Compare commits

...

17 Commits

Author SHA1 Message Date
Tony Kipkemboi
0695c26703 Merge branch 'main' into brandon/cre-510-update-docs-to-talk-about-pydantic-and-json-outputs 2024-12-04 11:05:47 -05:00
Brandon Hancock
4fb3331c6a Talk about getting structured consistent outputs with tasks. 2024-12-04 10:46:39 -05:00
Stephen
b6c6eea6f5 Update README.md (#1694)
Corrected the statement which says users can not disable telemetry, but now users can disable by setting the environment variable OTEL_SDK_DISABLED to true.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 16:08:19 -05:00
Lorenze Jay
1af95f5146 Knowledge project directory standard (#1691)
* Knowledge project directory standard

* fixed types

* comment fix

* made base file knowledge source an abstract class

* cleaner validator on model_post_init

* fix type checker

* cleaner refactor

* better template
2024-12-03 12:27:48 -08:00
Feynman Liang
ed3487aa22 Fix indentation in llm-connections.mdx code block (#1573)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:52:23 -05:00
Patcher
77af733e44 [Doc]: Add documenation for openlit observability (#1612)
* Create openlit-observability.mdx

* Update doc with images and steps

* Update mkdocs.yml and add OpenLIT guide link

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:38:49 -05:00
Tom Mahler, PhD
aaf80d1d43 [FEATURE] Support for custom path in RAGStorage (#1659)
* added path to RAGStorage

* added path to short term and entity memory

* add path for long_term_storage for completeness

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:22:29 -05:00
Ola Hungerford
9e9b945a46 Update using langchain tools docs (#1664)
* Update example of how to use LangChain tools with correct syntax

* Use .env

* Add  Code back

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 11:13:06 -05:00
Javier Saldaña
308a8dc925 Update reset memories command based on the SDK (#1688)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 10:09:30 -05:00
Tony Kipkemboi
7d9d0ff6f7 fix missing code in flows docs (#1690)
* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* docs: add code snippet to Getting Started section in flows.mdx

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 10:02:06 -05:00
João Moura
f8a8e7b2a5 preparing new version 2024-12-02 18:28:58 -03:00
Brandon Hancock (bhancock_ai)
3285c1b196 Fixes issues with result as answer not properly exiting LLM loop (#1689)
* v1 of fix implemented. Need to confirm with tokens.

* remove print statements
2024-12-02 13:38:17 -05:00
Tony Kipkemboi
4bc23affe0 Documentation Improvements: LLM Configuration and Usage (#1684)
* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text
2024-12-02 09:50:12 -05:00
Tony Kipkemboi
bca56eea48 Merge pull request #1675 from rokbenko/rok
[DOCS] Update Agents docs to include two approaches for creating an agent
2024-11-30 11:26:10 -05:00
Rok Benko
588ad3c4a4 Update Agents docs to include two approaches for creating an agent: with and without YAML configuration 2024-11-28 17:20:53 +01:00
Lorenze Jay
c6a6c918e0 added knowledge to agent level (#1655)
* added knowledge to agent level

* linted

* added doc

* added from suggestions

* added test

* fixes from discussion

* fix docs

* fix test

* rm cassette for knowledge_sources test as its a mock and update agent doc string

* fix test

* rm unused

* linted
2024-11-27 11:33:07 -08:00
Brandon Hancock (bhancock_ai)
366bbbbea3 Feat/remove langchain (#1668)
* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args

* fix tool calling for langchain tools

* doc strings

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-11-27 11:22:49 -05:00
52 changed files with 2763 additions and 1019 deletions

View File

@@ -376,7 +376,7 @@ pip install dist/*.tar.gz
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. We don't offer a way to disable it now, but we will in the future.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
Data collected includes:

View File

@@ -1,161 +1,343 @@
---
title: Agents
description: What are CrewAI Agents and how to use them.
description: Detailed guide on creating and managing agents within the CrewAI framework.
icon: robot
---
## What is an agent?
## Overview of an Agent
An agent is an **autonomous unit** programmed to:
<ul>
<li class='leading-3'>Perform tasks</li>
<li class='leading-3'>Make decisions</li>
<li class='leading-3'>Communicate with other agents</li>
</ul>
In the CrewAI framework, an `Agent` is an autonomous unit that can:
- Perform specific tasks
- Make decisions based on its role and goal
- Use tools to accomplish objectives
- Communicate and collaborate with other agents
- Maintain memory of interactions
- Delegate tasks when allowed
<Tip>
Think of an agent as a member of a team, with specific skills and a particular job to do. Agents can have different roles like `Researcher`, `Writer`, or `Customer Support`, each contributing to the overall goal of the crew.
Think of an agent as a specialized team member with specific skills, expertise, and responsibilities. For example, a `Researcher` agent might excel at gathering and analyzing information, while a `Writer` agent might be better at creating content.
</Tip>
## Agent attributes
## Agent Attributes
| Attribute | Parameter | Description |
| :------------------------- | :--------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Role** | `role` | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
| **Goal** | `goal` | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
| **Backstory** | `backstory`| Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
| **LLM** *(optional)* | `llm` | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
| **Tools** *(optional)* | `tools` | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. |
| **Function Calling LLM** *(optional)* | `function_calling_llm` | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
| **Max Iter** *(optional)* | `max_iter` | Max Iter is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`. |
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
| **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. |
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`. |
| **Use System Prompt** *(optional)* | `use_system_prompt` | Adds the ability to not use system prompt (to support o1 models). Default is `True`. |
| **Respect Context Window** *(optional)* | `respect_context_window` | Summary strategy to avoid overflowing the context window. Default is `True`. |
| **Code Execution Mode** *(optional)* | `code_execution_mode` | Determines the mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution on the host machine). Default is `safe`. |
| Attribute | Parameter | Type | Description |
| :-------------------------------------- | :----------------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
| **Role** | `role` | `str` | Defines the agent's function and expertise within the crew. |
| **Goal** | `goal` | `str` | The individual objective that guides the agent's decision-making. |
| **Backstory** | `backstory` | `str` | Provides context and personality to the agent, enriching interactions. |
| **LLM** _(optional)_ | `llm` | `Union[str, LLM, Any]` | Language model that powers the agent. Defaults to the model specified in `OPENAI_MODEL_NAME` or "gpt-4". |
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | Capabilities or functions available to the agent. Defaults to an empty list. |
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | `Optional[Any]` | Language model for tool calling, overrides crew's LLM if specified. |
| **Max Iterations** _(optional)_ | `max_iter` | `int` | Maximum iterations before the agent must provide its best answer. Default is 20. |
| **Max RPM** _(optional)_ | `max_rpm` | `Optional[int]` | Maximum requests per minute to avoid rate limits. |
| **Max Execution Time** _(optional)_ | `max_execution_time` | `Optional[int]` | Maximum time (in seconds) for task execution. |
| **Memory** _(optional)_ | `memory` | `bool` | Whether the agent should maintain memory of interactions. Default is True. |
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs for debugging. Default is False. |
| **Allow Delegation** _(optional)_ | `allow_delegation` | `bool` | Allow the agent to delegate tasks to other agents. Default is False. |
| **Step Callback** _(optional)_ | `step_callback` | `Optional[Any]` | Function called after each agent step, overrides crew callback. |
| **Cache** _(optional)_ | `cache` | `bool` | Enable caching for tool usage. Default is True. |
| **System Template** _(optional)_ | `system_template` | `Optional[str]` | Custom system prompt template for the agent. |
| **Prompt Template** _(optional)_ | `prompt_template` | `Optional[str]` | Custom prompt template for the agent. |
| **Response Template** _(optional)_ | `response_template` | `Optional[str]` | Custom response template for the agent. |
| **Allow Code Execution** _(optional)_ | `allow_code_execution` | `Optional[bool]` | Enable code execution for the agent. Default is False. |
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
| **Embedder Config** _(optional)_ | `embedder_config` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
## Creating an agent
## Creating Agents
There are two ways to create agents in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
### YAML Configuration (Recommended)
Using YAML configuration provides a cleaner, more maintainable way to define agents. We strongly recommend using this approach in your CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/installation) section, navigate to the `src/latest_ai_development/config/agents.yaml` file and modify the template to match your requirements.
<Note>
**Agent interaction**: Agents can interact with each other using CrewAI's built-in delegation and communication mechanisms. This allows for dynamic task management and problem-solving within the crew.
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
```python Code
crew.kickoff(inputs={'topic': 'AI Agents'})
```
</Note>
To create an agent, you would typically initialize an instance of the `Agent` class with the desired properties. Here's a conceptual example including all attributes:
Here's an example of how to configure agents using YAML:
```python Code example
```yaml agents.yaml
# src/latest_ai_development/config/agents.yaml
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.
```
To use this YAML configuration in your code, create a crew class that inherits from `CrewBase`:
```python Code
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process
from crewai.project import CrewBase, agent, crew
from crewai_tools import SerperDevTool
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True,
tools=[SerperDevTool()]
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
```
<Note>
The names you use in your YAML files (`agents.yaml`) should match the method names in your Python code.
</Note>
### Direct Code Definition
You can create agents directly in code by instantiating the `Agent` class. Here's a comprehensive example showing all available parameters:
```python Code
from crewai import Agent
from crewai_tools import SerperDevTool
# Create an agent with all available parameters
agent = Agent(
role='Data Analyst',
goal='Extract actionable insights',
backstory="""You're a data analyst at a large company.
You're responsible for analyzing data and providing insights
to the business.
You're currently working on a project to analyze the
performance of our marketing campaigns.""",
tools=[my_tool1, my_tool2], # Optional, defaults to an empty list
llm=my_llm, # Optional
function_calling_llm=my_llm, # Optional
max_iter=15, # Optional
max_rpm=None, # Optional
max_execution_time=None, # Optional
verbose=True, # Optional
allow_delegation=False, # Optional
step_callback=my_intermediate_step_callback, # Optional
cache=True, # Optional
system_template=my_system_template, # Optional
prompt_template=my_prompt_template, # Optional
response_template=my_response_template, # Optional
config=my_config, # Optional
crew=my_crew, # Optional
tools_handler=my_tools_handler, # Optional
cache_handler=my_cache_handler, # Optional
callbacks=[callback1, callback2], # Optional
allow_code_execution=True, # Optional
max_retry_limit=2, # Optional
use_system_prompt=True, # Optional
respect_context_window=True, # Optional
code_execution_mode='safe', # Optional, defaults to 'safe'
role="Senior Data Scientist",
goal="Analyze and interpret complex datasets to provide actionable insights",
backstory="With over 10 years of experience in data science and machine learning, "
"you excel at finding patterns in complex datasets.",
llm="gpt-4", # Default: OPENAI_MODEL_NAME or "gpt-4"
function_calling_llm=None, # Optional: Separate LLM for tool calling
memory=True, # Default: True
verbose=False, # Default: False
allow_delegation=False, # Default: False
max_iter=20, # Default: 20 iterations
max_rpm=None, # Optional: Rate limit for API calls
max_execution_time=None, # Optional: Maximum execution time in seconds
max_retry_limit=2, # Default: 2 retries on error
allow_code_execution=False, # Default: False
code_execution_mode="safe", # Default: "safe" (options: "safe", "unsafe")
respect_context_window=True, # Default: True
use_system_prompt=True, # Default: True
tools=[SerperDevTool()], # Optional: List of tools
knowledge_sources=None, # Optional: List of knowledge sources
embedder_config=None, # Optional: Custom embedder configuration
system_template=None, # Optional: Custom system prompt template
prompt_template=None, # Optional: Custom prompt template
response_template=None, # Optional: Custom response template
step_callback=None, # Optional: Callback function for monitoring
)
```
## Setting prompt templates
Let's break down some key parameter combinations for common use cases:
Prompt templates are used to format the prompt for the agent. You can use to update the system, regular and response templates for the agent. Here's an example of how to set prompt templates:
#### Basic Research Agent
```python Code
research_agent = Agent(
role="Research Analyst",
goal="Find and summarize information about specific topics",
backstory="You are an experienced researcher with attention to detail",
tools=[SerperDevTool()],
verbose=True # Enable logging for debugging
)
```
```python Code example
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
system_template="""<|start_header_id|>system<|end_header_id|>
#### Code Development Agent
```python Code
dev_agent = Agent(
role="Senior Python Developer",
goal="Write and debug Python code",
backstory="Expert Python developer with 10 years of experience",
allow_code_execution=True,
code_execution_mode="safe", # Uses Docker for safety
max_execution_time=300, # 5-minute timeout
max_retry_limit=3 # More retries for complex code tasks
)
```
#### Long-Running Analysis Agent
```python Code
analysis_agent = Agent(
role="Data Analyst",
goal="Perform deep analysis of large datasets",
backstory="Specialized in big data analysis and pattern recognition",
memory=True,
respect_context_window=True,
max_rpm=10, # Limit API calls
function_calling_llm="gpt-4o-mini" # Cheaper model for tool calls
)
```
#### Custom Template Agent
```python Code
custom_agent = Agent(
role="Customer Service Representative",
goal="Assist customers with their inquiries",
backstory="Experienced in customer support with a focus on satisfaction",
system_template="""<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>
prompt_template="""<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>
response_template="""<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>""",
)
```
## Bring your third-party agents
### Parameter Details
Extend your third-party agents like LlamaIndex, Langchain, Autogen or fully custom agents using the the CrewAI's `BaseAgent` class.
#### Critical Parameters
- `role`, `goal`, and `backstory` are required and shape the agent's behavior
- `llm` determines the language model used (default: OpenAI's GPT-4)
<Note>
**BaseAgent** includes attributes and methods required to integrate with your crews to run and delegate tasks to other agents within your own crew.
#### Memory and Context
- `memory`: Enable to maintain conversation history
- `respect_context_window`: Prevents token limit issues
- `knowledge_sources`: Add domain-specific knowledge bases
#### Execution Control
- `max_iter`: Maximum attempts before giving best answer
- `max_execution_time`: Timeout in seconds
- `max_rpm`: Rate limiting for API calls
- `max_retry_limit`: Retries on error
#### Code Execution
- `allow_code_execution`: Must be True to run code
- `code_execution_mode`:
- `"safe"`: Uses Docker (recommended for production)
- `"unsafe"`: Direct execution (use only in trusted environments)
#### Templates
- `system_template`: Defines agent's core behavior
- `prompt_template`: Structures input format
- `response_template`: Formats agent responses
<Note>
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{input}` in your templates. These will be automatically populated during execution.
</Note>
CrewAI is a universal multi-agent framework that allows for all agents to work together to automate tasks and solve problems.
## Agent Tools
```python Code example
from crewai import Agent, Task, Crew
from custom_agent import CustomAgent # You need to build and extend your own agent logic with the CrewAI BaseAgent class then import it here.
Agents can be equipped with various tools to enhance their capabilities. CrewAI supports tools from:
- [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools)
- [LangChain Tools](https://python.langchain.com/docs/integrations/tools)
from langchain.agents import load_tools
Here's how to add tools to an agent:
langchain_tools = load_tools(["google-serper"], llm=llm)
```python Code
from crewai import Agent
from crewai_tools import SerperDevTool, WikipediaTools
agent1 = CustomAgent(
role="agent role",
goal="who is {input}?",
backstory="agent backstory",
verbose=True,
# Create tools
search_tool = SerperDevTool()
wiki_tool = WikipediaTools()
# Add tools to agent
researcher = Agent(
role="AI Technology Researcher",
goal="Research the latest AI developments",
tools=[search_tool, wiki_tool],
verbose=True
)
task1 = Task(
expected_output="a short biography of {input}",
description="a short biography of {input}",
agent=agent1,
)
agent2 = Agent(
role="agent role",
goal="summarize the short bio for {input} and if needed do more research",
backstory="agent backstory",
verbose=True,
)
task2 = Task(
description="a tldr summary of the short biography",
expected_output="5 bullet point summary of the biography",
agent=agent2,
context=[task1],
)
my_crew = Crew(agents=[agent1, agent2], tasks=[task1, task2])
crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
```
## Conclusion
## Agent Memory and Context
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents,
you can create sophisticated AI systems that leverage the power of collaborative intelligence. The `code_execution_mode` attribute provides flexibility in how agents execute code, allowing for both secure and direct execution options.
Agents can maintain memory of their interactions and use context from previous tasks. This is particularly useful for complex workflows where information needs to be retained across multiple tasks.
```python Code
from crewai import Agent
analyst = Agent(
role="Data Analyst",
goal="Analyze and remember complex data patterns",
memory=True, # Enable memory
verbose=True
)
```
<Note>
When `memory` is enabled, the agent will maintain context across multiple interactions, improving its ability to handle complex, multi-step tasks.
</Note>
## Important Considerations and Best Practices
### Security and Code Execution
- When using `allow_code_execution`, be cautious with user input and always validate it
- Use `code_execution_mode: "safe"` (Docker) in production environments
- Consider setting appropriate `max_execution_time` limits to prevent infinite loops
### Performance Optimization
- Use `respect_context_window: true` to prevent token limit issues
- Set appropriate `max_rpm` to avoid rate limiting
- Enable `cache: true` to improve performance for repetitive tasks
- Adjust `max_iter` and `max_retry_limit` based on task complexity
### Memory and Context Management
- Use `memory: true` for tasks requiring historical context
- Leverage `knowledge_sources` for domain-specific information
- Configure `embedder_config` when using custom embedding models
- Use custom templates (`system_template`, `prompt_template`, `response_template`) for fine-grained control over agent behavior
### Agent Collaboration
- Enable `allow_delegation: true` when agents need to work together
- Use `step_callback` to monitor and log agent interactions
- Consider using different LLMs for different purposes:
- Main `llm` for complex reasoning
- `function_calling_llm` for efficient tool usage
### Model Compatibility
- Set `use_system_prompt: false` for older models that don't support system messages
- Ensure your chosen `llm` supports the features you need (like function calling)
## Troubleshooting Common Issues
1. **Rate Limiting**: If you're hitting API rate limits:
- Implement appropriate `max_rpm`
- Use caching for repetitive operations
- Consider batching requests
2. **Context Window Errors**: If you're exceeding context limits:
- Enable `respect_context_window`
- Use more efficient prompts
- Clear agent memory periodically
3. **Code Execution Issues**: If code execution fails:
- Verify Docker is installed for safe mode
- Check execution permissions
- Review code sandbox settings
4. **Memory Issues**: If agent responses seem inconsistent:
- Verify memory is enabled
- Check knowledge source configuration
- Review conversation history management
Remember that agents are most effective when configured according to their specific use case. Take time to understand your requirements and adjust these parameters accordingly.

View File

@@ -18,63 +18,60 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
## Getting Started
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
### Passing Inputs to Flows
```python Code
Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
#### Structured State Management
In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
from dotenv import load_dotenv
from litellm import completion
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class StructuredExampleFlow(Flow[ExampleState]):
class ExampleFlow(Flow):
model = "gpt-4o-mini"
@start()
def first_method(self):
# Implementation
def generate_city(self):
print("Starting flow")
flow = StructuredExampleFlow()
flow.kickoff(inputs={"counter": 10})
```
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": "Return the name of a random city in the world.",
},
],
)
In this example, the `counter` is initialized to `10`, while `message` retains its default value.
random_city = response["choices"][0]["message"]["content"]
print(f"Random City: {random_city}")
#### Unstructured State Management
return random_city
In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
@listen(generate_city)
def generate_fun_fact(self, random_city):
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": f"Tell me a fun fact about {random_city}",
},
],
)
```python
from crewai.flow.flow import Flow, listen, start
fun_fact = response["choices"][0]["message"]["content"]
return fun_fact
class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
# Implementation
flow = UnstructuredExampleFlow()
flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
```
Here, both `counter` and `message` are updated based on the provided inputs.
flow = ExampleFlow()
result = flow.kickoff()
**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
### Example Flow
```python
# Existing example code
print(f"Generated fun fact: {result}")
```
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
@@ -97,14 +94,14 @@ The `@listen()` decorator can be used in several ways:
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
```python
```python Code
@listen("generate_city")
def generate_fun_fact(self, random_city):
# Implementation
```
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
```python
```python Code
@listen(generate_city)
def generate_fun_fact(self, random_city):
# Implementation
@@ -121,7 +118,7 @@ When you run a Flow, the final output is determined by the last method that comp
Here's how you can access the final output:
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, start
class OutputExampleFlow(Flow):
@@ -133,17 +130,18 @@ class OutputExampleFlow(Flow):
def second_method(self, first_output):
return f"Second method received: {first_output}"
flow = OutputExampleFlow()
final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
```
````
```text
``` text Output
---- Final Output ----
Second method received: Output from first_method
```
````
</CodeGroup>
@@ -158,7 +156,7 @@ Here's an example of how to update and access the state:
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
@@ -186,7 +184,7 @@ print("Final State:")
print(flow.state)
```
```text
```text Output
Final Output: Hello from first_method - updated by second_method
Final State:
counter=2 message='Hello from first_method - updated by second_method'
@@ -210,10 +208,10 @@ allowing developers to choose the approach that best fits their application's ne
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
```python
```python Code
from crewai.flow.flow import Flow, listen, start
class UnstructuredExampleFlow(Flow):
class UntructuredExampleFlow(Flow):
@start()
def first_method(self):
@@ -232,7 +230,8 @@ class UnstructuredExampleFlow(Flow):
print(f"State after third_method: {self.state}")
flow = UnstructuredExampleFlow()
flow = UntructuredExampleFlow()
flow.kickoff()
```
@@ -246,14 +245,16 @@ flow.kickoff()
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
```python
```python Code
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class StructuredExampleFlow(Flow[ExampleState]):
@start()
@@ -272,6 +273,7 @@ class StructuredExampleFlow(Flow[ExampleState]):
print(f"State after third_method: {self.state}")
flow = StructuredExampleFlow()
flow.kickoff()
```
@@ -305,7 +307,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, or_, start
class OrExampleFlow(Flow):
@@ -322,11 +324,13 @@ class OrExampleFlow(Flow):
def logger(self, result):
print(f"Logger: {result}")
flow = OrExampleFlow()
flow.kickoff()
```
```text
```text Output
Logger: Hello from the start method
Logger: Hello from the second method
```
@@ -342,7 +346,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, and_, listen, start
class AndExampleFlow(Flow):
@@ -364,7 +368,7 @@ flow = AndExampleFlow()
flow.kickoff()
```
```text
```text Output
---- Logger ----
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
```
@@ -381,7 +385,7 @@ You can specify different routes based on the output of the method, allowing you
<CodeGroup>
```python
```python Code
import random
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
@@ -412,11 +416,12 @@ class RouterFlow(Flow[ExampleState]):
def fourth_method(self):
print("Fourth method running")
flow = RouterFlow()
flow.kickoff()
```
```text
```text Output
Starting the structured flow
Third method running
Fourth method running
@@ -479,7 +484,7 @@ The `main.py` file is where you create your flow and connect the crews together.
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
```python
```python Code
#!/usr/bin/env python
from random import randint
@@ -555,42 +560,6 @@ uv run kickoff
The flow will execute, and you should see the output in the console.
### Adding Additional Crews Using the CLI
Once you have created your initial flow, you can easily add additional crews to your project using the CLI. This allows you to expand your flow's capabilities by integrating new crews without starting from scratch.
To add a new crew to your existing flow, use the following command:
```bash
crewai flow add-crew <crew_name>
```
This command will create a new directory for your crew within the `crews` folder of your flow project. It will include the necessary configuration files and a crew definition file, similar to the initial setup.
#### Folder Structure
After adding a new crew, your folder structure will look like this:
| Directory/File | Description |
| :--------------------- | :----------------------------------------------------------------- |
| `name_of_flow/` | Root directory for the flow. |
| ├── `crews/` | Contains directories for specific crews. |
| │ ├── `poem_crew/` | Directory for the "poem_crew" with its configurations and scripts. |
| │ │ ├── `config/` | Configuration files directory for the "poem_crew". |
| │ │ │ ├── `agents.yaml` | YAML file defining the agents for "poem_crew". |
| │ │ │ └── `tasks.yaml` | YAML file defining the tasks for "poem_crew". |
| │ │ └── `poem_crew.py` | Script for "poem_crew" functionality. |
| └── `name_of_crew/` | Directory for the new crew. |
| ├── `config/` | Configuration files directory for the new crew. |
| │ ├── `agents.yaml` | YAML file defining the agents for the new crew. |
| │ └── `tasks.yaml` | YAML file defining the tasks for the new crew. |
| └── `name_of_crew.py` | Script for the new crew functionality. |
You can then customize the `agents.yaml` and `tasks.yaml` files to define the agents and tasks for your new crew. The `name_of_crew.py` file will contain the crew's logic, which you can modify to suit your needs.
By using the CLI to add additional crews, you can efficiently build complex AI workflows that leverage multiple crews working together.
## Plot Flows
Visualizing your AI workflows can provide valuable insights into the structure and execution paths of your flows. CrewAI offers a powerful visualization tool that allows you to generate interactive plots of your flows, making it easier to understand and optimize your AI workflows.
@@ -607,7 +576,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
```python
```python Code
# Assuming you have a flow instance
flow.plot("my_flow_plot")
```
@@ -630,114 +599,13 @@ The generated plot will display nodes representing the tasks in your flow, with
By visualizing your flows, you can gain a clearer understanding of the workflow's structure, making it easier to debug, optimize, and communicate your AI processes to others.
### Conclusion
## Advanced
In this section, we explore more complex use cases of CrewAI Flows, starting with a self-evaluation loop. This pattern is crucial for developing AI systems that can iteratively improve their outputs through feedback.
### 1) Self-Evaluation Loop
The self-evaluation loop is a powerful pattern that allows AI workflows to automatically assess and refine their outputs. This example demonstrates how to set up a flow that generates content, evaluates it, and iterates based on feedback until the desired quality is achieved.
#### Overview
The self-evaluation loop involves two main Crews:
1. **ShakespeareanXPostCrew**: Generates a Shakespearean-style post on a given topic.
2. **XPostReviewCrew**: Evaluates the generated post, providing feedback on its validity and quality.
The process iterates until the post meets the criteria or a maximum retry limit is reached. This approach ensures high-quality outputs through iterative refinement.
#### Importance
This pattern is essential for building robust AI systems that can adapt and improve over time. By automating the evaluation and feedback loop, developers can ensure that their AI workflows produce reliable and high-quality results.
#### Main Code Highlights
Below is the `main.py` file for the self-evaluation loop flow:
```python
from typing import Optional
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
from self_evaluation_loop_flow.crews.shakespeare_crew.shakespeare_crew import (
ShakespeareanXPostCrew,
)
from self_evaluation_loop_flow.crews.x_post_review_crew.x_post_review_crew import (
XPostReviewCrew,
)
class ShakespeareXPostFlowState(BaseModel):
x_post: str = ""
feedback: Optional[str] = None
valid: bool = False
retry_count: int = 0
class ShakespeareXPostFlow(Flow[ShakespeareXPostFlowState]):
@start("retry")
def generate_shakespeare_x_post(self):
print("Generating Shakespearean X post")
topic = "Flying cars"
result = (
ShakespeareanXPostCrew()
.crew()
.kickoff(inputs={"topic": topic, "feedback": self.state.feedback})
)
print("X post generated", result.raw)
self.state.x_post = result.raw
@router(generate_shakespeare_x_post)
def evaluate_x_post(self):
if self.state.retry_count > 3:
return "max_retry_exceeded"
result = XPostReviewCrew().crew().kickoff(inputs={"x_post": self.state.x_post})
self.state.valid = result["valid"]
self.state.feedback = result["feedback"]
print("valid", self.state.valid)
print("feedback", self.state.feedback)
self.state.retry_count += 1
if self.state.valid:
return "complete"
return "retry"
@listen("complete")
def save_result(self):
print("X post is valid")
print("X post:", self.state.x_post)
with open("x_post.txt", "w") as file:
file.write(self.state.x_post)
@listen("max_retry_exceeded")
def max_retry_exceeded_exit(self):
print("Max retry count exceeded")
print("X post:", self.state.x_post)
print("Feedback:", self.state.feedback)
def kickoff():
shakespeare_flow = ShakespeareXPostFlow()
shakespeare_flow.kickoff()
def plot():
shakespeare_flow = ShakespeareXPostFlow()
shakespeare_flow.plot()
if __name__ == "__main__":
kickoff()
```
#### Code Highlights
- **Retry Mechanism**: The flow uses a retry mechanism to regenerate the post if it doesn't meet the criteria, up to a maximum of three retries.
- **Feedback Loop**: Feedback from the `XPostReviewCrew` is used to refine the post iteratively.
- **State Management**: The flow maintains state using a Pydantic model, ensuring type safety and clarity.
For a complete example and further details, please refer to the [Self Evaluation Loop Flow repository](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow).
Plotting your flows is a powerful feature of CrewAI that enhances your ability to design and manage complex AI workflows. Whether you choose to use the `plot()` method or the command line, generating plots will provide you with a visual representation of your workflows, aiding in both development and presentation.
## Next Steps
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are five specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are four specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
1. **Email Auto Responder Flow**: This example demonstrates an infinite loop where a background job continually runs to automate email responses. It's a great use case for tasks that need to be performed repeatedly without manual intervention. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/email_auto_responder_flow)
@@ -747,8 +615,6 @@ If you're interested in exploring additional examples of flows, we have a variet
4. **Meeting Assistant Flow**: This flow demonstrates how to broadcast one event to trigger multiple follow-up actions. For instance, after a meeting is completed, the flow can update a Trello board, send a Slack message, and save the results. It's a great example of handling multiple outcomes from a single event, making it ideal for comprehensive task management and notification systems. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/meeting_assistant_flow)
5. **Self Evaluation Loop Flow**: This flow demonstrates a self-evaluation loop where AI workflows automatically assess and refine their outputs through feedback. It involves generating content, evaluating it, and iterating until the desired quality is achieved. This pattern is crucial for developing robust AI systems that can adapt and improve over time. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow)
By exploring these examples, you can gain insights into how to leverage CrewAI Flows for various use cases, from automating repetitive tasks to managing complex, multi-step processes with dynamic decision-making and human feedback.
Also, check out our YouTube video on how to use flows in CrewAI below!
@@ -762,4 +628,4 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
></iframe>

View File

@@ -6,74 +6,226 @@ icon: book
# Using Knowledge in CrewAI
## Introduction
Knowledge in CrewAI serves as a foundational component for enriching AI agents with contextual and relevant information. It enables agents to access and utilize structured data sources during their execution processes, making them more intelligent and responsive.
The Knowledge class in CrewAI provides a powerful way to manage and query knowledge sources for your AI agents. This guide will show you how to implement knowledge management in your CrewAI projects.
## What is Knowledge?
The `Knowledge` class in CrewAI manages various sources that store information, which can be queried and retrieved by AI agents. This modular approach allows you to integrate diverse data formats such as text, PDFs, spreadsheets, and more into your AI workflows.
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks. Think of it as giving your agents a reference library they can consult while working.
Additionally, we have specific tools for generate knowledge sources for strings, text files, PDF's, and Spreadsheets. You can expand on any source type by extending the `KnowledgeSource` class.
<Info>
Key benefits of using Knowledge:
- Enhance agents with domain-specific information
- Support decisions with real-world data
- Maintain context across conversations
- Ground responses in factual information
</Info>
## Basic Implementation
## Supported Knowledge Sources
Here's a simple example of how to use the Knowledge class:
CrewAI supports various types of knowledge sources out of the box:
<CardGroup cols={2}>
<Card title="Text Sources" icon="text">
- Raw strings
- Text files (.txt)
- PDF documents
</Card>
<Card title="Structured Data" icon="table">
- CSV files
- Excel spreadsheets
- JSON documents
</Card>
</CardGroup>
## Quick Start
Here's a simple example using string-based knowledge:
```python
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai import Agent, Task, Crew
from crewai.knowledge import StringKnowledgeSource
# Create a knowledge source
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
# 1. Create a knowledge source
product_info = StringKnowledgeSource(
content="""Our product X1000 has the following features:
- 10-hour battery life
- Water-resistant
- Available in black and silver
Price: $299.99""",
metadata={"category": "product"}
)
# Create an agent with the knowledge store
agent = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
verbose=True
# 2. Create an agent with knowledge
sales_agent = Agent(
role="Sales Representative",
goal="Accurately answer customer questions about products",
backstory="Expert in product features and customer service",
knowledge_sources=[product_info] # Attach knowledge to agent
)
task = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=agent,
# 3. Create a task
answer_task = Task(
description="Answer: What colors is the X1000 available in and how much does it cost?",
agent=sales_agent
)
# 4. Create and run the crew
crew = Crew(
agents=[sales_agent],
tasks=[answer_task]
)
result = crew.kickoff()
```
## Knowledge Configuration
### Collection Names
Knowledge sources are organized into collections for better management:
```python
# Create knowledge sources with specific collections
tech_specs = StringKnowledgeSource(
content="Technical specifications...",
collection_name="product_tech_specs"
)
pricing_info = StringKnowledgeSource(
content="Pricing information...",
collection_name="product_pricing"
)
```
### Metadata and Filtering
Add metadata to organize and filter knowledge:
```python
knowledge_source = StringKnowledgeSource(
content="Product details...",
metadata={
"category": "electronics",
"product_line": "premium",
"last_updated": "2024-03"
}
)
```
### Chunking Configuration
Control how your content is split for processing:
```python
knowledge_source = PDFKnowledgeSource(
file_path="product_manual.pdf",
chunk_size=2000, # Characters per chunk
chunk_overlap=200 # Overlap between chunks
)
```
## Advanced Usage
### Custom Knowledge Sources
Create your own knowledge source by extending the base class:
```python
from crewai.knowledge.source import BaseKnowledgeSource
class APIKnowledgeSource(BaseKnowledgeSource):
def __init__(self, api_endpoint: str, **kwargs):
super().__init__(**kwargs)
self.api_endpoint = api_endpoint
def load_content(self):
# Implement API data fetching
response = requests.get(self.api_endpoint)
return response.json()
def add(self):
content = self.load_content()
# Process and store content
self.save_documents({"source": "api"})
```
### Embedder Configuration
Customize the embedding process:
```python
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge={"sources": [string_source], "metadata": {"preference": "personal"}}, # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
knowledge_sources=[source],
embedder={
"provider": "ollama",
"config": {"model": "nomic-embed-text:latest"},
}
)
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
### Referencing Sources
## Embedder Configuration
You can reference knowledge sources by their collection name or metadata.
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
* Add a directory to your crew project called `knowledge`:
* File paths in knowledge can be referenced relative to the `knowledge` directory.
Example:
A file inside the `knowledge` directory called `example.txt` can be referenced as `example.txt`.
```python
...
string_source = StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
metadata={"preference": "personal"}
source = TextFileKnowledgeSource(
file_path="example.txt", # or /example.txt
collection_name="example"
)
crew = Crew(
...
knowledge={
"sources": [string_source],
"metadata": {"preference": "personal"},
"embedder_config": {"provider": "openai", "config": {"model": "text-embedding-3-small"}},
},
agents=[agent],
tasks=[task],
knowledge_sources=[source],
)
```
## Best Practices
<AccordionGroup>
<Accordion title="Content Organization">
- Use meaningful collection names
- Add detailed metadata for filtering
- Keep chunk sizes appropriate for your content
- Consider content overlap for context preservation
</Accordion>
<Accordion title="Performance Tips">
- Use smaller chunk sizes for precise retrieval
- Implement metadata filtering for faster searches
- Choose appropriate embedding models for your use case
- Cache frequently accessed knowledge
</Accordion>
<Accordion title="Error Handling">
- Validate knowledge source content
- Handle missing or corrupted files
- Monitor embedding generation
- Implement fallback options
</Accordion>
</AccordionGroup>
## Common Issues and Solutions
<AccordionGroup>
<Accordion title="Content Not Found">
If agents can't find relevant information:
- Check chunk sizes
- Verify knowledge source loading
- Review metadata filters
- Test with simpler queries first
</Accordion>
<Accordion title="Performance Issues">
If knowledge retrieval is slow:
- Reduce chunk sizes
- Optimize metadata filtering
- Consider using a lighter embedding model
- Cache frequently accessed content
</Accordion>
</AccordionGroup>

View File

@@ -7,32 +7,45 @@ icon: link
## Using LangChain Tools
<Info>
CrewAI seamlessly integrates with LangChains comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
CrewAI seamlessly integrates with LangChain's comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
</Info>
```python Code
import os
from crewai import Agent
from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper
from dotenv import load_dotenv
from crewai import Agent, Task, Crew
from crewai.tools import BaseTool
from pydantic import Field
from langchain_community.utilities import GoogleSerperAPIWrapper
# Setup API keys
os.environ["SERPER_API_KEY"] = "Your Key"
# Set up your SERPER_API_KEY key in an .env file, eg:
# SERPER_API_KEY=<your api key>
load_dotenv()
search = GoogleSerperAPIWrapper()
# Create and assign the search tool to an agent
serper_tool = Tool(
name="Intermediate Answer",
func=search.run,
description="Useful for search-based queries",
)
class SearchTool(BaseTool):
name: str = "Search"
description: str = "Useful for search-based queries. Use this to find current information about markets, companies, and trends."
search: GoogleSerperAPIWrapper = Field(default_factory=GoogleSerperAPIWrapper)
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[serper_tool]
def _run(self, query: str) -> str:
"""Execute the search query and return results"""
try:
return self.search.run(query)
except Exception as e:
return f"Error performing search: {str(e)}"
# Create Agents
researcher = Agent(
role='Research Analyst',
goal='Gather current market data and trends',
backstory="""You are an expert research analyst with years of experience in
gathering market intelligence. You're known for your ability to find
relevant and up-to-date market information and present it in a clear,
actionable format.""",
tools=[SearchTool()],
verbose=True
)
# rest of the code ...
@@ -40,6 +53,6 @@ agent = Agent(
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms,
and the flexibility of tool arguments to optimize your agents' performance and capabilities.
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms,
and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -1,205 +1,323 @@
---
title: LLMs
description: Learn how to configure and optimize LLMs for your CrewAI projects.
icon: microchip-ai
title: 'LLMs'
description: 'A comprehensive guide to configuring and using Large Language Models (LLMs) in your CrewAI projects'
icon: 'microchip-ai'
---
# Large Language Models (LLMs) in CrewAI
<Note>
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
</Note>
Large Language Models (LLMs) are the backbone of intelligent agents in the CrewAI framework. This guide will help you understand, configure, and optimize LLM usage for your CrewAI projects.
## What are LLMs?
## Key Concepts
Large Language Models (LLMs) are the core intelligence behind CrewAI agents. They enable agents to understand context, make decisions, and generate human-like responses. Here's what you need to know:
- **LLM**: Large Language Model, the AI powering agent intelligence
- **Agent**: A CrewAI entity that uses an LLM to perform tasks
- **Provider**: A service that offers LLM capabilities (e.g., OpenAI, Anthropic, Ollama, [more providers](https://docs.litellm.ai/docs/providers))
<CardGroup cols={2}>
<Card title="LLM Basics" icon="brain">
Large Language Models are AI systems trained on vast amounts of text data. They power the intelligence of your CrewAI agents, enabling them to understand and generate human-like text.
</Card>
<Card title="Context Window" icon="window">
The context window determines how much text an LLM can process at once. Larger windows (e.g., 128K tokens) allow for more context but may be more expensive and slower.
</Card>
<Card title="Temperature" icon="temperature-three-quarters">
Temperature (0.0 to 1.0) controls response randomness. Lower values (e.g., 0.2) produce more focused, deterministic outputs, while higher values (e.g., 0.8) increase creativity and variability.
</Card>
<Card title="Provider Selection" icon="server">
Each LLM provider (e.g., OpenAI, Anthropic, Google) offers different models with varying capabilities, pricing, and features. Choose based on your needs for accuracy, speed, and cost.
</Card>
</CardGroup>
## Configuring LLMs for Agents
## Available Models and Their Capabilities
CrewAI offers flexible options for setting up LLMs:
### 1. Default Configuration
By default, CrewAI uses the `gpt-4o-mini` model. It uses environment variables if no LLM is specified:
- `OPENAI_MODEL_NAME` (defaults to "gpt-4o-mini" if not set)
- `OPENAI_API_BASE`
- `OPENAI_API_KEY`
### 2. Updating YAML files
You can update the `agents.yml` file to refer to the LLM you want to use:
```yaml Code
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis to gather relevant information,
synthesize findings, and produce well-documented insights.
backstory: A dedicated research professional with years of experience in academic
investigation, literature review, and data analysis, known for thorough and
methodical approaches to complex research questions.
verbose: true
llm: openai/gpt-4o
# llm: azure/gpt-4o-mini
# llm: gemini/gemini-pro
# llm: anthropic/claude-3-5-sonnet-20240620
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
# llm: mistral/mistral-large-latest
# llm: ollama/llama3:70b
# llm: groq/llama-3.2-90b-vision-preview
# llm: watsonx/meta-llama/llama-3-1-70b-instruct
# llm: nvidia_nim/meta/llama3-70b-instruct
# llm: sambanova/Meta-Llama-3.1-8B-Instruct
# ...
```
Keep in mind that you will need to set certain ENV vars depending on the model you are
using to account for the credentials or set a custom LLM object like described below.
Here are some of the required ENV vars for some of the LLM integrations:
<AccordionGroup>
<Accordion title="OpenAI">
```python Code
OPENAI_API_KEY=<your-api-key>
OPENAI_API_BASE=<optional-custom-base-url>
OPENAI_MODEL_NAME=<openai-model-name>
OPENAI_ORGANIZATION=<your-org-id> # OPTIONAL
OPENAI_API_BASE=<openaiai-api-base> # OPTIONAL
```
</Accordion>
<Accordion title="Anthropic">
```python Code
ANTHROPIC_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Google">
```python Code
GEMINI_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Azure">
```python Code
AZURE_API_KEY=<your-api-key> # "my-azure-api-key"
AZURE_API_BASE=<your-resource-url> # "https://example-endpoint.openai.azure.com"
AZURE_API_VERSION=<api-version> # "2023-05-15"
AZURE_AD_TOKEN=<your-azure-ad-token> # Optional
AZURE_API_TYPE=<your-azure-api-type> # Optional
```
</Accordion>
<Accordion title="AWS Bedrock">
```python Code
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
```
</Accordion>
<Accordion title="Mistral">
```python Code
MISTRAL_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Groq">
```python Code
GROQ_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="IBM watsonx.ai">
```python Code
WATSONX_URL=<your-url> # (required) Base URL of your WatsonX instance
WATSONX_APIKEY=<your-apikey> # (required) IBM cloud API key
WATSONX_TOKEN=<your-token> # (required) IAM auth token (alternative to APIKEY)
WATSONX_PROJECT_ID=<your-project-id> # (optional) Project ID of your WatsonX instance
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id> # (optional) ID of deployment space for deployed models
```
</Accordion>
</AccordionGroup>
### 3. Custom LLM Objects
Pass a custom LLM implementation or object from another library.
See below for examples.
Here's a detailed breakdown of supported models and their capabilities:
<Tabs>
<Tab title="String Identifier">
```python Code
agent = Agent(llm="gpt-4o", ...)
```
</Tab>
<Tab title="OpenAI">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| GPT-4 | 8,192 tokens | High-accuracy tasks, complex reasoning |
| GPT-4 Turbo | 128,000 tokens | Long-form content, document analysis |
| GPT-4o & GPT-4o-mini | 128,000 tokens | Cost-effective large context processing |
<Tab title="LLM Instance">
```python Code
from crewai import LLM
<Note>
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
</Note>
</Tab>
<Tab title="Groq">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| Llama 3.1 70B/8B | 131,072 tokens | High-performance, large context tasks |
| Llama 3.2 Series | 8,192 tokens | General-purpose tasks |
| Mixtral 8x7B | 32,768 tokens | Balanced performance and context |
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
llm = LLM(model="gpt-4", temperature=0.7)
agent = Agent(llm=llm, ...)
```
</Tab>
<Tip>
Groq is known for its fast inference speeds, making it suitable for real-time applications.
</Tip>
</Tab>
<Tab title="Others">
| Provider | Context Window | Key Features |
|----------|---------------|--------------|
| Deepseek Chat | 128,000 tokens | Specialized in technical discussions |
| Claude 3 | Up to 200K tokens | Strong reasoning, code understanding |
| Gemini | Varies by model | Multimodal capabilities |
<Info>
Provider selection should consider factors like:
- API availability in your region
- Pricing structure
- Required features (e.g., streaming, function calling)
- Performance requirements
</Info>
</Tab>
</Tabs>
## Connecting to OpenAI-Compatible LLMs
## Setting Up Your LLM
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
There are three ways to configure LLMs in CrewAI. Choose the method that best fits your workflow:
<Tabs>
<Tab title="Using Environment Variables">
```python Code
import os
<Tab title="1. Environment Variables">
The simplest way to get started. Set these variables in your environment:
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
```bash
# Required: Your API key for authentication
OPENAI_API_KEY=<your-api-key>
# Optional: Default model selection
OPENAI_MODEL_NAME=gpt-4o-mini # Default if not set
# Optional: Organization ID (if applicable)
OPENAI_ORGANIZATION_ID=<your-org-id>
```
</Tab>
<Tab title="Using LLM Class Attributes">
```python Code
<Warning>
Never commit API keys to version control. Use environment files (.env) or your system's secret management.
</Warning>
</Tab>
<Tab title="2. YAML Configuration">
Create a YAML file to define your agent configurations. This method is great for version control and team collaboration:
```yaml
researcher:
# Agent Definition
role: Research Specialist
goal: Conduct comprehensive research and analysis
backstory: A dedicated research professional with years of experience
verbose: true
# Model Selection (uncomment your choice)
# OpenAI Models - Known for reliability and performance
llm: openai/gpt-4o-mini
# llm: openai/gpt-4 # More accurate but expensive
# llm: openai/gpt-4-turbo # Fast with large context
# llm: openai/gpt-4o # Optimized for longer texts
# llm: openai/o1-preview # Latest features
# llm: openai/o1-mini # Cost-effective
# Azure Models - For enterprise deployments
# llm: azure/gpt-4o-mini
# llm: azure/gpt-4
# llm: azure/gpt-35-turbo
# Anthropic Models - Strong reasoning capabilities
# llm: anthropic/claude-3-opus-20240229-v1:0
# llm: anthropic/claude-3-sonnet-20240229-v1:0
# llm: anthropic/claude-3-haiku-20240307-v1:0
# llm: anthropic/claude-2.1
# llm: anthropic/claude-2.0
# Google Models - Good for general tasks
# llm: gemini/gemini-pro
# llm: gemini/gemini-1.5-pro-latest
# llm: gemini/gemini-1.0-pro-latest
# AWS Bedrock Models - Enterprise-grade
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
# llm: bedrock/anthropic.claude-v2:1
# llm: bedrock/amazon.titan-text-express-v1
# llm: bedrock/meta.llama2-70b-chat-v1
# Mistral Models - Open source alternative
# llm: mistral/mistral-large-latest
# llm: mistral/mistral-medium-latest
# llm: mistral/mistral-small-latest
# Groq Models - Fast inference
# llm: groq/mixtral-8x7b-32768
# llm: groq/llama-3.1-70b-versatile
# llm: groq/llama-3.2-90b-text-preview
# llm: groq/gemma2-9b-it
# llm: groq/gemma-7b-it
# IBM watsonx.ai Models - Enterprise features
# llm: watsonx/ibm/granite-13b-chat-v2
# llm: watsonx/meta-llama/llama-3-1-70b-instruct
# llm: watsonx/bigcode/starcoder2-15b
# Ollama Models - Local deployment
# llm: ollama/llama3:70b
# llm: ollama/codellama
# llm: ollama/mistral
# llm: ollama/mixtral
# llm: ollama/phi
# Fireworks AI Models - Specialized tasks
# llm: fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct
# llm: fireworks_ai/accounts/fireworks/models/mixtral-8x7b
# llm: fireworks_ai/accounts/fireworks/models/zephyr-7b-beta
# Perplexity AI Models - Research focused
# llm: pplx/llama-3.1-sonar-large-128k-online
# llm: pplx/mistral-7b-instruct
# llm: pplx/codellama-34b-instruct
# llm: pplx/mixtral-8x7b-instruct
# Hugging Face Models - Community models
# llm: huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct
# llm: huggingface/mistralai/Mixtral-8x7B-Instruct-v0.1
# llm: huggingface/tiiuae/falcon-180B-chat
# llm: huggingface/google/gemma-7b-it
# Nvidia NIM Models - GPU-optimized
# llm: nvidia_nim/meta/llama3-70b-instruct
# llm: nvidia_nim/mistral/mixtral-8x7b
# llm: nvidia_nim/google/gemma-7b
# SambaNova Models - Enterprise AI
# llm: sambanova/Meta-Llama-3.1-8B-Instruct
# llm: sambanova/BioMistral-7B
# llm: sambanova/Falcon-180B
```
<Info>
The YAML configuration allows you to:
- Version control your agent settings
- Easily switch between different models
- Share configurations across team members
- Document model choices and their purposes
</Info>
</Tab>
<Tab title="3. Direct Code">
For maximum flexibility, configure LLMs directly in your Python code:
```python
from crewai import LLM
# Basic configuration
llm = LLM(model="gpt-4")
# Advanced configuration with detailed parameters
llm = LLM(
model="gpt-4o-mini",
temperature=0.7, # Higher for more creative outputs
timeout=120, # Seconds to wait for response
max_tokens=4000, # Maximum length of response
top_p=0.9, # Nucleus sampling parameter
frequency_penalty=0.1, # Reduce repetition
presence_penalty=0.1, # Encourage topic diversity
response_format={"type": "json"}, # For structured outputs
seed=42 # For reproducible results
)
```
<Info>
Parameter explanations:
- `temperature`: Controls randomness (0.0-1.0)
- `timeout`: Maximum wait time for response
- `max_tokens`: Limits response length
- `top_p`: Alternative to temperature for sampling
- `frequency_penalty`: Reduces word repetition
- `presence_penalty`: Encourages new topics
- `response_format`: Specifies output structure
- `seed`: Ensures consistent outputs
</Info>
</Tab>
</Tabs>
## Advanced Features and Optimization
Learn how to get the most out of your LLM configuration:
<AccordionGroup>
<Accordion title="Context Window Management">
CrewAI includes smart context management features:
```python
from crewai import LLM
# CrewAI automatically handles:
# 1. Token counting and tracking
# 2. Content summarization when needed
# 3. Task splitting for large contexts
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
model="gpt-4",
max_tokens=4000, # Limit response length
)
agent = Agent(llm=llm, ...)
```
</Tab>
</Tabs>
## LLM Configuration Options
<Info>
Best practices for context management:
1. Choose models with appropriate context windows
2. Pre-process long inputs when possible
3. Use chunking for large documents
4. Monitor token usage to optimize costs
</Info>
</Accordion>
When configuring an LLM for your agent, you have access to a wide range of parameters:
<Accordion title="Performance Optimization">
<Steps>
<Step title="Token Usage Optimization">
Choose the right context window for your task:
- Small tasks (up to 4K tokens): Standard models
- Medium tasks (between 4K-32K): Enhanced models
- Large tasks (over 32K): Large context models
```python
# Configure model with appropriate settings
llm = LLM(
model="openai/gpt-4-turbo-preview",
temperature=0.7, # Adjust based on task
max_tokens=4096, # Set based on output needs
timeout=300 # Longer timeout for complex tasks
)
```
<Tip>
- Lower temperature (0.1 to 0.3) for factual responses
- Higher temperature (0.7 to 0.9) for creative tasks
</Tip>
</Step>
| Parameter | Type | Description |
|:------------------|:---------------:|:-------------------------------------------------------------------------------------------------|
| **model** | `str` | Name of the model to use (e.g., "gpt-4", "gpt-3.5-turbo", "ollama/llama3.1"). For more options, visit the providers documentation. |
| **timeout** | `float, int` | Maximum time (in seconds) to wait for a response. |
| **temperature** | `float` | Controls randomness in output (0.0 to 1.0). |
| **top_p** | `float` | Controls diversity of output (0.0 to 1.0). |
| **n** | `int` | Number of completions to generate. |
| **stop** | `str, List[str]` | Sequence(s) where generation should stop. |
| **max_tokens** | `int` | Maximum number of tokens to generate. |
| **presence_penalty** | `float` | Penalizes new tokens based on their presence in prior text. |
| **frequency_penalty**| `float` | Penalizes new tokens based on their frequency in prior text. |
| **logit_bias** | `Dict[int, float]`| Modifies likelihood of specified tokens appearing. |
| **response_format** | `Dict[str, Any]` | Specifies the format of the response (e.g., JSON object). |
| **seed** | `int` | Sets a random seed for deterministic results. |
| **logprobs** | `bool` | Returns log probabilities of output tokens if enabled. |
| **top_logprobs** | `int` | Number of most likely tokens for which to return log probabilities. |
| **base_url** | `str` | The base URL for the API endpoint. |
| **api_version** | `str` | Version of the API to use. |
| **api_key** | `str` | Your API key for authentication. |
<Step title="Best Practices">
1. Monitor token usage
2. Implement rate limiting
3. Use caching when possible
4. Set appropriate max_tokens limits
</Step>
</Steps>
<Info>
Remember to regularly monitor your token usage and adjust your configuration as needed to optimize costs and performance.
</Info>
</Accordion>
</AccordionGroup>
These are examples of how to configure LLMs for your agent.
## Provider Configuration Examples
<AccordionGroup>
<Accordion title="OpenAI">
<Accordion title="OpenAI">
```python Code
# Required
OPENAI_API_KEY=sk-...
# Optional
OPENAI_API_BASE=<custom-base-url>
OPENAI_ORGANIZATION=<your-org-id>
```
Example usage:
```python Code
from crewai import LLM
@@ -211,193 +329,306 @@ These are examples of how to configure LLMs for your agent.
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42,
base_url="https://api.openai.com/v1",
api_key="your-api-key-here"
seed=42
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Cerebras">
</Accordion>
<Accordion title="Anthropic">
```python Code
from crewai import LLM
ANTHROPIC_API_KEY=sk-ant-...
```
Example usage:
```python Code
llm = LLM(
model="cerebras/llama-3.1-70b",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Ollama (Local LLMs)">
CrewAI supports using Ollama for running open-source models locally:
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
3. Configure agent:
```python Code
from crewai import LLM
agent = Agent(
llm=LLM(
model="ollama/llama3.1",
base_url="http://localhost:11434"
),
...
model="anthropic/claude-3-sonnet-20240229-v1:0",
temperature=0.7
)
```
</Accordion>
<Accordion title="Groq">
</Accordion>
<Accordion title="Google">
```python Code
from crewai import LLM
GEMINI_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="groq/llama3-8b-8192",
api_key="your-api-key-here"
model="gemini/gemini-pro",
temperature=0.7
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Anthropic">
</Accordion>
<Accordion title="Azure">
```python Code
from crewai import LLM
# Required
AZURE_API_KEY=<your-api-key>
AZURE_API_BASE=<your-resource-url>
AZURE_API_VERSION=<api-version>
# Optional
AZURE_AD_TOKEN=<your-azure-ad-token>
AZURE_API_TYPE=<your-azure-api-type>
```
Example usage:
```python Code
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="your-api-key-here"
model="azure/gpt-4",
api_version="2023-05-15"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
</Accordion>
<Accordion title="Fireworks AI">
<Accordion title="AWS Bedrock">
```python Code
from crewai import LLM
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
```
Example usage:
```python Code
llm = LLM(
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
api_key="your-api-key-here"
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Gemini">
</Accordion>
<Accordion title="Mistral">
```python Code
from crewai import LLM
MISTRAL_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="gemini/gemini-1.5-pro-002",
api_key="your-api-key-here"
model="mistral/mistral-large-latest",
temperature=0.7
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Perplexity AI (pplx-api)">
</Accordion>
<Accordion title="Groq">
```python Code
from crewai import LLM
GROQ_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="llama-3.1-sonar-large-128k-online",
base_url="https://api.perplexity.ai/",
api_key="your-api-key-here"
model="groq/llama-3.2-90b-text-preview",
temperature=0.7
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="IBM watsonx.ai">
You can use IBM Watson by seeting the following ENV vars:
</Accordion>
<Accordion title="IBM watsonx.ai">
```python Code
# Required
WATSONX_URL=<your-url>
WATSONX_APIKEY=<your-apikey>
WATSONX_PROJECT_ID=<your-project-id>
# Optional
WATSONX_TOKEN=<your-token>
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id>
```
You can then define your agents llms by updating the `agents.yml`
```yaml Code
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis to gather relevant information,
synthesize findings, and produce well-documented insights.
backstory: A dedicated research professional with years of experience in academic
investigation, literature review, and data analysis, known for thorough and
methodical approaches to complex research questions.
verbose: true
llm: watsonx/meta-llama/llama-3-1-70b-instruct
```
You can also set up agents more dynamically as a base level LLM instance, like bellow:
Example usage:
```python Code
from crewai import LLM
llm = LLM(
model="watsonx/ibm/granite-13b-chat-v2",
base_url="https://api.watsonx.ai/v1",
api_key="your-api-key-here"
model="watsonx/meta-llama/llama-3-1-70b-instruct",
base_url="https://api.watsonx.ai/v1"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
</Accordion>
<Accordion title="Hugging Face">
<Accordion title="Ollama (Local LLMs)">
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
3. Configure:
```python Code
from crewai import LLM
llm = LLM(
model="ollama/llama3:70b",
base_url="http://localhost:11434"
)
```
</Accordion>
<Accordion title="Fireworks AI">
```python Code
FIREWORKS_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="Perplexity AI">
```python Code
PERPLEXITY_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="llama-3.1-sonar-large-128k-online",
base_url="https://api.perplexity.ai/"
)
```
</Accordion>
<Accordion title="Hugging Face">
```python Code
HUGGINGFACE_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
api_key="your-api-key-here",
base_url="your_api_endpoint"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
</Accordion>
<Accordion title="Nvidia NIM">
```python Code
NVIDIA_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="nvidia_nim/meta/llama3-70b-instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="SambaNova">
```python Code
SAMBANOVA_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="sambanova/Meta-Llama-3.1-8B-Instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="Cerebras">
```python Code
# Required
CEREBRAS_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="cerebras/llama3.1-70b",
temperature=0.7,
max_tokens=8192
)
```
<Info>
Cerebras features:
- Fast inference speeds
- Competitive pricing
- Good balance of speed and quality
- Support for long context windows
</Info>
</Accordion>
</AccordionGroup>
## Changing the Base API URL
## Common Issues and Solutions
You can change the base API URL for any LLM provider by setting the `base_url` parameter:
<Tabs>
<Tab title="Authentication">
<Warning>
Most authentication issues can be resolved by checking API key format and environment variable names.
</Warning>
```bash
# OpenAI
OPENAI_API_KEY=sk-...
# Anthropic
ANTHROPIC_API_KEY=sk-ant-...
```
</Tab>
<Tab title="Model Names">
<Check>
Always include the provider prefix in model names
</Check>
```python
# Correct
llm = LLM(model="openai/gpt-4")
# Incorrect
llm = LLM(model="gpt-4")
```
</Tab>
<Tab title="Context Length">
<Tip>
Use larger context models for extensive tasks
</Tip>
```python
# Large context model
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>
```python Code
from crewai import LLM
## Getting Help
llm = LLM(
model="custom-model-name",
base_url="https://api.your-provider.com/v1",
api_key="your-api-key"
)
agent = Agent(llm=llm, ...)
```
If you need assistance, these resources are available:
This is particularly useful when working with OpenAI-compatible APIs or when you need to specify a different endpoint for your chosen provider.
<CardGroup cols={3}>
<Card
title="LiteLLM Documentation"
href="https://docs.litellm.ai/docs/"
icon="book"
>
Comprehensive documentation for LiteLLM integration and troubleshooting common issues.
</Card>
<Card
title="GitHub Issues"
href="https://github.com/joaomdmoura/crewAI/issues"
icon="bug"
>
Report bugs, request features, or browse existing issues for solutions.
</Card>
<Card
title="Community Forum"
href="https://community.crewai.com"
icon="comment-question"
>
Connect with other CrewAI users, share experiences, and get help from the community.
</Card>
</CardGroup>
## Best Practices
1. **Choose the right model**: Balance capability and cost.
2. **Optimize prompts**: Clear, concise instructions improve output.
3. **Manage tokens**: Monitor and limit token usage for efficiency.
4. **Use appropriate temperature**: Lower for factual tasks, higher for creative ones.
5. **Implement error handling**: Gracefully manage API errors and rate limits.
## Troubleshooting
- **API Errors**: Check your API key, network connection, and rate limits.
- **Unexpected Outputs**: Refine your prompts and adjust temperature or top_p.
- **Performance Issues**: Consider using a more powerful model or optimizing your queries.
- **Timeout Errors**: Increase the `timeout` parameter or optimize your input.
<Note>
Best Practices for API Key Security:
- Use environment variables or secure vaults
- Never commit keys to version control
- Rotate keys regularly
- Use separate keys for development and production
- Monitor key usage for unusual patterns
</Note>

View File

@@ -1,6 +1,6 @@
---
title: Tasks
description: Detailed guide on managing and creating tasks within the CrewAI framework, reflecting the latest codebase updates.
description: Detailed guide on managing and creating tasks within the CrewAI framework.
icon: list-check
---
@@ -8,41 +8,171 @@ icon: list-check
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
They provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
Tasks provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
Tasks within CrewAI can be collaborative, requiring multiple agents to work together. This is managed through the task properties and orchestrated by the Crew's process, enhancing teamwork and efficiency.
### Task Execution Flow
Tasks can be executed in two ways:
- **Sequential**: Tasks are executed in the order they are defined
- **Hierarchical**: Tasks are assigned to agents based on their roles and expertise
The execution flow is defined when creating the crew:
```python Code
crew = Crew(
agents=[agent1, agent2],
tasks=[task1, task2],
process=Process.sequential # or Process.hierarchical
)
```
## Task Attributes
| Attribute | Parameters | Type | Description |
| :------------------------------- | :---------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
| **Description** | `description` | `str` | A clear, concise statement of what the task entails. |
| **Agent** | `agent` | `Optional[BaseAgent]` | The agent responsible for the task, assigned either directly or by the crew's process. |
| **Expected Output** | `expected_output` | `str` | A detailed description of what the task's completion looks like. |
| **Tools** _(optional)_ | `tools` | `Optional[List[Any]]` | The functions or capabilities the agent can utilize to perform the task. Defaults to an empty list. |
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | If set, the task executes asynchronously, allowing progression without waiting for completion. Defaults to False. |
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Specifies tasks whose outputs are used as context for this task. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Additional configuration details for the agent executing the task, allowing further customization. Defaults to None. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
| **Output** _(optional)_ | `output` | `Optional[TaskOutput]` | An instance of `TaskOutput`, containing the raw, JSON, and Pydantic output plus additional details. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | A callable that is executed with the task's output upon completion. |
| **Human Input** _(optional)_ | `human_input` | `Optional[bool]` | Indicates if the task should involve human review at the end, useful for tasks needing human oversight. Defaults to False.|
| **Converter Class** _(optional)_ | `converter_cls` | `Optional[Type[Converter]]` | A converter class used to export structured output. Defaults to None. |
| **Name** _(optional)_ | `name` | `Optional[str]` | A name identifier for the task. |
| **Agent** _(optional)_ | `agent` | `Optional[BaseAgent]` | The agent responsible for executing the task. |
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | The tools/resources the agent is limited to use for this task. |
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Other tasks whose outputs will be used as context for this task. |
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | Whether the task should be executed asynchronously. Defaults to False. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
## Creating a Task
## Creating Tasks
Creating a task involves defining its scope, responsible agent, and any additional attributes for flexibility:
There are two ways to create tasks in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
### YAML Configuration (Recommended)
Using YAML configuration provides a cleaner, more maintainable way to define tasks. We strongly recommend using this approach to define tasks in your CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/installation) section, navigate to the `src/latest_ai_development/config/tasks.yaml` file and modify the template to match your specific task requirements.
<Note>
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
```python Code
crew.kickoff(inputs={'topic': 'AI Agents'})
```
</Note>
Here's an example of how to configure tasks using YAML:
```yaml tasks.yaml
research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst
output_file: report.md
```
To use this YAML configuration in your code, create a crew class that inherits from `CrewBase`:
```python crew.py
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True,
tools=[SerperDevTool()]
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task']
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task']
)
@crew
def crew(self) -> Crew:
return Crew(
agents=[
self.researcher(),
self.reporting_analyst()
],
tasks=[
self.research_task(),
self.reporting_task()
],
process=Process.sequential
)
```
<Note>
The names you use in your YAML files (`agents.yaml` and `tasks.yaml`) should match the method names in your Python code.
</Note>
### Direct Code Definition (Alternative)
Alternatively, you can define tasks directly in your code without using YAML configuration:
```python task.py
from crewai import Task
task = Task(
description='Find and summarize the latest and most relevant news on AI',
agent=sales_agent,
expected_output='A bullet list summary of the top 5 most important AI news',
research_task = Task(
description="""
Conduct a thorough research about AI Agents.
Make sure you find any interesting and relevant information given
the current year is 2024.
""",
expected_output="""
A list with 10 bullet points of the most relevant information about AI Agents
""",
agent=researcher
)
reporting_task = Task(
description="""
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
""",
expected_output="""
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
""",
agent=reporting_analyst,
output_file="report.md"
)
```
@@ -52,6 +182,8 @@ task = Task(
## Task Output
Understanding task outputs is crucial for building effective AI workflows. CrewAI provides a structured way to handle task results through the `TaskOutput` class, which supports multiple output formats and can be easily passed between tasks.
The output of a task in CrewAI framework is encapsulated within the `TaskOutput` class. This class provides a structured way to access results of a task, including various formats such as raw output, JSON, and Pydantic models.
By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput` will only include the `pydantic` or `json_dict` output if the original `Task` object was configured with `output_pydantic` or `output_json`, respectively.
@@ -112,6 +244,186 @@ if task_output.pydantic:
print(f"Pydantic Output: {task_output.pydantic}")
```
## Task Dependencies and Context
Tasks can depend on the output of other tasks using the `context` attribute. For example:
```python Code
research_task = Task(
description="Research the latest developments in AI",
expected_output="A list of recent AI developments",
agent=researcher
)
analysis_task = Task(
description="Analyze the research findings and identify key trends",
expected_output="Analysis report of AI trends",
agent=analyst,
context=[research_task] # This task will wait for research_task to complete
)
```
## Getting Structured Consistent Outputs from Tasks
When you need to ensure that a task outputs a structured and consistent format, you can use the `output_pydantic` or `output_json` properties on a task. These properties allow you to define the expected output structure, making it easier to parse and utilize the results in your application.
<Note>
It's also important to note that the output of the final task of a crew becomes the final output of the actual crew itself.
</Note>
### Using `output_pydantic`
The `output_pydantic` property allows you to define a Pydantic model that the task output should conform to. This ensures that the output is not only structured but also validated according to the Pydantic model.
Heres an example demonstrating how to use output_pydantic:
```python Code
import json
from crewai import Agent, Crew, Process, Task
from pydantic import BaseModel
class Blog(BaseModel):
title: str
content: str
blog_agent = Agent(
role="Blog Content Generator Agent",
goal="Generate a blog title and content",
backstory="""You are an expert content creator, skilled in crafting engaging and informative blog posts.""",
verbose=False,
allow_delegation=False,
llm="gpt-4o",
)
task1 = Task(
description="""Create a blog title and content on a given topic. Make sure the content is under 200 words.""",
expected_output="A compelling blog title and well-written content.",
agent=blog_agent,
output_pydantic=Blog,
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[blog_agent],
tasks=[task1],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
# Option 1: Accessing Properties Using Dictionary-Style Indexing
print("Accessing Properties - Option 1")
title = result["title"]
content = result["content"]
print("Title:", title)
print("Content:", content)
# Option 2: Accessing Properties Directly from the Pydantic Model
print("Accessing Properties - Option 2")
title = result.pydantic.title
content = result.pydantic.content
print("Title:", title)
print("Content:", content)
# Option 3: Accessing Properties Using the to_dict() Method
print("Accessing Properties - Option 3")
output_dict = result.to_dict()
title = output_dict["title"]
content = output_dict["content"]
print("Title:", title)
print("Content:", content)
# Option 4: Printing the Entire Blog Object
print("Accessing Properties - Option 5")
print("Blog:", result)
```
In this example:
* A Pydantic model Blog is defined with title and content fields.
* The task task1 uses the output_pydantic property to specify that its output should conform to the Blog model.
* After executing the crew, you can access the structured output in multiple ways as shown.
#### Explanation of Accessing the Output
1. Dictionary-Style Indexing: You can directly access the fields using result["field_name"]. This works because the CrewOutput class implements the __getitem__ method.
2. Directly from Pydantic Model: Access the attributes directly from the result.pydantic object.
3. Using to_dict() Method: Convert the output to a dictionary and access the fields.
4. Printing the Entire Object: Simply print the result object to see the structured output.
### Using `output_json`
The `output_json` property allows you to define the expected output in JSON format. This ensures that the task's output is a valid JSON structure that can be easily parsed and used in your application.
Heres an example demonstrating how to use `output_json`:
```python Code
import json
from crewai import Agent, Crew, Process, Task
from pydantic import BaseModel
# Define the Pydantic model for the blog
class Blog(BaseModel):
title: str
content: str
# Define the agent
blog_agent = Agent(
role="Blog Content Generator Agent",
goal="Generate a blog title and content",
backstory="""You are an expert content creator, skilled in crafting engaging and informative blog posts.""",
verbose=False,
allow_delegation=False,
llm="gpt-4o",
)
# Define the task with output_json set to the Blog model
task1 = Task(
description="""Create a blog title and content on a given topic. Make sure the content is under 200 words.""",
expected_output="A JSON object with 'title' and 'content' fields.",
agent=blog_agent,
output_json=Blog,
)
# Instantiate the crew with a sequential process
crew = Crew(
agents=[blog_agent],
tasks=[task1],
verbose=True,
process=Process.sequential,
)
# Kickoff the crew to execute the task
result = crew.kickoff()
# Option 1: Accessing Properties Using Dictionary-Style Indexing
print("Accessing Properties - Option 1")
title = result["title"]
content = result["content"]
print("Title:", title)
print("Content:", content)
# Option 2: Printing the Entire Blog Object
print("Accessing Properties - Option 2")
print("Blog:", result)
```
In this example:
* A Pydantic model Blog is defined with title and content fields, which is used to specify the structure of the JSON output.
* The task task1 uses the output_json property to indicate that it expects a JSON output conforming to the Blog model.
* After executing the crew, you can access the structured JSON output in two ways as shown.
#### Explanation of Accessing the Output
1. Accessing Properties Using Dictionary-Style Indexing: You can access the fields directly using result["field_name"]. This is possible because the CrewOutput class implements the __getitem__ method, allowing you to treat the output like a dictionary. In this option, we're retrieving the title and content from the result.
2. Printing the Entire Blog Object: By printing result, you get the string representation of the CrewOutput object. Since the __str__ method is implemented to return the JSON output, this will display the entire output as a formatted string representing the Blog object.
---
By using output_pydantic or output_json, you ensure that your tasks produce outputs in a consistent and structured format, making it easier to process and utilize the data within your application or across multiple tasks.
## Integrating Tools with Tasks
Leverage tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools) for enhanced task performance and agent interaction.
@@ -167,16 +479,16 @@ This is useful when you have a task that depends on the output of another task t
# ...
research_ai_task = Task(
description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news',
description="Research the latest developments in AI",
expected_output="A list of recent AI developments",
async_execution=True,
agent=research_agent,
tools=[search_tool]
)
research_ops_task = Task(
description='Find and summarize the latest AI Ops news',
expected_output='A bullet list summary of the top 5 most important AI Ops news',
description="Research the latest developments in AI Ops",
expected_output="A list of recent AI Ops developments",
async_execution=True,
agent=research_agent,
tools=[search_tool]
@@ -184,7 +496,7 @@ research_ops_task = Task(
write_blog_task = Task(
description="Write a full blog post about the importance of AI and its latest news",
expected_output='Full blog post that is 4 paragraphs long',
expected_output="Full blog post that is 4 paragraphs long",
agent=writer_agent,
context=[research_ai_task, research_ops_task]
)
@@ -320,4 +632,4 @@ save_output_task = Task(
Tasks are the driving force behind the actions of agents in CrewAI.
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.

View File

@@ -125,10 +125,10 @@ You can connect to OpenAI-compatible LLMs using either environment variables or
</Tab>
<Tab title="Using LLM Class Attributes">
<CodeGroup>
```python Code
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
```python Code
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
@@ -179,4 +179,4 @@ This is particularly useful when working with OpenAI-compatible APIs or when you
## Conclusion
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.

View File

@@ -0,0 +1,181 @@
---
title: Agent Monitoring with OpenLIT
description: Quickly start monitoring your Agents in just a single line of code with OpenTelemetry.
icon: magnifying-glass-chart
---
# OpenLIT Overview
[OpenLIT](https://github.com/openlit/openlit?src=crewai-docs) is an open-source tool that makes it simple to monitor the performance of AI agents, LLMs, VectorDBs, and GPUs with just **one** line of code.
It provides OpenTelemetry-native tracing and metrics to track important parameters like cost, latency, interactions and task sequences.
This setup enables you to track hyperparameters and monitor for performance issues, helping you find ways to enhance and fine-tune your agents over time.
<Frame caption="OpenLIT Dashboard">
<img src="/images/openlit1.png" alt="Overview Agent usage including cost and tokens" />
<img src="/images/openlit2.png" alt="Overview of agent otel traces and metrics" />
<img src="/images/openlit3.png" alt="Overview of agent traces in details" />
</Frame>
### Features
- **Analytics Dashboard**: Monitor your Agents health and performance with detailed dashboards that track metrics, costs, and user interactions.
- **OpenTelemetry-native Observability SDK**: Vendor-neutral SDKs to send traces and metrics to your existing observability tools like Grafana, DataDog and more.
- **Cost Tracking for Custom and Fine-Tuned Models**: Tailor cost estimations for specific models using custom pricing files for precise budgeting.
- **Exceptions Monitoring Dashboard**: Quickly spot and resolve issues by tracking common exceptions and errors with a monitoring dashboard.
- **Compliance and Security**: Detect potential threats such as profanity and PII leaks.
- **Prompt Injection Detection**: Identify potential code injection and secret leaks.
- **API Keys and Secrets Management**: Securely handle your LLM API keys and secrets centrally, avoiding insecure practices.
- **Prompt Management**: Manage and version Agent prompts using PromptHub for consistent and easy access across Agents.
- **Model Playground** Test and compare different models for your CrewAI agents before deployment.
## Setup Instructions
<Steps>
<Step title="Deploy OpenLIT">
<Steps>
<Step title="Git Clone OpenLIT Repository">
```shell
git clone git@github.com:openlit/openlit.git
```
</Step>
<Step title="Start Docker Compose">
From the root directory of the [OpenLIT Repo](https://github.com/openlit/openlit), Run the below command:
```shell
docker compose up -d
```
</Step>
</Steps>
</Step>
<Step title="Install OpenLIT SDK">
```shell
pip install openlit
```
</Step>
<Step title="Initialize OpenLIT in Your Application">
Add the following two lines to your application code:
<Tabs>
<Tab title="Setup using function arguments">
```python
import openlit
openlit.init(otlp_endpoint="http://127.0.0.1:4318")
```
Example Usage for monitoring a CrewAI Agent:
```python
from crewai import Agent, Task, Crew, Process
import openlit
openlit.init(disable_metrics=True)
# Define your agents
researcher = Agent(
role="Researcher",
goal="Conduct thorough research and analysis on AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI, and startups. You work as a freelancer and are currently researching for a new client.",
allow_delegation=False,
llm='command-r'
)
# Define your task
task = Task(
description="Generate a list of 5 interesting ideas for an article, then write one captivating paragraph for each idea that showcases the potential of a full article on this topic. Return the list of ideas with their paragraphs and your notes.",
expected_output="5 bullet points, each with a paragraph and accompanying notes.",
)
# Define the manager agent
manager = Agent(
role="Project Manager",
goal="Efficiently manage the crew and ensure high-quality task completion",
backstory="You're an experienced project manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=True,
llm='command-r'
)
# Instantiate your crew with a custom manager
crew = Crew(
agents=[researcher],
tasks=[task],
manager_agent=manager,
process=Process.hierarchical,
)
# Start the crew's work
result = crew.kickoff()
print(result)
```
</Tab>
<Tab title="Setup using Environment Variables">
Add the following two lines to your application code:
```python
import openlit
openlit.init()
```
Run the following command to configure the OTEL export endpoint:
```shell
export OTEL_EXPORTER_OTLP_ENDPOINT = "http://127.0.0.1:4318"
```
Example Usage for monitoring a CrewAI Async Agent:
```python
import asyncio
from crewai import Crew, Agent, Task
import openlit
openlit.init(otlp_endpoint="http://127.0.0.1:4318")
# Create an agent with code execution enabled
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True,
llm="command-r"
)
# Create a task that requires code execution
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="5 bullet points, each with a paragraph and accompanying notes.",
)
# Create a crew and add the task
analysis_crew = Crew(
agents=[coding_agent],
tasks=[data_analysis_task]
)
# Async function to kickoff the crew asynchronously
async def async_crew_execution():
result = await analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
print("Crew Result:", result)
# Run the async function
asyncio.run(async_crew_execution())
```
</Tab>
</Tabs>
Refer to OpenLIT [Python SDK repository](https://github.com/openlit/openlit/tree/main/sdk/python) for more advanced configurations and use cases.
</Step>
<Step title="Visualize and Analyze">
With the Agent Observability data now being collected and sent to OpenLIT, the next step is to visualize and analyze this data to get insights into your Agent's performance, behavior, and identify areas of improvement.
Just head over to OpenLIT at `127.0.0.1:3000` on your browser to start exploring. You can login using the default credentials
- **Email**: `user@openlit.io`
- **Password**: `openlituser`
<Frame caption="OpenLIT Dashboard">
<img src="/images/openlit1.png" alt="Overview Agent usage including cost and tokens" />
<img src="/images/openlit2.png" alt="Overview of agent otel traces and metrics" />
</Frame>
</Step>
</Steps>

BIN
docs/images/openlit1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 390 KiB

BIN
docs/images/openlit2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 422 KiB

BIN
docs/images/openlit3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 799 KiB

View File

@@ -1,128 +1,145 @@
---
title: Installation
description:
description: Get started with CrewAI - Install, configure, and build your first AI crew
icon: wrench
---
This guide will walk you through the installation process for CrewAI and its dependencies.
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
Let's get started! 🚀
<Note>
**Python Version Requirements**
CrewAI requires `Python >=3.10 and <=3.13`. Here's how to check your version:
```bash
python3 --version
```
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
</Note>
<Tip>
Make sure you have `Python >=3.10 <=3.13` installed on your system before you proceed.
</Tip>
# Installing CrewAI
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
Let's get you set up! 🚀
<Steps>
<Step title="Install CrewAI">
Install the main CrewAI package with the following command:
<CodeGroup>
```shell Terminal
pip install crewai
```
</CodeGroup>
You can also install the main CrewAI package and the tools package that include a series of helpful tools for your agents:
<CodeGroup>
```shell Terminal
pip install 'crewai[tools]'
```
</CodeGroup>
Alternatively, you can also use:
<CodeGroup>
```shell Terminal
pip install crewai crewai-tools
```
</CodeGroup>
</Step>
<Step title="Upgrade CrewAI">
To upgrade CrewAI and CrewAI Tools to the latest version, run the following command
<CodeGroup>
```shell Terminal
pip install --upgrade crewai crewai-tools
```
</CodeGroup>
<Note>
1. If you're using an older version of CrewAI, you may receive a warning about using `Poetry` for dependency management.
![Error from older versions](./images/crewai-run-poetry-error.png)
2. In this case, you'll need to run the command below to update your project.
This command will migrate your project to use [UV](https://github.com/astral-sh/uv) and update the necessary files.
Install CrewAI with all recommended tools using either method:
```shell Terminal
crewai update
pip install 'crewai[tools]'
```
or
```shell Terminal
pip install crewai crewai-tools
```
3. After running the command above, you should see the following output:
![Successfully migrated to UV](./images/crewai-update.png)
4. You're all set! You can now proceed to the next step! 🎉
</Note>
<Note>
Both methods install the core package and additional tools needed for most use cases.
</Note>
</Step>
<Step title="Verify the installation">
To verify that `crewai` and `crewai-tools` are installed correctly, run the following command
<CodeGroup>
```shell Terminal
pip freeze | grep crewai
```
</CodeGroup>
You should see the version number of `crewai` and `crewai-tools`.
<CodeGroup>
```markdown Version
crewai==X.X.X
crewai-tools==X.X.X
```
</CodeGroup>
If you see the version number, then the installation was successful! 🎉
<Step title="Upgrade CrewAI (Existing Installations Only)">
If you have an older version of CrewAI installed, you can upgrade it:
```shell Terminal
pip install --upgrade crewai crewai-tools
```
<Warning>
If you see a Poetry-related warning, you'll need to migrate to our new dependency manager:
```shell Terminal
crewai update
```
This will update your project to use [UV](https://github.com/astral-sh/uv), our new faster dependency manager.
</Warning>
<Note>
Skip this step if you're doing a fresh installation.
</Note>
</Step>
<Step title="Verify Installation">
Check your installed versions:
```shell Terminal
pip freeze | grep crewai
```
You should see something like:
```markdown Output
crewai==X.X.X
crewai-tools==X.X.X
```
<Check>Installation successful! You're ready to create your first crew.</Check>
</Step>
</Steps>
## Create a new CrewAI project
# Creating a New Project
The next step is to create a new CrewAI project.
We recommend using the YAML Template scaffolding to get started as it provides a structured approach to defining agents and tasks.
<Info>
We recommend using the YAML Template scaffolding for a structured approach to defining agents and tasks.
</Info>
<Steps>
<Step title="Create a new CrewAI project using the YAML Template Configuration">
To create a new CrewAI project, run the following CLI (Command Line Interface) command:
<CodeGroup>
```shell Terminal
crewai create crew <project_name>
```
</CodeGroup>
This command creates a new project folder with the following structure:
| File/Directory | Description |
|:------------------------|:-------------------------------------------------|
| `my_project/` | Root directory of the project |
| ├── `.gitignore` | Specifies files and directories to ignore in Git |
| ├── `pyproject.toml` | Project configuration and dependencies |
| ├── `README.md` | Project documentation |
| ├── `.env` | Environment variables |
| └── `src/` | Source code directory |
| &nbsp;&nbsp;&nbsp;&nbsp;└── `my_project/` | Main application package |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `__init__.py` | Marks the directory as a Python package |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `main.py` | Main application script |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `crew.py` | Crew-related functionalities |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `tools/` | Custom tools directory |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;│ ├── `custom_tool.py` | Custom tool implementation |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;│ └── `__init__.py` | Marks tools directory as a package |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;└── `config/` | Configuration files directory |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `agents.yaml` | Agent configurations |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;└── `tasks.yaml` | Task configurations |
<Step title="Generate Project Structure">
Run the CrewAI CLI command:
```shell Terminal
crewai create crew <project_name>
```
You can now start developing your crew by editing the files in the `src/my_project` folder.
The `main.py` file is the entry point of the project, the `crew.py` file is where you define your crew, the `agents.yaml` file is where you define your agents,
and the `tasks.yaml` file is where you define your tasks.
This creates a new project with the following structure:
<Frame>
```
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
├── .env
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
</Frame>
</Step>
<Step title="Customize your project">
To customize your project, you can:
- Modify `src/my_project/config/agents.yaml` to define your agents.
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
- Add your environment variables into the `.env` file.
<Step title="Customize Your Project">
Your project will contain these essential files:
| File | Purpose |
| --- | --- |
| `agents.yaml` | Define your AI agents and their roles |
| `tasks.yaml` | Set up agent tasks and workflows |
| `.env` | Store API keys and environment variables |
| `main.py` | Project entry point and execution flow |
| `crew.py` | Crew orchestration and coordination |
| `tools/` | Directory for custom agent tools |
<Tip>
Start by editing `agents.yaml` and `tasks.yaml` to define your crew's behavior.
Keep sensitive information like API keys in `.env`.
</Tip>
</Step>
</Steps>
## Next steps
## Next Steps
Now that you have installed `crewai` and `crewai-tools`, you're ready to spin up your first crew!
- 👨‍💻 Build your first agent with CrewAI by following the [Quickstart](/quickstart) guide.
- 💬 Join the [Community](https://community.crewai.com) to get help and share your feedback.
<CardGroup cols={2}>
<Card
title="Build Your First Agent"
icon="code"
href="/quickstart"
>
Follow our quickstart guide to create your first CrewAI agent and get hands-on experience.
</Card>
<Card
title="Join the Community"
icon="comments"
href="https://community.crewai.com"
>
Connect with other developers, get help, and share your CrewAI experiences.
</Card>
</CardGroup>

View File

@@ -1,49 +1,85 @@
---
title: Introduction
description: Welcome to CrewAI docs!
description: Build AI agent teams that work together to tackle complex tasks
icon: handshake
---
# What is CrewAI?
**CrewAI is a cutting-edge Python framework for orchestrating role-playing, autonomous AI agents.**
**CrewAI is a cutting-edge framework for orchestrating autonomous AI agents.**
By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
CrewAI enables you to create AI teams where each agent has specific roles, tools, and goals, working together to accomplish complex tasks.
<Frame caption="CrewAI Mindmap">
<img src="crewAI-mindmap.png" alt="CrewAI Mindmap" />
</Frame>
Think of it as assembling your dream team - each member (agent) brings unique skills and expertise, collaborating seamlessly to achieve your objectives.
## Why CrewAI?
- 🤼‍♀️ **Role-Playing Agents**: Agents can take on different roles and personas to better understand and interact with complex systems.
- 🤖 **Autonomous Decision Making**: Agents can make decisions autonomously based on the given context and available tools.
- 🤝 **Seamless Collaboration**: Agents can work together seamlessly, sharing information and resources to achieve common goals.
- 🧠 **Complex Task Tackling**: CrewAI is designed to tackle complex tasks, such as multi-step workflows, decision making, and problem solving.
## How CrewAI Works
# Get Started with CrewAI
<Note>
Just like a company has departments (Sales, Engineering, Marketing) working together under leadership to achieve business goals, CrewAI helps you create an organization of AI agents with specialized roles collaborating to accomplish complex tasks.
</Note>
<Frame caption="CrewAI Framework Overview">
<img src="crewAI-mindmap.png" alt="CrewAI Framework Overview" />
</Frame>
| Component | Description | Key Features |
|:----------|:-----------:|:------------|
| **Crew** | The top-level organization | • Manages AI agent teams<br/>• Oversees workflows<br/>• Ensures collaboration<br/>• Delivers outcomes |
| **AI Agents** | Specialized team members | • Have specific roles (researcher, writer)<br/>• Use designated tools<br/>• Can delegate tasks<br/>• Make autonomous decisions |
| **Process** | Workflow management system | • Defines collaboration patterns<br/>• Controls task assignments<br/>• Manages interactions<br/>• Ensures efficient execution |
| **Tasks** | Individual assignments | • Have clear objectives<br/>• Use specific tools<br/>• Feed into larger process<br/>• Produce actionable results |
### How It All Works Together
1. The **Crew** organizes the overall operation
2. **AI Agents** work on their specialized tasks
3. The **Process** ensures smooth collaboration
4. **Tasks** get completed to achieve the goal
## Key Features
<CardGroup cols={2}>
<Card title="Role-Based Agents" icon="users">
Create specialized agents with defined roles, expertise, and goals - from researchers to analysts to writers
</Card>
<Card title="Flexible Tools" icon="screwdriver-wrench">
Equip agents with custom tools and APIs to interact with external services and data sources
</Card>
<Card title="Intelligent Collaboration" icon="people-arrows">
Agents work together, sharing insights and coordinating tasks to achieve complex objectives
</Card>
<Card title="Task Management" icon="list-check">
Define sequential or parallel workflows, with agents automatically handling task dependencies
</Card>
</CardGroup>
## Why Choose CrewAI?
- 🧠 **Autonomous Operation**: Agents make intelligent decisions based on their roles and available tools
- 📝 **Natural Interaction**: Agents communicate and collaborate like human team members
- 🛠️ **Extensible Design**: Easy to add new tools, roles, and capabilities
- 🚀 **Production Ready**: Built for reliability and scalability in real-world applications
<CardGroup cols={3}>
<Card
title="Quickstart"
color="#F3A78B"
href="quickstart"
icon="terminal"
iconType="solid"
title="Install CrewAI"
icon="wrench"
href="/installation"
>
Getting started with CrewAI
Get started with CrewAI in your development environment.
</Card>
<Card
title="Quick Start"
icon="bolt"
href="/quickstart"
>
Follow our quickstart guide to create your first CrewAI agent and get hands-on experience.
</Card>
<Card
title="Join the Community"
color="#F3A78B"
icon="comments"
href="https://community.crewai.com"
icon="comment-question"
iconType="duotone"
>
Join the CrewAI community and get help with your project!
</Card>
</CardGroup>
## Next Step
- [Install CrewAI](/installation) to get started with your first agent.
>
Connect with other developers, get help, and share your CrewAI experiences.
</Card>
</CardGroup>

View File

@@ -99,7 +99,8 @@
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability"
"how-to/langtrace-observability",
"how-to/openlit-observability"
]
},
{

View File

@@ -349,11 +349,28 @@ Replace `<task_id>` with the ID of the task you want to replay.
If you need to reset the memory of your crew before running it again, you can do so by calling the reset memory feature:
```shell
crewai reset-memory
crewai reset-memories --all
```
This will clear the crew's memory, allowing for a fresh start.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com/), where you can deploy your crew in a few clicks.
The easiest way to deploy your crew is through CrewAI Enterprise, where you can deploy your crew in a few clicks.
<CardGroup cols={2}>
<Card
title="Deploy on Enterprise"
icon="rocket"
href="http://app.crewai.com"
>
Get started with CrewAI Enterprise and deploy your crew in a production environment with just a few clicks.
</Card>
<Card
title="Join the Community"
icon="comments"
href="https://community.crewai.com"
>
Join our open source community to discuss ideas, share your projects, and connect with other CrewAI developers.
</Card>
</CardGroup>

View File

@@ -152,6 +152,7 @@ nav:
- Conditional Tasks: 'how-to/Conditional-Tasks.md'
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Agent Monitoring with OpenLIT: 'how-to/openlit-Observability.md'
- Tools Docs:
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.83.0"
version = "0.85.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"

View File

@@ -16,7 +16,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.83.0"
__version__ = "0.85.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,7 +1,7 @@
import os
import shutil
import subprocess
from typing import Any, List, Literal, Optional, Union
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -9,6 +9,9 @@ from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.task import Task
@@ -65,6 +68,7 @@ class Agent(BaseAgent):
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
knowledge_sources: Knowledge sources for the agent.
"""
_times_executed: int = PrivateAttr(default=0)
@@ -122,9 +126,21 @@ class Agent(BaseAgent):
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
embedder_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@model_validator(mode="after")
def post_init_setup(self):
self._set_knowledge()
self.agent_ops_agent_name = self.role
unaccepted_attributes = [
"AWS_ACCESS_KEY_ID",
@@ -232,6 +248,21 @@ class Agent(BaseAgent):
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def _set_knowledge(self):
try:
if self.knowledge_sources:
knowledge_agent_name = f"{self.role.replace(' ', '_')}"
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder_config,
collection_name=knowledge_agent_name,
)
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
def execute_task(
self,
task: Task,
@@ -286,17 +317,21 @@ class Agent(BaseAgent):
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
# Integrate the knowledge base
if self.crew and self.crew.knowledge:
knowledge_snippets = self.crew.knowledge.query([task.prompt()])
valid_snippets = [
result["context"]
for result in knowledge_snippets
if result and result.get("context")
]
if valid_snippets:
formatted_knowledge = "\n".join(valid_snippets)
task_prompt += f"\n\nAdditional Information:\n{formatted_knowledge}"
if self._knowledge:
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
if agent_knowledge_snippets:
agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
)
if agent_knowledge_context:
task_prompt += agent_knowledge_context
if self.crew:
knowledge_snippets = self.crew.query_knowledge([task.prompt()])
if knowledge_snippets:
crew_knowledge_context = extract_knowledge_context(knowledge_snippets)
if crew_knowledge_context:
task_prompt += crew_knowledge_context
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)

View File

@@ -19,6 +19,7 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools import BaseTool
from crewai.tools.base_tool import Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
@@ -106,7 +107,7 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[BaseTool]] = Field(
tools: Optional[List[Any]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: Optional[int] = Field(
@@ -135,6 +136,35 @@ class BaseAgent(ABC, BaseModel):
def process_model_config(cls, values):
return process_config(values, cls)
@field_validator("tools")
@classmethod
def validate_tools(cls, tools: List[Any]) -> List[BaseTool]:
"""Validate and process the tools provided to the agent.
This method ensures that each tool is either an instance of BaseTool
or an object with 'name', 'func', and 'description' attributes. If the
tool meets these criteria, it is processed and added to the list of
tools. Otherwise, a ValueError is raised.
"""
processed_tools = []
for tool in tools:
if isinstance(tool, BaseTool):
processed_tools.append(tool)
elif (
hasattr(tool, "name")
and hasattr(tool, "func")
and hasattr(tool, "description")
):
# Tool has the required attributes, create a Tool instance
processed_tools.append(Tool.from_langchain(tool))
else:
raise ValueError(
f"Invalid tool type: {type(tool)}. "
"Tool must be an instance of BaseTool or "
"an object with 'name', 'func', and 'description' attributes."
)
return processed_tools
@model_validator(mode="after")
def validate_and_set_attributes(self):
# Validate required fields

View File

@@ -1,5 +1,6 @@
import json
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -12,6 +13,7 @@ from crewai.agents.parser import (
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import TRAINING_DATA_FILE
@@ -22,6 +24,12 @@ from crewai.utilities.logger import Logger
from crewai.utilities.training_handler import CrewTrainingHandler
@dataclass
class ToolResult:
result: Any
result_as_answer: bool
class CrewAgentExecutor(CrewAgentExecutorMixin):
_logger: Logger = Logger()
@@ -33,7 +41,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent: BaseAgent,
prompt: dict[str, str],
max_iter: int,
tools: List[Any],
tools: List[BaseTool],
tools_names: str,
stop_words: List[str],
tools_description: str,
@@ -70,7 +78,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.iterations = 0
self.log_error_after = 3
self.have_forced_answer = False
self.name_to_tool_map = {tool.name: tool for tool in self.tools}
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
tool.name: tool for tool in self.tools
}
if self.llm.stop:
self.llm.stop = list(set(self.llm.stop + self.stop))
else:
@@ -140,9 +150,17 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer = self._format_answer(answer)
if isinstance(formatted_answer, AgentAction):
action_result = self._use_tool(formatted_answer)
formatted_answer.text += f"\nObservation: {action_result}"
formatted_answer.result = action_result
tool_result = self._execute_tool_and_check_finality(
formatted_answer
)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
self._show_logs(formatted_answer)
if self.step_callback:
@@ -239,7 +257,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
)
def _use_tool(self, agent_action: AgentAction) -> Any:
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
@@ -255,19 +273,25 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.name_to_tool_map
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.name_to_tool_map
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return tool_result
return ToolResult(result=tool_result, result_as_answer=False)
def _summarize_messages(self) -> None:
messages_groups = []
@@ -333,9 +357,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration]["improved_output"] = (
result.output
)
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_handler.save(training_data)
else:
self._logger.log(

View File

@@ -39,6 +39,7 @@ def create_folder_structure(name, parent_folder=None):
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
(folder_path / "knowledge").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
@@ -52,7 +53,14 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
templates_dir = package_dir / "templates" / "crew"
root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
[
".gitignore",
"pyproject.toml",
"README.md",
"knowledge/user_preference.txt",
]
if not parent_folder
else []
)
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
@@ -168,7 +176,9 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
templates_dir = package_dir / "templates" / "crew"
root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
[".gitignore", "pyproject.toml", "README.md", "knowledge/user_preference.txt"]
if not parent_folder
else []
)
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]

View File

@@ -1,8 +1,9 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task, before_kickoff, after_kickoff
# Uncomment the following line to use an example of a custom tool
# from {{folder_name}}.tools.custom_tool import MyCustomTool
# Uncomment the following line to use an example of a knowledge source
# from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@@ -57,10 +58,20 @@ class {{crew_name}}():
@crew
def crew(self) -> Crew:
"""Creates the {{crew_name}} crew"""
# You can add knowledge sources here
# knowledge_path = "user_preference.txt"
# sources = [
# TextFileKnowledgeSource(
# file_path="knowledge/user_preference.txt",
# metadata={"preference": "personal"}
# ),
# ]
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
# knowledge_sources=sources, # In the case you want to add knowledge sources
)

View File

@@ -0,0 +1,4 @@
User name is John Doe.
User is an AI Engineer.
User is interested in AI Agents.
User is based in San Francisco, California.

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.83.0,<1.0.0"
"crewai[tools]>=0.85.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.83.0,<1.0.0",
"crewai[tools]>=0.85.0,<1.0.0",
]
[project.scripts]

View File

@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.83.0,<1.0.0" }
crewai = { extras = ["tools"], version = ">=0.85.0,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.83.0,<1.0.0"
"crewai[tools]>=0.85.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.83.0"
"crewai[tools]>=0.85.0"
]

View File

@@ -28,6 +28,7 @@ from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.memory.user.user_memory import UserMemory
from crewai.process import Process
from crewai.task import Task
@@ -202,10 +203,13 @@ class Crew(BaseModel):
default=[],
description="List of execution logs for tasks",
)
knowledge: Optional[Dict[str, Any]] = Field(
default=None, description="Knowledge for the crew. Add knowledge sources to the knowledge object."
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@field_validator("id", mode="before")
@classmethod
@@ -282,11 +286,22 @@ class Crew(BaseModel):
@model_validator(mode="after")
def create_crew_knowledge(self) -> "Crew":
if self.knowledge:
"""Create the knowledge for the crew."""
if self.knowledge_sources:
try:
self.knowledge = Knowledge(**self.knowledge) if isinstance(self.knowledge, dict) else self.knowledge
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid knowledge configuration: {str(e)}")
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder,
collection_name="crew",
)
except Exception as e:
self._logger.log(
"warning", f"Failed to init knowledge: {e}", color="yellow"
)
return self
@model_validator(mode="after")
@@ -942,6 +957,11 @@ class Crew(BaseModel):
result = self._execute_tasks(self.tasks, start_index, True)
return result
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
if self._knowledge:
return self._knowledge.query(query)
return None
def copy(self):
"""Create a deep copy of the Crew."""

View File

@@ -5,8 +5,8 @@ from pydantic import BaseModel, ConfigDict, Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.utilities.logger import Logger
from crewai.utilities.constants import DEFAULT_SCORE_THRESHOLD
os.environ["TOKENIZERS_PARALLELISM"] = "false" # removes logging from fastembed
@@ -18,24 +18,33 @@ class Knowledge(BaseModel):
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None, **data):
def __init__(
self,
collection_name: str,
sources: List[BaseKnowledgeSource],
embedder_config: Optional[Dict[str, Any]] = None,
storage: Optional[KnowledgeStorage] = None,
**data,
):
super().__init__(**data)
self.storage = KnowledgeStorage(embedder_config=embedder_config or None)
try:
for source in self.sources:
source.add()
except Exception as e:
Logger(verbose=True).log(
"warning",
f"Failed to init knowledge: {e}",
color="yellow",
if storage:
self.storage = storage
else:
self.storage = KnowledgeStorage(
embedder_config=embedder_config, collection_name=collection_name
)
self.sources = sources
self.storage.initialize_knowledge_storage()
for source in sources:
source.storage = self.storage
source.add()
def query(
self, query: List[str], limit: int = 3, preference: Optional[str] = None
@@ -52,3 +61,8 @@ class Knowledge(BaseModel):
score_threshold=DEFAULT_SCORE_THRESHOLD,
)
return results
def _add_sources(self):
for source in self.sources:
source.storage = self.storage
source.add()

View File

@@ -1,36 +1,72 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Union, List
from typing import Union, List, Dict, Any
from pydantic import Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from typing import Dict, Any
from crewai.utilities.logger import Logger
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
class BaseFileKnowledgeSource(BaseKnowledgeSource):
class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
"""Base class for knowledge sources that load content from files."""
file_path: Union[Path, List[Path]] = Field(...)
_logger: Logger = Logger(verbose=True)
file_path: Union[Path, List[Path], str, List[str]] = Field(
..., description="The path to the file"
)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
safe_file_paths: List[Path] = Field(default_factory=list)
def model_post_init(self, _):
"""Post-initialization method to load content."""
self.safe_file_paths = self._process_file_paths()
self.validate_paths()
self.content = self.load_content()
@abstractmethod
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess file content. Should be overridden by subclasses."""
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
"""Load and preprocess file content. Should be overridden by subclasses. Assume that the file path is relative to the project root in the knowledge directory."""
pass
for path in paths:
def validate_paths(self):
"""Validate the paths."""
for path in self.safe_file_paths:
if not path.exists():
self._logger.log(
"error",
f"File not found: {path}. Try adding sources to the knowledge directory. If its inside the knowledge directory, use the relative path.",
color="red",
)
raise FileNotFoundError(f"File not found: {path}")
if not path.is_file():
raise ValueError(f"Path is not a file: {path}")
return {}
self._logger.log(
"error",
f"Path is not a file: {path}",
color="red",
)
def save_documents(self, metadata: Dict[str, Any]):
"""Save the documents to the storage."""
chunk_metadatas = [metadata.copy() for _ in self.chunks]
self.storage.save(self.chunks, chunk_metadatas)
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""
return Path(KNOWLEDGE_DIRECTORY + "/" + path) if isinstance(path, str) else path
def _process_file_paths(self) -> List[Path]:
"""Convert file_path to a list of Path objects."""
paths = (
[self.file_path]
if isinstance(self.file_path, (str, Path))
else self.file_path
)
if not isinstance(paths, list):
raise ValueError("file_path must be a Path, str, or a list of these types")
return [self.convert_to_path(path) for path in paths]

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import List, Dict, Any
from typing import List, Dict, Any, Optional
import numpy as np
from pydantic import BaseModel, ConfigDict, Field
@@ -18,6 +18,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
metadata: Dict[str, Any] = Field(default_factory=dict)
collection_name: Optional[str] = Field(default=None)
@abstractmethod
def load_content(self) -> Dict[Any, str]:

View File

@@ -10,19 +10,15 @@ class CSVKnowledgeSource(BaseFileKnowledgeSource):
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess CSV file content."""
super().load_content() # Validate the file path
file_path = (
self.file_path[0] if isinstance(self.file_path, list) else self.file_path
)
file_path = Path(file_path) if isinstance(file_path, str) else file_path
with open(file_path, "r", encoding="utf-8") as csvfile:
reader = csv.reader(csvfile)
content = ""
for row in reader:
content += " ".join(row) + "\n"
return {file_path: content}
content_dict = {}
for file_path in self.safe_file_paths:
with open(file_path, "r", encoding="utf-8") as csvfile:
reader = csv.reader(csvfile)
content = ""
for row in reader:
content += " ".join(row) + "\n"
content_dict[file_path] = content
return content_dict
def add(self) -> None:
"""

View File

@@ -8,17 +8,15 @@ class ExcelKnowledgeSource(BaseFileKnowledgeSource):
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess Excel file content."""
super().load_content() # Validate the file path
pd = self._import_dependencies()
if isinstance(self.file_path, list):
file_path = self.file_path[0]
else:
file_path = self.file_path
df = pd.read_excel(file_path)
content = df.to_csv(index=False)
return {file_path: content}
content_dict = {}
for file_path in self.safe_file_paths:
file_path = self.convert_to_path(file_path)
df = pd.read_excel(file_path)
content = df.to_csv(index=False)
content_dict[file_path] = content
return content_dict
def _import_dependencies(self):
"""Dynamically import dependencies."""

View File

@@ -10,11 +10,9 @@ class JSONKnowledgeSource(BaseFileKnowledgeSource):
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess JSON file content."""
super().load_content() # Validate the file path
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content: Dict[Path, str] = {}
for path in paths:
for path in self.safe_file_paths:
path = self.convert_to_path(path)
with open(path, "r", encoding="utf-8") as json_file:
data = json.load(json_file)
content[path] = self._json_to_text(data)

View File

@@ -9,14 +9,13 @@ class PDFKnowledgeSource(BaseFileKnowledgeSource):
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess PDF file content."""
super().load_content() # Validate the file paths
pdfplumber = self._import_pdfplumber()
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content = {}
for path in paths:
for path in self.safe_file_paths:
text = ""
path = self.convert_to_path(path)
with pdfplumber.open(path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()

View File

@@ -1,4 +1,4 @@
from typing import List
from typing import List, Optional
from pydantic import Field
@@ -9,6 +9,7 @@ class StringKnowledgeSource(BaseKnowledgeSource):
"""A knowledge source that stores and queries plain text content using embeddings."""
content: str = Field(...)
collection_name: Optional[str] = Field(default=None)
def model_post_init(self, _):
"""Post-initialization method to validate content."""

View File

@@ -9,12 +9,11 @@ class TextFileKnowledgeSource(BaseFileKnowledgeSource):
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess text file content."""
super().load_content()
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content = {}
for path in paths:
with path.open("r", encoding="utf-8") as f:
content[path] = f.read() # type: ignore
for path in self.safe_file_paths:
path = self.convert_to_path(path)
with open(path, "r", encoding="utf-8") as f:
content[path] = f.read()
return content
def add(self) -> None:

View File

@@ -3,12 +3,16 @@ import io
import logging
import chromadb
import os
import chromadb.errors
from crewai.utilities.paths import db_storage_path
from typing import Optional, List
from typing import Dict, Any
from typing import Optional, List, Dict, Any, Union
from crewai.utilities import EmbeddingConfigurator
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
import hashlib
from chromadb.config import Settings
from chromadb.api import ClientAPI
from crewai.utilities.logger import Logger
@contextlib.contextmanager
@@ -35,9 +39,16 @@ class KnowledgeStorage(BaseKnowledgeStorage):
"""
collection: Optional[chromadb.Collection] = None
collection_name: Optional[str] = "knowledge"
app: Optional[ClientAPI] = None
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None):
self._initialize_app(embedder_config or {})
def __init__(
self,
embedder_config: Optional[Dict[str, Any]] = None,
collection_name: Optional[str] = None,
):
self.collection_name = collection_name
self._set_embedder_config(embedder_config)
def search(
self,
@@ -67,43 +78,75 @@ class KnowledgeStorage(BaseKnowledgeStorage):
else:
raise Exception("Collection not initialized")
def _initialize_app(self, embedder_config: Optional[Dict[str, Any]] = None):
import chromadb
from chromadb.config import Settings
self._set_embedder_config(embedder_config)
def initialize_knowledge_storage(self):
base_path = os.path.join(db_storage_path(), "knowledge")
chroma_client = chromadb.PersistentClient(
path=f"{db_storage_path()}/knowledge",
path=base_path,
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
self.collection = self.app.get_or_create_collection(name="knowledge")
collection_name = (
f"knowledge_{self.collection_name}"
if self.collection_name
else "knowledge"
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=collection_name, embedding_function=self.embedder_config
)
else:
raise Exception("Vector Database Client not initialized")
except Exception:
raise Exception("Failed to create or get collection")
def reset(self):
if self.app:
self.app.reset()
else:
base_path = os.path.join(db_storage_path(), "knowledge")
self.app = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()
def save(
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
self,
documents: List[str],
metadata: Union[Dict[str, Any], List[Dict[str, Any]]],
):
if self.collection:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
try:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
ids = [
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
]
ids = [
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
]
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
except chromadb.errors.InvalidDimensionException as e:
Logger(verbose=True).log(
"error",
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
"red",
)
raise ValueError(
"Embedding dimension mismatch. Make sure you're using the same embedding model "
"across all operations with this collection."
"Try resetting the collection using `crewai reset-memories -a`"
) from e
except Exception as e:
Logger(verbose=True).log(
"error", f"Failed to upsert documents: {e}", "red"
)
raise
else:
raise Exception("Collection not initialized")

View File

@@ -0,0 +1,12 @@
from typing import Any, Dict, List
def extract_knowledge_context(knowledge_snippets: List[Dict[str, Any]]) -> str:
"""Extract knowledge from the task prompt."""
valid_snippets = [
result["context"]
for result in knowledge_snippets
if result and result.get("context")
]
snippet = "\n".join(valid_snippets)
return f"Additional Information: {snippet}" if valid_snippets else ""

View File

@@ -10,7 +10,7 @@ class EntityMemory(Memory):
Inherits from the Memory class.
"""
def __init__(self, crew=None, embedder_config=None, storage=None):
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
@@ -33,6 +33,7 @@ class EntityMemory(Memory):
allow_reset=True,
embedder_config=embedder_config,
crew=crew,
path=path,
)
)
super().__init__(storage)

View File

@@ -14,8 +14,9 @@ class LongTermMemory(Memory):
LongTermMemoryItem instances.
"""
def __init__(self, storage=None):
storage = storage if storage else LTMSQLiteStorage()
def __init__(self, storage=None, path=None):
if not storage:
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
super().__init__(storage)
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"

View File

@@ -13,7 +13,7 @@ class ShortTermMemory(Memory):
MemoryItem instances.
"""
def __init__(self, crew=None, embedder_config=None, storage=None):
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
@@ -32,7 +32,7 @@ class ShortTermMemory(Memory):
storage
if storage
else RAGStorage(
type="short_term", embedder_config=embedder_config, crew=crew
type="short_term", embedder_config=embedder_config, crew=crew, path=path
)
)
super().__init__(storage)

View File

@@ -37,7 +37,7 @@ class RAGStorage(BaseRAGStorage):
app: ClientAPI | None = None
def __init__(self, type, allow_reset=True, embedder_config=None, crew=None):
def __init__(self, type, allow_reset=True, embedder_config=None, crew=None, path=None):
super().__init__(type, allow_reset, embedder_config, crew)
agents = crew.agents if crew else []
agents = [self._sanitize_role(agent.role) for agent in agents]
@@ -47,6 +47,7 @@ class RAGStorage(BaseRAGStorage):
self.type = type
self.allow_reset = allow_reset
self.path = path
self._initialize_app()
def _set_embedder_config(self):
@@ -59,7 +60,7 @@ class RAGStorage(BaseRAGStorage):
self._set_embedder_config()
chroma_client = chromadb.PersistentClient(
path=f"{db_storage_path()}/{self.type}/{self.agents}",
path=self.path if self.path else f"{db_storage_path()}/{self.type}/{self.agents}",
settings=Settings(allow_reset=self.allow_reset),
)

View File

@@ -1,7 +1,8 @@
from abc import ABC, abstractmethod
from inspect import signature
from typing import Any, Callable, Type, get_args, get_origin
from pydantic import BaseModel, ConfigDict, Field, validator
from pydantic import BaseModel, ConfigDict, Field, create_model, validator
from pydantic import BaseModel as PydanticBaseModel
from crewai.tools.structured_tool import CrewStructuredTool
@@ -72,20 +73,51 @@ class BaseTool(BaseModel, ABC):
description=self.description,
args_schema=self.args_schema,
func=self._run,
result_as_answer=self.result_as_answer,
)
@classmethod
def from_langchain(cls, tool: CrewStructuredTool) -> "BaseTool":
if cls == Tool:
if tool.func is None:
raise ValueError("CrewStructuredTool must have a callable 'func'")
return Tool(
name=tool.name,
description=tool.description,
args_schema=tool.args_schema,
func=tool.func,
)
raise NotImplementedError(f"from_langchain not implemented for {cls.__name__}")
def from_langchain(cls, tool: Any) -> "BaseTool":
"""Create a Tool instance from a CrewStructuredTool.
This method takes a CrewStructuredTool object and converts it into a
Tool instance. It ensures that the provided tool has a callable 'func'
attribute and infers the argument schema if not explicitly provided.
"""
if not hasattr(tool, "func") or not callable(tool.func):
raise ValueError("The provided tool must have a callable 'func' attribute.")
args_schema = getattr(tool, "args_schema", None)
if args_schema is None:
# Infer args_schema from the function signature if not provided
func_signature = signature(tool.func)
annotations = func_signature.parameters
args_fields = {}
for name, param in annotations.items():
if name != "self":
param_annotation = (
param.annotation if param.annotation != param.empty else Any
)
field_info = Field(
default=...,
description="",
)
args_fields[name] = (param_annotation, field_info)
if args_fields:
args_schema = create_model(f"{tool.name}Input", **args_fields)
else:
# Create a default schema with no fields if no parameters are found
args_schema = create_model(
f"{tool.name}Input", __base__=PydanticBaseModel
)
return cls(
name=getattr(tool, "name", "Unnamed Tool"),
description=getattr(tool, "description", ""),
func=tool.func,
args_schema=args_schema,
)
def _set_args_schema(self):
if self.args_schema is None:
@@ -136,12 +168,65 @@ class BaseTool(BaseModel, ABC):
class Tool(BaseTool):
func: Callable
"""The function that will be executed when the tool is called."""
func: Callable
def _run(self, *args: Any, **kwargs: Any) -> Any:
return self.func(*args, **kwargs)
@classmethod
def from_langchain(cls, tool: Any) -> "Tool":
"""Create a Tool instance from a CrewStructuredTool.
This method takes a CrewStructuredTool object and converts it into a
Tool instance. It ensures that the provided tool has a callable 'func'
attribute and infers the argument schema if not explicitly provided.
Args:
tool (Any): The CrewStructuredTool object to be converted.
Returns:
Tool: A new Tool instance created from the provided CrewStructuredTool.
Raises:
ValueError: If the provided tool does not have a callable 'func' attribute.
"""
if not hasattr(tool, "func") or not callable(tool.func):
raise ValueError("The provided tool must have a callable 'func' attribute.")
args_schema = getattr(tool, "args_schema", None)
if args_schema is None:
# Infer args_schema from the function signature if not provided
func_signature = signature(tool.func)
annotations = func_signature.parameters
args_fields = {}
for name, param in annotations.items():
if name != "self":
param_annotation = (
param.annotation if param.annotation != param.empty else Any
)
field_info = Field(
default=...,
description="",
)
args_fields[name] = (param_annotation, field_info)
if args_fields:
args_schema = create_model(f"{tool.name}Input", **args_fields)
else:
# Create a default schema with no fields if no parameters are found
args_schema = create_model(
f"{tool.name}Input", __base__=PydanticBaseModel
)
return cls(
name=getattr(tool, "name", "Unnamed Tool"),
description=getattr(tool, "description", ""),
func=tool.func,
args_schema=args_schema,
)
def to_langchain(
tools: list[BaseTool | CrewStructuredTool],

View File

@@ -22,6 +22,7 @@ class CrewStructuredTool:
description: str,
args_schema: type[BaseModel],
func: Callable[..., Any],
result_as_answer: bool = False,
) -> None:
"""Initialize the structured tool.
@@ -30,12 +31,14 @@ class CrewStructuredTool:
description: A description of what the tool does
args_schema: The pydantic model for the tool's arguments
func: The function to run when the tool is called
result_as_answer: Whether to return the output directly
"""
self.name = name
self.description = description
self.args_schema = args_schema
self.func = func
self._logger = Logger()
self.result_as_answer = result_as_answer
# Validate the function signature matches the schema
self._validate_function_signature()
@@ -98,6 +101,7 @@ class CrewStructuredTool:
description=description,
args_schema=schema,
func=func,
result_as_answer=return_direct,
)
@staticmethod

View File

@@ -1,3 +1,4 @@
TRAINING_DATA_FILE = "training_data.pkl"
TRAINED_AGENTS_DATA_FILE = "trained_agents_data.pkl"
DEFAULT_SCORE_THRESHOLD = 0.35
KNOWLEDGE_DIRECTORY = "knowledge"

View File

@@ -3,20 +3,19 @@
import os
from unittest import mock
from unittest.mock import patch
import pytest
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.utilities.events import Emitter
@@ -1584,21 +1583,22 @@ def test_agent_with_knowledge_sources():
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
with patch('crewai.knowledge.storage.knowledge_storage.KnowledgeStorage') as MockKnowledge:
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{
"content": content,
"metadata": {"preference": "personal"}
}]
mock_knowledge_instance.query.return_value = [
{"content": content, "metadata": {"preference": "personal"}}
]
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
)
# Create a task that requires the agent to use the knowledge
@@ -1613,4 +1613,3 @@ def test_agent_with_knowledge_sources():
# Assert that the agent provides the correct information
assert "blue" in result.raw.lower()

View File

@@ -1,4 +1,415 @@
interactions:
- request:
body: '{"input": ["Brandon''s favorite color is blue and he likes Mexican food."],
"model": "text-embedding-3-small", "encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '138'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R6SxOyurrmfP+KVWtKn5KLkGTNuIuABAFRu7q6QJGLIAKSQE6d/96l367T3RMH
EEpI8j63N//5r7/++rvPm+L2+fufv/5u6+nz9//4Xrtnn+zvf/76n//666+//vrP3+//N7Lo8uJ+
r1/lb/jvZv26F8vf//zF//eV/zvon7/+jq6vjKh9O4J16w0pDD6Sje2RqsYS44hDcWl9cPKQzIYP
H8KK5NDZkVu+3eVi0B0ntNmvzxlIl3fM8DMLoM+bIy5Ux2e0iE4p2g/aRIr0JXu0ntIb1N1dFLDx
vowUa0+I7jsjmhXu9AKr4lIODLV4wOaJfUaWM6xD7yWLWAN5O64qLkxZGDl1trNOzJmJMxdZUpbh
AEQuW8BVVtEHpGdsyZmZi5p5NBE+0gc+HuXJmyk6l1ADg42tKQ9y0Xw/fPh63+7EZnXH2OF8HODb
G0ZiuboPWMlffRCXuw/WsMAD5omxiNpX0c7bfPUNcYtoClEq74JJuHfjcnknNjrPtoEjd5FZ9zjC
AVrdxyOH6fUEzJUVBxl740z2mWwCQRrXHp128E5uN6UxlmI1IcJucCR76ebE0t6UAiW/imdsTI9P
vJbUKpCY+SI2z0YdLwN0dODkyCe5qUYetTe0R/PoaiSXjz5Y5wSY0OLiS7A62gxWWYlUsOmVDdkJ
6p3xb28p0et2+BDtVdFmQU5JZe58UcmDNi0j8Bqm6NpxyvxeMx8ICbhPf74n/+y5ZlHOvgnfA7MD
fnPaeWTIqg5VoZrOfaJazaeOjhdErOOeRNNUNnT/5ETITnxGwvfrFbOukCMYDeEb37I7x0ikyTMQ
RqiS073hgQTTJoNR7gREraukkYKqjZDw4iNi4EUASxTJIfi+Dy4CIcqlzUd6wpFuP/g2hed8ZUvl
ImSmhwBpWwDmy92BSnD3pBmMYW7wz4Wm8JiNJ2ycGziyOAo7NFwNOG/GNI1Fa/IdMPZjSCzmXWM2
XbcBykOSEi+vroy5Lc+hoTpe8f1xVwDdP0URzdltxfErujMeKFoK92QKZkELhpH2e/MJJXg1sc1h
f+TpCnz45CoZBwduGNlukp/w8fzYRMWeGovT5ZiBA2fcsNayyiA1Vbaw3h+35FJ2QSPa7l0FjYNR
sGZlbgiZeBsgV8AD0ept7bHdtHTQp71P8kKwgOT1bwWcac8RCzgxY5zjmOhb/9hF8Pv+99BFvirW
RBdO2PjdV+hV90jxfb/nhswZbPHBwdnc2Q1/3SYOOk8VJnGmqkB4j28XlIZQ4WKeNLboB0uBNr+M
OHfNvUdgOmaKogm3AKJM86jkeyqULOOA3Z23b4TbyiWwGqcjuWkGG1cbjiqc9W2LI77Y5TxnNAPS
l7s7z9v9yhbbEQNU05GSfVPHMZPPCUXdLsJEm2bVkPrdncJPs7pEl7n7uF5TYUacPS3kxuucQa/b
mwsWyRzJ+WSWDb0Ogw85zuxJEQhrvJJHMMHU3tbkIgbM+K6/D6mJg5mpOg/WBMISnt8mJSH2ypjd
02UFV32PsG0H9jiFXNDBIg522Iw0G/C6qWaoql9hIH1eptEb1HPh+Z7xZDcXHhO28FgDf7M7EzNZ
ImPZT/0WJjCqiHF/xYC/8+YNlqU/4XQKckNQtixAerZW+EB86C2+gRzltegj1pygNtjKmRBO5/aE
PXYQxvVxhD2Us8dz5sxYbZYeyheY93FDHEWVwezpRIduv1kCoGxgTkMueMJtXj3m6n6/jsO4W2uU
ctGVaNaCWB89/At8noUj9l7v3qDhA1HYRGqAo3F4MjLurwlsnAOaFWojbzrLVgkGQ2/w93kw303e
hJNzU7D33Z/irv/w4Mxbd2LVbZhTqrY+Wo+Yke/8MVaVNx0KZ8/AarA3mYSkt/vbXwSzmAJWzRaE
WwNFWCPxOWYv5NpQKL6rg5Gf8wWdHZC6Z42408M1hMYPXLhB6mfmXN8An/OkZJALQg7nryLJ+dNl
t8IT97ZI5Pv6KMQcr8P47c8kF+yrMafQc+ByhiF5OMfKeDc1jRB0xBfRzivJ+/e1KZC5OccEb0Iv
pp9WGeCzNTUSgavtSZ8NmeQnuRbYEyutYdd8f4PVQsbZlJoyZ9qiDGg7jArZ9a0zCicaTkgqnICc
goM6So9ligBneYiol/t9XL1n6kDbsFOciI4EmKA6HZRFnuCgS7OYmkeVgyJ/5oK2mp1G6AJtRuKw
tX71PFKS1BdoF5ZOsOuasXCoLQ5lYhcEm3u5HUnxuvRQ5/QBm77TNCs6diEK0kjGh8TUYvEqBDXg
dw3B6vZRMipxVx3eNneT3PqCNst12utwpMoHu88aj3/4d9yXQtB7fuMJxlhMIM3VkNyPL+SRbmp8
dNYzhxykvdj86lFxA/4dyOd2y97+eU2Q62UutqcAGFTYbhxwPYsP7J6hnYvv546ibjU7nGxOO4N+
dm8RNuU9w/up2jerfBI4FBoPfqbzW2df/FhBD8twVgrJyufLduKhYT235AoC7AmCcuLQjz+9bdYa
LCxsCJuPqmArEolBTrfJh8Ham8TFG4+x4EVrpFWCiK8xW73P8S5G6HBOeLJ7XWTjM1abJ2zKR0b2
ERximhSxCphsNwEyT6qxXu4qhAfxgYkXPx/xcBXsEup1Qr77TfMEAEoXSafphsO+9YDkyyqFV91D
2LNkIZ4QfVAo+/qFuKos58uhvwYgMZUB+59yMoi1D7agcW8qvlZ8wwTKZzoIFk4IxHlX5OzQGh3S
C6xif653jeAbgou4k+QH0sbkAbmKbQIn4tXEL5idr5xdRei3vvrecPOvHtMh2tEJX6L2BiQQczfI
nTMVa5qDY6qc2hCapeIQ/Oy8mNojuMHWSVziOV7L6O295ZFlPPRAnILce+9eOx1ujU1EDhv76JGZ
rye0X1olWFH0Hmku1StaQHANqPCswCInDwfah5zN4nCSxlmr31uQX/kzdsikGbQhXgbBe/KJ7vt1
Mx1K4kC3Rwv2QfoGbHoNLhA9O8deXslswcJxBenpPM/1STXZCt7aCt6P9Ups6ITGOl2OF1S7/IT3
Q995rPkkHfhczIBkYZ81LEVvCJVr/sZ4yT7N8uNL/pio2FgbM2b7vErQsBW62WukKmaOp98gPvQU
746UH1dasUFZjwdGsiGPGM0cZqIfflivl8eEQ38MYKSdOOLNz5fBskQM4DG2HHLcRp+G5tJA4cZO
LHJqbhfv7VjnLaxje4+1YNfm7GFVNdS74o4xf/JHaZu8eDidX6dZfnduw8pUvaB2M2kk1E5681Gf
7wy6Wd3OG2BJ47I9owJuaXInZ+5wMBa9oSp6JpcVWweejUvwXBX0fqWvmTOOT0CvQ+0j6c27+HLS
K0/yzIP40+fESDgrpgXtHESseE/MC2x//gDCLz/gI4mleDAmoYaJFAfYyCRnFBLtrSrcJ78GpXKg
+Wp6doaWMxfO8EJIzqposMH5Ck9fPdQyUeTeM+yVzY24F073/vAjRrcsAEuyxixnOxWyN3TwowCa
x9/elEcEvlVyxX2RC+tNLEFGVBXvPq+nQfXjmiJtN814N7oPsGizoAMsqD1JoUO95bYvS5i12w35
+iuPTw7QhbZXOsQSTAjYpgsVNNsnk1jqWQdCBLGp/Nbr8Z1fihKgwCDiM3LsGz+mPz3RMreaueOu
ZhOMbAi+84V9HYqAGGWdQUeFJdkJ1wHQGN19+NVPJP/iA9l04RZ2gXcIVplD49xu9k/w9SfYtPQQ
TFna6vIXD3GRXR+MlqKjwo2dWlgFd8tjcenWUFsrK+A5a82JLzsrPImHGIeusAWf0gp5REa0EKfs
5mb96gtAmReT3Z4pBhOL4wUmWE5JCG3GPjHOOCBp3UyyL/5OSzVAcFfgQFQAHuxTxLyLfvW/fyWZ
wdjtzsNrJPkkQN4cU2LTG8LLc49vjyHwlh1aHHR9XKYgUaW78UxkcQvuUu1h9dYfY1Y2a4LUZ9Fi
mz7rZo4Ig2hRGndeY+5t0NO8KBCbDZlFzR+9z0/PHorDik351jA2no0QUn7eYQ/d1FFKyVaF6TLJ
AZxCKR7icFkhON4oca/CGzBzEHV47aBCwjMfgM9eiUQUdaJL9L7ywdI+jhC+7ms1z02HPcnwPz4s
9HI70+C1aT6H+sDBjIJpbp6fblwSrVKRATmC7Xbae8tYSR0q0DnAvrPv4tX0ggsUBWXF9u0hg9Wa
TAfOH22aKd3L8XJIEh0pIZICGCKn+SjrC8JyXxrkV1+rkFkDsPK5+OJ9wliEmx4STRyIfrty46R7
LxP6UuViH4OJzb0lQrCiJ8KHjb0Ys9PiGvpS42JcjVM81cFhgI/EkAg2gBzTodmY8PEk9jySPADC
Dy/KMpjwjq8bY3GCi40sIvozSvkpXuK7qYBfXsDp+B2TXVBSdPRKBSelrMb0MjslFHAn4MAzvEa4
TnsVivbOwXtH8xq2U8YanquywY8dbuPFCUIbaVJ9IWb9wmC98XcHXIHdY/OrFz5zZftIpU6Fo+Ql
AfY6vFXQ9MYLY+dYeZ+V9QNMpGOA3eMW5yy9HraQls8r9rN7wWZcg4uiH98lMUu5jBmHOwr4KZ1m
sNsPBnsbUgEv28nEafKJjekyOzVcdrFGnJTScfnyO3zHvvzFgxqML3JxoQr1dQbpdoyXhWt70KBp
T45W3Hj0c8opPGbv0x/8FHkZi6CUVpm4MBjzKd2EK1SUdUfMNT16C3s0NxhAVGFzTReDlI2S/vT+
zw+wZb1x9c+fBP3SPkdB2YIA6nbPcGDG5bhQ/psnHA4GSbrVaCi/0S/oi1fYkK00nhXepuCnP01j
//nlFeoffZcZqsDWttxS2BuvNhB1JWuW/aWZ4Hs9JcRjh1Oz5kqZgTGoHeyV8z4Wu3t0g0IXF9jX
DNasb0VWlDO/u8+0b0dGq+SiQCjt7mSX59zIfFld0V6KbsRQ9YTRQlwu6Dw1GBuHbTQu751lw6y+
lWQfs9WYBcBT+Oa2PH5o/A18wk17gZy1R0S73+VxDOGDQqepsrn+6oXVnmUb2u0YzjLaReMY2FqG
zlfuFFBfDg1yhdsOJnv1go8oeXvrLgNb2L5uLbmZQhZPfDanym7y6mCm/jamoXncwstHd4hGYilf
HOuxhb551LD9nR+haqoB8Ql9zGUXg3yqQ6WDUe4G2PVFBtZ9ppeovAwFMT6VA+ijrVx08i6QnJAm
xQQ6SwFgUjfE3B+ezQLjz6qU4HCZ0TBrsQjlsoen9PrGxo1Oxvp6zTa88cUl4EQrHyldQfDT77O0
Z5nBnnRfwifsgyD16bahp7CyEf9gHta/+dfg6S8Vqv7BIbiKNvnin9cUWqkGMZbPvUcBE02UFcmC
bd47NQvtevtP/Rxi3RqF7OKJysU4bIl1Uex4ZtlGh226pD89bazVRBxoAoXH3qtIYkHTlRAWw5rM
Xf/qDXaZrjO8QbWd+5PcgzWLzxn45o/ELaQ2JpkcRWizuLfg43DzuJzRMUKb6Vxg+7K1GSlTJ/vp
nz954h88IZlpY1OV7t4snxCEFLQWUbs4jz950tZQ8J30h7dsjtBHgd4phbP8xZ+JHk3zT97JU8yP
7f21pD8/MG8sp2dsyN5P+F2fH54CVoRzDb3w/CYOXzbjRAtRh5rnHcjesqdx+uGnWssL9lV/ZMOi
miWMrm1GvCsb4uGrZ5T98lKwNdQD+zydlwg3yXIk3zwlFsugSKF+TnWiAf3SfIbzCOE3P8G7+1YH
c9HKInS9i0vuVcrlP/xTbvtBI8ZJOBj89UYj+PUHxFfsk8FIBJ6wqNN6Xr75AH3d9yuM1U1EDM/Z
xVT8KM6PL8gjkdw/zwPOCCMc5pt6ZK3a32Cp5voffqHy1ejg8bW1/uQJs3hbO3gJb/08c7rokXog
PTx4wzZYVdx7c4HxDFuirgTPQ51Pe7tTUUVc+uXHt0E39qUDM75Z+ARdMpL7eh9++UcAszsHxovi
9ZALIg7/9uuHNMCFUzmfsbtUVrOOUvwEjw+/w0cIoLFOilrCMqkpwa2oGqK7zROQfzgrAPTuNqtv
5Rxc/DAJlP7TxCy63zuF3ophfrpYNaRrrhVQvSln7BT1OV/iJnSh+zJtHGz3EZBOwXc/36sn/vkL
+tHSDgbtNZmnKTzHC0n3AaDx6Y09x7MYH3J2By3pkuH4sI2atToaEeqekhjU1rFpvvpY/9V3MH/x
e7ot5/q3f4iWo8abL8O6RVe54cnhtFI2teHeh21xaogZdly8Nutehffi9cD+M4bsu17/5q+oFvWG
8qX8hF99jC097Ixl3jxUmL3PxTzPMQ9oeRw5cJiBNvOzh3KKdhqHtlMwYz2An6YDIpvhNx/8g+8M
xFzxy2/IzpvuMZX5VwF/eYMhF02+zvVHhbW8q7H5HF/ewqvvCLatvGBNCo+M78rehFmrbIhbvydv
dcAygFwPXewlSwCeQNmncMcIxe63/7Cc0TWEm367ITvZW0bqP60CXJfNK+D9jZf3C7JFIOCngHH+
EgymPdUJ/fT/1+8Za6ChAaT1s8DOwbKbuRkF+qfedBrHIz10ykWRDsUGa/ONNPR11yhK/EIKWlCV
bJ06LwHUYzlxj9qu+fBqFUEVzhoxqqsyvr/5E0qIsXzzJZwTc+B0eE0yNfjpo6+euMEXf3eJ81z0
fNnCYwm0iOSzEBzKkemhUUNIGhwsp/Jh0G9+98tLyK493sbJGy4T3EFxCaauPRjT+3XK0M8P2unG
yIn2VGcwLFyPMSdx8RRwEoR9KJ6+/BMz6d12Hbg7Txvb5fAZV3GbFmhz30Y4PxyqfBl7nYdD5HA/
PjQ+vutcgLwJK/yA0c4gnnng4YGpdBZ2kdaw2k9FuDkmK/bbuY3Z4Xzt4VzPGPu3Kv2TD0Gef+6J
ulwDY8nEWw8P55SfWz20DSkwkgKam1McCM3tYqyWur+AL37O1TtLDOb17y0cIpeb++5xZF8+N0HF
ogfGUvEcmXfxdHjaJEnw81eLME06/OlFjZYdm++nDMKuywbsJGrbLKW/qaGbZhL++klDUA+bEKgx
SwP+rLgerWqdh6B8ecReo8ggQQxS+Jblilgypg2t1XwG6Q2AWawbCsj4RAHgYMWTn///9ss4+O2P
Eb35uLk4vqseLuvugvdiW46fpdFWCG/caUaq68fSLQtt9NVPxE+e+fjGxWuA3zyFHKqUi//4QXOH
bvj+7U+txKh5ePZJO0uvi+ytKTRcCK3M+fr3eGT7/J2CP36HdXXz1acO8jsJYEcMmDdonkThKLHx
33x5kWz1h9dkp2dlvGR9PSFtN8+BWFzuxsd5Mwi++DYjIzZzgtM+BN+8nHjf/owoS635wxtiCDEZ
yTiqBUKoJcH6JJ3BBFINaOqjZ4CyjWoIgZqKCl66/Q+/wPLLN0svn4lKazsXrSIL5Az7KSmcJY9X
zZNW2BX8LUD06jWrlJIUNoft49tPWvNVM682JFWfEGuoXbBUeCpgf5s6op3KjUffg5v8/CHR19YA
i2vONXBKGwR8RXuP5cfHVzGjKrjMx21D8+uRg0pUj1jP5N744Te8aMkB7z+XJV/uQhMi0TPzWc7p
NK5nQdpC6i15cGblLl9Rf7lA/E6mWf7ll3654aGWi7d51i7aKGbedgKHXjWIOd0PQOh76ENtbSxs
IU3K2WpeInibmUAOdzLGc5m8n1C3B4Z12xljKtzzEP70o688dE/imhGCKjf0WXad3vj5fUCCizsT
tA+AOF2uF/jt1+H7xj4aPGCcCWtuNfEh26ger39SH0aV12PfDmuwHprn+ut3BcJ4XZvuujcoEqP+
TX54wbbjEf70a8B9+8Xffm0NE/8mkW9e5/HS9kC3v/zZIL0VC+HCbuiL7zNnuX38m1+E5keCv3yR
s8DeZ6DvLzXOdt5+pGP3VCE+rg+yM469t66VHiFcKkqgfPO0n/9Gv/5JUCC1EU3PvqC2ODfYmY+X
hixMTmDYcyrO80oGFOxYCg311QZL8ZlzlqIKomN9aDA+wtF7/+rfbt8hDrcPlYlWEQXo1z+9j+3b
WGperSFz2oHsv/ky/X4f4GDDY5Xur9/9uVnhYyvy2AoOarOGLIr+9Ce0JoWA4WcUIIFkD+yfNk9v
CeOhB1HHu/j266/J3rH/zR9+nOYjWKPaVYF7FVLiKRsY08joa/D371TAf/3rr7/+1++EQdffi/Z7
MOBTLJ//+O+jAv8h/cfUZW375xjCPGVl8fc//z6B8Pd77Lv3539/+mfxmv7+5y9B/HPW4O9P/8na
//f6v75/9V//+j8AAAD//wMAOXBqMeAgAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e94839cd9e9967f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 27 Nov 2024 19:27:11 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=XviX9Hjm.Uy8aR.6KFXUsi._PlZSGHz_33BG8yN1gNU-1732735631-1.0.1.1-xpDmkFSh5aO2fugj8VCyrc23NL7wf6Q8eq_yaxcwutJZAO5nSx9Eeqko_4UhxH4IQBfS8cJSaEmHnXWPD6lTJg;
path=/; expires=Wed, 27-Nov-24 19:57:11 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Xz2QlgphZCJYG8KTd5zZKB.lSwPBCu24Nwv2aB6FkeE-1732735631371-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '272'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999986'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5cba1175a36bccbbad92e3ef21b7021d
status:
code: 200
message: OK
- request:
body: '{"input": ["What is Brandon''s favorite color? This is the expect criteria
for your final answer: Brandon''s favorite color. you MUST return the actual
complete content as the final answer, not a summary."], "model": "text-embedding-3-small",
"encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '270'
content-type:
- application/json
cookie:
- __cf_bm=XviX9Hjm.Uy8aR.6KFXUsi._PlZSGHz_33BG8yN1gNU-1732735631-1.0.1.1-xpDmkFSh5aO2fugj8VCyrc23NL7wf6Q8eq_yaxcwutJZAO5nSx9Eeqko_4UhxH4IQBfS8cJSaEmHnXWPD6lTJg;
_cfuvid=Xz2QlgphZCJYG8KTd5zZKB.lSwPBCu24Nwv2aB6FkeE-1732735631371-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SaW6+6Srfm799PsbJu6R05SVWtO84gIIXgATudDiCiICKHKqB29nfv6P/N7u6b
mUwmM0YY4xm/5xn1n//666+/u7wui+nvf/76+/Ucp7//x/faLZuyv//563/+66+//vrrP38//787
yzYvb7fnu/rd/vvj830rl7//+Yv/7yv/96Z//vrbVLoSHzk5BMtWoT1gp3eFzUA0a2ZdPBt1Tqni
qC3bejWaQoT7x7TDxVCH9XwNkgppWjPT01tv/PlmCzGAy97HjkOVehnWOEbb0/tE3fEjAtoiL4RQ
1Tuqe2UNFusgp8hF3ZbGcqkPM55dD3oW14QiPL6M5STtPXg4WB+qSkPoL0FezEr0oQa1QWb7pA21
M/IfsocN8pRrmozbCH4+4wVrougOq6UdI+j2OkftUt36i58tPNr6XYcv5dgl62H7sNHVFrRQvkk6
E98Cb0MzqS/USK92LRjvi4uKZykRpFod621tE8IYKnesXk/nemmyxUNbtkPhKX6eAH+HzYruRgBw
FgbHgaj3voflwJ/oOWCHepWjU4WOY0OxPRJhYHIgR8g/lgcamp5ufH7ft9kUFmHxq2OST9RIObvP
E7aEdcxXWfIyiMb9gP2evcHq3GaC0pyvaIpELl+O3auAPkkRPd2iNZ8d7xkjAB85vWp+BNg4yg20
vGWPjZovfLLcPxFUOINQPNkfRqL4GsPTra+xbjivYV6CTIRBvS8Ia0acME+ORgRV/0JtX7LBzI1x
gcZs2mI3TDbGx2cfDh3FbMKm9Vj9pZXkCj1926b6mzv6y7JLnyhq9xJNx7dvsNB/9uh1rR/Yv+xU
xs9NpSNguSJNl/o08K9ENRFMlhinyf7GVo14Z+h3p56a3tXyRbtrTNh7qx9uww3JV+ZsdEiEXUCA
p0aMvIuHCnzhaRGxVSRAQoFfoRsU55A/jxNb7a6xYXrqSnratDswVHnUI3NGEY6ndWGLz7/FraaV
Gqnj97GeWCrayEr3Nj5kFkrmV+LaaCW2j4scbfxF2TkZmtrnTIRbaNe87FUKOrc2CpkhVMN6Y+cZ
eh8J0b3+dH2RS6EKT+93RIPlMuak1PIWbk9li7WGbQEJi8cIz/F7wf505BhFTqxCFFZHqpouNoSb
karg6Zs2Dje2b/A21J8w0wijxgm+jYVElxaas/j41fPAO14fw+Z5GGis9m1OIw25UEW8hWOrKwb2
wdsQJe/5QB3b1WvpKUc61E7BQDOy8Wu2Owwi/NYTjobUSvi0qUbEKVNKo41a1Xy0eY1wubclNvNG
BeKJ10XUlqcNvvkVlzO69DMkHJ/h2NkdcmkCaQyDa0zDw9k4DPNterqok5eY7nPzaQx8ckyRW7ws
fBTMQyLtek6Bo3Dc40O5KYxVtZUnxI38ouddefcX7sNM9AgkiYDCueQiWrQQprpa02N/3Pm8e91x
0EweFxoUUmmw8tKc0VFMJ5rvL9hYpNGBiLpADOVgdAzGTJ7A1L0cv+8nSKjwvKvQ7wKArZrekqkc
9Bkik1zIcnAcX7g+mxhGReJRFd1UY7mMh1U53pMXDi7aceDxYusI+MGOWvLhMsypP7conxaHXrZ6
ZUi7z1aF1lMzablEDzAjS+8gKCGjxXi/5mt1m1W0N70HAVDWh/U53Voo27xHT6XA1UN2m57gp4fX
+BzUNXdaRmWKVxs7+zpN5g042fAePS1q37gpJ9ymk8E5HC9kVcfYWLqpM0HpBhnNLu7GXy11OUM9
2gfU6ZGVTyfxGaKL8RSJUFOUrGjZBbAj/Aur8zEyZvCuop+e4ov7ngB9ndYUusXbwmq2/9Qz/8kC
kDLzEo6h5Rn8M5R52MksJvnqtQbTx70CP2xhNE6KzCDP6dRAOSstqqu9nfBQ7GWlMSeDiF895aFk
8fATGTsCmrM7iGHYcGjOVhXvJB8n0vMweJAIB0B3Tg/AIghZBdjVHqkPlTBfN++EoFLYLnj/4vtk
Pet9Ay4RR8nC7VsgFUqjoP0x34Tw+/wXZYczqGfGjjrORADrpRqC8tUn2H6Kaj7uH1WJwsp2KC7P
j3ou5NsTSrqXk0LjJ38e+08Ip/l2o7mbm4OEqpcJp5Gs2GGhnn/7t0LYEJdw3usT4K9ZFKNeMxE9
rbctWDeh2qHD/jaR/iHmg3D1LiYsNgql5vqy/XEJYhEN1/SNi+zs+NKmuabw9MjD8J42lE12zMXg
8nBK7CD7Msx7hT2RuVgbfIOsZms04hg4e+5Dw8/WGERw1ER0zY57ihspHebEiM0/+v99nuxThH6K
1ACohMsOXSLct88CHcdCxcVyqgb6KMonLARo0LBvIaN8sjnCQzM1Yf3VI1HSkAh3ub1SYz+dgPDt
P4Bes08PHF7r73zo0NRmGrVcIiczXmwVSSMWcVgQh5GMNC38zlOqK5phMIljBfy9Lxa/XCA5e6lC
t7fb4jsklr/m53sGC/9EaWx1cFgHqihgHrQyfJXL21gPCuEAMgUb2+eXkazNoslINfYrvdjucxDe
lR3/qc8Ad3391dcGxGiHaPkYOYMlx50HN1vzTDam0oFVvHYmbB8bEM5GGPkzy08lMrQrxXF/2yQU
9FkDn/mlCeVX+DCk0SYdhEBzsX21lWRxHjcIh3vzIcr91AzrTplt5NXpjUbWlOfSb15BdXfBp6nO
fWHZRRUonwcRX779LorXyoRekJxC3tBtNpHbNoPJ0mB8y93rsCyA60GAi4U0NHTY8rbTGK5ZGVH/
oZ395TLyIzyLeMRB+26MtfA1GzWD6BH4Mut6oaUUw+/7oOHGPQOW2EEGKpkryVh5DVtpnulwimUB
G/pmmy9tVBGIH9crtu+PiX3MQuWR3116jLNNnYwzFY+I7NcWBzbxGcuGZ4SeRJypq+aeIejtIUbv
6t5Rd3l8ADPpGoDjHAzUIlc9Z3Iwx2ir8QMtVmUEy+vDZqBwGsHOJ2vAPMUiB9PXsqfYhPyw4tu7
RXGND1TbJq4vmMWwwl8/75PJAGu9W234QDMkgNI4kcSdAeF75+jhvDFlY/HZg0OdM5XUfEu7gV5U
4sKwTWUi/Hj4/fRGUIj7B/3Nb3Ze1AqW5aCQ5axZTPz1G6VyiHPhYSbSQdoRuNk8RLx3ihbMNxvF
0NWZi1XFnYZ5oyge6JxCpUkpL/XCv28zaA/kRr+8VrP1NvLwurQmVtGtMqh371rgnuuVekYRJGsU
wxA25YfSMlY8QwSAb+G96niqmnadLEXoZ5B/t1dsIV/M1xA7MmTi80XV+QzYCELZg+8dXqjx5SFy
vJAM8Msg0N37tQHMuug2IqaT0n3s1fm0PwRHOBusI/XB5P15eekcDF24CbeaP//uN2EpgAU7dIuB
RNc9gRe+7ak+JG098a3Cwzdv1TQMVT+fuKhToTmFr3DrPrGxzkYgwkfva9R36iVfLXV7BGWYFjQ9
tBbgX8McopdStNj2pRbMpp3ocKESpCYN30y8GFYFr43nh9xQYsDGKa/g8e6KWMU3LRFGrYDg3/1o
hoOYOZsR5sA+0NKiJGdffQP9qur4YIqeIYALteGaUYJN9fWuV3ZKeViUqKeHzyQPC2RdA8X3NcW6
XD6H6WZEOvryPjUzrcoXWm7iH99Q3WpePtHhU//xSXgr9HT47LjTGYnGcqNaRfWcPw4mD6zjpIQC
j30g7Q6uDA9yOFO9E9/5CndLBsMYjOGK0kc+X9lwhNzuKVCPbPxByNu0AV9eCuvNxCcfWm4i2F7k
OzX7M8+W6Dj3yJN2Dtad3SGZn+HMw3kwSuoiscwXafBseCDZig2XST7ty1SGx7g3sCvDzTA9L+8Z
nuNzQv0XODI2PTsPcEZo0n2Q3RL2PKgB5G669u2/zpgLaW1gfH+daDY2qTG/xtwDd8MMfjzgrx5A
HBTGuiXbZDsZPV/PFaryzxEfwv49THnLntAy3z4O7fcjXxzXk+H3/7967LLlXYWxYplFgbVmIcaK
zeIJbnxzxzuhI2BIpmMA0+1DImttCgm15pMLovgFsdFpGlg/MaggOaRPXIbqkLMJgED+8bB34eyc
XVQ/VH48FNzjZVgX+ZD9mW+WdJEHFnW9CtvhmVH9GkmASa8ug1+/HQLJhcm868wGJu/1gLEJjwOf
mHcI7MSWqcZfd8mcGJkN+WnrkXZXbgyWvnMd/D7vUG8zRhYZnqHcRAaOBR8wOsihDP0yDkPus62H
1agXBf708Os/vv4h0tEnyPd4vy1eNT1EhQgy2DYUf5ZL8meeXrPzHmvsIRprsOljUMRHF2epbOWi
mPkqkF7zGe+6ewnmYJBlMHovL9y6VZ1QNppPJSGOTnduo7D5OJgipOjoUO0uUWM95/EIQQcqrEuN
MfCPDLu/+sI72zDYvLw8DhUbmeJ7I6U1Pa9hBo2T0RNUqAFg4syN8M7ZI1Fua2OsCWUtbF/nNASh
XDPxUM0Q/fjbwdwAmjPZejBiDw1fvnozJ8XkwZARnV7kQGbDYFUr/PF5KL9Vn1fZzoTFs5Dorlfi
XAgPNIY/Xryz1xEsT67o4d67x9gpRzcfA4tAyD/SC83zfZr3pza0YQZpQlW51hLhZdgy1O3oju2j
a/oizSGE4iX+hNv60eVTvGYcrO39OZTWM84Z6FEFp/l+o6b4PjDSqvQJvzwYbufRzJcIqgX68aS9
1bjk8/pEPKyTZ0VN87Mx1q/fRfvLWlDMHaxakLefFcKHXZBNkKyA7fqEg5E74JDzBhkwzcxd4Em+
Q8C1rZKZPMoeVq9jjctVCH1JcB/qH971JbfIF4UezqjbrwvZHPwXmF+DHMBqnQtsrbcto40j9JBP
YIl3OjkkAksTD5WvLqHRJJhM2Cq0g/tHm1HVCJrkj99dl83r933yUVFZCqvXLaa5Uy/Jui1RCD10
k0OlnZXkO18JnEbpQS3kn3P2yEELHlKj0PzbT2x+x2cI/KOMteBwZ0sKjinwOzP49q+f86LNt4r4
MN94l8cXn4BjM8PDqhJ868nHp+G6lvA1LykuUtbWKwCHDm1pHoegS/mELcKqwvYw3qijhQb49LXS
Qv38QHj/EUWDYPP4RHyWc4S3HrExX6ikw9dNn6jhsovxy9ugYPkaocGJqxc93RQwOXpnaj5RD5ha
VEeU0SQLZSSWyeyJ2hF+9FdEtd3ssnFuKhVW+XDEO2mf//zaEUaf9hhuv/5Pcg3TQ87rgkmSqeWw
ZmTXg3t/1KmtVh1bV6ewof9QPGzviiTh9Q/3BLp0TrAxArX++jMRcm/nFnLFzAYWkCGA6QtAUtb7
GCw+T3n44+v4FKg5I17MweGavb/5EjRGLunPsBDtFYfZoctniQQpRJtRwjmd7JqpOKwgubRNKM2M
sMULBPPH16TVLcHojGgolZS+PfI5stH4+nsbvploYV94NMnYLdYRjsJ5T6rooiai4NdHODuuRbGf
b2qaKxoH98LFDO0wRWAezXsEJBZgeiHHepjrjojw61+wHyp0WL88AL75Vfj65nnMUPQeHbHq4ETL
Jn/piKGiLy/TUJv0gb8GYgHNJOvozmmbhP0+r5YOHr42+Tuf9Q9XwVa4OXTPpZEh5Ju6g/zR2WOv
nZV8PXJ5DA9NI2CXlzvjW69H9LqpEw2VMDWWHXc7Kz9/oyreNl+NRlrBfVePpFkmZtw6m4UgV8Mq
7HrPHySH35VKmm8wdYrDka1oxSb0NYvHfrXxcnLHIIbF6FrUq7BRM0QeImqeLqTBh9Nz0dakEHZy
X1Pn3ZfDYm/VAPTe7NMgO7/9mbNeLRTS7UCd5rkAohH9qLyrW0exqvYG2zfZDL95cUhOVyFZbbES
EUVnh+rTbBsSdy56cOhs7ad/hnArahtyZ45gqx4sNivXoQJom9r0ui/2QMwcaVQoqzxazplSM+TE
OnijXqeWMvrf/EZL0bfffvyfSMjJdKi825Ba7BSwxamYin55cL4GB7bcY9QqIO10fJGDlK22JgUQ
lKJJvV3k+WJfzRHsHFr+8orhlzduXb27Ev6wUmOR4isHg/u7CuUn2ydsOtlH8PmQCxGa91zP7nrS
oXoWJqyXnliT/pEEf/TBG7p9It03F/NPPaLDEfof2NozLMaYxxq7ewnF7JRC/0hpKKRnNqzumGaw
0kiH9/PTZu2Zf83QRf02lHj3kQ/318eEvKDH2IhfLvtYhzn9w+96gLCxfMjEQTsxZfzl8YQv5FMF
O7mr6a7JnZx1WdOClO3tbz3U9RhtphEuenIiYn5/Gn/yiuVT+2Tzjkdj3U1lBMEpeYXcxh6M+YIi
EU1tNeOfP18e54cCz3T1Kf7q2S+/QnvhZOLd+3Vny/4DS3ASjB1ZyPuSzK2iiD9/EM7eWzFm8264
qDSn8I/fX7GxbYGcFRY9hyli5Jt/QFfvr9gEj3lYVXutgO91Cb7nhgLGK1MzeMg6FyeX+7tezqXE
wWPK8TgsZlaTV8oTcL+pMtVL7zxMDf/2lOWTFlhttHdOXiteYdJc+VDBVPDXZml4SA7ZE+8LXR66
LD+78LmWI3UPrcXWzxg2kEHpTIOoOSWsePAz3GmeTeD391U/ZQE0ymZHz1f9CdaptTIkR6tElmNp
JfypOhTocnEXsj++n4zB7S2EsnGbQp5Tc8D377sIhbhR6KXfLMZv3wEHax7pbk1gwurtSYbXqIrw
7hIN+eqOUQom7HnY06TKYNZ88iBPtC01DrqbzPwnDhTQrQs2dzViU+z7LqBFvYTvcuzy1YnOMhgk
hyOMFZdkdS21RT7gRWyRnBij4z0j+NVPfOYWM18Al0Po6kAi1Ll0xuxeNQiA9ulxoCQi+FjmuUV4
z24hnezd1++7PGw33imUEz/214MSqODCZe9QENYgX4U1DeAj+NYvSrX8l3fLwD/LWO2fpbEcO71C
uz3rqG5qTU0Kf9Sh5B5v9Ld/WM7lSf3pb/j4zvs/vClfrI5+87VE0gZVRYeGNmT0ZmlY7nHcwcl6
D1j75n2ren92QIoPHrYGE4PVKfP+D//iiml+t13zHshcSL/1niZrDVCs7OTnEE4VvOTUfj1mcDg4
H+wVymIsm4MOoWzcJ/zL0+a+hQq43O5PatySVz4tz7oBOy0WiPIcdcAnxctTfvnsrlfW5E++8C4I
wvsKSvl4r2EPm6e6p0fwiAbRaDarYuP3gA1SaoakFDcRJqAC2C6umiG89Boi9tnnNBYcM5fCBhHQ
r+5CHV/Xkt8+YKuepQk7n2Ie5msWRT++/PESWPpaaaAblGfqB3fozxLUPGRXqR7O+L43WOMIHfTu
IML7c6gwejxhHTZlesA72XgOYyEpDTRgUuFgVUa2lOZNhoQTM9IluzZfKtcLlWu0EGqfX3VOu0zr
0LnwImo0BBizeG9GtJy2ETVntwXLhK8EZndvoHrpekBYQE5gQiydqo2RGBIbzQqKO36mh5P/b96B
mrw5UX9+W8O6VmYIvnpE02/eNnx58c/z9JtzNzSa7q/w2kQKtj4P/K3vhIP3XYq++y/69XfEg0ex
LsKNqvb+4tJshDoaTIpzI2OEUw35l3dRYxt+8l8+BYe5L4nwuRs1PyNgw03e30KkNwmb1WDjgXJT
Rli/hqO/vlI4wjqpql8+nSzhXTPB5yPYf3hysWMxUr7zGtve0U7EUwBU8Nv/ubwq+GtnyArK38UZ
7yGrweJS1MFpPhNsDVBndFZfJQzxYSbbcyony6gqKgxxMmNnKmHOGvKswDev+O7/rEECPXrCctNu
qJahOV8e7uTBVV308HFLTZ+f4qMK34UwYlyj7UCeR72CaEMkrJmyAFh2e1VQsHYadi6XE6Cn2ljR
d/8UVviRAvbdb6KwCsQ/ebzIHEmF+40aU1V+7Q3GnbYEqOcWf/1A+W99+voN7KWylZB9qKswdMWI
qht9TBizLh3Ye+cau7b8ydnJyzv41R9sSvcGzD8/7aHTjkST0IDhu39VNptaJO/fPBUv6oigIl+p
fxy1WsjbqIHwYRZf3hj8oZc0FelXOcMnh9/m62/fsNnure/+McwXa/AL8N2X/clj6VACEXzrC5/k
gzTQildX+GGD+eVFMxHmoy8rbk321K7yEbBNc8hgqus11me8JJ++XtvffhLfaOcwAaCtDj6RtsN7
2r3BfHIeZ5RPXYpDVaDDeEfOCO99ufzqxV9tzDj4mLo9xWdnzv/4DS1PJxxGd7FerSxI4d+/UwH/
9a+//vpfvxMGbXcrX9+DAVO5TP/x30cF/kP6j7HNXq8/xxDImFXl3//8+wTC35+haz/T/566pnyP
f//zl4T+nDX4e+qm7PX/Xv/X96P+61//BwAA//8DAFT8PaLgIAAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e9483a10d7c967f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 27 Nov 2024 19:27:11 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '68'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999953'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_09708939ca92f32d9d7143e8b7843b12
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
@@ -9,9 +420,10 @@ interactions:
depends on it!"}, {"role": "user", "content": "\nCurrent Task: What is Brandon''s
favorite color?\n\nThis is the expect criteria for your final answer: Brandon''s
favorite color.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
not a summary.Additional Information: Brandon''s favorite color is blue and
he likes Mexican food.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -20,7 +432,7 @@ interactions:
connection:
- keep-alive
content-length:
- '931'
- '1014'
content-type:
- application/json
host:
@@ -50,19 +462,19 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSQW7bMBC86xULXnqxAtmxI1e3FEWBtJekCXJpC4GmVhIdapcgqbhN4L8HlB1L
QVOgFwGa2RnOLPmcAAhdiQKEamVQnTXp5f3d9lsdbndh++C+757Or6/bm6uvn59WH/FGzKKCN1tU
4VV1prizBoNmOtDKoQwYXef5+SK7WK3ny4HouEITZY0N6ZLTTpNOF9limWZ5Ol8f1S1rhV4U8CMB
AHgevjEnVfhbFJDNXpEOvZcNiuI0BCAcm4gI6b32QVIQs5FUTAFpiH4FxDtQkqDRjwgSmhgbJPkd
OoCf9EWTNHA5/BfwyUmqmD54qOUjOx0QFBt2oD1sTI9n02Mc1r2XsSr1xhzx/Sm34cY63vgjf8Jr
Tdq3pUPpmWJGH9iKgd0nAL+G/fRvKgvruLOhDPyAFA3nF/nBT4zXMmHXRzJwkGaKr2bv+JUVBqmN
n2xYKKlarEbpeB2yrzRPiGTS+u8073kfmmtq/sd+JJRCG7AqrcNKq7eNxzGH8dX+a+y05SGw8H98
wK6sNTXorNOHN1PbMsuz1aZe5yoTyT55AQAA//8DAPaYLdRBAwAA
H4sIAAAAAAAAA4xSwY7TMBS85yuefOHSrNJ0l1S5bVdCLHAHBChy7Zf0geNnbGeX1ar/jpxmm1SA
xCVSZt6MZ579nAEI0qIGoQ4yqt6Z/Pbz26efjNXW+0/64917r82H3W64f9fpOxKrpOD9d1TxRXWl
uHcGI7E90cqjjJhc19WmrDY3rzflSPSs0SRZ52J+zXlPlvKyKK/zosrX20l9YFIYRA1fMgCA5/Gb
clqNv0QNxeoF6TEE2aGoz0MAwrNJiJAhUIjSRrGaScU2oh2j34PlR1DSQkcPCBK6FBukDY/oAb7a
N2Slgdvxv4adl1azfRWglQ/sKSIoNuyBAuzNgFfLYzy2Q5Cpqh2MmfDjObfhznneh4k/4y1ZCofG
owxsU8YQ2YmRPWYA38b9DBeVhfPcu9hE/oE2Ga635clPzNeyZCcycpRmxsti2uqlX6MxSjJhsWGh
pDqgnqXzdchBEy+IbNH6zzR/8z41J9v9j/1MKIUuom6cR03qsvE85jG92n+Nnbc8BhbhKUTsm5Zs
h955Or2Z1jVFVdzs222lCpEds98AAAD//wMAfDYBg0EDAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e54a2a7d81467f7-SJC
- 8e9483a44b2fcf51-SJC
Connection:
- keep-alive
Content-Encoding:
@@ -70,14 +482,14 @@ interactions:
Content-Type:
- application/json
Date:
- Wed, 20 Nov 2024 01:23:34 GMT
- Wed, 27 Nov 2024 19:27:12 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=DoHo1Z11nN9bxkwZmJGnaxRhyrWE0UfyimYuUVRU6A4-1732065814-1.0.1.1-JVRvFrIJLHEq9OaFQS0qcgYcawE7t2XQ4Tpqd58n2Yfx3mvEqD34MJmooi1LtvdvjB2J8x1Rs.rCdXD.msLlKw;
path=/; expires=Wed, 20-Nov-24 01:53:34 GMT; domain=.api.openai.com; HttpOnly;
- __cf_bm=pBzYx.9r7fU6srtt2lLWBrgojr5QFAfVuDKoOwUKCK4-1732735632-1.0.1.1-jYgG33D0s.RUVr6OV4fPXS7bQR9Yp5AwbbIAqdxaZCrcisNIYqPqOqxNO9.Lo3Ok7K8FXfSBrrnAOOJDVLa6bA;
path=/; expires=Wed, 27-Nov-24 19:57:12 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=n3RrNhFMqC3HtJ7n3e3agyxnM1YOQ6eKESz_eeXLtZA-1732065814630-0.0.1.1-604800000;
- _cfuvid=TYAi3OpktKJu15t1e4y3VbRnbHK6QYaCeSYJuT6e5Sk-1732735632634-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
@@ -90,7 +502,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '344'
- '535'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -102,13 +514,13 @@ interactions:
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999790'
- '149999769'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8f1622677c64913753a595f679596614
- req_8501f29c09575f05c51fdec5c1c36090
status:
code: 200
message: OK

2
uv.lock generated
View File

@@ -608,7 +608,7 @@ wheels = [
[[package]]
name = "crewai"
version = "0.83.0"
version = "0.85.0"
source = { editable = "." }
dependencies = [
{ name = "appdirs" },