mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-07 15:18:29 +00:00
Compare commits
5 Commits
feat/impro
...
improvemen
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
27396a2fe1 | ||
|
|
62d0479fad | ||
|
|
32f2f16251 | ||
|
|
771cce027c | ||
|
|
476396c5d9 |
@@ -216,43 +216,10 @@ MODELS = {
|
||||
"watsonx/ibm/granite-3-8b-instruct",
|
||||
],
|
||||
"bedrock": [
|
||||
"bedrock/us.amazon.nova-pro-v1:0",
|
||||
"bedrock/us.amazon.nova-micro-v1:0",
|
||||
"bedrock/us.amazon.nova-lite-v1:0",
|
||||
"bedrock/us.anthropic.claude-3-5-sonnet-20240620-v1:0",
|
||||
"bedrock/us.anthropic.claude-3-5-haiku-20241022-v1:0",
|
||||
"bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
|
||||
"bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
|
||||
"bedrock/us.anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"bedrock/us.anthropic.claude-3-opus-20240229-v1:0",
|
||||
"bedrock/us.anthropic.claude-3-haiku-20240307-v1:0",
|
||||
"bedrock/us.meta.llama3-2-11b-instruct-v1:0",
|
||||
"bedrock/us.meta.llama3-2-3b-instruct-v1:0",
|
||||
"bedrock/us.meta.llama3-2-90b-instruct-v1:0",
|
||||
"bedrock/us.meta.llama3-2-1b-instruct-v1:0",
|
||||
"bedrock/us.meta.llama3-1-8b-instruct-v1:0",
|
||||
"bedrock/us.meta.llama3-1-70b-instruct-v1:0",
|
||||
"bedrock/us.meta.llama3-3-70b-instruct-v1:0",
|
||||
"bedrock/us.meta.llama3-1-405b-instruct-v1:0",
|
||||
"bedrock/eu.anthropic.claude-3-5-sonnet-20240620-v1:0",
|
||||
"bedrock/eu.anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"bedrock/eu.anthropic.claude-3-haiku-20240307-v1:0",
|
||||
"bedrock/eu.meta.llama3-2-3b-instruct-v1:0",
|
||||
"bedrock/eu.meta.llama3-2-1b-instruct-v1:0",
|
||||
"bedrock/apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
|
||||
"bedrock/apac.anthropic.claude-3-5-sonnet-20241022-v2:0",
|
||||
"bedrock/apac.anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"bedrock/apac.anthropic.claude-3-haiku-20240307-v1:0",
|
||||
"bedrock/amazon.nova-pro-v1:0",
|
||||
"bedrock/amazon.nova-micro-v1:0",
|
||||
"bedrock/amazon.nova-lite-v1:0",
|
||||
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
|
||||
"bedrock/anthropic.claude-3-5-haiku-20241022-v1:0",
|
||||
"bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
|
||||
"bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0",
|
||||
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
|
||||
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-v2:1",
|
||||
"bedrock/anthropic.claude-v2",
|
||||
"bedrock/anthropic.claude-instant-v1",
|
||||
@@ -267,6 +234,8 @@ MODELS = {
|
||||
"bedrock/ai21.j2-mid-v1",
|
||||
"bedrock/ai21.j2-ultra-v1",
|
||||
"bedrock/ai21.jamba-instruct-v1:0",
|
||||
"bedrock/meta.llama2-13b-chat-v1",
|
||||
"bedrock/meta.llama2-70b-chat-v1",
|
||||
"bedrock/mistral.mistral-7b-instruct-v0:2",
|
||||
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
|
||||
],
|
||||
|
||||
@@ -64,7 +64,6 @@ LLM_CONTEXT_WINDOW_SIZES = {
|
||||
"gpt-4-turbo": 128000,
|
||||
"o1-preview": 128000,
|
||||
"o1-mini": 128000,
|
||||
"o3-mini": 200000, # Based on official o3-mini specifications
|
||||
# gemini
|
||||
"gemini-2.0-flash": 1048576,
|
||||
"gemini-1.5-pro": 2097152,
|
||||
@@ -486,23 +485,10 @@ class LLM:
|
||||
"""
|
||||
Returns the context window size, using 75% of the maximum to avoid
|
||||
cutting off messages mid-thread.
|
||||
|
||||
Raises:
|
||||
ValueError: If a model's context window size is outside valid bounds (1024-2097152)
|
||||
"""
|
||||
if self.context_window_size != 0:
|
||||
return self.context_window_size
|
||||
|
||||
MIN_CONTEXT = 1024
|
||||
MAX_CONTEXT = 2097152 # Current max from gemini-1.5-pro
|
||||
|
||||
# Validate all context window sizes
|
||||
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
|
||||
if value < MIN_CONTEXT or value > MAX_CONTEXT:
|
||||
raise ValueError(
|
||||
f"Context window for {key} must be between {MIN_CONTEXT} and {MAX_CONTEXT}"
|
||||
)
|
||||
|
||||
self.context_window_size = int(
|
||||
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
|
||||
)
|
||||
|
||||
@@ -19,8 +19,6 @@ from typing import (
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
get_args,
|
||||
get_origin,
|
||||
)
|
||||
|
||||
from pydantic import (
|
||||
@@ -174,29 +172,15 @@ class Task(BaseModel):
|
||||
"""
|
||||
if v is not None:
|
||||
sig = inspect.signature(v)
|
||||
positional_args = [
|
||||
param
|
||||
for param in sig.parameters.values()
|
||||
if param.default is inspect.Parameter.empty
|
||||
]
|
||||
if len(positional_args) != 1:
|
||||
if len(sig.parameters) != 1:
|
||||
raise ValueError("Guardrail function must accept exactly one parameter")
|
||||
|
||||
# Check return annotation if present, but don't require it
|
||||
return_annotation = sig.return_annotation
|
||||
if return_annotation != inspect.Signature.empty:
|
||||
|
||||
return_annotation_args = get_args(return_annotation)
|
||||
if not (
|
||||
get_origin(return_annotation) is tuple
|
||||
and len(return_annotation_args) == 2
|
||||
and return_annotation_args[0] is bool
|
||||
and (
|
||||
return_annotation_args[1] is Any
|
||||
or return_annotation_args[1] is str
|
||||
or return_annotation_args[1] is TaskOutput
|
||||
or return_annotation_args[1] == Union[str, TaskOutput]
|
||||
)
|
||||
return_annotation == Tuple[bool, Any]
|
||||
or str(return_annotation) == "Tuple[bool, Any]"
|
||||
):
|
||||
raise ValueError(
|
||||
"If return type is annotated, it must be Tuple[bool, Any]"
|
||||
@@ -451,9 +435,9 @@ class Task(BaseModel):
|
||||
content = (
|
||||
json_output
|
||||
if json_output
|
||||
else (
|
||||
pydantic_output.model_dump_json() if pydantic_output else result
|
||||
)
|
||||
else pydantic_output.model_dump_json()
|
||||
if pydantic_output
|
||||
else result
|
||||
)
|
||||
self._save_file(content)
|
||||
crewai_event_bus.emit(self, TaskCompletedEvent(output=task_output))
|
||||
|
||||
@@ -6,7 +6,7 @@ import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.llm import CONTEXT_WINDOW_USAGE_RATIO, LLM
|
||||
from crewai.llm import LLM
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
@@ -285,23 +285,6 @@ def test_o3_mini_reasoning_effort_medium():
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
def test_context_window_validation():
|
||||
"""Test that context window validation works correctly."""
|
||||
# Test valid window size
|
||||
llm = LLM(model="o3-mini")
|
||||
assert llm.get_context_window_size() == int(200000 * CONTEXT_WINDOW_USAGE_RATIO)
|
||||
|
||||
# Test invalid window size
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
with patch.dict(
|
||||
"crewai.llm.LLM_CONTEXT_WINDOW_SIZES",
|
||||
{"test-model": 500}, # Below minimum
|
||||
clear=True,
|
||||
):
|
||||
llm = LLM(model="test-model")
|
||||
llm.get_context_window_size()
|
||||
assert "must be between 1024 and 2097152" in str(excinfo.value)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.fixture
|
||||
|
||||
@@ -1283,109 +1283,3 @@ def test_interpolate_valid_types():
|
||||
assert parsed["optional"] is None
|
||||
assert parsed["nested"]["flag"] is True
|
||||
assert parsed["nested"]["empty"] is None
|
||||
|
||||
|
||||
def test_guardrail_with_new_style_annotations():
|
||||
"""Test that guardrails with new-style type annotations work correctly."""
|
||||
|
||||
# Define a guardrail with new-style annotation
|
||||
def guardrail(result: TaskOutput) -> tuple[bool, str]:
|
||||
return (True, result.raw.upper())
|
||||
|
||||
agent = MagicMock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
|
||||
task = Task(description="Test task", expected_output="Output", guardrail=guardrail)
|
||||
|
||||
result = task.execute_sync(agent=agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "TEST RESULT"
|
||||
|
||||
|
||||
def test_guardrail_with_specific_return_type():
|
||||
"""Test that guardrails with specific return types work correctly."""
|
||||
|
||||
# Define a guardrail with specific return type
|
||||
def guardrail(result: TaskOutput) -> tuple[bool, TaskOutput]:
|
||||
if "error" in result.raw.lower():
|
||||
return (False, "Contains error")
|
||||
return (True, result)
|
||||
|
||||
agent = MagicMock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "success result"
|
||||
agent.crew = None
|
||||
|
||||
task = Task(description="Test task", expected_output="Output", guardrail=guardrail)
|
||||
|
||||
result = task.execute_sync(agent=agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "success result"
|
||||
|
||||
|
||||
def test_guardrail_with_positional_and_default_args():
|
||||
"""Test that guardrails with positional and default arguments work correctly."""
|
||||
|
||||
# Define a guardrail with a positional argument and a default argument
|
||||
def guardrail(result: TaskOutput, optional_arg=None) -> tuple[bool, str]:
|
||||
return (True, result.raw.upper())
|
||||
|
||||
agent = MagicMock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
|
||||
# This should now work with the updated validator
|
||||
task = Task(description="Test task", expected_output="Output", guardrail=guardrail)
|
||||
|
||||
result = task.execute_sync(agent=agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "TEST RESULT"
|
||||
|
||||
|
||||
def test_guardrail_with_multiple_positional_args():
|
||||
"""Test that guardrails with multiple positional arguments are rejected."""
|
||||
|
||||
# Define a guardrail with multiple positional arguments
|
||||
def guardrail(result: TaskOutput, another_required_arg) -> tuple[bool, str]:
|
||||
return (True, result.raw.upper())
|
||||
|
||||
agent = MagicMock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
|
||||
# This should raise a ValueError because guardrail must accept exactly one positional parameter
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
Task(description="Test task", expected_output="Output", guardrail=guardrail)
|
||||
|
||||
assert "Guardrail function must accept exactly one parameter" in str(excinfo.value)
|
||||
|
||||
|
||||
def test_guardrail_with_positional_and_default_args():
|
||||
"""Validate that the guardrail function has the correct signature and behavior.
|
||||
|
||||
While type hints provide static checking, this validator ensures runtime safety by:
|
||||
1. Verifying the function accepts exactly one required parameter (the TaskOutput)
|
||||
(additional parameters with default values are allowed)
|
||||
2. Checking return type annotations match Tuple[bool, Any] or tuple[bool, Any] if present
|
||||
3. Providing clear, immediate error messages for debugging
|
||||
"""
|
||||
|
||||
# Define a guardrail with a positional argument and a default argument
|
||||
def guardrail(result: TaskOutput, optional_arg=None) -> tuple[bool, str]:
|
||||
return (True, result.raw.upper())
|
||||
|
||||
agent = MagicMock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
|
||||
# This should now work with the updated validator
|
||||
task = Task(description="Test task", expected_output="Output", guardrail=guardrail)
|
||||
|
||||
result = task.execute_sync(agent=agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "TEST RESULT"
|
||||
|
||||
Reference in New Issue
Block a user