mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
88 Commits
feat/add-c
...
DOCS/readm
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0b9eeb7cdb | ||
|
|
9b558ddc51 | ||
|
|
b857afe45b | ||
|
|
1d77c8de10 | ||
|
|
503f3a6372 | ||
|
|
d2fab55561 | ||
|
|
b955416458 | ||
|
|
18a2722e4d | ||
|
|
c7e8d55926 | ||
|
|
48698bf0b7 | ||
|
|
f79b3fc322 | ||
|
|
0b9e753c2f | ||
|
|
5b3f7be1c4 | ||
|
|
f2208f5f8e | ||
|
|
79b5248b83 | ||
|
|
d4791bef28 | ||
|
|
d861cb0d74 | ||
|
|
67f19f79c2 | ||
|
|
5f359b14f7 | ||
|
|
cda1900b14 | ||
|
|
c8c0a89dc6 | ||
|
|
9a10cc15f4 | ||
|
|
345f1eacde | ||
|
|
fa937bf3a7 | ||
|
|
172758020c | ||
|
|
5ff178084e | ||
|
|
c012e0ff8d | ||
|
|
f777c1c2e0 | ||
|
|
782ce22d99 | ||
|
|
f5246039e5 | ||
|
|
4736604b4d | ||
|
|
09cba0135e | ||
|
|
8119edb495 | ||
|
|
17bffb0803 | ||
|
|
cbe139fced | ||
|
|
946d8567fe | ||
|
|
7b5d5bdeef | ||
|
|
a1551bcf2b | ||
|
|
5495825b1d | ||
|
|
6e36f84cc6 | ||
|
|
cddf2d8f7c | ||
|
|
5f17e35c5a | ||
|
|
231a833ad0 | ||
|
|
a870295d42 | ||
|
|
ddda8f6bda | ||
|
|
bf7372fefa | ||
|
|
3451b6fc7a | ||
|
|
dbf2570353 | ||
|
|
d0707fac91 | ||
|
|
35ebdd6022 | ||
|
|
92a77e5cac | ||
|
|
a2922c9ad5 | ||
|
|
9f9b52dd26 | ||
|
|
2482c7ab68 | ||
|
|
7fdabda97e | ||
|
|
7306414de7 | ||
|
|
97d7bfb52a | ||
|
|
9f85a2a011 | ||
|
|
ab47d276db | ||
|
|
44e38b1d5e | ||
|
|
e9fa2bb556 | ||
|
|
183f466ac4 | ||
|
|
cc7b7e2b79 | ||
|
|
a17fa70b1b | ||
|
|
7b63b6f485 | ||
|
|
ed5d81fa1a | ||
|
|
c2d12b2de2 | ||
|
|
8966dc2f2f | ||
|
|
59ab1ef9f4 | ||
|
|
227cca00a2 | ||
|
|
16dab8e583 | ||
|
|
1c97b916d9 | ||
|
|
94b52cfd87 | ||
|
|
82b1db1711 | ||
|
|
638a8f03f0 | ||
|
|
dbce944934 | ||
|
|
f1ad137fb7 | ||
|
|
5eb1cff9b5 | ||
|
|
b074138e39 | ||
|
|
6ca051e5f3 | ||
|
|
fd87d930a7 | ||
|
|
95a9691a8b | ||
|
|
e2d6e2649e | ||
|
|
d3ff1bf01d | ||
|
|
d68b8cf6e4 | ||
|
|
6615ab2fba | ||
|
|
5e83a36009 | ||
|
|
51ee483e9d |
35
.github/ISSUE_TEMPLATE/bug_report.md
vendored
35
.github/ISSUE_TEMPLATE/bug_report.md
vendored
@@ -1,35 +0,0 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve CrewAI
|
||||
title: "[BUG]"
|
||||
labels: bug
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Description**
|
||||
Provide a clear and concise description of what the bug is.
|
||||
|
||||
**Steps to Reproduce**
|
||||
Provide a step-by-step process to reproduce the behavior:
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Screenshots/Code snippets**
|
||||
If applicable, add screenshots or code snippets to help explain your problem.
|
||||
|
||||
**Environment Details:**
|
||||
- **Operating System**: [e.g., Ubuntu 20.04, macOS Catalina, Windows 10]
|
||||
- **Python Version**: [e.g., 3.8, 3.9, 3.10]
|
||||
- **crewAI Version**: [e.g., 0.30.11]
|
||||
- **crewAI Tools Version**: [e.g., 0.2.6]
|
||||
|
||||
**Logs**
|
||||
Include relevant logs or error messages if applicable.
|
||||
|
||||
**Possible Solution**
|
||||
Have a solution in mind? Please suggest it here, or write "None".
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
||||
116
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
116
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
@@ -0,0 +1,116 @@
|
||||
name: Bug report
|
||||
description: Create a report to help us improve CrewAI
|
||||
title: "[BUG]"
|
||||
labels: ["bug"]
|
||||
assignees: []
|
||||
body:
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: Provide a clear and concise description of what the bug is.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: steps-to-reproduce
|
||||
attributes:
|
||||
label: Steps to Reproduce
|
||||
description: Provide a step-by-step process to reproduce the behavior.
|
||||
placeholder: |
|
||||
1. Go to '...'
|
||||
2. Click on '....'
|
||||
3. Scroll down to '....'
|
||||
4. See error
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: A clear and concise description of what you expected to happen.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: screenshots-code
|
||||
attributes:
|
||||
label: Screenshots/Code snippets
|
||||
description: If applicable, add screenshots or code snippets to help explain your problem.
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating System
|
||||
description: Select the operating system you're using
|
||||
options:
|
||||
- Ubuntu 20.04
|
||||
- Ubuntu 22.04
|
||||
- Ubuntu 24.04
|
||||
- macOS Catalina
|
||||
- macOS Big Sur
|
||||
- macOS Monterey
|
||||
- macOS Ventura
|
||||
- macOS Sonoma
|
||||
- Windows 10
|
||||
- Windows 11
|
||||
- Other (specify in additional context)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: python-version
|
||||
attributes:
|
||||
label: Python Version
|
||||
description: Version of Python your Crew is running on
|
||||
options:
|
||||
- '3.10'
|
||||
- '3.11'
|
||||
- '3.12'
|
||||
- '3.13'
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
id: crewai-version
|
||||
attributes:
|
||||
label: crewAI Version
|
||||
description: What version of CrewAI are you using
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
id: crewai-tools-version
|
||||
attributes:
|
||||
label: crewAI Tools Version
|
||||
description: What version of CrewAI Tools are you using
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: virtual-environment
|
||||
attributes:
|
||||
label: Virtual Environment
|
||||
description: What Virtual Environment are you running your crew in.
|
||||
options:
|
||||
- Venv
|
||||
- Conda
|
||||
- Poetry
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: evidence
|
||||
attributes:
|
||||
label: Evidence
|
||||
description: Include relevant information, logs or error messages. These can be screenshots.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: possible-solution
|
||||
attributes:
|
||||
label: Possible Solution
|
||||
description: Have a solution in mind? Please suggest it here, or write "None".
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: additional-context
|
||||
attributes:
|
||||
label: Additional context
|
||||
description: Add any other context about the problem here.
|
||||
validations:
|
||||
required: true
|
||||
1
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
1
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1 @@
|
||||
blank_issues_enabled: false
|
||||
24
.github/ISSUE_TEMPLATE/custom.md
vendored
24
.github/ISSUE_TEMPLATE/custom.md
vendored
@@ -1,24 +0,0 @@
|
||||
---
|
||||
name: Custom issue template
|
||||
about: Describe this issue template's purpose here.
|
||||
title: "[DOCS]"
|
||||
labels: documentation
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
## Documentation Page
|
||||
<!-- Provide a link to the documentation page that needs improvement -->
|
||||
|
||||
## Description
|
||||
<!-- Describe what needs to be changed or improved in the documentation -->
|
||||
|
||||
## Suggested Changes
|
||||
<!-- If possible, provide specific suggestions for how to improve the documentation -->
|
||||
|
||||
## Additional Context
|
||||
<!-- Add any other context about the documentation issue here -->
|
||||
|
||||
## Checklist
|
||||
- [ ] I have searched the existing issues to make sure this is not a duplicate
|
||||
- [ ] I have checked the latest version of the documentation to ensure this hasn't been addressed
|
||||
65
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
65
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
@@ -0,0 +1,65 @@
|
||||
name: Feature request
|
||||
description: Suggest a new feature for CrewAI
|
||||
title: "[FEATURE]"
|
||||
labels: ["feature-request"]
|
||||
assignees: []
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this feature request!
|
||||
- type: dropdown
|
||||
id: feature-area
|
||||
attributes:
|
||||
label: Feature Area
|
||||
description: Which area of CrewAI does this feature primarily relate to?
|
||||
options:
|
||||
- Core functionality
|
||||
- Agent capabilities
|
||||
- Task management
|
||||
- Integration with external tools
|
||||
- Performance optimization
|
||||
- Documentation
|
||||
- Other (please specify in additional context)
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: problem
|
||||
attributes:
|
||||
label: Is your feature request related to a an existing bug? Please link it here.
|
||||
description: A link to the bug or NA if not related to an existing bug.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: solution
|
||||
attributes:
|
||||
label: Describe the solution you'd like
|
||||
description: A clear and concise description of what you want to happen.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: alternatives
|
||||
attributes:
|
||||
label: Describe alternatives you've considered
|
||||
description: A clear and concise description of any alternative solutions or features you've considered.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: context
|
||||
attributes:
|
||||
label: Additional context
|
||||
description: Add any other context, screenshots, or examples about the feature request here.
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: willingness-to-contribute
|
||||
attributes:
|
||||
label: Willingness to Contribute
|
||||
description: Would you be willing to contribute to the implementation of this feature?
|
||||
options:
|
||||
- Yes, I'd be happy to submit a pull request
|
||||
- I could provide more detailed specifications
|
||||
- I can test the feature once it's implemented
|
||||
- No, I'm just suggesting the idea
|
||||
validations:
|
||||
required: true
|
||||
6
.github/workflows/mkdocs.yml
vendored
6
.github/workflows/mkdocs.yml
vendored
@@ -1,10 +1,8 @@
|
||||
name: Deploy MkDocs
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
23
.github/workflows/security-checker.yml
vendored
Normal file
23
.github/workflows/security-checker.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: Security Checker
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
jobs:
|
||||
security-check:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11.9"
|
||||
|
||||
- name: Install dependencies
|
||||
run: pip install bandit
|
||||
|
||||
- name: Run Bandit
|
||||
run: bandit -c pyproject.toml -r src/ -lll
|
||||
|
||||
1
.github/workflows/stale.yml
vendored
1
.github/workflows/stale.yml
vendored
@@ -24,3 +24,4 @@ jobs:
|
||||
stale-pr-message: 'This PR is stale because it has been open for 45 days with no activity.'
|
||||
days-before-pr-stale: 45
|
||||
days-before-pr-close: -1
|
||||
operations-per-run: 1200
|
||||
|
||||
1
.github/workflows/tests.yml
vendored
1
.github/workflows/tests.yml
vendored
@@ -11,6 +11,7 @@ env:
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 15
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
|
||||
24
README.md
24
README.md
@@ -8,11 +8,11 @@
|
||||
|
||||
<h3>
|
||||
|
||||
[Homepage](https://www.crewai.io/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/joaomdmoura/crewai-examples) | [Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
[Homepage](https://www.crewai.com/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/crewAIInc/crewAI-examples) | [Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
|
||||
</h3>
|
||||
|
||||
[](https://github.com/joaomdmoura/crewAI)
|
||||
[](https://github.com/crewAIInc/crewAI)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
</div>
|
||||
@@ -73,6 +73,7 @@ os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
# You can pass an optional llm attribute specifying what model you wanna use.
|
||||
# It can be a local model through Ollama / LM Studio or a remote
|
||||
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
|
||||
# If you don't specify a model, the default is OpenAI gpt-4o
|
||||
#
|
||||
# import os
|
||||
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
|
||||
@@ -153,12 +154,12 @@ In addition to the sequential process, you can use the hierarchical process, whi
|
||||
|
||||
## Examples
|
||||
|
||||
You can test different real life examples of AI crews in the [crewAI-examples repo](https://github.com/joaomdmoura/crewAI-examples?tab=readme-ov-file):
|
||||
You can test different real life examples of AI crews in the [crewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
|
||||
|
||||
- [Landing Page Generator](https://github.com/joaomdmoura/crewAI-examples/tree/main/landing_page_generator)
|
||||
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/landing_page_generator)
|
||||
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
|
||||
- [Trip Planner](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner)
|
||||
- [Stock Analysis](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis)
|
||||
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner)
|
||||
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis)
|
||||
|
||||
### Quick Tutorial
|
||||
|
||||
@@ -166,19 +167,19 @@ You can test different real life examples of AI crews in the [crewAI-examples re
|
||||
|
||||
### Write Job Descriptions
|
||||
|
||||
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting) or watch a video below:
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
|
||||
|
||||
### Trip Planner
|
||||
|
||||
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner) or watch a video below:
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
|
||||
|
||||
### Stock Analysis
|
||||
|
||||
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis) or watch a video below:
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
|
||||
|
||||
@@ -190,13 +191,12 @@ Please refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-
|
||||
|
||||
## How CrewAI Compares
|
||||
|
||||
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
|
||||
|
||||
- **Autogen**: While Autogen does good in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
|
||||
|
||||
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
|
||||
|
||||
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
|
||||
|
||||
|
||||
## Contribution
|
||||
|
||||
CrewAI is open-source and we welcome contributions. If you're looking to contribute, please:
|
||||
|
||||
@@ -26,7 +26,7 @@ description: What are crewAI Agents and how to use them.
|
||||
| **Function Calling LLM** *(optional)* | `function_calling_llm` | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
|
||||
| **Max Iter** *(optional)* | `max_iter` | Max Iter is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
|
||||
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
|
||||
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the Maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
|
||||
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
|
||||
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
|
||||
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `True`. |
|
||||
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
|
||||
@@ -34,6 +34,8 @@ description: What are crewAI Agents and how to use them.
|
||||
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
|
||||
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
|
||||
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
|
||||
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
|
||||
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`. |
|
||||
|
||||
## Creating an Agent
|
||||
|
||||
@@ -72,7 +74,8 @@ agent = Agent(
|
||||
tools_handler=my_tools_handler, # Optional
|
||||
cache_handler=my_cache_handler, # Optional
|
||||
callbacks=[callback1, callback2], # Optional
|
||||
agent_executor=my_agent_executor # Optional
|
||||
allow_code_execution=True, # Optiona
|
||||
max_retry_limit=2, # Optional
|
||||
)
|
||||
```
|
||||
|
||||
@@ -144,6 +147,5 @@ my_crew = Crew(agents=[agent1, agent2], tasks=[task1, task2])
|
||||
crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
|
||||
```
|
||||
|
||||
|
||||
## Conclusion
|
||||
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.
|
||||
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.
|
||||
142
docs/core-concepts/Cli.md
Normal file
142
docs/core-concepts/Cli.md
Normal file
@@ -0,0 +1,142 @@
|
||||
# CrewAI CLI Documentation
|
||||
|
||||
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews and pipelines.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the CrewAI CLI, make sure you have CrewAI & Poetry installed:
|
||||
|
||||
```
|
||||
pip install crewai poetry
|
||||
```
|
||||
|
||||
## Basic Usage
|
||||
|
||||
The basic structure of a CrewAI CLI command is:
|
||||
|
||||
```
|
||||
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
```
|
||||
|
||||
## Available Commands
|
||||
|
||||
### 1. create
|
||||
|
||||
Create a new crew or pipeline.
|
||||
|
||||
```
|
||||
crewai create [OPTIONS] TYPE NAME
|
||||
```
|
||||
|
||||
- `TYPE`: Choose between "crew" or "pipeline"
|
||||
- `NAME`: Name of the crew or pipeline
|
||||
- `--router`: (Optional) Create a pipeline with router functionality
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai create crew my_new_crew
|
||||
crewai create pipeline my_new_pipeline --router
|
||||
```
|
||||
|
||||
### 2. version
|
||||
|
||||
Show the installed version of CrewAI.
|
||||
|
||||
```
|
||||
crewai version [OPTIONS]
|
||||
```
|
||||
|
||||
- `--tools`: (Optional) Show the installed version of CrewAI tools
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai version
|
||||
crewai version --tools
|
||||
```
|
||||
|
||||
### 3. train
|
||||
|
||||
Train the crew for a specified number of iterations.
|
||||
|
||||
```
|
||||
crewai train [OPTIONS]
|
||||
```
|
||||
|
||||
- `-n, --n_iterations INTEGER`: Number of iterations to train the crew (default: 5)
|
||||
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai train -n 10 -f my_training_data.pkl
|
||||
```
|
||||
|
||||
### 4. replay
|
||||
|
||||
Replay the crew execution from a specific task.
|
||||
|
||||
```
|
||||
crewai replay [OPTIONS]
|
||||
```
|
||||
|
||||
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai replay -t task_123456
|
||||
```
|
||||
|
||||
### 5. log_tasks_outputs
|
||||
|
||||
Retrieve your latest crew.kickoff() task outputs.
|
||||
|
||||
```
|
||||
crewai log_tasks_outputs
|
||||
```
|
||||
|
||||
### 6. reset_memories
|
||||
|
||||
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
|
||||
|
||||
```
|
||||
crewai reset_memories [OPTIONS]
|
||||
```
|
||||
|
||||
- `-l, --long`: Reset LONG TERM memory
|
||||
- `-s, --short`: Reset SHORT TERM memory
|
||||
- `-e, --entities`: Reset ENTITIES memory
|
||||
- `-k, --kickoff-outputs`: Reset LATEST KICKOFF TASK OUTPUTS
|
||||
- `-a, --all`: Reset ALL memories
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai reset_memories --long --short
|
||||
crewai reset_memories --all
|
||||
```
|
||||
|
||||
### 7. test
|
||||
|
||||
Test the crew and evaluate the results.
|
||||
|
||||
```
|
||||
crewai test [OPTIONS]
|
||||
```
|
||||
|
||||
- `-n, --n_iterations INTEGER`: Number of iterations to test the crew (default: 3)
|
||||
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai test -n 5 -m gpt-3.5-turbo
|
||||
```
|
||||
|
||||
### 8. run
|
||||
|
||||
Run the crew.
|
||||
|
||||
```
|
||||
crewai run
|
||||
```
|
||||
|
||||
## Note
|
||||
|
||||
Make sure to run these commands from the directory where your CrewAI project is set up. Some commands may require additional configuration or setup within your project structure.
|
||||
@@ -28,6 +28,8 @@ The `Crew` class has been enriched with several attributes to support advanced f
|
||||
- **Embedder Configuration (`embedder`)**: Specifies the configuration for the embedder to be used by the crew for understanding and generating language. This attribute supports customization of the language model provider.
|
||||
- **Cache Management (`cache`)**: Determines whether the crew should use a cache to store the results of tool executions, optimizing performance.
|
||||
- **Output Logging (`output_log_file`)**: Specifies the file path for logging the output of the crew execution.
|
||||
- **Planning Mode (`planning`)**: Allows crews to plan their actions before executing tasks by setting `planning=True` when creating the `Crew` instance. This feature enhances coordination and efficiency.
|
||||
- **Replay Feature**: Introduces a new CLI for listing tasks from the last run and replaying from a specific task, enhancing task management and troubleshooting.
|
||||
|
||||
## Delegation: Dividing to Conquer
|
||||
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.
|
||||
|
||||
@@ -32,8 +32,8 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
|
||||
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
|
||||
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description.
|
||||
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
|
||||
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
|
||||
|
||||
!!! note "Crew Max RPM"
|
||||
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
@@ -183,14 +183,14 @@ result = my_crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Different ways to Kicking Off a Crew
|
||||
### Different Ways to Kick Off a Crew
|
||||
|
||||
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
|
||||
|
||||
`kickoff()`: Starts the execution process according to the defined process flow.
|
||||
`kickoff_for_each()`: Executes tasks for each agent individually.
|
||||
`kickoff_async()`: Initiates the workflow asynchronously.
|
||||
`kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
|
||||
- `kickoff()`: Starts the execution process according to the defined process flow.
|
||||
- `kickoff_for_each()`: Executes tasks for each agent individually.
|
||||
- `kickoff_async()`: Initiates the workflow asynchronously.
|
||||
- `kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
|
||||
|
||||
```python
|
||||
# Start the crew's task execution
|
||||
@@ -215,33 +215,34 @@ for async_result in async_results:
|
||||
print(async_result)
|
||||
```
|
||||
|
||||
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs
|
||||
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs.
|
||||
|
||||
### Replaying from a Specific Task
|
||||
|
||||
### Replaying from specific task:
|
||||
You can now replay from a specific task using our cli command replay.
|
||||
You can now replay from a specific task using our CLI command `replay`.
|
||||
|
||||
The replay feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process.
|
||||
|
||||
Kickoffs will now save the latest kickoffs returned task outputs locally for you to be able to replay from.
|
||||
|
||||
### Replaying from a Specific Task Using the CLI
|
||||
|
||||
### Replaying from specific task Using the CLI
|
||||
To use the replay feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
|
||||
To view latest kickoff task_ids use:
|
||||
To view the latest kickoff task IDs, use:
|
||||
|
||||
```shell
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
Then, to replay from a specific task, use:
|
||||
|
||||
```shell
|
||||
crewai replay -t <task_id>
|
||||
```
|
||||
|
||||
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
|
||||
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
|
||||
@@ -29,9 +29,9 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
|
||||
When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform.
|
||||
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
|
||||
|
||||
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using EmbedChain package.
|
||||
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using EmbedChain package.
|
||||
The **Long-Term Memory** uses SQLLite3 to store task results. Currently, there is no way to override these storage implementations.
|
||||
The data storage files are saved into a platform specific location found using the appdirs package
|
||||
The data storage files are saved into a platform specific location found using the appdirs package
|
||||
and the name of the project which can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
|
||||
|
||||
### Example: Configuring Memory for a Crew
|
||||
@@ -105,7 +105,7 @@ my_crew = Crew(
|
||||
"provider": "azure_openai",
|
||||
"config":{
|
||||
"model": 'text-embedding-ada-002',
|
||||
"deployment_name": "you_embedding_model_deployment_name"
|
||||
"deployment_name": "your_embedding_model_deployment_name"
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -159,8 +159,8 @@ my_crew = Crew(
|
||||
embedder={
|
||||
"provider": "cohere",
|
||||
"config":{
|
||||
"model": "embed-english-v3.0"
|
||||
"vector_dimension": 1024
|
||||
"model": "embed-english-v3.0",
|
||||
"vector_dimension": 1024
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -197,12 +197,10 @@ crewai reset_memories [OPTIONS]
|
||||
- **Type:** Flag (boolean)
|
||||
- **Default:** False
|
||||
|
||||
|
||||
|
||||
## Benefits of Using crewAI's Memory System
|
||||
- **Adaptive Learning:** Crews become more efficient over time, adapting to new information and refining their approach to tasks.
|
||||
- **Enhanced Personalization:** Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences.
|
||||
- **Improved Problem Solving:** Access to a rich memory store aids agents in making more informed decisions, drawing on past learnings and contextual insights.
|
||||
|
||||
## Getting Started
|
||||
Integrating crewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations, you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.
|
||||
Integrating crewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations, you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.
|
||||
@@ -34,7 +34,7 @@ Each input creates its own run, flowing through all stages of the pipeline. Mult
|
||||
|
||||
| Attribute | Parameters | Description |
|
||||
| :--------- | :--------- | :------------------------------------------------------------------------------------ |
|
||||
| **Stages** | `stages` | A list of crews or lists of crews representing the stages to be executed in sequence. |
|
||||
| **Stages** | `stages` | A list of crews, lists of crews, or routers representing the stages to be executed in sequence. |
|
||||
|
||||
## Creating a Pipeline
|
||||
|
||||
@@ -79,7 +79,7 @@ my_pipeline = Pipeline(
|
||||
## Pipeline Output
|
||||
|
||||
!!! note "Understanding Pipeline Outputs"
|
||||
The output of a pipeline in the crewAI framework is encapsulated within two main classes: `PipelineOutput` and `PipelineRunResult`. These classes provide a structured way to access the results of the pipeline's execution, including various formats such as raw strings, JSON, and Pydantic models.
|
||||
The output of a pipeline in the crewAI framework is encapsulated within the `PipelineKickoffResult` class. This class provides a structured way to access the results of the pipeline's execution, including various formats such as raw strings, JSON, and Pydantic models.
|
||||
|
||||
### Pipeline Output Attributes
|
||||
|
||||
|
||||
@@ -41,13 +41,11 @@ my_crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
### Example
|
||||
|
||||
When running the base case example, you will see something like the following output, which represents the output of the AgentPlanner responsible for creating the step-by-step logic to add to the Agents tasks.
|
||||
|
||||
```bash
|
||||
|
||||
```
|
||||
[2024-07-15 16:49:11][INFO]: Planning the crew execution
|
||||
**Step-by-Step Plan for Task Execution**
|
||||
|
||||
@@ -133,6 +131,4 @@ A list with 10 bullet points of the most relevant information about AI LLMs.
|
||||
|
||||
**Expected Output:**
|
||||
A fully-fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'.
|
||||
|
||||
---
|
||||
```
|
||||
```
|
||||
@@ -55,10 +55,5 @@ Emulates a corporate hierarchy, CrewAI allows specifying a custom manager agent
|
||||
## Process Class: Detailed Overview
|
||||
The `Process` class is implemented as an enumeration (`Enum`), ensuring type safety and restricting process values to the defined types (`sequential`, `hierarchical`). The consensual process is planned for future inclusion, emphasizing our commitment to continuous development and innovation.
|
||||
|
||||
## Additional Task Features
|
||||
- **Asynchronous Execution**: Tasks can now be executed asynchronously, allowing for parallel processing and efficiency improvements. This feature is designed to enable tasks to be carried out concurrently, enhancing the overall productivity of the crew.
|
||||
- **Human Input Review**: An optional feature that enables the review of task outputs by humans to ensure quality and accuracy before finalization. This additional step introduces a layer of oversight, providing an opportunity for human intervention and validation.
|
||||
- **Output Customization**: Tasks support various output formats, including JSON (`output_json`), Pydantic models (`output_pydantic`), and file outputs (`output_file`), providing flexibility in how task results are captured and utilized. This allows for a wide range of output possibilities, catering to different needs and requirements.
|
||||
|
||||
## Conclusion
|
||||
The structured collaboration facilitated by processes within CrewAI is crucial for enabling systematic teamwork among agents. This documentation has been updated to reflect the latest features, enhancements, and the planned integration of the Consensual Process, ensuring users have access to the most current and comprehensive information.
|
||||
@@ -17,16 +17,17 @@ Tasks within crewAI can be collaborative, requiring multiple agents to work toge
|
||||
| **Description** | `description` | A clear, concise statement of what the task entails. |
|
||||
| **Agent** | `agent` | The agent responsible for the task, assigned either directly or by the crew's process. |
|
||||
| **Expected Output** | `expected_output` | A detailed description of what the task's completion looks like. |
|
||||
| **Tools** _(optional)_ | `tools` | The functions or capabilities the agent can utilize to perform the task. |
|
||||
| **Async Execution** _(optional)_ | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion. |
|
||||
| **Tools** _(optional)_ | `tools` | The functions or capabilities the agent can utilize to perform the task. Defaults to an empty list. |
|
||||
| **Async Execution** _(optional)_ | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion. Defaults to False. |
|
||||
| **Context** _(optional)_ | `context` | Specifies tasks whose outputs are used as context for this task. |
|
||||
| **Config** _(optional)_ | `config` | Additional configuration details for the agent executing the task, allowing further customization. |
|
||||
| **Config** _(optional)_ | `config` | Additional configuration details for the agent executing the task, allowing further customization. Defaults to None. |
|
||||
| **Output JSON** _(optional)_ | `output_json` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output Pydantic** _(optional)_ | `output_pydantic` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output File** _(optional)_ | `output_file` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
|
||||
| **Output** _(optional)_ | `output` | The output of the task, containing the raw, JSON, and Pydantic output plus additional details. |
|
||||
| **Callback** _(optional)_ | `callback` | A Python callable that is executed with the task's output upon completion. |
|
||||
| **Human Input** _(optional)_ | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. |
|
||||
| **Output** _(optional)_ | `output` | An instance of `TaskOutput`, containing the raw, JSON, and Pydantic output plus additional details. |
|
||||
| **Callback** _(optional)_ | `callback` | A callable that is executed with the task's output upon completion. |
|
||||
| **Human Input** _(optional)_ | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. Defaults to False.|
|
||||
| **Converter Class** _(optional)_ | `converter_cls` | A converter class used to export structured output. Defaults to None. |
|
||||
|
||||
## Creating a Task
|
||||
|
||||
@@ -56,7 +57,7 @@ By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput`
|
||||
| Attribute | Parameters | Type | Description |
|
||||
| :---------------- | :-------------- | :------------------------- | :------------------------------------------------------------------------------------------------- |
|
||||
| **Description** | `description` | `str` | A brief description of the task. |
|
||||
| **Summary** | `summary` | `Optional[str]` | A short summary of the task, auto-generated from the description. |
|
||||
| **Summary** | `summary` | `Optional[str]` | A short summary of the task, auto-generated from the first 10 words of the description. |
|
||||
| **Raw** | `raw` | `str` | The raw output of the task. This is the default format for the output. |
|
||||
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the task. |
|
||||
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
|
||||
@@ -311,4 +312,4 @@ save_output_task = Task(
|
||||
|
||||
## Conclusion
|
||||
|
||||
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
@@ -5,12 +5,11 @@ description: Learn how to test your crewAI Crew and evaluate their performance.
|
||||
|
||||
## Introduction
|
||||
|
||||
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. And with crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
|
||||
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. With crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
|
||||
|
||||
### Using the Testing Feature
|
||||
|
||||
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics.
|
||||
The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now the only provider available is OpenAI.
|
||||
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics. The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now, the only provider available is OpenAI.
|
||||
|
||||
```bash
|
||||
crewai test
|
||||
@@ -22,9 +21,10 @@ If you want to run more iterations or use a different model, you can specify the
|
||||
crewai test --n_iterations 5 --model gpt-4o
|
||||
```
|
||||
|
||||
What happens when you run the `crewai test` command is that the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
|
||||
When you run the `crewai test` command, the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
|
||||
|
||||
A table of scores at the end will show the performance of the crew in terms of the following metrics:
|
||||
|
||||
```
|
||||
Task Scores
|
||||
(1-10 Higher is better)
|
||||
@@ -38,4 +38,3 @@ A table of scores at the end will show the performance of the crew in terms of t
|
||||
```
|
||||
|
||||
The example above shows the test results for two runs of the crew with two tasks, with the average total score for each task and the crew as a whole.
|
||||
|
||||
|
||||
@@ -80,11 +80,12 @@ write = Task(
|
||||
output_file='blog-posts/new_post.md' # The final blog post will be saved here
|
||||
)
|
||||
|
||||
# Assemble a crew
|
||||
# Assemble a crew with planning enabled
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research, write],
|
||||
verbose=True
|
||||
verbose=True,
|
||||
planning=True, # Enable planning feature
|
||||
)
|
||||
|
||||
# Execute tasks
|
||||
@@ -105,6 +106,7 @@ Here is a list of the available tools and their descriptions:
|
||||
| **CodeInterpreterTool** | A tool for interpreting python code. |
|
||||
| **ComposioTool** | Enables use of Composio tools. |
|
||||
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
|
||||
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
|
||||
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
|
||||
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
|
||||
@@ -121,6 +123,7 @@ Here is a list of the available tools and their descriptions:
|
||||
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
|
||||
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
|
||||
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
|
||||
| **Vision Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
|
||||
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
|
||||
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
|
||||
@@ -195,6 +198,5 @@ writer1 = Agent(
|
||||
#...
|
||||
```
|
||||
|
||||
|
||||
## Conclusion
|
||||
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.
|
||||
@@ -16,9 +16,11 @@ To use the training feature, follow these steps:
|
||||
3. Run the following command:
|
||||
|
||||
```shell
|
||||
crewai train -n <n_iterations>
|
||||
crewai train -n <n_iterations> <filename>
|
||||
```
|
||||
|
||||
!!! note "Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`."
|
||||
|
||||
### Training Your Crew Programmatically
|
||||
To train your crew programmatically, use the following steps:
|
||||
|
||||
@@ -27,21 +29,20 @@ To train your crew programmatically, use the following steps:
|
||||
3. Execute the training command within a try-except block to handle potential errors.
|
||||
|
||||
```python
|
||||
n_iterations = 2
|
||||
inputs = {"topic": "CrewAI Training"}
|
||||
n_iterations = 2
|
||||
inputs = {"topic": "CrewAI Training"}
|
||||
filename = "your_model.pkl"
|
||||
|
||||
try:
|
||||
YourCrewName_Crew().crew().train(n_iterations= n_iterations, inputs=inputs)
|
||||
try:
|
||||
YourCrewName_Crew().crew().train(n_iterations=n_iterations, inputs=inputs, filename=filename)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
```
|
||||
|
||||
!!! note "Replace `<n_iterations>` with the desired number of training iterations. This determines how many times the agents will go through the training process."
|
||||
|
||||
|
||||
### Key Points to Note:
|
||||
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
|
||||
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
|
||||
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
|
||||
|
||||
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
|
||||
|
||||
@@ -0,0 +1,129 @@
|
||||
# Creating a CrewAI Pipeline Project
|
||||
|
||||
Welcome to the comprehensive guide for creating a new CrewAI pipeline project. This document will walk you through the steps to create, customize, and run your CrewAI pipeline project, ensuring you have everything you need to get started.
|
||||
|
||||
To learn more about CrewAI pipelines, visit the [CrewAI documentation](https://docs.crewai.com/core-concepts/Pipeline/).
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before getting started with CrewAI pipelines, make sure that you have installed CrewAI via pip:
|
||||
|
||||
```shell
|
||||
$ pip install crewai crewai-tools
|
||||
```
|
||||
|
||||
The same prerequisites for virtual environments and Code IDEs apply as in regular CrewAI projects.
|
||||
|
||||
## Creating a New Pipeline Project
|
||||
|
||||
To create a new CrewAI pipeline project, you have two options:
|
||||
|
||||
1. For a basic pipeline template:
|
||||
|
||||
```shell
|
||||
$ crewai create pipeline <project_name>
|
||||
```
|
||||
|
||||
2. For a pipeline example that includes a router:
|
||||
|
||||
```shell
|
||||
$ crewai create pipeline --router <project_name>
|
||||
```
|
||||
|
||||
These commands will create a new project folder with the following structure:
|
||||
|
||||
```
|
||||
<project_name>/
|
||||
├── README.md
|
||||
├── poetry.lock
|
||||
├── pyproject.toml
|
||||
├── src/
|
||||
│ └── <project_name>/
|
||||
│ ├── __init__.py
|
||||
│ ├── main.py
|
||||
│ ├── crews/
|
||||
│ │ ├── crew1/
|
||||
│ │ │ ├── crew1.py
|
||||
│ │ │ └── config/
|
||||
│ │ │ ├── agents.yaml
|
||||
│ │ │ └── tasks.yaml
|
||||
│ │ ├── crew2/
|
||||
│ │ │ ├── crew2.py
|
||||
│ │ │ └── config/
|
||||
│ │ │ ├── agents.yaml
|
||||
│ │ │ └── tasks.yaml
|
||||
│ ├── pipelines/
|
||||
│ │ ├── __init__.py
|
||||
│ │ ├── pipeline1.py
|
||||
│ │ └── pipeline2.py
|
||||
│ └── tools/
|
||||
│ ├── __init__.py
|
||||
│ └── custom_tool.py
|
||||
└── tests/
|
||||
```
|
||||
|
||||
## Customizing Your Pipeline Project
|
||||
|
||||
To customize your pipeline project, you can:
|
||||
|
||||
1. Modify the crew files in `src/<project_name>/crews/` to define your agents and tasks for each crew.
|
||||
2. Modify the pipeline files in `src/<project_name>/pipelines/` to define your pipeline structure.
|
||||
3. Modify `src/<project_name>/main.py` to set up and run your pipelines.
|
||||
4. Add your environment variables into the `.env` file.
|
||||
|
||||
### Example: Defining a Pipeline
|
||||
|
||||
Here's an example of how to define a pipeline in `src/<project_name>/pipelines/normal_pipeline.py`:
|
||||
|
||||
```python
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.normal_crew import NormalCrew
|
||||
|
||||
@PipelineBase
|
||||
class NormalPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.normal_crew = NormalCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.normal_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
```
|
||||
|
||||
### Annotations
|
||||
|
||||
The main annotation you'll use for pipelines is `@PipelineBase`. This annotation is used to decorate your pipeline classes, similar to how `@CrewBase` is used for crews.
|
||||
|
||||
## Installing Dependencies
|
||||
|
||||
To install the dependencies for your project, use Poetry:
|
||||
|
||||
```shell
|
||||
$ cd <project_name>
|
||||
$ crewai install
|
||||
```
|
||||
|
||||
## Running Your Pipeline Project
|
||||
|
||||
To run your pipeline project, use the following command:
|
||||
|
||||
```shell
|
||||
$ crewai run
|
||||
```
|
||||
|
||||
This will initialize your pipeline and begin task execution as defined in your `main.py` file.
|
||||
|
||||
## Deploying Your Pipeline Project
|
||||
|
||||
Pipelines can be deployed in the same way as regular CrewAI projects. The easiest way is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your pipeline in a few clicks.
|
||||
|
||||
Remember, when working with pipelines, you're orchestrating multiple crews to work together in a sequence or parallel fashion. This allows for more complex workflows and information processing tasks.
|
||||
@@ -7,10 +7,10 @@ description: A comprehensive guide to starting a new CrewAI project, including t
|
||||
|
||||
Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started.
|
||||
|
||||
Beforre we start there are a couple of things to note:
|
||||
Before we start, there are a couple of things to note:
|
||||
|
||||
1. CrewAI is a Python package and requires Python >=3.10 and <=3.13 to run.
|
||||
2. The preferred way of setting up CrewAI is using the `crewai create` command.This will create a new project folder and install a skeleton template for you to work on.
|
||||
2. The preferred way of setting up CrewAI is using the `crewai create crew` command. This will create a new project folder and install a skeleton template for you to work on.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
@@ -35,11 +35,11 @@ It is highly recommended that you use virtual environments to ensure that your C
|
||||
|
||||
3. Use Poetry (A Python package manager and dependency management tool):
|
||||
Poetry is an open-source Python package manager that simplifies the installation of packages and their dependencies. Poetry offers a convenient way to manage virtual environments and dependencies.
|
||||
Poetry is CrewAI's prefered tool for package / dependancy management in CrewAI.
|
||||
Poetry is CrewAI's preferred tool for package / dependency management in CrewAI.
|
||||
|
||||
### Code IDEs
|
||||
|
||||
Most users of CrewAI a Code Editor / Integrated Development Environment (IDE) for building there Crews. You can use any code IDE of your choice. Seee below for some popular options for Code Editors / Integrated Development Environments (IDE):
|
||||
Most users of CrewAI use a Code Editor / Integrated Development Environment (IDE) for building their Crews. You can use any code IDE of your choice. See below for some popular options for Code Editors / Integrated Development Environments (IDE):
|
||||
|
||||
- [Visual Studio Code](https://code.visualstudio.com/) - Most popular
|
||||
- [PyCharm](https://www.jetbrains.com/pycharm/)
|
||||
@@ -48,24 +48,13 @@ Most users of CrewAI a Code Editor / Integrated Development Environment (IDE) fo
|
||||
Pick one that suits your style and needs.
|
||||
|
||||
## Creating a New Project
|
||||
In this example we will be using Venv as our virtual environment manager.
|
||||
In this example, we will be using Venv as our virtual environment manager.
|
||||
|
||||
To setup a virtual environment, run the following CLI command:
|
||||
To set up a virtual environment, run the following CLI command:
|
||||
To create a new CrewAI project, run the following CLI command:
|
||||
|
||||
```shell
|
||||
$ python3 -m venv <venv-name>
|
||||
```
|
||||
|
||||
Activate your virtual environment by running the following CLI command:
|
||||
|
||||
```shell
|
||||
$ source <venv-name>/bin/activate
|
||||
```
|
||||
|
||||
Now, to create a new CrewAI project, run the following CLI command:
|
||||
|
||||
```shell
|
||||
$ crewai create <project_name>
|
||||
$ crewai create crew <project_name>
|
||||
```
|
||||
|
||||
This command will create a new project folder with the following structure:
|
||||
@@ -128,13 +117,13 @@ research_candidates_task:
|
||||
{job_requirements}
|
||||
expected_output: >
|
||||
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
|
||||
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE Crew.PY FILE
|
||||
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE Crew.PY FILE
|
||||
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE crew.py FILE
|
||||
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE crew.py FILE
|
||||
- researcher
|
||||
```
|
||||
|
||||
### Referencing Variables:
|
||||
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task wont recognize the reference properly.
|
||||
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task won't recognize the reference properly.
|
||||
|
||||
#### Example References
|
||||
agent.yaml
|
||||
@@ -162,23 +151,22 @@ email_summarizer_task:
|
||||
- research_task
|
||||
```
|
||||
|
||||
Use the annotations are used to properly reference the agent and task in the crew.py file.
|
||||
Use the annotations to properly reference the agent and task in the crew.py file.
|
||||
|
||||
### Annotations include:
|
||||
* @agent
|
||||
* @task
|
||||
* @crew
|
||||
* @llm
|
||||
* @tool
|
||||
* @callback
|
||||
* @output_json
|
||||
* @output_pydantic
|
||||
* @cache_handler
|
||||
|
||||
* [@agent](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L17)
|
||||
* [@task](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L4)
|
||||
* [@crew](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L69)
|
||||
* [@llm](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L23)
|
||||
* [@tool](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L39)
|
||||
* [@callback](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L44)
|
||||
* [@output_json](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L29)
|
||||
* [@output_pydantic](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L34)
|
||||
* [@cache_handler](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L49)
|
||||
|
||||
crew.py
|
||||
```py
|
||||
...
|
||||
# ...
|
||||
@llm
|
||||
def mixtal_llm(self):
|
||||
return ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
|
||||
@@ -194,19 +182,16 @@ crew.py
|
||||
return Task(
|
||||
config=self.tasks_config["email_summarizer_task"],
|
||||
)
|
||||
...
|
||||
# ...
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Installing Dependencies
|
||||
|
||||
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:
|
||||
|
||||
```shell
|
||||
$ cd my_project
|
||||
$ poetry lock
|
||||
$ poetry install
|
||||
$ crewai install
|
||||
```
|
||||
|
||||
This will install the dependencies specified in the `pyproject.toml` file.
|
||||
@@ -247,12 +232,27 @@ To run your project, use the following command:
|
||||
```shell
|
||||
$ crewai run
|
||||
```
|
||||
or
|
||||
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
|
||||
|
||||
### Replay Tasks from Latest Crew Kickoff
|
||||
|
||||
CrewAI now includes a replay feature that allows you to list the tasks from the last run and replay from a specific one. To use this feature, run:
|
||||
|
||||
```shell
|
||||
$ poetry run my_project
|
||||
$ crewai replay <task_id>
|
||||
```
|
||||
|
||||
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
|
||||
Replace `<task_id>` with the ID of the task you want to replay.
|
||||
|
||||
### Reset Crew Memory
|
||||
|
||||
If you need to reset the memory of your crew before running it again, you can do so by calling the reset memory feature:
|
||||
|
||||
```shell
|
||||
$ crewai reset-memory
|
||||
```
|
||||
|
||||
This will clear the crew's memory, allowing for a fresh start.
|
||||
|
||||
## Deploying Your Project
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ Additionally, AgentOps provides session drilldowns for viewing Crew agent intera
|
||||
### Using AgentOps
|
||||
|
||||
1. **Create an API Key:**
|
||||
Create a user API key here: [Create API Key](app.agentops.ai/account)
|
||||
Create a user API key here: [Create API Key](https://app.agentops.ai/account)
|
||||
|
||||
2. **Configure Your Environment:**
|
||||
Add your API key to your environment variables
|
||||
@@ -83,4 +83,4 @@ For feature requests or bug reports, please reach out to the AgentOps team on th
|
||||
<span> • </span>
|
||||
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a>
|
||||
<span> • </span>
|
||||
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>
|
||||
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>
|
||||
|
||||
@@ -22,11 +22,13 @@ coding_agent = Agent(
|
||||
)
|
||||
```
|
||||
|
||||
**Note**: The `allow_code_execution` parameter defaults to `False`.
|
||||
|
||||
## Important Considerations
|
||||
|
||||
1. **Model Selection**: It is strongly recommended to use more capable models like Claude 3.5 Sonnet and GPT-4 when enabling code execution. These models have a better understanding of programming concepts and are more likely to generate correct and efficient code.
|
||||
|
||||
2. **Error Handling**: The code execution feature includes error handling. If executed code raises an exception, the agent will receive the error message and can attempt to correct the code or provide alternative solutions.
|
||||
2. **Error Handling**: The code execution feature includes error handling. If executed code raises an exception, the agent will receive the error message and can attempt to correct the code or provide alternative solutions. The `max_retry_limit` parameter, which defaults to 2, controls the maximum number of retries for a task.
|
||||
|
||||
3. **Dependencies**: To use the code execution feature, you need to install the `crewai_tools` package. If not installed, the agent will log an info message: "Coding tools not available. Install crewai_tools."
|
||||
|
||||
@@ -73,4 +75,4 @@ result = analysis_crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
In this example, the `coding_agent` can write and execute Python code to perform data analysis tasks.
|
||||
In this example, the `coding_agent` can write and execute Python code to perform data analysis tasks.
|
||||
|
||||
@@ -7,9 +7,10 @@ description: Learn how to use conditional tasks in a crewAI kickoff
|
||||
|
||||
Conditional Tasks in crewAI allow for dynamic workflow adaptation based on the outcomes of previous tasks. This powerful feature enables crews to make decisions and execute tasks selectively, enhancing the flexibility and efficiency of your AI-driven processes.
|
||||
|
||||
## Example Usage
|
||||
|
||||
```python
|
||||
from typing import List
|
||||
|
||||
from pydantic import BaseModel
|
||||
from crewai import Agent, Crew
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
@@ -17,11 +18,10 @@ from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.task import Task
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
# Define a condition function for the conditional task
|
||||
# if false task will be skipped, true, then execute task
|
||||
def is_data_missing(output: TaskOutput) -> bool:
|
||||
return len(output.pydantic.events) < 10: # this will skip this task
|
||||
return len(output.pydantic.events) < 10 # this will skip this task
|
||||
|
||||
# Define the agents
|
||||
data_fetcher_agent = Agent(
|
||||
@@ -46,11 +46,9 @@ summary_generator_agent = Agent(
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
|
||||
class EventOutput(BaseModel):
|
||||
events: List[str]
|
||||
|
||||
|
||||
task1 = Task(
|
||||
description="Fetch data about events in San Francisco using Serper tool",
|
||||
expected_output="List of 10 things to do in SF this week",
|
||||
@@ -64,7 +62,7 @@ conditional_task = ConditionalTask(
|
||||
fetch more events using Serper tool so that
|
||||
we have a total of 10 events in SF this week..
|
||||
""",
|
||||
expected_output="List of 10 Things to do in SF this week ",
|
||||
expected_output="List of 10 Things to do in SF this week",
|
||||
condition=is_data_missing,
|
||||
agent=data_processor_agent,
|
||||
)
|
||||
@@ -80,8 +78,10 @@ crew = Crew(
|
||||
agents=[data_fetcher_agent, data_processor_agent, summary_generator_agent],
|
||||
tasks=[task1, conditional_task, task3],
|
||||
verbose=True,
|
||||
planning=True # Enable planning feature
|
||||
)
|
||||
|
||||
# Run the crew
|
||||
result = crew.kickoff()
|
||||
print("results", result)
|
||||
```
|
||||
```
|
||||
@@ -1,6 +1,6 @@
|
||||
---
|
||||
title: Forcing Tool Output as Result
|
||||
description: Learn how to force tool output as the result in of an Agent's task in crewAI.
|
||||
description: Learn how to force tool output as the result in of an Agent's task in CrewAI.
|
||||
---
|
||||
|
||||
## Introduction
|
||||
@@ -13,19 +13,20 @@ Here's an example of how to force the tool output as the result of an agent's ta
|
||||
|
||||
```python
|
||||
# ...
|
||||
from crewai.agent import Agent
|
||||
|
||||
# Define a custom tool that returns the result as the answer
|
||||
coding_agent =Agent(
|
||||
coding_agent = Agent(
|
||||
role="Data Scientist",
|
||||
goal="Product amazing reports on AI",
|
||||
goal="Produce amazing reports on AI",
|
||||
backstory="You work with data and AI",
|
||||
tools=[MyCustomTool(result_as_answer=True)],
|
||||
)
|
||||
# ...
|
||||
```
|
||||
|
||||
### Workflow in Action
|
||||
## Workflow in Action
|
||||
|
||||
1. **Task Execution**: The agent executes the task using the tool provided.
|
||||
2. **Tool Output**: The tool generates the output, which is captured as the task result.
|
||||
3. **Agent Interaction**: The agent my reflect and take learnings from the tool but the output is not modified.
|
||||
3. **Agent Interaction**: The agent may reflect and take learnings from the tool but the output is not modified.
|
||||
4. **Result Return**: The tool output is returned as the task result without any modifications.
|
||||
|
||||
@@ -56,6 +56,7 @@ project_crew = Crew(
|
||||
process=Process.hierarchical, # Specifies the hierarchical management approach
|
||||
memory=True, # Enable memory usage for enhanced task execution
|
||||
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
|
||||
planning=True, # Enable planning feature for pre-execution strategy
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
@@ -83,6 +83,7 @@ crew = Crew(
|
||||
tasks=[task1, task2],
|
||||
verbose=True,
|
||||
memory=True,
|
||||
planning=True # Enable planning feature for the crew
|
||||
)
|
||||
|
||||
# Get your crew to work!
|
||||
|
||||
@@ -4,14 +4,41 @@ description: Kickoff a Crew Asynchronously
|
||||
---
|
||||
|
||||
## Introduction
|
||||
|
||||
CrewAI provides the ability to kickoff a crew asynchronously, allowing you to start the crew execution in a non-blocking manner. This feature is particularly useful when you want to run multiple crews concurrently or when you need to perform other tasks while the crew is executing.
|
||||
|
||||
## Asynchronous Crew Execution
|
||||
|
||||
To kickoff a crew asynchronously, use the `kickoff_async()` method. This method initiates the crew execution in a separate thread, allowing the main thread to continue executing other tasks.
|
||||
|
||||
Here's an example of how to kickoff a crew asynchronously:
|
||||
### Method Signature
|
||||
|
||||
```python
|
||||
def kickoff_async(self, inputs: dict) -> CrewOutput:
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- `inputs` (dict): A dictionary containing the input data required for the tasks.
|
||||
|
||||
### Returns
|
||||
|
||||
- `CrewOutput`: An object representing the result of the crew execution.
|
||||
|
||||
## Potential Use Cases
|
||||
|
||||
- **Parallel Content Generation**: Kickoff multiple independent crews asynchronously, each responsible for generating content on different topics. For example, one crew might research and draft an article on AI trends, while another crew generates social media posts about a new product launch. Each crew operates independently, allowing content production to scale efficiently.
|
||||
|
||||
- **Concurrent Market Research Tasks**: Launch multiple crews asynchronously to conduct market research in parallel. One crew might analyze industry trends, while another examines competitor strategies, and yet another evaluates consumer sentiment. Each crew independently completes its task, enabling faster and more comprehensive insights.
|
||||
|
||||
- **Independent Travel Planning Modules**: Execute separate crews to independently plan different aspects of a trip. One crew might handle flight options, another handles accommodation, and a third plans activities. Each crew works asynchronously, allowing various components of the trip to be planned simultaneously and independently for faster results.
|
||||
|
||||
## Example: Single Asynchronous Crew Execution
|
||||
|
||||
Here's an example of how to kickoff a crew asynchronously using asyncio and awaiting the result:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai import Crew, Agent, Task
|
||||
|
||||
# Create an agent with code execution enabled
|
||||
@@ -34,7 +61,57 @@ analysis_crew = Crew(
|
||||
tasks=[data_analysis_task]
|
||||
)
|
||||
|
||||
# Execute the crew
|
||||
result = analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
|
||||
# Async function to kickoff the crew asynchronously
|
||||
async def async_crew_execution():
|
||||
result = await analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
|
||||
print("Crew Result:", result)
|
||||
|
||||
# Run the async function
|
||||
asyncio.run(async_crew_execution())
|
||||
```
|
||||
|
||||
## Example: Multiple Asynchronous Crew Executions
|
||||
|
||||
In this example, we'll show how to kickoff multiple crews asynchronously and wait for all of them to complete using asyncio.gather():
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai import Crew, Agent, Task
|
||||
|
||||
# Create an agent with code execution enabled
|
||||
coding_agent = Agent(
|
||||
role="Python Data Analyst",
|
||||
goal="Analyze data and provide insights using Python",
|
||||
backstory="You are an experienced data analyst with strong Python skills.",
|
||||
allow_code_execution=True
|
||||
)
|
||||
|
||||
# Create tasks that require code execution
|
||||
task_1 = Task(
|
||||
description="Analyze the first dataset and calculate the average age of participants. Ages: {ages}",
|
||||
agent=coding_agent
|
||||
)
|
||||
|
||||
task_2 = Task(
|
||||
description="Analyze the second dataset and calculate the average age of participants. Ages: {ages}",
|
||||
agent=coding_agent
|
||||
)
|
||||
|
||||
# Create two crews and add tasks
|
||||
crew_1 = Crew(agents=[coding_agent], tasks=[task_1])
|
||||
crew_2 = Crew(agents=[coding_agent], tasks=[task_2])
|
||||
|
||||
# Async function to kickoff multiple crews asynchronously and wait for all to finish
|
||||
async def async_multiple_crews():
|
||||
result_1 = crew_1.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
|
||||
result_2 = crew_2.kickoff_async(inputs={"ages": [20, 22, 24, 28, 30]})
|
||||
|
||||
# Wait for both crews to finish
|
||||
results = await asyncio.gather(result_1, result_2)
|
||||
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f"Crew {i} Result:", result)
|
||||
|
||||
# Run the async function
|
||||
asyncio.run(async_multiple_crews())
|
||||
```
|
||||
|
||||
@@ -9,7 +9,7 @@ description: Comprehensive guide on integrating CrewAI with various Large Langua
|
||||
By default, CrewAI uses OpenAI's GPT-4o model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4o") for language processing. You can configure your agents to use a different model or API as described in this guide.
|
||||
By default, CrewAI uses OpenAI's GPT-4 model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4") for language processing. You can configure your agents to use a different model or API as described in this guide.
|
||||
|
||||
CrewAI provides extensive versatility in integrating with various Language Models (LLMs), including local options through Ollama such as Llama and Mixtral to cloud-based solutions like Azure. Its compatibility extends to all [LangChain LLM components](https://python.langchain.com/v0.2/docs/integrations/llms/), offering a wide range of integration possibilities for customized AI applications.
|
||||
CrewAI provides extensive versatility in integrating with various Language Models (LLMs), including local options through Ollama such as Llama and Mixtral to cloud-based solutions like Azure. Its compatibility extends to all [LangChain LLM components](https://python.langchain.com/v0.2/docs/integrations/llms/), offering a wide range of integration possibilities for customized AI applications.
|
||||
|
||||
The platform supports connections to an array of Generative AI models, including:
|
||||
|
||||
@@ -37,6 +37,7 @@ example_agent = Agent(
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Ollama Local Integration
|
||||
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, you will need the `langchain-ollama` package. You can then set the following environment variables to connect to your Ollama instance running locally on port 11434.
|
||||
|
||||
@@ -47,8 +48,8 @@ os.environ[OPENAI_API_KEY]='' # No API Key required for Ollama
|
||||
```
|
||||
|
||||
## Ollama Integration Step by Step (ex. for using Llama 3.1 8B locally)
|
||||
1. [Download and install Ollama](https://ollama.com/download).
|
||||
2. After setting up the Ollama, Pull the Llama3.1 8B model by typing following lines into your terminal ```ollama run llama3.1```.
|
||||
1. [Download and install Ollama](https://ollama.com/download).
|
||||
2. After setting up the Ollama, Pull the Llama3.1 8B model by typing following lines into your terminal ```ollama run llama3.1```.
|
||||
3. Llama3.1 should now be served locally on `http://localhost:11434`
|
||||
```
|
||||
from crewai import Agent, Task, Crew
|
||||
@@ -56,7 +57,7 @@ from langchain_ollama import ChatOllama
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "NA"
|
||||
|
||||
llm = Ollama(
|
||||
llm = ChatOllama(
|
||||
model = "llama3.1",
|
||||
base_url = "http://localhost:11434")
|
||||
|
||||
@@ -87,7 +88,7 @@ There are a couple of different ways you can use HuggingFace to host your LLM.
|
||||
|
||||
### Your own HuggingFace endpoint
|
||||
```python
|
||||
from langchain_huggingface import HuggingFaceEndpoint,
|
||||
from langchain_huggingface import HuggingFaceEndpoint
|
||||
|
||||
llm = HuggingFaceEndpoint(
|
||||
repo_id="microsoft/Phi-3-mini-4k-instruct",
|
||||
@@ -111,30 +112,30 @@ Switch between APIs and models seamlessly using environment variables, supportin
|
||||
### Configuration Examples
|
||||
#### FastChat
|
||||
```sh
|
||||
os.environ[OPENAI_API_BASE]="http://localhost:8001/v1"
|
||||
os.environ[OPENAI_MODEL_NAME]='oh-2.5m7b-q51'
|
||||
os.environ[OPENAI_API_KEY]=NA
|
||||
os.environ["OPENAI_API_BASE"]='http://localhost:8001/v1'
|
||||
os.environ["OPENAI_MODEL_NAME"]='oh-2.5m7b-q51'
|
||||
os.environ[OPENAI_API_KEY]='NA'
|
||||
```
|
||||
|
||||
#### LM Studio
|
||||
Launch [LM Studio](https://lmstudio.ai) and go to the Server tab. Then select a model from the dropdown menu and wait for it to load. Once it's loaded, click the green Start Server button and use the URL, port, and API key that's shown (you can modify them). Below is an example of the default settings as of LM Studio 0.2.19:
|
||||
```sh
|
||||
os.environ[OPENAI_API_BASE]="http://localhost:1234/v1"
|
||||
os.environ[OPENAI_API_KEY]="lm-studio"
|
||||
os.environ["OPENAI_API_BASE"]='http://localhost:1234/v1'
|
||||
os.environ["OPENAI_API_KEY"]='lm-studio'
|
||||
```
|
||||
|
||||
#### Groq API
|
||||
```sh
|
||||
os.environ[OPENAI_API_KEY]=your-groq-api-key
|
||||
os.environ[OPENAI_MODEL_NAME]='llama3-8b-8192'
|
||||
os.environ[OPENAI_API_BASE]=https://api.groq.com/openai/v1
|
||||
os.environ["OPENAI_API_KEY"]='your-groq-api-key'
|
||||
os.environ["OPENAI_MODEL_NAME"]='llama3-8b-8192'
|
||||
os.environ["OPENAI_API_BASE"]='https://api.groq.com/openai/v1'
|
||||
```
|
||||
|
||||
#### Mistral API
|
||||
```sh
|
||||
os.environ[OPENAI_API_KEY]=your-mistral-api-key
|
||||
os.environ[OPENAI_API_BASE]=https://api.mistral.ai/v1
|
||||
os.environ[OPENAI_MODEL_NAME]="mistral-small"
|
||||
os.environ["OPENAI_API_KEY"]='your-mistral-api-key'
|
||||
os.environ["OPENAI_API_BASE"]='https://api.mistral.ai/v1'
|
||||
os.environ["OPENAI_MODEL_NAME"]='mistral-small'
|
||||
```
|
||||
|
||||
### Solar
|
||||
@@ -142,8 +143,8 @@ os.environ[OPENAI_MODEL_NAME]="mistral-small"
|
||||
from langchain_community.chat_models.solar import SolarChat
|
||||
```
|
||||
```sh
|
||||
os.environ[SOLAR_API_BASE]="https://api.upstage.ai/v1/solar"
|
||||
os.environ[SOLAR_API_KEY]="your-solar-api-key"
|
||||
os.environ["SOLAR_API_BASE"]='https://api.upstage.ai/v1/solar'
|
||||
os.environ["SOLAR_API_KEY"]='your-solar-api-key'
|
||||
```
|
||||
|
||||
# Free developer API key available here: https://console.upstage.ai/services/solar
|
||||
@@ -154,7 +155,7 @@ os.environ[SOLAR_API_KEY]="your-solar-api-key"
|
||||
```python
|
||||
from langchain_cohere import ChatCohere
|
||||
# Initialize language model
|
||||
os.environ["COHERE_API_KEY"] = "your-cohere-api-key"
|
||||
os.environ["COHERE_API_KEY"]='your-cohere-api-key'
|
||||
llm = ChatCohere()
|
||||
|
||||
# Free developer API key available here: https://cohere.com/
|
||||
@@ -165,10 +166,10 @@ llm = ChatCohere()
|
||||
For Azure OpenAI API integration, set the following environment variables:
|
||||
```sh
|
||||
|
||||
os.environ[AZURE_OPENAI_DEPLOYMENT] = "You deployment"
|
||||
os.environ["OPENAI_API_VERSION"] = "2023-12-01-preview"
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = "Your Endpoint"
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = "<Your API Key>"
|
||||
os.environ["AZURE_OPENAI_DEPLOYMENT"]='Your deployment'
|
||||
os.environ["OPENAI_API_VERSION"]='2023-12-01-preview'
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"]='Your Endpoint'
|
||||
os.environ["AZURE_OPENAI_API_KEY"]='Your API Key'
|
||||
```
|
||||
|
||||
### Example Agent with Azure LLM
|
||||
@@ -191,5 +192,6 @@ azure_agent = Agent(
|
||||
llm=azure_llm
|
||||
)
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.
|
||||
|
||||
@@ -11,14 +11,13 @@ You must run `crew.kickoff()` before you can replay a task. Currently, only the
|
||||
|
||||
Here's an example of how to replay from a task:
|
||||
|
||||
### Replaying from specific task Using the CLI
|
||||
### Replaying from Specific Task Using the CLI
|
||||
To use the replay feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
|
||||
To view latest kickoff task_ids use:
|
||||
To view the latest kickoff task_ids use:
|
||||
```shell
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
@@ -29,21 +28,25 @@ crewai replay -t <task_id>
|
||||
```
|
||||
|
||||
|
||||
### Replaying from a task Programmatically
|
||||
### Replaying from a Task Programmatically
|
||||
To replay from a task programmatically, use the following steps:
|
||||
|
||||
1. Specify the task_id and input parameters for the replay process.
|
||||
2. Execute the replay command within a try-except block to handle potential errors.
|
||||
|
||||
```python
|
||||
def replay():
|
||||
def replay():
|
||||
"""
|
||||
Replay the crew execution from a specific task.
|
||||
"""
|
||||
task_id = '<task_id>'
|
||||
inputs = {"topic": "CrewAI Training"} # this is optional, you can pass in the inputs you want to replay otherwise uses the previous kickoffs inputs
|
||||
inputs = {"topic": "CrewAI Training"} # This is optional; you can pass in the inputs you want to replay; otherwise, it uses the previous kickoff's inputs.
|
||||
try:
|
||||
YourCrewName_Crew().crew().replay(task_id=task_id, inputs=inputs)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
raise Exception(f"An unexpected error occurred: {e}")
|
||||
```
|
||||
@@ -18,7 +18,7 @@ The sequential process ensures tasks are executed one after the other, following
|
||||
To use the sequential process, assemble your crew and define tasks in the order they need to be executed.
|
||||
|
||||
```python
|
||||
from crewai import Crew, Process, Agent, Task
|
||||
from crewai import Crew, Process, Agent, Task, TaskOutput, CrewOutput
|
||||
|
||||
# Define your agents
|
||||
researcher = Agent(
|
||||
@@ -37,6 +37,7 @@ writer = Agent(
|
||||
backstory='A skilled writer with a talent for crafting compelling narratives'
|
||||
)
|
||||
|
||||
# Define your tasks
|
||||
research_task = Task(description='Gather relevant data...', agent=researcher, expected_output='Raw Data')
|
||||
analysis_task = Task(description='Analyze the data...', agent=analyst, expected_output='Data Insights')
|
||||
writing_task = Task(description='Compose the report...', agent=writer, expected_output='Final Report')
|
||||
@@ -50,6 +51,10 @@ report_crew = Crew(
|
||||
|
||||
# Execute the crew
|
||||
result = report_crew.kickoff()
|
||||
|
||||
# Accessing the type safe output
|
||||
task_output: TaskOutput = result.tasks[0].output
|
||||
crew_output: CrewOutput = result.output
|
||||
```
|
||||
|
||||
### Workflow in Action
|
||||
@@ -82,4 +87,4 @@ CrewAI tracks token usage across all tasks and agents. You can access these metr
|
||||
1. **Order Matters**: Arrange tasks in a logical sequence where each task builds upon the previous one.
|
||||
2. **Clear Task Descriptions**: Provide detailed descriptions for each task to guide the agents effectively.
|
||||
3. **Appropriate Agent Selection**: Match agents' skills and roles to the requirements of each task.
|
||||
4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones
|
||||
4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones.
|
||||
@@ -8,13 +8,20 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
<div style="width:25%">
|
||||
<h2>Getting Started</h2>
|
||||
<ul>
|
||||
<li><a href='./getting-started/Installing-CrewAI'>
|
||||
<li>
|
||||
<a href='./getting-started/Installing-CrewAI'>
|
||||
Installing CrewAI
|
||||
</a>
|
||||
</a>
|
||||
</li>
|
||||
<li><a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
|
||||
<li>
|
||||
<a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
|
||||
Start a New CrewAI Project: Template Method
|
||||
</a>
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href='./getting-started/Create-a-New-CrewAI-Pipeline-Template-Method'>
|
||||
Create a New CrewAI Pipeline: Template Method
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
@@ -66,6 +73,11 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
Planning
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./core-concepts/Testing">
|
||||
Testing
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div style="width:30%">
|
||||
|
||||
@@ -5,24 +5,39 @@ description: Understanding the telemetry data collected by CrewAI and how it con
|
||||
|
||||
## Telemetry
|
||||
|
||||
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users. We don't offer a way to disable it now, but we will in the future.
|
||||
!!! note "Personal Information"
|
||||
By default, we collect no data that would be considered personal information under GDPR and other privacy regulations.
|
||||
We do collect Tool's names and Agent's roles, so be advised not to include any personal information in the tool's names or the Agent's roles.
|
||||
Because no personal information is collected, it's not necessary to worry about data residency.
|
||||
When `share_crew` is enabled, additional data is collected which may contain personal information if included by the user. Users should exercise caution when enabling this feature to ensure compliance with privacy regulations.
|
||||
|
||||
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy.
|
||||
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users.
|
||||
|
||||
### Data Collected Includes:
|
||||
- **Version of CrewAI**: Assessing the adoption rate of our latest version helps us understand user needs and guide our updates.
|
||||
- **Python Version**: Identifying the Python versions our users operate with assists in prioritizing our support efforts for these versions.
|
||||
- **General OS Information**: Details like the number of CPUs and the operating system type (macOS, Windows, Linux) enable us to focus our development on the most used operating systems and explore the potential for OS-specific features.
|
||||
- **Number of Agents and Tasks in a Crew**: Ensures our internal testing mirrors real-world scenarios, helping us guide users towards best practices.
|
||||
- **Crew Process Utilization**: Understanding how crews are utilized aids in directing our development focus.
|
||||
- **Memory and Delegation Use by Agents**: Insights into how these features are used help evaluate their effectiveness and future.
|
||||
- **Task Execution Mode**: Knowing whether tasks are executed in parallel or sequentially influences our emphasis on enhancing parallel execution capabilities.
|
||||
- **Language Model Utilization**: Supports our goal to improve support for the most popular languages among our users.
|
||||
- **Roles of Agents within a Crew**: Understanding the various roles agents play aids in crafting better tools, integrations, and examples.
|
||||
- **Tool Usage**: Identifying which tools are most frequently used allows us to prioritize improvements in those areas.
|
||||
It's pivotal to understand that by default, **NO personal data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables.
|
||||
When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights. This expanded data collection may include personal information if users have incorporated it into their crews or tasks. Users should carefully consider the content of their crews and tasks before enabling `share_crew`. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
|
||||
|
||||
### Data Explanation:
|
||||
| Defaulted | Data | Reason and Specifics |
|
||||
|-----------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|
||||
| Yes | CrewAI and Python Version | Tracks software versions. Example: CrewAI v1.2.3, Python 3.8.10. No personal data. |
|
||||
| Yes | Crew Metadata | Includes: randomly generated key and ID, process type (e.g., 'sequential', 'parallel'), boolean flag for memory usage (true/false), count of tasks, count of agents. All non-personal. |
|
||||
| Yes | Agent Data | Includes: randomly generated key and ID, role name (should not include personal info), boolean settings (verbose, delegation enabled, code execution allowed), max iterations, max RPM, max retry limit, LLM info (see LLM Attributes), list of tool names (should not include personal info). No personal data. |
|
||||
| Yes | Task Metadata | Includes: randomly generated key and ID, boolean execution settings (async_execution, human_input), associated agent's role and key, list of tool names. All non-personal. |
|
||||
| Yes | Tool Usage Statistics | Includes: tool name (should not include personal info), number of usage attempts (integer), LLM attributes used. No personal data. |
|
||||
| Yes | Test Execution Data | Includes: crew's randomly generated key and ID, number of iterations, model name used, quality score (float), execution time (in seconds). All non-personal. |
|
||||
| Yes | Task Lifecycle Data | Includes: creation and execution start/end times, crew and task identifiers. Stored as spans with timestamps. No personal data. |
|
||||
| Yes | LLM Attributes | Includes: name, model_name, model, top_k, temperature, and class name of the LLM. All technical, non-personal data. |
|
||||
| Yes | Crew Deployment attempt using crewAI CLI | Includes: The fact a deploy is being made and crew id, and if it's trying to pull logs, no other data. |
|
||||
| No | Agent's Expanded Data | Includes: goal description, backstory text, i18n prompt file identifier. Users should ensure no personal info is included in text fields. |
|
||||
| No | Detailed Task Information | Includes: task description, expected output description, context references. Users should ensure no personal info is included in these fields. |
|
||||
| No | Environment Information | Includes: platform, release, system, version, and CPU count. Example: 'Windows 10', 'x86_64'. No personal data. |
|
||||
| No | Crew and Task Inputs and Outputs | Includes: input parameters and output results as non-identifiable data. Users should ensure no personal info is included. |
|
||||
| No | Comprehensive Crew Execution Data | Includes: detailed logs of crew operations, all agents and tasks data, final output. All non-personal and technical in nature. |
|
||||
|
||||
Note: "No" in the "Defaulted" column indicates that this data is only collected when `share_crew` is set to `true`.
|
||||
|
||||
### Opt-In Further Telemetry Sharing
|
||||
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
|
||||
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns.
|
||||
|
||||
### Updates and Revisions
|
||||
We are committed to maintaining the accuracy and transparency of our documentation. Regular reviews and updates are performed to ensure our documentation accurately reflects the latest developments of our codebase and telemetry practices. Users are encouraged to review this section for the most current information on our data collection practices and how they contribute to the improvement of CrewAI.
|
||||
!!! warning "Potential Personal Information"
|
||||
If you enable `share_crew`, the collected data may include personal information if it has been incorporated into crew configurations, task descriptions, or outputs. Users should carefully review their data and ensure compliance with GDPR and other applicable privacy regulations before enabling this feature.
|
||||
41
docs/tools/DALL-ETool.md
Normal file
41
docs/tools/DALL-ETool.md
Normal file
@@ -0,0 +1,41 @@
|
||||
# DALL-E Tool
|
||||
|
||||
## Description
|
||||
This tool is used to give the Agent the ability to generate images using the DALL-E model. It is a transformer-based model that generates images from textual descriptions. This tool allows the Agent to generate images based on the text input provided by the user.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
Remember that when using this tool, the text must be generated by the Agent itself. The text must be a description of the image you want to generate.
|
||||
|
||||
```python
|
||||
from crewai_tools import DallETool
|
||||
|
||||
Agent(
|
||||
...
|
||||
tools=[DallETool()],
|
||||
)
|
||||
```
|
||||
|
||||
If needed you can also tweak the parameters of the DALL-E model by passing them as arguments to the `DallETool` class. For example:
|
||||
|
||||
```python
|
||||
from crewai_tools import DallETool
|
||||
|
||||
dalle_tool = DallETool(model="dall-e-3",
|
||||
size="1024x1024",
|
||||
quality="standard",
|
||||
n=1)
|
||||
|
||||
Agent(
|
||||
...
|
||||
tools=[dalle_tool]
|
||||
)
|
||||
```
|
||||
|
||||
The parameters are based on the `client.images.generate` method from the OpenAI API. For more information on the parameters, please refer to the [OpenAI API documentation](https://platform.openai.com/docs/guides/images/introduction?lang=python).
|
||||
33
docs/tools/FileWriteTool.md
Normal file
33
docs/tools/FileWriteTool.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# FileWriterTool Documentation
|
||||
|
||||
## Description
|
||||
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files. It is particularly useful in scenarios such as generating reports, saving logs, creating configuration files, and more. This tool supports creating new directories if they don't exist, making it easier to organize your output.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package to use the `FileWriterTool` in your projects:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
To get started with the `FileWriterTool`:
|
||||
|
||||
```python
|
||||
from crewai_tools import FileWriterTool
|
||||
|
||||
# Initialize the tool
|
||||
file_writer_tool = FileWriterTool()
|
||||
|
||||
# Write content to a file in a specified directory
|
||||
result = file_writer_tool._run('example.txt', 'This is a test content.', 'test_directory')
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `filename`: The name of the file you want to create or overwrite.
|
||||
- `content`: The content to write into the file.
|
||||
- `directory` (optional): The path to the directory where the file will be created. Defaults to the current directory (`.`). If the directory does not exist, it will be created.
|
||||
|
||||
## Conclusion
|
||||
By integrating the `FileWriterTool` into your crews, the agents can execute the process of writing content to files and creating directories. This tool is essential for tasks that require saving output data, creating structured file systems, and more. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is straightforward and efficient.
|
||||
42
docs/tools/FirecrawlCrawlWebsiteTool.md
Normal file
42
docs/tools/FirecrawlCrawlWebsiteTool.md
Normal file
@@ -0,0 +1,42 @@
|
||||
# FirecrawlCrawlWebsiteTool
|
||||
|
||||
## Description
|
||||
|
||||
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
|
||||
|
||||
## Installation
|
||||
|
||||
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
|
||||
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
|
||||
|
||||
```
|
||||
pip install firecrawl-py 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
Utilize the FirecrawlScrapeFromWebsiteTool as follows to allow your agent to load websites:
|
||||
|
||||
```python
|
||||
from crewai_tools import FirecrawlCrawlWebsiteTool
|
||||
|
||||
tool = FirecrawlCrawlWebsiteTool(url='firecrawl.dev')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
|
||||
- `url`: The base URL to start crawling from.
|
||||
- `page_options`: Optional.
|
||||
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
|
||||
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
|
||||
- `crawler_options`: Optional. Options for controlling the crawling behavior.
|
||||
- `includes`: Optional. URL patterns to include in the crawl.
|
||||
- `exclude`: Optional. URL patterns to exclude from the crawl.
|
||||
- `generateImgAltText`: Optional. Generate alt text for images using LLMs (requires a paid plan).
|
||||
- `returnOnlyUrls`: Optional. If true, returns only the URLs as a list in the crawl status. Note: the response will be a list of URLs inside the data, not a list of documents.
|
||||
- `maxDepth`: Optional. Maximum depth to crawl. Depth 1 is the base URL, depth 2 includes the base URL and its direct children, and so on.
|
||||
- `mode`: Optional. The crawling mode to use. Fast mode crawls 4x faster on websites without a sitemap but may not be as accurate and shouldn't be used on heavily JavaScript-rendered websites.
|
||||
- `limit`: Optional. Maximum number of pages to crawl.
|
||||
- `timeout`: Optional. Timeout in milliseconds for the crawling operation.
|
||||
|
||||
38
docs/tools/FirecrawlScrapeWebsiteTool.md
Normal file
38
docs/tools/FirecrawlScrapeWebsiteTool.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# FirecrawlScrapeWebsiteTool
|
||||
|
||||
## Description
|
||||
|
||||
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
|
||||
|
||||
## Installation
|
||||
|
||||
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
|
||||
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
|
||||
|
||||
```
|
||||
pip install firecrawl-py 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
Utilize the FirecrawlScrapeWebsiteTool as follows to allow your agent to load websites:
|
||||
|
||||
```python
|
||||
from crewai_tools import FirecrawlScrapeWebsiteTool
|
||||
|
||||
tool = FirecrawlScrapeWebsiteTool(url='firecrawl.dev')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
|
||||
- `url`: The URL to scrape.
|
||||
- `page_options`: Optional.
|
||||
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
|
||||
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
|
||||
- `extractor_options`: Optional. Options for LLM-based extraction of structured information from the page content
|
||||
- `mode`: The extraction mode to use, currently supports 'llm-extraction'
|
||||
- `extractionPrompt`: Optional. A prompt describing what information to extract from the page
|
||||
- `extractionSchema`: Optional. The schema for the data to be extracted
|
||||
- `timeout`: Optional. Timeout in milliseconds for the request
|
||||
|
||||
35
docs/tools/FirecrawlSearchTool.md
Normal file
35
docs/tools/FirecrawlSearchTool.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# FirecrawlSearchTool
|
||||
|
||||
## Description
|
||||
|
||||
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
|
||||
|
||||
## Installation
|
||||
|
||||
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
|
||||
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
|
||||
|
||||
```
|
||||
pip install firecrawl-py 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
Utilize the FirecrawlSearchTool as follows to allow your agent to load websites:
|
||||
|
||||
```python
|
||||
from crewai_tools import FirecrawlSearchTool
|
||||
|
||||
tool = FirecrawlSearchTool(query='what is firecrawl?')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
|
||||
- `query`: The search query string to be used for searching.
|
||||
- `page_options`: Optional. Options for result formatting.
|
||||
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
|
||||
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
|
||||
- `fetchPageContent`: Optional. Fetch the full content of the page.
|
||||
- `search_options`: Optional. Options for controlling the crawling behavior.
|
||||
- `limit`: Optional. Maximum number of pages to crawl.
|
||||
56
docs/tools/MySQLTool.md
Normal file
56
docs/tools/MySQLTool.md
Normal file
@@ -0,0 +1,56 @@
|
||||
# MySQLSearchTool
|
||||
|
||||
## Description
|
||||
This tool is designed to facilitate semantic searches within MySQL database tables. Leveraging the RAG (Retrieve and Generate) technology, the MySQLSearchTool provides users with an efficient means of querying database table content, specifically tailored for MySQL databases. It simplifies the process of finding relevant data through semantic search queries, making it an invaluable resource for users needing to perform advanced queries on extensive datasets within a MySQL database.
|
||||
|
||||
## Installation
|
||||
To install the `crewai_tools` package and utilize the MySQLSearchTool, execute the following command in your terminal:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
Below is an example showcasing how to use the MySQLSearchTool to conduct a semantic search on a table within a MySQL database:
|
||||
|
||||
```python
|
||||
from crewai_tools import MySQLSearchTool
|
||||
|
||||
# Initialize the tool with the database URI and the target table name
|
||||
tool = MySQLSearchTool(db_uri='mysql://user:password@localhost:3306/mydatabase', table_name='employees')
|
||||
|
||||
```
|
||||
|
||||
## Arguments
|
||||
The MySQLSearchTool requires the following arguments for its operation:
|
||||
|
||||
- `db_uri`: A string representing the URI of the MySQL database to be queried. This argument is mandatory and must include the necessary authentication details and the location of the database.
|
||||
- `table_name`: A string specifying the name of the table within the database on which the semantic search will be performed. This argument is mandatory.
|
||||
|
||||
## Custom model and embeddings
|
||||
|
||||
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
|
||||
|
||||
```python
|
||||
tool = MySQLSearchTool(
|
||||
config=dict(
|
||||
llm=dict(
|
||||
provider="ollama", # or google, openai, anthropic, llama2, ...
|
||||
config=dict(
|
||||
model="llama2",
|
||||
# temperature=0.5,
|
||||
# top_p=1,
|
||||
# stream=true,
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
# title="Embeddings",
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
```
|
||||
74
docs/tools/NL2SQLTool.md
Normal file
74
docs/tools/NL2SQLTool.md
Normal file
@@ -0,0 +1,74 @@
|
||||
# NL2SQL Tool
|
||||
|
||||
## Description
|
||||
|
||||
This tool is used to convert natural language to SQL queries. When passsed to the agent it will generate queries and then use them to interact with the database.
|
||||
|
||||
This enables multiple workflows like having an Agent to access the database fetch information based on the goal and then use the information to generate a response, report or any other output. Along with that proivdes the ability for the Agent to update the database based on its goal.
|
||||
|
||||
**Attention**: Make sure that the Agent has access to a Read-Replica or that is okay for the Agent to run insert/update queries on the database.
|
||||
|
||||
## Requirements
|
||||
|
||||
- SqlAlchemy
|
||||
- Any DB compatible library (e.g. psycopg2, mysql-connector-python)
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
In order to use the NL2SQLTool, you need to pass the database URI to the tool. The URI should be in the format `dialect+driver://username:password@host:port/database`.
|
||||
|
||||
|
||||
```python
|
||||
from crewai_tools import NL2SQLTool
|
||||
|
||||
# psycopg2 was installed to run this example with PostgreSQL
|
||||
nl2sql = NL2SQLTool(db_uri="postgresql://example@localhost:5432/test_db")
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config["researcher"],
|
||||
allow_delegation=False,
|
||||
tools=[nl2sql]
|
||||
)
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
The primary task goal was:
|
||||
|
||||
"Retrieve the average, maximum, and minimum monthly revenue for each city, but only include cities that have more than one user. Also, count the number of user in each city and sort the results by the average monthly revenue in descending order"
|
||||
|
||||
So the Agent tried to get information from the DB, the first one is wrong so the Agent tries again and gets the correct information and passes to the next agent.
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
The second task goal was:
|
||||
|
||||
"Review the data and create a detailed report, and then create the table on the database with the fields based on the data provided.
|
||||
Include information on the average, maximum, and minimum monthly revenue for each city, but only include cities that have more than one user. Also, count the number of users in each city and sort the results by the average monthly revenue in descending order."
|
||||
|
||||
Now things start to get interesting, the Agent generates the SQL query to not only create the table but also insert the data into the table. And in the end the Agent still returns the final report which is exactly what was in the database.
|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
This is a simple example of how the NL2SQLTool can be used to interact with the database and generate reports based on the data in the database.
|
||||
|
||||
The Tool provides endless possibilities on the logic of the Agent and how it can interact with the database.
|
||||
|
||||
```
|
||||
DB -> Agent -> ... -> Agent -> DB
|
||||
```
|
||||
81
docs/tools/SpiderTool.md
Normal file
81
docs/tools/SpiderTool.md
Normal file
@@ -0,0 +1,81 @@
|
||||
# SpiderTool
|
||||
|
||||
## Description
|
||||
|
||||
[Spider](https://spider.cloud/?ref=crewai) is the [fastest](https://github.com/spider-rs/spider/blob/main/benches/BENCHMARKS.md#benchmark-results) open source scraper and crawler that returns LLM-ready data. It converts any website into pure HTML, markdown, metadata or text while enabling you to crawl with custom actions using AI.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the Spider API you need to download the [Spider SDK](https://pypi.org/project/spider-client/) and the crewai[tools] SDK too:
|
||||
|
||||
```python
|
||||
pip install spider-client 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
This example shows you how you can use the Spider tool to enable your agent to scrape and crawl websites. The data returned from the Spider API is already LLM-ready, so no need to do any cleaning there.
|
||||
|
||||
```python
|
||||
from crewai_tools import SpiderTool
|
||||
|
||||
def main():
|
||||
spider_tool = SpiderTool()
|
||||
|
||||
searcher = Agent(
|
||||
role="Web Research Expert",
|
||||
goal="Find related information from specific URL's",
|
||||
backstory="An expert web researcher that uses the web extremely well",
|
||||
tools=[spider_tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
return_metadata = Task(
|
||||
description="Scrape https://spider.cloud with a limit of 1 and enable metadata",
|
||||
expected_output="Metadata and 10 word summary of spider.cloud",
|
||||
agent=searcher
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[searcher],
|
||||
tasks=[
|
||||
return_metadata,
|
||||
],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
crew.kickoff()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key` (string, optional): Specifies Spider API key. If not specified, it looks for `SPIDER_API_KEY` in environment variables.
|
||||
- `params` (object, optional): Optional parameters for the request. Defaults to `{"return_format": "markdown"}` to return the website's content in a format that fits LLMs better.
|
||||
- `request` (string): The request type to perform. Possible values are `http`, `chrome`, and `smart`. Use `smart` to perform an HTTP request by default until JavaScript rendering is needed for the HTML.
|
||||
- `limit` (int): The maximum number of pages allowed to crawl per website. Remove the value or set it to `0` to crawl all pages.
|
||||
- `depth` (int): The crawl limit for maximum depth. If `0`, no limit will be applied.
|
||||
- `cache` (bool): Use HTTP caching for the crawl to speed up repeated runs. Default is `true`.
|
||||
- `budget` (object): Object that has paths with a counter for limiting the amount of pages example `{"*":1}` for only crawling the root page.
|
||||
- `locale` (string): The locale to use for request, example `en-US`.
|
||||
- `cookies` (string): Add HTTP cookies to use for request.
|
||||
- `stealth` (bool): Use stealth mode for headless chrome request to help prevent being blocked. The default is `true` on chrome.
|
||||
- `headers` (object): Forward HTTP headers to use for all request. The object is expected to be a map of key value pairs.
|
||||
- `metadata` (bool): Boolean to store metadata about the pages and content found. This could help improve AI interopt. Defaults to `false` unless you have the website already stored with the configuration enabled.
|
||||
- `viewport` (object): Configure the viewport for chrome. Defaults to `800x600`.
|
||||
- `encoding` (string): The type of encoding to use like `UTF-8`, `SHIFT_JIS`, or etc.
|
||||
- `subdomains` (bool): Allow subdomains to be included. Default is `false`.
|
||||
- `user_agent` (string): Add a custom HTTP user agent to the request. By default this is set to a random agent.
|
||||
- `store_data` (bool): Boolean to determine if storage should be used. If set this takes precedence over `storageless`. Defaults to `false`.
|
||||
- `gpt_config` (object): Use AI to generate actions to perform during the crawl. You can pass an array for the `"prompt"` to chain steps.
|
||||
- `fingerprint` (bool): Use advanced fingerprint for chrome.
|
||||
- `storageless` (bool): Boolean to prevent storing any type of data for the request including storage and AI vectors embedding. Defaults to `false` unless you have the website already stored.
|
||||
- `readability` (bool): Use [readability](https://github.com/mozilla/readability) to pre-process the content for reading. This may drastically improve the content for LLM usage.
|
||||
`return_format` (string): The format to return the data in. Possible values are `markdown`, `raw`, `text`, and `html2text`. Use `raw` to return the default format of the page like HTML etc.
|
||||
- `proxy_enabled` (bool): Enable high performance premium proxies for the request to prevent being blocked at the network level.
|
||||
- `query_selector` (string): The CSS query selector to use when extracting content from the markup.
|
||||
- `full_resources` (bool): Crawl and download all the resources for a website.
|
||||
- `request_timeout` (int): The timeout to use for request. Timeouts can be from `5-60`. The default is `30` seconds.
|
||||
- `run_in_background` (bool): Run the request in the background. Useful if storing data and wanting to trigger crawls to the dashboard. This has no effect if storageless is set.
|
||||
30
docs/tools/VisionTool.md
Normal file
30
docs/tools/VisionTool.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# Vision Tool
|
||||
|
||||
## Description
|
||||
|
||||
This tool is used to extract text from images. When passed to the agent it will extract the text from the image and then use it to generate a response, report or any other output. The URL or the PATH of the image should be passed to the Agent.
|
||||
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
In order to use the VisionTool, the OpenAI API key should be set in the environment variable `OPENAI_API_KEY`.
|
||||
|
||||
```python
|
||||
from crewai_tools import VisionTool
|
||||
|
||||
vision_tool = VisionTool()
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config["researcher"],
|
||||
allow_delegation=False,
|
||||
tools=[vision_tool]
|
||||
)
|
||||
```
|
||||
57
mkdocs.yml
57
mkdocs.yml
@@ -2,8 +2,8 @@ site_name: crewAI
|
||||
site_author: crewAI, Inc
|
||||
site_description: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
|
||||
repo_name: crewAI
|
||||
repo_url: https://github.com/joaomdmoura/crewai/
|
||||
site_url: https://crewai.com
|
||||
repo_url: https://github.com/crewAIInc/crewAI
|
||||
site_url: https://docs.crewai.com
|
||||
edit_uri: edit/main/docs/
|
||||
copyright: Copyright © 2024 crewAI, Inc
|
||||
|
||||
@@ -129,6 +129,7 @@ nav:
|
||||
- Processes: 'core-concepts/Processes.md'
|
||||
- Crews: 'core-concepts/Crews.md'
|
||||
- Collaboration: 'core-concepts/Collaboration.md'
|
||||
- Pipeline: 'core-concepts/Pipeline.md'
|
||||
- Training: 'core-concepts/Training-Crew.md'
|
||||
- Memory: 'core-concepts/Memory.md'
|
||||
- Planning: 'core-concepts/Planning.md'
|
||||
@@ -136,9 +137,6 @@ nav:
|
||||
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
|
||||
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
|
||||
- How to Guides:
|
||||
- Starting Your crewAI Project: 'how-to/Start-a-New-CrewAI-Project.md'
|
||||
- Installing CrewAI: 'how-to/Installing-CrewAI.md'
|
||||
- Getting Started: 'how-to/Creating-a-Crew-and-kick-it-off.md'
|
||||
- Create Custom Tools: 'how-to/Create-Custom-Tools.md'
|
||||
- Using Sequential Process: 'how-to/Sequential.md'
|
||||
- Using Hierarchical Process: 'how-to/Hierarchical.md'
|
||||
@@ -155,29 +153,38 @@ nav:
|
||||
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
|
||||
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
|
||||
- Tools Docs:
|
||||
- Google Serper Search: 'tools/SerperDevTool.md'
|
||||
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
|
||||
- Composio Tools: 'tools/ComposioTool.md'
|
||||
- Code Interpreter: 'tools/CodeInterpreterTool.md'
|
||||
- Scrape Website: 'tools/ScrapeWebsiteTool.md'
|
||||
- Directory Read: 'tools/DirectoryReadTool.md'
|
||||
- Exa Serch Web Loader: 'tools/EXASearchTool.md'
|
||||
- File Read: 'tools/FileReadTool.md'
|
||||
- Selenium Scraper: 'tools/SeleniumScrapingTool.md'
|
||||
- Directory RAG Search: 'tools/DirectorySearchTool.md'
|
||||
- PDF RAG Search: 'tools/PDFSearchTool.md'
|
||||
- TXT RAG Search: 'tools/TXTSearchTool.md'
|
||||
- CSV RAG Search: 'tools/CSVSearchTool.md'
|
||||
- XML RAG Search: 'tools/XMLSearchTool.md'
|
||||
- JSON RAG Search: 'tools/JSONSearchTool.md'
|
||||
- Docx Rag Search: 'tools/DOCXSearchTool.md'
|
||||
- MDX RAG Search: 'tools/MDXSearchTool.md'
|
||||
- PG RAG Search: 'tools/PGSearchTool.md'
|
||||
- Website RAG Search: 'tools/WebsiteSearchTool.md'
|
||||
- Github RAG Search: 'tools/GitHubSearchTool.md'
|
||||
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'
|
||||
- Youtube Video RAG Search: 'tools/YoutubeVideoSearchTool.md'
|
||||
- Code Interpreter: 'tools/CodeInterpreterTool.md'
|
||||
- Composio Tools: 'tools/ComposioTool.md'
|
||||
- CSV RAG Search: 'tools/CSVSearchTool.md'
|
||||
- DALL-E Tool: 'tools/DALL-ETool.md'
|
||||
- Directory RAG Search: 'tools/DirectorySearchTool.md'
|
||||
- Directory Read: 'tools/DirectoryReadTool.md'
|
||||
- Docx Rag Search: 'tools/DOCXSearchTool.md'
|
||||
- EXA Serch Web Loader: 'tools/EXASearchTool.md'
|
||||
- File Read: 'tools/FileReadTool.md'
|
||||
- File Write: 'tools/FileWriteTool.md'
|
||||
- Firecrawl Crawl Website Tool: 'tools/FirecrawlCrawlWebsiteTool.md'
|
||||
- Firecrawl Scrape Website Tool: 'tools/FirecrawlScrapeWebsiteTool.md'
|
||||
- Firecrawl Search Tool: 'tools/FirecrgstawlSearchTool.md'
|
||||
- Github RAG Search: 'tools/GitHubSearchTool.md'
|
||||
- Google Serper Search: 'tools/SerperDevTool.md'
|
||||
- JSON RAG Search: 'tools/JSONSearchTool.md'
|
||||
- MDX RAG Search: 'tools/MDXSearchTool.md'
|
||||
- MySQL Tool: 'tools/MySQLTool.md'
|
||||
- NL2SQL Tool: 'tools/NL2SQLTool.md'
|
||||
- PDF RAG Search: 'tools/PDFSearchTool.md'
|
||||
- PG RAG Search: 'tools/PGSearchTool.md'
|
||||
- Scrape Website: 'tools/ScrapeWebsiteTool.md'
|
||||
- Selenium Scraper: 'tools/SeleniumScrapingTool.md'
|
||||
- Spider Scraper: 'tools/SpiderTool.md'
|
||||
- TXT RAG Search: 'tools/TXTSearchTool.md'
|
||||
- Vision Tool: 'tools/VisionTool.md'
|
||||
- Website RAG Search: 'tools/WebsiteSearchTool.md'
|
||||
- XML RAG Search: 'tools/XMLSearchTool.md'
|
||||
- Youtube Channel RAG Search: 'tools/YoutubeChannelSearchTool.md'
|
||||
- Youtube Video RAG Search: 'tools/YoutubeVideoSearchTool.md'
|
||||
- Examples:
|
||||
- Trip Planner Crew: https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner"
|
||||
- Create Instagram Post: https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
|
||||
|
||||
1595
poetry.lock
generated
1595
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "crewai"
|
||||
version = "0.46.0"
|
||||
version = "0.54.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
authors = ["Joao Moura <joao@crewai.com>"]
|
||||
readme = "README.md"
|
||||
@@ -21,7 +21,7 @@ opentelemetry-sdk = "^1.22.0"
|
||||
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
|
||||
instructor = "1.3.3"
|
||||
regex = "^2023.12.25"
|
||||
crewai-tools = { version = "^0.4.26", optional = true }
|
||||
crewai-tools = { version = "^0.8.3", optional = true }
|
||||
click = "^8.1.7"
|
||||
python-dotenv = "^1.0.0"
|
||||
appdirs = "^1.4.4"
|
||||
@@ -29,6 +29,7 @@ jsonref = "^1.1.0"
|
||||
agentops = { version = "^0.3.0", optional = true }
|
||||
embedchain = "^0.1.114"
|
||||
json-repair = "^0.25.2"
|
||||
auth0-python = "^4.7.1"
|
||||
|
||||
[tool.poetry.extras]
|
||||
tools = ["crewai-tools"]
|
||||
@@ -46,7 +47,7 @@ mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
|
||||
mkdocs-material-extensions = "^1.3.1"
|
||||
pillow = "^10.2.0"
|
||||
cairosvg = "^2.7.1"
|
||||
crewai-tools = "^0.4.26"
|
||||
crewai-tools = "^0.8.3"
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
pytest = "^8.0.0"
|
||||
@@ -62,6 +63,9 @@ ignore_missing_imports = true
|
||||
disable_error_code = 'import-untyped'
|
||||
exclude = ["cli/templates"]
|
||||
|
||||
[tool.bandit]
|
||||
exclude_dirs = ["src/crewai/cli/templates"]
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
@@ -19,18 +19,28 @@ from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_F
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" already defined on line 21
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
|
||||
def track_agent():
|
||||
def mock_agent_ops_provider():
|
||||
def track_agent(*args, **kwargs):
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
return track_agent
|
||||
|
||||
|
||||
agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" already defined on line 21
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
else:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
|
||||
|
||||
@track_agent()
|
||||
class Agent(BaseAgent):
|
||||
@@ -103,40 +113,46 @@ class Agent(BaseAgent):
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
)
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
__pydantic_self__.agent_ops_agent_name = __pydantic_self__.role
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_agent_executor(self) -> "Agent":
|
||||
"""Ensure agent executor and token process are set."""
|
||||
if hasattr(self.llm, "model_name"):
|
||||
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
|
||||
def post_init_setup(self):
|
||||
self.agent_ops_agent_name = self.role
|
||||
|
||||
# Ensure self.llm.callbacks is a list
|
||||
if not isinstance(self.llm.callbacks, list):
|
||||
self.llm.callbacks = []
|
||||
# Different llms store the model name in different attributes
|
||||
model_name = getattr(self.llm, "model_name", None) or getattr(
|
||||
self.llm, "deployment_name", None
|
||||
)
|
||||
|
||||
# Check if an instance of TokenCalcHandler already exists in the list
|
||||
if not any(
|
||||
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
|
||||
):
|
||||
self.llm.callbacks.append(token_handler)
|
||||
|
||||
if agentops and not any(
|
||||
isinstance(handler, agentops.LangchainCallbackHandler)
|
||||
for handler in self.llm.callbacks
|
||||
):
|
||||
agentops.stop_instrumenting()
|
||||
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
|
||||
if model_name:
|
||||
self._setup_llm_callbacks(model_name)
|
||||
|
||||
if not self.agent_executor:
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
self._setup_agent_executor()
|
||||
|
||||
return self
|
||||
|
||||
def _setup_llm_callbacks(self, model_name: str):
|
||||
token_handler = TokenCalcHandler(model_name, self._token_process)
|
||||
|
||||
if not isinstance(self.llm.callbacks, list):
|
||||
self.llm.callbacks = []
|
||||
|
||||
if not any(
|
||||
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
|
||||
):
|
||||
self.llm.callbacks.append(token_handler)
|
||||
|
||||
if agentops and not any(
|
||||
isinstance(handler, agentops.LangchainCallbackHandler)
|
||||
for handler in self.llm.callbacks
|
||||
):
|
||||
agentops.stop_instrumenting()
|
||||
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
|
||||
|
||||
def _setup_agent_executor(self):
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
|
||||
def execute_task(
|
||||
self,
|
||||
task: Any,
|
||||
@@ -203,7 +219,7 @@ class Agent(BaseAgent):
|
||||
raise e
|
||||
result = self.execute_task(task, context, tools)
|
||||
|
||||
if self.max_rpm:
|
||||
if self.max_rpm and self._rpm_controller:
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
|
||||
# If there was any tool in self.tools_results that had result_as_answer
|
||||
|
||||
@@ -2,3 +2,5 @@ from .cache.cache_handler import CacheHandler
|
||||
from .executor import CrewAgentExecutor
|
||||
from .parser import CrewAgentParser
|
||||
from .tools_handler import ToolsHandler
|
||||
|
||||
__all__ = ["CacheHandler", "CrewAgentExecutor", "CrewAgentParser", "ToolsHandler"]
|
||||
|
||||
@@ -7,7 +7,6 @@ from typing import Any, Dict, List, Optional, TypeVar
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
PrivateAttr,
|
||||
@@ -20,6 +19,7 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
from crewai.utilities.config import process_config
|
||||
|
||||
T = TypeVar("T", bound="BaseAgent")
|
||||
|
||||
@@ -74,21 +74,26 @@ class BaseAgent(ABC, BaseModel):
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
_logger: Logger = PrivateAttr()
|
||||
_rpm_controller: RPMController = PrivateAttr(default=None)
|
||||
_logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=False))
|
||||
_rpm_controller: Optional[RPMController] = PrivateAttr(default=None)
|
||||
_request_within_rpm_limit: Any = PrivateAttr(default=None)
|
||||
formatting_errors: int = 0
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
_original_role: Optional[str] = PrivateAttr(default=None)
|
||||
_original_goal: Optional[str] = PrivateAttr(default=None)
|
||||
_original_backstory: Optional[str] = PrivateAttr(default=None)
|
||||
_token_process: TokenProcess = PrivateAttr(default_factory=TokenProcess)
|
||||
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
|
||||
formatting_errors: int = Field(
|
||||
default=0, description="Number of formatting errors."
|
||||
)
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent", default=None, exclude=True
|
||||
)
|
||||
cache: bool = Field(
|
||||
default=True, description="Whether the agent should use a cache for tool usage."
|
||||
)
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent", default=None
|
||||
)
|
||||
verbose: bool = Field(
|
||||
default=False, description="Verbose mode for the Agent Execution"
|
||||
)
|
||||
@@ -123,20 +128,29 @@ class BaseAgent(ABC, BaseModel):
|
||||
default=None, description="Maximum number of tokens for the agent's execution."
|
||||
)
|
||||
|
||||
_original_role: str | None = None
|
||||
_original_goal: str | None = None
|
||||
_original_backstory: str | None = None
|
||||
_token_process: TokenProcess = TokenProcess()
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def process_model_config(cls, values):
|
||||
return process_config(values, cls)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_config_attributes(self):
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
def validate_and_set_attributes(self):
|
||||
# Validate required fields
|
||||
for field in ["role", "goal", "backstory"]:
|
||||
if getattr(self, field) is None:
|
||||
raise ValueError(
|
||||
f"{field} must be provided either directly or through config"
|
||||
)
|
||||
|
||||
# Set private attributes
|
||||
self._logger = Logger(verbose=self.verbose)
|
||||
if self.max_rpm and not self._rpm_controller:
|
||||
self._rpm_controller = RPMController(
|
||||
max_rpm=self.max_rpm, logger=self._logger
|
||||
)
|
||||
if not self._token_process:
|
||||
self._token_process = TokenProcess()
|
||||
|
||||
return self
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@@ -147,14 +161,6 @@ class BaseAgent(ABC, BaseModel):
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_attributes_based_on_config(self) -> "BaseAgent":
|
||||
"""Set attributes based on the agent configuration."""
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_private_attrs(self):
|
||||
"""Set private attributes."""
|
||||
@@ -170,7 +176,7 @@ class BaseAgent(ABC, BaseModel):
|
||||
@property
|
||||
def key(self):
|
||||
source = [self.role, self.goal, self.backstory]
|
||||
return md5("|".join(source).encode()).hexdigest()
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
@abstractmethod
|
||||
def execute_task(
|
||||
|
||||
2
src/crewai/agents/cache/__init__.py
vendored
2
src/crewai/agents/cache/__init__.py
vendored
@@ -1 +1,3 @@
|
||||
from .cache_handler import CacheHandler
|
||||
|
||||
__all__ = ["CacheHandler"]
|
||||
|
||||
11
src/crewai/agents/cache/cache_handler.py
vendored
11
src/crewai/agents/cache/cache_handler.py
vendored
@@ -1,13 +1,12 @@
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, PrivateAttr
|
||||
|
||||
|
||||
class CacheHandler:
|
||||
class CacheHandler(BaseModel):
|
||||
"""Callback handler for tool usage."""
|
||||
|
||||
_cache: dict = {}
|
||||
|
||||
def __init__(self):
|
||||
self._cache = {}
|
||||
_cache: Dict[str, Any] = PrivateAttr(default_factory=dict)
|
||||
|
||||
def add(self, tool, input, output):
|
||||
self._cache[f"{tool}-{input}"] = output
|
||||
|
||||
@@ -1,33 +1,29 @@
|
||||
import threading
|
||||
import time
|
||||
from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union
|
||||
|
||||
import click
|
||||
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.agent import ExceptionTool
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils.input import get_color_mapping
|
||||
from pydantic import InstanceOf
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
|
||||
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
|
||||
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
@@ -213,11 +209,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
yield step
|
||||
return
|
||||
|
||||
yield AgentStep(
|
||||
action=AgentAction("_Exception", str(e), str(e)),
|
||||
observation=str(e),
|
||||
)
|
||||
return
|
||||
raise e
|
||||
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
|
||||
3
src/crewai/cli/authentication/__init__.py
Normal file
3
src/crewai/cli/authentication/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .main import AuthenticationCommand
|
||||
|
||||
__all__ = ["AuthenticationCommand"]
|
||||
4
src/crewai/cli/authentication/constants.py
Normal file
4
src/crewai/cli/authentication/constants.py
Normal file
@@ -0,0 +1,4 @@
|
||||
ALGORITHMS = ["RS256"]
|
||||
AUTH0_DOMAIN = "dev-jzsr0j8zs0atl5ha.us.auth0.com"
|
||||
AUTH0_CLIENT_ID = "CZtyRHuVW80HbLSjk4ggXNzjg4KAt7Oe"
|
||||
AUTH0_AUDIENCE = "https://dev-jzsr0j8zs0atl5ha.us.auth0.com/api/v2/"
|
||||
75
src/crewai/cli/authentication/main.py
Normal file
75
src/crewai/cli/authentication/main.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import time
|
||||
import webbrowser
|
||||
from typing import Any, Dict
|
||||
|
||||
import requests
|
||||
from rich.console import Console
|
||||
|
||||
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
|
||||
from .utils import TokenManager, validate_token
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
class AuthenticationCommand:
|
||||
DEVICE_CODE_URL = f"https://{AUTH0_DOMAIN}/oauth/device/code"
|
||||
TOKEN_URL = f"https://{AUTH0_DOMAIN}/oauth/token"
|
||||
|
||||
def __init__(self):
|
||||
self.token_manager = TokenManager()
|
||||
|
||||
def signup(self) -> None:
|
||||
"""Sign up to CrewAI+"""
|
||||
console.print("Signing Up to CrewAI+ \n", style="bold blue")
|
||||
device_code_data = self._get_device_code()
|
||||
self._display_auth_instructions(device_code_data)
|
||||
|
||||
return self._poll_for_token(device_code_data)
|
||||
|
||||
def _get_device_code(self) -> Dict[str, Any]:
|
||||
"""Get the device code to authenticate the user."""
|
||||
|
||||
device_code_payload = {
|
||||
"client_id": AUTH0_CLIENT_ID,
|
||||
"scope": "openid",
|
||||
"audience": AUTH0_AUDIENCE,
|
||||
}
|
||||
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
def _display_auth_instructions(self, device_code_data: Dict[str, str]) -> None:
|
||||
"""Display the authentication instructions to the user."""
|
||||
console.print("1. Navigate to: ", device_code_data["verification_uri_complete"])
|
||||
console.print("2. Enter the following code: ", device_code_data["user_code"])
|
||||
webbrowser.open(device_code_data["verification_uri_complete"])
|
||||
|
||||
def _poll_for_token(self, device_code_data: Dict[str, Any]) -> None:
|
||||
"""Poll the server for the token."""
|
||||
token_payload = {
|
||||
"grant_type": "urn:ietf:params:oauth:grant-type:device_code",
|
||||
"device_code": device_code_data["device_code"],
|
||||
"client_id": AUTH0_CLIENT_ID,
|
||||
}
|
||||
|
||||
attempts = 0
|
||||
while True and attempts < 5:
|
||||
response = requests.post(self.TOKEN_URL, data=token_payload)
|
||||
token_data = response.json()
|
||||
|
||||
if response.status_code == 200:
|
||||
validate_token(token_data["id_token"])
|
||||
expires_in = 360000 # Token expiration time in seconds
|
||||
self.token_manager.save_tokens(token_data["access_token"], expires_in)
|
||||
console.print("\nWelcome to CrewAI+ !!", style="green")
|
||||
return
|
||||
|
||||
if token_data["error"] not in ("authorization_pending", "slow_down"):
|
||||
raise requests.HTTPError(token_data["error_description"])
|
||||
|
||||
time.sleep(device_code_data["interval"])
|
||||
attempts += 1
|
||||
|
||||
console.print(
|
||||
"Timeout: Failed to get the token. Please try again.", style="bold red"
|
||||
)
|
||||
144
src/crewai/cli/authentication/utils.py
Normal file
144
src/crewai/cli/authentication/utils.py
Normal file
@@ -0,0 +1,144 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from auth0.authentication.token_verifier import (
|
||||
AsymmetricSignatureVerifier,
|
||||
TokenVerifier,
|
||||
)
|
||||
from cryptography.fernet import Fernet
|
||||
|
||||
from .constants import AUTH0_CLIENT_ID, AUTH0_DOMAIN
|
||||
|
||||
|
||||
def validate_token(id_token: str) -> None:
|
||||
"""
|
||||
Verify the token and its precedence
|
||||
|
||||
:param id_token:
|
||||
"""
|
||||
jwks_url = f"https://{AUTH0_DOMAIN}/.well-known/jwks.json"
|
||||
issuer = f"https://{AUTH0_DOMAIN}/"
|
||||
signature_verifier = AsymmetricSignatureVerifier(jwks_url)
|
||||
token_verifier = TokenVerifier(
|
||||
signature_verifier=signature_verifier, issuer=issuer, audience=AUTH0_CLIENT_ID
|
||||
)
|
||||
token_verifier.verify(id_token)
|
||||
|
||||
|
||||
class TokenManager:
|
||||
def __init__(self, file_path: str = "tokens.enc") -> None:
|
||||
"""
|
||||
Initialize the TokenManager class.
|
||||
|
||||
:param file_path: The file path to store the encrypted tokens. Default is "tokens.enc".
|
||||
"""
|
||||
self.file_path = file_path
|
||||
self.key = self._get_or_create_key()
|
||||
self.fernet = Fernet(self.key)
|
||||
|
||||
def _get_or_create_key(self) -> bytes:
|
||||
"""
|
||||
Get or create the encryption key.
|
||||
|
||||
:return: The encryption key.
|
||||
"""
|
||||
key_filename = "secret.key"
|
||||
key = self.read_secure_file(key_filename)
|
||||
|
||||
if key is not None:
|
||||
return key
|
||||
|
||||
new_key = Fernet.generate_key()
|
||||
self.save_secure_file(key_filename, new_key)
|
||||
return new_key
|
||||
|
||||
def save_tokens(self, access_token: str, expires_in: int) -> None:
|
||||
"""
|
||||
Save the access token and its expiration time.
|
||||
|
||||
:param access_token: The access token to save.
|
||||
:param expires_in: The expiration time of the access token in seconds.
|
||||
"""
|
||||
expiration_time = datetime.now() + timedelta(seconds=expires_in)
|
||||
data = {
|
||||
"access_token": access_token,
|
||||
"expiration": expiration_time.isoformat(),
|
||||
}
|
||||
encrypted_data = self.fernet.encrypt(json.dumps(data).encode())
|
||||
self.save_secure_file(self.file_path, encrypted_data)
|
||||
|
||||
def get_token(self) -> Optional[str]:
|
||||
"""
|
||||
Get the access token if it is valid and not expired.
|
||||
|
||||
:return: The access token if valid and not expired, otherwise None.
|
||||
"""
|
||||
encrypted_data = self.read_secure_file(self.file_path)
|
||||
|
||||
decrypted_data = self.fernet.decrypt(encrypted_data)
|
||||
data = json.loads(decrypted_data)
|
||||
|
||||
expiration = datetime.fromisoformat(data["expiration"])
|
||||
if expiration <= datetime.now():
|
||||
return None
|
||||
|
||||
return data["access_token"]
|
||||
|
||||
def get_secure_storage_path(self) -> Path:
|
||||
"""
|
||||
Get the secure storage path based on the operating system.
|
||||
|
||||
:return: The secure storage path.
|
||||
"""
|
||||
if sys.platform == "win32":
|
||||
# Windows: Use %LOCALAPPDATA%
|
||||
base_path = os.environ.get("LOCALAPPDATA")
|
||||
elif sys.platform == "darwin":
|
||||
# macOS: Use ~/Library/Application Support
|
||||
base_path = os.path.expanduser("~/Library/Application Support")
|
||||
else:
|
||||
# Linux and other Unix-like: Use ~/.local/share
|
||||
base_path = os.path.expanduser("~/.local/share")
|
||||
|
||||
app_name = "crewai/credentials"
|
||||
storage_path = Path(base_path) / app_name
|
||||
|
||||
storage_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
return storage_path
|
||||
|
||||
def save_secure_file(self, filename: str, content: bytes) -> None:
|
||||
"""
|
||||
Save the content to a secure file.
|
||||
|
||||
:param filename: The name of the file.
|
||||
:param content: The content to save.
|
||||
"""
|
||||
storage_path = self.get_secure_storage_path()
|
||||
file_path = storage_path / filename
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(content)
|
||||
|
||||
# Set appropriate permissions (read/write for owner only)
|
||||
os.chmod(file_path, 0o600)
|
||||
|
||||
def read_secure_file(self, filename: str) -> Optional[bytes]:
|
||||
"""
|
||||
Read the content of a secure file.
|
||||
|
||||
:param filename: The name of the file.
|
||||
:return: The content of the file if it exists, otherwise None.
|
||||
"""
|
||||
storage_path = self.get_secure_storage_path()
|
||||
file_path = storage_path / filename
|
||||
|
||||
if not file_path.exists():
|
||||
return None
|
||||
|
||||
with open(file_path, "rb") as f:
|
||||
return f.read()
|
||||
@@ -1,3 +1,5 @@
|
||||
from typing import Optional
|
||||
|
||||
import click
|
||||
import pkg_resources
|
||||
|
||||
@@ -7,7 +9,10 @@ from crewai.memory.storage.kickoff_task_outputs_storage import (
|
||||
KickoffTaskOutputsSQLiteStorage,
|
||||
)
|
||||
|
||||
from .authentication.main import AuthenticationCommand
|
||||
from .deploy.main import DeployCommand
|
||||
from .evaluate_crew import evaluate_crew
|
||||
from .install_crew import install_crew
|
||||
from .replay_from_task import replay_task_command
|
||||
from .reset_memories_command import reset_memories_command
|
||||
from .run_crew import run_crew
|
||||
@@ -60,10 +65,17 @@ def version(tools):
|
||||
default=5,
|
||||
help="Number of iterations to train the crew",
|
||||
)
|
||||
def train(n_iterations: int):
|
||||
@click.option(
|
||||
"-f",
|
||||
"--filename",
|
||||
type=str,
|
||||
default="trained_agents_data.pkl",
|
||||
help="Path to a custom file for training",
|
||||
)
|
||||
def train(n_iterations: int, filename: str):
|
||||
"""Train the crew."""
|
||||
click.echo(f"Training the crew for {n_iterations} iterations")
|
||||
train_crew(n_iterations)
|
||||
click.echo(f"Training the Crew for {n_iterations} iterations")
|
||||
train_crew(n_iterations, filename)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@@ -158,12 +170,83 @@ def test(n_iterations: int, model: str):
|
||||
evaluate_crew(n_iterations, model)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def install():
|
||||
"""Install the Crew."""
|
||||
install_crew()
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def run():
|
||||
"""Run the crew."""
|
||||
click.echo("Running the crew")
|
||||
"""Run the Crew."""
|
||||
click.echo("Running the Crew")
|
||||
run_crew()
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def signup():
|
||||
"""Sign Up/Login to CrewAI+."""
|
||||
AuthenticationCommand().signup()
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def login():
|
||||
"""Sign Up/Login to CrewAI+."""
|
||||
AuthenticationCommand().signup()
|
||||
|
||||
|
||||
# DEPLOY CREWAI+ COMMANDS
|
||||
@crewai.group()
|
||||
def deploy():
|
||||
"""Deploy the Crew CLI group."""
|
||||
pass
|
||||
|
||||
|
||||
@deploy.command(name="create")
|
||||
def deploy_create():
|
||||
"""Create a Crew deployment."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.create_crew()
|
||||
|
||||
|
||||
@deploy.command(name="list")
|
||||
def deploy_list():
|
||||
"""List all deployments."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.list_crews()
|
||||
|
||||
|
||||
@deploy.command(name="push")
|
||||
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
|
||||
def deploy_push(uuid: Optional[str]):
|
||||
"""Deploy the Crew."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.deploy(uuid=uuid)
|
||||
|
||||
|
||||
@deploy.command(name="status")
|
||||
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
|
||||
def deply_status(uuid: Optional[str]):
|
||||
"""Get the status of a deployment."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.get_crew_status(uuid=uuid)
|
||||
|
||||
|
||||
@deploy.command(name="logs")
|
||||
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
|
||||
def deploy_logs(uuid: Optional[str]):
|
||||
"""Get the logs of a deployment."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.get_crew_logs(uuid=uuid)
|
||||
|
||||
|
||||
@deploy.command(name="remove")
|
||||
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
|
||||
def deploy_remove(uuid: Optional[str]):
|
||||
"""Remove a deployment."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.remove_crew(uuid=uuid)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
crewai()
|
||||
|
||||
0
src/crewai/cli/deploy/__init__.py
Normal file
0
src/crewai/cli/deploy/__init__.py
Normal file
66
src/crewai/cli/deploy/api.py
Normal file
66
src/crewai/cli/deploy/api.py
Normal file
@@ -0,0 +1,66 @@
|
||||
from os import getenv
|
||||
|
||||
import requests
|
||||
|
||||
from crewai.cli.deploy.utils import get_crewai_version
|
||||
|
||||
|
||||
class CrewAPI:
|
||||
"""
|
||||
CrewAPI class to interact with the crewAI+ API.
|
||||
"""
|
||||
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self.api_key = api_key
|
||||
self.headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": f"CrewAI-CLI/{get_crewai_version()}",
|
||||
}
|
||||
self.base_url = getenv(
|
||||
"CREWAI_BASE_URL", "https://dev.crewai.com/crewai_plus/api/v1/crews"
|
||||
)
|
||||
|
||||
def _make_request(self, method: str, endpoint: str, **kwargs) -> requests.Response:
|
||||
url = f"{self.base_url}/{endpoint}"
|
||||
return requests.request(method, url, headers=self.headers, **kwargs)
|
||||
|
||||
# Deploy
|
||||
def deploy_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("POST", f"by-name/{project_name}/deploy")
|
||||
|
||||
def deploy_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("POST", f"{uuid}/deploy")
|
||||
|
||||
# Status
|
||||
def status_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("GET", f"by-name/{project_name}/status")
|
||||
|
||||
def status_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("GET", f"{uuid}/status")
|
||||
|
||||
# Logs
|
||||
def logs_by_name(
|
||||
self, project_name: str, log_type: str = "deployment"
|
||||
) -> requests.Response:
|
||||
return self._make_request("GET", f"by-name/{project_name}/logs/{log_type}")
|
||||
|
||||
def logs_by_uuid(
|
||||
self, uuid: str, log_type: str = "deployment"
|
||||
) -> requests.Response:
|
||||
return self._make_request("GET", f"{uuid}/logs/{log_type}")
|
||||
|
||||
# Delete
|
||||
def delete_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("DELETE", f"by-name/{project_name}")
|
||||
|
||||
def delete_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("DELETE", f"{uuid}")
|
||||
|
||||
# List
|
||||
def list_crews(self) -> requests.Response:
|
||||
return self._make_request("GET", "")
|
||||
|
||||
# Create
|
||||
def create_crew(self, payload) -> requests.Response:
|
||||
return self._make_request("POST", "", json=payload)
|
||||
312
src/crewai/cli/deploy/main.py
Normal file
312
src/crewai/cli/deploy/main.py
Normal file
@@ -0,0 +1,312 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from rich.console import Console
|
||||
|
||||
from crewai.telemetry import Telemetry
|
||||
from .api import CrewAPI
|
||||
from .utils import (
|
||||
fetch_and_json_env_file,
|
||||
get_auth_token,
|
||||
get_git_remote_url,
|
||||
get_project_name,
|
||||
)
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
class DeployCommand:
|
||||
"""
|
||||
A class to handle deployment-related operations for CrewAI projects.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialize the DeployCommand with project name and API client.
|
||||
"""
|
||||
try:
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
access_token = get_auth_token()
|
||||
except Exception:
|
||||
self._deploy_signup_error_span = self._telemetry.deploy_signup_error_span(
|
||||
self
|
||||
)
|
||||
console.print(
|
||||
"Please sign up/login to CrewAI+ before using the CLI.",
|
||||
style="bold red",
|
||||
)
|
||||
console.print("Run 'crewai signup' to sign up/login.", style="bold green")
|
||||
raise SystemExit
|
||||
|
||||
self.project_name = get_project_name()
|
||||
if self.project_name is None:
|
||||
console.print("No project name found. Please ensure your project has a valid pyproject.toml file.", style="bold red")
|
||||
raise SystemExit
|
||||
|
||||
self.client = CrewAPI(api_key=access_token)
|
||||
|
||||
def _handle_error(self, json_response: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Handle and display error messages from API responses.
|
||||
|
||||
Args:
|
||||
json_response (Dict[str, Any]): The JSON response containing error information.
|
||||
"""
|
||||
error = json_response.get("error", "Unknown error")
|
||||
message = json_response.get("message", "No message provided")
|
||||
console.print(f"Error: {error}", style="bold red")
|
||||
console.print(f"Message: {message}", style="bold red")
|
||||
|
||||
def _standard_no_param_error_message(self) -> None:
|
||||
"""
|
||||
Display a standard error message when no UUID or project name is available.
|
||||
"""
|
||||
console.print(
|
||||
"No UUID provided, project pyproject.toml not found or with error.",
|
||||
style="bold red",
|
||||
)
|
||||
|
||||
def _display_deployment_info(self, json_response: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Display deployment information.
|
||||
|
||||
Args:
|
||||
json_response (Dict[str, Any]): The deployment information to display.
|
||||
"""
|
||||
console.print("Deploying the crew...\n", style="bold blue")
|
||||
for key, value in json_response.items():
|
||||
console.print(f"{key.title()}: [green]{value}[/green]")
|
||||
console.print("\nTo check the status of the deployment, run:")
|
||||
console.print("crewai deploy status")
|
||||
console.print(" or")
|
||||
console.print(f"crewai deploy status --uuid \"{json_response['uuid']}\"")
|
||||
|
||||
def _display_logs(self, log_messages: List[Dict[str, Any]]) -> None:
|
||||
"""
|
||||
Display log messages.
|
||||
|
||||
Args:
|
||||
log_messages (List[Dict[str, Any]]): The log messages to display.
|
||||
"""
|
||||
for log_message in log_messages:
|
||||
console.print(
|
||||
f"{log_message['timestamp']} - {log_message['level']}: {log_message['message']}"
|
||||
)
|
||||
|
||||
def deploy(self, uuid: Optional[str] = None) -> None:
|
||||
"""
|
||||
Deploy a crew using either UUID or project name.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): The UUID of the crew to deploy.
|
||||
"""
|
||||
self._start_deployment_span = self._telemetry.start_deployment_span(self, uuid)
|
||||
console.print("Starting deployment...", style="bold blue")
|
||||
if uuid:
|
||||
response = self.client.deploy_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.deploy_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_deployment_info(json_response)
|
||||
else:
|
||||
self._handle_error(json_response)
|
||||
|
||||
def create_crew(self) -> None:
|
||||
"""
|
||||
Create a new crew deployment.
|
||||
"""
|
||||
self._create_crew_deployment_span = self._telemetry.create_crew_deployment_span(
|
||||
self
|
||||
)
|
||||
console.print("Creating deployment...", style="bold blue")
|
||||
env_vars = fetch_and_json_env_file()
|
||||
remote_repo_url = get_git_remote_url()
|
||||
|
||||
if remote_repo_url is None:
|
||||
console.print("No remote repository URL found.", style="bold red")
|
||||
console.print("Please ensure your project has a valid remote repository.", style="yellow")
|
||||
return
|
||||
|
||||
self._confirm_input(env_vars, remote_repo_url)
|
||||
payload = self._create_payload(env_vars, remote_repo_url)
|
||||
|
||||
response = self.client.create_crew(payload)
|
||||
if response.status_code == 201:
|
||||
self._display_creation_success(response.json())
|
||||
else:
|
||||
self._handle_error(response.json())
|
||||
|
||||
def _confirm_input(self, env_vars: Dict[str, str], remote_repo_url: str) -> None:
|
||||
"""
|
||||
Confirm input parameters with the user.
|
||||
|
||||
Args:
|
||||
env_vars (Dict[str, str]): Environment variables.
|
||||
remote_repo_url (str): Remote repository URL.
|
||||
"""
|
||||
input(f"Press Enter to continue with the following Env vars: {env_vars}")
|
||||
input(
|
||||
f"Press Enter to continue with the following remote repository: {remote_repo_url}\n"
|
||||
)
|
||||
|
||||
def _create_payload(
|
||||
self,
|
||||
env_vars: Dict[str, str],
|
||||
remote_repo_url: str,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Create the payload for crew creation.
|
||||
|
||||
Args:
|
||||
remote_repo_url (str): Remote repository URL.
|
||||
env_vars (Dict[str, str]): Environment variables.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: The payload for crew creation.
|
||||
"""
|
||||
return {
|
||||
"deploy": {
|
||||
"name": self.project_name,
|
||||
"repo_clone_url": remote_repo_url,
|
||||
"env": env_vars,
|
||||
}
|
||||
}
|
||||
|
||||
def _display_creation_success(self, json_response: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Display success message after crew creation.
|
||||
|
||||
Args:
|
||||
json_response (Dict[str, Any]): The response containing crew information.
|
||||
"""
|
||||
console.print("Deployment created successfully!\n", style="bold green")
|
||||
console.print(
|
||||
f"Name: {self.project_name} ({json_response['uuid']})", style="bold green"
|
||||
)
|
||||
console.print(f"Status: {json_response['status']}", style="bold green")
|
||||
console.print("\nTo (re)deploy the crew, run:")
|
||||
console.print("crewai deploy push")
|
||||
console.print(" or")
|
||||
console.print(f"crewai deploy push --uuid {json_response['uuid']}")
|
||||
|
||||
def list_crews(self) -> None:
|
||||
"""
|
||||
List all available crews.
|
||||
"""
|
||||
console.print("Listing all Crews\n", style="bold blue")
|
||||
|
||||
response = self.client.list_crews()
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_crews(json_response)
|
||||
else:
|
||||
self._display_no_crews_message()
|
||||
|
||||
def _display_crews(self, crews_data: List[Dict[str, Any]]) -> None:
|
||||
"""
|
||||
Display the list of crews.
|
||||
|
||||
Args:
|
||||
crews_data (List[Dict[str, Any]]): List of crew data to display.
|
||||
"""
|
||||
for crew_data in crews_data:
|
||||
console.print(
|
||||
f"- {crew_data['name']} ({crew_data['uuid']}) [blue]{crew_data['status']}[/blue]"
|
||||
)
|
||||
|
||||
def _display_no_crews_message(self) -> None:
|
||||
"""
|
||||
Display a message when no crews are available.
|
||||
"""
|
||||
console.print("You don't have any Crews yet. Let's create one!", style="yellow")
|
||||
console.print(" crewai create crew <crew_name>", style="green")
|
||||
|
||||
def get_crew_status(self, uuid: Optional[str] = None) -> None:
|
||||
"""
|
||||
Get the status of a crew.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): The UUID of the crew to check.
|
||||
"""
|
||||
console.print("Fetching deployment status...", style="bold blue")
|
||||
if uuid:
|
||||
response = self.client.status_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.status_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_crew_status(json_response)
|
||||
else:
|
||||
self._handle_error(json_response)
|
||||
|
||||
def _display_crew_status(self, status_data: Dict[str, str]) -> None:
|
||||
"""
|
||||
Display the status of a crew.
|
||||
|
||||
Args:
|
||||
status_data (Dict[str, str]): The status data to display.
|
||||
"""
|
||||
console.print(f"Name:\t {status_data['name']}")
|
||||
console.print(f"Status:\t {status_data['status']}")
|
||||
|
||||
def get_crew_logs(self, uuid: Optional[str], log_type: str = "deployment") -> None:
|
||||
"""
|
||||
Get logs for a crew.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): The UUID of the crew to get logs for.
|
||||
log_type (str): The type of logs to retrieve (default: "deployment").
|
||||
"""
|
||||
self._get_crew_logs_span = self._telemetry.get_crew_logs_span(
|
||||
self, uuid, log_type
|
||||
)
|
||||
console.print(f"Fetching {log_type} logs...", style="bold blue")
|
||||
|
||||
if uuid:
|
||||
response = self.client.logs_by_uuid(uuid, log_type)
|
||||
elif self.project_name:
|
||||
response = self.client.logs_by_name(self.project_name, log_type)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
if response.status_code == 200:
|
||||
self._display_logs(response.json())
|
||||
else:
|
||||
self._handle_error(response.json())
|
||||
|
||||
def remove_crew(self, uuid: Optional[str]) -> None:
|
||||
"""
|
||||
Remove a crew deployment.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): The UUID of the crew to remove.
|
||||
"""
|
||||
self._remove_crew_span = self._telemetry.remove_crew_span(self, uuid)
|
||||
console.print("Removing deployment...", style="bold blue")
|
||||
|
||||
if uuid:
|
||||
response = self.client.delete_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.delete_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
if response.status_code == 204:
|
||||
console.print(
|
||||
f"Crew '{self.project_name}' removed successfully.", style="green"
|
||||
)
|
||||
else:
|
||||
console.print(
|
||||
f"Failed to remove crew '{self.project_name}'", style="bold red"
|
||||
)
|
||||
155
src/crewai/cli/deploy/utils.py
Normal file
155
src/crewai/cli/deploy/utils.py
Normal file
@@ -0,0 +1,155 @@
|
||||
import sys
|
||||
import re
|
||||
import subprocess
|
||||
|
||||
from rich.console import Console
|
||||
|
||||
from ..authentication.utils import TokenManager
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
import tomllib
|
||||
|
||||
|
||||
# Drop the simple_toml_parser when we move to python3.11
|
||||
def simple_toml_parser(content):
|
||||
result = {}
|
||||
current_section = result
|
||||
for line in content.split('\n'):
|
||||
line = line.strip()
|
||||
if line.startswith('[') and line.endswith(']'):
|
||||
# New section
|
||||
section = line[1:-1].split('.')
|
||||
current_section = result
|
||||
for key in section:
|
||||
current_section = current_section.setdefault(key, {})
|
||||
elif '=' in line:
|
||||
key, value = line.split('=', 1)
|
||||
key = key.strip()
|
||||
value = value.strip().strip('"')
|
||||
current_section[key] = value
|
||||
return result
|
||||
|
||||
|
||||
def parse_toml(content):
|
||||
if sys.version_info >= (3, 11):
|
||||
return tomllib.loads(content)
|
||||
else:
|
||||
return simple_toml_parser(content)
|
||||
|
||||
|
||||
def get_git_remote_url() -> str | None:
|
||||
"""Get the Git repository's remote URL."""
|
||||
try:
|
||||
# Run the git remote -v command
|
||||
result = subprocess.run(
|
||||
["git", "remote", "-v"], capture_output=True, text=True, check=True
|
||||
)
|
||||
|
||||
# Get the output
|
||||
output = result.stdout
|
||||
|
||||
# Parse the output to find the origin URL
|
||||
matches = re.findall(r"origin\s+(.*?)\s+\(fetch\)", output)
|
||||
|
||||
if matches:
|
||||
return matches[0] # Return the first match (origin URL)
|
||||
else:
|
||||
console.print("No origin remote found.", style="bold red")
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
console.print(f"Error running trying to fetch the Git Repository: {e}", style="bold red")
|
||||
except FileNotFoundError:
|
||||
console.print("Git command not found. Make sure Git is installed and in your PATH.", style="bold red")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_project_name(pyproject_path: str = "pyproject.toml") -> str | None:
|
||||
"""Get the project name from the pyproject.toml file."""
|
||||
try:
|
||||
# Read the pyproject.toml file
|
||||
with open(pyproject_path, "r") as f:
|
||||
pyproject_content = parse_toml(f.read())
|
||||
|
||||
# Extract the project name
|
||||
project_name = pyproject_content["tool"]["poetry"]["name"]
|
||||
|
||||
if "crewai" not in pyproject_content["tool"]["poetry"]["dependencies"]:
|
||||
raise Exception("crewai is not in the dependencies.")
|
||||
|
||||
return project_name
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {pyproject_path} not found.")
|
||||
except KeyError:
|
||||
print(f"Error: {pyproject_path} is not a valid pyproject.toml file.")
|
||||
except tomllib.TOMLDecodeError if sys.version_info >= (3, 11) else Exception as e: # type: ignore
|
||||
print(
|
||||
f"Error: {pyproject_path} is not a valid TOML file."
|
||||
if sys.version_info >= (3, 11)
|
||||
else f"Error reading the pyproject.toml file: {e}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error reading the pyproject.toml file: {e}")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_crewai_version(poetry_lock_path: str = "poetry.lock") -> str:
|
||||
"""Get the version number of crewai from the poetry.lock file."""
|
||||
try:
|
||||
with open(poetry_lock_path, "r") as f:
|
||||
lock_content = f.read()
|
||||
|
||||
match = re.search(
|
||||
r'\[\[package\]\]\s*name\s*=\s*"crewai"\s*version\s*=\s*"([^"]+)"',
|
||||
lock_content,
|
||||
re.DOTALL,
|
||||
)
|
||||
if match:
|
||||
return match.group(1)
|
||||
else:
|
||||
print("crewai package not found in poetry.lock")
|
||||
return "no-version-found"
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {poetry_lock_path} not found.")
|
||||
except Exception as e:
|
||||
print(f"Error reading the poetry.lock file: {e}")
|
||||
|
||||
return "no-version-found"
|
||||
|
||||
|
||||
def fetch_and_json_env_file(env_file_path: str = ".env") -> dict:
|
||||
"""Fetch the environment variables from a .env file and return them as a dictionary."""
|
||||
try:
|
||||
# Read the .env file
|
||||
with open(env_file_path, "r") as f:
|
||||
env_content = f.read()
|
||||
|
||||
# Parse the .env file content to a dictionary
|
||||
env_dict = {}
|
||||
for line in env_content.splitlines():
|
||||
if line.strip() and not line.strip().startswith("#"):
|
||||
key, value = line.split("=", 1)
|
||||
env_dict[key.strip()] = value.strip()
|
||||
|
||||
return env_dict
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {env_file_path} not found.")
|
||||
except Exception as e:
|
||||
print(f"Error reading the .env file: {e}")
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
return access_token
|
||||
21
src/crewai/cli/install_crew.py
Normal file
21
src/crewai/cli/install_crew.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def install_crew() -> None:
|
||||
"""
|
||||
Install the crew by running the Poetry command to lock and install.
|
||||
"""
|
||||
try:
|
||||
subprocess.run(["poetry", "lock"], check=True, capture_output=False, text=True)
|
||||
subprocess.run(
|
||||
["poetry", "install"], check=True, capture_output=False, text=True
|
||||
)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while running the crew: {e}", err=True)
|
||||
click.echo(e.output, err=True)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
@@ -14,12 +14,9 @@ pip install poetry
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
1. First lock the dependencies and install them by using the CLI command:
|
||||
```bash
|
||||
poetry lock
|
||||
```
|
||||
```bash
|
||||
poetry install
|
||||
crewai install
|
||||
```
|
||||
### Customizing
|
||||
|
||||
@@ -37,10 +34,6 @@ To kickstart your crew of AI agents and begin task execution, run this from the
|
||||
```bash
|
||||
$ crewai run
|
||||
```
|
||||
or
|
||||
```bash
|
||||
poetry run {{folder_name}}
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
|
||||
@@ -25,7 +25,7 @@ def train():
|
||||
"topic": "AI LLMs"
|
||||
}
|
||||
try:
|
||||
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), inputs=inputs)
|
||||
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
|
||||
@@ -6,7 +6,8 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = "^0.46.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.54.0,<1.0.0" }
|
||||
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:run"
|
||||
|
||||
@@ -15,12 +15,11 @@ pip install poetry
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
|
||||
```bash
|
||||
poetry lock
|
||||
```
|
||||
```bash
|
||||
poetry install
|
||||
crewai install
|
||||
```
|
||||
|
||||
### Customizing
|
||||
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
@@ -35,7 +34,7 @@ poetry install
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
poetry run {{folder_name}}
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
@@ -49,6 +48,7 @@ The {{name}} Crew is composed of multiple AI agents, each with unique roles, goa
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = "^0.46.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.54.0,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
||||
@@ -16,10 +16,7 @@ Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
```bash
|
||||
poetry lock
|
||||
```
|
||||
```bash
|
||||
poetry install
|
||||
crewai install
|
||||
```
|
||||
### Customizing
|
||||
|
||||
@@ -35,7 +32,7 @@ poetry install
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
poetry run {{folder_name}}
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
@@ -6,7 +6,8 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = "^0.46.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.54.0,<1.0.0" }
|
||||
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
|
||||
@@ -3,19 +3,22 @@ import subprocess
|
||||
import click
|
||||
|
||||
|
||||
def train_crew(n_iterations: int) -> None:
|
||||
def train_crew(n_iterations: int, filename: str) -> None:
|
||||
"""
|
||||
Train the crew by running a command in the Poetry environment.
|
||||
|
||||
Args:
|
||||
n_iterations (int): The number of iterations to train the crew.
|
||||
"""
|
||||
command = ["poetry", "run", "train", str(n_iterations)]
|
||||
command = ["poetry", "run", "train", str(n_iterations), filename]
|
||||
|
||||
try:
|
||||
if n_iterations <= 0:
|
||||
raise ValueError("The number of iterations must be a positive integer.")
|
||||
|
||||
if not filename.endswith(".pkl"):
|
||||
raise ValueError("The filename must not end with .pkl")
|
||||
|
||||
result = subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
|
||||
if result.stderr:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from concurrent.futures import Future
|
||||
from hashlib import md5
|
||||
@@ -9,7 +10,6 @@ from langchain_core.callbacks import BaseCallbackHandler
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
Json,
|
||||
@@ -34,7 +34,9 @@ from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.constants import (
|
||||
TRAINING_DATA_FILE,
|
||||
)
|
||||
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities.formatter import (
|
||||
@@ -45,10 +47,12 @@ from crewai.utilities.planning_handler import CrewPlanner
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
try:
|
||||
import agentops
|
||||
except ImportError:
|
||||
agentops = None
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
@@ -100,7 +104,6 @@ class Crew(BaseModel):
|
||||
|
||||
name: Optional[str] = Field(default=None)
|
||||
cache: bool = Field(default=True)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
tasks: List[Task] = Field(default_factory=list)
|
||||
agents: List[BaseAgent] = Field(default_factory=list)
|
||||
process: Process = Field(default=Process.sequential)
|
||||
@@ -358,7 +361,7 @@ class Crew(BaseModel):
|
||||
source = [agent.key for agent in self.agents] + [
|
||||
task.key for task in self.tasks
|
||||
]
|
||||
return md5("|".join(source).encode()).hexdigest()
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
def _setup_from_config(self):
|
||||
assert self.config is not None, "Config should not be None."
|
||||
@@ -388,7 +391,7 @@ class Crew(BaseModel):
|
||||
del task_config["agent"]
|
||||
return Task(**task_config, agent=task_agent)
|
||||
|
||||
def _setup_for_training(self) -> None:
|
||||
def _setup_for_training(self, filename: str) -> None:
|
||||
"""Sets up the crew for training."""
|
||||
self._train = True
|
||||
|
||||
@@ -399,11 +402,13 @@ class Crew(BaseModel):
|
||||
agent.allow_delegation = False
|
||||
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).initialize_file()
|
||||
CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).initialize_file()
|
||||
CrewTrainingHandler(filename).initialize_file()
|
||||
|
||||
def train(self, n_iterations: int, inputs: Optional[Dict[str, Any]] = {}) -> None:
|
||||
def train(
|
||||
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
|
||||
) -> None:
|
||||
"""Trains the crew for a given number of iterations."""
|
||||
self._setup_for_training()
|
||||
self._setup_for_training(filename)
|
||||
|
||||
for n_iteration in range(n_iterations):
|
||||
self._train_iteration = n_iteration
|
||||
@@ -416,7 +421,7 @@ class Crew(BaseModel):
|
||||
training_data=training_data, agent_id=str(agent.id)
|
||||
)
|
||||
|
||||
CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).save_trained_data(
|
||||
CrewTrainingHandler(filename).save_trained_data(
|
||||
agent_id=str(agent.role), trained_data=result.model_dump()
|
||||
)
|
||||
|
||||
@@ -533,7 +538,7 @@ class Crew(BaseModel):
|
||||
)._handle_crew_planning()
|
||||
|
||||
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
|
||||
task.description += step_plan
|
||||
task.description += step_plan.plan
|
||||
|
||||
def _store_execution_log(
|
||||
self,
|
||||
@@ -932,6 +937,9 @@ class Crew(BaseModel):
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations."""
|
||||
self._test_execution_span = self._telemetry.test_execution_span(
|
||||
self, n_iterations, inputs, openai_model_name
|
||||
)
|
||||
evaluator = CrewEvaluator(self, openai_model_name)
|
||||
|
||||
for i in range(1, n_iterations + 1):
|
||||
|
||||
@@ -1 +1,3 @@
|
||||
from .crew_output import CrewOutput
|
||||
|
||||
__all__ = ["CrewOutput"]
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from .entity.entity_memory import EntityMemory
|
||||
from .long_term.long_term_memory import LongTermMemory
|
||||
from .short_term.short_term_memory import ShortTermMemory
|
||||
|
||||
__all__ = ["EntityMemory", "LongTermMemory", "ShortTermMemory"]
|
||||
|
||||
@@ -21,7 +21,7 @@ class Memory:
|
||||
if agent:
|
||||
metadata["agent"] = agent
|
||||
|
||||
self.storage.save(value, metadata) # type: ignore # Maybe BUG? Should be self.storage.save(key, value, metadata)
|
||||
self.storage.save(value, metadata)
|
||||
|
||||
def search(self, query: str) -> Dict[str, Any]:
|
||||
return self.storage.search(query)
|
||||
|
||||
@@ -5,13 +5,14 @@ import os
|
||||
import shutil
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
from embedchain import App
|
||||
from embedchain.llm.base import BaseLlm
|
||||
from embedchain.models.data_type import DataType
|
||||
from embedchain.vectordb.chroma import InvalidDimensionException
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_logging(
|
||||
@@ -47,7 +48,7 @@ class RAGStorage(Storage):
|
||||
os.environ["OPENAI_API_KEY"] = "fake"
|
||||
|
||||
agents = crew.agents if crew else []
|
||||
agents = [agent.role for agent in agents]
|
||||
agents = [self._sanitize_role(agent.role) for agent in agents]
|
||||
agents = "_".join(agents)
|
||||
|
||||
config = {
|
||||
@@ -78,6 +79,12 @@ class RAGStorage(Storage):
|
||||
if allow_reset:
|
||||
self.app.reset()
|
||||
|
||||
def _sanitize_role(self, role: str) -> str:
|
||||
"""
|
||||
Sanitizes agent roles to ensure valid directory names.
|
||||
"""
|
||||
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
self._generate_embedding(value, metadata)
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
from crewai.pipeline.pipeline_kickoff_result import PipelineKickoffResult
|
||||
from crewai.pipeline.pipeline_output import PipelineOutput
|
||||
|
||||
__all__ = ["Pipeline", "PipelineKickoffResult", "PipelineOutput"]
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from functools import wraps
|
||||
|
||||
from crewai.project.utils import memoize
|
||||
|
||||
|
||||
@@ -5,13 +7,17 @@ def task(func):
|
||||
if not hasattr(task, "registration_order"):
|
||||
task.registration_order = []
|
||||
|
||||
func.is_task = True
|
||||
wrapped_func = memoize(func)
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
result = func(*args, **kwargs)
|
||||
if not result.name:
|
||||
result.name = func.__name__
|
||||
return result
|
||||
|
||||
# Append the function name to the registration order list
|
||||
setattr(wrapper, "is_task", True)
|
||||
task.registration_order.append(func.__name__)
|
||||
|
||||
return wrapped_func
|
||||
return memoize(wrapper)
|
||||
|
||||
|
||||
def agent(func):
|
||||
|
||||
@@ -1,56 +1,45 @@
|
||||
import inspect
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
import yaml
|
||||
from dotenv import load_dotenv
|
||||
from pydantic import ConfigDict
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
def CrewBase(cls):
|
||||
class WrappedClass(cls):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
is_crew_class: bool = True # type: ignore
|
||||
|
||||
base_directory = None
|
||||
for frame_info in inspect.stack():
|
||||
if "site-packages" not in frame_info.filename:
|
||||
base_directory = Path(frame_info.filename).parent.resolve()
|
||||
break
|
||||
# Get the directory of the class being decorated
|
||||
base_directory = Path(inspect.getfile(cls)).parent
|
||||
|
||||
original_agents_config_path = getattr(
|
||||
cls, "agents_config", "config/agents.yaml"
|
||||
)
|
||||
|
||||
original_tasks_config_path = getattr(cls, "tasks_config", "config/tasks.yaml")
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
if self.base_directory is None:
|
||||
raise Exception(
|
||||
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
|
||||
)
|
||||
agents_config_path = self.base_directory / self.original_agents_config_path
|
||||
tasks_config_path = self.base_directory / self.original_tasks_config_path
|
||||
|
||||
self.agents_config = self.load_yaml(
|
||||
os.path.join(self.base_directory, self.original_agents_config_path)
|
||||
)
|
||||
|
||||
self.tasks_config = self.load_yaml(
|
||||
os.path.join(self.base_directory, self.original_tasks_config_path)
|
||||
)
|
||||
self.agents_config = self.load_yaml(agents_config_path)
|
||||
self.tasks_config = self.load_yaml(tasks_config_path)
|
||||
|
||||
self.map_all_agent_variables()
|
||||
self.map_all_task_variables()
|
||||
|
||||
@staticmethod
|
||||
def load_yaml(config_path: str):
|
||||
with open(config_path, "r") as file:
|
||||
# parsedContent = YamlParser.parse(file) # type: ignore # Argument 1 to "parse" has incompatible type "TextIOWrapper"; expected "YamlParser"
|
||||
return yaml.safe_load(file)
|
||||
def load_yaml(config_path: Path):
|
||||
try:
|
||||
with open(config_path, "r") as file:
|
||||
return yaml.safe_load(file)
|
||||
except FileNotFoundError:
|
||||
print(f"File not found: {config_path}")
|
||||
raise
|
||||
|
||||
def _get_all_functions(self):
|
||||
return {
|
||||
|
||||
@@ -1,24 +1,24 @@
|
||||
from typing import Callable, Dict
|
||||
|
||||
from pydantic import ConfigDict
|
||||
from typing import Any, Callable, Dict, List, Type, Union
|
||||
|
||||
from crewai.crew import Crew
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
from crewai.routers.router import Router
|
||||
|
||||
PipelineStage = Union[Crew, List[Crew], Router]
|
||||
|
||||
|
||||
# TODO: Could potentially remove. Need to check with @joao and @gui if this is needed for CrewAI+
|
||||
def PipelineBase(cls):
|
||||
def PipelineBase(cls: Type[Any]) -> Type[Any]:
|
||||
class WrappedClass(cls):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
is_pipeline_class: bool = True
|
||||
is_pipeline_class: bool = True # type: ignore
|
||||
stages: List[PipelineStage]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.stages = []
|
||||
self._map_pipeline_components()
|
||||
|
||||
def _get_all_functions(self):
|
||||
def _get_all_functions(self) -> Dict[str, Callable[..., Any]]:
|
||||
return {
|
||||
name: getattr(self, name)
|
||||
for name in dir(self)
|
||||
@@ -26,15 +26,15 @@ def PipelineBase(cls):
|
||||
}
|
||||
|
||||
def _filter_functions(
|
||||
self, functions: Dict[str, Callable], attribute: str
|
||||
) -> Dict[str, Callable]:
|
||||
self, functions: Dict[str, Callable[..., Any]], attribute: str
|
||||
) -> Dict[str, Callable[..., Any]]:
|
||||
return {
|
||||
name: func
|
||||
for name, func in functions.items()
|
||||
if hasattr(func, attribute)
|
||||
}
|
||||
|
||||
def _map_pipeline_components(self):
|
||||
def _map_pipeline_components(self) -> None:
|
||||
all_functions = self._get_all_functions()
|
||||
crew_functions = self._filter_functions(all_functions, "is_crew")
|
||||
router_functions = self._filter_functions(all_functions, "is_router")
|
||||
|
||||
@@ -1 +1,3 @@
|
||||
from crewai.routers.router import Router
|
||||
|
||||
__all__ = ["Router"]
|
||||
|
||||
@@ -1,32 +1,26 @@
|
||||
from copy import deepcopy
|
||||
from typing import Any, Callable, Dict, Generic, Tuple, TypeVar
|
||||
from typing import Any, Callable, Dict, Tuple
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
|
||||
T = TypeVar("T", bound=Dict[str, Any])
|
||||
U = TypeVar("U")
|
||||
|
||||
class Route(BaseModel):
|
||||
condition: Callable[[Dict[str, Any]], bool]
|
||||
pipeline: Any
|
||||
|
||||
|
||||
class Route(Generic[T, U]):
|
||||
condition: Callable[[T], bool]
|
||||
pipeline: U
|
||||
|
||||
def __init__(self, condition: Callable[[T], bool], pipeline: U):
|
||||
self.condition = condition
|
||||
self.pipeline = pipeline
|
||||
|
||||
|
||||
class Router(BaseModel, Generic[T, U]):
|
||||
routes: Dict[str, Route[T, U]] = Field(
|
||||
class Router(BaseModel):
|
||||
routes: Dict[str, Route] = Field(
|
||||
default_factory=dict,
|
||||
description="Dictionary of route names to (condition, pipeline) tuples",
|
||||
)
|
||||
default: U = Field(..., description="Default pipeline if no conditions are met")
|
||||
default: Any = Field(..., description="Default pipeline if no conditions are met")
|
||||
_route_types: Dict[str, type] = PrivateAttr(default_factory=dict)
|
||||
|
||||
model_config = {"arbitrary_types_allowed": True}
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def __init__(self, routes: Dict[str, Route[T, U]], default: U, **data):
|
||||
def __init__(self, routes: Dict[str, Route], default: Any, **data):
|
||||
super().__init__(routes=routes, default=default, **data)
|
||||
self._check_copyable(default)
|
||||
for name, route in routes.items():
|
||||
@@ -34,16 +28,16 @@ class Router(BaseModel, Generic[T, U]):
|
||||
self._route_types[name] = type(route.pipeline)
|
||||
|
||||
@staticmethod
|
||||
def _check_copyable(obj):
|
||||
def _check_copyable(obj: Any) -> None:
|
||||
if not hasattr(obj, "copy") or not callable(getattr(obj, "copy")):
|
||||
raise ValueError(f"Object of type {type(obj)} must have a 'copy' method")
|
||||
|
||||
def add_route(
|
||||
self,
|
||||
name: str,
|
||||
condition: Callable[[T], bool],
|
||||
pipeline: U,
|
||||
) -> "Router[T, U]":
|
||||
condition: Callable[[Dict[str, Any]], bool],
|
||||
pipeline: Any,
|
||||
) -> "Router":
|
||||
"""
|
||||
Add a named route with its condition and corresponding pipeline to the router.
|
||||
|
||||
@@ -60,7 +54,7 @@ class Router(BaseModel, Generic[T, U]):
|
||||
self._route_types[name] = type(pipeline)
|
||||
return self
|
||||
|
||||
def route(self, input_data: T) -> Tuple[U, str]:
|
||||
def route(self, input_data: Dict[str, Any]) -> Tuple[Any, str]:
|
||||
"""
|
||||
Evaluate the input against the conditions and return the appropriate pipeline.
|
||||
|
||||
@@ -76,15 +70,15 @@ class Router(BaseModel, Generic[T, U]):
|
||||
|
||||
return self.default, "default"
|
||||
|
||||
def copy(self) -> "Router[T, U]":
|
||||
def copy(self) -> "Router":
|
||||
"""Create a deep copy of the Router."""
|
||||
new_routes = {
|
||||
name: Route(
|
||||
condition=deepcopy(route.condition),
|
||||
pipeline=route.pipeline.copy(), # type: ignore
|
||||
pipeline=route.pipeline.copy(),
|
||||
)
|
||||
for name, route in self.routes.items()
|
||||
}
|
||||
new_default = self.default.copy() # type: ignore
|
||||
new_default = self.default.copy()
|
||||
|
||||
return Router(routes=new_routes, default=new_default)
|
||||
|
||||
@@ -9,13 +9,21 @@ from hashlib import md5
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
from opentelemetry.trace import Span
|
||||
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
Field,
|
||||
PrivateAttr,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
from crewai.utilities.config import process_config
|
||||
from crewai.utilities.converter import Converter, convert_to_model
|
||||
from crewai.utilities.i18n import I18N
|
||||
|
||||
@@ -39,9 +47,6 @@ class Task(BaseModel):
|
||||
tools: List of tools/resources limited for task execution.
|
||||
"""
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
used_tools: int = 0
|
||||
tools_errors: int = 0
|
||||
@@ -104,16 +109,27 @@ class Task(BaseModel):
|
||||
default=None,
|
||||
)
|
||||
|
||||
_telemetry: Telemetry
|
||||
_execution_span: Span | None = None
|
||||
_original_description: str | None = None
|
||||
_original_expected_output: str | None = None
|
||||
_thread: threading.Thread | None = None
|
||||
_execution_time: float | None = None
|
||||
_telemetry: Telemetry = PrivateAttr(default_factory=Telemetry)
|
||||
_execution_span: Optional[Span] = PrivateAttr(default=None)
|
||||
_original_description: Optional[str] = PrivateAttr(default=None)
|
||||
_original_expected_output: Optional[str] = PrivateAttr(default=None)
|
||||
_thread: Optional[threading.Thread] = PrivateAttr(default=None)
|
||||
_execution_time: Optional[float] = PrivateAttr(default=None)
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def process_model_config(cls, values):
|
||||
return process_config(values, cls)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_required_fields(self):
|
||||
required_fields = ["description", "expected_output"]
|
||||
for field in required_fields:
|
||||
if getattr(self, field) is None:
|
||||
raise ValueError(
|
||||
f"{field} must be provided either directly or through config"
|
||||
)
|
||||
return self
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
@@ -137,12 +153,6 @@ class Task(BaseModel):
|
||||
return value[1:]
|
||||
return value
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_private_attrs(self) -> "Task":
|
||||
"""Set private attributes."""
|
||||
self._telemetry = Telemetry()
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_attributes_based_on_config(self) -> "Task":
|
||||
"""Set attributes based on the agent configuration."""
|
||||
@@ -185,7 +195,7 @@ class Task(BaseModel):
|
||||
expected_output = self._original_expected_output or self.expected_output
|
||||
source = [description, expected_output]
|
||||
|
||||
return md5("|".join(source).encode()).hexdigest()
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
def execute_async(
|
||||
self,
|
||||
@@ -240,7 +250,9 @@ class Task(BaseModel):
|
||||
pydantic_output, json_output = self._export_output(result)
|
||||
|
||||
task_output = TaskOutput(
|
||||
name=self.name,
|
||||
description=self.description,
|
||||
expected_output=self.expected_output,
|
||||
raw=result,
|
||||
pydantic=pydantic_output,
|
||||
json_dict=json_output,
|
||||
|
||||
@@ -10,6 +10,10 @@ class TaskOutput(BaseModel):
|
||||
"""Class that represents the result of a task."""
|
||||
|
||||
description: str = Field(description="Description of the task")
|
||||
name: Optional[str] = Field(description="Name of the task", default=None)
|
||||
expected_output: Optional[str] = Field(
|
||||
description="Expected output of the task", default=None
|
||||
)
|
||||
summary: Optional[str] = Field(description="Summary of the task", default=None)
|
||||
raw: str = Field(description="Raw output of the task", default="")
|
||||
pydantic: Optional[BaseModel] = Field(
|
||||
|
||||
@@ -1 +1,3 @@
|
||||
from .telemetry import Telemetry
|
||||
|
||||
__all__ = ["Telemetry"]
|
||||
|
||||
@@ -4,7 +4,7 @@ import asyncio
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
from typing import TYPE_CHECKING, Any
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
import pkg_resources
|
||||
from opentelemetry import trace
|
||||
@@ -28,18 +28,6 @@ class Telemetry:
|
||||
agents backstories or goals nor responses or any data that is being
|
||||
processed by the agents, nor any secrets and env vars.
|
||||
|
||||
Data collected includes:
|
||||
- Version of crewAI
|
||||
- Version of Python
|
||||
- General OS (e.g. number of CPUs, macOS/Windows/Linux)
|
||||
- Number of agents and tasks in a crew
|
||||
- Crew Process being used
|
||||
- If Agents are using memory or allowing delegation
|
||||
- If Tasks are being executed in parallel or sequentially
|
||||
- Language model being used
|
||||
- Roles of agents in a crew
|
||||
- Tools names available
|
||||
|
||||
Users can opt-in to sharing more complete data using the `share_crew`
|
||||
attribute in the Crew class.
|
||||
"""
|
||||
@@ -98,69 +86,136 @@ class Telemetry:
|
||||
self._add_attribute(span, "crew_memory", crew.memory)
|
||||
self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
|
||||
self._add_attribute(span, "crew_number_of_agents", len(crew.agents))
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crew_agents",
|
||||
json.dumps(
|
||||
[
|
||||
{
|
||||
"key": agent.key,
|
||||
"id": str(agent.id),
|
||||
"role": agent.role,
|
||||
"goal": agent.goal,
|
||||
"backstory": agent.backstory,
|
||||
"verbose?": agent.verbose,
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"i18n": agent.i18n.prompt_file,
|
||||
"llm": json.dumps(self._safe_llm_attributes(agent.llm)),
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"tools_names": [
|
||||
tool.name.casefold() for tool in agent.tools or []
|
||||
],
|
||||
}
|
||||
for agent in crew.agents
|
||||
]
|
||||
),
|
||||
)
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crew_tasks",
|
||||
json.dumps(
|
||||
[
|
||||
{
|
||||
"key": task.key,
|
||||
"id": str(task.id),
|
||||
"description": task.description,
|
||||
"expected_output": task.expected_output,
|
||||
"async_execution?": task.async_execution,
|
||||
"human_input?": task.human_input,
|
||||
"agent_role": task.agent.role if task.agent else "None",
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"context": (
|
||||
[task.description for task in task.context]
|
||||
if task.context
|
||||
else None
|
||||
),
|
||||
"tools_names": [
|
||||
tool.name.casefold() for tool in task.tools or []
|
||||
],
|
||||
}
|
||||
for task in crew.tasks
|
||||
]
|
||||
),
|
||||
)
|
||||
self._add_attribute(span, "platform", platform.platform())
|
||||
self._add_attribute(span, "platform_release", platform.release())
|
||||
self._add_attribute(span, "platform_system", platform.system())
|
||||
self._add_attribute(span, "platform_version", platform.version())
|
||||
self._add_attribute(span, "cpus", os.cpu_count())
|
||||
|
||||
if crew.share_crew:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crew_agents",
|
||||
json.dumps(
|
||||
[
|
||||
{
|
||||
"key": agent.key,
|
||||
"id": str(agent.id),
|
||||
"role": agent.role,
|
||||
"goal": agent.goal,
|
||||
"backstory": agent.backstory,
|
||||
"verbose?": agent.verbose,
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"i18n": agent.i18n.prompt_file,
|
||||
"function_calling_llm": json.dumps(
|
||||
self._safe_llm_attributes(
|
||||
agent.function_calling_llm
|
||||
)
|
||||
),
|
||||
"llm": json.dumps(
|
||||
self._safe_llm_attributes(agent.llm)
|
||||
),
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"allow_code_execution?": agent.allow_code_execution,
|
||||
"max_retry_limit": agent.max_retry_limit,
|
||||
"tools_names": [
|
||||
tool.name.casefold()
|
||||
for tool in agent.tools or []
|
||||
],
|
||||
}
|
||||
for agent in crew.agents
|
||||
]
|
||||
),
|
||||
)
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crew_tasks",
|
||||
json.dumps(
|
||||
[
|
||||
{
|
||||
"key": task.key,
|
||||
"id": str(task.id),
|
||||
"description": task.description,
|
||||
"expected_output": task.expected_output,
|
||||
"async_execution?": task.async_execution,
|
||||
"human_input?": task.human_input,
|
||||
"agent_role": task.agent.role
|
||||
if task.agent
|
||||
else "None",
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"context": (
|
||||
[task.description for task in task.context]
|
||||
if task.context
|
||||
else None
|
||||
),
|
||||
"tools_names": [
|
||||
tool.name.casefold()
|
||||
for tool in task.tools or []
|
||||
],
|
||||
}
|
||||
for task in crew.tasks
|
||||
]
|
||||
),
|
||||
)
|
||||
self._add_attribute(span, "platform", platform.platform())
|
||||
self._add_attribute(span, "platform_release", platform.release())
|
||||
self._add_attribute(span, "platform_system", platform.system())
|
||||
self._add_attribute(span, "platform_version", platform.version())
|
||||
self._add_attribute(span, "cpus", os.cpu_count())
|
||||
self._add_attribute(
|
||||
span, "crew_inputs", json.dumps(inputs) if inputs else None
|
||||
)
|
||||
|
||||
else:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crew_agents",
|
||||
json.dumps(
|
||||
[
|
||||
{
|
||||
"key": agent.key,
|
||||
"id": str(agent.id),
|
||||
"role": agent.role,
|
||||
"verbose?": agent.verbose,
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"function_calling_llm": json.dumps(
|
||||
self._safe_llm_attributes(
|
||||
agent.function_calling_llm
|
||||
)
|
||||
),
|
||||
"llm": json.dumps(
|
||||
self._safe_llm_attributes(agent.llm)
|
||||
),
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"allow_code_execution?": agent.allow_code_execution,
|
||||
"max_retry_limit": agent.max_retry_limit,
|
||||
"tools_names": [
|
||||
tool.name.casefold()
|
||||
for tool in agent.tools or []
|
||||
],
|
||||
}
|
||||
for agent in crew.agents
|
||||
]
|
||||
),
|
||||
)
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crew_tasks",
|
||||
json.dumps(
|
||||
[
|
||||
{
|
||||
"key": task.key,
|
||||
"id": str(task.id),
|
||||
"async_execution?": task.async_execution,
|
||||
"human_input?": task.human_input,
|
||||
"agent_role": task.agent.role
|
||||
if task.agent
|
||||
else "None",
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"tools_names": [
|
||||
tool.name.casefold()
|
||||
for tool in task.tools or []
|
||||
],
|
||||
}
|
||||
for task in crew.tasks
|
||||
]
|
||||
),
|
||||
)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
@@ -289,6 +344,118 @@ class Telemetry:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def individual_test_result_span(
|
||||
self, crew: Crew, quality: float, exec_time: int, model_name: str
|
||||
):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Crew Individual Test Result")
|
||||
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
)
|
||||
self._add_attribute(span, "crew_key", crew.key)
|
||||
self._add_attribute(span, "crew_id", str(crew.id))
|
||||
self._add_attribute(span, "quality", str(quality))
|
||||
self._add_attribute(span, "exec_time", str(exec_time))
|
||||
self._add_attribute(span, "model_name", model_name)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def test_execution_span(
|
||||
self,
|
||||
crew: Crew,
|
||||
iterations: int,
|
||||
inputs: dict[str, Any] | None,
|
||||
model_name: str,
|
||||
):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Crew Test Execution")
|
||||
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
)
|
||||
self._add_attribute(span, "crew_key", crew.key)
|
||||
self._add_attribute(span, "crew_id", str(crew.id))
|
||||
self._add_attribute(span, "iterations", str(iterations))
|
||||
self._add_attribute(span, "model_name", model_name)
|
||||
|
||||
if crew.share_crew:
|
||||
self._add_attribute(
|
||||
span, "inputs", json.dumps(inputs) if inputs else None
|
||||
)
|
||||
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def deploy_signup_error_span(self):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Deploy Signup Error")
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def start_deployment_span(self, uuid: Optional[str] = None):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Start Deployment")
|
||||
if uuid:
|
||||
self._add_attribute(span, "uuid", uuid)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def create_crew_deployment_span(self):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Create Crew Deployment")
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def get_crew_logs_span(self, uuid: Optional[str], log_type: str = "deployment"):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Get Crew Logs")
|
||||
self._add_attribute(span, "log_type", log_type)
|
||||
if uuid:
|
||||
self._add_attribute(span, "uuid", uuid)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def remove_crew_span(self, uuid: Optional[str] = None):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Remove Crew")
|
||||
if uuid:
|
||||
self._add_attribute(span, "uuid", uuid)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def crew_execution_span(self, crew: Crew, inputs: dict[str, Any] | None):
|
||||
"""Records the complete execution of a crew.
|
||||
This is only collected if the user has opted-in to share the crew.
|
||||
@@ -402,7 +569,7 @@ class Telemetry:
|
||||
pass
|
||||
|
||||
def _safe_llm_attributes(self, llm):
|
||||
attributes = ["name", "model_name", "base_url", "model", "top_k", "temperature"]
|
||||
attributes = ["name", "model_name", "model", "top_k", "temperature"]
|
||||
if llm:
|
||||
safe_attributes = {k: v for k, v in vars(llm).items() if k in attributes}
|
||||
safe_attributes["class"] = llm.__class__.__name__
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from langchain.tools import StructuredTool
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agents.cache import CacheHandler
|
||||
|
||||
@@ -7,11 +7,10 @@ from crewai.agents.cache import CacheHandler
|
||||
class CacheTools(BaseModel):
|
||||
"""Default tools to hit the cache."""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
name: str = "Hit Cache"
|
||||
cache_handler: CacheHandler = Field(
|
||||
description="Cache Handler for the crew",
|
||||
default=CacheHandler(),
|
||||
default_factory=CacheHandler,
|
||||
)
|
||||
|
||||
def tool(self):
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import ast
|
||||
import os
|
||||
from difflib import SequenceMatcher
|
||||
from textwrap import dedent
|
||||
from typing import Any, List, Union
|
||||
@@ -11,10 +12,12 @@ from crewai.telemetry import Telemetry
|
||||
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from crewai.utilities import I18N, Converter, ConverterError, Printer
|
||||
|
||||
try:
|
||||
import agentops
|
||||
except ImportError:
|
||||
agentops = None
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
OPENAI_BIGGER_MODELS = ["gpt-4o"]
|
||||
|
||||
@@ -69,6 +72,13 @@ class ToolUsage:
|
||||
self.action = action
|
||||
self.function_calling_llm = function_calling_llm
|
||||
|
||||
# Handling bug (see https://github.com/langchain-ai/langchain/pull/16395): raise an error if tools_names have space for ChatOpenAI
|
||||
if isinstance(self.function_calling_llm, ChatOpenAI):
|
||||
if " " in self.tools_names:
|
||||
raise Exception(
|
||||
"Tools names should not have spaces for ChatOpenAI models."
|
||||
)
|
||||
|
||||
# Set the maximum parsing attempts for bigger models
|
||||
if (isinstance(self.function_calling_llm, ChatOpenAI)) and (
|
||||
self.function_calling_llm.openai_api_base is None
|
||||
@@ -108,7 +118,7 @@ class ToolUsage:
|
||||
tool: BaseTool,
|
||||
calling: Union[ToolCalling, InstructorToolCalling],
|
||||
) -> str: # TODO: Fix this return type
|
||||
tool_event = agentops.ToolEvent(name=calling.tool_name) if agentops else None
|
||||
tool_event = agentops.ToolEvent(name=calling.tool_name) if agentops else None # type: ignore
|
||||
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
|
||||
try:
|
||||
result = self._i18n.errors("task_repeated_usage").format(
|
||||
|
||||
40
src/crewai/utilities/config.py
Normal file
40
src/crewai/utilities/config.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from typing import Any, Dict, Type
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
def process_config(
|
||||
values: Dict[str, Any], model_class: Type[BaseModel]
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Process the config dictionary and update the values accordingly.
|
||||
|
||||
Args:
|
||||
values (Dict[str, Any]): The dictionary of values to update.
|
||||
model_class (Type[BaseModel]): The Pydantic model class to reference for field validation.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: The updated values dictionary.
|
||||
"""
|
||||
config = values.get("config", {})
|
||||
if not config:
|
||||
return values
|
||||
|
||||
# Copy values from config (originally from YAML) to the model's attributes.
|
||||
# Only copy if the attribute isn't already set, preserving any explicitly defined values.
|
||||
for key, value in config.items():
|
||||
if key not in model_class.model_fields:
|
||||
continue
|
||||
if values.get(key) is not None:
|
||||
continue
|
||||
if isinstance(value, (str, int, float, bool, list)):
|
||||
values[key] = value
|
||||
elif isinstance(value, dict):
|
||||
if isinstance(values.get(key), dict):
|
||||
values[key].update(value)
|
||||
else:
|
||||
values[key] = value
|
||||
|
||||
# Remove the config from values to avoid duplicate processing
|
||||
values.pop("config", None)
|
||||
return values
|
||||
@@ -8,6 +8,7 @@ from rich.table import Table
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
|
||||
|
||||
class TaskEvaluationPydanticOutput(BaseModel):
|
||||
@@ -34,6 +35,7 @@ class CrewEvaluator:
|
||||
def __init__(self, crew, openai_model_name: str):
|
||||
self.crew = crew
|
||||
self.openai_model_name = openai_model_name
|
||||
self._telemetry = Telemetry()
|
||||
self._setup_for_evaluating()
|
||||
|
||||
def _setup_for_evaluating(self) -> None:
|
||||
@@ -155,6 +157,12 @@ class CrewEvaluator:
|
||||
evaluation_result = evaluation_task.execute_sync()
|
||||
|
||||
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
|
||||
self._test_result_span = self._telemetry.individual_test_result_span(
|
||||
self.crew,
|
||||
evaluation_result.pydantic.quality,
|
||||
current_task._execution_time,
|
||||
self.openai_model_name,
|
||||
)
|
||||
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
|
||||
self.run_execution_times[self.iteration].append(
|
||||
current_task._execution_time
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
@@ -6,17 +7,27 @@ from pydantic import BaseModel, Field
|
||||
from crewai.utilities import Converter
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
|
||||
agentops = None
|
||||
try:
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
|
||||
def track_agent(name):
|
||||
def mock_agent_ops_provider():
|
||||
def track_agent(*args, **kwargs):
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
return track_agent
|
||||
|
||||
|
||||
agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
else:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
|
||||
|
||||
class Entity(BaseModel):
|
||||
name: str = Field(description="The name of the entity.")
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
import os
|
||||
import pickle
|
||||
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
@@ -32,14 +30,16 @@ class PickleHandler:
|
||||
Parameters:
|
||||
- file_name (str): The name of the file for saving and loading data.
|
||||
"""
|
||||
if not file_name.endswith(".pkl"):
|
||||
file_name += ".pkl"
|
||||
|
||||
self.file_path = os.path.join(os.getcwd(), file_name)
|
||||
|
||||
def initialize_file(self) -> None:
|
||||
"""
|
||||
Initialize the file with an empty dictionary if it does not exist or is empty.
|
||||
Initialize the file with an empty dictionary and overwrite any existing data.
|
||||
"""
|
||||
if not os.path.exists(self.file_path) or os.path.getsize(self.file_path) == 0:
|
||||
self.save({}) # Save an empty dictionary to initialize the file
|
||||
self.save({})
|
||||
|
||||
def save(self, data) -> None:
|
||||
"""
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
from datetime import datetime
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
class Logger:
|
||||
_printer = Printer()
|
||||
|
||||
def __init__(self, verbose=False):
|
||||
self.verbose = verbose
|
||||
class Logger(BaseModel):
|
||||
verbose: bool = Field(default=False)
|
||||
_printer: Printer = PrivateAttr(default_factory=Printer)
|
||||
|
||||
def log(self, level, message, color="bold_green"):
|
||||
if self.verbose:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import re
|
||||
|
||||
|
||||
class YamlParser:
|
||||
@staticmethod
|
||||
def parse(file):
|
||||
@@ -16,7 +17,9 @@ class YamlParser:
|
||||
|
||||
# Replace single { and } with doubled ones, while leaving already doubled ones intact and the other special characters {# and {%
|
||||
modified_content = re.sub(r"(?<!\{){(?!\{)(?!\#)(?!\%)", "{{", content)
|
||||
modified_content = re.sub(r"(?<!\})(?<!\%)(?<!\#)\}(?!})", "}}", modified_content)
|
||||
modified_content = re.sub(
|
||||
r"(?<!\})(?<!\%)(?<!\#)\}(?!})", "}}", modified_content
|
||||
)
|
||||
|
||||
# Check for 'context:' not followed by '[' and raise an error
|
||||
if re.search(r"context:(?!\s*\[)", modified_content):
|
||||
|
||||
@@ -1,14 +1,25 @@
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
|
||||
|
||||
class PlanPerTask(BaseModel):
|
||||
task: str = Field(..., description="The task for which the plan is created")
|
||||
plan: str = Field(
|
||||
...,
|
||||
description="The step by step plan on how the agents can execute their tasks using the available tools with mastery",
|
||||
)
|
||||
|
||||
|
||||
class PlannerTaskPydanticOutput(BaseModel):
|
||||
list_of_plans_per_task: List[str]
|
||||
list_of_plans_per_task: List[PlanPerTask] = Field(
|
||||
...,
|
||||
description="Step by step plan on how the agents can execute their tasks using the available tools with mastery",
|
||||
)
|
||||
|
||||
|
||||
class CrewPlanner:
|
||||
|
||||
@@ -1,44 +1,50 @@
|
||||
import threading
|
||||
import time
|
||||
from typing import Union
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, PrivateAttr, model_validator
|
||||
from pydantic import BaseModel, Field, PrivateAttr, model_validator
|
||||
|
||||
from crewai.utilities.logger import Logger
|
||||
|
||||
|
||||
class RPMController(BaseModel):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
max_rpm: Union[int, None] = Field(default=None)
|
||||
logger: Logger = Field(default=None)
|
||||
max_rpm: Optional[int] = Field(default=None)
|
||||
logger: Logger = Field(default_factory=lambda: Logger(verbose=False))
|
||||
_current_rpm: int = PrivateAttr(default=0)
|
||||
_timer: threading.Timer | None = PrivateAttr(default=None)
|
||||
_lock: threading.Lock = PrivateAttr(default=None)
|
||||
_shutdown_flag = False
|
||||
_timer: Optional[threading.Timer] = PrivateAttr(default=None)
|
||||
_lock: Optional[threading.Lock] = PrivateAttr(default=None)
|
||||
_shutdown_flag: bool = PrivateAttr(default=False)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def reset_counter(self):
|
||||
if self.max_rpm:
|
||||
if self.max_rpm is not None:
|
||||
if not self._shutdown_flag:
|
||||
self._lock = threading.Lock()
|
||||
self._reset_request_count()
|
||||
return self
|
||||
|
||||
def check_or_wait(self):
|
||||
if not self.max_rpm:
|
||||
if self.max_rpm is None:
|
||||
return True
|
||||
|
||||
with self._lock:
|
||||
if self._current_rpm < self.max_rpm:
|
||||
def _check_and_increment():
|
||||
if self.max_rpm is not None and self._current_rpm < self.max_rpm:
|
||||
self._current_rpm += 1
|
||||
return True
|
||||
else:
|
||||
elif self.max_rpm is not None:
|
||||
self.logger.log(
|
||||
"info", "Max RPM reached, waiting for next minute to start."
|
||||
)
|
||||
self._wait_for_next_minute()
|
||||
self._current_rpm = 1
|
||||
return True
|
||||
return True
|
||||
|
||||
if self._lock:
|
||||
with self._lock:
|
||||
return _check_and_increment()
|
||||
else:
|
||||
return _check_and_increment()
|
||||
|
||||
def stop_rpm_counter(self):
|
||||
if self._timer:
|
||||
@@ -50,10 +56,18 @@ class RPMController(BaseModel):
|
||||
self._current_rpm = 0
|
||||
|
||||
def _reset_request_count(self):
|
||||
with self._lock:
|
||||
def _reset():
|
||||
self._current_rpm = 0
|
||||
if not self._shutdown_flag:
|
||||
self._timer = threading.Timer(60.0, self._reset_request_count)
|
||||
self._timer.start()
|
||||
|
||||
if self._lock:
|
||||
with self._lock:
|
||||
_reset()
|
||||
else:
|
||||
_reset()
|
||||
|
||||
if self._timer:
|
||||
self._shutdown_flag = True
|
||||
self._timer.cancel()
|
||||
self._timer = threading.Timer(60.0, self._reset_request_count)
|
||||
self._timer.start()
|
||||
|
||||
@@ -4,11 +4,6 @@ from unittest import mock
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from langchain.tools import tool
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain.schema import AgentAction
|
||||
|
||||
from crewai import Agent, Crew, Task
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.executor import CrewAgentExecutor
|
||||
@@ -16,6 +11,10 @@ from crewai.agents.parser import CrewAgentParser
|
||||
from crewai.tools.tool_calling import InstructorToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.utilities import RPMController
|
||||
from langchain.schema import AgentAction
|
||||
from langchain.tools import tool
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
|
||||
def test_agent_creation():
|
||||
@@ -817,7 +816,7 @@ def test_agent_definition_based_on_dict():
|
||||
"verbose": True,
|
||||
}
|
||||
|
||||
agent = Agent(config=config)
|
||||
agent = Agent(**config)
|
||||
|
||||
assert agent.role == "test role"
|
||||
assert agent.goal == "test goal"
|
||||
@@ -837,7 +836,7 @@ def test_agent_human_input():
|
||||
"backstory": "test backstory",
|
||||
}
|
||||
|
||||
agent = Agent(config=config)
|
||||
agent = Agent(**config)
|
||||
|
||||
task = Task(
|
||||
agent=agent,
|
||||
|
||||
@@ -27,7 +27,7 @@ interactions:
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.35.14
|
||||
- OpenAI/Python 1.40.3
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -37,7 +37,7 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.35.14
|
||||
- 1.40.3
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
@@ -46,64 +46,64 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"role":"assistant","content":"","refusal":null},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
now"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
can"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
give"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
great"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-9utqOzPf2ZjkSgVMuFXAypJoBznjA","object":"chat.completion.chunk","created":1723348060,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_3aa7262c27","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -114,20 +114,20 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8a488e81aa7f0c7e-EWR
|
||||
- 8b153edfad781abd-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- text/event-stream; charset=utf-8
|
||||
Date:
|
||||
- Wed, 17 Jul 2024 07:35:41 GMT
|
||||
- Sun, 11 Aug 2024 03:47:40 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=Ypr9N3lq.OD8hpimnkpN61rAsWyk216I8Tq7RA8.uwQ-1721201741-1.0.1.1-6Cj4aX9I96QHMmPwJBpO1iCFOJsvzq_agUIrl3XS.YhlPuGyA4K9sDONExvLn.cDe3W_p_1ET7Pt_hxjtHPAXQ;
|
||||
path=/; expires=Wed, 17-Jul-24 08:05:41 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=W.t1dOxpA9cmNfhvD_3Om6s..YECOsfeXOtb7pROwDQ-1723348060-1.0.1.1-8_50CvFD107yRcyHKvxdoJhsiTKAH.W19fjPi.0iWX99o5TpJ1hB9WYyi.yAQ_PdBtfqOGWvkstaED.GHbtPng;
|
||||
path=/; expires=Sun, 11-Aug-24 04:17:40 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=NLa1BaUsRvD7shojIzUH9YSRXQIEzaoJVcq2_gNwqm0-1721201741646-0.0.1.1-604800000;
|
||||
- _cfuvid=WJbMLTTxjWnCGDlpu5kFb33Vw1OcDNeujk.Vb018kBo-1723348060431-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -138,7 +138,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '106'
|
||||
- '97'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -156,7 +156,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_e52461a1ab2702e360f6303fbcb4cc3c
|
||||
- req_cbe413d19c4c7498dafbbb3ad8ddd3fd
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
@@ -180,12 +180,12 @@ interactions:
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=Ypr9N3lq.OD8hpimnkpN61rAsWyk216I8Tq7RA8.uwQ-1721201741-1.0.1.1-6Cj4aX9I96QHMmPwJBpO1iCFOJsvzq_agUIrl3XS.YhlPuGyA4K9sDONExvLn.cDe3W_p_1ET7Pt_hxjtHPAXQ;
|
||||
_cfuvid=NLa1BaUsRvD7shojIzUH9YSRXQIEzaoJVcq2_gNwqm0-1721201741646-0.0.1.1-604800000
|
||||
- __cf_bm=W.t1dOxpA9cmNfhvD_3Om6s..YECOsfeXOtb7pROwDQ-1723348060-1.0.1.1-8_50CvFD107yRcyHKvxdoJhsiTKAH.W19fjPi.0iWX99o5TpJ1hB9WYyi.yAQ_PdBtfqOGWvkstaED.GHbtPng;
|
||||
_cfuvid=WJbMLTTxjWnCGDlpu5kFb33Vw1OcDNeujk.Vb018kBo-1723348060431-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.35.14
|
||||
- OpenAI/Python 1.40.3
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -195,7 +195,7 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.35.14
|
||||
- 1.40.3
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
@@ -205,19 +205,19 @@ interactions:
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA2xS22rjMBB991eIeY6LHTubrR9LKYUttKWUvbUYRRnb6sqSVhqTJiH/vshxYzes
|
||||
H8QwZ86FGe8jxkCuoWAgGk6itSq+VPR8d8O/vXXZbiOzx13S5D9/PNwSv8nvYBYYZvWGgj5YF8K0
|
||||
ViFJo4+wcMgJg2q6nKfzJF3maQ+0Zo0q0GpLcW7ieTLP42QRp9lAbIwU6KFgvyPGGNv3b4io1/gO
|
||||
BUtmH50Wvec1QnEaYgycUaED3HvpiWuC2QgKowl1SK07pSYAGaNKwZUajY/fflKPe+JKlVe/nqvV
|
||||
98vNtslul3/Xj7vrzaZ6StOJ31F6a/tAVafFaT8T/NQvzswYA83bnvskjMP7jmxHZ3TGgLu6a1FT
|
||||
iA77F/Bh+AWK/ACfRg/R/+rXoTqc1qpMbZ1Z+bMtQSW19E3pkPs+LXgy9mgR5F7783WfLgLWmdZS
|
||||
SeYP6iD4dbgejP/LCC4GjAxxNeEsoiEe+K0nbMtK6hqddbI/JVS2FDkuVl8qnqUQHaJ/AAAA//8D
|
||||
ACb4o2zTAgAA
|
||||
H4sIAAAAAAAAAwAAAP//bFJda9wwEHz3rxD7HJeLfR+p30JJ6FFoWkoDR1OMopNt5SStTlpB0uP+
|
||||
e5HPPTtH9WDEzs7OeFaHjDFQW6gYiI6TME7nHyPtHx5b3anbuH4R+83r+qv7vLt73O3Wf+AqMfD5
|
||||
RQr6x/og0DgtSaE9wcJLTjJNvV4VZTm/mS1nPWBwK3WitY7yOebFrJjns0V+XQ7EDpWQASr2K2OM
|
||||
sUP/TRbtVr5CxfoxfcXIEHgroTo3MQYedaoAD0EF4pbgagQFWpI2ubZR6wlAiLoWXOtR+HQOk/uY
|
||||
E9e6/oabttT75e2n76YLwtwvNz9NbL5M9E6j31xvqIlWnPOZ4Od6dSHGGFhueu4PgV4+RHKRLuiM
|
||||
AfdtNNJSsg6HJwip+Qmq+RHetR6z/91/T1LwsomB6yGeoX48562xdR6fw0V80CirQld7yUP/GxAI
|
||||
3Uk76fQKEN+tCpxH46gm3EmbBt4Ma4XxIY3gYsAIiesJZ5EN9iC8BZKmbpRtpXde9TuGxtUl56ti
|
||||
WYhiBdkx+wsAAP//AwCCr4Pp7AIAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8a488e858ca50c7e-EWR
|
||||
- 8b153ee2df1c1abd-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -225,7 +225,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 17 Jul 2024 07:35:42 GMT
|
||||
- Sun, 11 Aug 2024 03:47:41 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -237,7 +237,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '241'
|
||||
- '129'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -255,7 +255,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_01c2f40fe9c73f883b7ed5b60c8067e5
|
||||
- req_8999559867cac591d397beeb8b7411a4
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user