mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
Compare commits
72 Commits
feat/organ
...
bugfix/tes
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4469461b38 | ||
|
|
a548463fae | ||
|
|
45b802a625 | ||
|
|
ba0965ef87 | ||
|
|
d85898cf29 | ||
|
|
73f328860b | ||
|
|
a0c322a535 | ||
|
|
86f58c95de | ||
|
|
99fe91586d | ||
|
|
0c2d23dfe0 | ||
|
|
2433819c4f | ||
|
|
97fc44c930 | ||
|
|
409892d65f | ||
|
|
62f3df7ed5 | ||
|
|
4cf8913d31 | ||
|
|
82647358b2 | ||
|
|
6cc2f510bf | ||
|
|
9a65abf6b8 | ||
|
|
b3185ad90c | ||
|
|
c887ff1f47 | ||
|
|
22e5d39884 | ||
|
|
9ee6824ccd | ||
|
|
da73865f25 | ||
|
|
627b9f1abb | ||
|
|
1b8001bf98 | ||
|
|
e59e07e4f7 | ||
|
|
ee239b1c06 | ||
|
|
bf459bf983 | ||
|
|
94eaa6740e | ||
|
|
6d7c1b0743 | ||
|
|
6b864ee21d | ||
|
|
1ffa8904db | ||
|
|
ad916abd76 | ||
|
|
9702711094 | ||
|
|
8094754239 | ||
|
|
bc5e303d5f | ||
|
|
ec89e003c8 | ||
|
|
0b0f2d30ab | ||
|
|
1df61aba4c | ||
|
|
da9220fa81 | ||
|
|
da4f356fab | ||
|
|
d932b20c6e | ||
|
|
2f9a2afd9e | ||
|
|
c1df7c410e | ||
|
|
54ebd6cf90 | ||
|
|
6b87d22a70 | ||
|
|
c4f7eaf259 | ||
|
|
236e42d0bc | ||
|
|
8c90db04b5 | ||
|
|
1261ce513f | ||
|
|
b07c51532c | ||
|
|
d763eefc2e | ||
|
|
e01c0a0f4c | ||
|
|
5a7a323f3a | ||
|
|
46be5e8097 | ||
|
|
bc2a86d66a | ||
|
|
11a3d4b840 | ||
|
|
6930b68484 | ||
|
|
c7c0647dd2 | ||
|
|
7b276e6797 | ||
|
|
3daba0c79e | ||
|
|
2c85e8e23a | ||
|
|
b0f1d1fcf0 | ||
|
|
611526596a | ||
|
|
fa373f9660 | ||
|
|
48bb8ef775 | ||
|
|
bbea797b0c | ||
|
|
066ad73423 | ||
|
|
0695c26703 | ||
|
|
4fb3331c6a | ||
|
|
b6c6eea6f5 | ||
|
|
1af95f5146 |
3
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
3
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
@@ -65,7 +65,6 @@ body:
|
||||
- '3.10'
|
||||
- '3.11'
|
||||
- '3.12'
|
||||
- '3.13'
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
@@ -113,4 +112,4 @@ body:
|
||||
label: Additional context
|
||||
description: Add any other context about the problem here.
|
||||
validations:
|
||||
required: true
|
||||
required: true
|
||||
|
||||
2
.github/workflows/linter.yml
vendored
2
.github/workflows/linter.yml
vendored
@@ -13,4 +13,4 @@ jobs:
|
||||
pip install ruff
|
||||
|
||||
- name: Run Ruff Linter
|
||||
run: ruff check --exclude "templates","__init__.py"
|
||||
run: ruff check
|
||||
|
||||
8
.github/workflows/stale.yml
vendored
8
.github/workflows/stale.yml
vendored
@@ -1,5 +1,10 @@
|
||||
name: Mark stale issues and pull requests
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
issues: write
|
||||
pull-requests: write
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '10 12 * * *'
|
||||
@@ -8,9 +13,6 @@ on:
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
|
||||
2
.github/workflows/tests.yml
vendored
2
.github/workflows/tests.yml
vendored
@@ -23,7 +23,7 @@ jobs:
|
||||
|
||||
|
||||
- name: Set up Python
|
||||
run: uv python install 3.11.9
|
||||
run: uv python install 3.12.8
|
||||
|
||||
- name: Install the project
|
||||
run: uv sync --dev --all-extras
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
repos:
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.4.4
|
||||
rev: v0.8.2
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: ["--fix"]
|
||||
exclude: "templates"
|
||||
- id: ruff-format
|
||||
exclude: "templates"
|
||||
|
||||
9
.ruff.toml
Normal file
9
.ruff.toml
Normal file
@@ -0,0 +1,9 @@
|
||||
exclude = [
|
||||
"templates",
|
||||
"__init__.py",
|
||||
]
|
||||
|
||||
[lint]
|
||||
select = [
|
||||
"I", # isort rules
|
||||
]
|
||||
179
README.md
179
README.md
@@ -4,7 +4,7 @@
|
||||
|
||||
# **CrewAI**
|
||||
|
||||
🤖 **CrewAI**: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
|
||||
🤖 **CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
|
||||
|
||||
<h3>
|
||||
|
||||
@@ -22,13 +22,17 @@
|
||||
- [Why CrewAI?](#why-crewai)
|
||||
- [Getting Started](#getting-started)
|
||||
- [Key Features](#key-features)
|
||||
- [Understanding Flows and Crews](#understanding-flows-and-crews)
|
||||
- [CrewAI vs LangGraph](#how-crewai-compares)
|
||||
- [Examples](#examples)
|
||||
- [Quick Tutorial](#quick-tutorial)
|
||||
- [Write Job Descriptions](#write-job-descriptions)
|
||||
- [Trip Planner](#trip-planner)
|
||||
- [Stock Analysis](#stock-analysis)
|
||||
- [Using Crews and Flows Together](#using-crews-and-flows-together)
|
||||
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
|
||||
- [How CrewAI Compares](#how-crewai-compares)
|
||||
- [Frequently Asked Questions (FAQ)](#frequently-asked-questions-faq)
|
||||
- [Contribution](#contribution)
|
||||
- [Telemetry](#telemetry)
|
||||
- [License](#license)
|
||||
@@ -36,22 +40,51 @@
|
||||
## Why CrewAI?
|
||||
|
||||
The power of AI collaboration has too much to offer.
|
||||
CrewAI is designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
|
||||
CrewAI is a standalone framework, built from the ground up without dependencies on Langchain or other agent frameworks. It's designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Learning Resources
|
||||
|
||||
Learn CrewAI through our comprehensive courses:
|
||||
- [Multi AI Agent Systems with CrewAI](https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/) - Master the fundamentals of multi-agent systems
|
||||
- [Practical Multi AI Agents and Advanced Use Cases](https://www.deeplearning.ai/short-courses/practical-multi-ai-agents-and-advanced-use-cases-with-crewai/) - Deep dive into advanced implementations
|
||||
|
||||
### Understanding Flows and Crews
|
||||
|
||||
CrewAI offers two powerful, complementary approaches that work seamlessly together to build sophisticated AI applications:
|
||||
|
||||
1. **Crews**: Teams of AI agents with true autonomy and agency, working together to accomplish complex tasks through role-based collaboration. Crews enable:
|
||||
- Natural, autonomous decision-making between agents
|
||||
- Dynamic task delegation and collaboration
|
||||
- Specialized roles with defined goals and expertise
|
||||
- Flexible problem-solving approaches
|
||||
|
||||
2. **Flows**: Production-ready, event-driven workflows that deliver precise control over complex automations. Flows provide:
|
||||
- Fine-grained control over execution paths for real-world scenarios
|
||||
- Secure, consistent state management between tasks
|
||||
- Clean integration of AI agents with production Python code
|
||||
- Conditional branching for complex business logic
|
||||
|
||||
The true power of CrewAI emerges when combining Crews and Flows. This synergy allows you to:
|
||||
- Build complex, production-grade applications
|
||||
- Balance autonomy with precise control
|
||||
- Handle sophisticated real-world scenarios
|
||||
- Maintain clean, maintainable code structure
|
||||
|
||||
### Getting Started with Installation
|
||||
|
||||
To get started with CrewAI, follow these simple steps:
|
||||
|
||||
### 1. Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, install CrewAI:
|
||||
|
||||
```shell
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command:
|
||||
|
||||
```shell
|
||||
@@ -59,6 +92,22 @@ pip install 'crewai[tools]'
|
||||
```
|
||||
The command above installs the basic package and also adds extra components which require more dependencies to function.
|
||||
|
||||
### Troubleshooting Dependencies
|
||||
|
||||
If you encounter issues during installation or usage, here are some common solutions:
|
||||
|
||||
#### Common Issues
|
||||
|
||||
1. **ModuleNotFoundError: No module named 'tiktoken'**
|
||||
- Install tiktoken explicitly: `pip install 'crewai[embeddings]'`
|
||||
- If using embedchain or other tools: `pip install 'crewai[tools]'`
|
||||
|
||||
2. **Failed building wheel for tiktoken**
|
||||
- Ensure Rust compiler is installed (see installation steps above)
|
||||
- For Windows: Verify Visual C++ Build Tools are installed
|
||||
- Try upgrading pip: `pip install --upgrade pip`
|
||||
- If issues persist, use a pre-built wheel: `pip install tiktoken --prefer-binary`
|
||||
|
||||
### 2. Setting Up Your Crew with the YAML Configuration
|
||||
|
||||
To create a new CrewAI project, run the following CLI (Command Line Interface) command:
|
||||
@@ -264,13 +313,16 @@ In addition to the sequential process, you can use the hierarchical process, whi
|
||||
|
||||
## Key Features
|
||||
|
||||
- **Role-Based Agent Design**: Customize agents with specific roles, goals, and tools.
|
||||
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enhancing problem-solving efficiency.
|
||||
- **Flexible Task Management**: Define tasks with customizable tools and assign them to agents dynamically.
|
||||
- **Processes Driven**: Currently only supports `sequential` task execution and `hierarchical` processes, but more complex processes like consensual and autonomous are being worked on.
|
||||
- **Save output as file**: Save the output of individual tasks as a file, so you can use it later.
|
||||
- **Parse output as Pydantic or Json**: Parse the output of individual tasks as a Pydantic model or as a Json if you want to.
|
||||
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models, even ones running locally!
|
||||
**Note**: CrewAI is a standalone framework built from the ground up, without dependencies on Langchain or other agent frameworks.
|
||||
|
||||
- **Deep Customization**: Build sophisticated agents with full control over the system - from overriding inner prompts to accessing low-level APIs. Customize roles, goals, tools, and behaviors while maintaining clean abstractions.
|
||||
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enabling complex problem-solving in real-world scenarios.
|
||||
- **Flexible Task Management**: Define and customize tasks with granular control, from simple operations to complex multi-step processes.
|
||||
- **Production-Grade Architecture**: Support for both high-level abstractions and low-level customization, with robust error handling and state management.
|
||||
- **Predictable Results**: Ensure consistent, accurate outputs through programmatic guardrails, agent training capabilities, and flow-based execution control. See our [documentation on guardrails](https://docs.crewai.com/how-to/guardrails/) for implementation details.
|
||||
- **Model Flexibility**: Run your crew using OpenAI or open source models with production-ready integrations. See [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) for detailed configuration options.
|
||||
- **Event-Driven Flows**: Build complex, real-world workflows with precise control over execution paths, state management, and conditional logic.
|
||||
- **Process Orchestration**: Achieve any workflow pattern through flows - from simple sequential and hierarchical processes to complex, custom orchestration patterns with conditional branching and parallel execution.
|
||||
|
||||

|
||||
|
||||
@@ -305,6 +357,98 @@ You can test different real life examples of AI crews in the [CrewAI-examples re
|
||||
|
||||
[](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
|
||||
|
||||
### Using Crews and Flows Together
|
||||
|
||||
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines. Here's how you can orchestrate multiple Crews within a Flow:
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start, router
|
||||
from crewai import Crew, Agent, Task
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Define structured state for precise control
|
||||
class MarketState(BaseModel):
|
||||
sentiment: str = "neutral"
|
||||
confidence: float = 0.0
|
||||
recommendations: list = []
|
||||
|
||||
class AdvancedAnalysisFlow(Flow[MarketState]):
|
||||
@start()
|
||||
def fetch_market_data(self):
|
||||
# Demonstrate low-level control with structured state
|
||||
self.state.sentiment = "analyzing"
|
||||
return {"sector": "tech", "timeframe": "1W"} # These parameters match the task description template
|
||||
|
||||
@listen(fetch_market_data)
|
||||
def analyze_with_crew(self, market_data):
|
||||
# Show crew agency through specialized roles
|
||||
analyst = Agent(
|
||||
role="Senior Market Analyst",
|
||||
goal="Conduct deep market analysis with expert insight",
|
||||
backstory="You're a veteran analyst known for identifying subtle market patterns"
|
||||
)
|
||||
researcher = Agent(
|
||||
role="Data Researcher",
|
||||
goal="Gather and validate supporting market data",
|
||||
backstory="You excel at finding and correlating multiple data sources"
|
||||
)
|
||||
|
||||
analysis_task = Task(
|
||||
description="Analyze {sector} sector data for the past {timeframe}",
|
||||
expected_output="Detailed market analysis with confidence score",
|
||||
agent=analyst
|
||||
)
|
||||
research_task = Task(
|
||||
description="Find supporting data to validate the analysis",
|
||||
expected_output="Corroborating evidence and potential contradictions",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Demonstrate crew autonomy
|
||||
analysis_crew = Crew(
|
||||
agents=[analyst, researcher],
|
||||
tasks=[analysis_task, research_task],
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
return analysis_crew.kickoff(inputs=market_data) # Pass market_data as named inputs
|
||||
|
||||
@router(analyze_with_crew)
|
||||
def determine_next_steps(self):
|
||||
# Show flow control with conditional routing
|
||||
if self.state.confidence > 0.8:
|
||||
return "high_confidence"
|
||||
elif self.state.confidence > 0.5:
|
||||
return "medium_confidence"
|
||||
return "low_confidence"
|
||||
|
||||
@listen("high_confidence")
|
||||
def execute_strategy(self):
|
||||
# Demonstrate complex decision making
|
||||
strategy_crew = Crew(
|
||||
agents=[
|
||||
Agent(role="Strategy Expert",
|
||||
goal="Develop optimal market strategy")
|
||||
],
|
||||
tasks=[
|
||||
Task(description="Create detailed strategy based on analysis",
|
||||
expected_output="Step-by-step action plan")
|
||||
]
|
||||
)
|
||||
return strategy_crew.kickoff()
|
||||
|
||||
@listen("medium_confidence", "low_confidence")
|
||||
def request_additional_analysis(self):
|
||||
self.state.recommendations.append("Gather more data")
|
||||
return "Additional analysis required"
|
||||
```
|
||||
|
||||
This example demonstrates how to:
|
||||
1. Use Python code for basic data operations
|
||||
2. Create and execute Crews as steps in your workflow
|
||||
3. Use Flow decorators to manage the sequence of operations
|
||||
4. Implement conditional branching based on Crew results
|
||||
|
||||
## Connecting Your Crew to a Model
|
||||
|
||||
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
|
||||
@@ -313,9 +457,13 @@ Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-
|
||||
|
||||
## How CrewAI Compares
|
||||
|
||||
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
|
||||
**CrewAI's Advantage**: CrewAI combines autonomous agent intelligence with precise workflow control through its unique Crews and Flows architecture. The framework excels at both high-level orchestration and low-level customization, enabling complex, production-grade systems with granular control.
|
||||
|
||||
- **Autogen**: While Autogen does good in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
|
||||
- **LangGraph**: While LangGraph provides a foundation for building agent workflows, its approach requires significant boilerplate code and complex state management patterns. The framework's tight coupling with LangChain can limit flexibility when implementing custom agent behaviors or integrating with external systems.
|
||||
|
||||
*P.S. CrewAI demonstrates significant performance advantages over LangGraph, executing 5.76x faster in certain cases like this QA task example ([see comparison](https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/QA%20Agent)) while achieving higher evaluation scores with faster completion times in certain coding tasks, like in this example ([detailed analysis](https://github.com/crewAIInc/crewAI-examples/blob/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/Coding%20Assistant/coding_assistant_eval.ipynb)).*
|
||||
|
||||
- **Autogen**: While Autogen excels at creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
|
||||
|
||||
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
|
||||
|
||||
@@ -376,7 +524,7 @@ pip install dist/*.tar.gz
|
||||
|
||||
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
|
||||
|
||||
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. We don't offer a way to disable it now, but we will in the future.
|
||||
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
|
||||
|
||||
Data collected includes:
|
||||
|
||||
@@ -440,5 +588,8 @@ A: CrewAI uses anonymous telemetry to collect usage data for improvement purpose
|
||||
### Q: Where can I find examples of CrewAI in action?
|
||||
A: You can find various real-life examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), including trip planners, stock analysis tools, and more.
|
||||
|
||||
### Q: What is the difference between Crews and Flows?
|
||||
A: Crews and Flows serve different but complementary purposes in CrewAI. Crews are teams of AI agents working together to accomplish specific tasks through role-based collaboration, delivering accurate and predictable results. Flows, on the other hand, are event-driven workflows that can orchestrate both Crews and regular Python code, allowing you to build complex automation pipelines with secure state management and conditional execution paths.
|
||||
|
||||
### Q: How can I contribute to CrewAI?
|
||||
A: Contributions are welcome! You can fork the repository, create a new branch for your feature, add your improvement, and send a pull request. Check the Contribution section in the README for more details.
|
||||
|
||||
@@ -28,20 +28,19 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
|
||||
### 1. Create
|
||||
|
||||
Create a new crew or pipeline.
|
||||
Create a new crew or flow.
|
||||
|
||||
```shell
|
||||
crewai create [OPTIONS] TYPE NAME
|
||||
```
|
||||
|
||||
- `TYPE`: Choose between "crew" or "pipeline"
|
||||
- `NAME`: Name of the crew or pipeline
|
||||
- `--router`: (Optional) Create a pipeline with router functionality
|
||||
- `TYPE`: Choose between "crew" or "flow"
|
||||
- `NAME`: Name of the crew or flow
|
||||
|
||||
Example:
|
||||
```shell
|
||||
crewai create crew my_new_crew
|
||||
crewai create pipeline my_new_pipeline --router
|
||||
crewai create flow my_new_flow
|
||||
```
|
||||
|
||||
### 2. Version
|
||||
|
||||
@@ -32,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
|
||||
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
|
||||
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
|
||||
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
|
||||
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
|
||||
@@ -41,6 +40,155 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
</Tip>
|
||||
|
||||
## Creating Crews
|
||||
|
||||
There are two ways to create crews in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
|
||||
|
||||
### YAML Configuration (Recommended)
|
||||
|
||||
Using YAML configuration provides a cleaner, more maintainable way to define crews and is consistent with how agents and tasks are defined in CrewAI projects.
|
||||
|
||||
After creating your CrewAI project as outlined in the [Installation](/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
|
||||
|
||||
#### Example Crew Class with Decorators
|
||||
|
||||
```python code
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
from crewai.project import CrewBase, agent, task, crew, before_kickoff, after_kickoff
|
||||
|
||||
|
||||
@CrewBase
|
||||
class YourCrewName:
|
||||
"""Description of your crew"""
|
||||
|
||||
# Paths to your YAML configuration files
|
||||
# To see an example agent and task defined in YAML, checkout the following:
|
||||
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
|
||||
# - Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@before_kickoff
|
||||
def prepare_inputs(self, inputs):
|
||||
# Modify inputs before the crew starts
|
||||
inputs['additional_data'] = "Some extra information"
|
||||
return inputs
|
||||
|
||||
@after_kickoff
|
||||
def process_output(self, output):
|
||||
# Modify output after the crew finishes
|
||||
output.raw += "\nProcessed after kickoff."
|
||||
return output
|
||||
|
||||
@agent
|
||||
def agent_one(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['agent_one'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@agent
|
||||
def agent_two(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['agent_two'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def task_one(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['task_one']
|
||||
)
|
||||
|
||||
@task
|
||||
def task_two(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['task_two']
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically collected by the @agent decorator
|
||||
tasks=self.tasks, # Automatically collected by the @task decorator.
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
```
|
||||
|
||||
<Note>
|
||||
Tasks will be executed in the order they are defined.
|
||||
</Note>
|
||||
|
||||
The `CrewBase` class, along with these decorators, automates the collection of agents and tasks, reducing the need for manual management.
|
||||
|
||||
#### Decorators overview from `annotations.py`
|
||||
|
||||
CrewAI provides several decorators in the `annotations.py` file that are used to mark methods within your crew class for special handling:
|
||||
|
||||
- `@CrewBase`: Marks the class as a crew base class.
|
||||
- `@agent`: Denotes a method that returns an `Agent` object.
|
||||
- `@task`: Denotes a method that returns a `Task` object.
|
||||
- `@crew`: Denotes the method that returns the `Crew` object.
|
||||
- `@before_kickoff`: (Optional) Marks a method to be executed before the crew starts.
|
||||
- `@after_kickoff`: (Optional) Marks a method to be executed after the crew finishes.
|
||||
|
||||
These decorators help in organizing your crew's structure and automatically collecting agents and tasks without manually listing them.
|
||||
|
||||
### Direct Code Definition (Alternative)
|
||||
|
||||
Alternatively, you can define the crew directly in code without using YAML configuration files.
|
||||
|
||||
```python code
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
from crewai_tools import YourCustomTool
|
||||
|
||||
class YourCrewName:
|
||||
def agent_one(self) -> Agent:
|
||||
return Agent(
|
||||
role="Data Analyst",
|
||||
goal="Analyze data trends in the market",
|
||||
backstory="An experienced data analyst with a background in economics",
|
||||
verbose=True,
|
||||
tools=[YourCustomTool()]
|
||||
)
|
||||
|
||||
def agent_two(self) -> Agent:
|
||||
return Agent(
|
||||
role="Market Researcher",
|
||||
goal="Gather information on market dynamics",
|
||||
backstory="A diligent researcher with a keen eye for detail",
|
||||
verbose=True
|
||||
)
|
||||
|
||||
def task_one(self) -> Task:
|
||||
return Task(
|
||||
description="Collect recent market data and identify trends.",
|
||||
expected_output="A report summarizing key trends in the market.",
|
||||
agent=self.agent_one()
|
||||
)
|
||||
|
||||
def task_two(self) -> Task:
|
||||
return Task(
|
||||
description="Research factors affecting market dynamics.",
|
||||
expected_output="An analysis of factors influencing the market.",
|
||||
agent=self.agent_two()
|
||||
)
|
||||
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=[self.agent_one(), self.agent_two()],
|
||||
tasks=[self.task_one(), self.task_two()],
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
In this example:
|
||||
|
||||
- Agents and tasks are defined directly within the class without decorators.
|
||||
- We manually create and manage the list of agents and tasks.
|
||||
- This approach provides more control but can be less maintainable for larger projects.
|
||||
|
||||
## Crew Output
|
||||
|
||||
@@ -188,4 +336,4 @@ Then, to replay from a specific task, use:
|
||||
crewai replay -t <task_id>
|
||||
```
|
||||
|
||||
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
|
||||
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
---
|
||||
title: Knowledge
|
||||
description: Understand what knowledge is in CrewAI and how to effectively use it.
|
||||
description: What is knowledge in CrewAI and how to use it.
|
||||
icon: book
|
||||
---
|
||||
|
||||
@@ -8,7 +8,8 @@ icon: book
|
||||
|
||||
## What is Knowledge?
|
||||
|
||||
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks. Think of it as giving your agents a reference library they can consult while working.
|
||||
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
|
||||
Think of it as giving your agents a reference library they can consult while working.
|
||||
|
||||
<Info>
|
||||
Key benefits of using Knowledge:
|
||||
@@ -37,130 +38,368 @@ CrewAI supports various types of knowledge sources out of the box:
|
||||
|
||||
## Quick Start
|
||||
|
||||
Here's a simple example using string-based knowledge:
|
||||
Here's an example using string-based knowledge:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai.knowledge import StringKnowledgeSource
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew, Process, LLM
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
|
||||
# 1. Create a knowledge source
|
||||
product_info = StringKnowledgeSource(
|
||||
content="""Our product X1000 has the following features:
|
||||
- 10-hour battery life
|
||||
- Water-resistant
|
||||
- Available in black and silver
|
||||
Price: $299.99""",
|
||||
metadata={"category": "product"}
|
||||
# Create a knowledge source
|
||||
content = "Users name is John. He is 30 years old and lives in San Francisco."
|
||||
string_source = StringKnowledgeSource(
|
||||
content=content,
|
||||
)
|
||||
|
||||
# 2. Create an agent with knowledge
|
||||
sales_agent = Agent(
|
||||
role="Sales Representative",
|
||||
goal="Accurately answer customer questions about products",
|
||||
backstory="Expert in product features and customer service",
|
||||
knowledge_sources=[product_info] # Attach knowledge to agent
|
||||
# Create an LLM with a temperature of 0 to ensure deterministic outputs
|
||||
llm = LLM(model="gpt-4o-mini", temperature=0)
|
||||
|
||||
# Create an agent with the knowledge store
|
||||
agent = Agent(
|
||||
role="About User",
|
||||
goal="You know everything about the user.",
|
||||
backstory="""You are a master at understanding people and their preferences.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
llm=llm,
|
||||
)
|
||||
task = Task(
|
||||
description="Answer the following questions about the user: {question}",
|
||||
expected_output="An answer to the question.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# 3. Create a task
|
||||
answer_task = Task(
|
||||
description="Answer: What colors is the X1000 available in and how much does it cost?",
|
||||
agent=sales_agent
|
||||
)
|
||||
|
||||
# 4. Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[sales_agent],
|
||||
tasks=[answer_task]
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
knowledge_sources=[string_source], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
|
||||
```
|
||||
|
||||
|
||||
Here's another example with the `CrewDoclingSource`
|
||||
```python Code
|
||||
from crewai import LLM, Agent, Crew, Process, Task
|
||||
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
|
||||
|
||||
# Create a knowledge source
|
||||
content_source = CrewDoclingSource(
|
||||
file_paths=[
|
||||
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking",
|
||||
"https://lilianweng.github.io/posts/2024-07-07-hallucination",
|
||||
],
|
||||
)
|
||||
|
||||
# Create an LLM with a temperature of 0 to ensure deterministic outputs
|
||||
llm = LLM(model="gpt-4o-mini", temperature=0)
|
||||
|
||||
# Create an agent with the knowledge store
|
||||
agent = Agent(
|
||||
role="About papers",
|
||||
goal="You know everything about the papers.",
|
||||
backstory="""You are a master at understanding papers and their content.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
llm=llm,
|
||||
)
|
||||
task = Task(
|
||||
description="Answer the following questions about the papers: {question}",
|
||||
expected_output="An answer to the question.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
knowledge_sources=[
|
||||
content_source
|
||||
], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
|
||||
)
|
||||
|
||||
result = crew.kickoff(
|
||||
inputs={
|
||||
"question": "What is the reward hacking paper about? Be sure to provide sources."
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Knowledge Configuration
|
||||
|
||||
### Collection Names
|
||||
|
||||
Knowledge sources are organized into collections for better management:
|
||||
|
||||
```python
|
||||
# Create knowledge sources with specific collections
|
||||
tech_specs = StringKnowledgeSource(
|
||||
content="Technical specifications...",
|
||||
collection_name="product_tech_specs"
|
||||
)
|
||||
|
||||
pricing_info = StringKnowledgeSource(
|
||||
content="Pricing information...",
|
||||
collection_name="product_pricing"
|
||||
)
|
||||
```
|
||||
|
||||
### Metadata and Filtering
|
||||
|
||||
Add metadata to organize and filter knowledge:
|
||||
|
||||
```python
|
||||
knowledge_source = StringKnowledgeSource(
|
||||
content="Product details...",
|
||||
metadata={
|
||||
"category": "electronics",
|
||||
"product_line": "premium",
|
||||
"last_updated": "2024-03"
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Chunking Configuration
|
||||
|
||||
Control how your content is split for processing:
|
||||
Control how content is split for processing by setting the chunk size and overlap.
|
||||
|
||||
```python
|
||||
knowledge_source = PDFKnowledgeSource(
|
||||
file_path="product_manual.pdf",
|
||||
chunk_size=2000, # Characters per chunk
|
||||
chunk_overlap=200 # Overlap between chunks
|
||||
```python Code
|
||||
knowledge_source = StringKnowledgeSource(
|
||||
content="Long content...",
|
||||
chunk_size=4000, # Characters per chunk (default)
|
||||
chunk_overlap=200 # Overlap between chunks (default)
|
||||
)
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
## Embedder Configuration
|
||||
|
||||
### Custom Knowledge Sources
|
||||
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
|
||||
|
||||
Create your own knowledge source by extending the base class:
|
||||
|
||||
```python
|
||||
from crewai.knowledge.source import BaseKnowledgeSource
|
||||
|
||||
class APIKnowledgeSource(BaseKnowledgeSource):
|
||||
def __init__(self, api_endpoint: str, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.api_endpoint = api_endpoint
|
||||
|
||||
def load_content(self):
|
||||
# Implement API data fetching
|
||||
response = requests.get(self.api_endpoint)
|
||||
return response.json()
|
||||
|
||||
def add(self):
|
||||
content = self.load_content()
|
||||
# Process and store content
|
||||
self.save_documents({"source": "api"})
|
||||
```python Code
|
||||
...
|
||||
string_source = StringKnowledgeSource(
|
||||
content="Users name is John. He is 30 years old and lives in San Francisco.",
|
||||
)
|
||||
crew = Crew(
|
||||
...
|
||||
knowledge_sources=[string_source],
|
||||
embedder={
|
||||
"provider": "openai",
|
||||
"config": {"model": "text-embedding-3-small"},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
### Embedder Configuration
|
||||
## Clearing Knowledge
|
||||
|
||||
Customize the embedding process:
|
||||
If you need to clear the knowledge stored in CrewAI, you can use the `crewai reset-memories` command with the `--knowledge` option.
|
||||
|
||||
```bash Command
|
||||
crewai reset-memories --knowledge
|
||||
```
|
||||
|
||||
This is useful when you've updated your knowledge sources and want to ensure that the agents are using the most recent information.
|
||||
|
||||
## Agent-Specific Knowledge
|
||||
|
||||
While knowledge can be provided at the crew level using `crew.knowledge_sources`, individual agents can also have their own knowledge sources using the `knowledge_sources` parameter:
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
|
||||
# Create agent-specific knowledge about a product
|
||||
product_specs = StringKnowledgeSource(
|
||||
content="""The XPS 13 laptop features:
|
||||
- 13.4-inch 4K display
|
||||
- Intel Core i7 processor
|
||||
- 16GB RAM
|
||||
- 512GB SSD storage
|
||||
- 12-hour battery life""",
|
||||
metadata={"category": "product_specs"}
|
||||
)
|
||||
|
||||
# Create a support agent with product knowledge
|
||||
support_agent = Agent(
|
||||
role="Technical Support Specialist",
|
||||
goal="Provide accurate product information and support.",
|
||||
backstory="You are an expert on our laptop products and specifications.",
|
||||
knowledge_sources=[product_specs] # Agent-specific knowledge
|
||||
)
|
||||
|
||||
# Create a task that requires product knowledge
|
||||
support_task = Task(
|
||||
description="Answer this customer question: {question}",
|
||||
agent=support_agent
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[support_agent],
|
||||
tasks=[support_task]
|
||||
)
|
||||
|
||||
# Get answer about the laptop's specifications
|
||||
result = crew.kickoff(
|
||||
inputs={"question": "What is the storage capacity of the XPS 13?"}
|
||||
)
|
||||
```
|
||||
|
||||
<Info>
|
||||
Benefits of agent-specific knowledge:
|
||||
- Give agents specialized information for their roles
|
||||
- Maintain separation of concerns between agents
|
||||
- Combine with crew-level knowledge for layered information access
|
||||
</Info>
|
||||
|
||||
## Custom Knowledge Sources
|
||||
|
||||
CrewAI allows you to create custom knowledge sources for any type of data by extending the `BaseKnowledgeSource` class. Let's create a practical example that fetches and processes space news articles.
|
||||
|
||||
#### Space News Knowledge Source Example
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew, Process, LLM
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
import requests
|
||||
from datetime import datetime
|
||||
from typing import Dict, Any
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
|
||||
"""Knowledge source that fetches data from Space News API."""
|
||||
|
||||
api_endpoint: str = Field(description="API endpoint URL")
|
||||
limit: int = Field(default=10, description="Number of articles to fetch")
|
||||
|
||||
def load_content(self) -> Dict[Any, str]:
|
||||
"""Fetch and format space news articles."""
|
||||
try:
|
||||
response = requests.get(
|
||||
f"{self.api_endpoint}?limit={self.limit}"
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
data = response.json()
|
||||
articles = data.get('results', [])
|
||||
|
||||
formatted_data = self._format_articles(articles)
|
||||
return {self.api_endpoint: formatted_data}
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to fetch space news: {str(e)}")
|
||||
|
||||
def _format_articles(self, articles: list) -> str:
|
||||
"""Format articles into readable text."""
|
||||
formatted = "Space News Articles:\n\n"
|
||||
for article in articles:
|
||||
formatted += f"""
|
||||
Title: {article['title']}
|
||||
Published: {article['published_at']}
|
||||
Summary: {article['summary']}
|
||||
News Site: {article['news_site']}
|
||||
URL: {article['url']}
|
||||
-------------------"""
|
||||
return formatted
|
||||
|
||||
def add(self) -> None:
|
||||
"""Process and store the articles."""
|
||||
content = self.load_content()
|
||||
for _, text in content.items():
|
||||
chunks = self._chunk_text(text)
|
||||
self.chunks.extend(chunks)
|
||||
|
||||
self._save_documents()
|
||||
|
||||
# Create knowledge source
|
||||
recent_news = SpaceNewsKnowledgeSource(
|
||||
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles",
|
||||
limit=10,
|
||||
)
|
||||
|
||||
# Create specialized agent
|
||||
space_analyst = Agent(
|
||||
role="Space News Analyst",
|
||||
goal="Answer questions about space news accurately and comprehensively",
|
||||
backstory="""You are a space industry analyst with expertise in space exploration,
|
||||
satellite technology, and space industry trends. You excel at answering questions
|
||||
about space news and providing detailed, accurate information.""",
|
||||
knowledge_sources=[recent_news],
|
||||
llm=LLM(model="gpt-4", temperature=0.0)
|
||||
)
|
||||
|
||||
# Create task that handles user questions
|
||||
analysis_task = Task(
|
||||
description="Answer this question about space news: {user_question}",
|
||||
expected_output="A detailed answer based on the recent space news articles",
|
||||
agent=space_analyst
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[space_analyst],
|
||||
tasks=[analysis_task],
|
||||
verbose=True,
|
||||
process=Process.sequential
|
||||
)
|
||||
|
||||
# Example usage
|
||||
result = crew.kickoff(
|
||||
inputs={"user_question": "What are the latest developments in space exploration?"}
|
||||
)
|
||||
```
|
||||
|
||||
```output Output
|
||||
# Agent: Space News Analyst
|
||||
## Task: Answer this question about space news: What are the latest developments in space exploration?
|
||||
|
||||
|
||||
# Agent: Space News Analyst
|
||||
## Final Answer:
|
||||
The latest developments in space exploration, based on recent space news articles, include the following:
|
||||
|
||||
1. SpaceX has received the final regulatory approvals to proceed with the second integrated Starship/Super Heavy launch, scheduled for as soon as the morning of Nov. 17, 2023. This is a significant step in SpaceX's ambitious plans for space exploration and colonization. [Source: SpaceNews](https://spacenews.com/starship-cleared-for-nov-17-launch/)
|
||||
|
||||
2. SpaceX has also informed the US Federal Communications Commission (FCC) that it plans to begin launching its first next-generation Starlink Gen2 satellites. This represents a major upgrade to the Starlink satellite internet service, which aims to provide high-speed internet access worldwide. [Source: Teslarati](https://www.teslarati.com/spacex-first-starlink-gen2-satellite-launch-2022/)
|
||||
|
||||
3. AI startup Synthetaic has raised $15 million in Series B funding. The company uses artificial intelligence to analyze data from space and air sensors, which could have significant applications in space exploration and satellite technology. [Source: SpaceNews](https://spacenews.com/ai-startup-synthetaic-raises-15-million-in-series-b-funding/)
|
||||
|
||||
4. The Space Force has formally established a unit within the U.S. Indo-Pacific Command, marking a permanent presence in the Indo-Pacific region. This could have significant implications for space security and geopolitics. [Source: SpaceNews](https://spacenews.com/space-force-establishes-permanent-presence-in-indo-pacific-region/)
|
||||
|
||||
5. Slingshot Aerospace, a space tracking and data analytics company, is expanding its network of ground-based optical telescopes to increase coverage of low Earth orbit. This could improve our ability to track and analyze objects in low Earth orbit, including satellites and space debris. [Source: SpaceNews](https://spacenews.com/slingshots-space-tracking-network-to-extend-coverage-of-low-earth-orbit/)
|
||||
|
||||
6. The National Natural Science Foundation of China has outlined a five-year project for researchers to study the assembly of ultra-large spacecraft. This could lead to significant advancements in spacecraft technology and space exploration capabilities. [Source: SpaceNews](https://spacenews.com/china-researching-challenges-of-kilometer-scale-ultra-large-spacecraft/)
|
||||
|
||||
7. The Center for AEroSpace Autonomy Research (CAESAR) at Stanford University is focusing on spacecraft autonomy. The center held a kickoff event on May 22, 2024, to highlight the industry, academia, and government collaboration it seeks to foster. This could lead to significant advancements in autonomous spacecraft technology. [Source: SpaceNews](https://spacenews.com/stanford-center-focuses-on-spacecraft-autonomy/)
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
#### Key Components Explained
|
||||
|
||||
1. **Custom Knowledge Source (`SpaceNewsKnowledgeSource`)**:
|
||||
|
||||
- Extends `BaseKnowledgeSource` for integration with CrewAI
|
||||
- Configurable API endpoint and article limit
|
||||
- Implements three key methods:
|
||||
- `load_content()`: Fetches articles from the API
|
||||
- `_format_articles()`: Structures the articles into readable text
|
||||
- `add()`: Processes and stores the content
|
||||
|
||||
2. **Agent Configuration**:
|
||||
|
||||
- Specialized role as a Space News Analyst
|
||||
- Uses the knowledge source to access space news
|
||||
|
||||
3. **Task Setup**:
|
||||
|
||||
- Takes a user question as input through `{user_question}`
|
||||
- Designed to provide detailed answers based on the knowledge source
|
||||
|
||||
4. **Crew Orchestration**:
|
||||
- Manages the workflow between agent and task
|
||||
- Handles input/output through the kickoff method
|
||||
|
||||
This example demonstrates how to:
|
||||
|
||||
- Create a custom knowledge source that fetches real-time data
|
||||
- Process and format external data for AI consumption
|
||||
- Use the knowledge source to answer specific user questions
|
||||
- Integrate everything seamlessly with CrewAI's agent system
|
||||
|
||||
#### About the Spaceflight News API
|
||||
|
||||
The example uses the [Spaceflight News API](https://api.spaceflightnewsapi.net/v4/docs/), which:
|
||||
|
||||
- Provides free access to space-related news articles
|
||||
- Requires no authentication
|
||||
- Returns structured data about space news
|
||||
- Supports pagination and filtering
|
||||
|
||||
You can customize the API query by modifying the endpoint URL:
|
||||
|
||||
```python
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
knowledge_sources=[source],
|
||||
embedder_config={
|
||||
"model": "BAAI/bge-small-en-v1.5",
|
||||
"normalize": True,
|
||||
"max_length": 512
|
||||
}
|
||||
# Fetch more articles
|
||||
recent_news = SpaceNewsKnowledgeSource(
|
||||
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles",
|
||||
limit=20, # Increase the number of articles
|
||||
)
|
||||
|
||||
# Add search parameters
|
||||
recent_news = SpaceNewsKnowledgeSource(
|
||||
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles?search=NASA", # Search for NASA news
|
||||
limit=10,
|
||||
)
|
||||
```
|
||||
|
||||
@@ -168,43 +407,14 @@ crew = Crew(
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="Content Organization">
|
||||
- Use meaningful collection names
|
||||
- Add detailed metadata for filtering
|
||||
- Keep chunk sizes appropriate for your content
|
||||
- Keep chunk sizes appropriate for your content type
|
||||
- Consider content overlap for context preservation
|
||||
- Organize related information into separate knowledge sources
|
||||
</Accordion>
|
||||
|
||||
|
||||
<Accordion title="Performance Tips">
|
||||
- Use smaller chunk sizes for precise retrieval
|
||||
- Implement metadata filtering for faster searches
|
||||
- Choose appropriate embedding models for your use case
|
||||
- Cache frequently accessed knowledge
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Error Handling">
|
||||
- Validate knowledge source content
|
||||
- Handle missing or corrupted files
|
||||
- Monitor embedding generation
|
||||
- Implement fallback options
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## Common Issues and Solutions
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="Content Not Found">
|
||||
If agents can't find relevant information:
|
||||
- Check chunk sizes
|
||||
- Verify knowledge source loading
|
||||
- Review metadata filters
|
||||
- Test with simpler queries first
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Performance Issues">
|
||||
If knowledge retrieval is slow:
|
||||
- Reduce chunk sizes
|
||||
- Optimize metadata filtering
|
||||
- Consider using a lighter embedding model
|
||||
- Cache frequently accessed content
|
||||
- Adjust chunk sizes based on content complexity
|
||||
- Configure appropriate embedding models
|
||||
- Consider using local embedding providers for faster processing
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
@@ -29,7 +29,7 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
|
||||
|
||||
## Available Models and Their Capabilities
|
||||
|
||||
Here's a detailed breakdown of supported models and their capabilities:
|
||||
Here's a detailed breakdown of supported models and their capabilities, you can compare performance at [lmarena.ai](https://lmarena.ai/?leaderboard) and [artificialanalysis.ai](https://artificialanalysis.ai/):
|
||||
|
||||
<Tabs>
|
||||
<Tab title="OpenAI">
|
||||
@@ -43,13 +43,104 @@ Here's a detailed breakdown of supported models and their capabilities:
|
||||
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
|
||||
</Note>
|
||||
</Tab>
|
||||
<Tab title="Nvidia NIM">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| nvidia/mistral-nemo-minitron-8b-8k-instruct | 8,192 tokens | State-of-the-art small language model delivering superior accuracy for chatbot, virtual assistants, and content generation. |
|
||||
| nvidia/nemotron-4-mini-hindi-4b-instruct| 4,096 tokens | A bilingual Hindi-English SLM for on-device inference, tailored specifically for Hindi Language. |
|
||||
| "nvidia/llama-3.1-nemotron-70b-instruct | 128k tokens | Llama-3.1-Nemotron-70B-Instruct is a large language model customized by NVIDIA in order to improve the helpfulness of LLM generated responses. |
|
||||
| nvidia/llama3-chatqa-1.5-8b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
|
||||
| nvidia/llama3-chatqa-1.5-70b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
|
||||
| nvidia/vila | 128k tokens | Multi-modal vision-language model that understands text/img/video and creates informative responses |
|
||||
| nvidia/neva-22| 4,096 tokens | Multi-modal vision-language model that understands text/images and generates informative responses |
|
||||
| nvidia/nemotron-mini-4b-instruct | 8,192 tokens | General-purpose tasks |
|
||||
| nvidia/usdcode-llama3-70b-instruct | 128k tokens | State-of-the-art LLM that answers OpenUSD knowledge queries and generates USD-Python code. |
|
||||
| nvidia/nemotron-4-340b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| meta/codellama-70b | 100k tokens | LLM capable of generating code from natural language and vice versa. |
|
||||
| meta/llama2-70b | 4,096 tokens | Cutting-edge large language AI model capable of generating text and code in response to prompts. |
|
||||
| meta/llama3-8b-instruct | 8,192 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama3-70b-instruct | 8,192 tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| meta/llama-3.1-8b-instruct | 128k tokens | Advanced state-of-the-art model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| meta/llama-3.1-405b-instruct | 128k tokens | Advanced LLM for synthetic data generation, distillation, and inference for chatbots, coding, and domain-specific tasks. |
|
||||
| meta/llama-3.2-1b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-3b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-11b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-90b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| google/gemma-7b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/codegemma-7b | 8,192 tokens | Cutting-edge model built on Google's Gemma-7B specialized for code generation and code completion. |
|
||||
| google/codegemma-1.1-7b | 8,192 tokens | Advanced programming model for code generation, completion, reasoning, and instruction following. |
|
||||
| google/recurrentgemma-2b | 8,192 tokens | Novel recurrent architecture based language model for faster inference when generating long sequences. |
|
||||
| google/gemma-2-9b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2-27b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2-2b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/deplot | 512 tokens | One-shot visual language understanding model that translates images of plots into tables. |
|
||||
| google/paligemma | 8,192 tokens | Vision language model adept at comprehending text and visual inputs to produce informative responses. |
|
||||
| mistralai/mistral-7b-instruct-v0.2 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
|
||||
| mistralai/mixtral-8x7b-instruct-v0.1 | 8,192 tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
|
||||
| mistralai/mistral-large | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| mistralai/mixtral-8x22b-instruct-v0.1 | 8,192 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| mistralai/mistral-7b-instruct-v0.3 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
|
||||
| nv-mistralai/mistral-nemo-12b-instruct | 128k tokens | Most advanced language model for reasoning, code, multilingual tasks; runs on a single GPU. |
|
||||
| mistralai/mamba-codestral-7b-v0.1 | 256k tokens | Model for writing and interacting with code across a wide range of programming languages and tasks. |
|
||||
| microsoft/phi-3-mini-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-mini-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-small-8k-instruct | 8,192 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-small-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-medium-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-medium-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3.5-mini-instruct | 128K tokens | Lightweight multilingual LLM powering AI applications in latency bound, memory/compute constrained environments |
|
||||
| microsoft/phi-3.5-moe-instruct | 128K tokens | Advanced LLM based on Mixture of Experts architecure to deliver compute efficient content generation |
|
||||
| microsoft/kosmos-2 | 1,024 tokens | Groundbreaking multimodal model designed to understand and reason about visual elements in images. |
|
||||
| microsoft/phi-3-vision-128k-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
|
||||
| microsoft/phi-3.5-vision-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
|
||||
| databricks/dbrx-instruct | 12k tokens | A general-purpose LLM with state-of-the-art performance in language understanding, coding, and RAG. |
|
||||
| snowflake/arctic | 1,024 tokens | Delivers high efficiency inference for enterprise applications focused on SQL generation and coding. |
|
||||
| aisingapore/sea-lion-7b-instruct | 4,096 tokens | LLM to represent and serve the linguistic and cultural diversity of Southeast Asia |
|
||||
| ibm/granite-8b-code-instruct | 4,096 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
|
||||
| ibm/granite-34b-code-instruct | 8,192 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
|
||||
| ibm/granite-3.0-8b-instruct | 4,096 tokens | Advanced Small Language Model supporting RAG, summarization, classification, code, and agentic AI |
|
||||
| ibm/granite-3.0-3b-a800m-instruct | 4,096 tokens | Highly efficient Mixture of Experts model for RAG, summarization, entity extraction, and classification |
|
||||
| mediatek/breeze-7b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| upstage/solar-10.7b-instruct | 4,096 tokens | Excels in NLP tasks, particularly in instruction-following, reasoning, and mathematics. |
|
||||
| writer/palmyra-med-70b-32k | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
|
||||
| writer/palmyra-med-70b | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
|
||||
| writer/palmyra-fin-70b-32k | 32k tokens | Specialized LLM for financial analysis, reporting, and data processing |
|
||||
| 01-ai/yi-large | 32k tokens | Powerful model trained on English and Chinese for diverse tasks including chatbot and creative writing. |
|
||||
| deepseek-ai/deepseek-coder-6.7b-instruct | 2k tokens | Powerful coding model offering advanced capabilities in code generation, completion, and infilling |
|
||||
| rakuten/rakutenai-7b-instruct | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| rakuten/rakutenai-7b-chat | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| baichuan-inc/baichuan2-13b-chat | 4,096 tokens | Support Chinese and English chat, coding, math, instruction following, solving quizzes |
|
||||
|
||||
<Note>
|
||||
NVIDIA's NIM support for models is expanding continuously! For the most up-to-date list of available models, please visit build.nvidia.com.
|
||||
</Note>
|
||||
</Tab>
|
||||
<Tab title="Gemini">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
|
||||
<Tip>
|
||||
Google's Gemini models are all multimodal, supporting audio, images, video and text, supporting context caching, json schema, function calling, etc.
|
||||
|
||||
These models are available via API_KEY from
|
||||
[The Gemini API](https://ai.google.dev/gemini-api/docs) and also from
|
||||
[Google Cloud Vertex](https://cloud.google.com/vertex-ai/generative-ai/docs/migrate/migrate-google-ai) as part of the
|
||||
[Model Garden](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/explore-models).
|
||||
</Tip>
|
||||
</Tab>
|
||||
<Tab title="Groq">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| Llama 3.1 70B/8B | 131,072 tokens | High-performance, large context tasks |
|
||||
| Llama 3.2 Series | 8,192 tokens | General-purpose tasks |
|
||||
| Mixtral 8x7B | 32,768 tokens | Balanced performance and context |
|
||||
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
|
||||
|
||||
<Tip>
|
||||
Groq is known for its fast inference speeds, making it suitable for real-time applications.
|
||||
@@ -60,7 +151,7 @@ Here's a detailed breakdown of supported models and their capabilities:
|
||||
|----------|---------------|--------------|
|
||||
| Deepseek Chat | 128,000 tokens | Specialized in technical discussions |
|
||||
| Claude 3 | Up to 200K tokens | Strong reasoning, code understanding |
|
||||
| Gemini | Varies by model | Multimodal capabilities |
|
||||
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
|
||||
|
||||
<Info>
|
||||
Provider selection should consider factors like:
|
||||
@@ -128,10 +219,10 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
|
||||
# llm: anthropic/claude-2.1
|
||||
# llm: anthropic/claude-2.0
|
||||
|
||||
# Google Models - Good for general tasks
|
||||
# llm: gemini/gemini-pro
|
||||
# Google Models - Strong reasoning, large cachable context window, multimodal
|
||||
# llm: gemini/gemini-1.5-pro-latest
|
||||
# llm: gemini/gemini-1.0-pro-latest
|
||||
# llm: gemini/gemini-1.5-flash-latest
|
||||
# llm: gemini/gemini-1.5-flash-8b-latest
|
||||
|
||||
# AWS Bedrock Models - Enterprise-grade
|
||||
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
@@ -350,13 +441,18 @@ Learn how to get the most out of your LLM configuration:
|
||||
|
||||
<Accordion title="Google">
|
||||
```python Code
|
||||
# Option 1. Gemini accessed with an API key.
|
||||
# https://ai.google.dev/gemini-api/docs/api-key
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
|
||||
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="gemini/gemini-pro",
|
||||
model="gemini/gemini-1.5-pro-latest",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
@@ -412,6 +508,20 @@ Learn how to get the most out of your LLM configuration:
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Nvidia NIM">
|
||||
```python Code
|
||||
NVIDIA_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="nvidia_nim/meta/llama3-70b-instruct",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Groq">
|
||||
```python Code
|
||||
GROQ_API_KEY=<your-api-key>
|
||||
@@ -502,20 +612,6 @@ Learn how to get the most out of your LLM configuration:
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Nvidia NIM">
|
||||
```python Code
|
||||
NVIDIA_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="nvidia_nim/meta/llama3-70b-instruct",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="SambaNova">
|
||||
```python Code
|
||||
SAMBANOVA_API_KEY=<your-api-key>
|
||||
|
||||
@@ -6,7 +6,7 @@ icon: list-check
|
||||
|
||||
## Overview of a Task
|
||||
|
||||
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
|
||||
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
|
||||
|
||||
Tasks provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
|
||||
|
||||
@@ -263,6 +263,307 @@ analysis_task = Task(
|
||||
)
|
||||
```
|
||||
|
||||
## Task Guardrails
|
||||
|
||||
Task guardrails provide a way to validate and transform task outputs before they
|
||||
are passed to the next task. This feature helps ensure data quality and provides
|
||||
efeedback to agents when their output doesn't meet specific criteria.
|
||||
|
||||
### Using Task Guardrails
|
||||
|
||||
To add a guardrail to a task, provide a validation function through the `guardrail` parameter:
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union, Dict, Any
|
||||
|
||||
def validate_blog_content(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
"""Validate blog content meets requirements."""
|
||||
try:
|
||||
# Check word count
|
||||
word_count = len(result.split())
|
||||
if word_count > 200:
|
||||
return (False, {
|
||||
"error": "Blog content exceeds 200 words",
|
||||
"code": "WORD_COUNT_ERROR",
|
||||
"context": {"word_count": word_count}
|
||||
})
|
||||
|
||||
# Additional validation logic here
|
||||
return (True, result.strip())
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": "Unexpected error during validation",
|
||||
"code": "SYSTEM_ERROR"
|
||||
})
|
||||
|
||||
blog_task = Task(
|
||||
description="Write a blog post about AI",
|
||||
expected_output="A blog post under 200 words",
|
||||
agent=blog_agent,
|
||||
guardrail=validate_blog_content # Add the guardrail function
|
||||
)
|
||||
```
|
||||
|
||||
### Guardrail Function Requirements
|
||||
|
||||
1. **Function Signature**:
|
||||
- Must accept exactly one parameter (the task output)
|
||||
- Should return a tuple of `(bool, Any)`
|
||||
- Type hints are recommended but optional
|
||||
|
||||
2. **Return Values**:
|
||||
- Success: Return `(True, validated_result)`
|
||||
- Failure: Return `(False, error_details)`
|
||||
|
||||
### Error Handling Best Practices
|
||||
|
||||
1. **Structured Error Responses**:
|
||||
```python Code
|
||||
def validate_with_context(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
try:
|
||||
# Main validation logic
|
||||
validated_data = perform_validation(result)
|
||||
return (True, validated_data)
|
||||
except ValidationError as e:
|
||||
return (False, {
|
||||
"error": str(e),
|
||||
"code": "VALIDATION_ERROR",
|
||||
"context": {"input": result}
|
||||
})
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": "Unexpected error",
|
||||
"code": "SYSTEM_ERROR"
|
||||
})
|
||||
```
|
||||
|
||||
2. **Error Categories**:
|
||||
- Use specific error codes
|
||||
- Include relevant context
|
||||
- Provide actionable feedback
|
||||
|
||||
3. **Validation Chain**:
|
||||
```python Code
|
||||
from typing import Any, Dict, List, Tuple, Union
|
||||
|
||||
def complex_validation(result: str) -> Tuple[bool, Union[str, Dict[str, Any]]]:
|
||||
"""Chain multiple validation steps."""
|
||||
# Step 1: Basic validation
|
||||
if not result:
|
||||
return (False, {"error": "Empty result", "code": "EMPTY_INPUT"})
|
||||
|
||||
# Step 2: Content validation
|
||||
try:
|
||||
validated = validate_content(result)
|
||||
if not validated:
|
||||
return (False, {"error": "Invalid content", "code": "CONTENT_ERROR"})
|
||||
|
||||
# Step 3: Format validation
|
||||
formatted = format_output(validated)
|
||||
return (True, formatted)
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": str(e),
|
||||
"code": "VALIDATION_ERROR",
|
||||
"context": {"step": "content_validation"}
|
||||
})
|
||||
```
|
||||
|
||||
### Handling Guardrail Results
|
||||
|
||||
When a guardrail returns `(False, error)`:
|
||||
1. The error is sent back to the agent
|
||||
2. The agent attempts to fix the issue
|
||||
3. The process repeats until:
|
||||
- The guardrail returns `(True, result)`
|
||||
- Maximum retries are reached
|
||||
|
||||
Example with retry handling:
|
||||
```python Code
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
def validate_json_output(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
"""Validate and parse JSON output."""
|
||||
try:
|
||||
# Try to parse as JSON
|
||||
data = json.loads(result)
|
||||
return (True, data)
|
||||
except json.JSONDecodeError as e:
|
||||
return (False, {
|
||||
"error": "Invalid JSON format",
|
||||
"code": "JSON_ERROR",
|
||||
"context": {"line": e.lineno, "column": e.colno}
|
||||
})
|
||||
|
||||
task = Task(
|
||||
description="Generate a JSON report",
|
||||
expected_output="A valid JSON object",
|
||||
agent=analyst,
|
||||
guardrail=validate_json_output,
|
||||
max_retries=3 # Limit retry attempts
|
||||
)
|
||||
```
|
||||
|
||||
## Getting Structured Consistent Outputs from Tasks
|
||||
|
||||
<Note>
|
||||
It's also important to note that the output of the final task of a crew becomes the final output of the actual crew itself.
|
||||
</Note>
|
||||
|
||||
### Using `output_pydantic`
|
||||
The `output_pydantic` property allows you to define a Pydantic model that the task output should conform to. This ensures that the output is not only structured but also validated according to the Pydantic model.
|
||||
|
||||
Here’s an example demonstrating how to use output_pydantic:
|
||||
|
||||
```python Code
|
||||
import json
|
||||
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class Blog(BaseModel):
|
||||
title: str
|
||||
content: str
|
||||
|
||||
|
||||
blog_agent = Agent(
|
||||
role="Blog Content Generator Agent",
|
||||
goal="Generate a blog title and content",
|
||||
backstory="""You are an expert content creator, skilled in crafting engaging and informative blog posts.""",
|
||||
verbose=False,
|
||||
allow_delegation=False,
|
||||
llm="gpt-4o",
|
||||
)
|
||||
|
||||
task1 = Task(
|
||||
description="""Create a blog title and content on a given topic. Make sure the content is under 200 words.""",
|
||||
expected_output="A compelling blog title and well-written content.",
|
||||
agent=blog_agent,
|
||||
output_pydantic=Blog,
|
||||
)
|
||||
|
||||
# Instantiate your crew with a sequential process
|
||||
crew = Crew(
|
||||
agents=[blog_agent],
|
||||
tasks=[task1],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
# Option 1: Accessing Properties Using Dictionary-Style Indexing
|
||||
print("Accessing Properties - Option 1")
|
||||
title = result["title"]
|
||||
content = result["content"]
|
||||
print("Title:", title)
|
||||
print("Content:", content)
|
||||
|
||||
# Option 2: Accessing Properties Directly from the Pydantic Model
|
||||
print("Accessing Properties - Option 2")
|
||||
title = result.pydantic.title
|
||||
content = result.pydantic.content
|
||||
print("Title:", title)
|
||||
print("Content:", content)
|
||||
|
||||
# Option 3: Accessing Properties Using the to_dict() Method
|
||||
print("Accessing Properties - Option 3")
|
||||
output_dict = result.to_dict()
|
||||
title = output_dict["title"]
|
||||
content = output_dict["content"]
|
||||
print("Title:", title)
|
||||
print("Content:", content)
|
||||
|
||||
# Option 4: Printing the Entire Blog Object
|
||||
print("Accessing Properties - Option 5")
|
||||
print("Blog:", result)
|
||||
|
||||
```
|
||||
In this example:
|
||||
* A Pydantic model Blog is defined with title and content fields.
|
||||
* The task task1 uses the output_pydantic property to specify that its output should conform to the Blog model.
|
||||
* After executing the crew, you can access the structured output in multiple ways as shown.
|
||||
|
||||
#### Explanation of Accessing the Output
|
||||
1. Dictionary-Style Indexing: You can directly access the fields using result["field_name"]. This works because the CrewOutput class implements the __getitem__ method.
|
||||
2. Directly from Pydantic Model: Access the attributes directly from the result.pydantic object.
|
||||
3. Using to_dict() Method: Convert the output to a dictionary and access the fields.
|
||||
4. Printing the Entire Object: Simply print the result object to see the structured output.
|
||||
|
||||
### Using `output_json`
|
||||
The `output_json` property allows you to define the expected output in JSON format. This ensures that the task's output is a valid JSON structure that can be easily parsed and used in your application.
|
||||
|
||||
Here’s an example demonstrating how to use `output_json`:
|
||||
|
||||
```python Code
|
||||
import json
|
||||
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
# Define the Pydantic model for the blog
|
||||
class Blog(BaseModel):
|
||||
title: str
|
||||
content: str
|
||||
|
||||
|
||||
# Define the agent
|
||||
blog_agent = Agent(
|
||||
role="Blog Content Generator Agent",
|
||||
goal="Generate a blog title and content",
|
||||
backstory="""You are an expert content creator, skilled in crafting engaging and informative blog posts.""",
|
||||
verbose=False,
|
||||
allow_delegation=False,
|
||||
llm="gpt-4o",
|
||||
)
|
||||
|
||||
# Define the task with output_json set to the Blog model
|
||||
task1 = Task(
|
||||
description="""Create a blog title and content on a given topic. Make sure the content is under 200 words.""",
|
||||
expected_output="A JSON object with 'title' and 'content' fields.",
|
||||
agent=blog_agent,
|
||||
output_json=Blog,
|
||||
)
|
||||
|
||||
# Instantiate the crew with a sequential process
|
||||
crew = Crew(
|
||||
agents=[blog_agent],
|
||||
tasks=[task1],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
)
|
||||
|
||||
# Kickoff the crew to execute the task
|
||||
result = crew.kickoff()
|
||||
|
||||
# Option 1: Accessing Properties Using Dictionary-Style Indexing
|
||||
print("Accessing Properties - Option 1")
|
||||
title = result["title"]
|
||||
content = result["content"]
|
||||
print("Title:", title)
|
||||
print("Content:", content)
|
||||
|
||||
# Option 2: Printing the Entire Blog Object
|
||||
print("Accessing Properties - Option 2")
|
||||
print("Blog:", result)
|
||||
```
|
||||
|
||||
In this example:
|
||||
* A Pydantic model Blog is defined with title and content fields, which is used to specify the structure of the JSON output.
|
||||
* The task task1 uses the output_json property to indicate that it expects a JSON output conforming to the Blog model.
|
||||
* After executing the crew, you can access the structured JSON output in two ways as shown.
|
||||
|
||||
#### Explanation of Accessing the Output
|
||||
|
||||
1. Accessing Properties Using Dictionary-Style Indexing: You can access the fields directly using result["field_name"]. This is possible because the CrewOutput class implements the __getitem__ method, allowing you to treat the output like a dictionary. In this option, we're retrieving the title and content from the result.
|
||||
2. Printing the Entire Blog Object: By printing result, you get the string representation of the CrewOutput object. Since the __str__ method is implemented to return the JSON output, this will display the entire output as a formatted string representing the Blog object.
|
||||
|
||||
---
|
||||
|
||||
By using output_pydantic or output_json, you ensure that your tasks produce outputs in a consistent and structured format, making it easier to process and utilize the data within your application or across multiple tasks.
|
||||
|
||||
## Integrating Tools with Tasks
|
||||
|
||||
Leverage tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools) for enhanced task performance and agent interaction.
|
||||
@@ -447,6 +748,114 @@ While creating and executing tasks, certain validation mechanisms are in place t
|
||||
|
||||
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
|
||||
|
||||
## Task Guardrails
|
||||
|
||||
Task guardrails provide a powerful way to validate, transform, or filter task outputs before they are passed to the next task. Guardrails are optional functions that execute before the next task starts, allowing you to ensure that task outputs meet specific requirements or formats.
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union
|
||||
from crewai import Task
|
||||
|
||||
def validate_json_output(result: str) -> Tuple[bool, Union[dict, str]]:
|
||||
"""Validate that the output is valid JSON."""
|
||||
try:
|
||||
json_data = json.loads(result)
|
||||
return (True, json_data)
|
||||
except json.JSONDecodeError:
|
||||
return (False, "Output must be valid JSON")
|
||||
|
||||
task = Task(
|
||||
description="Generate JSON data",
|
||||
expected_output="Valid JSON object",
|
||||
guardrail=validate_json_output
|
||||
)
|
||||
```
|
||||
|
||||
### How Guardrails Work
|
||||
|
||||
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.
|
||||
2. **Execution Timing**: The guardrail function is executed before the next task starts, ensuring valid data flow between tasks.
|
||||
3. **Return Format**: Guardrails must return a tuple of `(success, data)`:
|
||||
- If `success` is `True`, `data` is the validated/transformed result
|
||||
- If `success` is `False`, `data` is the error message
|
||||
4. **Result Routing**:
|
||||
- On success (`True`), the result is automatically passed to the next task
|
||||
- On failure (`False`), the error is sent back to the agent to generate a new answer
|
||||
|
||||
### Common Use Cases
|
||||
|
||||
#### Data Format Validation
|
||||
```python Code
|
||||
def validate_email_format(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Ensure the output contains a valid email address."""
|
||||
import re
|
||||
email_pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
|
||||
if re.match(email_pattern, result.strip()):
|
||||
return (True, result.strip())
|
||||
return (False, "Output must be a valid email address")
|
||||
```
|
||||
|
||||
#### Content Filtering
|
||||
```python Code
|
||||
def filter_sensitive_info(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Remove or validate sensitive information."""
|
||||
sensitive_patterns = ['SSN:', 'password:', 'secret:']
|
||||
for pattern in sensitive_patterns:
|
||||
if pattern.lower() in result.lower():
|
||||
return (False, f"Output contains sensitive information ({pattern})")
|
||||
return (True, result)
|
||||
```
|
||||
|
||||
#### Data Transformation
|
||||
```python Code
|
||||
def normalize_phone_number(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Ensure phone numbers are in a consistent format."""
|
||||
import re
|
||||
digits = re.sub(r'\D', '', result)
|
||||
if len(digits) == 10:
|
||||
formatted = f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
|
||||
return (True, formatted)
|
||||
return (False, "Output must be a 10-digit phone number")
|
||||
```
|
||||
|
||||
### Advanced Features
|
||||
|
||||
#### Chaining Multiple Validations
|
||||
```python Code
|
||||
def chain_validations(*validators):
|
||||
"""Chain multiple validators together."""
|
||||
def combined_validator(result):
|
||||
for validator in validators:
|
||||
success, data = validator(result)
|
||||
if not success:
|
||||
return (False, data)
|
||||
result = data
|
||||
return (True, result)
|
||||
return combined_validator
|
||||
|
||||
# Usage
|
||||
task = Task(
|
||||
description="Get user contact info",
|
||||
expected_output="Email and phone",
|
||||
guardrail=chain_validations(
|
||||
validate_email_format,
|
||||
filter_sensitive_info
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
#### Custom Retry Logic
|
||||
```python Code
|
||||
task = Task(
|
||||
description="Generate data",
|
||||
expected_output="Valid data",
|
||||
guardrail=validate_data,
|
||||
max_retries=5 # Override default retry limit
|
||||
)
|
||||
```
|
||||
|
||||
## Creating Directories when Saving Files
|
||||
|
||||
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
|
||||
@@ -468,7 +877,7 @@ save_output_task = Task(
|
||||
|
||||
## Conclusion
|
||||
|
||||
Tasks are the driving force behind the actions of agents in CrewAI.
|
||||
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
|
||||
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
|
||||
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
Tasks are the driving force behind the actions of agents in CrewAI.
|
||||
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
|
||||
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
|
||||
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
|
||||
@@ -172,6 +172,48 @@ def my_tool(question: str) -> str:
|
||||
return "Result from your custom tool"
|
||||
```
|
||||
|
||||
### Structured Tools
|
||||
|
||||
The `StructuredTool` class wraps functions as tools, providing flexibility and validation while reducing boilerplate. It supports custom schemas and dynamic logic for seamless integration of complex functionalities.
|
||||
|
||||
#### Example:
|
||||
Using `StructuredTool.from_function`, you can wrap a function that interacts with an external API or system, providing a structured interface. This enables robust validation and consistent execution, making it easier to integrate complex functionalities into your applications as demonstrated in the following example:
|
||||
|
||||
```python
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Define the schema for the tool's input using Pydantic
|
||||
class APICallInput(BaseModel):
|
||||
endpoint: str
|
||||
parameters: dict
|
||||
|
||||
# Wrapper function to execute the API call
|
||||
def tool_wrapper(*args, **kwargs):
|
||||
# Here, you would typically call the API using the parameters
|
||||
# For demonstration, we'll return a placeholder string
|
||||
return f"Call the API at {kwargs['endpoint']} with parameters {kwargs['parameters']}"
|
||||
|
||||
# Create and return the structured tool
|
||||
def create_structured_tool():
|
||||
return CrewStructuredTool.from_function(
|
||||
name='Wrapper API',
|
||||
description="A tool to wrap API calls with structured input.",
|
||||
args_schema=APICallInput,
|
||||
func=tool_wrapper,
|
||||
)
|
||||
|
||||
# Example usage
|
||||
structured_tool = create_structured_tool()
|
||||
|
||||
# Execute the tool with structured input
|
||||
result = structured_tool._run(**{
|
||||
"endpoint": "https://example.com/api",
|
||||
"parameters": {"key1": "value1", "key2": "value2"}
|
||||
})
|
||||
print(result) # Output: Call the API at https://example.com/api with parameters {'key1': 'value1', 'key2': 'value2'}
|
||||
```
|
||||
|
||||
### Custom Caching Mechanism
|
||||
|
||||
<Tip>
|
||||
|
||||
211
docs/how-to/Portkey-Observability-and-Guardrails.md
Normal file
211
docs/how-to/Portkey-Observability-and-Guardrails.md
Normal file
@@ -0,0 +1,211 @@
|
||||
# Portkey Integration with CrewAI
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
|
||||
|
||||
|
||||
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
|
||||
|
||||
Portkey adds 4 core production capabilities to any CrewAI agent:
|
||||
1. Routing to **200+ LLMs**
|
||||
2. Making each LLM call more robust
|
||||
3. Full-stack tracing & cost, performance analytics
|
||||
4. Real-time guardrails to enforce behavior
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## Getting Started
|
||||
|
||||
1. **Install Required Packages:**
|
||||
|
||||
```bash
|
||||
pip install -qU crewai portkey-ai
|
||||
```
|
||||
|
||||
2. **Configure the LLM Client:**
|
||||
|
||||
To build CrewAI Agents with Portkey, you'll need two keys:
|
||||
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
|
||||
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
|
||||
|
||||
```python
|
||||
from crewai import LLM
|
||||
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
|
||||
|
||||
gpt_llm = LLM(
|
||||
model="gpt-4",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy", # We are using Virtual key
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
3. **Create and Run Your First Agent:**
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Define your agents with roles and goals
|
||||
coder = Agent(
|
||||
role='Software developer',
|
||||
goal='Write clear, concise code on demand',
|
||||
backstory='An expert coder with a keen eye for software trends.',
|
||||
llm=gpt_llm
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
|
||||
expected_output="A clear and concise HTML code",
|
||||
agent=coder
|
||||
)
|
||||
|
||||
# Instantiate your crew
|
||||
crew = Crew(
|
||||
agents=[coder],
|
||||
tasks=[task1],
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
|
||||
## Key Features
|
||||
|
||||
| Feature | Description |
|
||||
|---------|-------------|
|
||||
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
|
||||
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
|
||||
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
|
||||
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
|
||||
| 🚧 Security Controls | Set budget limits and implement role-based access control |
|
||||
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
|
||||
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
|
||||
|
||||
|
||||
## Production Features with Portkey Configs
|
||||
|
||||
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
|
||||
|
||||
<Frame>
|
||||
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
|
||||
</Frame>
|
||||
|
||||
|
||||
### 1. Use 250+ LLMs
|
||||
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
|
||||
|
||||
|
||||
Easily switch between different LLM providers:
|
||||
|
||||
```python
|
||||
# Anthropic Configuration
|
||||
anthropic_llm = LLM(
|
||||
model="claude-3-5-sonnet-latest",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy",
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
|
||||
trace_id="anthropic_agent"
|
||||
)
|
||||
)
|
||||
|
||||
# Azure OpenAI Configuration
|
||||
azure_llm = LLM(
|
||||
model="gpt-4",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy",
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
|
||||
trace_id="azure_agent"
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
### 2. Caching
|
||||
Improve response times and reduce costs with two powerful caching modes:
|
||||
- **Simple Cache**: Perfect for exact matches
|
||||
- **Semantic Cache**: Matches responses for requests that are semantically similar
|
||||
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
|
||||
|
||||
```py
|
||||
config = {
|
||||
"cache": {
|
||||
"mode": "semantic", # or "simple" for exact matching
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Production Reliability
|
||||
Portkey provides comprehensive reliability features:
|
||||
- **Automatic Retries**: Handle temporary failures gracefully
|
||||
- **Request Timeouts**: Prevent hanging operations
|
||||
- **Conditional Routing**: Route requests based on specific conditions
|
||||
- **Fallbacks**: Set up automatic provider failovers
|
||||
- **Load Balancing**: Distribute requests efficiently
|
||||
|
||||
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
|
||||
|
||||
|
||||
|
||||
### 4. Metrics
|
||||
|
||||
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
|
||||
|
||||
|
||||
- Cost per agent interaction
|
||||
- Response times and latency
|
||||
- Token usage and efficiency
|
||||
- Success/failure rates
|
||||
- Cache hit rates
|
||||
|
||||
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
|
||||
|
||||
### 5. Detailed Logging
|
||||
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
|
||||
|
||||
|
||||
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
|
||||
|
||||
<details>
|
||||
<summary><b>Traces</b></summary>
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>Logs</b></summary>
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
|
||||
</details>
|
||||
|
||||
### 6. Enterprise Security Features
|
||||
- Set budget limit and rate limts per Virtual Key (disposable API keys)
|
||||
- Implement role-based access control
|
||||
- Track system changes with audit logs
|
||||
- Configure data retention policies
|
||||
|
||||
|
||||
|
||||
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
|
||||
|
||||
## Resources
|
||||
|
||||
- [📘 Portkey Documentation](https://docs.portkey.ai)
|
||||
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
|
||||
- [🐦 Twitter](https://twitter.com/portkeyai)
|
||||
- [💬 Discord Community](https://discord.gg/DD7vgKK299)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -57,7 +57,7 @@ This feature is useful for debugging and understanding how agents interact with
|
||||
<Step title="Install AgentOps">
|
||||
Install AgentOps with:
|
||||
```bash
|
||||
pip install crewai[agentops]
|
||||
pip install 'crewai[agentops]'
|
||||
```
|
||||
or
|
||||
```bash
|
||||
|
||||
@@ -32,6 +32,7 @@ LiteLLM supports a wide range of providers, including but not limited to:
|
||||
- Cloudflare Workers AI
|
||||
- DeepInfra
|
||||
- Groq
|
||||
- [NVIDIA NIMs](https://docs.api.nvidia.com/nim/reference/models-1)
|
||||
- And many more!
|
||||
|
||||
For a complete and up-to-date list of supported providers, please refer to the [LiteLLM Providers documentation](https://docs.litellm.ai/docs/providers).
|
||||
|
||||
138
docs/how-to/multimodal-agents.mdx
Normal file
138
docs/how-to/multimodal-agents.mdx
Normal file
@@ -0,0 +1,138 @@
|
||||
---
|
||||
title: Using Multimodal Agents
|
||||
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
|
||||
icon: image
|
||||
---
|
||||
|
||||
# Using Multimodal Agents
|
||||
|
||||
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
|
||||
|
||||
## Enabling Multimodal Capabilities
|
||||
|
||||
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
|
||||
agent = Agent(
|
||||
role="Image Analyst",
|
||||
goal="Analyze and extract insights from images",
|
||||
backstory="An expert in visual content interpretation with years of experience in image analysis",
|
||||
multimodal=True # This enables multimodal capabilities
|
||||
)
|
||||
```
|
||||
|
||||
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
|
||||
|
||||
## Working with Images
|
||||
|
||||
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
|
||||
|
||||
Here's a complete example showing how to use a multimodal agent to analyze an image:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Create a multimodal agent
|
||||
image_analyst = Agent(
|
||||
role="Product Analyst",
|
||||
goal="Analyze product images and provide detailed descriptions",
|
||||
backstory="Expert in visual product analysis with deep knowledge of design and features",
|
||||
multimodal=True
|
||||
)
|
||||
|
||||
# Create a task for image analysis
|
||||
task = Task(
|
||||
description="Analyze the product image at https://example.com/product.jpg and provide a detailed description",
|
||||
agent=image_analyst
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[image_analyst],
|
||||
tasks=[task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Advanced Usage with Context
|
||||
|
||||
You can provide additional context or specific questions about the image when creating tasks for multimodal agents. The task description can include specific aspects you want the agent to focus on:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Create a multimodal agent for detailed analysis
|
||||
expert_analyst = Agent(
|
||||
role="Visual Quality Inspector",
|
||||
goal="Perform detailed quality analysis of product images",
|
||||
backstory="Senior quality control expert with expertise in visual inspection",
|
||||
multimodal=True # AddImageTool is automatically included
|
||||
)
|
||||
|
||||
# Create a task with specific analysis requirements
|
||||
inspection_task = Task(
|
||||
description="""
|
||||
Analyze the product image at https://example.com/product.jpg with focus on:
|
||||
1. Quality of materials
|
||||
2. Manufacturing defects
|
||||
3. Compliance with standards
|
||||
Provide a detailed report highlighting any issues found.
|
||||
""",
|
||||
agent=expert_analyst
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[expert_analyst],
|
||||
tasks=[inspection_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Tool Details
|
||||
|
||||
When working with multimodal agents, the `AddImageTool` is automatically configured with the following schema:
|
||||
|
||||
```python
|
||||
class AddImageToolSchema:
|
||||
image_url: str # Required: The URL or path of the image to process
|
||||
action: Optional[str] = None # Optional: Additional context or specific questions about the image
|
||||
```
|
||||
|
||||
The multimodal agent will automatically handle the image processing through its built-in tools, allowing it to:
|
||||
- Access images via URLs or local file paths
|
||||
- Process image content with optional context or specific questions
|
||||
- Provide analysis and insights based on the visual information and task requirements
|
||||
|
||||
## Best Practices
|
||||
|
||||
When working with multimodal agents, keep these best practices in mind:
|
||||
|
||||
1. **Image Access**
|
||||
- Ensure your images are accessible via URLs that the agent can reach
|
||||
- For local images, consider hosting them temporarily or using absolute file paths
|
||||
- Verify that image URLs are valid and accessible before running tasks
|
||||
|
||||
2. **Task Description**
|
||||
- Be specific about what aspects of the image you want the agent to analyze
|
||||
- Include clear questions or requirements in the task description
|
||||
- Consider using the optional `action` parameter for focused analysis
|
||||
|
||||
3. **Resource Management**
|
||||
- Image processing may require more computational resources than text-only tasks
|
||||
- Some language models may require base64 encoding for image data
|
||||
- Consider batch processing for multiple images to optimize performance
|
||||
|
||||
4. **Environment Setup**
|
||||
- Verify that your environment has the necessary dependencies for image processing
|
||||
- Ensure your language model supports multimodal capabilities
|
||||
- Test with small images first to validate your setup
|
||||
|
||||
5. **Error Handling**
|
||||
- Implement proper error handling for image loading failures
|
||||
- Have fallback strategies for when image processing fails
|
||||
- Monitor and log image processing operations for debugging
|
||||
@@ -7,7 +7,7 @@ icon: wrench
|
||||
<Note>
|
||||
**Python Version Requirements**
|
||||
|
||||
CrewAI requires `Python >=3.10 and <=3.13`. Here's how to check your version:
|
||||
CrewAI requires `Python >=3.10 and <3.13`. Here's how to check your version:
|
||||
```bash
|
||||
python3 --version
|
||||
```
|
||||
|
||||
@@ -129,7 +129,6 @@ nav:
|
||||
- Processes: 'core-concepts/Processes.md'
|
||||
- Crews: 'core-concepts/Crews.md'
|
||||
- Collaboration: 'core-concepts/Collaboration.md'
|
||||
- Pipeline: 'core-concepts/Pipeline.md'
|
||||
- Training: 'core-concepts/Training-Crew.md'
|
||||
- Memory: 'core-concepts/Memory.md'
|
||||
- Planning: 'core-concepts/Planning.md'
|
||||
|
||||
7507
poetry.lock
generated
7507
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -1,35 +1,46 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.85.0"
|
||||
version = "0.86.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
authors = [
|
||||
{ name = "Joao Moura", email = "joao@crewai.com" }
|
||||
]
|
||||
dependencies = [
|
||||
# Core Dependencies
|
||||
"pydantic>=2.4.2",
|
||||
"openai>=1.13.3",
|
||||
"litellm>=1.44.22",
|
||||
"instructor>=1.3.3",
|
||||
|
||||
# Text Processing
|
||||
"pdfplumber>=0.11.4",
|
||||
"regex>=2024.9.11",
|
||||
|
||||
# Telemetry and Monitoring
|
||||
"opentelemetry-api>=1.22.0",
|
||||
"opentelemetry-sdk>=1.22.0",
|
||||
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
|
||||
"instructor>=1.3.3",
|
||||
"regex>=2024.9.11",
|
||||
"crewai-tools>=0.14.0",
|
||||
"click>=8.1.7",
|
||||
|
||||
# Data Handling
|
||||
"chromadb>=0.5.23",
|
||||
"openpyxl>=3.1.5",
|
||||
"pyvis>=0.3.2",
|
||||
|
||||
# Authentication and Security
|
||||
"auth0-python>=4.7.1",
|
||||
"python-dotenv>=1.0.0",
|
||||
|
||||
# Configuration and Utils
|
||||
"click>=8.1.7",
|
||||
"appdirs>=1.4.4",
|
||||
"jsonref>=1.1.0",
|
||||
"json-repair>=0.25.2",
|
||||
"auth0-python>=4.7.1",
|
||||
"litellm>=1.44.22",
|
||||
"pyvis>=0.3.2",
|
||||
"uv>=0.4.25",
|
||||
"tomli-w>=1.1.0",
|
||||
"tomli>=2.0.2",
|
||||
"chromadb>=0.5.18",
|
||||
"pdfplumber>=0.11.4",
|
||||
"openpyxl>=3.1.5",
|
||||
"blinker>=1.9.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
@@ -38,7 +49,10 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools>=0.14.0"]
|
||||
tools = ["crewai-tools>=0.17.0"]
|
||||
embeddings = [
|
||||
"tiktoken~=0.7.0"
|
||||
]
|
||||
agentops = ["agentops>=0.3.0"]
|
||||
fastembed = ["fastembed>=0.4.1"]
|
||||
pdfplumber = [
|
||||
@@ -51,10 +65,13 @@ openpyxl = [
|
||||
"openpyxl>=3.1.5",
|
||||
]
|
||||
mem0 = ["mem0ai>=0.1.29"]
|
||||
docling = [
|
||||
"docling>=2.12.0",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
dev-dependencies = [
|
||||
"ruff>=0.4.10",
|
||||
"ruff>=0.8.2",
|
||||
"mypy>=1.10.0",
|
||||
"pre-commit>=3.6.0",
|
||||
"mkdocs>=1.4.3",
|
||||
@@ -64,7 +81,6 @@ dev-dependencies = [
|
||||
"mkdocs-material-extensions>=1.3.1",
|
||||
"pillow>=10.2.0",
|
||||
"cairosvg>=2.7.1",
|
||||
"crewai-tools>=0.14.0",
|
||||
"pytest>=8.0.0",
|
||||
"pytest-vcr>=1.0.2",
|
||||
"python-dotenv>=1.0.0",
|
||||
|
||||
@@ -5,9 +5,7 @@ from crewai.crew import Crew
|
||||
from crewai.flow.flow import Flow
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.llm import LLM
|
||||
from crewai.pipeline import Pipeline
|
||||
from crewai.process import Process
|
||||
from crewai.routers import Router
|
||||
from crewai.task import Task
|
||||
|
||||
warnings.filterwarnings(
|
||||
@@ -16,14 +14,12 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.85.0"
|
||||
__version__ = "0.86.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"Crew",
|
||||
"Process",
|
||||
"Task",
|
||||
"Pipeline",
|
||||
"Router",
|
||||
"LLM",
|
||||
"Flow",
|
||||
"Knowledge",
|
||||
|
||||
@@ -8,7 +8,7 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
|
||||
@@ -17,33 +17,26 @@ from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.task import Task
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.converter import generate_model_description
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
|
||||
def mock_agent_ops_provider():
|
||||
def track_agent(*args, **kwargs):
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" is already defined
|
||||
from agentops import track_agent # type: ignore
|
||||
except ImportError:
|
||||
|
||||
def track_agent():
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
return track_agent
|
||||
|
||||
|
||||
agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
else:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
|
||||
|
||||
@track_agent()
|
||||
class Agent(BaseAgent):
|
||||
@@ -122,6 +115,10 @@ class Agent(BaseAgent):
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
)
|
||||
multimodal: bool = Field(
|
||||
default=False,
|
||||
description="Whether the agent is multimodal.",
|
||||
)
|
||||
code_execution_mode: Literal["safe", "unsafe"] = Field(
|
||||
default="safe",
|
||||
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
|
||||
@@ -181,20 +178,11 @@ class Agent(BaseAgent):
|
||||
if key_name and key_name not in unaccepted_attributes:
|
||||
env_value = os.environ.get(key_name)
|
||||
if env_value:
|
||||
# Map key names containing "API_KEY" to "api_key"
|
||||
key_name = (
|
||||
"api_key" if "API_KEY" in key_name else key_name
|
||||
)
|
||||
# Map key names containing "API_BASE" to "api_base"
|
||||
key_name = (
|
||||
"api_base" if "API_BASE" in key_name else key_name
|
||||
)
|
||||
# Map key names containing "API_VERSION" to "api_version"
|
||||
key_name = (
|
||||
"api_version"
|
||||
if "API_VERSION" in key_name
|
||||
else key_name
|
||||
)
|
||||
key_name = key_name.lower()
|
||||
for pattern in LITELLM_PARAMS:
|
||||
if pattern in key_name:
|
||||
key_name = pattern
|
||||
break
|
||||
llm_params[key_name] = env_value
|
||||
# Check for default values if the environment variable is not set
|
||||
elif env_var.get("default", False):
|
||||
@@ -423,6 +411,10 @@ class Agent(BaseAgent):
|
||||
tools = agent_tools.tools()
|
||||
return tools
|
||||
|
||||
def get_multimodal_tools(self) -> List[Tool]:
|
||||
from crewai.tools.agent_tools.add_image_tool import AddImageTool
|
||||
return [AddImageTool()]
|
||||
|
||||
def get_code_execution_tools(self):
|
||||
try:
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
@@ -3,16 +3,15 @@ from typing import TYPE_CHECKING, Optional
|
||||
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
|
||||
|
||||
class CrewAgentExecutorMixin:
|
||||
@@ -100,14 +99,19 @@ class CrewAgentExecutorMixin:
|
||||
print(f"Failed to add to long term memory: {e}")
|
||||
pass
|
||||
|
||||
def _ask_human_input(self, final_answer: dict) -> str:
|
||||
def _ask_human_input(self, final_answer: str) -> str:
|
||||
"""Prompt human input for final decision making."""
|
||||
self._printer.print(
|
||||
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
|
||||
)
|
||||
|
||||
self._printer.print(
|
||||
content="\n\n=====\n## Please provide feedback on the Final Result and the Agent's actions:",
|
||||
content=(
|
||||
"\n\n=====\n"
|
||||
"## Please provide feedback on the Final Result and the Agent's actions. "
|
||||
"Respond with 'looks good' or a similar phrase when you're satisfied.\n"
|
||||
"=====\n"
|
||||
),
|
||||
color="bold_yellow",
|
||||
)
|
||||
return input()
|
||||
|
||||
@@ -16,7 +16,7 @@ from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N, Printer
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
@@ -90,7 +90,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
if "system" in self.prompt:
|
||||
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
|
||||
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
|
||||
|
||||
self.messages.append(self._format_msg(system_prompt, role="system"))
|
||||
self.messages.append(self._format_msg(user_prompt))
|
||||
else:
|
||||
@@ -103,17 +102,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer, human_feedback)
|
||||
formatted_answer = self._handle_human_feedback(formatted_answer)
|
||||
|
||||
# Making sure we only ask for it once, so disabling for the next thought loop
|
||||
self.ask_for_human_input = False
|
||||
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer)
|
||||
self._create_short_term_memory(formatted_answer)
|
||||
self._create_long_term_memory(formatted_answer)
|
||||
return {"output": formatted_answer.output}
|
||||
@@ -153,7 +143,20 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
tool_result = self._execute_tool_and_check_finality(
|
||||
formatted_answer
|
||||
)
|
||||
formatted_answer.text += f"\nObservation: {tool_result.result}"
|
||||
|
||||
# Directly append the result to the messages if the
|
||||
# tool is "Add image to content" in case of multimodal
|
||||
# agents
|
||||
if formatted_answer.tool == self._i18n.tools("add_image")["name"]:
|
||||
self.messages.append(tool_result.result)
|
||||
continue
|
||||
|
||||
else:
|
||||
if self.step_callback:
|
||||
self.step_callback(tool_result)
|
||||
|
||||
formatted_answer.text += f"\nObservation: {tool_result.result}"
|
||||
|
||||
formatted_answer.result = tool_result.result
|
||||
if tool_result.result_as_answer:
|
||||
return AgentFinish(
|
||||
@@ -309,7 +312,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._i18n.slice("summarizer_system_message"), role="system"
|
||||
),
|
||||
self._format_msg(
|
||||
self._i18n.slice("sumamrize_instruction").format(group=group),
|
||||
self._i18n.slice("summarize_instruction").format(group=group),
|
||||
),
|
||||
],
|
||||
callbacks=self.callbacks,
|
||||
@@ -326,16 +329,14 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
|
||||
def _handle_context_length(self) -> None:
|
||||
if self.respect_context_window:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Summarizing content to fit the model context window.",
|
||||
self._printer.print(
|
||||
content="Context length exceeded. Summarizing content to fit the model context window.",
|
||||
color="yellow",
|
||||
)
|
||||
self._summarize_messages()
|
||||
else:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
|
||||
self._printer.print(
|
||||
content="Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
|
||||
color="red",
|
||||
)
|
||||
raise SystemExit(
|
||||
@@ -362,15 +363,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
] = result.output
|
||||
training_handler.save(training_data)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Invalid train iteration type or agent_id not in training data.",
|
||||
self._printer.print(
|
||||
content="Invalid train iteration type or agent_id not in training data.",
|
||||
color="red",
|
||||
)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Crew is None or does not have _train_iteration attribute.",
|
||||
self._printer.print(
|
||||
content="Crew is None or does not have _train_iteration attribute.",
|
||||
color="red",
|
||||
)
|
||||
|
||||
@@ -388,15 +387,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
train_iteration, agent_id, training_data
|
||||
)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Invalid train iteration type. Expected int.",
|
||||
self._printer.print(
|
||||
content="Invalid train iteration type. Expected int.",
|
||||
color="red",
|
||||
)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Crew is None or does not have _train_iteration attribute.",
|
||||
self._printer.print(
|
||||
content="Crew is None or does not have _train_iteration attribute.",
|
||||
color="red",
|
||||
)
|
||||
|
||||
@@ -412,3 +409,81 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
|
||||
prompt = prompt.rstrip()
|
||||
return {"role": role, "content": prompt}
|
||||
|
||||
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
|
||||
"""
|
||||
Handles the human feedback loop, allowing the user to provide feedback
|
||||
on the agent's output and determining if additional iterations are needed.
|
||||
|
||||
Parameters:
|
||||
formatted_answer (AgentFinish): The initial output from the agent.
|
||||
|
||||
Returns:
|
||||
AgentFinish: The final output after incorporating human feedback.
|
||||
"""
|
||||
while self.ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer, human_feedback)
|
||||
|
||||
# Make an LLM call to verify if additional changes are requested based on human feedback
|
||||
additional_changes_prompt = self._i18n.slice(
|
||||
"human_feedback_classification"
|
||||
).format(feedback=human_feedback)
|
||||
|
||||
retry_count = 0
|
||||
llm_call_successful = False
|
||||
additional_changes_response = None
|
||||
|
||||
while retry_count < MAX_LLM_RETRY and not llm_call_successful:
|
||||
try:
|
||||
additional_changes_response = (
|
||||
self.llm.call(
|
||||
[
|
||||
self._format_msg(
|
||||
additional_changes_prompt, role="system"
|
||||
)
|
||||
],
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
.strip()
|
||||
.lower()
|
||||
)
|
||||
llm_call_successful = True
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
|
||||
self._printer.print(
|
||||
content=f"Error during LLM call to classify human feedback: {e}. Retrying... ({retry_count}/{MAX_LLM_RETRY})",
|
||||
color="red",
|
||||
)
|
||||
|
||||
if not llm_call_successful:
|
||||
self._printer.print(
|
||||
content="Error processing feedback after multiple attempts.",
|
||||
color="red",
|
||||
)
|
||||
self.ask_for_human_input = False
|
||||
break
|
||||
|
||||
if additional_changes_response == "false":
|
||||
self.ask_for_human_input = False
|
||||
elif additional_changes_response == "true":
|
||||
self.ask_for_human_input = True
|
||||
# Add human feedback to messages
|
||||
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
|
||||
# Invoke the loop again with updated messages
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer)
|
||||
else:
|
||||
# Unexpected response
|
||||
self._printer.print(
|
||||
content=f"Unexpected response from LLM: '{additional_changes_response}'. Assuming no additional changes requested.",
|
||||
color="red",
|
||||
)
|
||||
self.ask_for_human_input = False
|
||||
|
||||
return formatted_answer
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import re
|
||||
from typing import Any, Union
|
||||
|
||||
from json_repair import repair_json
|
||||
|
||||
from crewai.utilities import I18N
|
||||
|
||||
@@ -5,9 +5,10 @@ from typing import Any, Dict
|
||||
import requests
|
||||
from rich.console import Console
|
||||
|
||||
from crewai.cli.tools.main import ToolCommand
|
||||
|
||||
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
|
||||
from .utils import TokenManager, validate_token
|
||||
from crewai.cli.tools.main import ToolCommand
|
||||
|
||||
console = Console()
|
||||
|
||||
@@ -79,7 +80,9 @@ class AuthenticationCommand:
|
||||
style="yellow",
|
||||
)
|
||||
|
||||
console.print("\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n")
|
||||
console.print(
|
||||
"\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n"
|
||||
)
|
||||
return
|
||||
|
||||
if token_data["error"] not in ("authorization_pending", "slow_down"):
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
from .utils import TokenManager
|
||||
|
||||
|
||||
def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
return access_token
|
||||
|
||||
|
||||
|
||||
@@ -1,12 +1,11 @@
|
||||
from importlib.metadata import version as get_version
|
||||
from typing import Optional
|
||||
|
||||
import click
|
||||
import pkg_resources
|
||||
|
||||
from crewai.cli.add_crew_to_flow import add_crew_to_flow
|
||||
from crewai.cli.create_crew import create_crew
|
||||
from crewai.cli.create_flow import create_flow
|
||||
from crewai.cli.create_pipeline import create_pipeline
|
||||
from crewai.memory.storage.kickoff_task_outputs_storage import (
|
||||
KickoffTaskOutputsSQLiteStorage,
|
||||
)
|
||||
@@ -26,27 +25,24 @@ from .update_crew import update_crew
|
||||
|
||||
|
||||
@click.group()
|
||||
@click.version_option(get_version("crewai"))
|
||||
def crewai():
|
||||
"""Top-level command group for crewai."""
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
|
||||
@click.argument("type", type=click.Choice(["crew", "flow"]))
|
||||
@click.argument("name")
|
||||
@click.option("--provider", type=str, help="The provider to use for the crew")
|
||||
@click.option("--skip_provider", is_flag=True, help="Skip provider validation")
|
||||
def create(type, name, provider, skip_provider=False):
|
||||
"""Create a new crew, pipeline, or flow."""
|
||||
"""Create a new crew, or flow."""
|
||||
if type == "crew":
|
||||
create_crew(name, provider, skip_provider)
|
||||
elif type == "pipeline":
|
||||
create_pipeline(name)
|
||||
elif type == "flow":
|
||||
create_flow(name)
|
||||
else:
|
||||
click.secho(
|
||||
"Error: Invalid type. Must be 'crew', 'pipeline', or 'flow'.", fg="red"
|
||||
)
|
||||
click.secho("Error: Invalid type. Must be 'crew' or 'flow'.", fg="red")
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@@ -55,14 +51,17 @@ def create(type, name, provider, skip_provider=False):
|
||||
)
|
||||
def version(tools):
|
||||
"""Show the installed version of crewai."""
|
||||
crewai_version = pkg_resources.get_distribution("crewai").version
|
||||
try:
|
||||
crewai_version = get_version("crewai")
|
||||
except Exception:
|
||||
crewai_version = "unknown version"
|
||||
click.echo(f"crewai version: {crewai_version}")
|
||||
|
||||
if tools:
|
||||
try:
|
||||
tools_version = pkg_resources.get_distribution("crewai-tools").version
|
||||
tools_version = get_version("crewai")
|
||||
click.echo(f"crewai tools version: {tools_version}")
|
||||
except pkg_resources.DistributionNotFound:
|
||||
except Exception:
|
||||
click.echo("crewai tools not installed")
|
||||
|
||||
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import requests
|
||||
from requests.exceptions import JSONDecodeError
|
||||
from rich.console import Console
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
|
||||
from crewai.cli.authentication.token import get_auth_token
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
|
||||
console = Console()
|
||||
|
||||
@@ -1,13 +1,19 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
|
||||
|
||||
|
||||
class Settings(BaseModel):
|
||||
tool_repository_username: Optional[str] = Field(None, description="Username for interacting with the Tool Repository")
|
||||
tool_repository_password: Optional[str] = Field(None, description="Password for interacting with the Tool Repository")
|
||||
tool_repository_username: Optional[str] = Field(
|
||||
None, description="Username for interacting with the Tool Repository"
|
||||
)
|
||||
tool_repository_password: Optional[str] = Field(
|
||||
None, description="Password for interacting with the Tool Repository"
|
||||
)
|
||||
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
|
||||
|
||||
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
|
||||
|
||||
@@ -159,3 +159,6 @@ MODELS = {
|
||||
}
|
||||
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
|
||||
|
||||
LITELLM_PARAMS = ["api_key", "api_base", "api_version"]
|
||||
|
||||
@@ -39,6 +39,7 @@ def create_folder_structure(name, parent_folder=None):
|
||||
|
||||
folder_path.mkdir(parents=True)
|
||||
(folder_path / "tests").mkdir(exist_ok=True)
|
||||
(folder_path / "knowledge").mkdir(exist_ok=True)
|
||||
if not parent_folder:
|
||||
(folder_path / "src" / folder_name).mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
@@ -52,7 +53,14 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
|
||||
templates_dir = package_dir / "templates" / "crew"
|
||||
|
||||
root_template_files = (
|
||||
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
|
||||
[
|
||||
".gitignore",
|
||||
"pyproject.toml",
|
||||
"README.md",
|
||||
"knowledge/user_preference.txt",
|
||||
]
|
||||
if not parent_folder
|
||||
else []
|
||||
)
|
||||
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
|
||||
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
|
||||
@@ -168,7 +176,9 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
|
||||
templates_dir = package_dir / "templates" / "crew"
|
||||
|
||||
root_template_files = (
|
||||
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
|
||||
[".gitignore", "pyproject.toml", "README.md", "knowledge/user_preference.txt"]
|
||||
if not parent_folder
|
||||
else []
|
||||
)
|
||||
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
|
||||
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
|
||||
|
||||
@@ -1,107 +0,0 @@
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def create_pipeline(name, router=False):
|
||||
"""Create a new pipeline project."""
|
||||
folder_name = name.replace(" ", "_").replace("-", "_").lower()
|
||||
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
|
||||
|
||||
click.secho(f"Creating pipeline {folder_name}...", fg="green", bold=True)
|
||||
|
||||
project_root = Path(folder_name)
|
||||
if project_root.exists():
|
||||
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
|
||||
return
|
||||
|
||||
# Create directory structure
|
||||
(project_root / "src" / folder_name).mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "pipelines").mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(project_root / "tests").mkdir(exist_ok=True)
|
||||
|
||||
# Create .env file
|
||||
with open(project_root / ".env", "w") as file:
|
||||
file.write("OPENAI_API_KEY=YOUR_API_KEY")
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
template_folder = "pipeline_router" if router else "pipeline"
|
||||
templates_dir = package_dir / "templates" / template_folder
|
||||
|
||||
# List of template files to copy
|
||||
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
|
||||
src_template_files = ["__init__.py", "main.py"]
|
||||
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
|
||||
|
||||
if router:
|
||||
crew_folders = [
|
||||
"classifier_crew",
|
||||
"normal_crew",
|
||||
"urgent_crew",
|
||||
]
|
||||
pipelines_folders = [
|
||||
"pipelines/__init__.py",
|
||||
"pipelines/pipeline_classifier.py",
|
||||
"pipelines/pipeline_normal.py",
|
||||
"pipelines/pipeline_urgent.py",
|
||||
]
|
||||
else:
|
||||
crew_folders = [
|
||||
"research_crew",
|
||||
"write_linkedin_crew",
|
||||
"write_x_crew",
|
||||
]
|
||||
pipelines_folders = ["pipelines/__init__.py", "pipelines/pipeline.py"]
|
||||
|
||||
def process_file(src_file, dst_file):
|
||||
with open(src_file, "r") as file:
|
||||
content = file.read()
|
||||
|
||||
content = content.replace("{{name}}", name)
|
||||
content = content.replace("{{crew_name}}", class_name)
|
||||
content = content.replace("{{folder_name}}", folder_name)
|
||||
content = content.replace("{{pipeline_name}}", class_name)
|
||||
|
||||
with open(dst_file, "w") as file:
|
||||
file.write(content)
|
||||
|
||||
# Copy and process root template files
|
||||
for file_name in root_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy and process src template files
|
||||
for file_name in src_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy tools files
|
||||
for file_name in tools_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
shutil.copy(src_file, dst_file)
|
||||
|
||||
# Copy pipelines folders
|
||||
for file_name in pipelines_folders:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy crew folders
|
||||
for crew_folder in crew_folders:
|
||||
src_crew_folder = templates_dir / "crews" / crew_folder
|
||||
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
|
||||
if src_crew_folder.exists():
|
||||
shutil.copytree(src_crew_folder, dst_crew_folder)
|
||||
else:
|
||||
click.secho(
|
||||
f"Warning: Crew folder {crew_folder} not found in template.",
|
||||
fg="yellow",
|
||||
)
|
||||
|
||||
click.secho(f"Pipeline {name} created successfully!", fg="green", bold=True)
|
||||
@@ -1,9 +1,11 @@
|
||||
from typing import Optional
|
||||
import requests
|
||||
from os import getenv
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from typing import Optional
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import requests
|
||||
|
||||
from crewai.cli.version import get_crewai_version
|
||||
|
||||
|
||||
class PlusAPI:
|
||||
"""
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
|
||||
|
||||
def reset_memories_command(
|
||||
|
||||
@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install uv:
|
||||
|
||||
|
||||
@@ -12,6 +12,6 @@ reporting_task:
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with the mains topics, each with a full section of information.
|
||||
A fully fledged report with the main topics, each with a full section of information.
|
||||
Formatted as markdown without '```'
|
||||
agent: reporting_analyst
|
||||
|
||||
@@ -1,36 +1,26 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task, before_kickoff, after_kickoff
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from {{folder_name}}.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
# If you want to run a snippet of code before or after the crew starts,
|
||||
# you can use the @before_kickoff and @after_kickoff decorators
|
||||
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
|
||||
|
||||
@CrewBase
|
||||
class {{crew_name}}():
|
||||
"""{{crew_name}} crew"""
|
||||
|
||||
# Learn more about YAML configuration files here:
|
||||
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
|
||||
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@before_kickoff # Optional hook to be executed before the crew starts
|
||||
def pull_data_example(self, inputs):
|
||||
# Example of pulling data from an external API, dynamically changing the inputs
|
||||
inputs['extra_data'] = "This is extra data"
|
||||
return inputs
|
||||
|
||||
@after_kickoff # Optional hook to be executed after the crew has finished
|
||||
def log_results(self, output):
|
||||
# Example of logging results, dynamically changing the output
|
||||
print(f"Results: {output}")
|
||||
return output
|
||||
|
||||
# If you would like to add tools to your agents, you can learn more about it here:
|
||||
# https://docs.crewai.com/concepts/agents#agent-tools
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
# tools=[MyCustomTool()], # Example of custom tool, loaded on the beginning of file
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@@ -41,6 +31,9 @@ class {{crew_name}}():
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# To learn more about structured task outputs,
|
||||
# task dependencies, and task callbacks, check out the documentation:
|
||||
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
@@ -57,6 +50,9 @@ class {{crew_name}}():
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the {{crew_name}} crew"""
|
||||
# To learn how to add knowledge sources to your crew, check out the documentation:
|
||||
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
|
||||
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
|
||||
@@ -0,0 +1,4 @@
|
||||
User name is John Doe.
|
||||
User is an AI Engineer.
|
||||
User is interested in AI Agents.
|
||||
User is based in San Francisco, California.
|
||||
@@ -3,9 +3,9 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.85.0,<1.0.0"
|
||||
"crewai[tools]>=0.86.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
@@ -18,3 +18,6 @@ test = "{{folder_name}}.main:test"
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
[tool.crewai]
|
||||
type = "crew"
|
||||
|
||||
@@ -10,7 +10,7 @@ class MyCustomToolInput(BaseModel):
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
"Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install uv:
|
||||
|
||||
|
||||
@@ -1,31 +1,47 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# If you want to run a snippet of code before or after the crew starts,
|
||||
# you can use the @before_kickoff and @after_kickoff decorators
|
||||
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
|
||||
|
||||
|
||||
@CrewBase
|
||||
class PoemCrew():
|
||||
"""Poem Crew"""
|
||||
class PoemCrew:
|
||||
"""Poem Crew"""
|
||||
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
# Learn more about YAML configuration files here:
|
||||
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
|
||||
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def poem_writer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['poem_writer'],
|
||||
)
|
||||
# If you would lik to add tools to your crew, you can learn more about it here:
|
||||
# https://docs.crewai.com/concepts/agents#agent-tools
|
||||
@agent
|
||||
def poem_writer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config["poem_writer"],
|
||||
)
|
||||
|
||||
@task
|
||||
def write_poem(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['write_poem'],
|
||||
)
|
||||
# To learn more about structured task outputs,
|
||||
# task dependencies, and task callbacks, check out the documentation:
|
||||
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
|
||||
@task
|
||||
def write_poem(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["write_poem"],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Research Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Research Crew"""
|
||||
# To learn how to add knowledge sources to your crew, check out the documentation:
|
||||
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
|
||||
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
@@ -5,7 +5,7 @@ from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
from .crews.poem_crew.poem_crew import PoemCrew
|
||||
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew
|
||||
|
||||
|
||||
class PoemState(BaseModel):
|
||||
|
||||
@@ -3,9 +3,9 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.85.0,<1.0.0",
|
||||
"crewai[tools]>=0.86.0,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
@@ -15,3 +15,6 @@ plot = "{{folder_name}}.main:plot"
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
[tool.crewai]
|
||||
type = "flow"
|
||||
|
||||
@@ -13,7 +13,7 @@ class MyCustomToolInput(BaseModel):
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
"Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
|
||||
2
src/crewai/cli/templates/pipeline/.gitignore
vendored
2
src/crewai/cli/templates/pipeline/.gitignore
vendored
@@ -1,2 +0,0 @@
|
||||
.env
|
||||
__pycache__/
|
||||
@@ -1,57 +0,0 @@
|
||||
# {{crew_name}} Crew
|
||||
|
||||
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
|
||||
```bash
|
||||
crewai install
|
||||
```
|
||||
|
||||
### Customizing
|
||||
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
|
||||
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
|
||||
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
|
||||
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
|
||||
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
|
||||
|
||||
## Running the Project
|
||||
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
|
||||
|
||||
## Understanding Your Crew
|
||||
|
||||
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
|
||||
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat with our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
@@ -1,19 +0,0 @@
|
||||
researcher:
|
||||
role: >
|
||||
{topic} Senior Data Researcher
|
||||
goal: >
|
||||
Uncover cutting-edge developments in {topic}
|
||||
backstory: >
|
||||
You're a seasoned researcher with a knack for uncovering the latest
|
||||
developments in {topic}. Known for your ability to find the most relevant
|
||||
information and present it in a clear and concise manner.
|
||||
|
||||
reporting_analyst:
|
||||
role: >
|
||||
{topic} Reporting Analyst
|
||||
goal: >
|
||||
Create detailed reports based on {topic} data analysis and research findings
|
||||
backstory: >
|
||||
You're a meticulous analyst with a keen eye for detail. You're known for
|
||||
your ability to turn complex data into clear and concise reports, making
|
||||
it easy for others to understand and act on the information you provide.
|
||||
@@ -1,16 +0,0 @@
|
||||
research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
|
||||
reporting_task:
|
||||
description: >
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with a title, mains topics, each with a full section of information.
|
||||
agent: reporting_analyst
|
||||
@@ -1,58 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
class ResearchReport(BaseModel):
|
||||
"""Research Report"""
|
||||
title: str
|
||||
body: str
|
||||
|
||||
@CrewBase
|
||||
class ResearchCrew():
|
||||
"""Research Crew"""
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@agent
|
||||
def reporting_analyst(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['reporting_analyst'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['research_task'],
|
||||
)
|
||||
|
||||
@task
|
||||
def reporting_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['reporting_task'],
|
||||
output_pydantic=ResearchReport
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Research Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,51 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from {{folder_name}}.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
@CrewBase
|
||||
class WriteLinkedInCrew():
|
||||
"""Research Crew"""
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@agent
|
||||
def reporting_analyst(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['reporting_analyst'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['research_task'],
|
||||
)
|
||||
|
||||
@task
|
||||
def reporting_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['reporting_task'],
|
||||
output_file='report.md'
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the {{crew_name}} crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,14 +0,0 @@
|
||||
x_writer_agent:
|
||||
role: >
|
||||
Expert Social Media Content Creator specializing in short form written content
|
||||
goal: >
|
||||
Create viral-worthy, engaging short form posts that distill complex {topic} information
|
||||
into compelling 280-character messages
|
||||
backstory: >
|
||||
You're a social media virtuoso with a particular talent for short form content. Your posts
|
||||
consistently go viral due to your ability to craft hooks that stop users mid-scroll.
|
||||
You've studied the techniques of social media masters like Justin Welsh, Dickie Bush,
|
||||
Nicolas Cole, and Shaan Puri, incorporating their best practices into your own unique style.
|
||||
Your superpower is taking intricate {topic} concepts and transforming them into
|
||||
bite-sized, shareable content that resonates with a wide audience. You know exactly
|
||||
how to structure a post for maximum impact and engagement.
|
||||
@@ -1,22 +0,0 @@
|
||||
write_x_task:
|
||||
description: >
|
||||
Using the research report provided, create an engaging short form post about {topic}.
|
||||
Your post should have a great hook, summarize key points, and be structured for easy
|
||||
consumption on a digital platform. The post must be under 280 characters.
|
||||
Follow these guidelines:
|
||||
1. Start with an attention-grabbing hook
|
||||
2. Condense the main insights from the research
|
||||
3. Use clear, concise language
|
||||
4. Include a call-to-action or thought-provoking question if space allows
|
||||
5. Ensure the post flows well and is easy to read quickly
|
||||
|
||||
Here is the title of the research report you will be using
|
||||
|
||||
Title: {title}
|
||||
Research:
|
||||
{body}
|
||||
|
||||
expected_output: >
|
||||
A compelling X post under 280 characters that effectively summarizes the key findings
|
||||
about {topic}, starts with a strong hook, and is optimized for engagement on the platform.
|
||||
agent: x_writer_agent
|
||||
@@ -1,36 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
@CrewBase
|
||||
class WriteXCrew:
|
||||
"""Research Crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def x_writer_agent(self) -> Agent:
|
||||
return Agent(config=self.agents_config["x_writer_agent"], verbose=True)
|
||||
|
||||
@task
|
||||
def write_x_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["write_x_task"],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Write X Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,26 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
import asyncio
|
||||
from {{folder_name}}.pipelines.pipeline import {{pipeline_name}}Pipeline
|
||||
|
||||
async def run():
|
||||
"""
|
||||
Run the pipeline.
|
||||
"""
|
||||
inputs = [
|
||||
{"topic": "AI wearables"},
|
||||
]
|
||||
pipeline = {{pipeline_name}}Pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
|
||||
# Process and print results
|
||||
for result in results:
|
||||
print(f"Raw output: {result.raw}")
|
||||
if result.json_dict:
|
||||
print(f"JSON output: {result.json_dict}")
|
||||
print("\n")
|
||||
|
||||
def main():
|
||||
asyncio.run(run())
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,87 +0,0 @@
|
||||
"""
|
||||
This pipeline file includes two different examples to demonstrate the flexibility of crewAI pipelines.
|
||||
|
||||
Example 1: Two-Stage Pipeline
|
||||
-----------------------------
|
||||
This pipeline consists of two crews:
|
||||
1. ResearchCrew: Performs research on a given topic.
|
||||
2. WriteXCrew: Generates an X (Twitter) post based on the research findings.
|
||||
|
||||
Key features:
|
||||
- The ResearchCrew's final task uses output_json to store all research findings in a JSON object.
|
||||
- This JSON object is then passed to the WriteXCrew, where tasks can access the research findings.
|
||||
|
||||
Example 2: Two-Stage Pipeline with Parallel Execution
|
||||
-------------------------------------------------------
|
||||
This pipeline consists of three crews:
|
||||
1. ResearchCrew: Performs research on a given topic.
|
||||
2. WriteXCrew and WriteLinkedInCrew: Run in parallel, using the research findings to generate posts for X and LinkedIn, respectively.
|
||||
|
||||
Key features:
|
||||
- Demonstrates the ability to run multiple crews in parallel.
|
||||
- Shows how to structure a pipeline with both sequential and parallel stages.
|
||||
|
||||
Usage:
|
||||
- To switch between examples, comment/uncomment the respective code blocks below.
|
||||
- Ensure that you have implemented all necessary crew classes (ResearchCrew, WriteXCrew, WriteLinkedInCrew) before running.
|
||||
"""
|
||||
|
||||
# Common imports for both examples
|
||||
from crewai import Pipeline
|
||||
|
||||
|
||||
|
||||
# Uncomment the crews you need for your chosen example
|
||||
from ..crews.research_crew.research_crew import ResearchCrew
|
||||
from ..crews.write_x_crew.write_x_crew import WriteXCrew
|
||||
# from .crews.write_linkedin_crew.write_linkedin_crew import WriteLinkedInCrew # Uncomment for Example 2
|
||||
|
||||
# EXAMPLE 1: Two-Stage Pipeline
|
||||
# -----------------------------
|
||||
# Uncomment the following code block to use Example 1
|
||||
|
||||
class {{pipeline_name}}Pipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.research_crew = ResearchCrew().crew()
|
||||
self.write_x_crew = WriteXCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.research_crew,
|
||||
self.write_x_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
|
||||
|
||||
# EXAMPLE 2: Two-Stage Pipeline with Parallel Execution
|
||||
# -------------------------------------------------------
|
||||
# Uncomment the following code block to use Example 2
|
||||
|
||||
# @PipelineBase
|
||||
# class {{pipeline_name}}Pipeline:
|
||||
# def __init__(self):
|
||||
# # Initialize crews
|
||||
# self.research_crew = ResearchCrew().crew()
|
||||
# self.write_x_crew = WriteXCrew().crew()
|
||||
# self.write_linkedin_crew = WriteLinkedInCrew().crew()
|
||||
|
||||
# @pipeline
|
||||
# def create_pipeline(self):
|
||||
# return Pipeline(
|
||||
# stages=[
|
||||
# self.research_crew,
|
||||
# [self.write_x_crew, self.write_linkedin_crew] # Parallel execution
|
||||
# ]
|
||||
# )
|
||||
|
||||
# async def run(self, inputs):
|
||||
# pipeline = self.create_pipeline()
|
||||
# results = await pipeline.kickoff(inputs)
|
||||
# return results
|
||||
@@ -1,17 +0,0 @@
|
||||
[tool.poetry]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.85.0,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
@@ -1,19 +0,0 @@
|
||||
from typing import Type
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MyCustomToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "this is an example of a tool output, ignore it and move along."
|
||||
@@ -1,2 +0,0 @@
|
||||
.env
|
||||
__pycache__/
|
||||
@@ -1,54 +0,0 @@
|
||||
# {{crew_name}} Crew
|
||||
|
||||
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
```bash
|
||||
crewai install
|
||||
```
|
||||
### Customizing
|
||||
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
|
||||
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
|
||||
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
|
||||
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
|
||||
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
|
||||
|
||||
## Running the Project
|
||||
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
|
||||
|
||||
## Understanding Your Crew
|
||||
|
||||
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
|
||||
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat with our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
@@ -1,19 +0,0 @@
|
||||
researcher:
|
||||
role: >
|
||||
{topic} Senior Data Researcher
|
||||
goal: >
|
||||
Uncover cutting-edge developments in {topic}
|
||||
backstory: >
|
||||
You're a seasoned researcher with a knack for uncovering the latest
|
||||
developments in {topic}. Known for your ability to find the most relevant
|
||||
information and present it in a clear and concise manner.
|
||||
|
||||
reporting_analyst:
|
||||
role: >
|
||||
{topic} Reporting Analyst
|
||||
goal: >
|
||||
Create detailed reports based on {topic} data analysis and research findings
|
||||
backstory: >
|
||||
You're a meticulous analyst with a keen eye for detail. You're known for
|
||||
your ability to turn complex data into clear and concise reports, making
|
||||
it easy for others to understand and act on the information you provide.
|
||||
@@ -1,17 +0,0 @@
|
||||
research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
|
||||
reporting_task:
|
||||
description: >
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with the mains topics, each with a full section of information.
|
||||
Formatted as markdown without '```'
|
||||
agent: reporting_analyst
|
||||
@@ -1,40 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
class UrgencyScore(BaseModel):
|
||||
urgency_score: int
|
||||
|
||||
@CrewBase
|
||||
class ClassifierCrew:
|
||||
"""Email Classifier Crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def classifier(self) -> Agent:
|
||||
return Agent(config=self.agents_config["classifier"], verbose=True)
|
||||
|
||||
@task
|
||||
def urgent_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["classify_email"],
|
||||
output_pydantic=UrgencyScore,
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Email Classifier Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,7 +0,0 @@
|
||||
classifier:
|
||||
role: >
|
||||
Email Classifier
|
||||
goal: >
|
||||
Classify the email: {email} as urgent or normal from a score of 1 to 10, where 1 is not urgent and 10 is urgent. Return the urgency score only.`
|
||||
backstory: >
|
||||
You are a highly efficient and experienced email classifier, trained to quickly assess and classify emails. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing normal situations and maintaining smooth operations.
|
||||
@@ -1,7 +0,0 @@
|
||||
classify_email:
|
||||
description: >
|
||||
Classify the email: {email}
|
||||
as urgent or normal.
|
||||
expected_output: >
|
||||
Classify the email from a scale of 1 to 10, where 1 is not urgent and 10 is urgent. Return the urgency score only.
|
||||
agent: classifier
|
||||
@@ -1,7 +0,0 @@
|
||||
normal_handler:
|
||||
role: >
|
||||
Normal Email Processor
|
||||
goal: >
|
||||
Process normal emails and create an email to respond to the sender.
|
||||
backstory: >
|
||||
You are a highly efficient and experienced normal email handler, trained to quickly assess and respond to normal communications. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing normal situations and maintaining smooth operations.
|
||||
@@ -1,6 +0,0 @@
|
||||
normal_task:
|
||||
description: >
|
||||
Process and respond to normal email quickly.
|
||||
expected_output: >
|
||||
An email response to the normal email.
|
||||
agent: normal_handler
|
||||
@@ -1,36 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
@CrewBase
|
||||
class NormalCrew:
|
||||
"""Normal Email Crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def normal_handler(self) -> Agent:
|
||||
return Agent(config=self.agents_config["normal_handler"], verbose=True)
|
||||
|
||||
@task
|
||||
def urgent_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["normal_task"],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Normal Email Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,7 +0,0 @@
|
||||
urgent_handler:
|
||||
role: >
|
||||
Urgent Email Processor
|
||||
goal: >
|
||||
Process urgent emails and create an email to respond to the sender.
|
||||
backstory: >
|
||||
You are a highly efficient and experienced urgent email handler, trained to quickly assess and respond to time-sensitive communications. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing critical situations and maintaining smooth operations.
|
||||
@@ -1,6 +0,0 @@
|
||||
urgent_task:
|
||||
description: >
|
||||
Process and respond to urgent email quickly.
|
||||
expected_output: >
|
||||
An email response to the urgent email.
|
||||
agent: urgent_handler
|
||||
@@ -1,36 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
@CrewBase
|
||||
class UrgentCrew:
|
||||
"""Urgent Email Crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def urgent_handler(self) -> Agent:
|
||||
return Agent(config=self.agents_config["urgent_handler"], verbose=True)
|
||||
|
||||
@task
|
||||
def urgent_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["urgent_task"],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Urgent Email Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,75 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
import asyncio
|
||||
from crewai.routers.router import Route
|
||||
from crewai.routers.router import Router
|
||||
|
||||
from {{folder_name}}.pipelines.pipeline_classifier import EmailClassifierPipeline
|
||||
from {{folder_name}}.pipelines.pipeline_normal import NormalPipeline
|
||||
from {{folder_name}}.pipelines.pipeline_urgent import UrgentPipeline
|
||||
|
||||
async def run():
|
||||
"""
|
||||
Run the pipeline.
|
||||
"""
|
||||
inputs = [
|
||||
{
|
||||
"email": """
|
||||
Subject: URGENT: Marketing Campaign Launch - Immediate Action Required
|
||||
Dear Team,
|
||||
I'm reaching out regarding our upcoming marketing campaign that requires your immediate attention and swift action. We're facing a critical deadline, and our success hinges on our ability to mobilize quickly.
|
||||
Key points:
|
||||
|
||||
Campaign launch: 48 hours from now
|
||||
Target audience: 250,000 potential customers
|
||||
Expected ROI: 35% increase in Q3 sales
|
||||
|
||||
What we need from you NOW:
|
||||
|
||||
Final approval on creative assets (due in 3 hours)
|
||||
Confirmation of media placements (due by end of day)
|
||||
Last-minute budget allocation for paid social media push
|
||||
|
||||
Our competitors are poised to launch similar campaigns, and we must act fast to maintain our market advantage. Delays could result in significant lost opportunities and potential revenue.
|
||||
Please prioritize this campaign above all other tasks. I'll be available for the next 24 hours to address any concerns or roadblocks.
|
||||
Let's make this happen!
|
||||
[Your Name]
|
||||
Marketing Director
|
||||
P.S. I'll be scheduling an emergency team meeting in 1 hour to discuss our action plan. Attendance is mandatory.
|
||||
"""
|
||||
}
|
||||
]
|
||||
|
||||
pipeline_classifier = EmailClassifierPipeline().create_pipeline()
|
||||
pipeline_urgent = UrgentPipeline().create_pipeline()
|
||||
pipeline_normal = NormalPipeline().create_pipeline()
|
||||
|
||||
router = Router(
|
||||
routes={
|
||||
"high_urgency": Route(
|
||||
condition=lambda x: x.get("urgency_score", 0) > 7,
|
||||
pipeline=pipeline_urgent
|
||||
),
|
||||
"low_urgency": Route(
|
||||
condition=lambda x: x.get("urgency_score", 0) <= 7,
|
||||
pipeline=pipeline_normal
|
||||
)
|
||||
},
|
||||
default=pipeline_normal
|
||||
)
|
||||
|
||||
pipeline = pipeline_classifier >> router
|
||||
|
||||
results = await pipeline.kickoff(inputs)
|
||||
|
||||
# Process and print results
|
||||
for result in results:
|
||||
print(f"Raw output: {result.raw}")
|
||||
if result.json_dict:
|
||||
print(f"JSON output: {result.json_dict}")
|
||||
print("\n")
|
||||
|
||||
def main():
|
||||
asyncio.run(run())
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,24 +0,0 @@
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.classifier_crew.classifier_crew import ClassifierCrew
|
||||
|
||||
|
||||
@PipelineBase
|
||||
class EmailClassifierPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.classifier_crew = ClassifierCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.classifier_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.normal_crew.normal_crew import NormalCrew
|
||||
|
||||
|
||||
@PipelineBase
|
||||
class NormalPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.normal_crew = NormalCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.normal_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
|
||||
|
||||
@@ -1,23 +0,0 @@
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.urgent_crew.urgent_crew import UrgentCrew
|
||||
|
||||
@PipelineBase
|
||||
class UrgentPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.urgent_crew = UrgentCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.urgent_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
|
||||
|
||||
@@ -1,21 +0,0 @@
|
||||
[project]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.85.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
run_crew = "{{folder_name}}.main:main"
|
||||
train = "{{folder_name}}.main:train"
|
||||
replay = "{{folder_name}}.main:replay"
|
||||
test = "{{folder_name}}.main:test"
|
||||
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
from typing import Type
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MyCustomToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "this is an example of a tool output, ignore it and move along."
|
||||
@@ -5,7 +5,7 @@ custom tools to power up your crews.
|
||||
|
||||
## Installing
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project
|
||||
uses [UV](https://docs.astral.sh/uv/) for dependency management and package
|
||||
handling, offering a seamless setup and execution experience.
|
||||
|
||||
|
||||
@@ -3,8 +3,10 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.85.0"
|
||||
"crewai[tools]>=0.86.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
type = "tool"
|
||||
|
||||
@@ -117,7 +117,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
|
||||
published_handle = publish_response.json()["handle"]
|
||||
console.print(
|
||||
f"Succesfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
|
||||
f"Successfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
|
||||
style="bold green",
|
||||
)
|
||||
|
||||
@@ -138,7 +138,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
|
||||
self._add_package(get_response.json())
|
||||
|
||||
console.print(f"Succesfully installed {handle}", style="bold green")
|
||||
console.print(f"Successfully installed {handle}", style="bold green")
|
||||
|
||||
def login(self):
|
||||
login_response = self.plus_api_client.login_to_tool_repository()
|
||||
|
||||
@@ -33,26 +33,6 @@ def copy_template(src, dst, name, class_name, folder_name):
|
||||
click.secho(f" - Created {dst}", fg="green")
|
||||
|
||||
|
||||
# Drop the simple_toml_parser when we move to python3.11
|
||||
def simple_toml_parser(content):
|
||||
result = {}
|
||||
current_section = result
|
||||
for line in content.split("\n"):
|
||||
line = line.strip()
|
||||
if line.startswith("[") and line.endswith("]"):
|
||||
# New section
|
||||
section = line[1:-1].split(".")
|
||||
current_section = result
|
||||
for key in section:
|
||||
current_section = current_section.setdefault(key, {})
|
||||
elif "=" in line:
|
||||
key, value = line.split("=", 1)
|
||||
key = key.strip()
|
||||
value = value.strip().strip('"')
|
||||
current_section[key] = value
|
||||
return result
|
||||
|
||||
|
||||
def read_toml(file_path: str = "pyproject.toml"):
|
||||
"""Read the content of a TOML file and return it as a dictionary."""
|
||||
with open(file_path, "rb") as f:
|
||||
@@ -63,7 +43,7 @@ def read_toml(file_path: str = "pyproject.toml"):
|
||||
def parse_toml(content):
|
||||
if sys.version_info >= (3, 11):
|
||||
return tomllib.loads(content)
|
||||
return simple_toml_parser(content)
|
||||
return tomli.loads(content)
|
||||
|
||||
|
||||
def get_project_name(
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import importlib.metadata
|
||||
|
||||
|
||||
def get_crewai_version() -> str:
|
||||
"""Get the version number of CrewAI running the CLI"""
|
||||
return importlib.metadata.version("crewai")
|
||||
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
import warnings
|
||||
from concurrent.futures import Future
|
||||
from hashlib import md5
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
@@ -23,12 +22,12 @@ from crewai.agent import Agent
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.memory.user.user_memory import UserMemory
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
@@ -36,6 +35,7 @@ from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
@@ -49,15 +49,11 @@ from crewai.utilities.planning_handler import CrewPlanner
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
agentops = None
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
@@ -538,9 +534,6 @@ class Crew(BaseModel):
|
||||
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
|
||||
if agent.allow_code_execution: # type: ignore # BaseAgent" has no attribute "allow_code_execution"
|
||||
agent.tools += agent.get_code_execution_tools() # type: ignore # "BaseAgent" has no attribute "get_code_execution_tools"; maybe "get_delegation_tools"?
|
||||
|
||||
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
|
||||
@@ -677,7 +670,6 @@ class Crew(BaseModel):
|
||||
)
|
||||
manager.tools = []
|
||||
raise Exception("Manager agent should not have tools")
|
||||
manager.tools = self.manager_agent.get_delegation_tools(self.agents)
|
||||
else:
|
||||
self.manager_llm = (
|
||||
getattr(self.manager_llm, "model_name", None)
|
||||
@@ -689,6 +681,7 @@ class Crew(BaseModel):
|
||||
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
||||
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
|
||||
tools=AgentTools(agents=self.agents).tools(),
|
||||
allow_delegation=True,
|
||||
llm=self.manager_llm,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
@@ -731,7 +724,14 @@ class Crew(BaseModel):
|
||||
f"No agent available for task: {task.description}. Ensure that either the task has an assigned agent or a manager agent is provided."
|
||||
)
|
||||
|
||||
self._prepare_agent_tools(task)
|
||||
# Determine which tools to use - task tools take precedence over agent tools
|
||||
tools_for_task = task.tools or agent_to_use.tools or []
|
||||
tools_for_task = self._prepare_tools(
|
||||
agent_to_use,
|
||||
task,
|
||||
tools_for_task
|
||||
)
|
||||
|
||||
self._log_task_start(task, agent_to_use.role)
|
||||
|
||||
if isinstance(task, ConditionalTask):
|
||||
@@ -748,7 +748,7 @@ class Crew(BaseModel):
|
||||
future = task.execute_async(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=agent_to_use.tools,
|
||||
tools=tools_for_task,
|
||||
)
|
||||
futures.append((task, future, task_index))
|
||||
else:
|
||||
@@ -760,7 +760,7 @@ class Crew(BaseModel):
|
||||
task_output = task.execute_sync(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=agent_to_use.tools,
|
||||
tools=tools_for_task,
|
||||
)
|
||||
task_outputs = [task_output]
|
||||
self._process_task_result(task, task_output)
|
||||
@@ -797,45 +797,67 @@ class Crew(BaseModel):
|
||||
return skipped_task_output
|
||||
return None
|
||||
|
||||
def _prepare_agent_tools(self, task: Task):
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
self._update_manager_tools(task)
|
||||
else:
|
||||
raise ValueError("Manager agent is required for hierarchical process.")
|
||||
elif task.agent and task.agent.allow_delegation:
|
||||
self._add_delegation_tools(task)
|
||||
def _prepare_tools(self, agent: BaseAgent, task: Task, tools: List[Tool]) -> List[Tool]:
|
||||
# Add delegation tools if agent allows delegation
|
||||
if agent.allow_delegation:
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
tools = self._update_manager_tools(task, tools)
|
||||
else:
|
||||
raise ValueError("Manager agent is required for hierarchical process.")
|
||||
|
||||
elif agent and agent.allow_delegation:
|
||||
tools = self._add_delegation_tools(task, tools)
|
||||
|
||||
# Add code execution tools if agent allows code execution
|
||||
if agent.allow_code_execution:
|
||||
tools = self._add_code_execution_tools(agent, tools)
|
||||
|
||||
if agent and agent.multimodal:
|
||||
tools = self._add_multimodal_tools(agent, tools)
|
||||
|
||||
return tools
|
||||
|
||||
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
|
||||
if self.process == Process.hierarchical:
|
||||
return self.manager_agent
|
||||
return task.agent
|
||||
|
||||
def _add_delegation_tools(self, task: Task):
|
||||
def _merge_tools(self, existing_tools: List[Tool], new_tools: List[Tool]) -> List[Tool]:
|
||||
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
|
||||
if not new_tools:
|
||||
return existing_tools
|
||||
|
||||
# Create mapping of tool names to new tools
|
||||
new_tool_map = {tool.name: tool for tool in new_tools}
|
||||
|
||||
# Remove any existing tools that will be replaced
|
||||
tools = [tool for tool in existing_tools if tool.name not in new_tool_map]
|
||||
|
||||
# Add all new tools
|
||||
tools.extend(new_tools)
|
||||
|
||||
return tools
|
||||
|
||||
def _inject_delegation_tools(self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]):
|
||||
delegation_tools = task_agent.get_delegation_tools(agents)
|
||||
return self._merge_tools(tools, delegation_tools)
|
||||
|
||||
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
multimodal_tools = agent.get_multimodal_tools()
|
||||
return self._merge_tools(tools, multimodal_tools)
|
||||
|
||||
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
code_tools = agent.get_code_execution_tools()
|
||||
return self._merge_tools(tools, code_tools)
|
||||
|
||||
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
|
||||
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
|
||||
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
|
||||
delegation_tools = task.agent.get_delegation_tools(agents_for_delegation)
|
||||
|
||||
# Add tools if they are not already in task.tools
|
||||
for new_tool in delegation_tools:
|
||||
# Find the index of the tool with the same name
|
||||
existing_tool_index = next(
|
||||
(
|
||||
index
|
||||
for index, tool in enumerate(task.tools or [])
|
||||
if tool.name == new_tool.name
|
||||
),
|
||||
None,
|
||||
)
|
||||
if not task.tools:
|
||||
task.tools = []
|
||||
|
||||
if existing_tool_index is not None:
|
||||
# Replace the existing tool
|
||||
task.tools[existing_tool_index] = new_tool
|
||||
else:
|
||||
# Add the new tool
|
||||
task.tools.append(new_tool)
|
||||
if not tools:
|
||||
tools = []
|
||||
tools = self._inject_delegation_tools(tools, task.agent, agents_for_delegation)
|
||||
return tools
|
||||
|
||||
def _log_task_start(self, task: Task, role: str = "None"):
|
||||
if self.output_log_file:
|
||||
@@ -843,14 +865,13 @@ class Crew(BaseModel):
|
||||
task_name=task.name, task=task.description, agent=role, status="started"
|
||||
)
|
||||
|
||||
def _update_manager_tools(self, task: Task):
|
||||
def _update_manager_tools(self, task: Task, tools: List[Tool]):
|
||||
if self.manager_agent:
|
||||
if task.agent:
|
||||
self.manager_agent.tools = task.agent.get_delegation_tools([task.agent])
|
||||
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
|
||||
else:
|
||||
self.manager_agent.tools = self.manager_agent.get_delegation_tools(
|
||||
self.agents
|
||||
)
|
||||
tools = self._inject_delegation_tools(tools, self.manager_agent, self.agents)
|
||||
return tools
|
||||
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
|
||||
context = (
|
||||
@@ -1034,6 +1055,7 @@ class Crew(BaseModel):
|
||||
agentops.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
is_auto_end=True,
|
||||
)
|
||||
self._telemetry.end_crew(self, final_string_output)
|
||||
|
||||
@@ -1073,17 +1095,5 @@ class Crew(BaseModel):
|
||||
|
||||
evaluator.print_crew_evaluation_result()
|
||||
|
||||
def __rshift__(self, other: "Crew") -> "Pipeline":
|
||||
"""
|
||||
Implements the >> operator to add another Crew to an existing Pipeline.
|
||||
"""
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
|
||||
if not isinstance(other, Crew):
|
||||
raise TypeError(
|
||||
f"Unsupported operand type for >>: '{type(self).__name__}' and '{type(other).__name__}'"
|
||||
)
|
||||
return Pipeline(stages=[self, other])
|
||||
|
||||
def __repr__(self):
|
||||
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
|
||||
|
||||
@@ -14,8 +14,15 @@ from typing import (
|
||||
cast,
|
||||
)
|
||||
|
||||
from blinker import Signal
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from crewai.flow.flow_events import (
|
||||
FlowFinishedEvent,
|
||||
FlowStartedEvent,
|
||||
MethodExecutionFinishedEvent,
|
||||
MethodExecutionStartedEvent,
|
||||
)
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
from crewai.telemetry import Telemetry
|
||||
@@ -23,7 +30,47 @@ from crewai.telemetry import Telemetry
|
||||
T = TypeVar("T", bound=Union[BaseModel, Dict[str, Any]])
|
||||
|
||||
|
||||
def start(condition=None):
|
||||
def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
|
||||
"""
|
||||
Marks a method as a flow's starting point.
|
||||
|
||||
This decorator designates a method as an entry point for the flow execution.
|
||||
It can optionally specify conditions that trigger the start based on other
|
||||
method executions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
condition : Optional[Union[str, dict, Callable]], optional
|
||||
Defines when the start method should execute. Can be:
|
||||
- str: Name of a method that triggers this start
|
||||
- dict: Contains "type" ("AND"/"OR") and "methods" (list of triggers)
|
||||
- Callable: A method reference that triggers this start
|
||||
Default is None, meaning unconditional start.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Callable
|
||||
A decorator function that marks the method as a flow start point.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the condition format is invalid.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> @start() # Unconditional start
|
||||
>>> def begin_flow(self):
|
||||
... pass
|
||||
|
||||
>>> @start("method_name") # Start after specific method
|
||||
>>> def conditional_start(self):
|
||||
... pass
|
||||
|
||||
>>> @start(and_("method1", "method2")) # Start after multiple methods
|
||||
>>> def complex_start(self):
|
||||
... pass
|
||||
"""
|
||||
def decorator(func):
|
||||
func.__is_start_method__ = True
|
||||
if condition is not None:
|
||||
@@ -48,8 +95,42 @@ def start(condition=None):
|
||||
|
||||
return decorator
|
||||
|
||||
def listen(condition: Union[str, dict, Callable]) -> Callable:
|
||||
"""
|
||||
Creates a listener that executes when specified conditions are met.
|
||||
|
||||
def listen(condition):
|
||||
This decorator sets up a method to execute in response to other method
|
||||
executions in the flow. It supports both simple and complex triggering
|
||||
conditions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
condition : Union[str, dict, Callable]
|
||||
Specifies when the listener should execute. Can be:
|
||||
- str: Name of a method that triggers this listener
|
||||
- dict: Contains "type" ("AND"/"OR") and "methods" (list of triggers)
|
||||
- Callable: A method reference that triggers this listener
|
||||
|
||||
Returns
|
||||
-------
|
||||
Callable
|
||||
A decorator function that sets up the method as a listener.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the condition format is invalid.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> @listen("process_data") # Listen to single method
|
||||
>>> def handle_processed_data(self):
|
||||
... pass
|
||||
|
||||
>>> @listen(or_("success", "failure")) # Listen to multiple methods
|
||||
>>> def handle_completion(self):
|
||||
... pass
|
||||
"""
|
||||
def decorator(func):
|
||||
if isinstance(condition, str):
|
||||
func.__trigger_methods__ = [condition]
|
||||
@@ -73,16 +154,103 @@ def listen(condition):
|
||||
return decorator
|
||||
|
||||
|
||||
def router(method):
|
||||
def router(condition: Union[str, dict, Callable]) -> Callable:
|
||||
"""
|
||||
Creates a routing method that directs flow execution based on conditions.
|
||||
|
||||
This decorator marks a method as a router, which can dynamically determine
|
||||
the next steps in the flow based on its return value. Routers are triggered
|
||||
by specified conditions and can return constants that determine which path
|
||||
the flow should take.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
condition : Union[str, dict, Callable]
|
||||
Specifies when the router should execute. Can be:
|
||||
- str: Name of a method that triggers this router
|
||||
- dict: Contains "type" ("AND"/"OR") and "methods" (list of triggers)
|
||||
- Callable: A method reference that triggers this router
|
||||
|
||||
Returns
|
||||
-------
|
||||
Callable
|
||||
A decorator function that sets up the method as a router.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the condition format is invalid.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> @router("check_status")
|
||||
>>> def route_based_on_status(self):
|
||||
... if self.state.status == "success":
|
||||
... return SUCCESS
|
||||
... return FAILURE
|
||||
|
||||
>>> @router(and_("validate", "process"))
|
||||
>>> def complex_routing(self):
|
||||
... if all([self.state.valid, self.state.processed]):
|
||||
... return CONTINUE
|
||||
... return STOP
|
||||
"""
|
||||
def decorator(func):
|
||||
func.__is_router__ = True
|
||||
func.__router_for__ = method.__name__
|
||||
if isinstance(condition, str):
|
||||
func.__trigger_methods__ = [condition]
|
||||
func.__condition_type__ = "OR"
|
||||
elif (
|
||||
isinstance(condition, dict)
|
||||
and "type" in condition
|
||||
and "methods" in condition
|
||||
):
|
||||
func.__trigger_methods__ = condition["methods"]
|
||||
func.__condition_type__ = condition["type"]
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
func.__trigger_methods__ = [condition.__name__]
|
||||
func.__condition_type__ = "OR"
|
||||
else:
|
||||
raise ValueError(
|
||||
"Condition must be a method, string, or a result of or_() or and_()"
|
||||
)
|
||||
return func
|
||||
|
||||
return decorator
|
||||
|
||||
def or_(*conditions: Union[str, dict, Callable]) -> dict:
|
||||
"""
|
||||
Combines multiple conditions with OR logic for flow control.
|
||||
|
||||
def or_(*conditions):
|
||||
Creates a condition that is satisfied when any of the specified conditions
|
||||
are met. This is used with @start, @listen, or @router decorators to create
|
||||
complex triggering conditions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
*conditions : Union[str, dict, Callable]
|
||||
Variable number of conditions that can be:
|
||||
- str: Method names
|
||||
- dict: Existing condition dictionaries
|
||||
- Callable: Method references
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A condition dictionary with format:
|
||||
{"type": "OR", "methods": list_of_method_names}
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If any condition is invalid.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> @listen(or_("success", "timeout"))
|
||||
>>> def handle_completion(self):
|
||||
... pass
|
||||
"""
|
||||
methods = []
|
||||
for condition in conditions:
|
||||
if isinstance(condition, dict) and "methods" in condition:
|
||||
@@ -96,7 +264,39 @@ def or_(*conditions):
|
||||
return {"type": "OR", "methods": methods}
|
||||
|
||||
|
||||
def and_(*conditions):
|
||||
def and_(*conditions: Union[str, dict, Callable]) -> dict:
|
||||
"""
|
||||
Combines multiple conditions with AND logic for flow control.
|
||||
|
||||
Creates a condition that is satisfied only when all specified conditions
|
||||
are met. This is used with @start, @listen, or @router decorators to create
|
||||
complex triggering conditions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
*conditions : Union[str, dict, Callable]
|
||||
Variable number of conditions that can be:
|
||||
- str: Method names
|
||||
- dict: Existing condition dictionaries
|
||||
- Callable: Method references
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A condition dictionary with format:
|
||||
{"type": "AND", "methods": list_of_method_names}
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If any condition is invalid.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> @listen(and_("validated", "processed"))
|
||||
>>> def handle_complete_data(self):
|
||||
... pass
|
||||
"""
|
||||
methods = []
|
||||
for condition in conditions:
|
||||
if isinstance(condition, dict) and "methods" in condition:
|
||||
@@ -116,8 +316,8 @@ class FlowMeta(type):
|
||||
|
||||
start_methods = []
|
||||
listeners = {}
|
||||
routers = {}
|
||||
router_paths = {}
|
||||
routers = set()
|
||||
|
||||
for attr_name, attr_value in dct.items():
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
@@ -130,18 +330,11 @@ class FlowMeta(type):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
|
||||
elif hasattr(attr_value, "__is_router__"):
|
||||
routers[attr_value.__router_for__] = attr_name
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
# Register router as a listener to its triggering method
|
||||
trigger_method_name = attr_value.__router_for__
|
||||
methods = [trigger_method_name]
|
||||
condition_type = "OR"
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
|
||||
routers.add(attr_name)
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
setattr(cls, "_start_methods", start_methods)
|
||||
setattr(cls, "_listeners", listeners)
|
||||
@@ -156,9 +349,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
_start_methods: List[str] = []
|
||||
_listeners: Dict[str, tuple[str, List[str]]] = {}
|
||||
_routers: Dict[str, str] = {}
|
||||
_routers: Set[str] = set()
|
||||
_router_paths: Dict[str, List[str]] = {}
|
||||
initial_state: Union[Type[T], T, None] = None
|
||||
event_emitter = Signal("event_emitter")
|
||||
|
||||
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
|
||||
class _FlowGeneric(cls): # type: ignore
|
||||
@@ -202,20 +396,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
return self._method_outputs
|
||||
|
||||
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Initializes or updates the state with the provided inputs.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of inputs to initialize or update the state.
|
||||
|
||||
Raises:
|
||||
ValueError: If inputs do not match the structured state model.
|
||||
TypeError: If state is neither a BaseModel instance nor a dictionary.
|
||||
"""
|
||||
if isinstance(self._state, BaseModel):
|
||||
# Structured state management
|
||||
# Structured state
|
||||
try:
|
||||
# Define a function to create the dynamic class
|
||||
|
||||
def create_model_with_extra_forbid(
|
||||
base_model: Type[BaseModel],
|
||||
) -> Type[BaseModel]:
|
||||
@@ -225,50 +409,33 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
return ModelWithExtraForbid
|
||||
|
||||
# Create the dynamic class
|
||||
ModelWithExtraForbid = create_model_with_extra_forbid(
|
||||
self._state.__class__
|
||||
)
|
||||
|
||||
# Create a new instance using the combined state and inputs
|
||||
self._state = cast(
|
||||
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
|
||||
)
|
||||
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
||||
elif isinstance(self._state, dict):
|
||||
# Unstructured state management
|
||||
self._state.update(inputs)
|
||||
else:
|
||||
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow synchronously.
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=FlowStartedEvent(
|
||||
type="flow_started",
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
return asyncio.run(self.kickoff_async())
|
||||
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow asynchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
if not self._start_methods:
|
||||
raise ValueError("No start method defined")
|
||||
|
||||
@@ -276,22 +443,42 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
)
|
||||
|
||||
# Create tasks for all start methods
|
||||
tasks = [
|
||||
self._execute_start_method(start_method)
|
||||
for start_method in self._start_methods
|
||||
]
|
||||
|
||||
# Run all start methods concurrently
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
# Return the final output (from the last executed method)
|
||||
if self._method_outputs:
|
||||
return self._method_outputs[-1]
|
||||
else:
|
||||
return None # Or raise an exception if no methods were executed
|
||||
final_output = self._method_outputs[-1] if self._method_outputs else None
|
||||
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=FlowFinishedEvent(
|
||||
type="flow_finished",
|
||||
flow_name=self.__class__.__name__,
|
||||
result=final_output,
|
||||
),
|
||||
)
|
||||
return final_output
|
||||
|
||||
async def _execute_start_method(self, start_method_name: str) -> None:
|
||||
"""
|
||||
Executes a flow's start method and its triggered listeners.
|
||||
|
||||
This internal method handles the execution of methods marked with @start
|
||||
decorator and manages the subsequent chain of listener executions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start_method_name : str
|
||||
The name of the start method to execute.
|
||||
|
||||
Notes
|
||||
-----
|
||||
- Executes the start method and captures its result
|
||||
- Triggers execution of any listeners waiting on this start method
|
||||
- Part of the flow's initialization sequence
|
||||
"""
|
||||
result = await self._execute_method(
|
||||
start_method_name, self._methods[start_method_name]
|
||||
)
|
||||
@@ -305,70 +492,181 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if asyncio.iscoroutinefunction(method)
|
||||
else method(*args, **kwargs)
|
||||
)
|
||||
self._method_outputs.append(result) # Store the output
|
||||
|
||||
# Track method execution counts
|
||||
self._method_outputs.append(result)
|
||||
self._method_execution_counts[method_name] = (
|
||||
self._method_execution_counts.get(method_name, 0) + 1
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
|
||||
listener_tasks = []
|
||||
"""
|
||||
Executes all listeners and routers triggered by a method completion.
|
||||
|
||||
if trigger_method in self._routers:
|
||||
router_method = self._methods[self._routers[trigger_method]]
|
||||
path = await self._execute_method(
|
||||
self._routers[trigger_method], router_method
|
||||
This internal method manages the execution flow by:
|
||||
1. First executing all triggered routers sequentially
|
||||
2. Then executing all triggered listeners in parallel
|
||||
|
||||
Parameters
|
||||
----------
|
||||
trigger_method : str
|
||||
The name of the method that triggered these listeners.
|
||||
result : Any
|
||||
The result from the triggering method, passed to listeners
|
||||
that accept parameters.
|
||||
|
||||
Notes
|
||||
-----
|
||||
- Routers are executed sequentially to maintain flow control
|
||||
- Each router's result becomes the new trigger_method
|
||||
- Normal listeners are executed in parallel for efficiency
|
||||
- Listeners can receive the trigger method's result as a parameter
|
||||
"""
|
||||
# First, handle routers repeatedly until no router triggers anymore
|
||||
while True:
|
||||
routers_triggered = self._find_triggered_methods(
|
||||
trigger_method, router_only=True
|
||||
)
|
||||
trigger_method = path
|
||||
if not routers_triggered:
|
||||
break
|
||||
for router_name in routers_triggered:
|
||||
await self._execute_single_listener(router_name, result)
|
||||
# After executing router, the router's result is the path
|
||||
# The last router executed sets the trigger_method
|
||||
# The router result is the last element in self._method_outputs
|
||||
trigger_method = self._method_outputs[-1]
|
||||
|
||||
# Now that no more routers are triggered by current trigger_method,
|
||||
# execute normal listeners
|
||||
listeners_triggered = self._find_triggered_methods(
|
||||
trigger_method, router_only=False
|
||||
)
|
||||
if listeners_triggered:
|
||||
tasks = [
|
||||
self._execute_single_listener(listener_name, result)
|
||||
for listener_name in listeners_triggered
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
def _find_triggered_methods(
|
||||
self, trigger_method: str, router_only: bool
|
||||
) -> List[str]:
|
||||
"""
|
||||
Finds all methods that should be triggered based on conditions.
|
||||
|
||||
This internal method evaluates both OR and AND conditions to determine
|
||||
which methods should be executed next in the flow.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
trigger_method : str
|
||||
The name of the method that just completed execution.
|
||||
router_only : bool
|
||||
If True, only consider router methods.
|
||||
If False, only consider non-router methods.
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[str]
|
||||
Names of methods that should be triggered.
|
||||
|
||||
Notes
|
||||
-----
|
||||
- Handles both OR and AND conditions:
|
||||
* OR: Triggers if any condition is met
|
||||
* AND: Triggers only when all conditions are met
|
||||
- Maintains state for AND conditions using _pending_and_listeners
|
||||
- Separates router and normal listener evaluation
|
||||
"""
|
||||
triggered = []
|
||||
for listener_name, (condition_type, methods) in self._listeners.items():
|
||||
is_router = listener_name in self._routers
|
||||
|
||||
if router_only != is_router:
|
||||
continue
|
||||
|
||||
if condition_type == "OR":
|
||||
# If the trigger_method matches any in methods, run this
|
||||
if trigger_method in methods:
|
||||
# Schedule the listener without preventing re-execution
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
triggered.append(listener_name)
|
||||
elif condition_type == "AND":
|
||||
# Initialize pending methods for this listener if not already done
|
||||
if listener_name not in self._pending_and_listeners:
|
||||
self._pending_and_listeners[listener_name] = set(methods)
|
||||
# Remove the trigger method from pending methods
|
||||
self._pending_and_listeners[listener_name].discard(trigger_method)
|
||||
if trigger_method in self._pending_and_listeners[listener_name]:
|
||||
self._pending_and_listeners[listener_name].discard(trigger_method)
|
||||
|
||||
if not self._pending_and_listeners[listener_name]:
|
||||
# All required methods have been executed
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
triggered.append(listener_name)
|
||||
# Reset pending methods for this listener
|
||||
self._pending_and_listeners.pop(listener_name, None)
|
||||
|
||||
# Run all listener tasks concurrently and wait for them to complete
|
||||
if listener_tasks:
|
||||
await asyncio.gather(*listener_tasks)
|
||||
return triggered
|
||||
|
||||
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
|
||||
"""
|
||||
Executes a single listener method with proper event handling.
|
||||
|
||||
This internal method manages the execution of an individual listener,
|
||||
including parameter inspection, event emission, and error handling.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
listener_name : str
|
||||
The name of the listener method to execute.
|
||||
result : Any
|
||||
The result from the triggering method, which may be passed
|
||||
to the listener if it accepts parameters.
|
||||
|
||||
Notes
|
||||
-----
|
||||
- Inspects method signature to determine if it accepts the trigger result
|
||||
- Emits events for method execution start and finish
|
||||
- Handles errors gracefully with detailed logging
|
||||
- Recursively triggers listeners of this listener
|
||||
- Supports both parameterized and parameter-less listeners
|
||||
|
||||
Error Handling
|
||||
-------------
|
||||
Catches and logs any exceptions during execution, preventing
|
||||
individual listener failures from breaking the entire flow.
|
||||
"""
|
||||
try:
|
||||
method = self._methods[listener_name]
|
||||
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=MethodExecutionStartedEvent(
|
||||
type="method_execution_started",
|
||||
method_name=listener_name,
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
sig = inspect.signature(method)
|
||||
params = list(sig.parameters.values())
|
||||
|
||||
# Exclude 'self' parameter
|
||||
method_params = [p for p in params if p.name != "self"]
|
||||
|
||||
if method_params:
|
||||
# If listener expects parameters, pass the result
|
||||
listener_result = await self._execute_method(
|
||||
listener_name, method, result
|
||||
)
|
||||
else:
|
||||
# If listener does not expect parameters, call without arguments
|
||||
listener_result = await self._execute_method(listener_name, method)
|
||||
|
||||
# Execute listeners of this listener
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=MethodExecutionFinishedEvent(
|
||||
type="method_execution_finished",
|
||||
method_name=listener_name,
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute listeners (and possibly routers) of this listener
|
||||
await self._execute_listeners(listener_name, listener_result)
|
||||
|
||||
except Exception as e:
|
||||
print(
|
||||
f"[Flow._execute_single_listener] Error in method {listener_name}: {e}"
|
||||
@@ -381,5 +679,4 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self._telemetry.flow_plotting_span(
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
)
|
||||
|
||||
plot_flow(self, filename)
|
||||
|
||||
33
src/crewai/flow/flow_events.py
Normal file
33
src/crewai/flow/flow_events.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from dataclasses import dataclass, field
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
class Event:
|
||||
type: str
|
||||
flow_name: str
|
||||
timestamp: datetime = field(init=False)
|
||||
|
||||
def __post_init__(self):
|
||||
self.timestamp = datetime.now()
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlowStartedEvent(Event):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class MethodExecutionStartedEvent(Event):
|
||||
method_name: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class MethodExecutionFinishedEvent(Event):
|
||||
method_name: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlowFinishedEvent(Event):
|
||||
result: Optional[Any] = None
|
||||
@@ -1,12 +1,14 @@
|
||||
# flow_visualizer.py
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from pyvis.network import Network
|
||||
|
||||
from crewai.flow.config import COLORS, NODE_STYLES
|
||||
from crewai.flow.html_template_handler import HTMLTemplateHandler
|
||||
from crewai.flow.legend_generator import generate_legend_items_html, get_legend_items
|
||||
from crewai.flow.path_utils import safe_path_join, validate_path_exists
|
||||
from crewai.flow.utils import calculate_node_levels
|
||||
from crewai.flow.visualization_utils import (
|
||||
add_edges,
|
||||
@@ -16,89 +18,209 @@ from crewai.flow.visualization_utils import (
|
||||
|
||||
|
||||
class FlowPlot:
|
||||
"""Handles the creation and rendering of flow visualization diagrams."""
|
||||
|
||||
def __init__(self, flow):
|
||||
"""
|
||||
Initialize FlowPlot with a flow object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
flow : Flow
|
||||
A Flow instance to visualize.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If flow object is invalid or missing required attributes.
|
||||
"""
|
||||
if not hasattr(flow, '_methods'):
|
||||
raise ValueError("Invalid flow object: missing '_methods' attribute")
|
||||
if not hasattr(flow, '_listeners'):
|
||||
raise ValueError("Invalid flow object: missing '_listeners' attribute")
|
||||
if not hasattr(flow, '_start_methods'):
|
||||
raise ValueError("Invalid flow object: missing '_start_methods' attribute")
|
||||
|
||||
self.flow = flow
|
||||
self.colors = COLORS
|
||||
self.node_styles = NODE_STYLES
|
||||
|
||||
def plot(self, filename):
|
||||
net = Network(
|
||||
directed=True,
|
||||
height="750px",
|
||||
width="100%",
|
||||
bgcolor=self.colors["bg"],
|
||||
layout=None,
|
||||
)
|
||||
|
||||
# Set options to disable physics
|
||||
net.set_options(
|
||||
"""
|
||||
var options = {
|
||||
"nodes": {
|
||||
"font": {
|
||||
"multi": "html"
|
||||
}
|
||||
},
|
||||
"physics": {
|
||||
"enabled": false
|
||||
}
|
||||
}
|
||||
"""
|
||||
)
|
||||
Generate and save an HTML visualization of the flow.
|
||||
|
||||
# Calculate levels for nodes
|
||||
node_levels = calculate_node_levels(self.flow)
|
||||
Parameters
|
||||
----------
|
||||
filename : str
|
||||
Name of the output file (without extension).
|
||||
|
||||
# Compute positions
|
||||
node_positions = compute_positions(self.flow, node_levels)
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If filename is invalid or network generation fails.
|
||||
IOError
|
||||
If file operations fail or visualization cannot be generated.
|
||||
RuntimeError
|
||||
If network visualization generation fails.
|
||||
"""
|
||||
if not filename or not isinstance(filename, str):
|
||||
raise ValueError("Filename must be a non-empty string")
|
||||
|
||||
try:
|
||||
# Initialize network
|
||||
net = Network(
|
||||
directed=True,
|
||||
height="750px",
|
||||
width="100%",
|
||||
bgcolor=self.colors["bg"],
|
||||
layout=None,
|
||||
)
|
||||
|
||||
# Add nodes to the network
|
||||
add_nodes_to_network(net, self.flow, node_positions, self.node_styles)
|
||||
# Set options to disable physics
|
||||
net.set_options(
|
||||
"""
|
||||
var options = {
|
||||
"nodes": {
|
||||
"font": {
|
||||
"multi": "html"
|
||||
}
|
||||
},
|
||||
"physics": {
|
||||
"enabled": false
|
||||
}
|
||||
}
|
||||
"""
|
||||
)
|
||||
|
||||
# Add edges to the network
|
||||
add_edges(net, self.flow, node_positions, self.colors)
|
||||
# Calculate levels for nodes
|
||||
try:
|
||||
node_levels = calculate_node_levels(self.flow)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to calculate node levels: {str(e)}")
|
||||
|
||||
network_html = net.generate_html()
|
||||
final_html_content = self._generate_final_html(network_html)
|
||||
# Compute positions
|
||||
try:
|
||||
node_positions = compute_positions(self.flow, node_levels)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to compute node positions: {str(e)}")
|
||||
|
||||
# Save the final HTML content to the file
|
||||
with open(f"{filename}.html", "w", encoding="utf-8") as f:
|
||||
f.write(final_html_content)
|
||||
print(f"Plot saved as {filename}.html")
|
||||
# Add nodes to the network
|
||||
try:
|
||||
add_nodes_to_network(net, self.flow, node_positions, self.node_styles)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to add nodes to network: {str(e)}")
|
||||
|
||||
self._cleanup_pyvis_lib()
|
||||
# Add edges to the network
|
||||
try:
|
||||
add_edges(net, self.flow, node_positions, self.colors)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to add edges to network: {str(e)}")
|
||||
|
||||
# Generate HTML
|
||||
try:
|
||||
network_html = net.generate_html()
|
||||
final_html_content = self._generate_final_html(network_html)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to generate network visualization: {str(e)}")
|
||||
|
||||
# Save the final HTML content to the file
|
||||
try:
|
||||
with open(f"{filename}.html", "w", encoding="utf-8") as f:
|
||||
f.write(final_html_content)
|
||||
print(f"Plot saved as {filename}.html")
|
||||
except IOError as e:
|
||||
raise IOError(f"Failed to save flow visualization to {filename}.html: {str(e)}")
|
||||
|
||||
except (ValueError, RuntimeError, IOError) as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Unexpected error during flow visualization: {str(e)}")
|
||||
finally:
|
||||
self._cleanup_pyvis_lib()
|
||||
|
||||
def _generate_final_html(self, network_html):
|
||||
# Extract just the body content from the generated HTML
|
||||
current_dir = os.path.dirname(__file__)
|
||||
template_path = os.path.join(
|
||||
current_dir, "assets", "crewai_flow_visual_template.html"
|
||||
)
|
||||
logo_path = os.path.join(current_dir, "assets", "crewai_logo.svg")
|
||||
"""
|
||||
Generate the final HTML content with network visualization and legend.
|
||||
|
||||
html_handler = HTMLTemplateHandler(template_path, logo_path)
|
||||
network_body = html_handler.extract_body_content(network_html)
|
||||
Parameters
|
||||
----------
|
||||
network_html : str
|
||||
HTML content generated by pyvis Network.
|
||||
|
||||
# Generate the legend items HTML
|
||||
legend_items = get_legend_items(self.colors)
|
||||
legend_items_html = generate_legend_items_html(legend_items)
|
||||
final_html_content = html_handler.generate_final_html(
|
||||
network_body, legend_items_html
|
||||
)
|
||||
return final_html_content
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
Complete HTML content with styling and legend.
|
||||
|
||||
Raises
|
||||
------
|
||||
IOError
|
||||
If template or logo files cannot be accessed.
|
||||
ValueError
|
||||
If network_html is invalid.
|
||||
"""
|
||||
if not network_html:
|
||||
raise ValueError("Invalid network HTML content")
|
||||
|
||||
try:
|
||||
# Extract just the body content from the generated HTML
|
||||
current_dir = os.path.dirname(__file__)
|
||||
template_path = safe_path_join("assets", "crewai_flow_visual_template.html", root=current_dir)
|
||||
logo_path = safe_path_join("assets", "crewai_logo.svg", root=current_dir)
|
||||
|
||||
if not os.path.exists(template_path):
|
||||
raise IOError(f"Template file not found: {template_path}")
|
||||
if not os.path.exists(logo_path):
|
||||
raise IOError(f"Logo file not found: {logo_path}")
|
||||
|
||||
html_handler = HTMLTemplateHandler(template_path, logo_path)
|
||||
network_body = html_handler.extract_body_content(network_html)
|
||||
|
||||
# Generate the legend items HTML
|
||||
legend_items = get_legend_items(self.colors)
|
||||
legend_items_html = generate_legend_items_html(legend_items)
|
||||
final_html_content = html_handler.generate_final_html(
|
||||
network_body, legend_items_html
|
||||
)
|
||||
return final_html_content
|
||||
except Exception as e:
|
||||
raise IOError(f"Failed to generate visualization HTML: {str(e)}")
|
||||
|
||||
def _cleanup_pyvis_lib(self):
|
||||
# Clean up the generated lib folder
|
||||
lib_folder = os.path.join(os.getcwd(), "lib")
|
||||
"""
|
||||
Clean up the generated lib folder from pyvis.
|
||||
|
||||
This method safely removes the temporary lib directory created by pyvis
|
||||
during network visualization generation.
|
||||
"""
|
||||
try:
|
||||
lib_folder = safe_path_join("lib", root=os.getcwd())
|
||||
if os.path.exists(lib_folder) and os.path.isdir(lib_folder):
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(lib_folder)
|
||||
except ValueError as e:
|
||||
print(f"Error validating lib folder path: {e}")
|
||||
except Exception as e:
|
||||
print(f"Error cleaning up {lib_folder}: {e}")
|
||||
print(f"Error cleaning up lib folder: {e}")
|
||||
|
||||
|
||||
def plot_flow(flow, filename="flow_plot"):
|
||||
"""
|
||||
Convenience function to create and save a flow visualization.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
flow : Flow
|
||||
Flow instance to visualize.
|
||||
filename : str, optional
|
||||
Output filename without extension, by default "flow_plot".
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If flow object or filename is invalid.
|
||||
IOError
|
||||
If file operations fail.
|
||||
"""
|
||||
visualizer = FlowPlot(flow)
|
||||
visualizer.plot(filename)
|
||||
|
||||
@@ -1,26 +1,53 @@
|
||||
import base64
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
from crewai.flow.path_utils import safe_path_join, validate_path_exists
|
||||
|
||||
|
||||
class HTMLTemplateHandler:
|
||||
"""Handles HTML template processing and generation for flow visualization diagrams."""
|
||||
|
||||
def __init__(self, template_path, logo_path):
|
||||
self.template_path = template_path
|
||||
self.logo_path = logo_path
|
||||
"""
|
||||
Initialize HTMLTemplateHandler with validated template and logo paths.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
template_path : str
|
||||
Path to the HTML template file.
|
||||
logo_path : str
|
||||
Path to the logo image file.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If template or logo paths are invalid or files don't exist.
|
||||
"""
|
||||
try:
|
||||
self.template_path = validate_path_exists(template_path, "file")
|
||||
self.logo_path = validate_path_exists(logo_path, "file")
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Invalid template or logo path: {e}")
|
||||
|
||||
def read_template(self):
|
||||
"""Read and return the HTML template file contents."""
|
||||
with open(self.template_path, "r", encoding="utf-8") as f:
|
||||
return f.read()
|
||||
|
||||
def encode_logo(self):
|
||||
"""Convert the logo SVG file to base64 encoded string."""
|
||||
with open(self.logo_path, "rb") as logo_file:
|
||||
logo_svg_data = logo_file.read()
|
||||
return base64.b64encode(logo_svg_data).decode("utf-8")
|
||||
|
||||
def extract_body_content(self, html):
|
||||
"""Extract and return content between body tags from HTML string."""
|
||||
match = re.search("<body.*?>(.*?)</body>", html, re.DOTALL)
|
||||
return match.group(1) if match else ""
|
||||
|
||||
def generate_legend_items_html(self, legend_items):
|
||||
"""Generate HTML markup for the legend items."""
|
||||
legend_items_html = ""
|
||||
for item in legend_items:
|
||||
if "border" in item:
|
||||
@@ -48,6 +75,7 @@ class HTMLTemplateHandler:
|
||||
return legend_items_html
|
||||
|
||||
def generate_final_html(self, network_body, legend_items_html, title="Flow Plot"):
|
||||
"""Combine all components into final HTML document with network visualization."""
|
||||
html_template = self.read_template()
|
||||
logo_svg_base64 = self.encode_logo()
|
||||
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
|
||||
def get_legend_items(colors):
|
||||
return [
|
||||
{"label": "Start Method", "color": colors["start"]},
|
||||
|
||||
135
src/crewai/flow/path_utils.py
Normal file
135
src/crewai/flow/path_utils.py
Normal file
@@ -0,0 +1,135 @@
|
||||
"""
|
||||
Path utilities for secure file operations in CrewAI flow module.
|
||||
|
||||
This module provides utilities for secure path handling to prevent directory
|
||||
traversal attacks and ensure paths remain within allowed boundaries.
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
def safe_path_join(*parts: str, root: Union[str, Path, None] = None) -> str:
|
||||
"""
|
||||
Safely join path components and ensure the result is within allowed boundaries.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
*parts : str
|
||||
Variable number of path components to join.
|
||||
root : Union[str, Path, None], optional
|
||||
Root directory to use as base. If None, uses current working directory.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
String representation of the resolved path.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the resulting path would be outside the root directory
|
||||
or if any path component is invalid.
|
||||
"""
|
||||
if not parts:
|
||||
raise ValueError("No path components provided")
|
||||
|
||||
try:
|
||||
# Convert all parts to strings and clean them
|
||||
clean_parts = [str(part).strip() for part in parts if part]
|
||||
if not clean_parts:
|
||||
raise ValueError("No valid path components provided")
|
||||
|
||||
# Establish root directory
|
||||
root_path = Path(root).resolve() if root else Path.cwd()
|
||||
|
||||
# Join and resolve the full path
|
||||
full_path = Path(root_path, *clean_parts).resolve()
|
||||
|
||||
# Check if the resolved path is within root
|
||||
if not str(full_path).startswith(str(root_path)):
|
||||
raise ValueError(
|
||||
f"Invalid path: Potential directory traversal. Path must be within {root_path}"
|
||||
)
|
||||
|
||||
return str(full_path)
|
||||
|
||||
except Exception as e:
|
||||
if isinstance(e, ValueError):
|
||||
raise
|
||||
raise ValueError(f"Invalid path components: {str(e)}")
|
||||
|
||||
|
||||
def validate_path_exists(path: Union[str, Path], file_type: str = "file") -> str:
|
||||
"""
|
||||
Validate that a path exists and is of the expected type.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : Union[str, Path]
|
||||
Path to validate.
|
||||
file_type : str, optional
|
||||
Expected type ('file' or 'directory'), by default 'file'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
Validated path as string.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If path doesn't exist or is not of expected type.
|
||||
"""
|
||||
try:
|
||||
path_obj = Path(path).resolve()
|
||||
|
||||
if not path_obj.exists():
|
||||
raise ValueError(f"Path does not exist: {path}")
|
||||
|
||||
if file_type == "file" and not path_obj.is_file():
|
||||
raise ValueError(f"Path is not a file: {path}")
|
||||
elif file_type == "directory" and not path_obj.is_dir():
|
||||
raise ValueError(f"Path is not a directory: {path}")
|
||||
|
||||
return str(path_obj)
|
||||
|
||||
except Exception as e:
|
||||
if isinstance(e, ValueError):
|
||||
raise
|
||||
raise ValueError(f"Invalid path: {str(e)}")
|
||||
|
||||
|
||||
def list_files(directory: Union[str, Path], pattern: str = "*") -> List[str]:
|
||||
"""
|
||||
Safely list files in a directory matching a pattern.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
directory : Union[str, Path]
|
||||
Directory to search in.
|
||||
pattern : str, optional
|
||||
Glob pattern to match files against, by default "*".
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[str]
|
||||
List of matching file paths.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If directory is invalid or inaccessible.
|
||||
"""
|
||||
try:
|
||||
dir_path = Path(directory).resolve()
|
||||
if not dir_path.is_dir():
|
||||
raise ValueError(f"Not a directory: {directory}")
|
||||
|
||||
return [str(p) for p in dir_path.glob(pattern) if p.is_file()]
|
||||
|
||||
except Exception as e:
|
||||
if isinstance(e, ValueError):
|
||||
raise
|
||||
raise ValueError(f"Error listing files: {str(e)}")
|
||||
@@ -1,9 +1,25 @@
|
||||
"""
|
||||
Utility functions for flow visualization and dependency analysis.
|
||||
|
||||
This module provides core functionality for analyzing and manipulating flow structures,
|
||||
including node level calculation, ancestor tracking, and return value analysis.
|
||||
Functions in this module are primarily used by the visualization system to create
|
||||
accurate and informative flow diagrams.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> flow = Flow()
|
||||
>>> node_levels = calculate_node_levels(flow)
|
||||
>>> ancestors = build_ancestor_dict(flow)
|
||||
"""
|
||||
|
||||
import ast
|
||||
import inspect
|
||||
import textwrap
|
||||
from typing import Any, Dict, List, Optional, Set, Union
|
||||
|
||||
|
||||
def get_possible_return_constants(function):
|
||||
def get_possible_return_constants(function: Any) -> Optional[List[str]]:
|
||||
try:
|
||||
source = inspect.getsource(function)
|
||||
except OSError:
|
||||
@@ -31,23 +47,80 @@ def get_possible_return_constants(function):
|
||||
print(f"Source code:\n{source}")
|
||||
return None
|
||||
|
||||
return_values = []
|
||||
return_values = set()
|
||||
dict_definitions = {}
|
||||
|
||||
class DictionaryAssignmentVisitor(ast.NodeVisitor):
|
||||
def visit_Assign(self, node):
|
||||
# Check if this assignment is assigning a dictionary literal to a variable
|
||||
if isinstance(node.value, ast.Dict) and len(node.targets) == 1:
|
||||
target = node.targets[0]
|
||||
if isinstance(target, ast.Name):
|
||||
var_name = target.id
|
||||
dict_values = []
|
||||
# Extract string values from the dictionary
|
||||
for val in node.value.values:
|
||||
if isinstance(val, ast.Constant) and isinstance(val.value, str):
|
||||
dict_values.append(val.value)
|
||||
# If non-string, skip or just ignore
|
||||
if dict_values:
|
||||
dict_definitions[var_name] = dict_values
|
||||
self.generic_visit(node)
|
||||
|
||||
class ReturnVisitor(ast.NodeVisitor):
|
||||
def visit_Return(self, node):
|
||||
# Check if the return value is a constant (Python 3.8+)
|
||||
if isinstance(node.value, ast.Constant):
|
||||
return_values.append(node.value.value)
|
||||
# Direct string return
|
||||
if isinstance(node.value, ast.Constant) and isinstance(
|
||||
node.value.value, str
|
||||
):
|
||||
return_values.add(node.value.value)
|
||||
# Dictionary-based return, like return paths[result]
|
||||
elif isinstance(node.value, ast.Subscript):
|
||||
# Check if we're subscripting a known dictionary variable
|
||||
if isinstance(node.value.value, ast.Name):
|
||||
var_name = node.value.value.id
|
||||
if var_name in dict_definitions:
|
||||
# Add all possible dictionary values
|
||||
for v in dict_definitions[var_name]:
|
||||
return_values.add(v)
|
||||
self.generic_visit(node)
|
||||
|
||||
# First pass: identify dictionary assignments
|
||||
DictionaryAssignmentVisitor().visit(code_ast)
|
||||
# Second pass: identify returns
|
||||
ReturnVisitor().visit(code_ast)
|
||||
return return_values
|
||||
|
||||
return list(return_values) if return_values else None
|
||||
|
||||
|
||||
def calculate_node_levels(flow):
|
||||
levels = {}
|
||||
queue = []
|
||||
visited = set()
|
||||
pending_and_listeners = {}
|
||||
def calculate_node_levels(flow: Any) -> Dict[str, int]:
|
||||
"""
|
||||
Calculate the hierarchical level of each node in the flow.
|
||||
|
||||
Performs a breadth-first traversal of the flow graph to assign levels
|
||||
to nodes, starting with start methods at level 0.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
flow : Any
|
||||
The flow instance containing methods, listeners, and router configurations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, int]
|
||||
Dictionary mapping method names to their hierarchical levels.
|
||||
|
||||
Notes
|
||||
-----
|
||||
- Start methods are assigned level 0
|
||||
- Each subsequent connected node is assigned level = parent_level + 1
|
||||
- Handles both OR and AND conditions for listeners
|
||||
- Processes router paths separately
|
||||
"""
|
||||
levels: Dict[str, int] = {}
|
||||
queue: List[str] = []
|
||||
visited: Set[str] = set()
|
||||
pending_and_listeners: Dict[str, Set[str]] = {}
|
||||
|
||||
# Make all start methods at level 0
|
||||
for method_name, method in flow._methods.items():
|
||||
@@ -61,10 +134,7 @@ def calculate_node_levels(flow):
|
||||
current_level = levels[current]
|
||||
visited.add(current)
|
||||
|
||||
for listener_name, (
|
||||
condition_type,
|
||||
trigger_methods,
|
||||
) in flow._listeners.items():
|
||||
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
|
||||
if condition_type == "OR":
|
||||
if current in trigger_methods:
|
||||
if (
|
||||
@@ -89,7 +159,7 @@ def calculate_node_levels(flow):
|
||||
queue.append(listener_name)
|
||||
|
||||
# Handle router connections
|
||||
if current in flow._routers.values():
|
||||
if current in flow._routers:
|
||||
router_method_name = current
|
||||
paths = flow._router_paths.get(router_method_name, [])
|
||||
for path in paths:
|
||||
@@ -105,10 +175,24 @@ def calculate_node_levels(flow):
|
||||
levels[listener_name] = current_level + 1
|
||||
if listener_name not in visited:
|
||||
queue.append(listener_name)
|
||||
|
||||
return levels
|
||||
|
||||
|
||||
def count_outgoing_edges(flow):
|
||||
def count_outgoing_edges(flow: Any) -> Dict[str, int]:
|
||||
"""
|
||||
Count the number of outgoing edges for each method in the flow.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
flow : Any
|
||||
The flow instance to analyze.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, int]
|
||||
Dictionary mapping method names to their outgoing edge count.
|
||||
"""
|
||||
counts = {}
|
||||
for method_name in flow._methods:
|
||||
counts[method_name] = 0
|
||||
@@ -120,16 +204,53 @@ def count_outgoing_edges(flow):
|
||||
return counts
|
||||
|
||||
|
||||
def build_ancestor_dict(flow):
|
||||
ancestors = {node: set() for node in flow._methods}
|
||||
visited = set()
|
||||
def build_ancestor_dict(flow: Any) -> Dict[str, Set[str]]:
|
||||
"""
|
||||
Build a dictionary mapping each node to its ancestor nodes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
flow : Any
|
||||
The flow instance to analyze.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Set[str]]
|
||||
Dictionary mapping each node to a set of its ancestor nodes.
|
||||
"""
|
||||
ancestors: Dict[str, Set[str]] = {node: set() for node in flow._methods}
|
||||
visited: Set[str] = set()
|
||||
for node in flow._methods:
|
||||
if node not in visited:
|
||||
dfs_ancestors(node, ancestors, visited, flow)
|
||||
return ancestors
|
||||
|
||||
|
||||
def dfs_ancestors(node, ancestors, visited, flow):
|
||||
def dfs_ancestors(
|
||||
node: str,
|
||||
ancestors: Dict[str, Set[str]],
|
||||
visited: Set[str],
|
||||
flow: Any
|
||||
) -> None:
|
||||
"""
|
||||
Perform depth-first search to build ancestor relationships.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
node : str
|
||||
Current node being processed.
|
||||
ancestors : Dict[str, Set[str]]
|
||||
Dictionary tracking ancestor relationships.
|
||||
visited : Set[str]
|
||||
Set of already visited nodes.
|
||||
flow : Any
|
||||
The flow instance being analyzed.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function modifies the ancestors dictionary in-place to build
|
||||
the complete ancestor graph.
|
||||
"""
|
||||
if node in visited:
|
||||
return
|
||||
visited.add(node)
|
||||
@@ -142,7 +263,7 @@ def dfs_ancestors(node, ancestors, visited, flow):
|
||||
dfs_ancestors(listener_name, ancestors, visited, flow)
|
||||
|
||||
# Handle router methods separately
|
||||
if node in flow._routers.values():
|
||||
if node in flow._routers:
|
||||
router_method_name = node
|
||||
paths = flow._router_paths.get(router_method_name, [])
|
||||
for path in paths:
|
||||
@@ -153,12 +274,48 @@ def dfs_ancestors(node, ancestors, visited, flow):
|
||||
dfs_ancestors(listener_name, ancestors, visited, flow)
|
||||
|
||||
|
||||
def is_ancestor(node, ancestor_candidate, ancestors):
|
||||
def is_ancestor(node: str, ancestor_candidate: str, ancestors: Dict[str, Set[str]]) -> bool:
|
||||
"""
|
||||
Check if one node is an ancestor of another.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
node : str
|
||||
The node to check ancestors for.
|
||||
ancestor_candidate : str
|
||||
The potential ancestor node.
|
||||
ancestors : Dict[str, Set[str]]
|
||||
Dictionary containing ancestor relationships.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if ancestor_candidate is an ancestor of node, False otherwise.
|
||||
"""
|
||||
return ancestor_candidate in ancestors.get(node, set())
|
||||
|
||||
|
||||
def build_parent_children_dict(flow):
|
||||
parent_children = {}
|
||||
def build_parent_children_dict(flow: Any) -> Dict[str, List[str]]:
|
||||
"""
|
||||
Build a dictionary mapping parent nodes to their children.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
flow : Any
|
||||
The flow instance to analyze.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, List[str]]
|
||||
Dictionary mapping parent method names to lists of their child method names.
|
||||
|
||||
Notes
|
||||
-----
|
||||
- Maps listeners to their trigger methods
|
||||
- Maps router methods to their paths and listeners
|
||||
- Children lists are sorted for consistent ordering
|
||||
"""
|
||||
parent_children: Dict[str, List[str]] = {}
|
||||
|
||||
# Map listeners to their trigger methods
|
||||
for listener_name, (_, trigger_methods) in flow._listeners.items():
|
||||
@@ -182,7 +339,24 @@ def build_parent_children_dict(flow):
|
||||
return parent_children
|
||||
|
||||
|
||||
def get_child_index(parent, child, parent_children):
|
||||
def get_child_index(parent: str, child: str, parent_children: Dict[str, List[str]]) -> int:
|
||||
"""
|
||||
Get the index of a child node in its parent's sorted children list.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
parent : str
|
||||
The parent node name.
|
||||
child : str
|
||||
The child node name to find the index for.
|
||||
parent_children : Dict[str, List[str]]
|
||||
Dictionary mapping parents to their children lists.
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
Zero-based index of the child in its parent's sorted children list.
|
||||
"""
|
||||
children = parent_children.get(parent, [])
|
||||
children.sort()
|
||||
return children.index(child)
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user