mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-17 04:48:30 +00:00
Compare commits
31 Commits
feat/add-i
...
upgrade/ch
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2211e36fda | ||
|
|
f0e3c8def0 | ||
|
|
4a6f89d200 | ||
|
|
e70bc94ab6 | ||
|
|
9285ebf8a2 | ||
|
|
4ca785eb15 | ||
|
|
c57cbd8591 | ||
|
|
7fb1289205 | ||
|
|
f02681ae01 | ||
|
|
c725105b1f | ||
|
|
36aa4bcb46 | ||
|
|
b98f8f9fe1 | ||
|
|
bcfcf88e78 | ||
|
|
fd0de3a47e | ||
|
|
c7b9ae02fd | ||
|
|
4afb022572 | ||
|
|
8610faef22 | ||
|
|
6d677541c7 | ||
|
|
49220ec163 | ||
|
|
40a676b7ac | ||
|
|
50bf146d1e | ||
|
|
40d378abfb | ||
|
|
1b09b085a7 | ||
|
|
9f2acfe91f | ||
|
|
e856359e23 | ||
|
|
faa231e278 | ||
|
|
3d44795476 | ||
|
|
f50e709985 | ||
|
|
d70c542547 | ||
|
|
57201fb856 | ||
|
|
9b142e580b |
2
.github/workflows/security-checker.yml
vendored
2
.github/workflows/security-checker.yml
vendored
@@ -19,5 +19,5 @@ jobs:
|
||||
run: pip install bandit
|
||||
|
||||
- name: Run Bandit
|
||||
run: bandit -c pyproject.toml -r src/ -lll
|
||||
run: bandit -c pyproject.toml -r src/ -ll
|
||||
|
||||
|
||||
@@ -22,7 +22,8 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
|
||||
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
|
||||
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). Defaults to `False`. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
|
||||
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
|
||||
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
|
||||
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
|
||||
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |
|
||||
|
||||
@@ -18,60 +18,63 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
|
||||
|
||||
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
|
||||
|
||||
5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
|
||||
|
||||
## Getting Started
|
||||
|
||||
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
|
||||
|
||||
```python Code
|
||||
### Passing Inputs to Flows
|
||||
|
||||
Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
|
||||
|
||||
#### Structured State Management
|
||||
|
||||
In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from dotenv import load_dotenv
|
||||
from litellm import completion
|
||||
from pydantic import BaseModel
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
class ExampleFlow(Flow):
|
||||
model = "gpt-4o-mini"
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
@start()
|
||||
def generate_city(self):
|
||||
print("Starting flow")
|
||||
def first_method(self):
|
||||
# Implementation
|
||||
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Return the name of a random city in the world.",
|
||||
},
|
||||
],
|
||||
)
|
||||
flow = StructuredExampleFlow()
|
||||
flow.kickoff(inputs={"counter": 10})
|
||||
```
|
||||
|
||||
random_city = response["choices"][0]["message"]["content"]
|
||||
print(f"Random City: {random_city}")
|
||||
In this example, the `counter` is initialized to `10`, while `message` retains its default value.
|
||||
|
||||
return random_city
|
||||
#### Unstructured State Management
|
||||
|
||||
@listen(generate_city)
|
||||
def generate_fun_fact(self, random_city):
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"Tell me a fun fact about {random_city}",
|
||||
},
|
||||
],
|
||||
)
|
||||
In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
|
||||
|
||||
fun_fact = response["choices"][0]["message"]["content"]
|
||||
return fun_fact
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class UnstructuredExampleFlow(Flow):
|
||||
@start()
|
||||
def first_method(self):
|
||||
# Implementation
|
||||
|
||||
flow = UnstructuredExampleFlow()
|
||||
flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
|
||||
```
|
||||
|
||||
flow = ExampleFlow()
|
||||
result = flow.kickoff()
|
||||
Here, both `counter` and `message` are updated based on the provided inputs.
|
||||
|
||||
print(f"Generated fun fact: {result}")
|
||||
**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
|
||||
|
||||
### Example Flow
|
||||
|
||||
```python
|
||||
# Existing example code
|
||||
```
|
||||
|
||||
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
|
||||
@@ -94,14 +97,14 @@ The `@listen()` decorator can be used in several ways:
|
||||
|
||||
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
@listen("generate_city")
|
||||
def generate_fun_fact(self, random_city):
|
||||
# Implementation
|
||||
```
|
||||
|
||||
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
|
||||
```python Code
|
||||
```python
|
||||
@listen(generate_city)
|
||||
def generate_fun_fact(self, random_city):
|
||||
# Implementation
|
||||
@@ -118,7 +121,7 @@ When you run a Flow, the final output is determined by the last method that comp
|
||||
Here's how you can access the final output:
|
||||
|
||||
<CodeGroup>
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class OutputExampleFlow(Flow):
|
||||
@@ -130,18 +133,17 @@ class OutputExampleFlow(Flow):
|
||||
def second_method(self, first_output):
|
||||
return f"Second method received: {first_output}"
|
||||
|
||||
|
||||
flow = OutputExampleFlow()
|
||||
final_output = flow.kickoff()
|
||||
|
||||
print("---- Final Output ----")
|
||||
print(final_output)
|
||||
````
|
||||
```
|
||||
|
||||
``` text Output
|
||||
```text
|
||||
---- Final Output ----
|
||||
Second method received: Output from first_method
|
||||
````
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
@@ -156,7 +158,7 @@ Here's an example of how to update and access the state:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -184,7 +186,7 @@ print("Final State:")
|
||||
print(flow.state)
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Final Output: Hello from first_method - updated by second_method
|
||||
Final State:
|
||||
counter=2 message='Hello from first_method - updated by second_method'
|
||||
@@ -208,10 +210,10 @@ allowing developers to choose the approach that best fits their application's ne
|
||||
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
|
||||
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class UntructuredExampleFlow(Flow):
|
||||
class UnstructuredExampleFlow(Flow):
|
||||
|
||||
@start()
|
||||
def first_method(self):
|
||||
@@ -230,8 +232,7 @@ class UntructuredExampleFlow(Flow):
|
||||
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
flow = UntructuredExampleFlow()
|
||||
flow = UnstructuredExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
@@ -245,16 +246,14 @@ flow.kickoff()
|
||||
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
|
||||
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
@start()
|
||||
@@ -273,7 +272,6 @@ class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
flow = StructuredExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
@@ -307,7 +305,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, or_, start
|
||||
|
||||
class OrExampleFlow(Flow):
|
||||
@@ -324,13 +322,11 @@ class OrExampleFlow(Flow):
|
||||
def logger(self, result):
|
||||
print(f"Logger: {result}")
|
||||
|
||||
|
||||
|
||||
flow = OrExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Logger: Hello from the start method
|
||||
Logger: Hello from the second method
|
||||
```
|
||||
@@ -346,7 +342,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, and_, listen, start
|
||||
|
||||
class AndExampleFlow(Flow):
|
||||
@@ -368,7 +364,7 @@ flow = AndExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
---- Logger ----
|
||||
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
|
||||
```
|
||||
@@ -385,7 +381,7 @@ You can specify different routes based on the output of the method, allowing you
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
import random
|
||||
from crewai.flow.flow import Flow, listen, router, start
|
||||
from pydantic import BaseModel
|
||||
@@ -416,12 +412,11 @@ class RouterFlow(Flow[ExampleState]):
|
||||
def fourth_method(self):
|
||||
print("Fourth method running")
|
||||
|
||||
|
||||
flow = RouterFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Starting the structured flow
|
||||
Third method running
|
||||
Fourth method running
|
||||
@@ -484,7 +479,7 @@ The `main.py` file is where you create your flow and connect the crews together.
|
||||
|
||||
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
|
||||
|
||||
```python Code
|
||||
```python
|
||||
#!/usr/bin/env python
|
||||
from random import randint
|
||||
|
||||
@@ -612,7 +607,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
|
||||
|
||||
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
# Assuming you have a flow instance
|
||||
flow.plot("my_flow_plot")
|
||||
```
|
||||
|
||||
@@ -25,7 +25,100 @@ By default, CrewAI uses the `gpt-4o-mini` model. It uses environment variables i
|
||||
- `OPENAI_API_BASE`
|
||||
- `OPENAI_API_KEY`
|
||||
|
||||
### 2. Custom LLM Objects
|
||||
### 2. Updating YAML files
|
||||
|
||||
You can update the `agents.yml` file to refer to the LLM you want to use:
|
||||
|
||||
```yaml Code
|
||||
researcher:
|
||||
role: Research Specialist
|
||||
goal: Conduct comprehensive research and analysis to gather relevant information,
|
||||
synthesize findings, and produce well-documented insights.
|
||||
backstory: A dedicated research professional with years of experience in academic
|
||||
investigation, literature review, and data analysis, known for thorough and
|
||||
methodical approaches to complex research questions.
|
||||
verbose: true
|
||||
llm: openai/gpt-4o
|
||||
# llm: azure/gpt-4o-mini
|
||||
# llm: gemini/gemini-pro
|
||||
# llm: anthropic/claude-3-5-sonnet-20240620
|
||||
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
# llm: mistral/mistral-large-latest
|
||||
# llm: ollama/llama3:70b
|
||||
# llm: groq/llama-3.2-90b-vision-preview
|
||||
# llm: watsonx/meta-llama/llama-3-1-70b-instruct
|
||||
# ...
|
||||
```
|
||||
|
||||
Keep in mind that you will need to set certain ENV vars depending on the model you are
|
||||
using to account for the credentials or set a custom LLM object like described below.
|
||||
Here are some of the required ENV vars for some of the LLM integrations:
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="OpenAI">
|
||||
```python Code
|
||||
OPENAI_API_KEY=<your-api-key>
|
||||
OPENAI_API_BASE=<optional-custom-base-url>
|
||||
OPENAI_MODEL_NAME=<openai-model-name>
|
||||
OPENAI_ORGANIZATION=<your-org-id> # OPTIONAL
|
||||
OPENAI_API_BASE=<openaiai-api-base> # OPTIONAL
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Anthropic">
|
||||
```python Code
|
||||
ANTHROPIC_API_KEY=<your-api-key>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Google">
|
||||
```python Code
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Azure">
|
||||
```python Code
|
||||
AZURE_API_KEY=<your-api-key> # "my-azure-api-key"
|
||||
AZURE_API_BASE=<your-resource-url> # "https://example-endpoint.openai.azure.com"
|
||||
AZURE_API_VERSION=<api-version> # "2023-05-15"
|
||||
AZURE_AD_TOKEN=<your-azure-ad-token> # Optional
|
||||
AZURE_API_TYPE=<your-azure-api-type> # Optional
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="AWS Bedrock">
|
||||
```python Code
|
||||
AWS_ACCESS_KEY_ID=<your-access-key>
|
||||
AWS_SECRET_ACCESS_KEY=<your-secret-key>
|
||||
AWS_DEFAULT_REGION=<your-region>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Mistral">
|
||||
```python Code
|
||||
MISTRAL_API_KEY=<your-api-key>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Groq">
|
||||
```python Code
|
||||
GROQ_API_KEY=<your-api-key>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="IBM watsonx.ai">
|
||||
```python Code
|
||||
WATSONX_URL=<your-url> # (required) Base URL of your WatsonX instance
|
||||
WATSONX_APIKEY=<your-apikey> # (required) IBM cloud API key
|
||||
WATSONX_TOKEN=<your-token> # (required) IAM auth token (alternative to APIKEY)
|
||||
WATSONX_PROJECT_ID=<your-project-id> # (optional) Project ID of your WatsonX instance
|
||||
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id> # (optional) ID of deployment space for deployed models
|
||||
```
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
### 3. Custom LLM Objects
|
||||
|
||||
Pass a custom LLM implementation or object from another library.
|
||||
|
||||
@@ -102,7 +195,7 @@ When configuring an LLM for your agent, you have access to a wide range of param
|
||||
|
||||
These are examples of how to configure LLMs for your agent.
|
||||
|
||||
<AccordionGroup>
|
||||
<AccordionGroup>
|
||||
<Accordion title="OpenAI">
|
||||
|
||||
```python Code
|
||||
@@ -133,10 +226,10 @@ These are examples of how to configure LLMs for your agent.
|
||||
model="cerebras/llama-3.1-70b",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
|
||||
<Accordion title="Ollama (Local LLMs)">
|
||||
|
||||
CrewAI supports using Ollama for running open-source models locally:
|
||||
@@ -150,7 +243,7 @@ These are examples of how to configure LLMs for your agent.
|
||||
|
||||
agent = Agent(
|
||||
llm=LLM(
|
||||
model="ollama/llama3.1",
|
||||
model="ollama/llama3.1",
|
||||
base_url="http://localhost:11434"
|
||||
),
|
||||
...
|
||||
@@ -164,7 +257,7 @@ These are examples of how to configure LLMs for your agent.
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="groq/llama3-8b-8192",
|
||||
model="groq/llama3-8b-8192",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
@@ -189,7 +282,7 @@ These are examples of how to configure LLMs for your agent.
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
|
||||
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
@@ -224,6 +317,29 @@ These are examples of how to configure LLMs for your agent.
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="IBM watsonx.ai">
|
||||
You can use IBM Watson by seeting the following ENV vars:
|
||||
|
||||
```python Code
|
||||
WATSONX_URL=<your-url>
|
||||
WATSONX_APIKEY=<your-apikey>
|
||||
WATSONX_PROJECT_ID=<your-project-id>
|
||||
```
|
||||
|
||||
You can then define your agents llms by updating the `agents.yml`
|
||||
|
||||
```yaml Code
|
||||
researcher:
|
||||
role: Research Specialist
|
||||
goal: Conduct comprehensive research and analysis to gather relevant information,
|
||||
synthesize findings, and produce well-documented insights.
|
||||
backstory: A dedicated research professional with years of experience in academic
|
||||
investigation, literature review, and data analysis, known for thorough and
|
||||
methodical approaches to complex research questions.
|
||||
verbose: true
|
||||
llm: watsonx/meta-llama/llama-3-1-70b-instruct
|
||||
```
|
||||
|
||||
You can also set up agents more dynamically as a base level LLM instance, like bellow:
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
@@ -247,7 +363,7 @@ These are examples of how to configure LLMs for your agent.
|
||||
api_key="your-api-key-here",
|
||||
base_url="your_api_endpoint"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
@@ -18,6 +18,7 @@ reason, and learn from past interactions.
|
||||
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
|
||||
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
|
||||
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
|
||||
| **User Memory** | Stores user-specific information and preferences, enhancing personalization and user experience. |
|
||||
|
||||
## How Memory Systems Empower Agents
|
||||
|
||||
@@ -92,6 +93,47 @@ my_crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
## Integrating Mem0 for Enhanced User Memory
|
||||
|
||||
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
|
||||
|
||||
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences.
|
||||
|
||||
|
||||
```python Code
|
||||
import os
|
||||
from crewai import Crew, Process
|
||||
from mem0 import MemoryClient
|
||||
|
||||
# Set environment variables for Mem0
|
||||
os.environ["MEM0_API_KEY"] = "m0-xx"
|
||||
|
||||
# Step 1: Record preferences based on past conversation or user input
|
||||
client = MemoryClient()
|
||||
messages = [
|
||||
{"role": "user", "content": "Hi there! I'm planning a vacation and could use some advice."},
|
||||
{"role": "assistant", "content": "Hello! I'd be happy to help with your vacation planning. What kind of destination do you prefer?"},
|
||||
{"role": "user", "content": "I am more of a beach person than a mountain person."},
|
||||
{"role": "assistant", "content": "That's interesting. Do you like hotels or Airbnb?"},
|
||||
{"role": "user", "content": "I like Airbnb more."},
|
||||
]
|
||||
client.add(messages, user_id="john")
|
||||
|
||||
# Step 2: Create a Crew with User Memory
|
||||
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
memory_config={
|
||||
"provider": "mem0",
|
||||
"config": {"user_id": "john"},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
## Additional Embedding Providers
|
||||
|
||||
|
||||
@@ -330,4 +330,4 @@ This will clear the crew's memory, allowing for a fresh start.
|
||||
|
||||
## Deploying Your Project
|
||||
|
||||
The easiest way to deploy your crew is through [CrewAI Enterprise](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.
|
||||
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com/), where you can deploy your crew in a few clicks.
|
||||
|
||||
6
poetry.lock
generated
6
poetry.lock
generated
@@ -1597,12 +1597,12 @@ files = [
|
||||
google-auth = ">=2.14.1,<3.0.dev0"
|
||||
googleapis-common-protos = ">=1.56.2,<2.0.dev0"
|
||||
grpcio = [
|
||||
{version = ">=1.49.1,<2.0dev", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
|
||||
{version = ">=1.33.2,<2.0dev", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
|
||||
{version = ">=1.49.1,<2.0dev", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
|
||||
]
|
||||
grpcio-status = [
|
||||
{version = ">=1.49.1,<2.0.dev0", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
|
||||
{version = ">=1.33.2,<2.0.dev0", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
|
||||
{version = ">=1.49.1,<2.0.dev0", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
|
||||
]
|
||||
proto-plus = ">=1.22.3,<2.0.0dev"
|
||||
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0"
|
||||
@@ -4286,8 +4286,8 @@ files = [
|
||||
|
||||
[package.dependencies]
|
||||
numpy = [
|
||||
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
|
||||
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
|
||||
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
|
||||
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
|
||||
]
|
||||
python-dateutil = ">=2.8.2"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.76.9"
|
||||
version = "0.79.4"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
@@ -16,7 +16,7 @@ dependencies = [
|
||||
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
|
||||
"instructor>=1.3.3",
|
||||
"regex>=2024.9.11",
|
||||
"crewai-tools>=0.13.4",
|
||||
"crewai-tools>=0.14.0",
|
||||
"click>=8.1.7",
|
||||
"python-dotenv>=1.0.0",
|
||||
"appdirs>=1.4.4",
|
||||
@@ -27,8 +27,8 @@ dependencies = [
|
||||
"pyvis>=0.3.2",
|
||||
"uv>=0.4.25",
|
||||
"tomli-w>=1.1.0",
|
||||
"chromadb>=0.4.24",
|
||||
"tomli>=2.0.2",
|
||||
"chromadb>=0.5.18",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
@@ -37,8 +37,9 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools>=0.13.4"]
|
||||
tools = ["crewai-tools>=0.14.0"]
|
||||
agentops = ["agentops>=0.3.0"]
|
||||
mem0 = ["mem0ai>=0.1.29"]
|
||||
|
||||
[tool.uv]
|
||||
dev-dependencies = [
|
||||
@@ -52,7 +53,7 @@ dev-dependencies = [
|
||||
"mkdocs-material-extensions>=1.3.1",
|
||||
"pillow>=10.2.0",
|
||||
"cairosvg>=2.7.1",
|
||||
"crewai-tools>=0.13.4",
|
||||
"crewai-tools>=0.14.0",
|
||||
"pytest>=8.0.0",
|
||||
"pytest-vcr>=1.0.2",
|
||||
"python-dotenv>=1.0.0",
|
||||
|
||||
@@ -14,5 +14,5 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.76.9"
|
||||
__version__ = "0.79.4"
|
||||
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]
|
||||
|
||||
@@ -8,6 +8,7 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
@@ -122,6 +123,11 @@ class Agent(BaseAgent):
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
self.agent_ops_agent_name = self.role
|
||||
unnacepted_attributes = [
|
||||
"AWS_ACCESS_KEY_ID",
|
||||
"AWS_SECRET_ACCESS_KEY",
|
||||
"AWS_REGION_NAME",
|
||||
]
|
||||
|
||||
# Handle different cases for self.llm
|
||||
if isinstance(self.llm, str):
|
||||
@@ -131,8 +137,12 @@ class Agent(BaseAgent):
|
||||
# If it's already an LLM instance, keep it as is
|
||||
pass
|
||||
elif self.llm is None:
|
||||
# If it's None, use environment variables or default
|
||||
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
|
||||
# Determine the model name from environment variables or use default
|
||||
model_name = (
|
||||
os.environ.get("OPENAI_MODEL_NAME")
|
||||
or os.environ.get("MODEL")
|
||||
or "gpt-4o-mini"
|
||||
)
|
||||
llm_params = {"model": model_name}
|
||||
|
||||
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
|
||||
@@ -141,9 +151,44 @@ class Agent(BaseAgent):
|
||||
if api_base:
|
||||
llm_params["base_url"] = api_base
|
||||
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
if api_key:
|
||||
llm_params["api_key"] = api_key
|
||||
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
|
||||
|
||||
# Iterate over all environment variables to find matching API keys or use defaults
|
||||
for provider, env_vars in ENV_VARS.items():
|
||||
if provider == set_provider:
|
||||
for env_var in env_vars:
|
||||
if env_var["key_name"] in unnacepted_attributes:
|
||||
continue
|
||||
# Check if the environment variable is set
|
||||
if "key_name" in env_var:
|
||||
env_value = os.environ.get(env_var["key_name"])
|
||||
if env_value:
|
||||
# Map key names containing "API_KEY" to "api_key"
|
||||
key_name = (
|
||||
"api_key"
|
||||
if "API_KEY" in env_var["key_name"]
|
||||
else env_var["key_name"]
|
||||
)
|
||||
# Map key names containing "API_BASE" to "api_base"
|
||||
key_name = (
|
||||
"api_base"
|
||||
if "API_BASE" in env_var["key_name"]
|
||||
else key_name
|
||||
)
|
||||
# Map key names containing "API_VERSION" to "api_version"
|
||||
key_name = (
|
||||
"api_version"
|
||||
if "API_VERSION" in env_var["key_name"]
|
||||
else key_name
|
||||
)
|
||||
llm_params[key_name] = env_value
|
||||
# Check for default values if the environment variable is not set
|
||||
elif env_var.get("default", False):
|
||||
for key, value in env_var.items():
|
||||
if key not in ["prompt", "key_name", "default"]:
|
||||
# Only add default if the key is already set in os.environ
|
||||
if key in os.environ:
|
||||
llm_params[key] = value
|
||||
|
||||
self.llm = LLM(**llm_params)
|
||||
else:
|
||||
@@ -217,9 +262,11 @@ class Agent(BaseAgent):
|
||||
|
||||
if self.crew and self.crew.memory:
|
||||
contextual_memory = ContextualMemory(
|
||||
self.crew.memory_config,
|
||||
self.crew._short_term_memory,
|
||||
self.crew._long_term_memory,
|
||||
self.crew._entity_memory,
|
||||
self.crew._user_memory,
|
||||
)
|
||||
memory = contextual_memory.build_context_for_task(task, context)
|
||||
if memory.strip() != "":
|
||||
|
||||
@@ -4,6 +4,7 @@ from crewai.types.usage_metrics import UsageMetrics
|
||||
class TokenProcess:
|
||||
total_tokens: int = 0
|
||||
prompt_tokens: int = 0
|
||||
cached_prompt_tokens: int = 0
|
||||
completion_tokens: int = 0
|
||||
successful_requests: int = 0
|
||||
|
||||
@@ -15,6 +16,9 @@ class TokenProcess:
|
||||
self.completion_tokens = self.completion_tokens + tokens
|
||||
self.total_tokens = self.total_tokens + tokens
|
||||
|
||||
def sum_cached_prompt_tokens(self, tokens: int):
|
||||
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
|
||||
|
||||
def sum_successful_requests(self, requests: int):
|
||||
self.successful_requests = self.successful_requests + requests
|
||||
|
||||
@@ -22,6 +26,7 @@ class TokenProcess:
|
||||
return UsageMetrics(
|
||||
total_tokens=self.total_tokens,
|
||||
prompt_tokens=self.prompt_tokens,
|
||||
cached_prompt_tokens=self.cached_prompt_tokens,
|
||||
completion_tokens=self.completion_tokens,
|
||||
successful_requests=self.successful_requests,
|
||||
)
|
||||
|
||||
@@ -117,6 +117,15 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
|
||||
if answer is None or answer == "":
|
||||
self._printer.print(
|
||||
content="Received None or empty response from LLM call.",
|
||||
color="red",
|
||||
)
|
||||
raise ValueError(
|
||||
"Invalid response from LLM call - None or empty."
|
||||
)
|
||||
|
||||
if not self.use_stop_words:
|
||||
try:
|
||||
self._format_answer(answer)
|
||||
@@ -136,25 +145,26 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
formatted_answer.result = action_result
|
||||
self._show_logs(formatted_answer)
|
||||
|
||||
if self.step_callback:
|
||||
self.step_callback(formatted_answer)
|
||||
if self.step_callback:
|
||||
self.step_callback(formatted_answer)
|
||||
|
||||
if self._should_force_answer():
|
||||
if self.have_forced_answer:
|
||||
return AgentFinish(
|
||||
output=self._i18n.errors(
|
||||
"force_final_answer_error"
|
||||
).format(formatted_answer.text),
|
||||
text=formatted_answer.text,
|
||||
)
|
||||
else:
|
||||
formatted_answer.text += (
|
||||
f'\n{self._i18n.errors("force_final_answer")}'
|
||||
)
|
||||
self.have_forced_answer = True
|
||||
self.messages.append(
|
||||
self._format_msg(formatted_answer.text, role="assistant")
|
||||
)
|
||||
if self._should_force_answer():
|
||||
if self.have_forced_answer:
|
||||
return AgentFinish(
|
||||
thought="",
|
||||
output=self._i18n.errors(
|
||||
"force_final_answer_error"
|
||||
).format(formatted_answer.text),
|
||||
text=formatted_answer.text,
|
||||
)
|
||||
else:
|
||||
formatted_answer.text += (
|
||||
f'\n{self._i18n.errors("force_final_answer")}'
|
||||
)
|
||||
self.have_forced_answer = True
|
||||
self.messages.append(
|
||||
self._format_msg(formatted_answer.text, role="assistant")
|
||||
)
|
||||
|
||||
except OutputParserException as e:
|
||||
self.messages.append({"role": "user", "content": e.error})
|
||||
@@ -323,9 +333,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
|
||||
train_iteration = self.crew._train_iteration
|
||||
if agent_id in training_data and isinstance(train_iteration, int):
|
||||
training_data[agent_id][train_iteration][
|
||||
"improved_output"
|
||||
] = result.output
|
||||
training_data[agent_id][train_iteration]["improved_output"] = (
|
||||
result.output
|
||||
)
|
||||
training_handler.save(training_data)
|
||||
else:
|
||||
self._logger.log(
|
||||
@@ -376,4 +386,5 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
return CrewAgentParser(agent=self.agent).parse(answer)
|
||||
|
||||
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
|
||||
prompt = prompt.rstrip()
|
||||
return {"role": role, "content": prompt}
|
||||
|
||||
@@ -54,7 +54,7 @@ def create_embedded_crew(crew_name: str, parent_folder: Path) -> None:
|
||||
|
||||
templates_dir = Path(__file__).parent / "templates" / "crew"
|
||||
config_template_files = ["agents.yaml", "tasks.yaml"]
|
||||
crew_template_file = f"{folder_name}_crew.py" # Updated file name
|
||||
crew_template_file = f"{folder_name}.py" # Updated file name
|
||||
|
||||
for file_name in config_template_files:
|
||||
src_file = templates_dir / "config" / file_name
|
||||
|
||||
@@ -34,7 +34,9 @@ class AuthenticationCommand:
|
||||
"scope": "openid",
|
||||
"audience": AUTH0_AUDIENCE,
|
||||
}
|
||||
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
|
||||
response = requests.post(
|
||||
url=self.DEVICE_CODE_URL, data=device_code_payload, timeout=20
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
@@ -54,7 +56,7 @@ class AuthenticationCommand:
|
||||
|
||||
attempts = 0
|
||||
while True and attempts < 5:
|
||||
response = requests.post(self.TOKEN_URL, data=token_payload)
|
||||
response = requests.post(self.TOKEN_URL, data=token_payload, timeout=30)
|
||||
token_data = response.json()
|
||||
|
||||
if response.status_code == 200:
|
||||
|
||||
@@ -1,19 +1,168 @@
|
||||
ENV_VARS = {
|
||||
'openai': ['OPENAI_API_KEY'],
|
||||
'anthropic': ['ANTHROPIC_API_KEY'],
|
||||
'gemini': ['GEMINI_API_KEY'],
|
||||
'groq': ['GROQ_API_KEY'],
|
||||
'ollama': ['FAKE_KEY'],
|
||||
"openai": [
|
||||
{
|
||||
"prompt": "Enter your OPENAI API key (press Enter to skip)",
|
||||
"key_name": "OPENAI_API_KEY",
|
||||
}
|
||||
],
|
||||
"anthropic": [
|
||||
{
|
||||
"prompt": "Enter your ANTHROPIC API key (press Enter to skip)",
|
||||
"key_name": "ANTHROPIC_API_KEY",
|
||||
}
|
||||
],
|
||||
"gemini": [
|
||||
{
|
||||
"prompt": "Enter your GEMINI API key (press Enter to skip)",
|
||||
"key_name": "GEMINI_API_KEY",
|
||||
}
|
||||
],
|
||||
"groq": [
|
||||
{
|
||||
"prompt": "Enter your GROQ API key (press Enter to skip)",
|
||||
"key_name": "GROQ_API_KEY",
|
||||
}
|
||||
],
|
||||
"watson": [
|
||||
{
|
||||
"prompt": "Enter your WATSONX URL (press Enter to skip)",
|
||||
"key_name": "WATSONX_URL",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your WATSONX API Key (press Enter to skip)",
|
||||
"key_name": "WATSONX_APIKEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your WATSONX Project Id (press Enter to skip)",
|
||||
"key_name": "WATSONX_PROJECT_ID",
|
||||
},
|
||||
],
|
||||
"ollama": [
|
||||
{
|
||||
"default": True,
|
||||
"API_BASE": "http://localhost:11434",
|
||||
}
|
||||
],
|
||||
"bedrock": [
|
||||
{
|
||||
"prompt": "Enter your AWS Access Key ID (press Enter to skip)",
|
||||
"key_name": "AWS_ACCESS_KEY_ID",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AWS Secret Access Key (press Enter to skip)",
|
||||
"key_name": "AWS_SECRET_ACCESS_KEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AWS Region Name (press Enter to skip)",
|
||||
"key_name": "AWS_REGION_NAME",
|
||||
},
|
||||
],
|
||||
"azure": [
|
||||
{
|
||||
"prompt": "Enter your Azure deployment name (must start with 'azure/')",
|
||||
"key_name": "model",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API key (press Enter to skip)",
|
||||
"key_name": "AZURE_API_KEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API base URL (press Enter to skip)",
|
||||
"key_name": "AZURE_API_BASE",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API version (press Enter to skip)",
|
||||
"key_name": "AZURE_API_VERSION",
|
||||
},
|
||||
],
|
||||
"cerebras": [
|
||||
{
|
||||
"prompt": "Enter your Cerebras model name (must start with 'cerebras/')",
|
||||
"key_name": "model",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your Cerebras API version (press Enter to skip)",
|
||||
"key_name": "CEREBRAS_API_KEY",
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
PROVIDERS = ['openai', 'anthropic', 'gemini', 'groq', 'ollama']
|
||||
|
||||
PROVIDERS = [
|
||||
"openai",
|
||||
"anthropic",
|
||||
"gemini",
|
||||
"groq",
|
||||
"ollama",
|
||||
"watson",
|
||||
"bedrock",
|
||||
"azure",
|
||||
"cerebras",
|
||||
]
|
||||
|
||||
MODELS = {
|
||||
'openai': ['gpt-4', 'gpt-4o', 'gpt-4o-mini', 'o1-mini', 'o1-preview'],
|
||||
'anthropic': ['claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-opus-20240229', 'claude-3-haiku-20240307'],
|
||||
'gemini': ['gemini-1.5-flash', 'gemini-1.5-pro', 'gemini-gemma-2-9b-it', 'gemini-gemma-2-27b-it'],
|
||||
'groq': ['llama-3.1-8b-instant', 'llama-3.1-70b-versatile', 'llama-3.1-405b-reasoning', 'gemma2-9b-it', 'gemma-7b-it'],
|
||||
'ollama': ['llama3.1', 'mixtral'],
|
||||
"openai": ["gpt-4", "gpt-4o", "gpt-4o-mini", "o1-mini", "o1-preview"],
|
||||
"anthropic": [
|
||||
"claude-3-5-sonnet-20240620",
|
||||
"claude-3-sonnet-20240229",
|
||||
"claude-3-opus-20240229",
|
||||
"claude-3-haiku-20240307",
|
||||
],
|
||||
"gemini": [
|
||||
"gemini/gemini-1.5-flash",
|
||||
"gemini/gemini-1.5-pro",
|
||||
"gemini/gemini-gemma-2-9b-it",
|
||||
"gemini/gemini-gemma-2-27b-it",
|
||||
],
|
||||
"groq": [
|
||||
"groq/llama-3.1-8b-instant",
|
||||
"groq/llama-3.1-70b-versatile",
|
||||
"groq/llama-3.1-405b-reasoning",
|
||||
"groq/gemma2-9b-it",
|
||||
"groq/gemma-7b-it",
|
||||
],
|
||||
"ollama": ["ollama/llama3.1", "ollama/mixtral"],
|
||||
"watson": [
|
||||
"watsonx/google/flan-t5-xxl",
|
||||
"watsonx/google/flan-ul2",
|
||||
"watsonx/bigscience/mt0-xxl",
|
||||
"watsonx/eleutherai/gpt-neox-20b",
|
||||
"watsonx/ibm/mpt-7b-instruct2",
|
||||
"watsonx/bigcode/starcoder",
|
||||
"watsonx/meta-llama/llama-2-70b-chat",
|
||||
"watsonx/meta-llama/llama-2-13b-chat",
|
||||
"watsonx/ibm/granite-13b-instruct-v1",
|
||||
"watsonx/ibm/granite-13b-chat-v1",
|
||||
"watsonx/google/flan-t5-xl",
|
||||
"watsonx/ibm/granite-13b-chat-v2",
|
||||
"watsonx/ibm/granite-13b-instruct-v2",
|
||||
"watsonx/elyza/elyza-japanese-llama-2-7b-instruct",
|
||||
"watsonx/ibm-mistralai/mixtral-8x7b-instruct-v01-q",
|
||||
],
|
||||
"bedrock": [
|
||||
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
|
||||
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
|
||||
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-v2:1",
|
||||
"bedrock/anthropic.claude-v2",
|
||||
"bedrock/anthropic.claude-instant-v1",
|
||||
"bedrock/meta.llama3-1-405b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-1-70b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-1-8b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-70b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-8b-instruct-v1:0",
|
||||
"bedrock/amazon.titan-text-lite-v1",
|
||||
"bedrock/amazon.titan-text-express-v1",
|
||||
"bedrock/cohere.command-text-v14",
|
||||
"bedrock/ai21.j2-mid-v1",
|
||||
"bedrock/ai21.j2-ultra-v1",
|
||||
"bedrock/ai21.jamba-instruct-v1:0",
|
||||
"bedrock/meta.llama2-13b-chat-v1",
|
||||
"bedrock/meta.llama2-70b-chat-v1",
|
||||
"bedrock/mistral.mistral-7b-instruct-v0:2",
|
||||
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
|
||||
],
|
||||
}
|
||||
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.cli.constants import ENV_VARS, MODELS
|
||||
from crewai.cli.provider import (
|
||||
PROVIDERS,
|
||||
get_provider_data,
|
||||
select_model,
|
||||
select_provider,
|
||||
@@ -29,20 +29,20 @@ def create_folder_structure(name, parent_folder=None):
|
||||
click.secho("Operation cancelled.", fg="yellow")
|
||||
sys.exit(0)
|
||||
click.secho(f"Overriding folder {folder_name}...", fg="green", bold=True)
|
||||
else:
|
||||
click.secho(
|
||||
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
|
||||
fg="green",
|
||||
bold=True,
|
||||
)
|
||||
shutil.rmtree(folder_path) # Delete the existing folder and its contents
|
||||
|
||||
if not folder_path.exists():
|
||||
folder_path.mkdir(parents=True)
|
||||
(folder_path / "tests").mkdir(exist_ok=True)
|
||||
if not parent_folder:
|
||||
(folder_path / "src" / folder_name).mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
|
||||
click.secho(
|
||||
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
|
||||
fg="green",
|
||||
bold=True,
|
||||
)
|
||||
|
||||
folder_path.mkdir(parents=True)
|
||||
(folder_path / "tests").mkdir(exist_ok=True)
|
||||
if not parent_folder:
|
||||
(folder_path / "src" / folder_name).mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
|
||||
|
||||
return folder_path, folder_name, class_name
|
||||
|
||||
@@ -92,7 +92,10 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
|
||||
|
||||
existing_provider = None
|
||||
for provider, env_keys in ENV_VARS.items():
|
||||
if any(key in env_vars for key in env_keys):
|
||||
if any(
|
||||
"key_name" in details and details["key_name"] in env_vars
|
||||
for details in env_keys
|
||||
):
|
||||
existing_provider = provider
|
||||
break
|
||||
|
||||
@@ -118,47 +121,48 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
|
||||
"No provider selected. Please try again or press 'q' to exit.", fg="red"
|
||||
)
|
||||
|
||||
while True:
|
||||
selected_model = select_model(selected_provider, provider_models)
|
||||
if selected_model is None: # User typed 'q'
|
||||
click.secho("Exiting...", fg="yellow")
|
||||
sys.exit(0)
|
||||
if selected_model: # Valid selection
|
||||
break
|
||||
click.secho(
|
||||
"No model selected. Please try again or press 'q' to exit.", fg="red"
|
||||
)
|
||||
# Check if the selected provider has predefined models
|
||||
if selected_provider in MODELS and MODELS[selected_provider]:
|
||||
while True:
|
||||
selected_model = select_model(selected_provider, provider_models)
|
||||
if selected_model is None: # User typed 'q'
|
||||
click.secho("Exiting...", fg="yellow")
|
||||
sys.exit(0)
|
||||
if selected_model: # Valid selection
|
||||
break
|
||||
click.secho(
|
||||
"No model selected. Please try again or press 'q' to exit.",
|
||||
fg="red",
|
||||
)
|
||||
env_vars["MODEL"] = selected_model
|
||||
|
||||
if selected_provider in PROVIDERS:
|
||||
api_key_var = ENV_VARS[selected_provider][0]
|
||||
else:
|
||||
api_key_var = click.prompt(
|
||||
f"Enter the environment variable name for your {selected_provider.capitalize()} API key",
|
||||
type=str,
|
||||
default="",
|
||||
)
|
||||
# Check if the selected provider requires API keys
|
||||
if selected_provider in ENV_VARS:
|
||||
provider_env_vars = ENV_VARS[selected_provider]
|
||||
for details in provider_env_vars:
|
||||
if details.get("default", False):
|
||||
# Automatically add default key-value pairs
|
||||
for key, value in details.items():
|
||||
if key not in ["prompt", "key_name", "default"]:
|
||||
env_vars[key] = value
|
||||
elif "key_name" in details:
|
||||
# Prompt for non-default key-value pairs
|
||||
prompt = details["prompt"]
|
||||
key_name = details["key_name"]
|
||||
api_key_value = click.prompt(prompt, default="", show_default=False)
|
||||
|
||||
api_key_value = ""
|
||||
click.echo(
|
||||
f"Enter your {selected_provider.capitalize()} API key (press Enter to skip): ",
|
||||
nl=False,
|
||||
)
|
||||
try:
|
||||
api_key_value = input()
|
||||
except (KeyboardInterrupt, EOFError):
|
||||
api_key_value = ""
|
||||
if api_key_value.strip():
|
||||
env_vars[key_name] = api_key_value
|
||||
|
||||
if api_key_value.strip():
|
||||
env_vars = {api_key_var: api_key_value}
|
||||
if env_vars:
|
||||
write_env_file(folder_path, env_vars)
|
||||
click.secho("API key saved to .env file", fg="green")
|
||||
click.secho("API keys and model saved to .env file", fg="green")
|
||||
else:
|
||||
click.secho(
|
||||
"No API key provided. Skipping .env file creation.", fg="yellow"
|
||||
"No API keys provided. Skipping .env file creation.", fg="yellow"
|
||||
)
|
||||
|
||||
env_vars["MODEL"] = selected_model
|
||||
click.secho(f"Selected model: {selected_model}", fg="green")
|
||||
click.secho(f"Selected model: {env_vars.get('MODEL', 'N/A')}", fg="green")
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
templates_dir = package_dir / "templates" / "crew"
|
||||
|
||||
@@ -164,7 +164,7 @@ def fetch_provider_data(cache_file):
|
||||
- dict or None: The fetched provider data or None if the operation fails.
|
||||
"""
|
||||
try:
|
||||
response = requests.get(JSON_URL, stream=True, timeout=10)
|
||||
response = requests.get(JSON_URL, stream=True, timeout=60)
|
||||
response.raise_for_status()
|
||||
data = download_data(response)
|
||||
with open(cache_file, "w") as f:
|
||||
|
||||
@@ -24,7 +24,6 @@ def run_crew() -> None:
|
||||
f"Please run `crewai update` to update your pyproject.toml to use uv.",
|
||||
fg="red",
|
||||
)
|
||||
print()
|
||||
|
||||
try:
|
||||
subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
|
||||
@@ -8,9 +8,12 @@ from crewai.project import CrewBase, agent, crew, task
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
@CrewBase
|
||||
class {{crew_name}}Crew():
|
||||
class {{crew_name}}():
|
||||
"""{{crew_name}} crew"""
|
||||
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
@@ -48,4 +51,4 @@ class {{crew_name}}Crew():
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
#!/usr/bin/env python
|
||||
import sys
|
||||
from {{folder_name}}.crew import {{crew_name}}Crew
|
||||
import warnings
|
||||
|
||||
from {{folder_name}}.crew import {{crew_name}}
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
# This main file is intended to be a way for you to run your
|
||||
# crew locally, so refrain from adding unnecessary logic into this file.
|
||||
@@ -14,7 +18,7 @@ def run():
|
||||
inputs = {
|
||||
'topic': 'AI LLMs'
|
||||
}
|
||||
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
|
||||
{{crew_name}}().crew().kickoff(inputs=inputs)
|
||||
|
||||
|
||||
def train():
|
||||
@@ -25,7 +29,7 @@ def train():
|
||||
"topic": "AI LLMs"
|
||||
}
|
||||
try:
|
||||
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
|
||||
{{crew_name}}().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
@@ -35,7 +39,7 @@ def replay():
|
||||
Replay the crew execution from a specific task.
|
||||
"""
|
||||
try:
|
||||
{{crew_name}}Crew().crew().replay(task_id=sys.argv[1])
|
||||
{{crew_name}}().crew().replay(task_id=sys.argv[1])
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
@@ -48,7 +52,7 @@ def test():
|
||||
"topic": "AI LLMs"
|
||||
}
|
||||
try:
|
||||
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
|
||||
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.76.9,<1.0.0"
|
||||
"crewai[tools]>=0.79.4,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.76.9,<1.0.0",
|
||||
"crewai[tools]>=0.79.4,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.76.9,<1.0.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.79.4,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.76.9,<1.0.0"
|
||||
"crewai[tools]>=0.79.4,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.76.9"
|
||||
"crewai[tools]>=0.79.4"
|
||||
]
|
||||
|
||||
|
||||
@@ -27,6 +27,7 @@ from crewai.llm import LLM
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.memory.user.user_memory import UserMemory
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
@@ -71,6 +72,7 @@ class Crew(BaseModel):
|
||||
manager_llm: The language model that will run manager agent.
|
||||
manager_agent: Custom agent that will be used as manager.
|
||||
memory: Whether the crew should use memory to store memories of it's execution.
|
||||
memory_config: Configuration for the memory to be used for the crew.
|
||||
cache: Whether the crew should use a cache to store the results of the tools execution.
|
||||
function_calling_llm: The language model that will run the tool calling for all the agents.
|
||||
process: The process flow that the crew will follow (e.g., sequential, hierarchical).
|
||||
@@ -94,6 +96,7 @@ class Crew(BaseModel):
|
||||
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
|
||||
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
|
||||
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
|
||||
_user_memory: Optional[InstanceOf[UserMemory]] = PrivateAttr()
|
||||
_train: Optional[bool] = PrivateAttr(default=False)
|
||||
_train_iteration: Optional[int] = PrivateAttr()
|
||||
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
|
||||
@@ -114,6 +117,10 @@ class Crew(BaseModel):
|
||||
default=False,
|
||||
description="Whether the crew should use memory to store memories of it's execution",
|
||||
)
|
||||
memory_config: Optional[Dict[str, Any]] = Field(
|
||||
default=None,
|
||||
description="Configuration for the memory to be used for the crew.",
|
||||
)
|
||||
short_term_memory: Optional[InstanceOf[ShortTermMemory]] = Field(
|
||||
default=None,
|
||||
description="An Instance of the ShortTermMemory to be used by the Crew",
|
||||
@@ -126,7 +133,11 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="An Instance of the EntityMemory to be used by the Crew",
|
||||
)
|
||||
embedder: Optional[Any] = Field(
|
||||
user_memory: Optional[InstanceOf[UserMemory]] = Field(
|
||||
default=None,
|
||||
description="An instance of the UserMemory to be used by the Crew to store/fetch memories of a specific user.",
|
||||
)
|
||||
embedder: Optional[dict] = Field(
|
||||
default=None,
|
||||
description="Configuration for the embedder to be used for the crew.",
|
||||
)
|
||||
@@ -238,13 +249,22 @@ class Crew(BaseModel):
|
||||
self._short_term_memory = (
|
||||
self.short_term_memory
|
||||
if self.short_term_memory
|
||||
else ShortTermMemory(crew=self, embedder_config=self.embedder)
|
||||
else ShortTermMemory(
|
||||
crew=self,
|
||||
embedder_config=self.embedder,
|
||||
)
|
||||
)
|
||||
self._entity_memory = (
|
||||
self.entity_memory
|
||||
if self.entity_memory
|
||||
else EntityMemory(crew=self, embedder_config=self.embedder)
|
||||
)
|
||||
if hasattr(self, "memory_config") and self.memory_config is not None:
|
||||
self._user_memory = (
|
||||
self.user_memory if self.user_memory else UserMemory(crew=self)
|
||||
)
|
||||
else:
|
||||
self._user_memory = None
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
@@ -445,13 +465,14 @@ class Crew(BaseModel):
|
||||
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
|
||||
for agent in train_crew.agents:
|
||||
result = TaskEvaluator(agent).evaluate_training_data(
|
||||
training_data=training_data, agent_id=str(agent.id)
|
||||
)
|
||||
if training_data.get(str(agent.id)):
|
||||
result = TaskEvaluator(agent).evaluate_training_data(
|
||||
training_data=training_data, agent_id=str(agent.id)
|
||||
)
|
||||
|
||||
CrewTrainingHandler(filename).save_trained_data(
|
||||
agent_id=str(agent.role), trained_data=result.model_dump()
|
||||
)
|
||||
CrewTrainingHandler(filename).save_trained_data(
|
||||
agent_id=str(agent.role), trained_data=result.model_dump()
|
||||
)
|
||||
|
||||
def kickoff(
|
||||
self,
|
||||
|
||||
@@ -1,8 +1,20 @@
|
||||
import asyncio
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, Generic, List, Set, Type, TypeVar, Union
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Generic,
|
||||
List,
|
||||
Optional,
|
||||
Set,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
@@ -119,7 +131,6 @@ class FlowMeta(type):
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
|
||||
# TODO: should we add a check for __condition_type__ 'AND'?
|
||||
elif hasattr(attr_value, "__is_router__"):
|
||||
routers[attr_value.__router_for__] = attr_name
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
@@ -159,8 +170,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
def __init__(self) -> None:
|
||||
self._methods: Dict[str, Callable] = {}
|
||||
self._state: T = self._create_initial_state()
|
||||
self._executed_methods: Set[str] = set()
|
||||
self._scheduled_tasks: Set[str] = set()
|
||||
self._method_execution_counts: Dict[str, int] = {}
|
||||
self._pending_and_listeners: Dict[str, Set[str]] = {}
|
||||
self._method_outputs: List[Any] = [] # List to store all method outputs
|
||||
|
||||
@@ -191,10 +201,74 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
"""Returns the list of all outputs from executed methods."""
|
||||
return self._method_outputs
|
||||
|
||||
def kickoff(self) -> Any:
|
||||
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Initializes or updates the state with the provided inputs.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of inputs to initialize or update the state.
|
||||
|
||||
Raises:
|
||||
ValueError: If inputs do not match the structured state model.
|
||||
TypeError: If state is neither a BaseModel instance nor a dictionary.
|
||||
"""
|
||||
if isinstance(self._state, BaseModel):
|
||||
# Structured state management
|
||||
try:
|
||||
# Define a function to create the dynamic class
|
||||
def create_model_with_extra_forbid(
|
||||
base_model: Type[BaseModel],
|
||||
) -> Type[BaseModel]:
|
||||
class ModelWithExtraForbid(base_model): # type: ignore
|
||||
model_config = base_model.model_config.copy()
|
||||
model_config["extra"] = "forbid"
|
||||
|
||||
return ModelWithExtraForbid
|
||||
|
||||
# Create the dynamic class
|
||||
ModelWithExtraForbid = create_model_with_extra_forbid(
|
||||
self._state.__class__
|
||||
)
|
||||
|
||||
# Create a new instance using the combined state and inputs
|
||||
self._state = cast(
|
||||
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
|
||||
)
|
||||
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
||||
elif isinstance(self._state, dict):
|
||||
# Unstructured state management
|
||||
self._state.update(inputs)
|
||||
else:
|
||||
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow synchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
return asyncio.run(self.kickoff_async())
|
||||
|
||||
async def kickoff_async(self) -> Any:
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow asynchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
if not self._start_methods:
|
||||
raise ValueError("No start method defined")
|
||||
|
||||
@@ -233,7 +307,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
)
|
||||
self._method_outputs.append(result) # Store the output
|
||||
|
||||
self._executed_methods.add(method_name)
|
||||
# Track method execution counts
|
||||
self._method_execution_counts[method_name] = (
|
||||
self._method_execution_counts.get(method_name, 0) + 1
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
@@ -243,35 +320,34 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if trigger_method in self._routers:
|
||||
router_method = self._methods[self._routers[trigger_method]]
|
||||
path = await self._execute_method(
|
||||
trigger_method, router_method
|
||||
) # TODO: Change or not?
|
||||
# Use the path as the new trigger method
|
||||
self._routers[trigger_method], router_method
|
||||
)
|
||||
trigger_method = path
|
||||
|
||||
for listener_name, (condition_type, methods) in self._listeners.items():
|
||||
if condition_type == "OR":
|
||||
if trigger_method in methods:
|
||||
if (
|
||||
listener_name not in self._executed_methods
|
||||
and listener_name not in self._scheduled_tasks
|
||||
):
|
||||
self._scheduled_tasks.add(listener_name)
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
# Schedule the listener without preventing re-execution
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
elif condition_type == "AND":
|
||||
if all(method in self._executed_methods for method in methods):
|
||||
if (
|
||||
listener_name not in self._executed_methods
|
||||
and listener_name not in self._scheduled_tasks
|
||||
):
|
||||
self._scheduled_tasks.add(listener_name)
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
# Initialize pending methods for this listener if not already done
|
||||
if listener_name not in self._pending_and_listeners:
|
||||
self._pending_and_listeners[listener_name] = set(methods)
|
||||
# Remove the trigger method from pending methods
|
||||
self._pending_and_listeners[listener_name].discard(trigger_method)
|
||||
if not self._pending_and_listeners[listener_name]:
|
||||
# All required methods have been executed
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
# Reset pending methods for this listener
|
||||
self._pending_and_listeners.pop(listener_name, None)
|
||||
|
||||
# Run all listener tasks concurrently and wait for them to complete
|
||||
await asyncio.gather(*listener_tasks)
|
||||
if listener_tasks:
|
||||
await asyncio.gather(*listener_tasks)
|
||||
|
||||
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
|
||||
try:
|
||||
@@ -291,9 +367,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
# If listener does not expect parameters, call without arguments
|
||||
listener_result = await self._execute_method(listener_name, method)
|
||||
|
||||
# Remove from scheduled tasks after execution
|
||||
self._scheduled_tasks.discard(listener_name)
|
||||
|
||||
# Execute listeners of this listener
|
||||
await self._execute_listeners(listener_name, listener_result)
|
||||
except Exception as e:
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
import io
|
||||
import logging
|
||||
import sys
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import litellm
|
||||
from litellm import get_supported_openai_params
|
||||
|
||||
@@ -9,9 +12,6 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
|
||||
import sys
|
||||
import io
|
||||
|
||||
|
||||
class FilteredStream(io.StringIO):
|
||||
def write(self, s):
|
||||
@@ -118,12 +118,12 @@ class LLM:
|
||||
|
||||
litellm.drop_params = True
|
||||
litellm.set_verbose = False
|
||||
litellm.callbacks = callbacks
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
|
||||
with suppress_warnings():
|
||||
if callbacks and len(callbacks) > 0:
|
||||
litellm.callbacks = callbacks
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
try:
|
||||
params = {
|
||||
@@ -181,3 +181,15 @@ class LLM:
|
||||
def get_context_window_size(self) -> int:
|
||||
# Only using 75% of the context window size to avoid cutting the message in the middle
|
||||
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
|
||||
|
||||
def set_callbacks(self, callbacks: List[Any]):
|
||||
callback_types = [type(callback) for callback in callbacks]
|
||||
for callback in litellm.success_callback[:]:
|
||||
if type(callback) in callback_types:
|
||||
litellm.success_callback.remove(callback)
|
||||
|
||||
for callback in litellm._async_success_callback[:]:
|
||||
if type(callback) in callback_types:
|
||||
litellm._async_success_callback.remove(callback)
|
||||
|
||||
litellm.callbacks = callbacks
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from .entity.entity_memory import EntityMemory
|
||||
from .long_term.long_term_memory import LongTermMemory
|
||||
from .short_term.short_term_memory import ShortTermMemory
|
||||
from .user.user_memory import UserMemory
|
||||
|
||||
__all__ = ["EntityMemory", "LongTermMemory", "ShortTermMemory"]
|
||||
__all__ = ["UserMemory", "EntityMemory", "LongTermMemory", "ShortTermMemory"]
|
||||
|
||||
@@ -1,13 +1,25 @@
|
||||
from typing import Optional
|
||||
from typing import Optional, Dict, Any
|
||||
|
||||
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
|
||||
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
|
||||
|
||||
|
||||
class ContextualMemory:
|
||||
def __init__(self, stm: ShortTermMemory, ltm: LongTermMemory, em: EntityMemory):
|
||||
def __init__(
|
||||
self,
|
||||
memory_config: Optional[Dict[str, Any]],
|
||||
stm: ShortTermMemory,
|
||||
ltm: LongTermMemory,
|
||||
em: EntityMemory,
|
||||
um: UserMemory,
|
||||
):
|
||||
if memory_config is not None:
|
||||
self.memory_provider = memory_config.get("provider")
|
||||
else:
|
||||
self.memory_provider = None
|
||||
self.stm = stm
|
||||
self.ltm = ltm
|
||||
self.em = em
|
||||
self.um = um
|
||||
|
||||
def build_context_for_task(self, task, context) -> str:
|
||||
"""
|
||||
@@ -23,6 +35,8 @@ class ContextualMemory:
|
||||
context.append(self._fetch_ltm_context(task.description))
|
||||
context.append(self._fetch_stm_context(query))
|
||||
context.append(self._fetch_entity_context(query))
|
||||
if self.memory_provider == "mem0":
|
||||
context.append(self._fetch_user_context(query))
|
||||
return "\n".join(filter(None, context))
|
||||
|
||||
def _fetch_stm_context(self, query) -> str:
|
||||
@@ -32,9 +46,11 @@ class ContextualMemory:
|
||||
"""
|
||||
stm_results = self.stm.search(query)
|
||||
formatted_results = "\n".join(
|
||||
[f"- {result['context']}" for result in stm_results]
|
||||
[
|
||||
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
|
||||
for result in stm_results
|
||||
]
|
||||
)
|
||||
print("formatted_results stm", formatted_results)
|
||||
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
|
||||
|
||||
def _fetch_ltm_context(self, task) -> Optional[str]:
|
||||
@@ -54,8 +70,6 @@ class ContextualMemory:
|
||||
formatted_results = list(dict.fromkeys(formatted_results))
|
||||
formatted_results = "\n".join([f"- {result}" for result in formatted_results]) # type: ignore # Incompatible types in assignment (expression has type "str", variable has type "list[str]")
|
||||
|
||||
print("formatted_results ltm", formatted_results)
|
||||
|
||||
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
|
||||
|
||||
def _fetch_entity_context(self, query) -> str:
|
||||
@@ -65,7 +79,26 @@ class ContextualMemory:
|
||||
"""
|
||||
em_results = self.em.search(query)
|
||||
formatted_results = "\n".join(
|
||||
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
[
|
||||
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
|
||||
for result in em_results
|
||||
] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
)
|
||||
print("formatted_results em", formatted_results)
|
||||
return f"Entities:\n{formatted_results}" if em_results else ""
|
||||
|
||||
def _fetch_user_context(self, query: str) -> str:
|
||||
"""
|
||||
Fetches and formats relevant user information from User Memory.
|
||||
Args:
|
||||
query (str): The search query to find relevant user memories.
|
||||
Returns:
|
||||
str: Formatted user memories as bullet points, or an empty string if none found.
|
||||
"""
|
||||
user_memories = self.um.search(query)
|
||||
if not user_memories:
|
||||
return ""
|
||||
|
||||
formatted_memories = "\n".join(
|
||||
f"- {result['memory']}" for result in user_memories
|
||||
)
|
||||
return f"User memories/preferences:\n{formatted_memories}"
|
||||
|
||||
@@ -11,21 +11,43 @@ class EntityMemory(Memory):
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None):
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
if hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
self.memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
self.memory_provider = None
|
||||
|
||||
if self.memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="entities", crew=crew)
|
||||
else:
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
)
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
"""Saves an entity item into the SQLite storage."""
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
if self.memory_provider == "mem0":
|
||||
data = f"""
|
||||
Remember details about the following entity:
|
||||
Name: {item.name}
|
||||
Type: {item.type}
|
||||
Entity Description: {item.description}
|
||||
"""
|
||||
else:
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata)
|
||||
|
||||
def reset(self) -> None:
|
||||
|
||||
@@ -23,5 +23,12 @@ class Memory:
|
||||
|
||||
self.storage.save(value, metadata)
|
||||
|
||||
def search(self, query: str) -> List[Dict[str, Any]]:
|
||||
return self.storage.search(query)
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
return self.storage.search(
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
)
|
||||
|
||||
@@ -14,13 +14,27 @@ class ShortTermMemory(Memory):
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None):
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="short_term", embedder_config=embedder_config, crew=crew
|
||||
if hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
self.memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
self.memory_provider = None
|
||||
|
||||
if self.memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="short_term", crew=crew)
|
||||
else:
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="short_term", embedder_config=embedder_config, crew=crew
|
||||
)
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(
|
||||
@@ -30,11 +44,20 @@ class ShortTermMemory(Memory):
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
|
||||
if self.memory_provider == "mem0":
|
||||
item.data = f"Remember the following insights from Agent run: {item.data}"
|
||||
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
|
||||
|
||||
def search(self, query: str, score_threshold: float = 0.35):
|
||||
return self.storage.search(query=query, score_threshold=score_threshold) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
):
|
||||
return self.storage.search(
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
|
||||
@@ -7,8 +7,10 @@ class Storage:
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
pass
|
||||
|
||||
def search(self, key: str) -> List[Dict[str, Any]]: # type: ignore
|
||||
pass
|
||||
def search(
|
||||
self, query: str, limit: int, score_threshold: float
|
||||
) -> Dict[str, Any] | List[Any]:
|
||||
return {}
|
||||
|
||||
def reset(self) -> None:
|
||||
pass
|
||||
|
||||
@@ -103,7 +103,7 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
else value
|
||||
)
|
||||
|
||||
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?"
|
||||
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?" # nosec
|
||||
values.append(task_index)
|
||||
|
||||
cursor.execute(query, tuple(values))
|
||||
|
||||
@@ -83,7 +83,7 @@ class LTMSQLiteStorage:
|
||||
WHERE task_description = ?
|
||||
ORDER BY datetime DESC, score ASC
|
||||
LIMIT {latest_n}
|
||||
""",
|
||||
""", # nosec
|
||||
(task_description,),
|
||||
)
|
||||
rows = cursor.fetchall()
|
||||
|
||||
104
src/crewai/memory/storage/mem0_storage.py
Normal file
104
src/crewai/memory/storage/mem0_storage.py
Normal file
@@ -0,0 +1,104 @@
|
||||
import os
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from mem0 import MemoryClient
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
|
||||
class Mem0Storage(Storage):
|
||||
"""
|
||||
Extends Storage to handle embedding and searching across entities using Mem0.
|
||||
"""
|
||||
|
||||
def __init__(self, type, crew=None):
|
||||
super().__init__()
|
||||
|
||||
if type not in ["user", "short_term", "long_term", "entities"]:
|
||||
raise ValueError("Invalid type for Mem0Storage. Must be 'user' or 'agent'.")
|
||||
|
||||
self.memory_type = type
|
||||
self.crew = crew
|
||||
self.memory_config = crew.memory_config
|
||||
|
||||
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
|
||||
user_id = self._get_user_id()
|
||||
if type == "user" and not user_id:
|
||||
raise ValueError("User ID is required for user memory type")
|
||||
|
||||
# API key in memory config overrides the environment variable
|
||||
mem0_api_key = self.memory_config.get("config", {}).get("api_key") or os.getenv(
|
||||
"MEM0_API_KEY"
|
||||
)
|
||||
self.memory = MemoryClient(api_key=mem0_api_key)
|
||||
|
||||
def _sanitize_role(self, role: str) -> str:
|
||||
"""
|
||||
Sanitizes agent roles to ensure valid directory names.
|
||||
"""
|
||||
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
user_id = self._get_user_id()
|
||||
agent_name = self._get_agent_name()
|
||||
if self.memory_type == "user":
|
||||
self.memory.add(value, user_id=user_id, metadata={**metadata})
|
||||
elif self.memory_type == "short_term":
|
||||
agent_name = self._get_agent_name()
|
||||
self.memory.add(
|
||||
value, agent_id=agent_name, metadata={"type": "short_term", **metadata}
|
||||
)
|
||||
elif self.memory_type == "long_term":
|
||||
agent_name = self._get_agent_name()
|
||||
self.memory.add(
|
||||
value,
|
||||
agent_id=agent_name,
|
||||
infer=False,
|
||||
metadata={"type": "long_term", **metadata},
|
||||
)
|
||||
elif self.memory_type == "entities":
|
||||
entity_name = None
|
||||
self.memory.add(
|
||||
value, user_id=entity_name, metadata={"type": "entity", **metadata}
|
||||
)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
params = {"query": query, "limit": limit}
|
||||
if self.memory_type == "user":
|
||||
user_id = self._get_user_id()
|
||||
params["user_id"] = user_id
|
||||
elif self.memory_type == "short_term":
|
||||
agent_name = self._get_agent_name()
|
||||
params["agent_id"] = agent_name
|
||||
params["metadata"] = {"type": "short_term"}
|
||||
elif self.memory_type == "long_term":
|
||||
agent_name = self._get_agent_name()
|
||||
params["agent_id"] = agent_name
|
||||
params["metadata"] = {"type": "long_term"}
|
||||
elif self.memory_type == "entities":
|
||||
agent_name = self._get_agent_name()
|
||||
params["agent_id"] = agent_name
|
||||
params["metadata"] = {"type": "entity"}
|
||||
|
||||
# Discard the filters for now since we create the filters
|
||||
# automatically when the crew is created.
|
||||
results = self.memory.search(**params)
|
||||
return [r for r in results if r["score"] >= score_threshold]
|
||||
|
||||
def _get_user_id(self):
|
||||
if self.memory_type == "user":
|
||||
if hasattr(self, "memory_config") and self.memory_config is not None:
|
||||
return self.memory_config.get("config", {}).get("user_id")
|
||||
else:
|
||||
return None
|
||||
return None
|
||||
|
||||
def _get_agent_name(self):
|
||||
agents = self.crew.agents if self.crew else []
|
||||
agents = [self._sanitize_role(agent.role) for agent in agents]
|
||||
agents = "_".join(agents)
|
||||
return agents
|
||||
@@ -51,8 +51,6 @@ class RAGStorage(BaseRAGStorage):
|
||||
self._initialize_app()
|
||||
|
||||
def _set_embedder_config(self):
|
||||
import chromadb.utils.embedding_functions as embedding_functions
|
||||
|
||||
if self.embedder_config is None:
|
||||
self.embedder_config = self._create_default_embedding_function()
|
||||
|
||||
@@ -61,12 +59,20 @@ class RAGStorage(BaseRAGStorage):
|
||||
config = self.embedder_config.get("config", {})
|
||||
model_name = config.get("model")
|
||||
if provider == "openai":
|
||||
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = OpenAIEmbeddingFunction(
|
||||
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
|
||||
model_name=model_name,
|
||||
)
|
||||
elif provider == "azure":
|
||||
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = OpenAIEmbeddingFunction(
|
||||
api_key=config.get("api_key"),
|
||||
api_base=config.get("api_base"),
|
||||
api_type=config.get("api_type", "azure"),
|
||||
@@ -74,45 +80,55 @@ class RAGStorage(BaseRAGStorage):
|
||||
model_name=model_name,
|
||||
)
|
||||
elif provider == "ollama":
|
||||
from openai import OpenAI
|
||||
from chromadb.utils.embedding_functions.ollama_embedding_function import (
|
||||
OllamaEmbeddingFunction,
|
||||
)
|
||||
|
||||
class OllamaEmbeddingFunction(EmbeddingFunction):
|
||||
def __call__(self, input: Documents) -> Embeddings:
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:11434/v1",
|
||||
api_key=config.get("api_key", "ollama"),
|
||||
)
|
||||
try:
|
||||
response = client.embeddings.create(
|
||||
input=input, model=model_name
|
||||
)
|
||||
embeddings = [item.embedding for item in response.data]
|
||||
return cast(Embeddings, embeddings)
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
self.embedder_config = OllamaEmbeddingFunction()
|
||||
self.embedder_config = OllamaEmbeddingFunction(
|
||||
url=config.get("url", "http://localhost:11434/api/embeddings"),
|
||||
model_name=model_name,
|
||||
)
|
||||
elif provider == "vertexai":
|
||||
self.embedder_config = (
|
||||
embedding_functions.GoogleVertexEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleVertexEmbeddingFunction,
|
||||
)
|
||||
elif provider == "google":
|
||||
self.embedder_config = (
|
||||
embedding_functions.GoogleGenerativeAiEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
)
|
||||
elif provider == "cohere":
|
||||
self.embedder_config = embedding_functions.CohereEmbeddingFunction(
|
||||
|
||||
self.embedder_config = GoogleVertexEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
elif provider == "google":
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleGenerativeAiEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = GoogleGenerativeAiEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
elif provider == "cohere":
|
||||
from chromadb.utils.embedding_functions.cohere_embedding_function import (
|
||||
CohereEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = CohereEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
elif provider == "bedrock":
|
||||
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
|
||||
AmazonBedrockEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = AmazonBedrockEmbeddingFunction(
|
||||
session=config.get("session"),
|
||||
)
|
||||
elif provider == "huggingface":
|
||||
self.embedder_config = embedding_functions.HuggingFaceEmbeddingServer(
|
||||
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
|
||||
HuggingFaceEmbeddingServer,
|
||||
)
|
||||
|
||||
self.embedder_config = HuggingFaceEmbeddingServer(
|
||||
url=config.get("api_url"),
|
||||
)
|
||||
elif provider == "watson":
|
||||
@@ -253,8 +269,10 @@ class RAGStorage(BaseRAGStorage):
|
||||
)
|
||||
|
||||
def _create_default_embedding_function(self):
|
||||
import chromadb.utils.embedding_functions as embedding_functions
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
return embedding_functions.OpenAIEmbeddingFunction(
|
||||
return OpenAIEmbeddingFunction(
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
|
||||
0
src/crewai/memory/user/__init__.py
Normal file
0
src/crewai/memory/user/__init__.py
Normal file
45
src/crewai/memory/user/user_memory.py
Normal file
45
src/crewai/memory/user/user_memory.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from crewai.memory.memory import Memory
|
||||
|
||||
|
||||
class UserMemory(Memory):
|
||||
"""
|
||||
UserMemory class for handling user memory storage and retrieval.
|
||||
Inherits from the Memory class and utilizes an instance of a class that
|
||||
adheres to the Storage for data storage, specifically working with
|
||||
MemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None):
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="user", crew=crew)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(
|
||||
self,
|
||||
value,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
# TODO: Change this function since we want to take care of the case where we save memories for the usr
|
||||
data = f"Remember the details about the user: {value}"
|
||||
super().save(data, metadata)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
):
|
||||
results = super().search(
|
||||
query=query,
|
||||
limit=limit,
|
||||
score_threshold=score_threshold,
|
||||
)
|
||||
return results
|
||||
8
src/crewai/memory/user/user_memory_item.py
Normal file
8
src/crewai/memory/user/user_memory_item.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
|
||||
class UserMemoryItem:
|
||||
def __init__(self, data: Any, user: str, metadata: Optional[Dict[str, Any]] = None):
|
||||
self.data = data
|
||||
self.user = user
|
||||
self.metadata = metadata if metadata is not None else {}
|
||||
0
src/crewai/tools/cache_tools/__init__.py
Normal file
0
src/crewai/tools/cache_tools/__init__.py
Normal file
@@ -8,6 +8,7 @@ class UsageMetrics(BaseModel):
|
||||
Attributes:
|
||||
total_tokens: Total number of tokens used.
|
||||
prompt_tokens: Number of tokens used in prompts.
|
||||
cached_prompt_tokens: Number of cached prompt tokens used.
|
||||
completion_tokens: Number of tokens used in completions.
|
||||
successful_requests: Number of successful requests made.
|
||||
"""
|
||||
@@ -16,6 +17,9 @@ class UsageMetrics(BaseModel):
|
||||
prompt_tokens: int = Field(
|
||||
default=0, description="Number of tokens used in prompts."
|
||||
)
|
||||
cached_prompt_tokens: int = Field(
|
||||
default=0, description="Number of cached prompt tokens used."
|
||||
)
|
||||
completion_tokens: int = Field(
|
||||
default=0, description="Number of tokens used in completions."
|
||||
)
|
||||
@@ -32,5 +36,6 @@ class UsageMetrics(BaseModel):
|
||||
"""
|
||||
self.total_tokens += usage_metrics.total_tokens
|
||||
self.prompt_tokens += usage_metrics.prompt_tokens
|
||||
self.cached_prompt_tokens += usage_metrics.cached_prompt_tokens
|
||||
self.completion_tokens += usage_metrics.completion_tokens
|
||||
self.successful_requests += usage_metrics.successful_requests
|
||||
|
||||
@@ -16,7 +16,11 @@ class FileHandler:
|
||||
|
||||
def log(self, **kwargs):
|
||||
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
message = f"{now}: " + ", ".join([f"{key}=\"{value}\"" for key, value in kwargs.items()]) + "\n"
|
||||
message = (
|
||||
f"{now}: "
|
||||
+ ", ".join([f'{key}="{value}"' for key, value in kwargs.items()])
|
||||
+ "\n"
|
||||
)
|
||||
with open(self._path, "a", encoding="utf-8") as file:
|
||||
file.write(message + "\n")
|
||||
|
||||
@@ -63,7 +67,7 @@ class PickleHandler:
|
||||
|
||||
with open(self.file_path, "rb") as file:
|
||||
try:
|
||||
return pickle.load(file)
|
||||
return pickle.load(file) # nosec
|
||||
except EOFError:
|
||||
return {} # Return an empty dictionary if the file is empty or corrupted
|
||||
except Exception:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
|
||||
from litellm.types.utils import Usage
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
|
||||
|
||||
@@ -11,8 +11,11 @@ class TokenCalcHandler(CustomLogger):
|
||||
if self.token_cost_process is None:
|
||||
return
|
||||
|
||||
usage : Usage = response_obj["usage"]
|
||||
self.token_cost_process.sum_successful_requests(1)
|
||||
self.token_cost_process.sum_prompt_tokens(response_obj["usage"].prompt_tokens)
|
||||
self.token_cost_process.sum_completion_tokens(
|
||||
response_obj["usage"].completion_tokens
|
||||
)
|
||||
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
|
||||
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
|
||||
if usage.prompt_tokens_details:
|
||||
self.token_cost_process.sum_cached_prompt_tokens(
|
||||
usage.prompt_tokens_details.cached_tokens
|
||||
)
|
||||
|
||||
@@ -10,7 +10,8 @@ interactions:
|
||||
criteria for your final answer: 1 bullet point about dog that''s under 15 words.\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -19,49 +20,50 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '869'
|
||||
- '919'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
- 3.11.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AB7auGDrAVE0iXSBBhySZp3xE8gvP\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214164,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer\\nFinal
|
||||
Answer: Dogs are unparalleled in loyalty and companionship to humans.\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 175,\n \"completion_tokens\":
|
||||
21,\n \"total_tokens\": 196,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSy27bMBC86ysWPEuB7ciV7VuAIkUObQ+59QFhTa0kttQuS9Jx08D/XkhyLAVJ
|
||||
gV4EaGdnMLPDpwRAmUrtQOkWo+6czW7u41q2t3+cvCvuPvxafSG+58XHTzXlxWeV9gzZ/yAdn1lX
|
||||
WjpnKRrhEdaeMFKvuiyul3m+uV7lA9BJRbanNS5muWSdYZOtFqs8WxTZcnNmt2I0BbWDrwkAwNPw
|
||||
7X1yRb/VDhbp86SjELAhtbssASgvtp8oDMGEiBxVOoFaOBIP1u+A5QgaGRrzQIDQ9LYBORzJA3zj
|
||||
W8No4Wb438F7aQKgJ7DyiBb6zMhGOKRA3CJrww10xBEttIQ2toBcgTyQR2vhSNZmezLcXM39eKoP
|
||||
Afub8MHa8/x0CWilcV724Yxf5rVhE9rSEwbhPkyI4tSAnhKA78MhDy9uo5yXzsUyyk/iMHSzHvXU
|
||||
1N+Ejo0BqCgR7Yy13aZv6JUVRTQ2zKpQGnVL1USdesNDZWQGJLPUr928pT0mN9z8j/wEaE0uUlU6
|
||||
T5XRLxNPa5765/2vtcuVB8MqPIZIXVkbbsg7b8bHVbuyXm9xs8xXRa2SU/IXAAD//wMAq2ZCBWoD
|
||||
AAA=
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c85f22ddda01cf3-GRU
|
||||
- 8e19bf36db158761-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -69,19 +71,27 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:42:44 GMT
|
||||
- Tue, 12 Nov 2024 21:52:04 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
|
||||
path=/; expires=Tue, 12-Nov-24 22:22:04 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
openai-processing-ms:
|
||||
- '349'
|
||||
- '601'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -89,19 +99,20 @@ interactions:
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
- '200000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999792'
|
||||
- '199793'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
- 8.64s
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
- 62ms
|
||||
x-request-id:
|
||||
- req_4c8cd76fdfba7b65e5ce85397b33c22b
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- req_77fb166b4e272bfd45c37c08d2b93b0c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are cat Researcher. You
|
||||
have a lot of experience with cat.\nYour personal goal is: Express hot takes
|
||||
@@ -113,7 +124,8 @@ interactions:
|
||||
criteria for your final answer: 1 bullet point about cat that''s under 15 words.\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -122,49 +134,53 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '869'
|
||||
- '919'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
|
||||
_cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
- 3.11.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AB7auNbAqjT3rgBX92rhxBLuhaLBj\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214164,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I now can give a great answer\\nFinal
|
||||
Answer: Cats are highly independent, agile, and intuitive creatures beloved
|
||||
by millions worldwide.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
175,\n \"completion_tokens\": 28,\n \"total_tokens\": 203,\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSy27bMBC86ysWPFuB7MhN6ltQIGmBnlL00BcEmlxJ21JLhlzFLQL/eyH5IRlt
|
||||
gV4EaGZnMLPLlwxAkVUbUKbVYrrg8rsPsg4P+Orxs9XvPz0U8eP966dS6sdo3wa1GBR++x2NnFRX
|
||||
xnfBoZDnA20iasHBdXlzvSzL2+vVeiQ6b9ENsiZIXvq8I6Z8VazKvLjJl7dHdevJYFIb+JIBALyM
|
||||
3yEnW/ypNlAsTkiHKekG1eY8BKCidwOidEqURLOoxUQaz4I8Rn8H7HdgNENDzwgamiE2aE47jABf
|
||||
+Z5YO7gb/zfwRksCHRGGGAHZIg/D1GmXFiBtpGfiBjyDtEgR/I5BMHYJNFvomZ56hIAxedaOhDBd
|
||||
zYNFrPukh+Vw79wR35+bOt+E6LfpyJ/xmphSW0XUyfPQKokPamT3GcC3caP9xZJUiL4LUon/gZzG
|
||||
I60Pfmo65MSuTqR40W6GF8c7XPpVFkWTS7ObKKNNi3aSTgfUvSU/I7JZ6z/T/M370Jy4+R/7iTAG
|
||||
g6CtQkRL5rLxNBZxeOf/GjtveQys0q8k2FU1cYMxRDq8sjpUxVYXdrkq66XK9tlvAAAA//8DAIjK
|
||||
KzJzAwAA
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c85f2321c1c1cf3-GRU
|
||||
- 8e19bf3fae118761-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -172,7 +188,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:42:45 GMT
|
||||
- Tue, 12 Nov 2024 21:52:05 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -181,10 +197,12 @@ interactions:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
openai-processing-ms:
|
||||
- '430'
|
||||
- '464'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -192,19 +210,20 @@ interactions:
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
- '200000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
- '9998'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999792'
|
||||
- '199792'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
- 16.369s
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
- 62ms
|
||||
x-request-id:
|
||||
- req_ace859b7d9e83d9fa7753ce23bb03716
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- req_91706b23d0ef23458ba63ec18304cd28
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are apple Researcher.
|
||||
You have a lot of experience with apple.\nYour personal goal is: Express hot
|
||||
@@ -217,7 +236,7 @@ interactions:
|
||||
under 15 words.\nyou MUST return the actual complete content as the final answer,
|
||||
not a summary.\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
|
||||
"gpt-4o"}'
|
||||
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -226,49 +245,53 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '879'
|
||||
- '929'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
|
||||
_cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
- 3.11.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AB7avZ0yqY18ukQS7SnLkZydsx72b\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214165,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer.\\n\\nFinal
|
||||
Answer: Apples are incredibly versatile, nutritious, and a staple in diets globally.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 175,\n \"completion_tokens\":
|
||||
25,\n \"total_tokens\": 200,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_a5d11b2ef2\"\n}\n"
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSPW/bMBDd9SsOXLpIgeTITarNS4t26JJubSHQ5IliSh1ZHv0RBP7vhSTHctAU
|
||||
6CJQ7909vHd3zxmAsFo0IFQvkxqCKzYPaf1b2/hhW+8PR9N9Kh9W5Zdhjebr4zeRjx1++4gqvXTd
|
||||
KD8Eh8l6mmkVUSYcVau726qu729X7ydi8Brd2GZCKmpfDJZssSpXdVHeFdX9ubv3ViGLBr5nAADP
|
||||
03f0SRqPooEyf0EGZJYGRXMpAhDRuxERktlykpREvpDKU0KarH8G8gdQksDYPYIEM9oGSXzACPCD
|
||||
PlqSDjbTfwObEBy+Y0Dl+YkTDmApoYkyIUMvoz7IiDmw79L8kqSBMe7HMMAoB4fM7ikHpF6SsmRg
|
||||
xxgBjwGjRVJ4c+00YrdjOU6Lds6d8dMluvMmRL/lM3/BO0uW+zaiZE9jTE4+iIk9ZQA/pxHvXk1N
|
||||
hOiHkNrkfyHxtLX1rCeWzS7svEsAkXyS7govq/wNvVZjktbx1ZKEkqpHvbQuG5U7bf0VkV2l/tvN
|
||||
W9pzckvmf+QXQikMCXUbImqrXideyiKOh/+vssuUJ8NiPpO2s2Qwhmjns+tCW25lqatV3VUiO2V/
|
||||
AAAA//8DAPtpFJCEAwAA
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c85f2369a761cf3-GRU
|
||||
- 8e19bf447ba48761-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -276,7 +299,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:42:46 GMT
|
||||
- Tue, 12 Nov 2024 21:52:06 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -285,10 +308,12 @@ interactions:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
openai-processing-ms:
|
||||
- '389'
|
||||
- '655'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -296,17 +321,18 @@ interactions:
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
- '200000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
- '9997'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999791'
|
||||
- '199791'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
- 24.239s
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
- 62ms
|
||||
x-request-id:
|
||||
- req_0167388f0a7a7f1a1026409834ceb914
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- req_a228208b0e965ecee334a6947d6c9e7c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
|
||||
205
tests/cassettes/test_llm_callback_replacement.yaml
Normal file
205
tests/cassettes/test_llm_callback_replacement.yaml
Normal file
@@ -0,0 +1,205 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Hello, world!"}], "model": "gpt-4o-mini",
|
||||
"stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '101'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSwWrcMBS8+ytedY6LvWvYZi8lpZSkBJLSQiChGK307FUi66nSc9Ml7L8H2e56
|
||||
l7bQiw8zb8Yzg14yAGG0WINQW8mq8za/+Oqv5MUmXv+8+/Hl3uO3j59u1efreHO+/PAszpKCNo+o
|
||||
+LfqraLOW2RDbqRVQMmYXMvVsqyWy1VVDERHGm2StZ7zivLOOJMvikWVF6u8fDept2QURrGGhwwA
|
||||
4GX4ppxO4y+xhsFrQDqMUbYo1ocjABHIJkTIGE1k6ViczaQix+iG6JdoLb2BS3oGJR1cwSiAHfXA
|
||||
pOXu/bEwYNNHmcK73toJ3x+SWGp9oE2c+APeGGfitg4oI7n018jkxcDuM4DvQ+P+pITwgTrPNdMT
|
||||
umRYlqOdmHeeyfOJY2JpZ3gxjXRqVmtkaWw8GkwoqbaoZ+W8ruy1oSMiO6r8Z5a/eY+1jWv/x34m
|
||||
lELPqGsfUBt12nc+C5ge4b/ODhMPgUXcRcauboxrMfhgxifQ+LrYyEKXi6opRbbPXgEAAP//AwAM
|
||||
DMWoEAMAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8e185b2c1b790303-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 12 Nov 2024 17:49:00 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=l.QrRLcNZkML_KSfxjir6YCV35B8GNTitBTNh7cPGc4-1731433740-1.0.1.1-j1ejlmykyoI8yk6i6pQjtPoovGzfxI2f5vG6u0EqodQMjCvhbHfNyN_wmYkeT._BMvFi.zDQ8m_PqEHr8tSdEQ;
|
||||
path=/; expires=Tue, 12-Nov-24 18:19:00 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=jcCDyMK__Fd0V5DMeqt9yXdlKc7Hsw87a1K01pZu9l0-1731433740848-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
openai-processing-ms:
|
||||
- '322'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '200000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '199978'
|
||||
x-ratelimit-reset-requests:
|
||||
- 8.64s
|
||||
x-ratelimit-reset-tokens:
|
||||
- 6ms
|
||||
x-request-id:
|
||||
- req_037288753767e763a51a04eae757ca84
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Hello, world from another agent!"}],
|
||||
"model": "gpt-4o-mini", "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '120'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=l.QrRLcNZkML_KSfxjir6YCV35B8GNTitBTNh7cPGc4-1731433740-1.0.1.1-j1ejlmykyoI8yk6i6pQjtPoovGzfxI2f5vG6u0EqodQMjCvhbHfNyN_wmYkeT._BMvFi.zDQ8m_PqEHr8tSdEQ;
|
||||
_cfuvid=jcCDyMK__Fd0V5DMeqt9yXdlKc7Hsw87a1K01pZu9l0-1731433740848-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSy27bMBC86yu2PFuBZAt14UvRU5MA7aVAEKAIBJpcSUwoLkuu6jiB/z3QI5aM
|
||||
tkAvPMzsDGZ2+ZoACKPFDoRqJKvW2/TLD3+z//oiD8dfL7d339zvW125x9zX90/3mVj1Cto/ouJ3
|
||||
1ZWi1ltkQ26kVUDJ2Lvm201ebDbbIh+IljTaXlZ7TgtKW+NMus7WRZpt0/zTpG7IKIxiBz8TAIDX
|
||||
4e1zOo3PYgfZ6h1pMUZZo9idhwBEINsjQsZoIkvHYjWTihyjG6Jfo7X0Ab4bhcAEipxDxXAw3IB0
|
||||
xA0GkDU6voJrOoCSDm5gNIUjdcCk5fHz0jxg1UXZF3SdtRN+Oqe1VPtA+zjxZ7wyzsSmDCgjuT5Z
|
||||
ZPJiYE8JwMOwle6iqPCBWs8l0xO63jAvRjsx32JBfpxIJpZ2xjfTJi/dSo0sjY2LrQolVYN6Vs4n
|
||||
kJ02tCCSRec/w/zNe+xtXP0/9jOhFHpGXfqA2qjLwvNYwP6n/mvsvOMhsIjHyNiWlXE1Bh/M+E8q
|
||||
X2Z7mel8XVS5SE7JGwAAAP//AwA/cK4yNQMAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8e185b31398a0303-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 12 Nov 2024 17:49:02 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
openai-processing-ms:
|
||||
- '889'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '200000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9998'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '199975'
|
||||
x-ratelimit-reset-requests:
|
||||
- 16.489s
|
||||
x-ratelimit-reset-tokens:
|
||||
- 7ms
|
||||
x-request-id:
|
||||
- req_bde3810b36a4859688e53d1df64bdd20
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -564,6 +564,7 @@ def test_crew_kickoff_usage_metrics():
|
||||
assert result.token_usage.prompt_tokens > 0
|
||||
assert result.token_usage.completion_tokens > 0
|
||||
assert result.token_usage.successful_requests > 0
|
||||
assert result.token_usage.cached_prompt_tokens == 0
|
||||
|
||||
|
||||
def test_agents_rpm_is_never_set_if_crew_max_RPM_is_not_set():
|
||||
@@ -1280,10 +1281,11 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
|
||||
assert result.raw == "Howdy!"
|
||||
|
||||
assert result.token_usage == UsageMetrics(
|
||||
total_tokens=2626,
|
||||
prompt_tokens=2482,
|
||||
completion_tokens=144,
|
||||
successful_requests=5,
|
||||
total_tokens=1673,
|
||||
prompt_tokens=1562,
|
||||
completion_tokens=111,
|
||||
successful_requests=3,
|
||||
cached_prompt_tokens=0
|
||||
)
|
||||
|
||||
|
||||
@@ -1777,26 +1779,22 @@ def test_crew_train_success(
|
||||
]
|
||||
)
|
||||
|
||||
crew_training_handler.assert_has_calls(
|
||||
[
|
||||
mock.call("training_data.pkl"),
|
||||
mock.call().load(),
|
||||
mock.call("trained_agents_data.pkl"),
|
||||
mock.call().save_trained_data(
|
||||
agent_id="Researcher",
|
||||
trained_data=task_evaluator().evaluate_training_data().model_dump(),
|
||||
),
|
||||
mock.call("trained_agents_data.pkl"),
|
||||
mock.call().save_trained_data(
|
||||
agent_id="Senior Writer",
|
||||
trained_data=task_evaluator().evaluate_training_data().model_dump(),
|
||||
),
|
||||
mock.call(),
|
||||
mock.call().load(),
|
||||
mock.call(),
|
||||
mock.call().load(),
|
||||
]
|
||||
)
|
||||
crew_training_handler.assert_any_call("training_data.pkl")
|
||||
crew_training_handler().load.assert_called()
|
||||
|
||||
crew_training_handler.assert_any_call("trained_agents_data.pkl")
|
||||
crew_training_handler().load.assert_called()
|
||||
|
||||
crew_training_handler().save_trained_data.assert_has_calls([
|
||||
mock.call(
|
||||
agent_id="Researcher",
|
||||
trained_data=task_evaluator().evaluate_training_data().model_dump(),
|
||||
),
|
||||
mock.call(
|
||||
agent_id="Senior Writer",
|
||||
trained_data=task_evaluator().evaluate_training_data().model_dump(),
|
||||
)
|
||||
])
|
||||
|
||||
|
||||
def test_crew_train_error():
|
||||
|
||||
264
tests/flow_test.py
Normal file
264
tests/flow_test.py
Normal file
@@ -0,0 +1,264 @@
|
||||
"""Test Flow creation and execution basic functionality."""
|
||||
|
||||
import asyncio
|
||||
|
||||
import pytest
|
||||
from crewai.flow.flow import Flow, and_, listen, or_, router, start
|
||||
|
||||
|
||||
def test_simple_sequential_flow():
|
||||
"""Test a simple flow with two steps called sequentially."""
|
||||
execution_order = []
|
||||
|
||||
class SimpleFlow(Flow):
|
||||
@start()
|
||||
def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
|
||||
flow = SimpleFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert execution_order == ["step_1", "step_2"]
|
||||
|
||||
|
||||
def test_flow_with_multiple_starts():
|
||||
"""Test a flow with multiple start methods."""
|
||||
execution_order = []
|
||||
|
||||
class MultiStartFlow(Flow):
|
||||
@start()
|
||||
def step_a(self):
|
||||
execution_order.append("step_a")
|
||||
|
||||
@start()
|
||||
def step_b(self):
|
||||
execution_order.append("step_b")
|
||||
|
||||
@listen(step_a)
|
||||
def step_c(self):
|
||||
execution_order.append("step_c")
|
||||
|
||||
@listen(step_b)
|
||||
def step_d(self):
|
||||
execution_order.append("step_d")
|
||||
|
||||
flow = MultiStartFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert "step_a" in execution_order
|
||||
assert "step_b" in execution_order
|
||||
assert "step_c" in execution_order
|
||||
assert "step_d" in execution_order
|
||||
assert execution_order.index("step_c") > execution_order.index("step_a")
|
||||
assert execution_order.index("step_d") > execution_order.index("step_b")
|
||||
|
||||
|
||||
def test_cyclic_flow():
|
||||
"""Test a cyclic flow that runs a finite number of iterations."""
|
||||
execution_order = []
|
||||
|
||||
class CyclicFlow(Flow):
|
||||
iteration = 0
|
||||
max_iterations = 3
|
||||
|
||||
@start("loop")
|
||||
def step_1(self):
|
||||
if self.iteration >= self.max_iterations:
|
||||
return # Do not proceed further
|
||||
execution_order.append(f"step_1_{self.iteration}")
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
execution_order.append(f"step_2_{self.iteration}")
|
||||
|
||||
@router(step_2)
|
||||
def step_3(self):
|
||||
execution_order.append(f"step_3_{self.iteration}")
|
||||
self.iteration += 1
|
||||
if self.iteration < self.max_iterations:
|
||||
return "loop"
|
||||
|
||||
return "exit"
|
||||
|
||||
flow = CyclicFlow()
|
||||
flow.kickoff()
|
||||
|
||||
expected_order = []
|
||||
for i in range(flow.max_iterations):
|
||||
expected_order.extend([f"step_1_{i}", f"step_2_{i}", f"step_3_{i}"])
|
||||
|
||||
assert execution_order == expected_order
|
||||
|
||||
|
||||
def test_flow_with_and_condition():
|
||||
"""Test a flow where a step waits for multiple other steps to complete."""
|
||||
execution_order = []
|
||||
|
||||
class AndConditionFlow(Flow):
|
||||
@start()
|
||||
def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
|
||||
@start()
|
||||
def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
|
||||
@listen(and_(step_1, step_2))
|
||||
def step_3(self):
|
||||
execution_order.append("step_3")
|
||||
|
||||
flow = AndConditionFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert "step_1" in execution_order
|
||||
assert "step_2" in execution_order
|
||||
assert execution_order[-1] == "step_3"
|
||||
assert execution_order.index("step_3") > execution_order.index("step_1")
|
||||
assert execution_order.index("step_3") > execution_order.index("step_2")
|
||||
|
||||
|
||||
def test_flow_with_or_condition():
|
||||
"""Test a flow where a step is triggered when any of multiple steps complete."""
|
||||
execution_order = []
|
||||
|
||||
class OrConditionFlow(Flow):
|
||||
@start()
|
||||
def step_a(self):
|
||||
execution_order.append("step_a")
|
||||
|
||||
@start()
|
||||
def step_b(self):
|
||||
execution_order.append("step_b")
|
||||
|
||||
@listen(or_(step_a, step_b))
|
||||
def step_c(self):
|
||||
execution_order.append("step_c")
|
||||
|
||||
flow = OrConditionFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert "step_a" in execution_order or "step_b" in execution_order
|
||||
assert "step_c" in execution_order
|
||||
assert execution_order.index("step_c") > min(
|
||||
execution_order.index("step_a"), execution_order.index("step_b")
|
||||
)
|
||||
|
||||
|
||||
def test_flow_with_router():
|
||||
"""Test a flow that uses a router method to determine the next step."""
|
||||
execution_order = []
|
||||
|
||||
class RouterFlow(Flow):
|
||||
@start()
|
||||
def start_method(self):
|
||||
execution_order.append("start_method")
|
||||
|
||||
@router(start_method)
|
||||
def router(self):
|
||||
execution_order.append("router")
|
||||
# Ensure the condition is set to True to follow the "step_if_true" path
|
||||
condition = True
|
||||
return "step_if_true" if condition else "step_if_false"
|
||||
|
||||
@listen("step_if_true")
|
||||
def truthy(self):
|
||||
execution_order.append("step_if_true")
|
||||
|
||||
@listen("step_if_false")
|
||||
def falsy(self):
|
||||
execution_order.append("step_if_false")
|
||||
|
||||
flow = RouterFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert execution_order == ["start_method", "router", "step_if_true"]
|
||||
|
||||
|
||||
def test_async_flow():
|
||||
"""Test an asynchronous flow."""
|
||||
execution_order = []
|
||||
|
||||
class AsyncFlow(Flow):
|
||||
@start()
|
||||
async def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
@listen(step_1)
|
||||
async def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
flow = AsyncFlow()
|
||||
asyncio.run(flow.kickoff_async())
|
||||
|
||||
assert execution_order == ["step_1", "step_2"]
|
||||
|
||||
|
||||
def test_flow_with_exceptions():
|
||||
"""Test flow behavior when exceptions occur in steps."""
|
||||
execution_order = []
|
||||
|
||||
class ExceptionFlow(Flow):
|
||||
@start()
|
||||
def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
raise ValueError("An error occurred in step_1")
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
|
||||
flow = ExceptionFlow()
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
flow.kickoff()
|
||||
|
||||
# Ensure step_2 did not execute
|
||||
assert execution_order == ["step_1"]
|
||||
|
||||
|
||||
def test_flow_restart():
|
||||
"""Test restarting a flow after it has completed."""
|
||||
execution_order = []
|
||||
|
||||
class RestartableFlow(Flow):
|
||||
@start()
|
||||
def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
|
||||
flow = RestartableFlow()
|
||||
flow.kickoff()
|
||||
flow.kickoff() # Restart the flow
|
||||
|
||||
assert execution_order == ["step_1", "step_2", "step_1", "step_2"]
|
||||
|
||||
|
||||
def test_flow_with_custom_state():
|
||||
"""Test a flow that maintains and modifies internal state."""
|
||||
|
||||
class StateFlow(Flow):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.counter = 0
|
||||
|
||||
@start()
|
||||
def step_1(self):
|
||||
self.counter += 1
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
self.counter *= 2
|
||||
assert self.counter == 2
|
||||
|
||||
flow = StateFlow()
|
||||
flow.kickoff()
|
||||
assert flow.counter == 2
|
||||
30
tests/llm_test.py
Normal file
30
tests/llm_test.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import pytest
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.llm import LLM
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_callback_replacement():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
|
||||
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
|
||||
|
||||
llm.call(
|
||||
messages=[{"role": "user", "content": "Hello, world!"}],
|
||||
callbacks=[calc_handler_1],
|
||||
)
|
||||
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
|
||||
|
||||
llm.call(
|
||||
messages=[{"role": "user", "content": "Hello, world from another agent!"}],
|
||||
callbacks=[calc_handler_2],
|
||||
)
|
||||
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
|
||||
|
||||
# The first handler should not have been updated
|
||||
assert usage_metrics_1.successful_requests == 1
|
||||
assert usage_metrics_2.successful_requests == 1
|
||||
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()
|
||||
270
tests/memory/cassettes/test_save_and_search_with_provider.yaml
Normal file
270
tests/memory/cassettes/test_save_and_search_with_provider.yaml
Normal file
@@ -0,0 +1,270 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: ''
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
host:
|
||||
- api.mem0.ai
|
||||
user-agent:
|
||||
- python-httpx/0.27.0
|
||||
method: GET
|
||||
uri: https://api.mem0.ai/v1/memories/?user_id=test
|
||||
response:
|
||||
body:
|
||||
string: '[]'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8b477138bad847b9-BOM
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:11 GMT
|
||||
NEL:
|
||||
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
|
||||
Report-To:
|
||||
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=uuyH2foMJVDpV%2FH52g1q%2FnvXKe3dBKVzvsK0mqmSNezkiszNR9OgrEJfVqmkX%2FlPFRP2sH4zrOuzGo6k%2FjzsjYJczqSWJUZHN2pPujiwnr1E9W%2BdLGKmG6%2FqPrGYAy2SBRWkkJVWsTO3OQ%3D%3D"}],"group":"cf-nel","max_age":604800}'
|
||||
Server:
|
||||
- cloudflare
|
||||
allow:
|
||||
- GET, POST, DELETE, OPTIONS
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cross-origin-opener-policy:
|
||||
- same-origin
|
||||
referrer-policy:
|
||||
- same-origin
|
||||
vary:
|
||||
- Accept, origin, Cookie
|
||||
x-content-type-options:
|
||||
- nosniff
|
||||
x-frame-options:
|
||||
- DENY
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"batch": [{"properties": {"python_version": "3.12.4 (v3.12.4:8e8a4baf65,
|
||||
Jun 6 2024, 17:33:18) [Clang 13.0.0 (clang-1300.0.29.30)]", "os": "darwin",
|
||||
"os_version": "Darwin Kernel Version 23.4.0: Wed Feb 21 21:44:54 PST 2024; root:xnu-10063.101.15~2/RELEASE_ARM64_T6030",
|
||||
"os_release": "23.4.0", "processor": "arm", "machine": "arm64", "function":
|
||||
"mem0.client.main.MemoryClient", "$lib": "posthog-python", "$lib_version": "3.5.0",
|
||||
"$geoip_disable": true}, "timestamp": "2024-08-17T06:00:11.526640+00:00", "context":
|
||||
{}, "distinct_id": "fd411bd3-99a2-42d6-acd7-9fca8ad09580", "event": "client.init"}],
|
||||
"historical_migration": false, "sentAt": "2024-08-17T06:00:11.701621+00:00",
|
||||
"api_key": "phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"}'
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '740'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- posthog-python/3.5.0
|
||||
method: POST
|
||||
uri: https://us.i.posthog.com/batch/
|
||||
response:
|
||||
body:
|
||||
string: '{"status":"Ok"}'
|
||||
headers:
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '15'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:12 GMT
|
||||
access-control-allow-credentials:
|
||||
- 'true'
|
||||
server:
|
||||
- envoy
|
||||
vary:
|
||||
- origin, access-control-request-method, access-control-request-headers
|
||||
x-envoy-upstream-service-time:
|
||||
- '69'
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Remember the following insights
|
||||
from Agent run: test value with provider"}], "metadata": {"task": "test_task_provider",
|
||||
"agent": "test_agent_provider"}, "app_id": "Researcher"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '219'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.mem0.ai
|
||||
user-agent:
|
||||
- python-httpx/0.27.0
|
||||
method: POST
|
||||
uri: https://api.mem0.ai/v1/memories/
|
||||
response:
|
||||
body:
|
||||
string: '{"message":"ok"}'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8b477140282547b9-BOM
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '16'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:13 GMT
|
||||
NEL:
|
||||
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
|
||||
Report-To:
|
||||
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=FRjJKSk3YxVj03wA7S05H8ts35KnWfqS3wb6Rfy4kVZ4BgXfw7nJbm92wI6vEv5fWcAcHVnOlkJDggs11B01BMuB2k3a9RqlBi0dJNiMuk%2Bgm5xE%2BODMPWJctYNRwQMjNVbteUpS%2Fad8YA%3D%3D"}],"group":"cf-nel","max_age":604800}'
|
||||
Server:
|
||||
- cloudflare
|
||||
allow:
|
||||
- GET, POST, DELETE, OPTIONS
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cross-origin-opener-policy:
|
||||
- same-origin
|
||||
referrer-policy:
|
||||
- same-origin
|
||||
vary:
|
||||
- Accept, origin, Cookie
|
||||
x-content-type-options:
|
||||
- nosniff
|
||||
x-frame-options:
|
||||
- DENY
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"query": "test value with provider", "limit": 3, "app_id": "Researcher"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '73'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.mem0.ai
|
||||
user-agent:
|
||||
- python-httpx/0.27.0
|
||||
method: POST
|
||||
uri: https://api.mem0.ai/v1/memories/search/
|
||||
response:
|
||||
body:
|
||||
string: '[]'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8b47714d083b47b9-BOM
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:14 GMT
|
||||
NEL:
|
||||
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
|
||||
Report-To:
|
||||
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=2DRWL1cdKdMvnE8vx1fPUGeTITOgSGl3N5g84PS6w30GRqpfz79BtSx6REhpnOiFV8kM6KGqln0iCZ5yoHc2jBVVJXhPJhQ5t0uerD9JFnkphjISrJOU1MJjZWneT9PlNABddxvVNCmluA%3D%3D"}],"group":"cf-nel","max_age":604800}'
|
||||
Server:
|
||||
- cloudflare
|
||||
allow:
|
||||
- POST, OPTIONS
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cross-origin-opener-policy:
|
||||
- same-origin
|
||||
referrer-policy:
|
||||
- same-origin
|
||||
vary:
|
||||
- Accept, origin, Cookie
|
||||
x-content-type-options:
|
||||
- nosniff
|
||||
x-frame-options:
|
||||
- DENY
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"batch": [{"properties": {"python_version": "3.12.4 (v3.12.4:8e8a4baf65,
|
||||
Jun 6 2024, 17:33:18) [Clang 13.0.0 (clang-1300.0.29.30)]", "os": "darwin",
|
||||
"os_version": "Darwin Kernel Version 23.4.0: Wed Feb 21 21:44:54 PST 2024; root:xnu-10063.101.15~2/RELEASE_ARM64_T6030",
|
||||
"os_release": "23.4.0", "processor": "arm", "machine": "arm64", "function":
|
||||
"mem0.client.main.MemoryClient", "$lib": "posthog-python", "$lib_version": "3.5.0",
|
||||
"$geoip_disable": true}, "timestamp": "2024-08-17T06:00:13.593952+00:00", "context":
|
||||
{}, "distinct_id": "fd411bd3-99a2-42d6-acd7-9fca8ad09580", "event": "client.add"}],
|
||||
"historical_migration": false, "sentAt": "2024-08-17T06:00:13.858277+00:00",
|
||||
"api_key": "phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"}'
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '739'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- posthog-python/3.5.0
|
||||
method: POST
|
||||
uri: https://us.i.posthog.com/batch/
|
||||
response:
|
||||
body:
|
||||
string: '{"status":"Ok"}'
|
||||
headers:
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '15'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:13 GMT
|
||||
access-control-allow-credentials:
|
||||
- 'true'
|
||||
server:
|
||||
- envoy
|
||||
vary:
|
||||
- origin, access-control-request-method, access-control-request-headers
|
||||
x-envoy-upstream-service-time:
|
||||
- '33'
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
98
uv.lock
generated
98
uv.lock
generated
@@ -490,28 +490,32 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "chroma-hnswlib"
|
||||
version = "0.7.3"
|
||||
version = "0.7.6"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "numpy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c0/59/1224cbae62c7b84c84088cdf6c106b9b2b893783c000d22c442a1672bc75/chroma-hnswlib-0.7.3.tar.gz", hash = "sha256:b6137bedde49fffda6af93b0297fe00429fc61e5a072b1ed9377f909ed95a932", size = 31876 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/73/09/10d57569e399ce9cbc5eee2134996581c957f63a9addfa6ca657daf006b8/chroma_hnswlib-0.7.6.tar.gz", hash = "sha256:4dce282543039681160259d29fcde6151cc9106c6461e0485f57cdccd83059b7", size = 32256 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/36/d1069ffa520efcf93f6d81b527e3c7311e12363742fdc786cbdaea3ab02e/chroma_hnswlib-0.7.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:59d6a7c6f863c67aeb23e79a64001d537060b6995c3eca9a06e349ff7b0998ca", size = 219588 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c3/e8/263d331f5ce29367f6f8854cd7fa1f54fce72ab4f92ab957525ef9165a9c/chroma_hnswlib-0.7.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d71a3f4f232f537b6152947006bd32bc1629a8686df22fd97777b70f416c127a", size = 197094 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/72/a9b61ae00d490c26359a8e10f3974c0d38065b894e6a2573ec6a7597f8e3/chroma_hnswlib-0.7.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c92dc1ebe062188e53970ba13f6b07e0ae32e64c9770eb7f7ffa83f149d4210", size = 2315620 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/48/f7609a3cb15a24c5d8ec18911ce10ac94144e9a89584f0a86bf9871b024c/chroma_hnswlib-0.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49da700a6656fed8753f68d44b8cc8ae46efc99fc8a22a6d970dc1697f49b403", size = 2350956 },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/3d/ca311b8f79744db3f4faad8fd9140af80d34c94829d3ed1726c98cf4a611/chroma_hnswlib-0.7.3-cp310-cp310-win_amd64.whl", hash = "sha256:108bc4c293d819b56476d8f7865803cb03afd6ca128a2a04d678fffc139af029", size = 150598 },
|
||||
{ url = "https://files.pythonhosted.org/packages/94/3f/844393b0d2ea1072b7704d6eff5c595e05ae8b831b96340cdb76b2fe995c/chroma_hnswlib-0.7.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:11e7ca93fb8192214ac2b9c0943641ac0daf8f9d4591bb7b73be808a83835667", size = 221219 },
|
||||
{ url = "https://files.pythonhosted.org/packages/11/7a/673ccb9bb2faf9cf655d9040e970c02a96645966e06837fde7d10edf242a/chroma_hnswlib-0.7.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6f552e4d23edc06cdeb553cdc757d2fe190cdeb10d43093d6a3319f8d4bf1c6b", size = 198652 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ba/f4/c81a40da5473d5d80fc9d0c5bd5b1cb64e530a6ea941c69f195fe81c488c/chroma_hnswlib-0.7.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f96f4d5699e486eb1fb95849fe35ab79ab0901265805be7e60f4eaa83ce263ec", size = 2332260 },
|
||||
{ url = "https://files.pythonhosted.org/packages/48/0e/068b658a547d6090b969014146321e28dae1411da54b76d081e51a2af22b/chroma_hnswlib-0.7.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:368e57fe9ebae05ee5844840fa588028a023d1182b0cfdb1d13f607c9ea05756", size = 2367211 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d2/32/a91850c7aa8a34f61838913155103808fe90da6f1ea4302731b59e9ba6f2/chroma_hnswlib-0.7.3-cp311-cp311-win_amd64.whl", hash = "sha256:b7dca27b8896b494456db0fd705b689ac6b73af78e186eb6a42fea2de4f71c6f", size = 151574 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a8/74/b9dde05ea8685d2f8c4681b517e61c7887e974f6272bb24ebc8f2105875b/chroma_hnswlib-0.7.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f35192fbbeadc8c0633f0a69c3d3e9f1a4eab3a46b65458bbcbcabdd9e895c36", size = 195821 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/58/101bfa6bc41bc6cc55fbb5103c75462a7bf882e1704256eb4934df85b6a8/chroma_hnswlib-0.7.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f007b608c96362b8f0c8b6b2ac94f67f83fcbabd857c378ae82007ec92f4d82", size = 183854 },
|
||||
{ url = "https://files.pythonhosted.org/packages/17/ff/95d49bb5ce134f10d6aa08d5f3bec624eaff945f0b17d8c3fce888b9a54a/chroma_hnswlib-0.7.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:456fd88fa0d14e6b385358515aef69fc89b3c2191706fd9aee62087b62aad09c", size = 2358774 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/6d/27826180a54df80dbba8a4f338b022ba21c0c8af96fd08ff8510626dee8f/chroma_hnswlib-0.7.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5dfaae825499c2beaa3b75a12d7ec713b64226df72a5c4097203e3ed532680da", size = 2392739 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/63/ee3e8b7a8f931918755faacf783093b61f32f59042769d9db615999c3de0/chroma_hnswlib-0.7.6-cp310-cp310-win_amd64.whl", hash = "sha256:2487201982241fb1581be26524145092c95902cb09fc2646ccfbc407de3328ec", size = 150955 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f5/af/d15fdfed2a204c0f9467ad35084fbac894c755820b203e62f5dcba2d41f1/chroma_hnswlib-0.7.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:81181d54a2b1e4727369486a631f977ffc53c5533d26e3d366dda243fb0998ca", size = 196911 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/19/aa6f2139f1ff7ad23a690ebf2a511b2594ab359915d7979f76f3213e46c4/chroma_hnswlib-0.7.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4b4ab4e11f1083dd0a11ee4f0e0b183ca9f0f2ed63ededba1935b13ce2b3606f", size = 185000 },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/b1/1b269c750e985ec7d40b9bbe7d66d0a890e420525187786718e7f6b07913/chroma_hnswlib-0.7.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53db45cd9173d95b4b0bdccb4dbff4c54a42b51420599c32267f3abbeb795170", size = 2377289 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c7/2d/d5663e134436e5933bc63516a20b5edc08b4c1b1588b9680908a5f1afd04/chroma_hnswlib-0.7.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c093f07a010b499c00a15bc9376036ee4800d335360570b14f7fe92badcdcf9", size = 2411755 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3e/79/1bce519cf186112d6d5ce2985392a89528c6e1e9332d680bf752694a4cdf/chroma_hnswlib-0.7.6-cp311-cp311-win_amd64.whl", hash = "sha256:0540b0ac96e47d0aa39e88ea4714358ae05d64bbe6bf33c52f316c664190a6a3", size = 151888 },
|
||||
{ url = "https://files.pythonhosted.org/packages/93/ac/782b8d72de1c57b64fdf5cb94711540db99a92768d93d973174c62d45eb8/chroma_hnswlib-0.7.6-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e87e9b616c281bfbe748d01705817c71211613c3b063021f7ed5e47173556cb7", size = 197804 },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/4e/fd9ce0764228e9a98f6ff46af05e92804090b5557035968c5b4198bc7af9/chroma_hnswlib-0.7.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ec5ca25bc7b66d2ecbf14502b5729cde25f70945d22f2aaf523c2d747ea68912", size = 185421 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/3d/b59a8dedebd82545d873235ef2d06f95be244dfece7ee4a1a6044f080b18/chroma_hnswlib-0.7.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:305ae491de9d5f3c51e8bd52d84fdf2545a4a2bc7af49765cda286b7bb30b1d4", size = 2389672 },
|
||||
{ url = "https://files.pythonhosted.org/packages/74/1e/80a033ea4466338824974a34f418e7b034a7748bf906f56466f5caa434b0/chroma_hnswlib-0.7.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:822ede968d25a2c88823ca078a58f92c9b5c4142e38c7c8b4c48178894a0a3c5", size = 2436986 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "chromadb"
|
||||
version = "0.4.24"
|
||||
version = "0.5.18"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "bcrypt" },
|
||||
@@ -519,6 +523,7 @@ dependencies = [
|
||||
{ name = "chroma-hnswlib" },
|
||||
{ name = "fastapi" },
|
||||
{ name = "grpcio" },
|
||||
{ name = "httpx" },
|
||||
{ name = "importlib-resources" },
|
||||
{ name = "kubernetes" },
|
||||
{ name = "mmh3" },
|
||||
@@ -531,11 +536,10 @@ dependencies = [
|
||||
{ name = "orjson" },
|
||||
{ name = "overrides" },
|
||||
{ name = "posthog" },
|
||||
{ name = "pulsar-client" },
|
||||
{ name = "pydantic" },
|
||||
{ name = "pypika" },
|
||||
{ name = "pyyaml" },
|
||||
{ name = "requests" },
|
||||
{ name = "rich" },
|
||||
{ name = "tenacity" },
|
||||
{ name = "tokenizers" },
|
||||
{ name = "tqdm" },
|
||||
@@ -543,9 +547,9 @@ dependencies = [
|
||||
{ name = "typing-extensions" },
|
||||
{ name = "uvicorn", extra = ["standard"] },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/47/6b/a5465827d8017b658d18ad1e63d2dc31109dec717c6bd068e82485186f4b/chromadb-0.4.24.tar.gz", hash = "sha256:a5c80b4e4ad9b236ed2d4899a5b9e8002b489293f2881cb2cadab5b199ee1c72", size = 13667084 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/15/95/d1a3f14c864e37d009606b82bd837090902b5e5a8e892fcab07eeaec0438/chromadb-0.5.18.tar.gz", hash = "sha256:cfbb3e5aeeb1dd532b47d80ed9185e8a9886c09af41c8e6123edf94395d76aec", size = 33620708 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/63/b7d76109331318423f9cfb89bd89c99e19f5d0b47a5105439a629224d297/chromadb-0.4.24-py3-none-any.whl", hash = "sha256:3a08e237a4ad28b5d176685bd22429a03717fe09d35022fb230d516108da01da", size = 525452 },
|
||||
{ url = "https://files.pythonhosted.org/packages/82/85/4d2f8b9202153105ad4514ae09e9fe6f3b353a45e44e0ef7eca03dd8b9dc/chromadb-0.5.18-py3-none-any.whl", hash = "sha256:9dd3827b5e04b4ff0a5ea0df28a78bac88a09f45be37fcd7fe20f879b57c43cf", size = 615499 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -604,7 +608,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai"
|
||||
version = "0.76.9"
|
||||
version = "0.79.4"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "appdirs" },
|
||||
@@ -634,6 +638,9 @@ dependencies = [
|
||||
agentops = [
|
||||
{ name = "agentops" },
|
||||
]
|
||||
mem0 = [
|
||||
{ name = "mem0ai" },
|
||||
]
|
||||
tools = [
|
||||
{ name = "crewai-tools" },
|
||||
]
|
||||
@@ -663,15 +670,16 @@ requires-dist = [
|
||||
{ name = "agentops", marker = "extra == 'agentops'", specifier = ">=0.3.0" },
|
||||
{ name = "appdirs", specifier = ">=1.4.4" },
|
||||
{ name = "auth0-python", specifier = ">=4.7.1" },
|
||||
{ name = "chromadb", specifier = ">=0.4.24" },
|
||||
{ name = "chromadb", specifier = ">=0.5.18" },
|
||||
{ name = "click", specifier = ">=8.1.7" },
|
||||
{ name = "crewai-tools", specifier = ">=0.13.4" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.13.4" },
|
||||
{ name = "crewai-tools", specifier = ">=0.14.0" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.14.0" },
|
||||
{ name = "instructor", specifier = ">=1.3.3" },
|
||||
{ name = "json-repair", specifier = ">=0.25.2" },
|
||||
{ name = "jsonref", specifier = ">=1.1.0" },
|
||||
{ name = "langchain", specifier = ">=0.2.16" },
|
||||
{ name = "litellm", specifier = ">=1.44.22" },
|
||||
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.29" },
|
||||
{ name = "openai", specifier = ">=1.13.3" },
|
||||
{ name = "opentelemetry-api", specifier = ">=1.22.0" },
|
||||
{ name = "opentelemetry-exporter-otlp-proto-http", specifier = ">=1.22.0" },
|
||||
@@ -688,7 +696,7 @@ requires-dist = [
|
||||
[package.metadata.requires-dev]
|
||||
dev = [
|
||||
{ name = "cairosvg", specifier = ">=2.7.1" },
|
||||
{ name = "crewai-tools", specifier = ">=0.13.4" },
|
||||
{ name = "crewai-tools", specifier = ">=0.14.0" },
|
||||
{ name = "mkdocs", specifier = ">=1.4.3" },
|
||||
{ name = "mkdocs-material", specifier = ">=9.5.7" },
|
||||
{ name = "mkdocs-material-extensions", specifier = ">=1.3.1" },
|
||||
@@ -707,7 +715,7 @@ dev = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai-tools"
|
||||
version = "0.13.4"
|
||||
version = "0.14.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "beautifulsoup4" },
|
||||
@@ -725,9 +733,9 @@ dependencies = [
|
||||
{ name = "requests" },
|
||||
{ name = "selenium" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/64/bd/eff7b633a0b28ff4ed115adde1499e3dcc683e4f0b5c378a4c6f5c0c1bf6/crewai_tools-0.13.4.tar.gz", hash = "sha256:b6ac527633b7018471d892c21ac96bc961a86b6626d996b1ed7d53cd481d4505", size = 816588 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/9b/6d/4fa91b481b120f83bb58f365203d8aa8564e8ced1035d79f8aedb7d71e2f/crewai_tools-0.14.0.tar.gz", hash = "sha256:510f3a194bcda4fdae4314bd775521964b5f229ddbe451e5d9e0216cae57f4e3", size = 815892 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/6c/40/93cd347d854059cf5e54a81b70f896deea7ad1f03e9c024549eb323c4da5/crewai_tools-0.13.4-py3-none-any.whl", hash = "sha256:eda78fe3c4df57676259d8dd6b2610fa31f89b90909512f15893adb57fb9e825", size = 463703 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/ed/9f4e64e1507062957b0118085332d38b621c1000874baef2d1c4069bfd97/crewai_tools-0.14.0-py3-none-any.whl", hash = "sha256:0a804a828c29869c3af3253f4fc4c3967a3f80f06dab22e9bbe9526608a31564", size = 462980 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -889,7 +897,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "embedchain"
|
||||
version = "0.1.123"
|
||||
version = "0.1.125"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "alembic" },
|
||||
@@ -914,9 +922,9 @@ dependencies = [
|
||||
{ name = "sqlalchemy" },
|
||||
{ name = "tiktoken" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/5d/6a/955b5a72fa6727db203c4d46ae0e30ac47f4f50389f663cd5ea157b0d819/embedchain-0.1.123.tar.gz", hash = "sha256:aecaf81c21de05b5cdb649b6cde95ef68ffa759c69c54f6ff2eaa667f2ad0580", size = 124797 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/6c/ea/eedb6016719f94fe4bd4c5aa44cc5463d85494bbd0864cc465e4317d4987/embedchain-0.1.125.tar.gz", hash = "sha256:15a6d368b48ba33feb93b237caa54f6e9078537c02a49c1373e59cc32627a138", size = 125176 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a7/51/0c78d26da4afbe68370306669556b274f1021cac02f3155d8da2be407763/embedchain-0.1.123-py3-none-any.whl", hash = "sha256:1210e993b6364d7c702b6bd44b053fc244dd77f2a65ea4b90b62709114ea6c25", size = 210909 },
|
||||
{ url = "https://files.pythonhosted.org/packages/52/82/3d0355c22bc68cfbb8fbcf670da4c01b31bd7eb516974a08cf7533e89887/embedchain-0.1.125-py3-none-any.whl", hash = "sha256:f87b49732dc192c6b61221830f29e59cf2aff26d8f5d69df81f6f6cf482715c2", size = 211367 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -2160,7 +2168,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "mem0ai"
|
||||
version = "0.1.22"
|
||||
version = "0.1.29"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "openai" },
|
||||
@@ -2170,9 +2178,9 @@ dependencies = [
|
||||
{ name = "qdrant-client" },
|
||||
{ name = "sqlalchemy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/7f/b4/64c6f7d9684bd1f9b46d251abfc7d5b2cc8371d70f1f9eec097f9872c719/mem0ai-0.1.22.tar.gz", hash = "sha256:d01aa028763719bd0ede2de4602121a7c3bf023f46112cd50cc9169140e11be2", size = 53117 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/a9/bf/152718f9da3844dd24d4c45850b2e719798b5ce9389adf4ec873ee8905ca/mem0ai-0.1.29.tar.gz", hash = "sha256:42adefb7a9b241be03fbcabadf5328abf91b4ac390bc97e5966e55e3cac192c5", size = 55201 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/27/3ef75abb28bf8b46c2cc34730f6be733ef2584652474216215019ee036a2/mem0ai-0.1.22-py3-none-any.whl", hash = "sha256:c783e15131c16a0d91e44e30195c1eeae9c36468de40006d5e42cf4516059855", size = 75695 },
|
||||
{ url = "https://files.pythonhosted.org/packages/65/9b/755be84f669415b3b513cfd935e768c4c84ac5c1ab6ff6ac2dab990a261a/mem0ai-0.1.29-py3-none-any.whl", hash = "sha256:07bbfd4238d0d7da65d5e4cf75a217eeb5b2829834e399074b05bb046730a57f", size = 79558 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3202,34 +3210,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pulsar-client"
|
||||
version = "3.5.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "certifi" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/e0/aa/eb3b04be87b961324e49748f3a715a12127d45d76258150bfa61b2a002d8/pulsar_client-3.5.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:c18552edb2f785de85280fe624bc507467152bff810fc81d7660fa2dfa861f38", size = 10953552 },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/20/d59bf89ccdda45edd89f5b54bd1e93605ebe5ad3cb73f4f4f5e8eca8f9e6/pulsar_client-3.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18d438e456c146f01be41ef146f649dedc8f7bc714d9eaef94cff2e34099812b", size = 5190714 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/02/ca7e96b97d564d0375b8e3de65f95ac86c8502c40f6ff750e9d145709d9a/pulsar_client-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18a26a0719841103c7a89eb1492c4a8fedf89adaa386375baecbb4fa2707e88f", size = 5429820 },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/f3/682670cdc951b830cd3d8d1287521997327254e59508772664aaa656e246/pulsar_client-3.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ab0e1605dc5f44a126163fd06cd0a768494ad05123f6e0de89a2c71d6e2d2319", size = 5710427 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/00/119cd039286dfc1c91a5580963e9ba79204cd4717b16b7a6fdc57d1c1673/pulsar_client-3.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:cdef720891b97656fdce3bf5913ea7729b2156b84ba64314f432c1e72c6117fa", size = 5916490 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0a/cc/d606b483dbb263cbaf7fc7c3d2ec4032628cf3324266cf9a4ccdb2a73076/pulsar_client-3.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:a42544e38773191fe550644a90e8050579476bb2dcf17ac69a4aed62a6cb70e7", size = 3305387 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/2e/aec6886a6d67f09230476182399b7fad694fbcbbaf004ce914725d4eddd9/pulsar_client-3.5.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:fd94432ea5d398ea78f8f2e09a217ec5058d26330c137a22690478c031e116da", size = 10954116 },
|
||||
{ url = "https://files.pythonhosted.org/packages/43/06/b98df9300f60e5fad3396f843dd633c31176a495a2d60ba111c99511658a/pulsar_client-3.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6252ae462e07ece4071213fdd9c76eab82ca522a749f2dc678037d4cbacd40b", size = 5189618 },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/05/c9aef7da7802a03c0b65ffe8f00a24289ff992f99ed5d5d1fd0ed63d9cf6/pulsar_client-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03b4d440b2d74323784328b082872ee2f206c440b5d224d7941eb3c083ec06c6", size = 5429329 },
|
||||
{ url = "https://files.pythonhosted.org/packages/06/96/9acfe6f1d827cdd53b8460b04c63b4081333ef64a49a2f425419f1eb6b6b/pulsar_client-3.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f60af840b8d64a2fac5a0c1ce6ae0ddffec5f42267c6ded2c5e74bad8345f2a1", size = 5710106 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/7b/877a06eff5c9ac828cdb75e378ee29b0adac9328da9ee173eaf7076d8c56/pulsar_client-3.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2277a447c3b7f6571cb1eb9fc5c25da3fdd43d0b2fb91cf52054adfadc7d6842", size = 5916541 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/62/ed1da1ef72c95ba6a830e43995550ed0a1d26c223fb4b036ac6cd028c2ed/pulsar_client-3.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:f20f3e9dd50db2a37059abccad42078b7a4754b8bc1d3ae6502e71c1ad2209f0", size = 3305485 },
|
||||
{ url = "https://files.pythonhosted.org/packages/81/19/4b145766df706aa5e09f60bbf5f87b934e6ac950fddd18f4acd520c465b9/pulsar_client-3.5.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:d61f663d85308e12f44033ba95af88730f581a7e8da44f7a5c080a3aaea4878d", size = 10967548 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bf/bd/9bc05ee861b46884554a4c61f96edb9602de131dd07982c27920e554ab5b/pulsar_client-3.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2a1ba0be25b6f747bcb28102b7d906ec1de48dc9f1a2d9eacdcc6f44ab2c9e17", size = 5189598 },
|
||||
{ url = "https://files.pythonhosted.org/packages/76/00/379bedfa6f1c810553996a4cb0984fa2e2c89afc5953df0936e1c9636003/pulsar_client-3.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a181e3e60ac39df72ccb3c415d7aeac61ad0286497a6e02739a560d5af28393a", size = 5430145 },
|
||||
{ url = "https://files.pythonhosted.org/packages/88/c8/8a37d75aa9132a69a28061c9e5f4b516328a1968b58bbae018f431c6d3d4/pulsar_client-3.5.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3c72895ff7f51347e4f78b0375b2213fa70dd4790bbb78177b4002846f1fd290", size = 5708960 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6e/9a/abd98661e3f7ae3a8e1d3fb0fc7eba1a30005391ebd575ab06a66021256c/pulsar_client-3.5.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:547dba1b185a17eba915e51d0a3aca27c80747b6187e5cd7a71a3ca33921decc", size = 5915227 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/51/db376181d05716de595515fac736e3d06e96d3345ba0e31c0a90c352eae1/pulsar_client-3.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:443b786eed96bc86d2297a6a42e79f39d1abf217ec603e0bd303f3488c0234af", size = 3306515 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pure-eval"
|
||||
version = "0.2.3"
|
||||
|
||||
Reference in New Issue
Block a user