Compare commits

..

20 Commits

Author SHA1 Message Date
Eduardo Chiarotti
109e41f0ef fix: fix and add comments for all type checking errors 2024-07-04 23:21:36 -03:00
Eduardo Chiarotti
7fbddc32b4 fix: remove need of vcr 2024-07-04 22:57:22 -03:00
Eduardo Chiarotti
8a04709cba fix: github python version 2024-07-04 22:48:23 -03:00
Eduardo Chiarotti
a8a1648c8b fix: comment funciont not working in CI 2024-07-04 22:39:52 -03:00
Eduardo Chiarotti
6b800b7fff fix: test new approach 2024-07-04 22:23:19 -03:00
Eduardo Chiarotti
5cb5879d7c fix: test changing prompt tokens to get error on CI 2024-07-04 22:08:22 -03:00
Eduardo Chiarotti
0324a41819 fix: test changing prompt tokens to get error on CI 2024-07-04 22:05:42 -03:00
Eduardo Chiarotti
efcf9f86df fix: test changing prompt tokens to get error on CI 2024-07-04 22:03:30 -03:00
Eduardo Chiarotti
4a44003bb5 fix: test changing prompt tokens to get error on CI 2024-07-04 21:56:41 -03:00
Eduardo Chiarotti
4af13c3c43 fix: comment test to see if ci passes 2024-07-04 21:49:32 -03:00
Eduardo Chiarotti
67b0b6d7c8 fix: comment test to see if ci passes 2024-07-04 21:41:48 -03:00
Eduardo Chiarotti
042b6199b3 fix: test remove vcr to test crew_test test 2024-07-04 21:39:40 -03:00
Eduardo Chiarotti
49f2c0c1b8 fix: try to fix test_crew_full_output 2024-07-04 21:20:41 -03:00
Eduardo Chiarotti
acbef84c95 fix: try to fix test_crew_full_output 2024-07-04 20:57:40 -03:00
Eduardo Chiarotti
e23f4c11e0 fix: test_tool_usage_information_is_appended_to_agent 2024-07-04 20:52:02 -03:00
Eduardo Chiarotti
a69133e5d5 fix: test_code_execution_flag_adds_code_tool_upon_kickoff 2024-07-04 20:49:34 -03:00
Eduardo Chiarotti
72af5717ab fix: test_increment_delegations_for_hierarchical_process 2024-07-04 20:31:12 -03:00
Eduardo Chiarotti
e6ab371950 fix: test_increment_delegations_for_sequential_process 2024-07-04 20:24:44 -03:00
Eduardo Chiarotti
7781e16931 fix: test_increment_tool_errors 2024-07-04 20:19:17 -03:00
Eduardo Chiarotti
eef6ae114c fix: call asserts 2024-07-04 20:13:11 -03:00
25 changed files with 142 additions and 820 deletions

View File

@@ -12,7 +12,7 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
| Component | Description |
| :------------------- | :----------------------------------------------------------- |
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes, enabling agents to recall and utilize information relevant to their current context during the current executions. |
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. So Agents can remember what they did right and wrong across multiple executions |
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. So Agents can remeber what they did right and wrong across multiple executions |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |

View File

@@ -51,7 +51,7 @@ To optimize tool performance with caching, define custom caching strategies usin
@tool("Tool with Caching")
def cached_tool(argument: str) -> str:
"""Tool functionality description."""
return "Cacheable result"
return "Cachable result"
def my_cache_strategy(arguments: dict, result: str) -> bool:
# Define custom caching logic

View File

@@ -79,4 +79,5 @@ manager = Agent(
1. `allow_code_execution`: Enable or disable code execution capabilities for the agent (default is False).
2. `max_execution_time`: Set a maximum execution time (in seconds) for the agent to complete a task.
3. `function_calling_llm`: Specify a separate language model for function calling.
3. `function_calling_llm`: Specify a separate language model for function calling.
4

View File

@@ -1,31 +0,0 @@
---
title: Forcing Tool Output as Result
description: Learn how to force tool output as the result in of an Agent's task in crewAI.
---
## Introduction
In CrewAI, you can force the output of a tool as the result of an agent's task. This feature is useful when you want to ensure that the tool output is captured and returned as the task result, and avoid the agent modifying the output during the task execution.
## Forcing Tool Output as Result
To force the tool output as the result of an agent's task, you can set the `force_tool_output` parameter to `True` when creating the task. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent.
Here's an example of how to force the tool output as the result of an agent's task:
```python
# ...
# Define a custom tool that returns the result as the answer
coding_agent =Agent(
role="Data Scientist",
goal="Product amazing resports on AI",
backstory="You work with data and AI",
tools=[MyCustomTool(result_as_answer=True)],
)
# ...
```
### Workflow in Action
1. **Task Execution**: The agent executes the task using the tool provided.
2. **Tool Output**: The tool generates the output, which is captured as the task result.
3. **Agent Interaction**: The agent my reflect and take learnings from the tool but the output is not modified.
4. **Result Return**: The tool output is returned as the task result without any modifications.

View File

@@ -1,137 +0,0 @@
---
title: Starting a New CrewAI Project
description: A comprehensive guide to starting a new CrewAI project, including the latest updates and project setup methods.
---
# Starting Your CrewAI Project
Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started.
## Prerequisites
We assume you have already installed CrewAI. If not, please refer to the [installation guide](how-to/Installing-CrewAI.md) to install CrewAI and its dependencies.
## Creating a New Project
To create a new project, run the following CLI command:
```shell
$ crewai create my_project
```
This command will create a new project folder with the following structure:
```shell
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
You can now start developing your project by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of your project, and the `crew.py` file is where you define your agents and tasks.
## Customizing Your Project
To customize your project, you can:
- Modify `src/my_project/config/agents.yaml` to define your agents.
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
- Add your environment variables into the `.env` file.
### Example: Defining Agents and Tasks
#### agents.yaml
```yaml
researcher:
role: >
Job Candidate Researcher
goal: >
Find potential candidates for the job
backstory: >
You are adept at finding the right candidates by exploring various online
resources. Your skill in identifying suitable candidates ensures the best
match for job positions.
```
#### tasks.yaml
```yaml
research_candidates_task:
description: >
Conduct thorough research to find potential candidates for the specified job.
Utilize various online resources and databases to gather a comprehensive list of potential candidates.
Ensure that the candidates meet the job requirements provided.
Job Requirements:
{job_requirements}
expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
```
## Installing Dependencies
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:
```shell
$ cd my_project
$ poetry lock
$ poetry install
```
This will install the dependencies specified in the `pyproject.toml` file.
## Interpolating Variables
Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{variable}` will be replaced by the value of the variable in the `main.py` file.
#### agents.yaml
```yaml
research_task:
description: >
Conduct a thorough research about the customer and competitors in the context
of {customer_domain}.
Make sure you find any interesting and relevant information given the
current year is 2024.
expected_output: >
A complete report on the customer and their customers and competitors,
including their demographics, preferences, market positioning and audience engagement.
```
#### main.py
```python
# main.py
def run():
inputs = {
"customer_domain": "crewai.com"
}
MyProjectCrew(inputs).crew().kickoff(inputs=inputs)
```
## Running Your Project
To run your project, use the following command:
```shell
$ poetry run my_project
```
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.

View File

@@ -48,11 +48,6 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
<div style="width:30%">
<h2>How-To Guides</h2>
<ul>
<li>
<a href="./how-to/Start-a-New-CrewAI-Project">
Starting Your crewAI Project
</a>
</li>
<li>
<a href="./how-to/Installing-CrewAI">
Installing crewAI
@@ -93,11 +88,6 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Coding Agents
</a>
</li>
<li>
<a href="./how-to/Force-Tool-Ouput-as-Result">
Forcing Tool Output as Result
</a>
</li>
<li>
<a href="./how-to/Human-Input-on-Execution">
Human Input on Execution

View File

@@ -4,7 +4,7 @@
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
## Description
The GithubSearchTool is a Retrieval-Augmented Generation (RAG) tool specifically designed for conducting semantic searches within GitHub repositories. Utilizing advanced semantic search capabilities, it sifts through code, pull requests, issues, and repositories, making it an essential tool for developers, researchers, or anyone in need of precise information from GitHub.
The GithubSearchTool is a Read, Append, and Generate (RAG) tool specifically designed for conducting semantic searches within GitHub repositories. Utilizing advanced semantic search capabilities, it sifts through code, pull requests, issues, and repositories, making it an essential tool for developers, researchers, or anyone in need of precise information from GitHub.
## Installation
To use the GithubSearchTool, first ensure the crewai_tools package is installed in your Python environment:

View File

@@ -4,7 +4,7 @@
The MDXSearchTool is in continuous development. Features may be added or removed, and functionality could change unpredictably as we refine the tool.
## Description
The MDX Search Tool is a component of the `crewai_tools` package aimed at facilitating advanced markdown language extraction. It enables users to effectively search and extract relevant information from MD files using query-based searches. This tool is invaluable for data analysis, information management, and research tasks, streamlining the process of finding specific information within large document collections.
The MDX Search Tool is a component of the `crewai_tools` package aimed at facilitating advanced market data extraction. This tool is invaluable for researchers and analysts seeking quick access to market insights, especially within the AI sector. It simplifies the task of acquiring, interpreting, and organizing market data by interfacing with various data sources.
## Installation
Before using the MDX Search Tool, ensure the `crewai_tools` package is installed. If it is not, you can install it with the following command:
@@ -59,4 +59,4 @@ tool = MDXSearchTool(
),
)
)
```
```

View File

@@ -31,7 +31,7 @@ tool = TXTSearchTool(txt='path/to/text/file.txt')
```
## Arguments
- `txt` (str): **Optional**. The path to the text file you want to search. This argument is only required if the tool was not initialized with a specific text file; otherwise, the search will be conducted within the initially provided text file.
- `txt` (str): **Optinal**. The path to the text file you want to search. This argument is only required if the tool was not initialized with a specific text file; otherwise, the search will be conducted within the initially provided text file.
## Custom model and embeddings

View File

@@ -131,7 +131,6 @@ nav:
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
- How to Guides:
- Starting Your crewAI Project: 'how-to/Start-a-New-CrewAI-Project.md'
- Installing CrewAI: 'how-to/Installing-CrewAI.md'
- Getting Started: 'how-to/Creating-a-Crew-and-kick-it-off.md'
- Create Custom Tools: 'how-to/Create-Custom-Tools.md'
@@ -141,7 +140,6 @@ nav:
- Connecting to any LLM: 'how-to/LLM-Connections.md'
- Customizing Agents: 'how-to/Customizing-Agents.md'
- Coding Agents: 'how-to/Coding-Agents.md'
- Forcing Tool Output as Result: 'how-to/Force-Tool-Ouput-as-Result.md'
- Human Input on Execution: 'how-to/Human-Input-on-Execution.md'
- Kickoff a Crew Asynchronously: 'how-to/Kickoff-async.md'
- Kickoff a Crew for a List: 'how-to/Kickoff-for-each.md'

153
poetry.lock generated
View File

@@ -343,17 +343,17 @@ lxml = ["lxml"]
[[package]]
name = "boto3"
version = "1.34.140"
version = "1.34.139"
description = "The AWS SDK for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "boto3-1.34.140-py3-none-any.whl", hash = "sha256:23ca8d8f7a30c3bbd989808056b5fc5d68ff5121c02c722c6167b6b1bb7f8726"},
{file = "boto3-1.34.140.tar.gz", hash = "sha256:578bbd5e356005719b6b610d03edff7ea1b0824d078afe62d3fb8bea72f83a87"},
{file = "boto3-1.34.139-py3-none-any.whl", hash = "sha256:98b2a12bcb30e679fa9f60fc74145a39db5ec2ca7b7c763f42896e3bd9b3a38d"},
{file = "boto3-1.34.139.tar.gz", hash = "sha256:32b99f0d76ec81fdca287ace2c9744a2eb8b92cb62bf4d26d52a4f516b63a6bf"},
]
[package.dependencies]
botocore = ">=1.34.140,<1.35.0"
botocore = ">=1.34.139,<1.35.0"
jmespath = ">=0.7.1,<2.0.0"
s3transfer = ">=0.10.0,<0.11.0"
@@ -362,13 +362,13 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
[[package]]
name = "botocore"
version = "1.34.140"
version = "1.34.139"
description = "Low-level, data-driven core of boto 3."
optional = false
python-versions = ">=3.8"
files = [
{file = "botocore-1.34.140-py3-none-any.whl", hash = "sha256:43940d3a67d946ba3301631ba4078476a75f1015d4fb0fb0272d0b754b2cf9de"},
{file = "botocore-1.34.140.tar.gz", hash = "sha256:86302b2226c743b9eec7915a4c6cfaffd338ae03989cd9ee181078ef39d1ab39"},
{file = "botocore-1.34.139-py3-none-any.whl", hash = "sha256:dd1e085d4caa2a4c1b7d83e3bc51416111c8238a35d498e9d3b04f3b63b086ba"},
{file = "botocore-1.34.139.tar.gz", hash = "sha256:df023d8cf8999d574214dad4645cb90f9d2ccd1494f6ee2b57b1ab7522f6be77"},
]
[package.dependencies]
@@ -747,13 +747,13 @@ all = ["pycocotools (==2.0.6)"]
[[package]]
name = "clarifai-grpc"
version = "10.6.1"
version = "10.5.4"
description = "Clarifai gRPC API Client"
optional = false
python-versions = ">=3.8"
files = [
{file = "clarifai_grpc-10.6.1-py3-none-any.whl", hash = "sha256:7f07c262f46042995b11af10cdd552718c4487e955db1b3f1253fcb0c2ab1ce1"},
{file = "clarifai_grpc-10.6.1.tar.gz", hash = "sha256:f692e3d6a051a1228ca371c3a9dc705cc9a61334eecc454d056f7af0b6f4dbad"},
{file = "clarifai_grpc-10.5.4-py3-none-any.whl", hash = "sha256:ae4c4d8985fdd2bf326cec27ee834571e44d0e989fb12686dd681f9b553ae218"},
{file = "clarifai_grpc-10.5.4.tar.gz", hash = "sha256:c67ce0dde186e8bab0d42a9923d28ddb4a05017b826c8e52ac7a86ec6df5f12a"},
]
[package.dependencies]
@@ -840,13 +840,13 @@ files = [
[[package]]
name = "crewai-tools"
version = "0.4.8"
version = "0.4.7"
description = "Set of tools for the crewAI framework"
optional = false
python-versions = "<=3.13,>=3.10"
files = [
{file = "crewai_tools-0.4.8-py3-none-any.whl", hash = "sha256:628b08515ee0e06c751da1dd66b0cff70c9b2644775891c8f59883cb5debfef4"},
{file = "crewai_tools-0.4.8.tar.gz", hash = "sha256:ae190bd187f980163523c86ee7e1eb2ed78896f935d6caff98908dd7ab6c982b"},
{file = "crewai_tools-0.4.7-py3-none-any.whl", hash = "sha256:3ff04b2da07d2c48e72f898511295b4a10038dd3e4fe859baa93fec1fb8baf8e"},
{file = "crewai_tools-0.4.7.tar.gz", hash = "sha256:4502a5e0ab94a7dae6638d000768f80049918909ca5338cdebc280351b3ce003"},
]
[package.dependencies]
@@ -884,21 +884,6 @@ webencodings = "*"
doc = ["sphinx", "sphinx_rtd_theme"]
test = ["flake8", "isort", "pytest"]
[[package]]
name = "dataclasses-json"
version = "0.6.7"
description = "Easily serialize dataclasses to and from JSON."
optional = false
python-versions = "<4.0,>=3.7"
files = [
{file = "dataclasses_json-0.6.7-py3-none-any.whl", hash = "sha256:0dbf33f26c8d5305befd61b39d2b3414e8a407bedc2834dea9b8d642666fb40a"},
{file = "dataclasses_json-0.6.7.tar.gz", hash = "sha256:b6b3e528266ea45b9535223bc53ca645f5208833c29229e847b3f26a1cc55fc0"},
]
[package.dependencies]
marshmallow = ">=3.18.0,<4.0.0"
typing-inspect = ">=0.4.0,<1"
[[package]]
name = "decorator"
version = "5.1.1"
@@ -1054,13 +1039,13 @@ idna = ">=2.0.0"
[[package]]
name = "embedchain"
version = "0.1.116"
version = "0.1.114"
description = "Simplest open source retrieval (RAG) framework"
optional = false
python-versions = "<=3.13,>=3.9"
files = [
{file = "embedchain-0.1.116-py3-none-any.whl", hash = "sha256:388835d047f9ff4542ebf50e3fa633ef596db262cbe506195ee4976b91a49172"},
{file = "embedchain-0.1.116.tar.gz", hash = "sha256:3e4d6418df2e749c2bd3cd3153c3857cbecd7227afe40b87d5ac3df629c394b2"},
{file = "embedchain-0.1.114-py3-none-any.whl", hash = "sha256:ce1b16196bcf53c679cacead0551a5466c33a9080a82be63f973e4437b0823ca"},
{file = "embedchain-0.1.114.tar.gz", hash = "sha256:fa5c4a29dd3c6b1137c772e1bc3e2d7ca489c58f46f4c7f7de133b3b9fc56e72"},
]
[package.dependencies]
@@ -1068,14 +1053,11 @@ alembic = ">=1.13.1,<2.0.0"
beautifulsoup4 = ">=4.12.2,<5.0.0"
chromadb = ">=0.4.24,<0.5.0"
clarifai = ">=10.0.1,<11.0.0"
cohere = ">=5.3,<6.0"
google-cloud-aiplatform = ">=1.26.1,<2.0.0"
gptcache = ">=0.1.43,<0.2.0"
langchain = ">0.2,<=0.3"
langchain-cohere = ">=0.1.4,<0.2.0"
langchain-community = ">=0.2.6,<0.3.0"
langchain-openai = ">=0.1.7,<0.2.0"
memzero = ">=0.0.7,<0.0.8"
openai = ">=1.1.1"
posthog = ">=3.0.2,<4.0.0"
pypdf = ">=4.0.1,<5.0.0"
@@ -1088,6 +1070,7 @@ tiktoken = ">=0.7.0,<0.8.0"
[package.extras]
aws-bedrock = ["boto3 (>=1.34.20,<2.0.0)"]
cohere = ["cohere (>=5.3,<6.0)"]
dataloaders = ["docx2txt (>=0.8,<0.9)", "duckduckgo-search (>=6.1.5,<7.0.0)", "pytube (>=15.0.0,<16.0.0)", "sentence-transformers (>=2.2.2,<3.0.0)", "youtube-transcript-api (>=0.6.1,<0.7.0)"]
discord = ["discord (>=2.3.2,<3.0.0)"]
dropbox = ["dropbox (>=11.36.2,<12.0.0)"]
@@ -2052,13 +2035,13 @@ pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_ve
[[package]]
name = "identify"
version = "2.6.0"
version = "2.5.36"
description = "File identification library for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "identify-2.6.0-py2.py3-none-any.whl", hash = "sha256:e79ae4406387a9d300332b5fd366d8994f1525e8414984e1a59e058b2eda2dd0"},
{file = "identify-2.6.0.tar.gz", hash = "sha256:cb171c685bdc31bcc4c1734698736a7d5b6c8bf2e0c15117f4d469c8640ae5cf"},
{file = "identify-2.5.36-py2.py3-none-any.whl", hash = "sha256:37d93f380f4de590500d9dba7db359d0d3da95ffe7f9de1753faa159e71e7dfa"},
{file = "identify-2.5.36.tar.gz", hash = "sha256:e5e00f54165f9047fbebeb4a560f9acfb8af4c88232be60a488e9b68d122745d"},
]
[package.extras]
@@ -2419,32 +2402,6 @@ files = [
cohere = ">=5.5.6,<6.0"
langchain-core = ">=0.2.0,<0.3"
[[package]]
name = "langchain-community"
version = "0.2.6"
description = "Community contributed LangChain integrations."
optional = false
python-versions = "<4.0,>=3.8.1"
files = [
{file = "langchain_community-0.2.6-py3-none-any.whl", hash = "sha256:758cc800acfe5dd396bf8ba1b57c4792639ead0eab48ed0367f0732ec6ee1f68"},
{file = "langchain_community-0.2.6.tar.gz", hash = "sha256:40ce09a50ed798aa651ddb34c8978200fa8589b9813c7a28ce8af027bbf249f0"},
]
[package.dependencies]
aiohttp = ">=3.8.3,<4.0.0"
dataclasses-json = ">=0.5.7,<0.7"
langchain = ">=0.2.6,<0.3.0"
langchain-core = ">=0.2.10,<0.3.0"
langsmith = ">=0.1.0,<0.2.0"
numpy = [
{version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""},
{version = ">=1,<2", markers = "python_version < \"3.12\""},
]
PyYAML = ">=5.3"
requests = ">=2,<3"
SQLAlchemy = ">=1.4,<3"
tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0"
[[package]]
name = "langchain-core"
version = "0.2.11"
@@ -2499,13 +2456,13 @@ langchain-core = ">=0.2.10,<0.3.0"
[[package]]
name = "langsmith"
version = "0.1.84"
version = "0.1.83"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = "<4.0,>=3.8.1"
files = [
{file = "langsmith-0.1.84-py3-none-any.whl", hash = "sha256:01f3c6390dba26c583bac8dd0e551ce3d0509c7f55cad714db0b5c8d36e4c7ff"},
{file = "langsmith-0.1.84.tar.gz", hash = "sha256:5220c0439838b9a5bd320fd3686be505c5083dcee22d2452006c23891153bea1"},
{file = "langsmith-0.1.83-py3-none-any.whl", hash = "sha256:f54d8cd8479b648b6339f3f735d19292c3516d080f680933ecdca3eab4b67ed3"},
{file = "langsmith-0.1.83.tar.gz", hash = "sha256:5cdd947212c8ad19adb992c06471c860185a777daa6859bb47150f90daf64bf3"},
]
[package.dependencies]
@@ -2643,25 +2600,6 @@ files = [
{file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
]
[[package]]
name = "marshmallow"
version = "3.21.3"
description = "A lightweight library for converting complex datatypes to and from native Python datatypes."
optional = false
python-versions = ">=3.8"
files = [
{file = "marshmallow-3.21.3-py3-none-any.whl", hash = "sha256:86ce7fb914aa865001a4b2092c4c2872d13bc347f3d42673272cabfdbad386f1"},
{file = "marshmallow-3.21.3.tar.gz", hash = "sha256:4f57c5e050a54d66361e826f94fba213eb10b67b2fdb02c3e0343ce207ba1662"},
]
[package.dependencies]
packaging = ">=17.0"
[package.extras]
dev = ["marshmallow[tests]", "pre-commit (>=3.5,<4.0)", "tox"]
docs = ["alabaster (==0.7.16)", "autodocsumm (==0.2.12)", "sphinx (==7.3.7)", "sphinx-issues (==4.1.0)", "sphinx-version-warning (==1.1.2)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "mdurl"
version = "0.1.2"
@@ -2673,22 +2611,6 @@ files = [
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "memzero"
version = "0.0.7"
description = "Long-term memory for AI Agents"
optional = false
python-versions = "<4.0,>=3.9"
files = [
{file = "memzero-0.0.7-py3-none-any.whl", hash = "sha256:65f6da88d46263dbc05621fcd01bd09616d0e7f082d55ed9899dc2152491ffd2"},
{file = "memzero-0.0.7.tar.gz", hash = "sha256:0c1f413d8ee0ade955fe9f8b8f5aff2cf58bc94869537aca62139db3d9f50725"},
]
[package.dependencies]
httpx = ">=0.27.0,<0.28.0"
posthog = ">=3.5.0,<4.0.0"
pydantic = ">=2.7.3,<3.0.0"
[[package]]
name = "mergedeep"
version = "1.3.4"
@@ -5050,13 +4972,13 @@ widechars = ["wcwidth"]
[[package]]
name = "tenacity"
version = "8.5.0"
version = "8.4.2"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.8"
files = [
{file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"},
{file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"},
{file = "tenacity-8.4.2-py3-none-any.whl", hash = "sha256:9e6f7cf7da729125c7437222f8a522279751cdfbe6b67bfe64f75d3a348661b2"},
{file = "tenacity-8.4.2.tar.gz", hash = "sha256:cd80a53a79336edba8489e767f729e4f391c896956b57140b5d7511a64bbd3ef"},
]
[package.extras]
@@ -5283,13 +5205,13 @@ telegram = ["requests"]
[[package]]
name = "trio"
version = "0.26.0"
version = "0.25.1"
description = "A friendly Python library for async concurrency and I/O"
optional = false
python-versions = ">=3.8"
files = [
{file = "trio-0.26.0-py3-none-any.whl", hash = "sha256:bb9c1b259591af941fccfbabbdc65bc7ed764bd2db76428454c894cd5e3d2032"},
{file = "trio-0.26.0.tar.gz", hash = "sha256:67c5ec3265dd4abc7b1d1ab9ca4fe4c25b896f9c93dac73713778adab487f9c4"},
{file = "trio-0.25.1-py3-none-any.whl", hash = "sha256:e42617ba091e7b2e50c899052e83a3c403101841de925187f61e7b7eaebdf3fb"},
{file = "trio-0.25.1.tar.gz", hash = "sha256:9f5314f014ea3af489e77b001861c535005c3858d38ec46b6b071ebfa339d7fb"},
]
[package.dependencies]
@@ -5392,21 +5314,6 @@ files = [
{file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
]
[[package]]
name = "typing-inspect"
version = "0.9.0"
description = "Runtime inspection utilities for typing module."
optional = false
python-versions = "*"
files = [
{file = "typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f"},
{file = "typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78"},
]
[package.dependencies]
mypy-extensions = ">=0.3.0"
typing-extensions = ">=3.7.4"
[[package]]
name = "ujson"
version = "5.10.0"
@@ -6090,4 +5997,4 @@ tools = ["crewai-tools"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<=3.13"
content-hash = "0dbf6f6e2e841fb3eec4ff87ea5d6b430f29702118fee91307983c6b2581e59e"
content-hash = "4f3e5fddb5f0fc8fd143a8abe947ecac443213d595bd0eeed745ccb82dac2312"

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "crewai"
version = "0.36.0"
version = "0.35.8"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
authors = ["Joao Moura <joao@crewai.com>"]
readme = "README.md"
@@ -21,7 +21,7 @@ opentelemetry-sdk = "^1.22.0"
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
instructor = "1.3.3"
regex = "^2023.12.25"
crewai-tools = { version = "^0.4.8", optional = true }
crewai-tools = { version = "^0.4.7", optional = true }
click = "^8.1.7"
python-dotenv = "^1.0.0"
appdirs = "^1.4.4"
@@ -45,7 +45,7 @@ mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
mkdocs-material-extensions = "^1.3.1"
pillow = "^10.2.0"
cairosvg = "^2.7.1"
crewai-tools = "^0.4.8"
crewai-tools = "^0.4.7"
[tool.poetry.group.test.dependencies]
pytest = "^8.0.0"

View File

@@ -27,7 +27,7 @@ class OutputConverter(BaseModel, ABC):
model: Any = Field(description="The model to be used to convert the text.")
instructions: str = Field(description="Conversion instructions to the LLM.")
max_attempts: Optional[int] = Field(
description="Max number of attempts to try to get the output formatted.",
description="Max number of attemps to try to get the output formated.",
default=3,
)

View File

@@ -12,4 +12,4 @@ reporting_task:
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
Formated as markdown with out '```'

View File

@@ -30,7 +30,6 @@ from crewai.tools.agent_tools import AgentTools
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.training_handler import CrewTrainingHandler
try:
@@ -134,10 +133,6 @@ class Crew(BaseModel):
default=False,
description="output_log_file",
)
planning: Optional[bool] = Field(
default=False,
description="Plan the crew execution and add the plan to the crew.",
)
@field_validator("id", mode="before")
@classmethod
@@ -345,9 +340,6 @@ class Crew(BaseModel):
agent.create_agent_executor()
if self.planning:
self._handle_crew_planning()
metrics = []
if self.process == Process.sequential:
@@ -429,25 +421,17 @@ class Crew(BaseModel):
return results
def _handle_crew_planning(self):
"""Handles the Crew planning."""
self._logger.log("info", "Planning the crew execution")
result = CrewPlanner(self.tasks)._handle_crew_planning()
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
task.description += step_plan
def _run_sequential_process(self) -> Union[str, Dict[str, Any]]:
def _run_sequential_process(self) -> str:
"""Executes tasks sequentially and returns the final output."""
task_output = None
task_output = ""
for task in self.tasks:
if task.agent and task.agent.allow_delegation:
if task.agent.allow_delegation: # type: ignore # Item "None" of "Agent | None" has no attribute "allow_delegation"
agents_for_delegation = [
agent for agent in self.agents if agent != task.agent
]
if len(self.agents) > 1 and len(agents_for_delegation) > 0:
task.tools += task.agent.get_delegation_tools(agents_for_delegation)
task.tools += task.agent.get_delegation_tools(agents_for_delegation) # type: ignore # Item "None" of "BaseAgent | None" has no attribute "get_delegation_tools"
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== Working Agent: {role}", color="bold_purple")
@@ -474,7 +458,7 @@ class Crew(BaseModel):
token_usage = self.calculate_usage_metrics()
return self._format_output(task_output if task_output else "", token_usage)
return self._format_output(task_output, token_usage) # type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
def _run_hierarchical_process(
self,
@@ -499,7 +483,7 @@ class Crew(BaseModel):
)
self.manager_agent = manager
task_output = None
task_output = ""
for task in self.tasks:
self._logger.log("debug", f"Working Agent: {manager.role}")
@@ -526,11 +510,10 @@ class Crew(BaseModel):
self._finish_execution(task_output)
# type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
token_usage = self.calculate_usage_metrics()
return self._format_output(
task_output if task_output else "", token_usage
), token_usage
return self._format_output(task_output, token_usage), token_usage
def copy(self):
"""Create a deep copy of the Crew."""
@@ -591,7 +574,7 @@ class Crew(BaseModel):
"""
if self.full_output:
return {
return { # type: ignore # Incompatible return value type (got "dict[str, Sequence[str | TaskOutput | None]]", expected "str")
"final_output": output,
"tasks_outputs": [task.output for task in self.tasks if task],
"usage_metrics": token_usage,

View File

@@ -1,7 +1,7 @@
import os
import re
import threading
import uuid
from concurrent.futures import Future, ThreadPoolExecutor
from copy import copy
from typing import Any, Dict, List, Optional, Type, Union
@@ -13,7 +13,7 @@ from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
from crewai.utilities.converter import Converter, ConverterError
from crewai.utilities.converter import ConverterError
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
@@ -97,16 +97,12 @@ class Task(BaseModel):
description="Whether the task should have a human review the final answer of the agent",
default=False,
)
converter_cls: Optional[Type[Converter]] = Field(
description="A converter class used to export structured output",
default=None,
)
_telemetry: Telemetry
_execution_span: Span | None = None
_original_description: str | None = None
_original_expected_output: str | None = None
_future: Future | None = None
_thread: threading.Thread | None = None
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
@@ -165,53 +161,51 @@ class Task(BaseModel):
"""Wait for asynchronous task completion and return the output."""
assert self.async_execution, "Task is not set to be executed asynchronously."
if self._future:
self._future.result() # Wait for the future to complete
self._future = None
if self._thread:
self._thread.join()
self._thread = None
assert self.output, "Task output is not set."
return self.output.exported_output
def execute(
def execute( # type: ignore # Missing return statement
self,
agent: BaseAgent | None = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> Any:
) -> str:
"""Execute the task.
Returns:
Output of the task.
"""
self._execution_span = self._telemetry.task_started(self)
agent = agent or self.agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly "
"and should be executed in a Crew using a specific process that support that, like hierarchical."
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
)
self._execution_span = self._telemetry.task_started(crew=agent.crew, task=self)
if self.context:
internal_context = []
context = [] # type: ignore # Incompatible types in assignment (expression has type "list[Never]", variable has type "str | None")
for task in self.context:
if task.async_execution:
task.wait_for_completion()
if task.output:
internal_context.append(task.output.raw_output)
context = "\n".join(internal_context)
context.append(task.output.raw_output) # type: ignore # Item "str" of "str | None" has no attribute "append"
context = "\n".join(context) # type: ignore # Argument 1 to "join" of "str" has incompatible type "str | None"; expected "Iterable[str]"
self.prompt_context = context
tools = tools or self.tools
if self.async_execution:
with ThreadPoolExecutor() as executor:
self._future = executor.submit(
self._execute, agent, self, context, tools
)
return None
self._thread = threading.Thread(
target=self._execute, args=(agent, self, context, tools)
)
self._thread.start()
else:
result = self._execute(
task=self,
@@ -221,7 +215,7 @@ class Task(BaseModel):
)
return result
def _execute(self, agent: "BaseAgent", task, context, tools) -> str | None:
def _execute(self, agent: "BaseAgent", task, context, tools):
result = agent.execute_task(
task=task,
context=context,
@@ -229,7 +223,7 @@ class Task(BaseModel):
)
exported_output = self._export_output(result)
self.output = TaskOutput(
self.output = TaskOutput( # type: ignore # the responses are usually str but need to figure out a more elegant solution here
description=self.description,
exported_output=exported_output,
raw_output=result,
@@ -291,7 +285,7 @@ class Task(BaseModel):
copied_data = {k: v for k, v in copied_data.items() if v is not None}
cloned_context = (
[task.copy(agents) for task in self.context] if self.context else None
[task.copy() for task in self.context] if self.context else None
)
def get_agent_by_role(role: str) -> Union["BaseAgent", None]:
@@ -309,17 +303,7 @@ class Task(BaseModel):
return copied_task
def _create_converter(self, *args, **kwargs) -> Converter: # type: ignore
converter = self.agent.get_output_converter( # type: ignore # Item "None" of "BaseAgent | None" has no attribute "get_output_converter"
*args, **kwargs
)
if self.converter_cls:
converter = self.converter_cls( # type: ignore # Item "None" of "BaseAgent | None" has no attribute "get_output_converter"
*args, **kwargs
)
return converter
def _export_output(self, result: str) -> Any: # TODO: Refactor and fix type hints
def _export_output(self, result: str) -> Any:
exported_result = result
instructions = "I'm gonna convert this raw text into valid JSON."
@@ -349,7 +333,7 @@ class Task(BaseModel):
model_schema = PydanticSchemaParser(model=model).get_schema() # type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
converter = self._create_converter( # type: ignore # Item "None" of "BaseAgent | None" has no attribute "get_output_converter"
converter = self.agent.get_output_converter( # type: ignore # Item "None" of "BaseAgent | None" has no attribute "get_output_converter"
llm=llm, text=result, model=model, instructions=instructions
)

View File

@@ -156,35 +156,18 @@ class Telemetry:
except Exception:
pass
def task_started(self, crew: Crew, task: Task) -> Span | None:
def task_started(self, task: Task) -> Span | None:
"""Records task started in a crew."""
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Task Execution")
created_span = tracer.start_span("Task Created")
self._add_attribute(created_span, "task_id", str(task.id))
if crew.share_crew:
self._add_attribute(
created_span, "formatted_description", task.description
)
self._add_attribute(
created_span, "formatted_expected_output", task.expected_output
)
created_span.set_status(Status(StatusCode.OK))
created_span.end()
self._add_attribute(span, "task_id", str(task.id))
if crew.share_crew:
self._add_attribute(span, "formatted_description", task.description)
self._add_attribute(
span, "formatted_expected_output", task.expected_output
)
self._add_attribute(span, "formatted_description", task.description)
self._add_attribute(
span, "formatted_expected_output", task.expected_output
)
return span
except Exception:

View File

@@ -8,7 +8,7 @@ from pydantic.v1 import BaseModel, Field
class ToolCalling(BaseModel):
tool_name: str = Field(..., description="The name of the tool to be called.")
arguments: Optional[Dict[str, Any]] = Field(
..., description="A dictionary of arguments to be passed to the tool."
..., description="A dictinary of arguments to be passed to the tool."
)
@@ -17,5 +17,5 @@ class InstructorToolCalling(PydanticBaseModel):
..., description="The name of the tool to be called."
)
arguments: Optional[Dict[str, Any]] = PydanticField(
..., description="A dictionary of arguments to be passed to the tool."
..., description="A dictinary of arguments to be passed to the tool."
)

View File

@@ -119,7 +119,7 @@ class ToolUsage:
attempts=self._run_attempts,
)
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
return result # type: ignore # Fix the return type of this function
return result # type: ignore # Fix the reutrn type of this function
except Exception:
self.task.increment_tools_errors()

View File

@@ -16,7 +16,7 @@
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output} \n you MUST return the actual complete content as the final answer, not a summary.",
"human_feedback": "You got human feedback on your work, re-evaluate it and give a new Final Answer when ready.\n {human_feedback}",
"human_feedback": "You got human feedback on your work, re-avaluate it and give a new Final Answer when ready.\n {human_feedback}",
"getting_input": "This is the agent's final answer: {final_answer}\nPlease provide feedback: "
},
"errors": {

View File

@@ -1,64 +0,0 @@
from typing import List
from pydantic import BaseModel
from crewai.agent import Agent
from crewai.task import Task
class PlannerTaskPydanticOutput(BaseModel):
list_of_plans_per_task: List[str]
class CrewPlanner:
def __init__(self, tasks: List[Task]):
self.tasks = tasks
def _handle_crew_planning(self):
"""Handles the Crew planning by creating detailed step-by-step plans for each task."""
planning_agent = self._create_planning_agent()
tasks_summary = self._create_tasks_summary()
planner_task = self._create_planner_task(planning_agent, tasks_summary)
return planner_task.execute()
def _create_planning_agent(self) -> Agent:
"""Creates the planning agent for the crew planning."""
return Agent(
role="Task Execution Planner",
goal=(
"Your goal is to create an extremely detailed, step-by-step plan based on the tasks and tools "
"available to each agent so that they can perform the tasks in an exemplary manner"
),
backstory="Planner agent for crew planning",
)
def _create_planner_task(self, planning_agent: Agent, tasks_summary: str) -> Task:
"""Creates the planner task using the given agent and tasks summary."""
return Task(
description=(
f"Based on these tasks summary: {tasks_summary} \n Create the most descriptive plan based on the tasks "
"descriptions, tools available, and agents' goals for them to execute their goals with perfection."
),
expected_output="Step by step plan on how the agents can execute their tasks using the available tools with mastery",
agent=planning_agent,
output_pydantic=PlannerTaskPydanticOutput,
)
def _create_tasks_summary(self) -> str:
"""Creates a summary of all tasks."""
tasks_summary = []
for idx, task in enumerate(self.tasks):
tasks_summary.append(
f"""
Task Number {idx + 1} - {task.description}
"task_description": {task.description}
"task_expected_output": {task.expected_output}
"agent": {task.agent.role if task.agent else "None"}
"agent_goal": {task.agent.goal if task.agent else "None"}
"task_tools": {task.tools}
"agent_tools": {task.agent.tools if task.agent else "None"}
"""
)
return " ".join(tasks_summary)

View File

@@ -1,258 +0,0 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Scorer. You''re an expert scorer, specialized
in scoring titles.\nYour personal goal is: Score the titleTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an integer score between 1-5 for the following title: ''The impact
of AI in the future of work''\n\nThis is the expect criteria for your final
answer: The score of the title. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '997'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hrsMKHuOkxqftWK9DtuC10VCJ17t","object":"chat.completion.chunk","created":1720242230,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89ed0cf0dc05741a-MIA
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Sat, 06 Jul 2024 05:03:50 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=JI76H4xxreAnMx1JJoPragplAdYdjbDNA68Hr3Cs_0k-1720242230-1.0.1.1-oHSrtm.ejkvCiAHC11lg0MnvmopYZayTZRq09IcH2yh5BA6FyyufGH7Rm59BAz.gdZHc0izmjElXfLiu2bZ_jQ;
path=/; expires=Sat, 06-Jul-24 05:33:50 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=X4.n0cNP9j1jseIPV4H1aDJu2xrsAwcUI8rY0tbLc40-1720242230210-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '71'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999772'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8dc1d49d85fcf8e39601e32ca80abd6b
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "4"}, {"role": "system", "content":
"I''m gonna convert this raw text into valid JSON."}], "model": "gpt-4o", "tool_choice":
{"type": "function", "function": {"name": "ScoreOutput"}}, "tools": [{"type":
"function", "function": {"name": "ScoreOutput", "description": "Correctly extracted
`ScoreOutput` with all the required parameters with correct types", "parameters":
{"properties": {"score": {"title": "Score", "type": "integer"}}, "required":
["score"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '519'
content-type:
- application/json
cookie:
- __cf_bm=JI76H4xxreAnMx1JJoPragplAdYdjbDNA68Hr3Cs_0k-1720242230-1.0.1.1-oHSrtm.ejkvCiAHC11lg0MnvmopYZayTZRq09IcH2yh5BA6FyyufGH7Rm59BAz.gdZHc0izmjElXfLiu2bZ_jQ;
_cfuvid=X4.n0cNP9j1jseIPV4H1aDJu2xrsAwcUI8rY0tbLc40-1720242230210-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA2xSS2/bMAy++1cIPNeF81pT34YBG9A13aHAgL5gKArtKJVFTaKBtkH++yDFi91g
PggEP34PkN5nQoDeQClAbSWr1pn8euvD6id9OP3V3C6bzZ2qd7eT1f3DykgFF5FB6x0q/se6VNQ6
g6zJHmHlUTJG1cnVtJjOp9NZkYCWNmgirXGczymPYF4s8smsJ25JKwxQiqdMCCH26Y0R7QbfoBRJ
JnVaDEE2COVpSAjwZGIHZAg6sLQMFwOoyDLamNp2xowAJjKVksYMxsdvP6qHPUljqsI2duX13ePN
w2/7HT/+8Lfd45cfYeR3lH53KVDdWXXazwg/9cszMyHAyjZx7xV5/NWx6/iMLgRI33QtWo7RYf8M
IQ4/Qzk/wKfRQ/a/+qWvDqe1Gmqcp3U42xLU2uqwrTzKkNJCYHJHiyj3ks7XfboIOE+t44rpFW0U
XPbXg+F/GcBFjzGxNCPOIuvjQXgPjG1Va9ugd16nU0LtqnlRLHG2vppcQ3bI/gIAAP//AwCtLU45
0wIAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89ed0cf40ebc741a-MIA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 06 Jul 2024 05:03:50 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '186'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999969'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5da164d15ccb331864aeb5d3562969aa
status:
code: 200
message: OK
version: 1

View File

@@ -46,64 +46,64 @@ interactions:
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
string: 'data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hry2om1JBkreHpDHFbfD2YDtg2oA","object":"chat.completion.chunk","created":1720242582,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d576307f90","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: {"id":"chatcmpl-9hEBF5KduXR80dsfVx2VivLMxOk4w","object":"chat.completion.chunk","created":1720089641,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
@@ -114,20 +114,20 @@ interactions:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89ed158b8bf0a566-MIA
- 89de7fa17ed72878-MIA
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Sat, 06 Jul 2024 05:09:42 GMT
- Thu, 04 Jul 2024 10:40:41 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=5C3MG9ni0I5bZoHGzfXZq16obGaD1INR3_.wX4CRPAk-1720242582-1.0.1.1-fZiD6L1FdBiC0gqcmBK9_IaHhbHPQi4z04fxYQtoDc9KbYqPvxm_sxP_RkuZX_AyPkHgu85IRq9E6MUAZJGzwQ;
path=/; expires=Sat, 06-Jul-24 05:39:42 GMT; domain=.api.openai.com; HttpOnly;
- __cf_bm=m9ZbE3d_dSMsckOHqfK8mMIzKxCRI4vqsIelidShwVc-1720089641-1.0.1.1-xigQSnpNWopswY4gNuGCIgc2MR64bcUc6bpFwdeThTINo0jBkROlwHpIGyjOBQo3goJboqk_kUa_XZby0or19g;
path=/; expires=Thu, 04-Jul-24 11:10:41 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=YP7Z3XnHPKQDU2nOhrLzkxr8InOv42HLWchJd1ogneQ-1720242582534-0.0.1.1-604800000;
- _cfuvid=NgRTBkQl5NRUhXSdkH3Y7qNaA.KrG7PvxiuoOp9ip8w-1720089641502-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
@@ -136,7 +136,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '90'
- '109'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -154,7 +154,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_36d283adbca77945609f0da658047ba0
- req_2d7ac1e1ca6d58559a236046b682021e
status:
code: 200
message: OK
@@ -178,8 +178,8 @@ interactions:
content-type:
- application/json
cookie:
- __cf_bm=5C3MG9ni0I5bZoHGzfXZq16obGaD1INR3_.wX4CRPAk-1720242582-1.0.1.1-fZiD6L1FdBiC0gqcmBK9_IaHhbHPQi4z04fxYQtoDc9KbYqPvxm_sxP_RkuZX_AyPkHgu85IRq9E6MUAZJGzwQ;
_cfuvid=YP7Z3XnHPKQDU2nOhrLzkxr8InOv42HLWchJd1ogneQ-1720242582534-0.0.1.1-604800000
- __cf_bm=m9ZbE3d_dSMsckOHqfK8mMIzKxCRI4vqsIelidShwVc-1720089641-1.0.1.1-xigQSnpNWopswY4gNuGCIgc2MR64bcUc6bpFwdeThTINo0jBkROlwHpIGyjOBQo3goJboqk_kUa_XZby0or19g;
_cfuvid=NgRTBkQl5NRUhXSdkH3Y7qNaA.KrG7PvxiuoOp9ip8w-1720089641502-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
@@ -203,19 +203,19 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA2xS30/bMBB+z19h3XMzhbShJW8wiW1MGogixDRQ5DpOanB8ln1hK1X/d+Q0NKFa
HqzTfff90F22EWOgSsgZiDUn0Vgdn63dJl3d3rSv5xuf/b7Di/PLq/JUVYub5wwmgYGrZynog/VF
YGO1JIVmDwsnOcmgejJPk3SWZou0AxospQ602lI8wziAcZLFJ9OeuEYlpIec/YkYY2zbvSGiKeU/
yFky+eg00nteS8gPQ4yBQx06wL1XnrghmAygQEPShNSm1XoEEKIuBNd6MN5/21E97IlrXdxePlzN
/s6/rpZv3x+WF9P7nz++vdz/8iO/vfTGdoGq1ojDfkb4oZ8fmTEGhjcddynQyeuWbEtHdMaAu7pt
pKEQHbaP4MPwI+SzHXwa3UX/q5/6andYq8baOlz5oy1BpYzy68JJ7ru04Ant3iLIPXXnaz9dBKzD
xlJB+CJNEFz014PhfxnArMcIiesRJ4v6eOA3nmRTVMrU0lmnulNCZYsym59Ok3l1lkC0i94BAAD/
/wMAylx2sdMCAAA=
H4sIAAAAAAAAA2xS32vbMBB+918h7jkuTuwktd/WkcCgI6zdRmEtRlVkR5usU6UzbQj534scN3bD
/CCO++77wZ0PEWOgtlAwEDtOorE6znermzXiPr+xv17vVtn++636PcNNmrw8/IRJYODzXynog3Ul
sLFakkJzgoWTnGRQnS5nSXKdL7JpBzS4lTrQaktxhvEsmWVxMo+naU/coRLSQ8H+RIwxdujeENFs
5RsULJl8dBrpPa8lFOchxsChDh3g3itP3BBMBlCgIWlCatNqPQIIUZeCaz0Yn77DqB72xLUuza3W
i1SuV8vNw2L18m2dp/buy4+vI7+T9N52garWiPN+Rvi5X1yYMQaGNx33XqCTm5ZsSxd0xoC7um2k
oRAdDo/gw/AjFNkRPo0eo//VT311PK9VY20dPvuLLUGljPK70knuu7TgCe3JIsg9dedrP10ErMPG
Ukn4T5ogeN1fD4b/ZQDnPUZIXI8486iPB37vSTZlpUwtnXWqOyVUthQyWeZpmiYVRMfoHQAA//8D
ADLpRvfTAgAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89ed158dee46a566-MIA
- 89de7fa4e8742878-MIA
Connection:
- keep-alive
Content-Encoding:
@@ -223,7 +223,7 @@ interactions:
Content-Type:
- application/json
Date:
- Sat, 06 Jul 2024 05:09:42 GMT
- Thu, 04 Jul 2024 10:40:42 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -233,7 +233,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '144'
- '209'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -251,7 +251,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_990566332b9b1851c581486c0a4da0e6
- req_a66f76bc016b3f8752bac8c393e60578
status:
code: 200
message: OK

View File

@@ -501,13 +501,13 @@ def test_agents_rpm_is_never_set_if_crew_max_RPM_is_not_set():
def test_async_task_execution():
from concurrent.futures import ThreadPoolExecutor
from unittest.mock import MagicMock, patch
import threading
from unittest.mock import patch
from crewai.tasks.task_output import TaskOutput
list_ideas = Task(
description="Give me a list of 5 interesting ideas to explore for an article, what makes them unique and interesting.",
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
async_execution=True,
@@ -533,24 +533,23 @@ def test_async_task_execution():
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
with patch.object(ThreadPoolExecutor, "submit") as submit:
future = MagicMock()
future.result.return_value = "ok"
submit.return_value = future
list_ideas.output = TaskOutput(
description="A 4 paragraph article about AI.",
raw_output="ok",
agent="writer",
)
list_important_history.output = TaskOutput(
description="A 4 paragraph article about AI.",
raw_output="ok",
agent="writer",
)
crew.kickoff()
submit.assert_called()
future.result.assert_called()
with patch.object(threading.Thread, "start") as start:
thread = threading.Thread(target=lambda: None, args=()).start()
start.return_value = thread
with patch.object(threading.Thread, "join", wraps=thread.join()) as join:
list_ideas.output = TaskOutput(
description="A 4 paragraph article about AI.",
raw_output="ok",
agent="writer",
)
list_important_history.output = TaskOutput(
description="A 4 paragraph article about AI.",
raw_output="ok",
agent="writer",
)
crew.kickoff()
start.assert_called()
join.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])

View File

@@ -9,7 +9,6 @@ from pydantic_core import ValidationError
from crewai import Agent, Crew, Process, Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.converter import Converter
def test_task_tool_reflect_agent_tools():
@@ -394,38 +393,6 @@ def test_save_task_pydantic_output():
save_file.assert_called_once_with('{"score":4}')
@pytest.mark.vcr(filter_headers=["authorization"])
def test_custom_converter_cls():
class ScoreOutput(BaseModel):
score: int
class ScoreConverter(Converter):
pass
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput,
converter_cls=ScoreConverter,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task])
with patch.object(
ScoreConverter, "to_pydantic", return_value=ScoreOutput(score=5)
) as mock_to_pydantic:
crew.kickoff()
mock_to_pydantic.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_increment_delegations_for_hierarchical_process():
from langchain_openai import ChatOpenAI