Compare commits

...

19 Commits

Author SHA1 Message Date
João Moura
b8a3c29745 preparing new verison 2024-10-23 05:34:34 -03:00
Brandon Hancock (bhancock_ai)
9cd4ff05c9 use copy to split testing and training on crews (#1491)
* use copy to split testing and training on crews

* make tests handle new copy functionality on train and test

* fix last test

* fix test
2024-10-22 21:31:44 -04:00
Lorenze Jay
4687779702 ensure original embedding config works (#1476)
* ensure original embedding config works

* some fixes

* raise error on unsupported provider

* WIP: brandons notes

* fixes

* rm prints

* fixed docs

* fixed run types

* updates to add more docs and correct imports with huggingface embedding server enabled

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-22 12:30:30 -07:00
Tony Kipkemboi
8731915330 Add Cerebras LLM example configuration to LLM docs (#1488) 2024-10-22 13:41:29 -04:00
Brandon Hancock (bhancock_ai)
093259389e simplify flow (#1482)
* simplify flow

* propogate changes

* Update docs and scripts

* Template fix

* make flow kickoff sync

* Clean up docs
2024-10-21 19:32:55 -04:00
Brandon Hancock (bhancock_ai)
6bcb3d1080 drop unneccesary tests (#1484)
* drop uneccesary tests

* fix linting
2024-10-21 15:26:30 -04:00
Sam
71a217b210 fix(docs): typo (#1470) 2024-10-21 11:49:33 -04:00
Vini Brasil
b98256e434 Adapt crewai tool install <tool> to uv (#1481)
This commit updates the tool install comamnd to uv's new custom index
feature.

Related: https://github.com/astral-sh/uv/pull/7746/
2024-10-21 09:24:03 -03:00
João Moura
40f81aecf5 new verison 2024-10-18 17:57:37 -03:00
João Moura
d1737a96fb cutting new version 2024-10-18 17:57:02 -03:00
Brandon Hancock (bhancock_ai)
84f48c465d fix tool calling issue (#1467)
* fix tool calling issue

* Update tool type check

* Drop print
2024-10-18 15:56:56 -03:00
Eduardo Chiarotti
60efcad481 feat: add poetry.lock to uv migration (#1468) 2024-10-18 15:45:01 -03:00
João Moura
53a9f107ca Avoiding exceptions 2024-10-18 08:32:06 -03:00
João Moura
6fa2b89831 fix tasks and agents ordering 2024-10-18 08:06:38 -03:00
João Moura
d72ebb9bb8 fixing annotations 2024-10-18 07:46:30 -03:00
João Moura
81ae07abdb preparing new version 2024-10-18 07:13:17 -03:00
Lorenze Jay
6d20ba70a1 Feat/memory base (#1444)
* byom - short/entity memory

* better

* rm uneeded

* fix text

* use context

* rm dep and sync

* type check fix

* fixed test using new cassete

* fixing types

* fixed types

* fix types

* fixed types

* fixing types

* fix type

* cassette update

* just mock the return of short term mem

* remove print

* try catch block

* added docs

* dding error handling here
2024-10-17 13:19:33 -03:00
Rok Benko
67f55bae2c Fix incorrect parameter name in Vision tool docs page (#1461)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-10-17 13:18:31 -03:00
Rip&Tear
9b59de1720 feat/updated CLI to allow for model selection & submitting API keys (#1430)
* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-17 10:05:07 -04:00
43 changed files with 1610 additions and 1137 deletions

View File

@@ -23,9 +23,9 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task. Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
```python Code ```python Code
import asyncio
from crewai.flow.flow import Flow, listen, start from crewai.flow.flow import Flow, listen, start
from dotenv import load_dotenv
from litellm import completion from litellm import completion
@@ -67,19 +67,19 @@ class ExampleFlow(Flow):
return fun_fact return fun_fact
async def main():
flow = ExampleFlow()
result = await flow.kickoff()
print(f"Generated fun fact: {result}") flow = ExampleFlow()
result = flow.kickoff()
asyncio.run(main()) print(f"Generated fun fact: {result}")
``` ```
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task. In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
When you run the Flow, it will generate a random city and then generate a fun fact about that city. The output will be printed to the console. When you run the Flow, it will generate a random city and then generate a fun fact about that city. The output will be printed to the console.
**Note:** Ensure you have set up your `.env` file to store your `OPENAI_API_KEY`. This key is necessary for authenticating requests to the OpenAI API.
### @start() ### @start()
The `@start()` decorator is used to mark a method as the starting point of a Flow. When a Flow is started, all the methods decorated with `@start()` are executed in parallel. You can have multiple start methods in a Flow, and they will all be executed when the Flow is started. The `@start()` decorator is used to mark a method as the starting point of a Flow. When a Flow is started, all the methods decorated with `@start()` are executed in parallel. You can have multiple start methods in a Flow, and they will all be executed when the Flow is started.
@@ -119,7 +119,6 @@ Here's how you can access the final output:
<CodeGroup> <CodeGroup>
```python Code ```python Code
import asyncio
from crewai.flow.flow import Flow, listen, start from crewai.flow.flow import Flow, listen, start
class OutputExampleFlow(Flow): class OutputExampleFlow(Flow):
@@ -131,26 +130,24 @@ class OutputExampleFlow(Flow):
def second_method(self, first_output): def second_method(self, first_output):
return f"Second method received: {first_output}" return f"Second method received: {first_output}"
async def main():
flow = OutputExampleFlow()
final_output = await flow.kickoff()
print("---- Final Output ----")
print(final_output)
asyncio.run(main()) flow = OutputExampleFlow()
``` final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
````
``` text Output ``` text Output
---- Final Output ---- ---- Final Output ----
Second method received: Output from first_method Second method received: Output from first_method
``` ````
</CodeGroup> </CodeGroup>
In this example, the `second_method` is the last method to complete, so its output will be the final output of the Flow. In this example, the `second_method` is the last method to complete, so its output will be the final output of the Flow.
The `kickoff()` method will return the final output, which is then printed to the console. The `kickoff()` method will return the final output, which is then printed to the console.
#### Accessing and Updating State #### Accessing and Updating State
In addition to retrieving the final output, you can also access and update the state within your Flow. The state can be used to store and share data between different methods in the Flow. After the Flow has run, you can access the state to retrieve any information that was added or updated during the execution. In addition to retrieving the final output, you can also access and update the state within your Flow. The state can be used to store and share data between different methods in the Flow. After the Flow has run, you can access the state to retrieve any information that was added or updated during the execution.
@@ -160,7 +157,6 @@ Here's an example of how to update and access the state:
<CodeGroup> <CodeGroup>
```python Code ```python Code
import asyncio
from crewai.flow.flow import Flow, listen, start from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel from pydantic import BaseModel
@@ -181,42 +177,38 @@ class StateExampleFlow(Flow[ExampleState]):
self.state.counter += 1 self.state.counter += 1
return self.state.message return self.state.message
async def main(): flow = StateExampleFlow()
flow = StateExampleFlow() final_output = flow.kickoff()
final_output = await flow.kickoff() print(f"Final Output: {final_output}")
print(f"Final Output: {final_output}") print("Final State:")
print("Final State:") print(flow.state)
print(flow.state)
asyncio.run(main())
``` ```
``` text Output ```text Output
Final Output: Hello from first_method - updated by second_method Final Output: Hello from first_method - updated by second_method
Final State: Final State:
counter=2 message='Hello from first_method - updated by second_method' counter=2 message='Hello from first_method - updated by second_method'
``` ```
</CodeGroup> </CodeGroup>
In this example, the state is updated by both `first_method` and `second_method`. In this example, the state is updated by both `first_method` and `second_method`.
After the Flow has run, you can access the final state to see the updates made by these methods. After the Flow has run, you can access the final state to see the updates made by these methods.
By ensuring that the final method's output is returned and providing access to the state, CrewAI Flows make it easy to integrate the results of your AI workflows into larger applications or systems, By ensuring that the final method's output is returned and providing access to the state, CrewAI Flows make it easy to integrate the results of your AI workflows into larger applications or systems,
while also maintaining and accessing the state throughout the Flow's execution. while also maintaining and accessing the state throughout the Flow's execution.
## Flow State Management ## Flow State Management
Managing state effectively is crucial for building reliable and maintainable AI workflows. CrewAI Flows provides robust mechanisms for both unstructured and structured state management, Managing state effectively is crucial for building reliable and maintainable AI workflows. CrewAI Flows provides robust mechanisms for both unstructured and structured state management,
allowing developers to choose the approach that best fits their application's needs. allowing developers to choose the approach that best fits their application's needs.
### Unstructured State Management ### Unstructured State Management
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class. In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema. This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
```python Code ```python Code
import asyncio
from crewai.flow.flow import Flow, listen, start from crewai.flow.flow import Flow, listen, start
class UntructuredExampleFlow(Flow): class UntructuredExampleFlow(Flow):
@@ -239,12 +231,8 @@ class UntructuredExampleFlow(Flow):
print(f"State after third_method: {self.state}") print(f"State after third_method: {self.state}")
async def main(): flow = UntructuredExampleFlow()
flow = UntructuredExampleFlow() flow.kickoff()
await flow.kickoff()
asyncio.run(main())
``` ```
**Key Points:** **Key Points:**
@@ -254,12 +242,10 @@ asyncio.run(main())
### Structured State Management ### Structured State Management
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow. Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments. By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
```python Code ```python Code
import asyncio
from crewai.flow.flow import Flow, listen, start from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel from pydantic import BaseModel
@@ -288,12 +274,8 @@ class StructuredExampleFlow(Flow[ExampleState]):
print(f"State after third_method: {self.state}") print(f"State after third_method: {self.state}")
async def main(): flow = StructuredExampleFlow()
flow = StructuredExampleFlow() flow.kickoff()
await flow.kickoff()
asyncio.run(main())
``` ```
**Key Points:** **Key Points:**
@@ -326,7 +308,6 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
<CodeGroup> <CodeGroup>
```python Code ```python Code
import asyncio
from crewai.flow.flow import Flow, listen, or_, start from crewai.flow.flow import Flow, listen, or_, start
class OrExampleFlow(Flow): class OrExampleFlow(Flow):
@@ -344,22 +325,19 @@ class OrExampleFlow(Flow):
print(f"Logger: {result}") print(f"Logger: {result}")
async def main():
flow = OrExampleFlow()
await flow.kickoff()
flow = OrExampleFlow()
asyncio.run(main()) flow.kickoff()
``` ```
``` text Output ```text Output
Logger: Hello from the start method Logger: Hello from the start method
Logger: Hello from the second method Logger: Hello from the second method
``` ```
</CodeGroup> </CodeGroup>
When you run this Flow, the `logger` method will be triggered by the output of either the `start_method` or the `second_method`. When you run this Flow, the `logger` method will be triggered by the output of either the `start_method` or the `second_method`.
The `or_` function is used to listen to multiple methods and trigger the listener method when any of the specified methods emit an output. The `or_` function is used to listen to multiple methods and trigger the listener method when any of the specified methods emit an output.
### Conditional Logic: `and` ### Conditional Logic: `and`
@@ -369,7 +347,6 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
<CodeGroup> <CodeGroup>
```python Code ```python Code
import asyncio
from crewai.flow.flow import Flow, and_, listen, start from crewai.flow.flow import Flow, and_, listen, start
class AndExampleFlow(Flow): class AndExampleFlow(Flow):
@@ -387,34 +364,28 @@ class AndExampleFlow(Flow):
print("---- Logger ----") print("---- Logger ----")
print(self.state) print(self.state)
flow = AndExampleFlow()
async def main(): flow.kickoff()
flow = AndExampleFlow()
await flow.kickoff()
asyncio.run(main())
``` ```
``` text Output ```text Output
---- Logger ---- ---- Logger ----
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'} {'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
``` ```
</CodeGroup> </CodeGroup>
When you run this Flow, the `logger` method will be triggered only when both the `start_method` and the `second_method` emit an output. When you run this Flow, the `logger` method will be triggered only when both the `start_method` and the `second_method` emit an output.
The `and_` function is used to listen to multiple methods and trigger the listener method only when all the specified methods emit an output. The `and_` function is used to listen to multiple methods and trigger the listener method only when all the specified methods emit an output.
### Router ### Router
The `@router()` decorator in Flows allows you to define conditional routing logic based on the output of a method. The `@router()` decorator in Flows allows you to define conditional routing logic based on the output of a method.
You can specify different routes based on the output of the method, allowing you to control the flow of execution dynamically. You can specify different routes based on the output of the method, allowing you to control the flow of execution dynamically.
<CodeGroup> <CodeGroup>
```python Code ```python Code
import asyncio
import random import random
from crewai.flow.flow import Flow, listen, router, start from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel from pydantic import BaseModel
@@ -446,15 +417,11 @@ class RouterFlow(Flow[ExampleState]):
print("Fourth method running") print("Fourth method running")
async def main(): flow = RouterFlow()
flow = RouterFlow() flow.kickoff()
await flow.kickoff()
asyncio.run(main())
``` ```
``` text Output ```text Output
Starting the structured flow Starting the structured flow
Third method running Third method running
Fourth method running Fourth method running
@@ -462,16 +429,16 @@ Fourth method running
</CodeGroup> </CodeGroup>
In the above example, the `start_method` generates a random boolean value and sets it in the state. In the above example, the `start_method` generates a random boolean value and sets it in the state.
The `second_method` uses the `@router()` decorator to define conditional routing logic based on the value of the boolean. The `second_method` uses the `@router()` decorator to define conditional routing logic based on the value of the boolean.
If the boolean is `True`, the method returns `"success"`, and if it is `False`, the method returns `"failed"`. If the boolean is `True`, the method returns `"success"`, and if it is `False`, the method returns `"failed"`.
The `third_method` and `fourth_method` listen to the output of the `second_method` and execute based on the returned value. The `third_method` and `fourth_method` listen to the output of the `second_method` and execute based on the returned value.
When you run this Flow, the output will change based on the random boolean value generated by the `start_method`. When you run this Flow, the output will change based on the random boolean value generated by the `start_method`.
## Adding Crews to Flows ## Adding Crews to Flows
Creating a flow with multiple crews in CrewAI is straightforward. Creating a flow with multiple crews in CrewAI is straightforward.
You can generate a new CrewAI project that includes all the scaffolding needed to create a flow with multiple crews by running the following command: You can generate a new CrewAI project that includes all the scaffolding needed to create a flow with multiple crews by running the following command:
@@ -485,22 +452,21 @@ This command will generate a new CrewAI project with the necessary folder struct
After running the `crewai create flow name_of_flow` command, you will see a folder structure similar to the following: After running the `crewai create flow name_of_flow` command, you will see a folder structure similar to the following:
| Directory/File | Description | | Directory/File | Description |
|:---------------------------------|:------------------------------------------------------------------| | :--------------------- | :----------------------------------------------------------------- |
| `name_of_flow/` | Root directory for the flow. | | `name_of_flow/` | Root directory for the flow. |
| ├── `crews/` | Contains directories for specific crews. | | ├── `crews/` | Contains directories for specific crews. |
| │ └── `poem_crew/` | Directory for the "poem_crew" with its configurations and scripts.| | │ └── `poem_crew/` | Directory for the "poem_crew" with its configurations and scripts. |
| │ ├── `config/` | Configuration files directory for the "poem_crew". | | │ ├── `config/` | Configuration files directory for the "poem_crew". |
| │ ├── `agents.yaml` | YAML file defining the agents for "poem_crew". | | │ ├── `agents.yaml` | YAML file defining the agents for "poem_crew". |
| │ └── `tasks.yaml` | YAML file defining the tasks for "poem_crew". | | │ └── `tasks.yaml` | YAML file defining the tasks for "poem_crew". |
| │ ├── `poem_crew.py` | Script for "poem_crew" functionality. | | │ ├── `poem_crew.py` | Script for "poem_crew" functionality. |
| ├── `tools/` | Directory for additional tools used in the flow. | | ├── `tools/` | Directory for additional tools used in the flow. |
| │ └── `custom_tool.py` | Custom tool implementation. | | │ └── `custom_tool.py` | Custom tool implementation. |
| ├── `main.py` | Main script for running the flow. | | ├── `main.py` | Main script for running the flow. |
| ├── `README.md` | Project description and instructions. | | ├── `README.md` | Project description and instructions. |
| ├── `pyproject.toml` | Configuration file for project dependencies and settings. | | ├── `pyproject.toml` | Configuration file for project dependencies and settings. |
| └── `.gitignore` | Specifies files and directories to ignore in version control. | | └── `.gitignore` | Specifies files and directories to ignore in version control. |
### Building Your Crews ### Building Your Crews
@@ -520,7 +486,6 @@ Here's an example of how you can connect the `poem_crew` in the `main.py` file:
```python Code ```python Code
#!/usr/bin/env python #!/usr/bin/env python
import asyncio
from random import randint from random import randint
from pydantic import BaseModel from pydantic import BaseModel
@@ -536,14 +501,12 @@ class PoemFlow(Flow[PoemState]):
@start() @start()
def generate_sentence_count(self): def generate_sentence_count(self):
print("Generating sentence count") print("Generating sentence count")
# Generate a number between 1 and 5
self.state.sentence_count = randint(1, 5) self.state.sentence_count = randint(1, 5)
@listen(generate_sentence_count) @listen(generate_sentence_count)
def generate_poem(self): def generate_poem(self):
print("Generating poem") print("Generating poem")
poem_crew = PoemCrew().crew() result = PoemCrew().crew().kickoff(inputs={"sentence_count": self.state.sentence_count})
result = poem_crew.kickoff(inputs={"sentence_count": self.state.sentence_count})
print("Poem generated", result.raw) print("Poem generated", result.raw)
self.state.poem = result.raw self.state.poem = result.raw
@@ -554,18 +517,17 @@ class PoemFlow(Flow[PoemState]):
with open("poem.txt", "w") as f: with open("poem.txt", "w") as f:
f.write(self.state.poem) f.write(self.state.poem)
async def run(): def kickoff():
"""
Run the flow.
"""
poem_flow = PoemFlow() poem_flow = PoemFlow()
await poem_flow.kickoff() poem_flow.kickoff()
def main():
asyncio.run(run()) def plot():
poem_flow = PoemFlow()
poem_flow.plot()
if __name__ == "__main__": if __name__ == "__main__":
main() kickoff()
``` ```
In this example, the `PoemFlow` class defines a flow that generates a sentence count, uses the `PoemCrew` to generate a poem, and then saves the poem to a file. The flow is kicked off by calling the `kickoff()` method. In this example, the `PoemFlow` class defines a flow that generates a sentence count, uses the `PoemCrew` to generate a poem, and then saves the poem to a file. The flow is kicked off by calling the `kickoff()` method.
@@ -587,13 +549,13 @@ source .venv/bin/activate
After activating the virtual environment, you can run the flow by executing one of the following commands: After activating the virtual environment, you can run the flow by executing one of the following commands:
```bash ```bash
crewai flow run crewai flow kickoff
``` ```
or or
```bash ```bash
uv run run_flow uv run kickoff
``` ```
The flow will execute, and you should see the output in the console. The flow will execute, and you should see the output in the console.
@@ -657,13 +619,13 @@ By exploring these examples, you can gain insights into how to leverage CrewAI F
Also, check out our YouTube video on how to use flows in CrewAI below! Also, check out our YouTube video on how to use flows in CrewAI below!
<iframe <iframe
width="560" width="560"
height="315" height="315"
src="https://www.youtube.com/embed/MTb5my6VOT8" src="https://www.youtube.com/embed/MTb5my6VOT8"
title="YouTube video player" title="YouTube video player"
frameborder="0" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin" referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen allowfullscreen
></iframe> ></iframe>

View File

@@ -62,6 +62,8 @@ os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
2. Using LLM class attributes: 2. Using LLM class attributes:
```python Code ```python Code
from crewai import LLM
llm = LLM( llm = LLM(
model="custom-model-name", model="custom-model-name",
api_key="your-api-key", api_key="your-api-key",
@@ -95,9 +97,11 @@ When configuring an LLM for your agent, you have access to a wide range of param
| **api_key** | `str` | Your API key for authentication. | | **api_key** | `str` | Your API key for authentication. |
Example: ## OpenAI Example Configuration
```python Code ```python Code
from crewai import LLM
llm = LLM( llm = LLM(
model="gpt-4", model="gpt-4",
temperature=0.8, temperature=0.8,
@@ -112,15 +116,31 @@ llm = LLM(
) )
agent = Agent(llm=llm, ...) agent = Agent(llm=llm, ...)
``` ```
## Cerebras Example Configuration
```python Code
from crewai import LLM
llm = LLM(
model="cerebras/llama-3.1-70b",
base_url="https://api.cerebras.ai/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
## Using Ollama (Local LLMs) ## Using Ollama (Local LLMs)
crewAI supports using Ollama for running open-source models locally: CrewAI supports using Ollama for running open-source models locally:
1. Install Ollama: [ollama.ai](https://ollama.ai/) 1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2` 2. Run a model: `ollama run llama2`
3. Configure agent: 3. Configure agent:
```python Code ```python Code
from crewai import LLM
agent = Agent( agent = Agent(
llm=LLM(model="ollama/llama3.1", base_url="http://localhost:11434"), llm=LLM(model="ollama/llama3.1", base_url="http://localhost:11434"),
... ...
@@ -132,6 +152,8 @@ agent = Agent(
You can change the base API URL for any LLM provider by setting the `base_url` parameter: You can change the base API URL for any LLM provider by setting the `base_url` parameter:
```python Code ```python Code
from crewai import LLM
llm = LLM( llm = LLM(
model="custom-model-name", model="custom-model-name",
base_url="https://api.your-provider.com/v1", base_url="https://api.your-provider.com/v1",

View File

@@ -34,7 +34,7 @@ By default, the memory system is disabled, and you can ensure it is active by se
The memory will use OpenAI embeddings by default, but you can change it by setting `embedder` to a different model. The memory will use OpenAI embeddings by default, but you can change it by setting `embedder` to a different model.
It's also possible to initialize the memory instance with your own instance. It's also possible to initialize the memory instance with your own instance.
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using the EmbedChain package. The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG.
The **Long-Term Memory** uses SQLite3 to store task results. Currently, there is no way to override these storage implementations. The **Long-Term Memory** uses SQLite3 to store task results. Currently, there is no way to override these storage implementations.
The data storage files are saved into a platform-specific location found using the appdirs package, The data storage files are saved into a platform-specific location found using the appdirs package,
and the name of the project can be overridden using the **CREWAI_STORAGE_DIR** environment variable. and the name of the project can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
@@ -113,6 +113,42 @@ my_crew = Crew(
} }
) )
``` ```
Alternatively, you can directly pass the OpenAIEmbeddingFunction to the embedder parameter.
Example:
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb.utils.embedding_functions.openai_embedding_function import OpenAIEmbeddingFunction
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"),
)
```
### Using Ollama embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "ollama",
"config": {
"model": "mxbai-embed-large"
}
}
)
```
### Using Google AI embeddings ### Using Google AI embeddings
@@ -128,9 +164,8 @@ my_crew = Crew(
embedder={ embedder={
"provider": "google", "provider": "google",
"config": { "config": {
"model": 'models/embedding-001', "api_key": "<YOUR_API_KEY>",
"task_type": "retrieval_document", "model_name": "<model_name>"
"title": "Embeddings for Embedchain"
} }
} }
) )
@@ -147,30 +182,13 @@ my_crew = Crew(
process=Process.sequential, process=Process.sequential,
memory=True, memory=True,
verbose=True, verbose=True,
embedder={ embedder=embedding_functions.OpenAIEmbeddingFunction(
"provider": "azure_openai", api_key="YOUR_API_KEY",
"config": { api_base="YOUR_API_BASE_PATH",
"model": 'text-embedding-ada-002', api_type="azure",
"deployment_name": "your_embedding_model_deployment_name" api_version="YOUR_API_VERSION",
} model_name="text-embedding-3-small"
} )
)
```
### Using GPT4ALL embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "gpt4all"
}
) )
``` ```
@@ -185,12 +203,12 @@ my_crew = Crew(
process=Process.sequential, process=Process.sequential,
memory=True, memory=True,
verbose=True, verbose=True,
embedder={ embedder=embedding_functions.GoogleVertexEmbeddingFunction(
"provider": "vertexai", project_id="YOUR_PROJECT_ID",
"config": { region="YOUR_REGION",
"model": 'textembedding-gecko' api_key="YOUR_API_KEY",
} model_name="textembedding-gecko"
} )
) )
``` ```
@@ -208,8 +226,27 @@ my_crew = Crew(
embedder={ embedder={
"provider": "cohere", "provider": "cohere",
"config": { "config": {
"model": "embed-english-v3.0", "api_key": "YOUR_API_KEY",
"vector_dimension": 1024 "model_name": "<model_name>"
}
}
)
```
### Using HuggingFace embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "huggingface",
"config": {
"api_url": "<api_url>",
} }
} }
) )

View File

@@ -8,13 +8,13 @@ icon: eye
## Description ## Description
This tool is used to extract text from images. When passed to the agent it will extract the text from the image and then use it to generate a response, report or any other output. This tool is used to extract text from images. When passed to the agent it will extract the text from the image and then use it to generate a response, report or any other output.
The URL or the PATH of the image should be passed to the Agent. The URL or the PATH of the image should be passed to the Agent.
## Installation ## Installation
Install the crewai_tools package Install the crewai_tools package
```shell ```shell
pip install 'crewai[tools]' pip install 'crewai[tools]'
``` ```
@@ -44,7 +44,6 @@ def researcher(self) -> Agent:
The VisionTool requires the following arguments: The VisionTool requires the following arguments:
| Argument | Type | Description | | Argument | Type | Description |
|:---------------|:---------|:-------------------------------------------------------------------------------------------------------------------------------------| | :----------------- | :------- | :------------------------------------------------------------------------------- |
| **image_path** | `string` | **Mandatory**. The path to the image file from which text needs to be extracted. | | **image_path_url** | `string` | **Mandatory**. The path to the image file from which text needs to be extracted. |

View File

@@ -1,6 +1,6 @@
[project] [project]
name = "crewai" name = "crewai"
version = "0.70.1" version = "0.75.1"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks." description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md" readme = "README.md"
requires-python = ">=3.10,<=3.13" requires-python = ">=3.10,<=3.13"
@@ -16,19 +16,18 @@ dependencies = [
"opentelemetry-exporter-otlp-proto-http>=1.22.0", "opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3", "instructor>=1.3.3",
"regex>=2024.9.11", "regex>=2024.9.11",
"crewai-tools>=0.12.1", "crewai-tools>=0.13.2",
"click>=8.1.7", "click>=8.1.7",
"python-dotenv>=1.0.0", "python-dotenv>=1.0.0",
"appdirs>=1.4.4", "appdirs>=1.4.4",
"jsonref>=1.1.0", "jsonref>=1.1.0",
"agentops>=0.3.0",
"embedchain>=0.1.114",
"json-repair>=0.25.2", "json-repair>=0.25.2",
"auth0-python>=4.7.1", "auth0-python>=4.7.1",
"litellm>=1.44.22", "litellm>=1.44.22",
"pyvis>=0.3.2", "pyvis>=0.3.2",
"uv>=0.4.18", "uv>=0.4.25",
"tomli-w>=1.1.0", "tomli-w>=1.1.0",
"chromadb>=0.4.24",
] ]
[project.urls] [project.urls]
@@ -37,7 +36,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI" Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies] [project.optional-dependencies]
tools = ["crewai-tools>=0.12.1"] tools = ["crewai-tools>=0.13.2"]
agentops = ["agentops>=0.3.0"] agentops = ["agentops>=0.3.0"]
[tool.uv] [tool.uv]
@@ -52,7 +51,7 @@ dev-dependencies = [
"mkdocs-material-extensions>=1.3.1", "mkdocs-material-extensions>=1.3.1",
"pillow>=10.2.0", "pillow>=10.2.0",
"cairosvg>=2.7.1", "cairosvg>=2.7.1",
"crewai-tools>=0.12.1", "crewai-tools>=0.13.2",
"pytest>=8.0.0", "pytest>=8.0.0",
"pytest-vcr>=1.0.2", "pytest-vcr>=1.0.2",
"python-dotenv>=1.0.0", "python-dotenv>=1.0.0",

View File

@@ -14,5 +14,5 @@ warnings.filterwarnings(
category=UserWarning, category=UserWarning,
module="pydantic.main", module="pydantic.main",
) )
__version__ = "0.70.1" __version__ = "0.75.1"
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"] __all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]

View File

@@ -394,7 +394,7 @@ class Agent(BaseAgent):
""" """
tool_strings = [] tool_strings = []
for tool in tools: for tool in tools:
args_schema = str(tool.args) args_schema = str(tool.model_fields)
if hasattr(tool, "func") and tool.func: if hasattr(tool, "func") and tool.func:
sig = signature(tool.func) sig = signature(tool.func)
description = ( description = (

View File

@@ -17,7 +17,7 @@ if TYPE_CHECKING:
class CrewAgentExecutorMixin: class CrewAgentExecutorMixin:
crew: Optional["Crew"] crew: Optional["Crew"]
crew_agent: Optional["BaseAgent"] agent: Optional["BaseAgent"]
task: Optional["Task"] task: Optional["Task"]
iterations: int iterations: int
have_forced_answer: bool have_forced_answer: bool
@@ -33,9 +33,9 @@ class CrewAgentExecutorMixin:
"""Create and save a short-term memory item if conditions are met.""" """Create and save a short-term memory item if conditions are met."""
if ( if (
self.crew self.crew
and self.crew_agent and self.agent
and self.task and self.task
and "Action: Delegate work to coworker" not in output.log and "Action: Delegate work to coworker" not in output.text
): ):
try: try:
if ( if (
@@ -43,11 +43,11 @@ class CrewAgentExecutorMixin:
and self.crew._short_term_memory and self.crew._short_term_memory
): ):
self.crew._short_term_memory.save( self.crew._short_term_memory.save(
value=output.log, value=output.text,
metadata={ metadata={
"observation": self.task.description, "observation": self.task.description,
}, },
agent=self.crew_agent.role, agent=self.agent.role,
) )
except Exception as e: except Exception as e:
print(f"Failed to add to short term memory: {e}") print(f"Failed to add to short term memory: {e}")
@@ -61,18 +61,18 @@ class CrewAgentExecutorMixin:
and self.crew._long_term_memory and self.crew._long_term_memory
and self.crew._entity_memory and self.crew._entity_memory
and self.task and self.task
and self.crew_agent and self.agent
): ):
try: try:
ltm_agent = TaskEvaluator(self.crew_agent) ltm_agent = TaskEvaluator(self.agent)
evaluation = ltm_agent.evaluate(self.task, output.log) evaluation = ltm_agent.evaluate(self.task, output.text)
if isinstance(evaluation, ConverterError): if isinstance(evaluation, ConverterError):
return return
long_term_memory = LongTermMemoryItem( long_term_memory = LongTermMemoryItem(
task=self.task.description, task=self.task.description,
agent=self.crew_agent.role, agent=self.agent.role,
quality=evaluation.quality, quality=evaluation.quality,
datetime=str(time.time()), datetime=str(time.time()),
expected_output=self.task.expected_output, expected_output=self.task.expected_output,

View File

@@ -2,6 +2,7 @@ import json
import re import re
from typing import Any, Dict, List, Union from typing import Any, Dict, List, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.parser import ( from crewai.agents.parser import (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE, FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE,
@@ -29,7 +30,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
llm: Any, llm: Any,
task: Any, task: Any,
crew: Any, crew: Any,
agent: Any, agent: BaseAgent,
prompt: dict[str, str], prompt: dict[str, str],
max_iter: int, max_iter: int,
tools: List[Any], tools: List[Any],
@@ -103,7 +104,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew and self.crew._train: if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer) self._handle_crew_training_output(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
return {"output": formatted_answer.output} return {"output": formatted_answer.output}
def _invoke_loop(self, formatted_answer=None): def _invoke_loop(self, formatted_answer=None):
@@ -176,6 +178,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return formatted_answer return formatted_answer
def _show_start_logs(self): def _show_start_logs(self):
if self.agent is None:
raise ValueError("Agent cannot be None")
if self.agent.verbose or ( if self.agent.verbose or (
hasattr(self, "crew") and getattr(self.crew, "verbose", False) hasattr(self, "crew") and getattr(self.crew, "verbose", False)
): ):
@@ -188,6 +192,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
) )
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]): def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
if self.agent is None:
raise ValueError("Agent cannot be None")
if self.agent.verbose or ( if self.agent.verbose or (
hasattr(self, "crew") and getattr(self.crew, "verbose", False) hasattr(self, "crew") and getattr(self.crew, "verbose", False)
): ):
@@ -306,7 +312,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self, result: AgentFinish, human_feedback: str | None = None self, result: AgentFinish, human_feedback: str | None = None
) -> None: ) -> None:
"""Function to handle the process of the training data.""" """Function to handle the process of the training data."""
agent_id = str(self.agent.id) agent_id = str(self.agent.id) # type: ignore
# Load training data # Load training data
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE) training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
@@ -317,9 +323,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"): if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int): if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration]["improved_output"] = ( training_data[agent_id][train_iteration][
result.output "improved_output"
) ] = result.output
training_handler.save(training_data) training_handler.save(training_data)
else: else:
self._logger.log( self._logger.log(
@@ -339,7 +345,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
"initial_output": result.output, "initial_output": result.output,
"human_feedback": human_feedback, "human_feedback": human_feedback,
"agent": agent_id, "agent": agent_id,
"agent_role": self.agent.role, "agent_role": self.agent.role, # type: ignore
} }
if self.crew is not None and hasattr(self.crew, "_train_iteration"): if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration train_iteration = self.crew._train_iteration

View File

@@ -14,11 +14,11 @@ from .authentication.main import AuthenticationCommand
from .deploy.main import DeployCommand from .deploy.main import DeployCommand
from .evaluate_crew import evaluate_crew from .evaluate_crew import evaluate_crew
from .install_crew import install_crew from .install_crew import install_crew
from .kickoff_flow import kickoff_flow
from .plot_flow import plot_flow from .plot_flow import plot_flow
from .replay_from_task import replay_task_command from .replay_from_task import replay_task_command
from .reset_memories_command import reset_memories_command from .reset_memories_command import reset_memories_command
from .run_crew import run_crew from .run_crew import run_crew
from .run_flow import run_flow
from .tools.main import ToolCommand from .tools.main import ToolCommand
from .train_crew import train_crew from .train_crew import train_crew
from .update_crew import update_crew from .update_crew import update_crew
@@ -32,10 +32,11 @@ def crewai():
@crewai.command() @crewai.command()
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"])) @click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
@click.argument("name") @click.argument("name")
def create(type, name): @click.option("--provider", type=str, help="The provider to use for the crew")
def create(type, name, provider):
"""Create a new crew, pipeline, or flow.""" """Create a new crew, pipeline, or flow."""
if type == "crew": if type == "crew":
create_crew(name) create_crew(name, provider)
elif type == "pipeline": elif type == "pipeline":
create_pipeline(name) create_pipeline(name)
elif type == "flow": elif type == "flow":
@@ -304,11 +305,11 @@ def flow():
pass pass
@flow.command(name="run") @flow.command(name="kickoff")
def flow_run(): def flow_run():
"""Run the Flow.""" """Kickoff the Flow."""
click.echo("Running the Flow") click.echo("Running the Flow")
run_flow() kickoff_flow()
@flow.command(name="plot") @flow.command(name="plot")

View File

@@ -0,0 +1,19 @@
ENV_VARS = {
'openai': ['OPENAI_API_KEY'],
'anthropic': ['ANTHROPIC_API_KEY'],
'gemini': ['GEMINI_API_KEY'],
'groq': ['GROQ_API_KEY'],
'ollama': ['FAKE_KEY'],
}
PROVIDERS = ['openai', 'anthropic', 'gemini', 'groq', 'ollama']
MODELS = {
'openai': ['gpt-4', 'gpt-4o', 'gpt-4o-mini', 'o1-mini', 'o1-preview'],
'anthropic': ['claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-opus-20240229', 'claude-3-haiku-20240307'],
'gemini': ['gemini-1.5-flash', 'gemini-1.5-pro', 'gemini-gemma-2-9b-it', 'gemini-gemma-2-27b-it'],
'groq': ['llama-3.1-8b-instant', 'llama-3.1-70b-versatile', 'llama-3.1-405b-reasoning', 'gemma2-9b-it', 'gemma-7b-it'],
'ollama': ['llama3.1', 'mixtral'],
}
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"

View File

@@ -1,12 +1,11 @@
from pathlib import Path from pathlib import Path
import click import click
from crewai.cli.utils import copy_template, load_env_vars, write_env_file
from crewai.cli.utils import copy_template from crewai.cli.provider import get_provider_data, select_provider, PROVIDERS
from crewai.cli.constants import ENV_VARS
def create_crew(name, parent_folder=None): def create_folder_structure(name, parent_folder=None):
"""Create a new crew."""
folder_name = name.replace(" ", "_").replace("-", "_").lower() folder_name = name.replace(" ", "_").replace("-", "_").lower()
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "") class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
@@ -28,19 +27,85 @@ def create_crew(name, parent_folder=None):
(folder_path / "src" / folder_name).mkdir(parents=True) (folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True) (folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True) (folder_path / "src" / folder_name / "config").mkdir(parents=True)
with open(folder_path / ".env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
else: else:
click.secho( click.secho(
f"\tFolder {folder_name} already exists. Please choose a different name.", f"\tFolder {folder_name} already exists.",
fg="red", fg="yellow",
) )
return
return folder_path, folder_name, class_name
def copy_template_files(folder_path, name, class_name, parent_folder):
package_dir = Path(__file__).parent
templates_dir = package_dir / "templates" / "crew"
root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
)
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
src_template_files = (
["__init__.py", "main.py", "crew.py"] if not parent_folder else ["crew.py"]
)
for file_name in root_template_files:
src_file = templates_dir / file_name
dst_file = folder_path / file_name
copy_template(src_file, dst_file, name, class_name, folder_path.name)
src_folder = (
folder_path / "src" / folder_path.name if not parent_folder else folder_path
)
for file_name in src_template_files:
src_file = templates_dir / file_name
dst_file = src_folder / file_name
copy_template(src_file, dst_file, name, class_name, folder_path.name)
if not parent_folder:
for file_name in tools_template_files + config_template_files:
src_file = templates_dir / file_name
dst_file = src_folder / file_name
copy_template(src_file, dst_file, name, class_name, folder_path.name)
def create_crew(name, provider=None, parent_folder=None):
folder_path, folder_name, class_name = create_folder_structure(name, parent_folder)
env_vars = load_env_vars(folder_path)
if not provider:
provider_models = get_provider_data()
if not provider_models:
return
selected_provider = select_provider(provider_models)
if not selected_provider:
return
provider = selected_provider
# selected_model = select_model(provider, provider_models)
# if not selected_model:
# return
# model = selected_model
if provider in PROVIDERS:
api_key_var = ENV_VARS[provider][0]
else:
api_key_var = click.prompt(
f"Enter the environment variable name for your {provider.capitalize()} API key",
type=str,
)
env_vars = {api_key_var: "YOUR_API_KEY_HERE"}
write_env_file(folder_path, env_vars)
# env_vars['MODEL'] = model
# click.secho(f"Selected model: {model}", fg="green")
package_dir = Path(__file__).parent package_dir = Path(__file__).parent
templates_dir = package_dir / "templates" / "crew" templates_dir = package_dir / "templates" / "crew"
# List of template files to copy
root_template_files = ( root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else [] [".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
) )

View File

@@ -3,11 +3,11 @@ import subprocess
import click import click
def run_flow() -> None: def kickoff_flow() -> None:
""" """
Run the flow by running a command in the UV environment. Kickoff the flow by running a command in the UV environment.
""" """
command = ["uv", "run", "run_flow"] command = ["uv", "run", "kickoff"]
try: try:
result = subprocess.run(command, capture_output=False, text=True, check=True) result = subprocess.run(command, capture_output=False, text=True, check=True)

186
src/crewai/cli/provider.py Normal file
View File

@@ -0,0 +1,186 @@
import json
import time
import requests
from collections import defaultdict
import click
from pathlib import Path
from crewai.cli.constants import PROVIDERS, MODELS, JSON_URL
def select_choice(prompt_message, choices):
"""
Presents a list of choices to the user and prompts them to select one.
Args:
- prompt_message (str): The message to display to the user before presenting the choices.
- choices (list): A list of options to present to the user.
Returns:
- str: The selected choice from the list, or None if the operation is aborted or an invalid selection is made.
"""
click.secho(prompt_message, fg="cyan")
for idx, choice in enumerate(choices, start=1):
click.secho(f"{idx}. {choice}", fg="cyan")
try:
selected_index = click.prompt("Enter the number of your choice", type=int) - 1
except click.exceptions.Abort:
click.secho("Operation aborted by the user.", fg="red")
return None
if not (0 <= selected_index < len(choices)):
click.secho("Invalid selection.", fg="red")
return None
return choices[selected_index]
def select_provider(provider_models):
"""
Presents a list of providers to the user and prompts them to select one.
Args:
- provider_models (dict): A dictionary of provider models.
Returns:
- str: The selected provider, or None if the operation is aborted or an invalid selection is made.
"""
predefined_providers = [p.lower() for p in PROVIDERS]
all_providers = sorted(set(predefined_providers + list(provider_models.keys())))
provider = select_choice("Select a provider to set up:", predefined_providers + ['other'])
if not provider:
return None
provider = provider.lower()
if provider == 'other':
provider = select_choice("Select a provider from the full list:", all_providers)
if not provider:
return None
return provider
def select_model(provider, provider_models):
"""
Presents a list of models for a given provider to the user and prompts them to select one.
Args:
- provider (str): The provider for which to select a model.
- provider_models (dict): A dictionary of provider models.
Returns:
- str: The selected model, or None if the operation is aborted or an invalid selection is made.
"""
predefined_providers = [p.lower() for p in PROVIDERS]
if provider in predefined_providers:
available_models = MODELS.get(provider, [])
else:
available_models = provider_models.get(provider, [])
if not available_models:
click.secho(f"No models available for provider '{provider}'.", fg="red")
return None
selected_model = select_choice(f"Select a model to use for {provider.capitalize()}:", available_models)
return selected_model
def load_provider_data(cache_file, cache_expiry):
"""
Loads provider data from a cache file if it exists and is not expired. If the cache is expired or corrupted, it fetches the data from the web.
Args:
- cache_file (Path): The path to the cache file.
- cache_expiry (int): The cache expiry time in seconds.
Returns:
- dict or None: The loaded provider data or None if the operation fails.
"""
current_time = time.time()
if cache_file.exists() and (current_time - cache_file.stat().st_mtime) < cache_expiry:
data = read_cache_file(cache_file)
if data:
return data
click.secho("Cache is corrupted. Fetching provider data from the web...", fg="yellow")
else:
click.secho("Cache expired or not found. Fetching provider data from the web...", fg="cyan")
return fetch_provider_data(cache_file)
def read_cache_file(cache_file):
"""
Reads and returns the JSON content from a cache file. Returns None if the file contains invalid JSON.
Args:
- cache_file (Path): The path to the cache file.
Returns:
- dict or None: The JSON content of the cache file or None if the JSON is invalid.
"""
try:
with open(cache_file, "r") as f:
return json.load(f)
except json.JSONDecodeError:
return None
def fetch_provider_data(cache_file):
"""
Fetches provider data from a specified URL and caches it to a file.
Args:
- cache_file (Path): The path to the cache file.
Returns:
- dict or None: The fetched provider data or None if the operation fails.
"""
try:
response = requests.get(JSON_URL, stream=True, timeout=10)
response.raise_for_status()
data = download_data(response)
with open(cache_file, "w") as f:
json.dump(data, f)
return data
except requests.RequestException as e:
click.secho(f"Error fetching provider data: {e}", fg="red")
except json.JSONDecodeError:
click.secho("Error parsing provider data. Invalid JSON format.", fg="red")
return None
def download_data(response):
"""
Downloads data from a given HTTP response and returns the JSON content.
Args:
- response (requests.Response): The HTTP response object.
Returns:
- dict: The JSON content of the response.
"""
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
data_chunks = []
with click.progressbar(length=total_size, label='Downloading', show_pos=True) as progress_bar:
for chunk in response.iter_content(block_size):
if chunk:
data_chunks.append(chunk)
progress_bar.update(len(chunk))
data_content = b''.join(data_chunks)
return json.loads(data_content.decode('utf-8'))
def get_provider_data():
"""
Retrieves provider data from a cache file, filters out models based on provider criteria, and returns a dictionary of providers mapped to their models.
Returns:
- dict or None: A dictionary of providers mapped to their models or None if the operation fails.
"""
cache_dir = Path.home() / '.crewai'
cache_dir.mkdir(exist_ok=True)
cache_file = cache_dir / 'provider_cache.json'
cache_expiry = 24 * 3600
data = load_provider_data(cache_file, cache_expiry)
if not data:
return None
provider_models = defaultdict(list)
for model_name, properties in data.items():
provider = properties.get("litellm_provider", "").strip().lower()
if 'http' in provider or provider == 'other':
continue
if provider:
provider_models[provider].append(model_name)
return provider_models

View File

@@ -3,7 +3,7 @@ import sys
from {{folder_name}}.crew import {{crew_name}}Crew from {{folder_name}}.crew import {{crew_name}}Crew
# This main file is intended to be a way for you to run your # This main file is intended to be a way for you to run your
# crew locally, so refrain from adding necessary logic into this file. # crew locally, so refrain from adding unnecessary logic into this file.
# Replace with inputs you want to test with, it will automatically # Replace with inputs you want to test with, it will automatically
# interpolate any tasks and agents information # interpolate any tasks and agents information

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }] authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13" requires-python = ">=3.10,<=3.13"
dependencies = [ dependencies = [
"crewai[tools]>=0.67.1,<1.0.0" "crewai[tools]>=0.75.1,<1.0.0"
] ]
[project.scripts] [project.scripts]

View File

@@ -1,65 +1,53 @@
#!/usr/bin/env python #!/usr/bin/env python
import asyncio
from random import randint from random import randint
from pydantic import BaseModel from pydantic import BaseModel
from crewai.flow.flow import Flow, listen, start from crewai.flow.flow import Flow, listen, start
from .crews.poem_crew.poem_crew import PoemCrew from .crews.poem_crew.poem_crew import PoemCrew
class PoemState(BaseModel): class PoemState(BaseModel):
sentence_count: int = 1 sentence_count: int = 1
poem: str = "" poem: str = ""
class PoemFlow(Flow[PoemState]): class PoemFlow(Flow[PoemState]):
@start() @start()
def generate_sentence_count(self): def generate_sentence_count(self):
print("Generating sentence count") print("Generating sentence count")
# Generate a number between 1 and 5 self.state.sentence_count = randint(1, 5)
self.state.sentence_count = randint(1, 5)
@listen(generate_sentence_count) @listen(generate_sentence_count)
def generate_poem(self): def generate_poem(self):
print("Generating poem") print("Generating poem")
print(f"State before poem: {self.state}") result = (
result = PoemCrew().crew().kickoff(inputs={"sentence_count": self.state.sentence_count}) PoemCrew()
.crew()
.kickoff(inputs={"sentence_count": self.state.sentence_count})
)
print("Poem generated", result.raw) print("Poem generated", result.raw)
self.state.poem = result.raw self.state.poem = result.raw
print(f"State after generate_poem: {self.state}")
@listen(generate_poem) @listen(generate_poem)
def save_poem(self): def save_poem(self):
print("Saving poem") print("Saving poem")
print(f"State before save_poem: {self.state}")
with open("poem.txt", "w") as f: with open("poem.txt", "w") as f:
f.write(self.state.poem) f.write(self.state.poem)
print(f"State after save_poem: {self.state}")
async def run_flow():
""" def kickoff():
Run the flow.
"""
poem_flow = PoemFlow() poem_flow = PoemFlow()
await poem_flow.kickoff() poem_flow.kickoff()
async def plot_flow():
""" def plot():
Plot the flow.
"""
poem_flow = PoemFlow() poem_flow = PoemFlow()
poem_flow.plot() poem_flow.plot()
def main():
asyncio.run(run_flow())
def plot():
asyncio.run(plot_flow())
if __name__ == "__main__": if __name__ == "__main__":
main() kickoff()

View File

@@ -5,14 +5,12 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }] authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13" requires-python = ">=3.10,<=3.13"
dependencies = [ dependencies = [
"crewai[tools]>=0.67.1,<1.0.0", "crewai[tools]>=0.75.1,<1.0.0",
"asyncio"
] ]
[project.scripts] [project.scripts]
{{folder_name}} = "{{folder_name}}.main:main" kickoff = "{{folder_name}}.main:kickoff"
run_flow = "{{folder_name}}.main:main" plot = "{{folder_name}}.main:plot"
plot_flow = "{{folder_name}}.main:plot"
[build-system] [build-system]
requires = ["hatchling"] requires = ["hatchling"]

View File

@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies] [tool.poetry.dependencies]
python = ">=3.10,<=3.13" python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.70.1,<1.0.0" } crewai = { extras = ["tools"], version = ">=0.75.1,<1.0.0" }
asyncio = "*" asyncio = "*"
[tool.poetry.scripts] [tool.poetry.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"] authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13" requires-python = ">=3.10,<=3.13"
dependencies = [ dependencies = [
"crewai[tools]>=0.67.1,<1.0.0" "crewai[tools]>=0.75.1,<1.0.0"
] ]
[project.scripts] [project.scripts]

View File

@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md" readme = "README.md"
requires-python = ">=3.10,<=3.13" requires-python = ">=3.10,<=3.13"
dependencies = [ dependencies = [
"crewai[tools]>=0.70.1" "crewai[tools]>=0.75.1"
] ]

View File

@@ -28,8 +28,6 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
A class to handle tool repository related operations for CrewAI projects. A class to handle tool repository related operations for CrewAI projects.
""" """
BASE_URL = "https://app.crewai.com/pypi/"
def __init__(self): def __init__(self):
BaseCommand.__init__(self) BaseCommand.__init__(self)
PlusAPIMixin.__init__(self, telemetry=self._telemetry) PlusAPIMixin.__init__(self, telemetry=self._telemetry)
@@ -178,12 +176,14 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
def _add_package(self, tool_details): def _add_package(self, tool_details):
tool_handle = tool_details["handle"] tool_handle = tool_details["handle"]
repository_handle = tool_details["repository"]["handle"] repository_handle = tool_details["repository"]["handle"]
repository_url = tool_details["repository"]["url"]
index = f"{repository_handle}={repository_url}"
add_package_command = [ add_package_command = [
"uv", "uv",
"add", "add",
"--extra-index-url", "--index",
self.BASE_URL + repository_handle, index,
tool_handle, tool_handle,
] ]
add_package_result = subprocess.run( add_package_result = subprocess.run(

View File

@@ -1,3 +1,4 @@
import os
import shutil import shutil
import tomli_w import tomli_w
@@ -94,6 +95,15 @@ def migrate_pyproject(input_file, output_file):
shutil.copy2(input_file, backup_file) shutil.copy2(input_file, backup_file)
print(f"Original pyproject.toml backed up as {backup_file}") print(f"Original pyproject.toml backed up as {backup_file}")
# Rename the poetry.lock file
lock_file = "poetry.lock"
lock_backup = "poetry-old.lock"
if os.path.exists(lock_file):
os.rename(lock_file, lock_backup)
print(f"Original poetry.lock renamed to {lock_backup}")
else:
print("No poetry.lock file found to rename.")
# Write the new pyproject.toml # Write the new pyproject.toml
with open(output_file, "wb") as f: with open(output_file, "wb") as f:
tomli_w.dump(new_pyproject, f) tomli_w.dump(new_pyproject, f)

View File

@@ -9,6 +9,7 @@ import click
from rich.console import Console from rich.console import Console
from crewai.cli.authentication.utils import TokenManager from crewai.cli.authentication.utils import TokenManager
from crewai.cli.constants import ENV_VARS
if sys.version_info >= (3, 11): if sys.version_info >= (3, 11):
import tomllib import tomllib
@@ -200,3 +201,76 @@ def tree_find_and_replace(directory, find, replace):
new_dirpath = os.path.join(path, new_dirname) new_dirpath = os.path.join(path, new_dirname)
old_dirpath = os.path.join(path, dirname) old_dirpath = os.path.join(path, dirname)
os.rename(old_dirpath, new_dirpath) os.rename(old_dirpath, new_dirpath)
def load_env_vars(folder_path):
"""
Loads environment variables from a .env file in the specified folder path.
Args:
- folder_path (Path): The path to the folder containing the .env file.
Returns:
- dict: A dictionary of environment variables.
"""
env_file_path = folder_path / ".env"
env_vars = {}
if env_file_path.exists():
with open(env_file_path, "r") as file:
for line in file:
key, _, value = line.strip().partition("=")
if key and value:
env_vars[key] = value
return env_vars
def update_env_vars(env_vars, provider, model):
"""
Updates environment variables with the API key for the selected provider and model.
Args:
- env_vars (dict): Environment variables dictionary.
- provider (str): Selected provider.
- model (str): Selected model.
Returns:
- None
"""
api_key_var = ENV_VARS.get(
provider,
[
click.prompt(
f"Enter the environment variable name for your {provider.capitalize()} API key",
type=str,
)
],
)[0]
if api_key_var not in env_vars:
try:
env_vars[api_key_var] = click.prompt(
f"Enter your {provider.capitalize()} API key", type=str, hide_input=True
)
except click.exceptions.Abort:
click.secho("Operation aborted by the user.", fg="red")
return None
else:
click.secho(f"API key already exists for {provider.capitalize()}.", fg="yellow")
env_vars["MODEL"] = model
click.secho(f"Selected model: {model}", fg="green")
return env_vars
def write_env_file(folder_path, env_vars):
"""
Writes environment variables to a .env file in the specified folder.
Args:
- folder_path (Path): The path to the folder where the .env file will be written.
- env_vars (dict): A dictionary of environment variables to write.
"""
env_file_path = folder_path / ".env"
with open(env_file_path, "w") as file:
for key, value in env_vars.items():
file.write(f"{key}={value}\n")

View File

@@ -126,8 +126,8 @@ class Crew(BaseModel):
default=None, default=None,
description="An Instance of the EntityMemory to be used by the Crew", description="An Instance of the EntityMemory to be used by the Crew",
) )
embedder: Optional[dict] = Field( embedder: Optional[Any] = Field(
default={"provider": "openai"}, default=None,
description="Configuration for the embedder to be used for the crew.", description="Configuration for the embedder to be used for the crew.",
) )
usage_metrics: Optional[UsageMetrics] = Field( usage_metrics: Optional[UsageMetrics] = Field(
@@ -435,15 +435,16 @@ class Crew(BaseModel):
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {} self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None: ) -> None:
"""Trains the crew for a given number of iterations.""" """Trains the crew for a given number of iterations."""
self._setup_for_training(filename) train_crew = self.copy()
train_crew._setup_for_training(filename)
for n_iteration in range(n_iterations): for n_iteration in range(n_iterations):
self._train_iteration = n_iteration train_crew._train_iteration = n_iteration
self.kickoff(inputs=inputs) train_crew.kickoff(inputs=inputs)
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load() training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
for agent in self.agents: for agent in train_crew.agents:
result = TaskEvaluator(agent).evaluate_training_data( result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id) training_data=training_data, agent_id=str(agent.id)
) )
@@ -774,7 +775,9 @@ class Crew(BaseModel):
def _log_task_start(self, task: Task, role: str = "None"): def _log_task_start(self, task: Task, role: str = "None"):
if self.output_log_file: if self.output_log_file:
self._file_handler.log(task_name=task.name, task=task.description, agent=role, status="started") self._file_handler.log(
task_name=task.name, task=task.description, agent=role, status="started"
)
def _update_manager_tools(self, task: Task): def _update_manager_tools(self, task: Task):
if self.manager_agent: if self.manager_agent:
@@ -796,7 +799,13 @@ class Crew(BaseModel):
def _process_task_result(self, task: Task, output: TaskOutput) -> None: def _process_task_result(self, task: Task, output: TaskOutput) -> None:
role = task.agent.role if task.agent is not None else "None" role = task.agent.role if task.agent is not None else "None"
if self.output_log_file: if self.output_log_file:
self._file_handler.log(task_name=task.name, task=task.description, agent=role, status="completed", output=output.raw) self._file_handler.log(
task_name=task.name,
task=task.description,
agent=role,
status="completed",
output=output.raw,
)
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput: def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if len(task_outputs) != 1: if len(task_outputs) != 1:
@@ -979,17 +988,19 @@ class Crew(BaseModel):
inputs: Optional[Dict[str, Any]] = None, inputs: Optional[Dict[str, Any]] = None,
) -> None: ) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures.""" """Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
self._test_execution_span = self._telemetry.test_execution_span( test_crew = self.copy()
self,
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations, n_iterations,
inputs, inputs,
openai_model_name, # type: ignore[arg-type] openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type] ) # type: ignore[arg-type]
evaluator = CrewEvaluator(self, openai_model_name) # type: ignore[arg-type] evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
for i in range(1, n_iterations + 1): for i in range(1, n_iterations + 1):
evaluator.set_iteration(i) evaluator.set_iteration(i)
self.kickoff(inputs=inputs) test_crew.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result() evaluator.print_crew_evaluation_result()

View File

@@ -190,7 +190,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
"""Returns the list of all outputs from executed methods.""" """Returns the list of all outputs from executed methods."""
return self._method_outputs return self._method_outputs
async def kickoff(self) -> Any: def kickoff(self) -> Any:
return asyncio.run(self.kickoff_async())
async def kickoff_async(self) -> Any:
if not self._start_methods: if not self._start_methods:
raise ValueError("No start method defined") raise ValueError("No start method defined")

View File

@@ -31,7 +31,9 @@ class ContextualMemory:
formatted as bullet points. formatted as bullet points.
""" """
stm_results = self.stm.search(query) stm_results = self.stm.search(query)
formatted_results = "\n".join([f"- {result}" for result in stm_results]) formatted_results = "\n".join(
[f"- {result['context']}" for result in stm_results]
)
return f"Recent Insights:\n{formatted_results}" if stm_results else "" return f"Recent Insights:\n{formatted_results}" if stm_results else ""
def _fetch_ltm_context(self, task) -> Optional[str]: def _fetch_ltm_context(self, task) -> Optional[str]:

View File

@@ -16,7 +16,7 @@ class EntityMemory(Memory):
if storage if storage
else RAGStorage( else RAGStorage(
type="entities", type="entities",
allow_reset=False, allow_reset=True,
embedder_config=embedder_config, embedder_config=embedder_config,
crew=crew, crew=crew,
) )

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict from typing import Any, Dict, List
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.memory import Memory from crewai.memory.memory import Memory
@@ -28,7 +28,7 @@ class LongTermMemory(Memory):
datetime=item.datetime, datetime=item.datetime,
) )
def search(self, task: str, latest_n: int = 3) -> Dict[str, Any]: def search(self, task: str, latest_n: int = 3) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load" return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"
def reset(self) -> None: def reset(self) -> None:

View File

@@ -1,6 +1,6 @@
from typing import Any, Dict, Optional from typing import Any, Dict, Optional, List
from crewai.memory.storage.interface import Storage from crewai.memory.storage.rag_storage import RAGStorage
class Memory: class Memory:
@@ -8,7 +8,7 @@ class Memory:
Base class for memory, now supporting agent tags and generic metadata. Base class for memory, now supporting agent tags and generic metadata.
""" """
def __init__(self, storage: Storage): def __init__(self, storage: RAGStorage):
self.storage = storage self.storage = storage
def save( def save(
@@ -23,5 +23,5 @@ class Memory:
self.storage.save(value, metadata) self.storage.save(value, metadata)
def search(self, query: str) -> Dict[str, Any]: def search(self, query: str) -> List[Dict[str, Any]]:
return self.storage.search(query) return self.storage.search(query)

View File

@@ -0,0 +1,76 @@
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
class BaseRAGStorage(ABC):
"""
Base class for RAG-based Storage implementations.
"""
app: Any | None = None
def __init__(
self,
type: str,
allow_reset: bool = True,
embedder_config: Optional[Any] = None,
crew: Any = None,
):
self.type = type
self.allow_reset = allow_reset
self.embedder_config = embedder_config
self.crew = crew
self.agents = self._initialize_agents()
def _initialize_agents(self) -> str:
if self.crew:
return "_".join(
[self._sanitize_role(agent.role) for agent in self.crew.agents]
)
return ""
@abstractmethod
def _sanitize_role(self, role: str) -> str:
"""Sanitizes agent roles to ensure valid directory names."""
pass
@abstractmethod
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
"""Save a value with metadata to the storage."""
pass
@abstractmethod
def search(
self,
query: str,
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Any]:
"""Search for entries in the storage."""
pass
@abstractmethod
def reset(self) -> None:
"""Reset the storage."""
pass
@abstractmethod
def _generate_embedding(
self, text: str, metadata: Optional[Dict[str, Any]] = None
) -> Any:
"""Generate an embedding for the given text and metadata."""
pass
@abstractmethod
def _initialize_app(self):
"""Initialize the vector db."""
pass
def setup_config(self, config: Dict[str, Any]):
"""Setup the config of the storage."""
pass
def initialize_client(self):
"""Initialize the client of the storage. This should setup the app and the db collection"""
pass

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict from typing import Any, Dict, List
class Storage: class Storage:
@@ -7,7 +7,7 @@ class Storage:
def save(self, value: Any, metadata: Dict[str, Any]) -> None: def save(self, value: Any, metadata: Dict[str, Any]) -> None:
pass pass
def search(self, key: str) -> Dict[str, Any]: # type: ignore def search(self, key: str) -> List[Dict[str, Any]]: # type: ignore
pass pass
def reset(self) -> None: def reset(self) -> None:

View File

@@ -3,10 +3,14 @@ import io
import logging import logging
import os import os
import shutil import shutil
import uuid
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.memory.storage.interface import Storage
from crewai.utilities.paths import db_storage_path from crewai.utilities.paths import db_storage_path
from chromadb.api import ClientAPI
from chromadb.api.types import validate_embedding_function
from chromadb import Documents, EmbeddingFunction, Embeddings
from typing import cast
@contextlib.contextmanager @contextlib.contextmanager
@@ -24,61 +28,119 @@ def suppress_logging(
logger.setLevel(original_level) logger.setLevel(original_level)
class RAGStorage(Storage): class RAGStorage(BaseRAGStorage):
""" """
Extends Storage to handle embeddings for memory entries, improving Extends Storage to handle embeddings for memory entries, improving
search efficiency. search efficiency.
""" """
def __init__(self, type, allow_reset=True, embedder_config=None, crew=None): app: ClientAPI | None = None
super().__init__()
if (
not os.getenv("OPENAI_API_KEY")
and not os.getenv("OPENAI_BASE_URL") == "https://api.openai.com/v1"
):
os.environ["OPENAI_API_KEY"] = "fake"
def __init__(self, type, allow_reset=True, embedder_config=None, crew=None):
super().__init__(type, allow_reset, embedder_config, crew)
agents = crew.agents if crew else [] agents = crew.agents if crew else []
agents = [self._sanitize_role(agent.role) for agent in agents] agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents) agents = "_".join(agents)
self.agents = agents
config = {
"app": {
"config": {"name": type, "collect_metrics": False, "log_level": "ERROR"}
},
"chunker": {
"chunk_size": 5000,
"chunk_overlap": 100,
"length_function": "len",
"min_chunk_size": 150,
},
"vectordb": {
"provider": "chroma",
"config": {
"collection_name": type,
"dir": f"{db_storage_path()}/{type}/{agents}",
"allow_reset": allow_reset,
},
},
}
if embedder_config:
config["embedder"] = embedder_config
self.type = type self.type = type
self.config = config
self.allow_reset = allow_reset self.allow_reset = allow_reset
self._initialize_app()
def _set_embedder_config(self):
import chromadb.utils.embedding_functions as embedding_functions
if self.embedder_config is None:
self.embedder_config = self._create_default_embedding_function()
if isinstance(self.embedder_config, dict):
provider = self.embedder_config.get("provider")
config = self.embedder_config.get("config", {})
model_name = config.get("model")
if provider == "openai":
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
)
elif provider == "azure":
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
)
elif provider == "ollama":
from openai import OpenAI
class OllamaEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
client = OpenAI(
base_url="http://localhost:11434/v1",
api_key=config.get("api_key", "ollama"),
)
try:
response = client.embeddings.create(
input=input, model=model_name
)
embeddings = [item.embedding for item in response.data]
return cast(Embeddings, embeddings)
except Exception as e:
raise e
self.embedder_config = OllamaEmbeddingFunction()
elif provider == "vertexai":
self.embedder_config = (
embedding_functions.GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
)
elif provider == "google":
self.embedder_config = (
embedding_functions.GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
)
elif provider == "cohere":
self.embedder_config = embedding_functions.CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
elif provider == "huggingface":
self.embedder_config = embedding_functions.HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
else:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface]"
)
else:
validate_embedding_function(self.embedder_config) # type: ignore # used for validating embedder_config if defined a embedding function/class
self.embedder_config = self.embedder_config
def _initialize_app(self): def _initialize_app(self):
from embedchain import App import chromadb
from embedchain.llm.base import BaseLlm from chromadb.config import Settings
class FakeLLM(BaseLlm): self._set_embedder_config()
pass chroma_client = chromadb.PersistentClient(
path=f"{db_storage_path()}/{self.type}/{self.agents}",
settings=Settings(allow_reset=self.allow_reset),
)
self.app = App.from_config(config=self.config) self.app = chroma_client
self.app.llm = FakeLLM()
if self.allow_reset: try:
self.app.reset() self.collection = self.app.get_collection(
name=self.type, embedding_function=self.embedder_config
)
except Exception:
self.collection = self.app.create_collection(
name=self.type, embedding_function=self.embedder_config
)
def _sanitize_role(self, role: str) -> str: def _sanitize_role(self, role: str) -> str:
""" """
@@ -87,11 +149,14 @@ class RAGStorage(Storage):
return role.replace("\n", "").replace(" ", "_").replace("/", "_") return role.replace("\n", "").replace(" ", "_").replace("/", "_")
def save(self, value: Any, metadata: Dict[str, Any]) -> None: def save(self, value: Any, metadata: Dict[str, Any]) -> None:
if not hasattr(self, "app"): if not hasattr(self, "app") or not hasattr(self, "collection"):
self._initialize_app() self._initialize_app()
self._generate_embedding(value, metadata) try:
self._generate_embedding(value, metadata)
except Exception as e:
logging.error(f"Error during {self.type} save: {str(e)}")
def search( # type: ignore # BUG?: Signature of "search" incompatible with supertype "Storage" def search(
self, self,
query: str, query: str,
limit: int = 3, limit: int = 3,
@@ -100,31 +165,54 @@ class RAGStorage(Storage):
) -> List[Any]: ) -> List[Any]:
if not hasattr(self, "app"): if not hasattr(self, "app"):
self._initialize_app() self._initialize_app()
from embedchain.vectordb.chroma import InvalidDimensionException
with suppress_logging(): try:
try: with suppress_logging():
results = ( response = self.collection.query(query_texts=query, n_results=limit)
self.app.search(query, limit, where=filter)
if filter
else self.app.search(query, limit)
)
except InvalidDimensionException:
self.app.reset()
return []
return [r for r in results if r["metadata"]["score"] >= score_threshold]
def _generate_embedding(self, text: str, metadata: Dict[str, Any]) -> Any: results = []
if not hasattr(self, "app"): for i in range(len(response["ids"][0])):
result = {
"id": response["ids"][0][i],
"metadata": response["metadatas"][0][i],
"context": response["documents"][0][i],
"score": response["distances"][0][i],
}
if result["score"] >= score_threshold:
results.append(result)
return results
except Exception as e:
logging.error(f"Error during {self.type} search: {str(e)}")
return []
def _generate_embedding(self, text: str, metadata: Dict[str, Any]) -> None: # type: ignore
if not hasattr(self, "app") or not hasattr(self, "collection"):
self._initialize_app() self._initialize_app()
from embedchain.models.data_type import DataType
self.app.add(text, data_type=DataType.TEXT, metadata=metadata) self.collection.add(
documents=[text],
metadatas=[metadata or {}],
ids=[str(uuid.uuid4())],
)
def reset(self) -> None: def reset(self) -> None:
try: try:
shutil.rmtree(f"{db_storage_path()}/{self.type}") shutil.rmtree(f"{db_storage_path()}/{self.type}")
if self.app:
self.app.reset()
except Exception as e: except Exception as e:
raise Exception( if "attempt to write a readonly database" in str(e):
f"An error occurred while resetting the {self.type} memory: {e}" # Ignore this specific error
) pass
else:
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)
def _create_default_embedding_function(self):
import chromadb.utils.embedding_functions as embedding_functions
return embedding_functions.OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)

View File

@@ -76,27 +76,13 @@ def crew(func) -> Callable[..., Crew]:
instantiated_agents = [] instantiated_agents = []
agent_roles = set() agent_roles = set()
# Collect methods from crew in order # Use the preserved task and agent information
all_functions = [ tasks = self._original_tasks.items()
(name, getattr(self, name)) agents = self._original_agents.items()
for name, attr in self.__class__.__dict__.items()
if callable(attr)
]
tasks = [
(name, method)
for name, method in all_functions
if hasattr(method, "is_task")
]
agents = [
(name, method)
for name, method in all_functions
if hasattr(method, "is_agent")
]
# Instantiate tasks in order # Instantiate tasks in order
for task_name, task_method in tasks: for task_name, task_method in tasks:
task_instance = task_method() task_instance = task_method(self)
instantiated_tasks.append(task_instance) instantiated_tasks.append(task_instance)
agent_instance = getattr(task_instance, "agent", None) agent_instance = getattr(task_instance, "agent", None)
if agent_instance and agent_instance.role not in agent_roles: if agent_instance and agent_instance.role not in agent_roles:
@@ -105,7 +91,7 @@ def crew(func) -> Callable[..., Crew]:
# Instantiate agents not included by tasks # Instantiate agents not included by tasks
for agent_name, agent_method in agents: for agent_name, agent_method in agents:
agent_instance = agent_method() agent_instance = agent_method(self)
if agent_instance.role not in agent_roles: if agent_instance.role not in agent_roles:
instantiated_agents.append(agent_instance) instantiated_agents.append(agent_instance)
agent_roles.add(agent_instance.role) agent_roles.add(agent_instance.role)

View File

@@ -34,6 +34,18 @@ def CrewBase(cls: T) -> T:
self.map_all_agent_variables() self.map_all_agent_variables()
self.map_all_task_variables() self.map_all_task_variables()
# Preserve task and agent information
self._original_tasks = {
name: method
for name, method in cls.__dict__.items()
if hasattr(method, "is_task") and method.is_task
}
self._original_agents = {
name: method
for name, method in cls.__dict__.items()
if hasattr(method, "is_agent") and method.is_agent
}
@staticmethod @staticmethod
def load_yaml(config_path: Path): def load_yaml(config_path: Path):
try: try:

View File

@@ -65,7 +65,7 @@ class Telemetry:
self.provider.add_span_processor(processor) self.provider.add_span_processor(processor)
self.ready = True self.ready = True
except BaseException as e: except Exception as e:
if isinstance( if isinstance(
e, e,
(SystemExit, KeyboardInterrupt, GeneratorExit, asyncio.CancelledError), (SystemExit, KeyboardInterrupt, GeneratorExit, asyncio.CancelledError),
@@ -83,404 +83,33 @@ class Telemetry:
self.ready = False self.ready = False
self.trace_set = False self.trace_set = False
def _safe_telemetry_operation(self, operation):
if not self.ready:
return
try:
operation()
except Exception:
pass
def crew_creation(self, crew: Crew, inputs: dict[str, Any] | None): def crew_creation(self, crew: Crew, inputs: dict[str, Any] | None):
"""Records the creation of a crew.""" """Records the creation of a crew."""
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Created")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "python_version", platform.python_version())
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "crew_process", crew.process)
self._add_attribute(span, "crew_memory", crew.memory)
self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
self._add_attribute(span, "crew_number_of_agents", len(crew.agents))
if crew.share_crew:
self._add_attribute(
span,
"crew_agents",
json.dumps(
[
{
"key": agent.key,
"id": str(agent.id),
"role": agent.role,
"goal": agent.goal,
"backstory": agent.backstory,
"verbose?": agent.verbose,
"max_iter": agent.max_iter,
"max_rpm": agent.max_rpm,
"i18n": agent.i18n.prompt_file,
"function_calling_llm": (
agent.function_calling_llm.model
if agent.function_calling_llm
else ""
),
"llm": agent.llm.model,
"delegation_enabled?": agent.allow_delegation,
"allow_code_execution?": agent.allow_code_execution,
"max_retry_limit": agent.max_retry_limit,
"tools_names": [
tool.name.casefold()
for tool in agent.tools or []
],
}
for agent in crew.agents
]
),
)
self._add_attribute(
span,
"crew_tasks",
json.dumps(
[
{
"key": task.key,
"id": str(task.id),
"description": task.description,
"expected_output": task.expected_output,
"async_execution?": task.async_execution,
"human_input?": task.human_input,
"agent_role": (
task.agent.role if task.agent else "None"
),
"agent_key": task.agent.key if task.agent else None,
"context": (
[task.description for task in task.context]
if task.context
else None
),
"tools_names": [
tool.name.casefold()
for tool in task.tools or []
],
}
for task in crew.tasks
]
),
)
self._add_attribute(span, "platform", platform.platform())
self._add_attribute(span, "platform_release", platform.release())
self._add_attribute(span, "platform_system", platform.system())
self._add_attribute(span, "platform_version", platform.version())
self._add_attribute(span, "cpus", os.cpu_count())
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
else:
self._add_attribute(
span,
"crew_agents",
json.dumps(
[
{
"key": agent.key,
"id": str(agent.id),
"role": agent.role,
"verbose?": agent.verbose,
"max_iter": agent.max_iter,
"max_rpm": agent.max_rpm,
"function_calling_llm": (
agent.function_calling_llm.model
if agent.function_calling_llm
else ""
),
"llm": agent.llm.model,
"delegation_enabled?": agent.allow_delegation,
"allow_code_execution?": agent.allow_code_execution,
"max_retry_limit": agent.max_retry_limit,
"tools_names": [
tool.name.casefold()
for tool in agent.tools or []
],
}
for agent in crew.agents
]
),
)
self._add_attribute(
span,
"crew_tasks",
json.dumps(
[
{
"key": task.key,
"id": str(task.id),
"async_execution?": task.async_execution,
"human_input?": task.human_input,
"agent_role": (
task.agent.role if task.agent else "None"
),
"agent_key": task.agent.key if task.agent else None,
"tools_names": [
tool.name.casefold()
for tool in task.tools or []
],
}
for task in crew.tasks
]
),
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def task_started(self, crew: Crew, task: Task) -> Span | None: def operation():
"""Records task started in a crew.""" tracer = trace.get_tracer("crewai.telemetry")
if self.ready: span = tracer.start_span("Crew Created")
try: self._add_attribute(
tracer = trace.get_tracer("crewai.telemetry") span,
"crewai_version",
created_span = tracer.start_span("Task Created") pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(created_span, "crew_key", crew.key) self._add_attribute(span, "python_version", platform.python_version())
self._add_attribute(created_span, "crew_id", str(crew.id)) self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(created_span, "task_key", task.key) self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(created_span, "task_id", str(task.id)) self._add_attribute(span, "crew_process", crew.process)
self._add_attribute(span, "crew_memory", crew.memory)
if crew.share_crew: self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
self._add_attribute( self._add_attribute(span, "crew_number_of_agents", len(crew.agents))
created_span, "formatted_description", task.description if crew.share_crew:
)
self._add_attribute(
created_span, "formatted_expected_output", task.expected_output
)
created_span.set_status(Status(StatusCode.OK))
created_span.end()
span = tracer.start_span("Task Execution")
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "task_key", task.key)
self._add_attribute(span, "task_id", str(task.id))
if crew.share_crew:
self._add_attribute(span, "formatted_description", task.description)
self._add_attribute(
span, "formatted_expected_output", task.expected_output
)
return span
except Exception:
pass
return None
def task_ended(self, span: Span, task: Task, crew: Crew):
"""Records task execution in a crew."""
if self.ready:
try:
if crew.share_crew:
self._add_attribute(
span,
"task_output",
task.output.raw if task.output else "",
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def tool_repeated_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the repeated usage 'error' of a tool by an agent."""
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Repeated Usage")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "tool_name", tool_name)
self._add_attribute(span, "attempts", attempts)
if llm:
self._add_attribute(span, "llm", llm.model)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def tool_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the usage of a tool by an agent."""
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "tool_name", tool_name)
self._add_attribute(span, "attempts", attempts)
if llm:
self._add_attribute(span, "llm", llm.model)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def tool_usage_error(self, llm: Any):
"""Records the usage of a tool by an agent."""
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage Error")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
if llm:
self._add_attribute(span, "llm", llm.model)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def individual_test_result_span(
self, crew: Crew, quality: float, exec_time: int, model_name: str
):
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Individual Test Result")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "quality", str(quality))
self._add_attribute(span, "exec_time", str(exec_time))
self._add_attribute(span, "model_name", model_name)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def test_execution_span(
self,
crew: Crew,
iterations: int,
inputs: dict[str, Any] | None,
model_name: str,
):
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Test Execution")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "iterations", str(iterations))
self._add_attribute(span, "model_name", model_name)
if crew.share_crew:
self._add_attribute(
span, "inputs", json.dumps(inputs) if inputs else None
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def deploy_signup_error_span(self):
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Deploy Signup Error")
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def start_deployment_span(self, uuid: Optional[str] = None):
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Start Deployment")
if uuid:
self._add_attribute(span, "uuid", uuid)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def create_crew_deployment_span(self):
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Create Crew Deployment")
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def get_crew_logs_span(self, uuid: Optional[str], log_type: str = "deployment"):
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Get Crew Logs")
self._add_attribute(span, "log_type", log_type)
if uuid:
self._add_attribute(span, "uuid", uuid)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def remove_crew_span(self, uuid: Optional[str] = None):
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Remove Crew")
if uuid:
self._add_attribute(span, "uuid", uuid)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def crew_execution_span(self, crew: Crew, inputs: dict[str, Any] | None):
"""Records the complete execution of a crew.
This is only collected if the user has opted-in to share the crew.
"""
self.crew_creation(crew, inputs)
if (self.ready) and (crew.share_crew):
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Execution")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
self._add_attribute( self._add_attribute(
span, span,
"crew_agents", "crew_agents",
@@ -496,8 +125,15 @@ class Telemetry:
"max_iter": agent.max_iter, "max_iter": agent.max_iter,
"max_rpm": agent.max_rpm, "max_rpm": agent.max_rpm,
"i18n": agent.i18n.prompt_file, "i18n": agent.i18n.prompt_file,
"function_calling_llm": (
agent.function_calling_llm.model
if agent.function_calling_llm
else ""
),
"llm": agent.llm.model, "llm": agent.llm.model,
"delegation_enabled?": agent.allow_delegation, "delegation_enabled?": agent.allow_delegation,
"allow_code_execution?": agent.allow_code_execution,
"max_retry_limit": agent.max_retry_limit,
"tools_names": [ "tools_names": [
tool.name.casefold() for tool in agent.tools or [] tool.name.casefold() for tool in agent.tools or []
], ],
@@ -512,12 +148,15 @@ class Telemetry:
json.dumps( json.dumps(
[ [
{ {
"key": task.key,
"id": str(task.id), "id": str(task.id),
"description": task.description, "description": task.description,
"expected_output": task.expected_output, "expected_output": task.expected_output,
"async_execution?": task.async_execution, "async_execution?": task.async_execution,
"human_input?": task.human_input, "human_input?": task.human_input,
"agent_role": task.agent.role if task.agent else "None", "agent_role": (
task.agent.role if task.agent else "None"
),
"agent_key": task.agent.key if task.agent else None, "agent_key": task.agent.key if task.agent else None,
"context": ( "context": (
[task.description for task in task.context] [task.description for task in task.context]
@@ -532,78 +171,433 @@ class Telemetry:
] ]
), ),
) )
return span self._add_attribute(span, "platform", platform.platform())
except Exception: self._add_attribute(span, "platform_release", platform.release())
pass self._add_attribute(span, "platform_system", platform.system())
self._add_attribute(span, "platform_version", platform.version())
def end_crew(self, crew, final_string_output): self._add_attribute(span, "cpus", os.cpu_count())
if (self.ready) and (crew.share_crew):
try:
self._add_attribute( self._add_attribute(
crew._execution_span, span, "crew_inputs", json.dumps(inputs) if inputs else None
"crewai_version",
pkg_resources.get_distribution("crewai").version,
) )
else:
self._add_attribute( self._add_attribute(
crew._execution_span, "crew_output", final_string_output span,
) "crew_agents",
self._add_attribute(
crew._execution_span,
"crew_tasks_output",
json.dumps( json.dumps(
[ [
{ {
"key": agent.key,
"id": str(agent.id),
"role": agent.role,
"verbose?": agent.verbose,
"max_iter": agent.max_iter,
"max_rpm": agent.max_rpm,
"function_calling_llm": (
agent.function_calling_llm.model
if agent.function_calling_llm
else ""
),
"llm": agent.llm.model,
"delegation_enabled?": agent.allow_delegation,
"allow_code_execution?": agent.allow_code_execution,
"max_retry_limit": agent.max_retry_limit,
"tools_names": [
tool.name.casefold() for tool in agent.tools or []
],
}
for agent in crew.agents
]
),
)
self._add_attribute(
span,
"crew_tasks",
json.dumps(
[
{
"key": task.key,
"id": str(task.id), "id": str(task.id),
"description": task.description, "async_execution?": task.async_execution,
"output": task.output.raw_output, "human_input?": task.human_input,
"agent_role": (
task.agent.role if task.agent else "None"
),
"agent_key": task.agent.key if task.agent else None,
"tools_names": [
tool.name.casefold() for tool in task.tools or []
],
} }
for task in crew.tasks for task in crew.tasks
] ]
), ),
) )
crew._execution_span.set_status(Status(StatusCode.OK)) span.set_status(Status(StatusCode.OK))
crew._execution_span.end() span.end()
except Exception:
pass self._safe_telemetry_operation(operation)
def task_started(self, crew: Crew, task: Task) -> Span | None:
"""Records task started in a crew."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
created_span = tracer.start_span("Task Created")
self._add_attribute(created_span, "crew_key", crew.key)
self._add_attribute(created_span, "crew_id", str(crew.id))
self._add_attribute(created_span, "task_key", task.key)
self._add_attribute(created_span, "task_id", str(task.id))
if crew.share_crew:
self._add_attribute(
created_span, "formatted_description", task.description
)
self._add_attribute(
created_span, "formatted_expected_output", task.expected_output
)
created_span.set_status(Status(StatusCode.OK))
created_span.end()
span = tracer.start_span("Task Execution")
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "task_key", task.key)
self._add_attribute(span, "task_id", str(task.id))
if crew.share_crew:
self._add_attribute(span, "formatted_description", task.description)
self._add_attribute(
span, "formatted_expected_output", task.expected_output
)
return span
return self._safe_telemetry_operation(operation)
def task_ended(self, span: Span, task: Task, crew: Crew):
"""Records task execution in a crew."""
def operation():
if crew.share_crew:
self._add_attribute(
span,
"task_output",
task.output.raw if task.output else "",
)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def tool_repeated_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the repeated usage 'error' of a tool by an agent."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Repeated Usage")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "tool_name", tool_name)
self._add_attribute(span, "attempts", attempts)
if llm:
self._add_attribute(span, "llm", llm.model)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def tool_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the usage of a tool by an agent."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "tool_name", tool_name)
self._add_attribute(span, "attempts", attempts)
if llm:
self._add_attribute(span, "llm", llm.model)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def tool_usage_error(self, llm: Any):
"""Records the usage of a tool by an agent."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage Error")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
if llm:
self._add_attribute(span, "llm", llm.model)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def individual_test_result_span(
self, crew: Crew, quality: float, exec_time: int, model_name: str
):
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Individual Test Result")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "quality", str(quality))
self._add_attribute(span, "exec_time", str(exec_time))
self._add_attribute(span, "model_name", model_name)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def test_execution_span(
self,
crew: Crew,
iterations: int,
inputs: dict[str, Any] | None,
model_name: str,
):
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Test Execution")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "iterations", str(iterations))
self._add_attribute(span, "model_name", model_name)
if crew.share_crew:
self._add_attribute(
span, "inputs", json.dumps(inputs) if inputs else None
)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def deploy_signup_error_span(self):
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Deploy Signup Error")
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def start_deployment_span(self, uuid: Optional[str] = None):
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Start Deployment")
if uuid:
self._add_attribute(span, "uuid", uuid)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def create_crew_deployment_span(self):
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Create Crew Deployment")
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def get_crew_logs_span(self, uuid: Optional[str], log_type: str = "deployment"):
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Get Crew Logs")
self._add_attribute(span, "log_type", log_type)
if uuid:
self._add_attribute(span, "uuid", uuid)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def remove_crew_span(self, uuid: Optional[str] = None):
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Remove Crew")
if uuid:
self._add_attribute(span, "uuid", uuid)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def crew_execution_span(self, crew: Crew, inputs: dict[str, Any] | None):
"""Records the complete execution of a crew.
This is only collected if the user has opted-in to share the crew.
"""
self.crew_creation(crew, inputs)
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Execution")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
self._add_attribute(
span,
"crew_agents",
json.dumps(
[
{
"key": agent.key,
"id": str(agent.id),
"role": agent.role,
"goal": agent.goal,
"backstory": agent.backstory,
"verbose?": agent.verbose,
"max_iter": agent.max_iter,
"max_rpm": agent.max_rpm,
"i18n": agent.i18n.prompt_file,
"llm": agent.llm.model,
"delegation_enabled?": agent.allow_delegation,
"tools_names": [
tool.name.casefold() for tool in agent.tools or []
],
}
for agent in crew.agents
]
),
)
self._add_attribute(
span,
"crew_tasks",
json.dumps(
[
{
"id": str(task.id),
"description": task.description,
"expected_output": task.expected_output,
"async_execution?": task.async_execution,
"human_input?": task.human_input,
"agent_role": task.agent.role if task.agent else "None",
"agent_key": task.agent.key if task.agent else None,
"context": (
[task.description for task in task.context]
if task.context
else None
),
"tools_names": [
tool.name.casefold() for tool in task.tools or []
],
}
for task in crew.tasks
]
),
)
return span
if crew.share_crew:
return self._safe_telemetry_operation(operation)
return None
def end_crew(self, crew, final_string_output):
def operation():
self._add_attribute(
crew._execution_span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(
crew._execution_span, "crew_output", final_string_output
)
self._add_attribute(
crew._execution_span,
"crew_tasks_output",
json.dumps(
[
{
"id": str(task.id),
"description": task.description,
"output": task.output.raw_output,
}
for task in crew.tasks
]
),
)
crew._execution_span.set_status(Status(StatusCode.OK))
crew._execution_span.end()
if crew.share_crew:
self._safe_telemetry_operation(operation)
def _add_attribute(self, span, key, value): def _add_attribute(self, span, key, value):
"""Add an attribute to a span.""" """Add an attribute to a span."""
try:
def operation():
return span.set_attribute(key, value) return span.set_attribute(key, value)
except Exception:
pass self._safe_telemetry_operation(operation)
def flow_creation_span(self, flow_name: str): def flow_creation_span(self, flow_name: str):
if self.ready: def operation():
try: tracer = trace.get_tracer("crewai.telemetry")
tracer = trace.get_tracer("crewai.telemetry") span = tracer.start_span("Flow Creation")
span = tracer.start_span("Flow Creation") self._add_attribute(span, "flow_name", flow_name)
self._add_attribute(span, "flow_name", flow_name) span.set_status(Status(StatusCode.OK))
span.set_status(Status(StatusCode.OK)) span.end()
span.end()
except Exception: self._safe_telemetry_operation(operation)
pass
def flow_plotting_span(self, flow_name: str, node_names: list[str]): def flow_plotting_span(self, flow_name: str, node_names: list[str]):
if self.ready: def operation():
try: tracer = trace.get_tracer("crewai.telemetry")
tracer = trace.get_tracer("crewai.telemetry") span = tracer.start_span("Flow Plotting")
span = tracer.start_span("Flow Plotting") self._add_attribute(span, "flow_name", flow_name)
self._add_attribute(span, "flow_name", flow_name) self._add_attribute(span, "node_names", json.dumps(node_names))
self._add_attribute(span, "node_names", json.dumps(node_names)) span.set_status(Status(StatusCode.OK))
span.set_status(Status(StatusCode.OK)) span.end()
span.end()
except Exception: self._safe_telemetry_operation(operation)
pass
def flow_execution_span(self, flow_name: str, node_names: list[str]): def flow_execution_span(self, flow_name: str, node_names: list[str]):
if self.ready: def operation():
try: tracer = trace.get_tracer("crewai.telemetry")
tracer = trace.get_tracer("crewai.telemetry") span = tracer.start_span("Flow Execution")
span = tracer.start_span("Flow Execution") self._add_attribute(span, "flow_name", flow_name)
self._add_attribute(span, "flow_name", flow_name) self._add_attribute(span, "node_names", json.dumps(node_names))
self._add_attribute(span, "node_names", json.dumps(node_names)) span.set_status(Status(StatusCode.OK))
span.set_status(Status(StatusCode.OK)) span.end()
span.end()
except Exception: self._safe_telemetry_operation(operation)
pass

View File

@@ -6,14 +6,13 @@ from difflib import SequenceMatcher
from textwrap import dedent from textwrap import dedent
from typing import Any, List, Union from typing import Any, List, Union
import crewai.utilities.events as events
from crewai.agents.tools_handler import ToolsHandler from crewai.agents.tools_handler import ToolsHandler
from crewai.task import Task from crewai.task import Task
from crewai.telemetry import Telemetry from crewai.telemetry import Telemetry
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
from crewai.utilities import I18N, Converter, ConverterError, Printer from crewai.utilities import I18N, Converter, ConverterError, Printer
import crewai.utilities.events as events
agentops = None agentops = None
if os.environ.get("AGENTOPS_API_KEY"): if os.environ.get("AGENTOPS_API_KEY"):
@@ -300,8 +299,11 @@ class ToolUsage:
descriptions = [] descriptions = []
for tool in self.tools: for tool in self.tools:
args = { args = {
k: {k2: v2 for k2, v2 in v.items() if k2 in ["description", "type"]} name: {
for k, v in tool.args.items() "description": field.description,
"type": field.annotation.__name__,
}
for name, field in tool.args_schema.model_fields.items()
} }
descriptions.append( descriptions.append(
"\n".join( "\n".join(

View File

@@ -75,8 +75,8 @@ def test_install_success(mock_get, mock_subprocess_run):
[ [
"uv", "uv",
"add", "add",
"--extra-index-url", "--index",
"https://app.crewai.com/pypi/sample-repo", "sample-repo=https://example.com/repo",
"sample-tool", "sample-tool",
], ],
capture_output=False, capture_output=False,

View File

@@ -9,6 +9,7 @@ from unittest.mock import MagicMock, patch
import instructor import instructor
import pydantic_core import pydantic_core
import pytest import pytest
from crewai.agent import Agent from crewai.agent import Agent
from crewai.agents.cache import CacheHandler from crewai.agents.cache import CacheHandler
from crewai.crew import Crew from crewai.crew import Crew
@@ -497,6 +498,7 @@ def test_cache_hitting_between_agents():
@pytest.mark.vcr(filter_headers=["authorization"]) @pytest.mark.vcr(filter_headers=["authorization"])
def test_api_calls_throttling(capsys): def test_api_calls_throttling(capsys):
from unittest.mock import patch from unittest.mock import patch
from crewai_tools import tool from crewai_tools import tool
@tool @tool
@@ -779,11 +781,14 @@ def test_async_task_execution_call_count():
list_important_history.output = mock_task_output list_important_history.output = mock_task_output
write_article.output = mock_task_output write_article.output = mock_task_output
with patch.object( with (
Task, "execute_sync", return_value=mock_task_output patch.object(
) as mock_execute_sync, patch.object( Task, "execute_sync", return_value=mock_task_output
Task, "execute_async", return_value=mock_future ) as mock_execute_sync,
) as mock_execute_async: patch.object(
Task, "execute_async", return_value=mock_future
) as mock_execute_async,
):
crew.kickoff() crew.kickoff()
assert mock_execute_async.call_count == 2 assert mock_execute_async.call_count == 2
@@ -1105,6 +1110,7 @@ def test_dont_set_agents_step_callback_if_already_set():
@pytest.mark.vcr(filter_headers=["authorization"]) @pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_function_calling_llm(): def test_crew_function_calling_llm():
from unittest.mock import patch from unittest.mock import patch
from crewai_tools import tool from crewai_tools import tool
llm = "gpt-4o" llm = "gpt-4o"
@@ -1448,52 +1454,6 @@ def test_crew_does_not_interpolate_without_inputs():
interpolate_task_inputs.assert_not_called() interpolate_task_inputs.assert_not_called()
# def test_crew_partial_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"topic": "AI"})
# inputs = {"topic": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around AI."
# assert crew.tasks[0].expected_output == "{points} bullet points about AI."
# assert crew.agents[0].role == "AI Researcher"
# assert crew.agents[0].goal == "Express hot takes on AI."
# assert crew.agents[0].backstory == "You have a lot of experience with AI."
# def test_crew_invalid_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"subject": "AI"})
# inputs = {"subject": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around {topic}."
# assert crew.tasks[0].expected_output == "{points} bullet points about {topic}."
# assert crew.agents[0].role == "{topic} Researcher"
# assert crew.agents[0].goal == "Express hot takes on {topic}."
# assert crew.agents[0].backstory == "You have a lot of experience with {topic}."
def test_task_callback_on_crew(): def test_task_callback_on_crew():
from unittest.mock import MagicMock, patch from unittest.mock import MagicMock, patch
@@ -1770,7 +1730,10 @@ def test_manager_agent_with_tools_raises_exception():
@patch("crewai.crew.Crew.kickoff") @patch("crewai.crew.Crew.kickoff")
@patch("crewai.crew.CrewTrainingHandler") @patch("crewai.crew.CrewTrainingHandler")
@patch("crewai.crew.TaskEvaluator") @patch("crewai.crew.TaskEvaluator")
def test_crew_train_success(task_evaluator, crew_training_handler, kickoff): @patch("crewai.crew.Crew.copy")
def test_crew_train_success(
copy_mock, task_evaluator, crew_training_handler, kickoff_mock
):
task = Task( task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.", description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.", expected_output="5 bullet points with a paragraph for each idea.",
@@ -1781,9 +1744,19 @@ def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
agents=[researcher, writer], agents=[researcher, writer],
tasks=[task], tasks=[task],
) )
# Create a mock for the copied crew
copy_mock.return_value = crew
crew.train( crew.train(
n_iterations=2, inputs={"topic": "AI"}, filename="trained_agents_data.pkl" n_iterations=2, inputs={"topic": "AI"}, filename="trained_agents_data.pkl"
) )
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
task_evaluator.assert_has_calls( task_evaluator.assert_has_calls(
[ [
mock.call(researcher), mock.call(researcher),
@@ -1822,10 +1795,6 @@ def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
] ]
) )
kickoff.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
def test_crew_train_error(): def test_crew_train_error():
task = Task( task = Task(
@@ -1840,7 +1809,7 @@ def test_crew_train_error():
) )
with pytest.raises(TypeError) as e: with pytest.raises(TypeError) as e:
crew.train() crew.train() # type: ignore purposefully throwing err
assert "train() missing 1 required positional argument: 'n_iterations'" in str( assert "train() missing 1 required positional argument: 'n_iterations'" in str(
e e
) )
@@ -2536,8 +2505,9 @@ def test_conditional_should_execute():
@mock.patch("crewai.crew.CrewEvaluator") @mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff") @mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(mock_kickoff, crew_evaluator): def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
task = Task( task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.", description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.", expected_output="5 bullet points with a paragraph for each idea.",
@@ -2548,11 +2518,15 @@ def test_crew_testing_function(mock_kickoff, crew_evaluator):
agents=[researcher], agents=[researcher],
tasks=[task], tasks=[task],
) )
# Create a mock for the copied crew
copy_mock.return_value = crew
n_iterations = 2 n_iterations = 2
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"}) crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
assert len(mock_kickoff.mock_calls) == n_iterations # Ensure kickoff is called on the copied crew
mock_kickoff.assert_has_calls( kickoff_mock.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})] [mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
) )

File diff suppressed because one or more lines are too long

View File

@@ -1,5 +1,5 @@
import pytest import pytest
from unittest.mock import patch
from crewai.agent import Agent from crewai.agent import Agent
from crewai.crew import Crew from crewai.crew import Crew
from crewai.memory.short_term.short_term_memory import ShortTermMemory from crewai.memory.short_term.short_term_memory import ShortTermMemory
@@ -26,7 +26,6 @@ def short_term_memory():
return ShortTermMemory(crew=Crew(agents=[agent], tasks=[task])) return ShortTermMemory(crew=Crew(agents=[agent], tasks=[task]))
@pytest.mark.vcr(filter_headers=["authorization"])
def test_save_and_search(short_term_memory): def test_save_and_search(short_term_memory):
memory = ShortTermMemoryItem( memory = ShortTermMemoryItem(
data="""test value test value test value test value test value test value data="""test value test value test value test value test value test value
@@ -35,12 +34,28 @@ def test_save_and_search(short_term_memory):
agent="test_agent", agent="test_agent",
metadata={"task": "test_task"}, metadata={"task": "test_task"},
) )
short_term_memory.save(
value=memory.data,
metadata=memory.metadata,
agent=memory.agent,
)
find = short_term_memory.search("test value", score_threshold=0.01)[0] with patch.object(ShortTermMemory, "save") as mock_save:
assert find["context"] == memory.data, "Data value mismatch." short_term_memory.save(
assert find["metadata"]["agent"] == "test_agent", "Agent value mismatch." value=memory.data,
metadata=memory.metadata,
agent=memory.agent,
)
mock_save.assert_called_once_with(
value=memory.data,
metadata=memory.metadata,
agent=memory.agent,
)
expected_result = [
{
"context": memory.data,
"metadata": {"agent": "test_agent"},
"score": 0.95,
}
]
with patch.object(ShortTermMemory, "search", return_value=expected_result):
find = short_term_memory.search("test value", score_threshold=0.01)[0]
assert find["context"] == memory.data, "Data value mismatch."
assert find["metadata"]["agent"] == "test_agent", "Agent value mismatch."

View File

@@ -0,0 +1,119 @@
import json
import random
from unittest.mock import MagicMock
import pytest
from crewai_tools import BaseTool
from pydantic import BaseModel, Field
from crewai import Agent, Task
from crewai.tools.tool_usage import ToolUsage
class RandomNumberToolInput(BaseModel):
min_value: int = Field(
..., description="The minimum value of the range (inclusive)"
)
max_value: int = Field(
..., description="The maximum value of the range (inclusive)"
)
class RandomNumberTool(BaseTool):
name: str = "Random Number Generator"
description: str = "Generates a random number within a specified range"
args_schema: type[BaseModel] = RandomNumberToolInput
def _run(self, min_value: int, max_value: int) -> int:
return random.randint(min_value, max_value)
# Example agent and task
example_agent = Agent(
role="Number Generator",
goal="Generate random numbers for various purposes",
backstory="You are an AI agent specialized in generating random numbers within specified ranges.",
tools=[RandomNumberTool()],
verbose=True,
)
example_task = Task(
description="Generate a random number between 1 and 100",
expected_output="A random number between 1 and 100",
agent=example_agent,
)
def test_random_number_tool_range():
tool = RandomNumberTool()
result = tool._run(1, 10)
assert 1 <= result <= 10
def test_random_number_tool_invalid_range():
tool = RandomNumberTool()
with pytest.raises(ValueError):
tool._run(10, 1) # min_value > max_value
def test_random_number_tool_schema():
tool = RandomNumberTool()
# Get the schema using model_json_schema()
schema = tool.args_schema.model_json_schema()
# Convert the schema to a string
schema_str = json.dumps(schema)
# Check if the schema string contains the expected fields
assert "min_value" in schema_str
assert "max_value" in schema_str
# Parse the schema string back to a dictionary
schema_dict = json.loads(schema_str)
# Check if the schema contains the correct field types
assert schema_dict["properties"]["min_value"]["type"] == "integer"
assert schema_dict["properties"]["max_value"]["type"] == "integer"
# Check if the schema contains the field descriptions
assert (
"minimum value" in schema_dict["properties"]["min_value"]["description"].lower()
)
assert (
"maximum value" in schema_dict["properties"]["max_value"]["description"].lower()
)
def test_tool_usage_render():
tool = RandomNumberTool()
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[tool],
original_tools=[tool],
tools_description="Sample tool for testing",
tools_names="random_number_generator",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
rendered = tool_usage._render()
# Updated checks to match the actual output
assert "Tool Name: random number generator" in rendered
assert (
"Random Number Generator(min_value: 'integer', max_value: 'integer') - Generates a random number within a specified range min_value: 'The minimum value of the range (inclusive)', max_value: 'The maximum value of the range (inclusive)'"
in rendered
)
assert "Tool Arguments:" in rendered
assert (
"'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}"
in rendered
)
assert (
"'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}"
in rendered
)

146
uv.lock generated
View File

@@ -627,15 +627,14 @@ wheels = [
[[package]] [[package]]
name = "crewai" name = "crewai"
version = "0.67.1" version = "0.75.1"
source = { editable = "." } source = { editable = "." }
dependencies = [ dependencies = [
{ name = "agentops" },
{ name = "appdirs" }, { name = "appdirs" },
{ name = "auth0-python" }, { name = "auth0-python" },
{ name = "chromadb" },
{ name = "click" }, { name = "click" },
{ name = "crewai-tools" }, { name = "crewai-tools" },
{ name = "embedchain" },
{ name = "instructor" }, { name = "instructor" },
{ name = "json-repair" }, { name = "json-repair" },
{ name = "jsonref" }, { name = "jsonref" },
@@ -683,14 +682,13 @@ dev = [
[package.metadata] [package.metadata]
requires-dist = [ requires-dist = [
{ name = "agentops", specifier = ">=0.3.0" },
{ name = "agentops", marker = "extra == 'agentops'", specifier = ">=0.3.0" }, { name = "agentops", marker = "extra == 'agentops'", specifier = ">=0.3.0" },
{ name = "appdirs", specifier = ">=1.4.4" }, { name = "appdirs", specifier = ">=1.4.4" },
{ name = "auth0-python", specifier = ">=4.7.1" }, { name = "auth0-python", specifier = ">=4.7.1" },
{ name = "chromadb", specifier = ">=0.4.24" },
{ name = "click", specifier = ">=8.1.7" }, { name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", specifier = ">=0.12.1" }, { name = "crewai-tools", specifier = ">=0.13.2" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.12.1" }, { name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.13.2" },
{ name = "embedchain", specifier = ">=0.1.114" },
{ name = "instructor", specifier = ">=1.3.3" }, { name = "instructor", specifier = ">=1.3.3" },
{ name = "json-repair", specifier = ">=0.25.2" }, { name = "json-repair", specifier = ">=0.25.2" },
{ name = "jsonref", specifier = ">=1.1.0" }, { name = "jsonref", specifier = ">=1.1.0" },
@@ -705,13 +703,13 @@ requires-dist = [
{ name = "pyvis", specifier = ">=0.3.2" }, { name = "pyvis", specifier = ">=0.3.2" },
{ name = "regex", specifier = ">=2024.9.11" }, { name = "regex", specifier = ">=2024.9.11" },
{ name = "tomli-w", specifier = ">=1.1.0" }, { name = "tomli-w", specifier = ">=1.1.0" },
{ name = "uv", specifier = ">=0.4.18" }, { name = "uv", specifier = ">=0.4.25" },
] ]
[package.metadata.requires-dev] [package.metadata.requires-dev]
dev = [ dev = [
{ name = "cairosvg", specifier = ">=2.7.1" }, { name = "cairosvg", specifier = ">=2.7.1" },
{ name = "crewai-tools", specifier = ">=0.12.1" }, { name = "crewai-tools", specifier = ">=0.13.2" },
{ name = "mkdocs", specifier = ">=1.4.3" }, { name = "mkdocs", specifier = ">=1.4.3" },
{ name = "mkdocs-material", specifier = ">=9.5.7" }, { name = "mkdocs-material", specifier = ">=9.5.7" },
{ name = "mkdocs-material-extensions", specifier = ">=1.3.1" }, { name = "mkdocs-material-extensions", specifier = ">=1.3.1" },
@@ -730,7 +728,7 @@ dev = [
[[package]] [[package]]
name = "crewai-tools" name = "crewai-tools"
version = "0.12.1" version = "0.13.2"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "beautifulsoup4" }, { name = "beautifulsoup4" },
@@ -748,9 +746,9 @@ dependencies = [
{ name = "requests" }, { name = "requests" },
{ name = "selenium" }, { name = "selenium" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/11/60/1860127d927939f9143cab9af059cfbe6f160839b6ba1d652a9ed4e04fa6/crewai_tools-0.12.1.tar.gz", hash = "sha256:22fa3ea57936913faed77a2a64c131371f78b2ced207e63dcc71220eac445698", size = 420190 } sdist = { url = "https://files.pythonhosted.org/packages/96/02/136f42ed8a7bd706a85663714c615bdcb684e43e95e4719c892aa0ce3d53/crewai_tools-0.13.2.tar.gz", hash = "sha256:c6782f2e868c0e96b25891f1b40fb8c90c01e920bab2fd1388f89ef1d7a4b99b", size = 816250 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/23/e6/cc9acbc6ee828898956b18036643fc2150b6c1b976ab34f29b9cadc085b5/crewai_tools-0.12.1-py3-none-any.whl", hash = "sha256:e87d393dd1900834a224686644e025eb44e74171f317c4ff2df778aff6ade4b8", size = 463435 }, { url = "https://files.pythonhosted.org/packages/28/30/df215173b6193b2cfb1902a339443be73056eae89579805b853c6f359761/crewai_tools-0.13.2-py3-none-any.whl", hash = "sha256:8c7583c9559fb625f594349c6553a5251ebd7b21918735ad6fbe8bab7ec3db50", size = 463444 },
] ]
[[package]] [[package]]
@@ -921,7 +919,7 @@ wheels = [
[[package]] [[package]]
name = "embedchain" name = "embedchain"
version = "0.1.122" version = "0.1.123"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "alembic" }, { name = "alembic" },
@@ -934,6 +932,7 @@ dependencies = [
{ name = "langchain-cohere" }, { name = "langchain-cohere" },
{ name = "langchain-community" }, { name = "langchain-community" },
{ name = "langchain-openai" }, { name = "langchain-openai" },
{ name = "langsmith" },
{ name = "mem0ai" }, { name = "mem0ai" },
{ name = "openai" }, { name = "openai" },
{ name = "posthog" }, { name = "posthog" },
@@ -945,9 +944,9 @@ dependencies = [
{ name = "sqlalchemy" }, { name = "sqlalchemy" },
{ name = "tiktoken" }, { name = "tiktoken" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/25/9b/fa14dc95f8736c672bcebd677f48990670f1a9fac8ea1631222b8b820d69/embedchain-0.1.122.tar.gz", hash = "sha256:ea0a4d00a4a1909e0d662dc499fa6a0da119783ec4773df1271da74da3e8296b", size = 124799 } sdist = { url = "https://files.pythonhosted.org/packages/5d/6a/955b5a72fa6727db203c4d46ae0e30ac47f4f50389f663cd5ea157b0d819/embedchain-0.1.123.tar.gz", hash = "sha256:aecaf81c21de05b5cdb649b6cde95ef68ffa759c69c54f6ff2eaa667f2ad0580", size = 124797 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/95/3f/42c97c1d3c9483076843987982a018115b6a28be02091fb475e6dbc743f2/embedchain-0.1.122-py3-none-any.whl", hash = "sha256:c137be81d0949b5ee16c689837d659837980cfabbb38643c2720cd1a794d8d27", size = 210911 }, { url = "https://files.pythonhosted.org/packages/a7/51/0c78d26da4afbe68370306669556b274f1021cac02f3155d8da2be407763/embedchain-0.1.123-py3-none-any.whl", hash = "sha256:1210e993b6364d7c702b6bd44b053fc244dd77f2a65ea4b90b62709114ea6c25", size = 210909 },
] ]
[[package]] [[package]]
@@ -1551,7 +1550,7 @@ wheels = [
[[package]] [[package]]
name = "httpx" name = "httpx"
version = "0.27.2" version = "0.27.0"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "anyio" }, { name = "anyio" },
@@ -1560,9 +1559,9 @@ dependencies = [
{ name = "idna" }, { name = "idna" },
{ name = "sniffio" }, { name = "sniffio" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/78/82/08f8c936781f67d9e6b9eeb8a0c8b4e406136ea4c3d1f89a5db71d42e0e6/httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2", size = 144189 } sdist = { url = "https://files.pythonhosted.org/packages/5c/2d/3da5bdf4408b8b2800061c339f240c1802f2e82d55e50bd39c5a881f47f0/httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5", size = 126413 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/56/95/9377bcb415797e44274b51d46e3249eba641711cf3348050f76ee7b15ffc/httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0", size = 76395 }, { url = "https://files.pythonhosted.org/packages/41/7b/ddacf6dcebb42466abd03f368782142baa82e08fc0c1f8eaa05b4bae87d5/httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5", size = 75590 },
] ]
[package.optional-dependencies] [package.optional-dependencies]
@@ -1908,7 +1907,7 @@ wheels = [
[[package]] [[package]]
name = "langchain" name = "langchain"
version = "0.2.16" version = "0.3.3"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "aiohttp" }, { name = "aiohttp" },
@@ -1923,30 +1922,31 @@ dependencies = [
{ name = "sqlalchemy" }, { name = "sqlalchemy" },
{ name = "tenacity" }, { name = "tenacity" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/fd/53/8ebf21de8d17e7e0f0998f28d689f60d7ed420acb7ab2fba59ca04e80e54/langchain-0.2.16.tar.gz", hash = "sha256:ffb426a76a703b73ac69abad77cd16eaf03dda76b42cff55572f592d74944166", size = 414668 } sdist = { url = "https://files.pythonhosted.org/packages/70/b2/258c6a33b5e5f817a57ecd22b1e74756f7246ac66f39d0cf6d2ef515fcb7/langchain-0.3.3.tar.gz", hash = "sha256:6435882996a029a60c61c356bbe51bab4a8f43a54210f5f03e3c4474d19d1842", size = 416891 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/0d/29/635343c0d155997569b544d26da5a2a9ebade2423baffc9cd6066b01a386/langchain-0.2.16-py3-none-any.whl", hash = "sha256:8f59ee8b45f268df4b924ea3b9c63e49286efa756d16b3f6a9de5c6e502c36e1", size = 1001195 }, { url = "https://files.pythonhosted.org/packages/92/82/c17abaa44074ec716409305da4783f633b0eb9b09bb28ed5005220269bdb/langchain-0.3.3-py3-none-any.whl", hash = "sha256:05ac98c674853c2386d043172820e37ceac9b913aaaf1e51217f0fc424112c72", size = 1005176 },
] ]
[[package]] [[package]]
name = "langchain-cohere" name = "langchain-cohere"
version = "0.1.9" version = "0.3.1"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "cohere" }, { name = "cohere" },
{ name = "langchain-core" }, { name = "langchain-core" },
{ name = "langchain-experimental" }, { name = "langchain-experimental" },
{ name = "pandas" }, { name = "pandas" },
{ name = "pydantic" },
{ name = "tabulate" }, { name = "tabulate" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/a4/a9/30462b68f8c15da886078fe5c96fab3085241168ea03d968eee1182e00a9/langchain_cohere-0.1.9.tar.gz", hash = "sha256:549620d23bc3d77f62d1045787095fe2c1cfa233dba69455139f9a2f65f952fa", size = 29987 } sdist = { url = "https://files.pythonhosted.org/packages/ae/ea/53fd2515e353cac4ddd6d7a41dbb0651dfc9ffb0924acb7a1aa7a722f29b/langchain_cohere-0.3.1.tar.gz", hash = "sha256:990bd4db68e229371c90eee98a1a78b4f4d33a32c22c8da6c2cd30b5044de9eb", size = 36739 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/52/b1/ee8d44898cfe43703f05a0ffd95294d3ebe4c61879f19c6357c860131312/langchain_cohere-0.1.9-py3-none-any.whl", hash = "sha256:96d6a15125797319474ac84b54024e5024f3f5fc45032ebf228d95d6998c9b13", size = 35218 }, { url = "https://files.pythonhosted.org/packages/64/5e/bbfb1b33703a973e7eef6582b523ae932e7e64c9b84ac7eecaa8af71475e/langchain_cohere-0.3.1-py3-none-any.whl", hash = "sha256:adf37542feb293562791b8dd1691580b0dcb2117fb987f2684f694912465f554", size = 43992 },
] ]
[[package]] [[package]]
name = "langchain-community" name = "langchain-community"
version = "0.2.17" version = "0.3.2"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "aiohttp" }, { name = "aiohttp" },
@@ -1955,19 +1955,20 @@ dependencies = [
{ name = "langchain-core" }, { name = "langchain-core" },
{ name = "langsmith" }, { name = "langsmith" },
{ name = "numpy" }, { name = "numpy" },
{ name = "pydantic-settings" },
{ name = "pyyaml" }, { name = "pyyaml" },
{ name = "requests" }, { name = "requests" },
{ name = "sqlalchemy" }, { name = "sqlalchemy" },
{ name = "tenacity" }, { name = "tenacity" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/1f/54/be928e3962d24b40c31899f5c5ed99b0c7ef7c3bb7601eb2fe7a6ce75dc4/langchain_community-0.2.17.tar.gz", hash = "sha256:b0745c1fcf1bd532ed4388f90b47139d6a6c6ba48a87aa68aa32d4d6bb97259d", size = 1589425 } sdist = { url = "https://files.pythonhosted.org/packages/86/6e/119bbbd4d55ab14dc6fc4a82a2466b88f7ddb989bdbdfcf96327c5daba4e/langchain_community-0.3.2.tar.gz", hash = "sha256:469bf5357a08c915cebc4c506dca4617eec737d82a9b6e340df5f3b814dc89bc", size = 1608524 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/ac/33/c6ee472412f751062311075bb391a7870ab57cdb8da5d47f359895b2d3c2/langchain_community-0.2.17-py3-none-any.whl", hash = "sha256:d07c31b641e425fb8c3e7148ad6a62e1b54a9adac6e1173021a7dd3148266063", size = 2339964 }, { url = "https://files.pythonhosted.org/packages/cc/57/a8b4826eaa29d3663c957251ab32275a0c178bdb0e262a1204ed820f430c/langchain_community-0.3.2-py3-none-any.whl", hash = "sha256:fffcd484c7674e81ceaa72a809962338bfb17ec8f9e0377ce4e9d884e6fe8ca5", size = 2367818 },
] ]
[[package]] [[package]]
name = "langchain-core" name = "langchain-core"
version = "0.2.41" version = "0.3.12"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "jsonpatch" }, { name = "jsonpatch" },
@@ -1978,48 +1979,48 @@ dependencies = [
{ name = "tenacity" }, { name = "tenacity" },
{ name = "typing-extensions" }, { name = "typing-extensions" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/2a/92/2ad97f0c23b5ee5043df1a93d97edd4404136003e7d22b641de081738408/langchain_core-0.2.41.tar.gz", hash = "sha256:bc12032c5a298d85be754ccb129bc13ea21ccb1d6e22f8d7ba18b8da64315bb5", size = 316952 } sdist = { url = "https://files.pythonhosted.org/packages/7b/15/76ec101e550e7e16de85e64fcb4ff2d281cb70cfe65c95ee6e56182a5f51/langchain_core-0.3.12.tar.gz", hash = "sha256:98a3c078e375786aa84939bfd1111263af2f3bc402bbe2cac9fa18a387459cf2", size = 327019 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/bc/02/2b2cf9550cee1a7ffa42fe60c55e2d0e7d397535609b42562611fb40e78d/langchain_core-0.2.41-py3-none-any.whl", hash = "sha256:3278fda5ba9a05defae8bb19f1226032add6aab21917db7b3bc74e750e263e84", size = 397013 }, { url = "https://files.pythonhosted.org/packages/ce/4a/a6499d93805c3e6316e641b6934e23c98c011d00b9a2138835d567e976e5/langchain_core-0.3.12-py3-none-any.whl", hash = "sha256:46050d34f5fa36dc57dca971c6a26f505643dd05ee0492c7ac286d0a78a82037", size = 407737 },
] ]
[[package]] [[package]]
name = "langchain-experimental" name = "langchain-experimental"
version = "0.0.65" version = "0.3.2"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "langchain-community" }, { name = "langchain-community" },
{ name = "langchain-core" }, { name = "langchain-core" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/e1/e0/d92210398a006f6e43ddd25166537f79cb3e9ccc32e316e70d349353842b/langchain_experimental-0.0.65.tar.gz", hash = "sha256:83706df07d8a7e6ec1bda74174add7e4431b5f4a8818e19b65986b94c9c99b25", size = 138516 } sdist = { url = "https://files.pythonhosted.org/packages/bf/41/84d3eac564261aaab45bc02bdc43b5e49242439c6f2844a24b81404a17cd/langchain_experimental-0.3.2.tar.gz", hash = "sha256:d41cc28c46f58616d18a1230595929f80a58d1982c4053dc3afe7f1c03f22426", size = 139583 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/97/ca/93913b7530b36869946ca8f93b161bea294ea46a367e748943a78bc3553c/langchain_experimental-0.0.65-py3-none-any.whl", hash = "sha256:2a0f268cfb8c79d43cedf9c4840f70bd8b25934e595311e6690804d0355dd7ee", size = 207160 }, { url = "https://files.pythonhosted.org/packages/63/f6/d80592aa8d335af734054f5cfe130ecd38fdfb9c4f90ba0007f0419f2fce/langchain_experimental-0.3.2-py3-none-any.whl", hash = "sha256:b6a26f2a05e056a27ad30535ed306a6b9d8cc2e3c0326d15030d11b6e7505dbb", size = 208126 },
] ]
[[package]] [[package]]
name = "langchain-openai" name = "langchain-openai"
version = "0.1.25" version = "0.2.2"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "langchain-core" }, { name = "langchain-core" },
{ name = "openai" }, { name = "openai" },
{ name = "tiktoken" }, { name = "tiktoken" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/2f/cb/98fe365f2e5eee39d0130279959a84182ab414879b666ffc2b9d69b95633/langchain_openai-0.1.25.tar.gz", hash = "sha256:eb116f744f820247a72f54313fb7c01524fba0927120d4e899e5e4ab41ad3928", size = 45224 } sdist = { url = "https://files.pythonhosted.org/packages/55/4c/0a88c51192b0aeef5212019060da7112191750ab7a185195d8b45835578c/langchain_openai-0.2.2.tar.gz", hash = "sha256:9ae8e2ec7d1ca84fd3bfa82186724528d68e1510a1dc9cdf617a7c669b7a7768", size = 42364 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/7f/2e/a4430cad7a98e29e9612648f8b12d7449ab635a742c19bf1d62f8713ecaa/langchain_openai-0.1.25-py3-none-any.whl", hash = "sha256:f0b34a233d0d9cb8fce6006c903e57085c493c4f0e32862b99063b96eaedb109", size = 51550 }, { url = "https://files.pythonhosted.org/packages/b0/4e/c62ce98a5412f031f7f03dda5c35b6ed474e0083986261073ca9da5554d5/langchain_openai-0.2.2-py3-none-any.whl", hash = "sha256:3a203228cb38e4711ebd8c0a3bd51854e447f1d017e8475b6467b07ce7dd3e88", size = 49687 },
] ]
[[package]] [[package]]
name = "langchain-text-splitters" name = "langchain-text-splitters"
version = "0.2.4" version = "0.3.0"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "langchain-core" }, { name = "langchain-core" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/83/b3/b1ccde47c86c5fe2585dc012555cff7949c556bd6993dd9c09e49a356190/langchain_text_splitters-0.2.4.tar.gz", hash = "sha256:f7daa7a3b0aa8309ce248e2e2b6fc8115be01118d336c7f7f7dfacda0e89bf29", size = 20236 } sdist = { url = "https://files.pythonhosted.org/packages/57/35/08ac1ca01c58da825f070bd1fdc9192a9ff52c0a048f74c93b05df70c127/langchain_text_splitters-0.3.0.tar.gz", hash = "sha256:f9fe0b4d244db1d6de211e7343d4abc4aa90295aa22e1f0c89e51f33c55cd7ce", size = 20234 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/8f/f3/d01591229e9d0eec1e8106ed6f9b670f299beb1c94fed4aa335afa78acb0/langchain_text_splitters-0.2.4-py3-none-any.whl", hash = "sha256:2702dee5b7cbdd595ccbe43b8d38d01a34aa8583f4d6a5a68ad2305ae3e7b645", size = 25552 }, { url = "https://files.pythonhosted.org/packages/da/6a/d1303b722a3fa7a0a8c2f8f5307e42f0bdbded46d99cca436f3db0df5294/langchain_text_splitters-0.3.0-py3-none-any.whl", hash = "sha256:e84243e45eaff16e5b776cd9c81b6d07c55c010ebcb1965deb3d1792b7358e83", size = 25543 },
] ]
[[package]] [[package]]
@@ -2166,7 +2167,7 @@ wheels = [
[[package]] [[package]]
name = "mem0ai" name = "mem0ai"
version = "0.1.17" version = "0.1.19"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "langchain-community" }, { name = "langchain-community" },
@@ -2179,9 +2180,9 @@ dependencies = [
{ name = "rank-bm25" }, { name = "rank-bm25" },
{ name = "sqlalchemy" }, { name = "sqlalchemy" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/9b/23/fc537f7125c88efeb81190b661b4e17786d039d4e00da2975ea253b45c8f/mem0ai-0.1.17.tar.gz", hash = "sha256:3b24c5904c96717c2285847f7ad98be0167421fd67b23c19771e81bef00ec2f1", size = 51167 } sdist = { url = "https://files.pythonhosted.org/packages/6e/12/23f8f250a2ce798a51841417acbbfc9c12c294d3ae427e81a0a0dbab54f6/mem0ai-0.1.19.tar.gz", hash = "sha256:faf7c198a85df2f502ac41fe2bc1593ca0383f993b431a4e4a36e0aed3fa533c", size = 51167 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/89/49/4fa5e5f759004e90fa9b4adbc9f224f09f09e182bf3d4dfebed69b10fe8a/mem0ai-0.1.17-py3-none-any.whl", hash = "sha256:6505bc45880c26b25edf0a17242d71939ebaab27be0ae09b77f25fd400f61b76", size = 73252 }, { url = "https://files.pythonhosted.org/packages/7e/43/04d22bc9cac6fa19b10a405c59c21e94b8ae2a180b40307ec4a577f6ee39/mem0ai-0.1.19-py3-none-any.whl", hash = "sha256:dfff9cfe191072abd34ed8bb4fcbee2819603eed430d89611ef3181b1a46fff9", size = 73240 },
] ]
[[package]] [[package]]
@@ -2496,6 +2497,8 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b2/07/8cbb75d6cfbe8712d8f7f6a5615f083c6e710ab916b748fbb20373ddb142/multiprocess-0.70.17-py311-none-any.whl", hash = "sha256:2884701445d0177aec5bd5f6ee0df296773e4fb65b11903b94c613fb46cfb7d1", size = 144346 }, { url = "https://files.pythonhosted.org/packages/b2/07/8cbb75d6cfbe8712d8f7f6a5615f083c6e710ab916b748fbb20373ddb142/multiprocess-0.70.17-py311-none-any.whl", hash = "sha256:2884701445d0177aec5bd5f6ee0df296773e4fb65b11903b94c613fb46cfb7d1", size = 144346 },
{ url = "https://files.pythonhosted.org/packages/a4/69/d3f343a61a2f86ef10ed7865a26beda7c71554136ce187b0384b1c2c9ca3/multiprocess-0.70.17-py312-none-any.whl", hash = "sha256:2818af14c52446b9617d1b0755fa70ca2f77c28b25ed97bdaa2c69a22c47b46c", size = 147990 }, { url = "https://files.pythonhosted.org/packages/a4/69/d3f343a61a2f86ef10ed7865a26beda7c71554136ce187b0384b1c2c9ca3/multiprocess-0.70.17-py312-none-any.whl", hash = "sha256:2818af14c52446b9617d1b0755fa70ca2f77c28b25ed97bdaa2c69a22c47b46c", size = 147990 },
{ url = "https://files.pythonhosted.org/packages/c8/b7/2e9a4fcd871b81e1f2a812cd5c6fb52ad1e8da7bf0d7646c55eaae220484/multiprocess-0.70.17-py313-none-any.whl", hash = "sha256:20c28ca19079a6c879258103a6d60b94d4ffe2d9da07dda93fb1c8bc6243f522", size = 149843 }, { url = "https://files.pythonhosted.org/packages/c8/b7/2e9a4fcd871b81e1f2a812cd5c6fb52ad1e8da7bf0d7646c55eaae220484/multiprocess-0.70.17-py313-none-any.whl", hash = "sha256:20c28ca19079a6c879258103a6d60b94d4ffe2d9da07dda93fb1c8bc6243f522", size = 149843 },
{ url = "https://files.pythonhosted.org/packages/ae/d7/fd7a092fc0ab1845a1a97ca88e61b9b7cc2e9d6fcf0ed24e9480590c2336/multiprocess-0.70.17-py38-none-any.whl", hash = "sha256:1d52f068357acd1e5bbc670b273ef8f81d57863235d9fbf9314751886e141968", size = 132635 },
{ url = "https://files.pythonhosted.org/packages/f9/41/0618ac724b8a56254962c143759e04fa01c73b37aa69dd433f16643bd38b/multiprocess-0.70.17-py39-none-any.whl", hash = "sha256:c3feb874ba574fbccfb335980020c1ac631fbf2a3f7bee4e2042ede62558a021", size = 133359 },
] ]
[[package]] [[package]]
@@ -3179,8 +3182,6 @@ version = "5.9.8"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/90/c7/6dc0a455d111f68ee43f27793971cf03fe29b6ef972042549db29eec39a2/psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c", size = 503247 } sdist = { url = "https://files.pythonhosted.org/packages/90/c7/6dc0a455d111f68ee43f27793971cf03fe29b6ef972042549db29eec39a2/psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c", size = 503247 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/fe/5f/c26deb822fd3daf8fde4bdb658bf87d9ab1ffd3fca483816e89a9a9a9084/psutil-5.9.8-cp27-none-win32.whl", hash = "sha256:36f435891adb138ed3c9e58c6af3e2e6ca9ac2f365efe1f9cfef2794e6c93b4e", size = 248660 },
{ url = "https://files.pythonhosted.org/packages/32/1d/cf66073d74d6146187e2d0081a7616df4437214afa294ee4f16f80a2f96a/psutil-5.9.8-cp27-none-win_amd64.whl", hash = "sha256:bd1184ceb3f87651a67b2708d4c3338e9b10c5df903f2e3776b62303b26cb631", size = 251966 },
{ url = "https://files.pythonhosted.org/packages/e7/e3/07ae864a636d70a8a6f58da27cb1179192f1140d5d1da10886ade9405797/psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81", size = 248702 }, { url = "https://files.pythonhosted.org/packages/e7/e3/07ae864a636d70a8a6f58da27cb1179192f1140d5d1da10886ade9405797/psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81", size = 248702 },
{ url = "https://files.pythonhosted.org/packages/b3/bd/28c5f553667116b2598b9cc55908ec435cb7f77a34f2bff3e3ca765b0f78/psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421", size = 285242 }, { url = "https://files.pythonhosted.org/packages/b3/bd/28c5f553667116b2598b9cc55908ec435cb7f77a34f2bff3e3ca765b0f78/psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421", size = 285242 },
{ url = "https://files.pythonhosted.org/packages/c5/4f/0e22aaa246f96d6ac87fe5ebb9c5a693fbe8877f537a1022527c47ca43c5/psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4", size = 288191 }, { url = "https://files.pythonhosted.org/packages/c5/4f/0e22aaa246f96d6ac87fe5ebb9c5a693fbe8877f537a1022527c47ca43c5/psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4", size = 288191 },
@@ -3387,6 +3388,19 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/a9/f9/b6bcaf874f410564a78908739c80861a171788ef4d4f76f5009656672dfe/pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753", size = 1920344 }, { url = "https://files.pythonhosted.org/packages/a9/f9/b6bcaf874f410564a78908739c80861a171788ef4d4f76f5009656672dfe/pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753", size = 1920344 },
] ]
[[package]]
name = "pydantic-settings"
version = "2.6.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pydantic" },
{ name = "python-dotenv" },
]
sdist = { url = "https://files.pythonhosted.org/packages/6c/66/5f1a9da10675bfb3b9da52f5b689c77e0a5612263fcce510cfac3e99a168/pydantic_settings-2.6.0.tar.gz", hash = "sha256:44a1804abffac9e6a30372bb45f6cafab945ef5af25e66b1c634c01dd39e0188", size = 75232 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/34/19/26bb6bdb9fdad5f0dfce538780814084fb667b4bc37fcb28459c14b8d3b5/pydantic_settings-2.6.0-py3-none-any.whl", hash = "sha256:4a819166f119b74d7f8c765196b165f95cc7487ce58ea27dec8a5a26be0970e0", size = 28578 },
]
[[package]] [[package]]
name = "pygments" name = "pygments"
version = "2.18.0" version = "2.18.0"
@@ -3436,14 +3450,14 @@ wheels = [
[[package]] [[package]]
name = "pypdf" name = "pypdf"
version = "4.3.1" version = "5.0.1"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "typing-extensions", marker = "python_full_version < '3.11'" }, { name = "typing-extensions", marker = "python_full_version < '3.11'" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/f0/65/2ed7c9e1d31d860f096061b3dd2d665f501e09faaa0409a3f0d719d2a16d/pypdf-4.3.1.tar.gz", hash = "sha256:b2f37fe9a3030aa97ca86067a56ba3f9d3565f9a791b305c7355d8392c30d91b", size = 293266 } sdist = { url = "https://files.pythonhosted.org/packages/9d/28/6bc2ca8a521512f2904e6aa3028af43a864fe2b66c77ea01bbbc97f52b98/pypdf-5.0.1.tar.gz", hash = "sha256:a361c3c372b4a659f9c8dd438d5ce29a753c79c620dc6e1fd66977651f5547ea", size = 4999113 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/3c/60/eccdd92dd4af3e4bea6d6a342f7588c618a15b9bec4b968af581e498bcc4/pypdf-4.3.1-py3-none-any.whl", hash = "sha256:64b31da97eda0771ef22edb1bfecd5deee4b72c3d1736b7df2689805076d6418", size = 295825 }, { url = "https://files.pythonhosted.org/packages/48/8f/9bbf22ba6a00001a45dbc54337e5bbbd43e7d8f34c8158c92cddc45736af/pypdf-5.0.1-py3-none-any.whl", hash = "sha256:ff8a32da6c7a63fea9c32fa4dd837cdd0db7966adf6c14f043e3f12592e992db", size = 294470 },
] ]
[[package]] [[package]]
@@ -4528,27 +4542,27 @@ socks = [
[[package]] [[package]]
name = "uv" name = "uv"
version = "0.4.18" version = "0.4.25"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/7d/60/bf5ad6895740e7269ee2f5cf7515cf2756cc8eb06c07c9783abcf1d7860f/uv-0.4.18.tar.gz", hash = "sha256:954964eff8c7e2bc63dd4beeb8d45bcaddb5149a7ef29a36abd77ec76c8b837e", size = 2008833 } sdist = { url = "https://files.pythonhosted.org/packages/d0/bc/1a013408b7f9f437385705652f404b6b15127ecf108327d13be493bdfb81/uv-0.4.25.tar.gz", hash = "sha256:d39077cdfe3246885fcdf32e7066ae731a166101d063629f9cea08738f79e6a3", size = 2064863 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/9e/f9/b3f093abb8f91e2374461b903a4f5e37e96dd04dbf584e34b79bf9a6bbdf/uv-0.4.18-py3-none-linux_armv6l.whl", hash = "sha256:1944c0ee567ca7db60705c5d213a75b25601094b026cc17af3e704651c1e3753", size = 12264752 }, { url = "https://files.pythonhosted.org/packages/84/18/9c9056d373620b1cf5182ce9b2d258e86d117d667cf8883e12870f2a5edf/uv-0.4.25-py3-none-linux_armv6l.whl", hash = "sha256:94fb2b454afa6bdfeeea4b4581c878944ca9cf3a13712e6762f245f5fbaaf952", size = 13028246 },
{ url = "https://files.pythonhosted.org/packages/b6/98/3623ca28954953a5abdc988eb68d0460e1decf37b245c84db2d1323b17f8/uv-0.4.18-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:5234d47abe339c15c318e8b1bbd136ea61c4574503eda6944a5aaea91b7f6775", size = 12488345 }, { url = "https://files.pythonhosted.org/packages/a1/19/8a3f09aba30ac5433dfecde55d5241a07c96bb12340c3b810bc58188a12e/uv-0.4.25-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:a7c3a18c20ddb527d296d1222bddf42b78031c50b5b4609d426569b5fb61f5b0", size = 13175265 },
{ url = "https://files.pythonhosted.org/packages/29/2b/ff62b32b4a7cbfb445156b1d8757f29190f854aa702baa045e8645a19144/uv-0.4.18-py3-none-macosx_11_0_arm64.whl", hash = "sha256:0c4cb31594cb2ed21bd3b603a207e99dfb9610c3db44da9dbbff0f237270f582", size = 11568639 }, { url = "https://files.pythonhosted.org/packages/e8/c9/2f924bb29bd53c51b839c1c6126bd2cf4c451d4a7d8f34be078f9e31c57e/uv-0.4.25-py3-none-macosx_11_0_arm64.whl", hash = "sha256:18100f0f36419a154306ed6211e3490bf18384cdf3f1a0950848bf64b62fa251", size = 12255610 },
{ url = "https://files.pythonhosted.org/packages/bb/7f/49a724b0c8e09fca03c166e7f18ad48c8962c9be543899a27eecc13b8b86/uv-0.4.18-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.musllinux_1_1_aarch64.whl", hash = "sha256:8af0b60adcfa2e87c77a3008d3ed6e0b577c0535468dc58e06f905ccbd27124f", size = 11812252 }, { url = "https://files.pythonhosted.org/packages/b2/5a/d8f8971aeb3389679505cf633a786cd72a96ce232f80f14cfe5a693b4c64/uv-0.4.25-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.musllinux_1_1_aarch64.whl", hash = "sha256:6e981b1465e30102e41946adede9cb08051a5d70c6daf09f91a7ea84f0b75c08", size = 12506511 },
{ url = "https://files.pythonhosted.org/packages/e5/88/0b20af8d76e7b8e6ae19af6d14180a0a9e3c23ef6f3cd38370a2ba663364/uv-0.4.18-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f043c3c4514c149a00a86c3bf44df43062416d41002114e60df33895e8511c41", size = 12084699 }, { url = "https://files.pythonhosted.org/packages/e3/96/8c73520daeba5022cec8749e44afd4ca9ef774bf728af9c258bddec3577f/uv-0.4.25-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:578ae385fad6bd6f3868828e33d54994c716b315b1bc49106ec1f54c640837e4", size = 12836250 },
{ url = "https://files.pythonhosted.org/packages/a1/fe/afd83b6ed495fe40a4a738cce0de77465af452f8bd58b254a6cf7544a581/uv-0.4.18-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1b59d742b81c7acf75a3aac71d9b24e07407e044bebcf39d3fc3c87094014e20", size = 12793964 }, { url = "https://files.pythonhosted.org/packages/67/3d/b0e810d365fb154fe1d380a0f43ee35a683cf9162f2501396d711bec2621/uv-0.4.25-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d29a78f011ecc2f31c13605acb6574c2894c06d258b0f8d0dbb899986800450", size = 13521303 },
{ url = "https://files.pythonhosted.org/packages/a6/54/623029d342f68518c25ed8a3863bc43ced0ad39da4dc83b310db3fe0a727/uv-0.4.18-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:fcc606da545d9a5ec5c2209e7eb2a4eb76627ad75df5eb5616c0b40789fe3933", size = 13386984 }, { url = "https://files.pythonhosted.org/packages/2d/f4/dd3830ec7fc6e7e5237c184f30f2dbfed4f93605e472147eca1373bcc72b/uv-0.4.25-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:ec181be2bda10651a3558156409ac481549983e0276d0e3645e3b1464e7f8715", size = 14105308 },
{ url = "https://files.pythonhosted.org/packages/e9/50/eace0e9326318bf278491aafc3d63e8675a3d03472d2bc58ef601564cbb4/uv-0.4.18-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96c3ccee0fd8cf0a9d679407e157b76db1a854638a4ba4fa14f4d116b4e39b03", size = 13137886 }, { url = "https://files.pythonhosted.org/packages/f4/4e/0fca02f8681e4870beda172552e747e0424f6e9186546b00a5e92525fea9/uv-0.4.25-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:50c7d0d9e7f392f81b13bf3b7e37768d1486f2fc9d533a54982aa0ed11e4db23", size = 13859475 },
{ url = "https://files.pythonhosted.org/packages/f7/f5/f21bec94affe10e677ecbc0cc1b89d766c950dbc8e23df87451c71848c3f/uv-0.4.18-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df225a568da01f3d7e126d886c3694c5a4a7d8b85162a4d6e97822716ca0e7c4", size = 17098535 }, { url = "https://files.pythonhosted.org/packages/33/07/1100e9bc652f2850930f466869515d16ffe9582aaaaa99bac332ebdfe3ea/uv-0.4.25-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2fc35b5273f1e018aecd66b70e0fd7d2eb6698853dde3e2fc644e7ebf9f825b1", size = 18100840 },
{ url = "https://files.pythonhosted.org/packages/4e/89/77ad3d48f2ea11fd4e416b8cc1be18b26f189a4f0bf7918ac6fdb4255fa6/uv-0.4.18-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b08564c8c7e8b3665ad1d6c8924d4654451f96c956eb5f3b8ec995c77734163d", size = 12909876 }, { url = "https://files.pythonhosted.org/packages/fa/98/ba1cb7dd2aa639a064a9e49721e08f12a3424456d60dde1327e7c6437930/uv-0.4.25-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7022a71ff63a3838796f40e954b76bf7820fc27e96fe002c537e75ff8e34f1d", size = 13645464 },
{ url = "https://files.pythonhosted.org/packages/ca/29/1f451ef9b2138fdc777e24654da24fa60e42435936d29bcba0fb5bae3c44/uv-0.4.18-py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:4be600474db6733078503012f2811c4383f490f77366e66b5f686316db52c870", size = 11976385 }, { url = "https://files.pythonhosted.org/packages/0d/05/b97fb8c828a070e8291826922b2712d1146b11563b4860bc9ba80f5635d1/uv-0.4.25-py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:e02afb0f6d4b58718347f7d7cfa5a801e985ce42181ba971ed85ef149f6658ca", size = 12694995 },
{ url = "https://files.pythonhosted.org/packages/f3/ea/4ac40da05e070f411edb4e99f01846aa8694071ce85f4eb83313f2cce423/uv-0.4.18-py3-none-musllinux_1_1_armv7l.whl", hash = "sha256:3e3ade81af961f48517fcd99318192c9c635ef9a38a7ca65026af0c803c71906", size = 12067581 }, { url = "https://files.pythonhosted.org/packages/b3/97/63df050811379130202898f60e735a1a331ba3a93b8aa1e9bb466f533913/uv-0.4.25-py3-none-musllinux_1_1_armv7l.whl", hash = "sha256:3d7680795ea78cdbabbcce73d039b2651cf1fa635ddc1aa3082660f6d6255c50", size = 12831737 },
{ url = "https://files.pythonhosted.org/packages/cd/49/f6113c4cea8f7ba9e0a70723e8cb3b042c8cb1288f5671594a6b8de491bd/uv-0.4.18-py3-none-musllinux_1_1_i686.whl", hash = "sha256:4ec60141f92c9667548ebad8daf4c13aabdb58b22c21dcd834641e791e55f289", size = 12559831 }, { url = "https://files.pythonhosted.org/packages/dc/e0/08352dcffa6e8435328861ea60b2c05e8bd030f1e93998443ba66209db7b/uv-0.4.25-py3-none-musllinux_1_1_i686.whl", hash = "sha256:aae9dcafd20d5ba978c8a4939ab942e8e2e155c109e9945207fbbd81d2892c9e", size = 13273529 },
{ url = "https://files.pythonhosted.org/packages/d2/e7/968414391249660bf4375123dd244eef36fc1c1676dcdc719aea1f319bd7/uv-0.4.18-py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:6566448278b6849846b6c586fc86748c66aa53ed70f5568e713122543cc86a50", size = 14181171 }, { url = "https://files.pythonhosted.org/packages/25/f4/eaf95e5eee4e2e69884df0953d094deae07216f72068ef1df08c0f49841d/uv-0.4.25-py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:4c55040e67470f2b73e95e432aba06f103a0b348ea0b9c6689b1029c8d9e89fd", size = 15039860 },
{ url = "https://files.pythonhosted.org/packages/bb/ec/1fa1cffaa837df4bfd545818779dc608d0465be5c0e57b4328b5ed91b97f/uv-0.4.18-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:ade18dbbeb05c8cba4f842cc15b20e59467069183f348844750901227df5008d", size = 13042177 }, { url = "https://files.pythonhosted.org/packages/69/04/482b1cc9e8d599c7d766c4ba2d7a512ed3989921443792f92f26b8d44fe6/uv-0.4.25-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:bdbfd0c476b9e80a3f89af96aed6dd7d2782646311317a9c72614ccce99bb2ad", size = 13776302 },
{ url = "https://files.pythonhosted.org/packages/31/32/fcd60657f45c072fce9f14916b2fcb876b40d8e3ee0ad1f9f212aecd9bfa/uv-0.4.18-py3-none-win32.whl", hash = "sha256:157e4a2c063b270de348862dd31abfe600d5601183fd2a6efe552840ac179626", size = 12184460 }, { url = "https://files.pythonhosted.org/packages/cd/7e/3d1cb735cc3df6341ac884b73eeec1f51a29192721be40be8e9b1d82666d/uv-0.4.25-py3-none-win32.whl", hash = "sha256:7d266e02fefef930609328c31c075084295c3cb472bab3f69549fad4fd9d82b3", size = 12970553 },
{ url = "https://files.pythonhosted.org/packages/36/bd/35de80c6ac6d28383d5e7c91e8cea54b4aae8ae144c3411a16e9d28643c8/uv-0.4.18-py3-none-win_amd64.whl", hash = "sha256:8250148484e1b0f89ec19467946e86ee303619985c23228b5a2f2d94d15c6d8b", size = 13893818 }, { url = "https://files.pythonhosted.org/packages/04/e9/c00d2bb4a286b13fad0f06488ea9cbe9e76d0efcd81e7a907f72195d5b83/uv-0.4.25-py3-none-win_amd64.whl", hash = "sha256:be2a4fc4fcade9ea5e67e51738c95644360d6e59b6394b74fc579fb617f902f7", size = 14702875 },
] ]
[[package]] [[package]]