew_name}}Crew():
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
agent=self.researcher()
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
agent=self.reporting_analyst(),
output_file='report.md'
)

View File

@@ -154,6 +154,10 @@ class Crew(BaseModel):
default=False,
description="Plan the crew execution and add the plan to the crew.",
)
planning_llm: Optional[Any] = Field(
default=None,
description="Language model that will run the AgentPlanner if planning is True.",
)
task_execution_output_json_files: Optional[List[str]] = Field(
default=None,
description="List of file paths for task execution JSON files.",
@@ -559,15 +563,12 @@ class Crew(BaseModel):
def _handle_crew_planning(self):
"""Handles the Crew planning."""
self._logger.log("info", "Planning the crew execution")
result = CrewPlanner(self.tasks)._handle_crew_planning()
result = CrewPlanner(
tasks=self.tasks, planning_agent_llm=self.planning_llm
)._handle_crew_planning()
if result is not None and hasattr(result, "list_of_plans_per_task"):
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
task.description += step_plan
else:
self._logger.log(
"info", "Something went wrong with the planning process of the Crew"
)
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
task.description += step_plan
def _store_execution_log(
self,

View File

@@ -1,2 +1,25 @@
from .annotations import agent, crew, task
from .annotations import (
agent,
crew,
task,
output_json,
output_pydantic,
tool,
callback,
llm,
cache_handler,
)
from .crew_base import CrewBase
__all__ = [
"agent",
"crew",
"task",
"output_json",
"output_pydantic",
"tool",
"callback",
"CrewBase",
"llm",
"cache_handler",
]

View File

@@ -30,6 +30,37 @@ def agent(func):
return func
def llm(func):
func.is_llm = True
func = memoize(func)
return func
def output_json(cls):
cls.is_output_json = True
return cls
def output_pydantic(cls):
cls.is_output_pydantic = True
return cls
def tool(func):
func.is_tool = True
return memoize(func)
def callback(func):
func.is_callback = True
return memoize(func)
def cache_handler(func):
func.is_cache_handler = True
return memoize(func)
def crew(func):
def wrapper(self, *args, **kwargs):
instantiated_tasks = []

View File

@@ -1,6 +1,7 @@
import inspect
import os
from pathlib import Path
from typing import Any, Callable, Dict
import yaml
from dotenv import load_dotenv
@@ -20,11 +21,6 @@ def CrewBase(cls):
base_directory = Path(frame_info.filename).parent.resolve()
break
if base_directory is None:
raise Exception(
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
)
original_agents_config_path = getattr(
cls, "agents_config", "config/agents.yaml"
)
@@ -32,12 +28,20 @@ def CrewBase(cls):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.base_directory is None:
raise Exception(
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
)
self.agents_config = self.load_yaml(
os.path.join(self.base_directory, self.original_agents_config_path)
)
self.tasks_config = self.load_yaml(
os.path.join(self.base_directory, self.original_tasks_config_path)
)
self.map_all_agent_variables()
self.map_all_task_variables()
@staticmethod
def load_yaml(config_path: str):
@@ -45,4 +49,138 @@ def CrewBase(cls):
# parsedContent = YamlParser.parse(file) # type: ignore # Argument 1 to "parse" has incompatible type "TextIOWrapper"; expected "YamlParser"
return yaml.safe_load(file)
def _get_all_functions(self):
return {
name: getattr(self, name)
for name in dir(self)
if callable(getattr(self, name))
}
def _filter_functions(
self, functions: Dict[str, Callable], attribute: str
) -> Dict[str, Callable]:
return {
name: func
for name, func in functions.items()
if hasattr(func, attribute)
}
def map_all_agent_variables(self) -> None:
all_functions = self._get_all_functions()
llms = self._filter_functions(all_functions, "is_llm")
tool_functions = self._filter_functions(all_functions, "is_tool")
cache_handler_functions = self._filter_functions(
all_functions, "is_cache_handler"
)
callbacks = self._filter_functions(all_functions, "is_callback")
agents = self._filter_functions(all_functions, "is_agent")
for agent_name, agent_info in self.agents_config.items():
self._map_agent_variables(
agent_name,
agent_info,
agents,
llms,
tool_functions,
cache_handler_functions,
callbacks,
)
def _map_agent_variables(
self,
agent_name: str,
agent_info: Dict[str, Any],
agents: Dict[str, Callable],
llms: Dict[str, Callable],
tool_functions: Dict[str, Callable],
cache_handler_functions: Dict[str, Callable],
callbacks: Dict[str, Callable],
) -> None:
if llm := agent_info.get("llm"):
self.agents_config[agent_name]["llm"] = llms[llm]()
if tools := agent_info.get("tools"):
self.agents_config[agent_name]["tools"] = [
tool_functions[tool]() for tool in tools
]
if function_calling_llm := agent_info.get("function_calling_llm"):
self.agents_config[agent_name]["function_calling_llm"] = agents[
function_calling_llm
]()
if step_callback := agent_info.get("step_callback"):
self.agents_config[agent_name]["step_callback"] = callbacks[
step_callback
]()
if cache_handler := agent_info.get("cache_handler"):
self.agents_config[agent_name]["cache_handler"] = (
cache_handler_functions[cache_handler]()
)
def map_all_task_variables(self) -> None:
all_functions = self._get_all_functions()
agents = self._filter_functions(all_functions, "is_agent")
tasks = self._filter_functions(all_functions, "is_task")
output_json_functions = self._filter_functions(
all_functions, "is_output_json"
)
tool_functions = self._filter_functions(all_functions, "is_tool")
callback_functions = self._filter_functions(all_functions, "is_callback")
output_pydantic_functions = self._filter_functions(
all_functions, "is_output_pydantic"
)
for task_name, task_info in self.tasks_config.items():
self._map_task_variables(
task_name,
task_info,
agents,
tasks,
output_json_functions,
tool_functions,
callback_functions,
output_pydantic_functions,
)
def _map_task_variables(
self,
task_name: str,
task_info: Dict[str, Any],
agents: Dict[str, Callable],
tasks: Dict[str, Callable],
output_json_functions: Dict[str, Callable],
tool_functions: Dict[str, Callable],
callback_functions: Dict[str, Callable],
output_pydantic_functions: Dict[str, Callable],
) -> None:
if context_list := task_info.get("context"):
self.tasks_config[task_name]["context"] = [
tasks[context_task_name]() for context_task_name in context_list
]
if tools := task_info.get("tools"):
self.tasks_config[task_name]["tools"] = [
tool_functions[tool]() for tool in tools
]
if agent_name := task_info.get("agent"):
self.tasks_config[task_name]["agent"] = agents[agent_name]()
if output_json := task_info.get("output_json"):
self.tasks_config[task_name]["output_json"] = output_json_functions[
output_json
]
if output_pydantic := task_info.get("output_pydantic"):
self.tasks_config[task_name]["output_pydantic"] = (
output_pydantic_functions[output_pydantic]
)
if callbacks := task_info.get("callbacks"):
self.tasks_config[task_name]["callbacks"] = [
callback_functions[callback]() for callback in callbacks
]
return WrappedClass

View File

@@ -1,5 +1,6 @@
from typing import List, Optional
from typing import Any, List, Optional
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from crewai.agent import Agent
@@ -11,17 +12,27 @@ class PlannerTaskPydanticOutput(BaseModel):
class CrewPlanner:
def __init__(self, tasks: List[Task]):
def __init__(self, tasks: List[Task], planning_agent_llm: Optional[Any] = None):
self.tasks = tasks
def _handle_crew_planning(self) -> Optional[BaseModel]:
if planning_agent_llm is None:
self.planning_agent_llm = ChatOpenAI(model="gpt-4o-mini")
else:
self.planning_agent_llm = planning_agent_llm
def _handle_crew_planning(self) -> PlannerTaskPydanticOutput:
"""Handles the Crew planning by creating detailed step-by-step plans for each task."""
planning_agent = self._create_planning_agent()
tasks_summary = self._create_tasks_summary()
planner_task = self._create_planner_task(planning_agent, tasks_summary)
return planner_task.execute_sync().pydantic
result = planner_task.execute_sync()
if isinstance(result.pydantic, PlannerTaskPydanticOutput):
return result.pydantic
raise ValueError("Failed to get the Planning output")
def _create_planning_agent(self) -> Agent:
"""Creates the planning agent for the crew planning."""
@@ -32,6 +43,7 @@ class CrewPlanner:
"available to each agent so that they can perform the tasks in an exemplary manner"
),
backstory="Planner agent for crew planning",
llm=self.planning_agent_llm,
)
def _create_planner_task(self, planning_agent: Agent, tasks_summary: str) -> Task:

View File

@@ -1,10 +1,11 @@
from unittest.mock import patch
from crewai.tasks.task_output import TaskOutput
import pytest
from langchain_openai import ChatOpenAI
from crewai.agent import Agent
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.planning_handler import CrewPlanner, PlannerTaskPydanticOutput
@@ -28,7 +29,19 @@ class TestCrewPlanner:
agent=Agent(role="Agent 3", goal="Goal 3", backstory="Backstory 3"),
),
]
return CrewPlanner(tasks)
return CrewPlanner(tasks, None)
@pytest.fixture
def crew_planner_different_llm(self):
tasks = [
Task(
description="Task 1",
expected_output="Output 1",
agent=Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1"),
)
]
planning_agent_llm = ChatOpenAI(model="gpt-3.5-turbo")
return CrewPlanner(tasks, planning_agent_llm)
def test_handle_crew_planning(self, crew_planner):
with patch.object(Task, "execute_sync") as execute:
@@ -40,7 +53,7 @@ class TestCrewPlanner:
),
)
result = crew_planner._handle_crew_planning()
assert crew_planner.planning_agent_llm.model_name == "gpt-4o-mini"
assert isinstance(result, PlannerTaskPydanticOutput)
assert len(result.list_of_plans_per_task) == len(crew_planner.tasks)
execute.assert_called_once()
@@ -72,3 +85,22 @@ class TestCrewPlanner:
assert isinstance(tasks_summary, str)
assert tasks_summary.startswith("\n Task Number 1 - Task 1")
assert tasks_summary.endswith('"agent_tools": []\n ')
def test_handle_crew_planning_different_llm(self, crew_planner_different_llm):
with patch.object(Task, "execute_sync") as execute:
execute.return_value = TaskOutput(
description="Description",
agent="agent",
pydantic=PlannerTaskPydanticOutput(list_of_plans_per_task=["Plan 1"]),
)
result = crew_planner_different_llm._handle_crew_planning()
assert (
crew_planner_different_llm.planning_agent_llm.model_name
== "gpt-3.5-turbo"
)
assert isinstance(result, PlannerTaskPydanticOutput)
assert len(result.list_of_plans_per_task) == len(
crew_planner_different_llm.tasks
)
execute.assert_called_once()