Compare commits

...

50 Commits

Author SHA1 Message Date
Devin AI
a499d9de42 docs: improve tool documentation and examples
- Update SerperDevTool documentation with accurate parameters and JSON response format
- Enhance XMLSearchTool and MDXSearchTool docs with RAG capabilities and required parameters
- Fix code block formatting across multiple tool documentation files
- Add clarification about environment variables and configuration
- Validate all examples against actual implementations
- Successfully tested with mkdocs build

Co-Authored-By: Joe Moura <joao@crewai.com>
2024-12-28 04:32:08 +00:00
João Moura
99fe91586d Update README.md 2024-12-28 01:03:33 -03:00
devin-ai-integration[bot]
0c2d23dfe0 docs: update README to highlight Flows (#1809)
* docs: highlight Flows feature in README

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance README with LangGraph comparison and flows-crews synergy

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: replace initial Flow example with advanced Flow+Crew example; enhance LangGraph comparison

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: incorporate key terms and enhance feature descriptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: refine technical language, enhance feature descriptions, fix string interpolation

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update README with performance metrics, feature enhancements, and course links

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update LangGraph comparison with paragraph and P.S. section

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-28 01:00:58 -03:00
devin-ai-integration[bot]
2433819c4f fix: handle optional storage with null checks (#1808)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:30:39 -03:00
Erick Amorim
97fc44c930 fix: Change storage initialization to None for KnowledgeStorage (#1804)
* fix: Change storage initialization to None for KnowledgeStorage

* refactor: Change storage field to optional and improve error handling when saving documents

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:18:25 -03:00
siddharth Sambharia
409892d65f Portkey Integration with CrewAI (#1233)
* Create Portkey-Observability-and-Guardrails.md

* crewAI update with new changes

* small change

---------

Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 18:16:47 -03:00
devin-ai-integration[bot]
62f3df7ed5 docs: add guide for multimodal agents (#1807)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-27 18:16:02 -03:00
João Igor
4cf8913d31 chore: removing crewai-tools from dev-dependencies (#1760)
As mentioned in issue #1759, listing crewai-tools as dev-dependencies makes pip install it a required dependency, and not an optional

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 17:45:06 -03:00
João Moura
82647358b2 Adding Multimodal Abilities to Crew (#1805)
* initial fix on delegation tools

* fixing tests for delegations and coding

* Refactor prepare tool and adding initial add images logic

* supporting image tool

* fixing linter

* fix linter

* Making sure multimodal feature support i18n

* fix linter and types

* mixxing translations

* fix types and linter

* Revert "fixing linter"

This reverts commit 2eda5fdeed.

* fix linters

* test

* fix

* fix

* fix linter

* fix

* ignore

* type improvements
2024-12-27 17:03:35 -03:00
Brandon Hancock (bhancock_ai)
6cc2f510bf Feat/joao flow improvement requests (#1795)
* Add in or and and in router

* In the middle of improving plotting

* final plot changes

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-24 18:55:44 -03:00
Lorenze Jay
9a65abf6b8 removed some redundancies (#1796)
* removed some redundancies

* cleanup
2024-12-23 13:54:16 -05:00
Lorenze Jay
b3185ad90c Feat/docling-support (#1763)
* added tool for docling support

* docling support installation

* use file_paths instead of file_path

* fix import

* organized imports

* run_type docs

* needs to be list

* fixed logic

* logged but file_path is backwards compatible

* use file_paths instead of file_path 2

* added test for multiple sources for file_paths

* fix run-types

* enabling local files to work and type cleanup

* linted

* fix test and types

* fixed run types

* fix types

* renamed to CrewDoclingSource

* linted

* added docs

* resolve conflicts

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-12-23 13:19:58 -05:00
devin-ai-integration[bot]
c887ff1f47 feat: Add interpolate_only method and improve error handling (#1791)
* Fixed output_file not respecting system path

* Fixed yaml config is not escaped properly for output requirements

* feat: Add interpolate_only method and improve error handling

- Add interpolate_only method for string interpolation while preserving JSON structure
- Add comprehensive test coverage for interpolate_only
- Add proper type annotation for logger using ClassVar
- Improve error handling and documentation for _save_file method

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports to fix lint issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Reorganize imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Consolidate imports and fix formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Apply ruff automatic import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Frieda (Jingying) Huang <jingyingfhuang@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Frieda Huang <124417784+frieda-huang@users.noreply.github.com>
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-23 13:05:29 -05:00
devin-ai-integration[bot]
22e5d39884 feat: Add task guardrails feature (#1742)
* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in task guardrails files

Co-Authored-By: Joe Moura <joao@crewai.com>

* fixing docs

* Fixing guardarils implementation

* docs: Enhance guardrail validator docstring with runtime validation rationale

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-22 00:52:02 -03:00
PJ
9ee6824ccd Correcting a small grammatical issue that was bugging me: from _satisfy the expect criteria_ to _satisfies the expected criteria_ (#1783)
Signed-off-by: PJ Hagerty <pjhagerty@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-20 10:17:34 -05:00
Vini Brasil
da73865f25 Add tool.crewai.type pyproject attribute in templates (#1789) 2024-12-20 10:36:18 -03:00
Vini Brasil
627b9f1abb Remove relative import in flow main.py template (#1782) 2024-12-18 10:47:44 -03:00
alan blount
1b8001bf98 Gemini 2.0 (#1773)
* Update llms.mdx (Gemini 2.0)

- Add Gemini 2.0 flash to Gemini table.
- Add link to 2 hosting paths for Gemini in Tip.
- Change to lower case model slugs vs names, user convenience.
- Add https://artificialanalysis.ai/ as alternate leaderboard.
- Move Gemma to "other" tab.

* Update llm.py (gemini 2.0)

Add setting for Gemini 2.0 context window to llm.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-17 16:44:10 -05:00
Tony Kipkemboi
e59e07e4f7 Merge pull request #1777 from crewAIInc/fix/python-max-version
Fix/python max version
2024-12-17 16:09:44 -05:00
Brandon Hancock
ee239b1c06 change to <13 instead of <=12 2024-12-17 16:00:15 -05:00
Brandon Hancock
bf459bf983 include 12 but not 13 2024-12-17 15:29:11 -05:00
Karan Vaidya
94eaa6740e Fix bool and null handling (#1771) 2024-12-16 16:23:53 -05:00
Shahar Yair
6d7c1b0743 Fix: CrewJSONEncoder now accepts enums (#1752)
* bugfix: CrewJSONEncoder now accepts enums

* sort imports

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 15:13:10 -05:00
Brandon Hancock (bhancock_ai)
6b864ee21d drop print (#1755) 2024-12-12 15:08:37 -05:00
Brandon Hancock (bhancock_ai)
1ffa8904db apply agent ops changes and resolve merge conflicts (#1748)
* apply agent ops changes and resolve merge conflicts

* Trying to fix tests

* add back in vcr

* update tools

* remove pkg_resources which was causing issues

* Fix tests

* experimenting to see if unique content is an issue with knowledge

* experimenting to see if unique content is an issue with knowledge

* update chromadb which seems to have issues with upsert

* generate new yaml for failing test

* Investigating upsert

* Drop patch

* Update casettes

* Fix duplicate document issue

* more fixes

* add back in vcr

* new cassette for test

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
2024-12-12 15:04:32 -05:00
Brandon Hancock (bhancock_ai)
ad916abd76 remove pkg_resources which was causing issues (#1751) 2024-12-12 12:41:13 -05:00
Rip&Tear
9702711094 Feature/add workflow permissions (#1749)
* fix: Call ChromaDB reset before removing storage directory to fix disk I/O errors

* feat: add workflow permissions to stale.yml

* revert rag_storage.py changes

* revert rag_storage.py changes

---------

Co-authored-by: Matt B <mattb@Matts-MacBook-Pro.local>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 12:31:43 -05:00
André Lago
8094754239 Fix small typo in sample tool (#1747)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 10:11:47 -05:00
Rashmi Pawar
bc5e303d5f NVIDIA Provider : UI changes (#1746)
* docs: add nvidia as provider

* nvidia ui docs changes

* add note for updated list

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 10:01:53 -05:00
Anmol Deep
ec89e003c8 Added is_auto_end flag in agentops.end session in crew.py (#1320)
When using agentops, we have the option to pass the `skip_auto_end_session` parameter, which is supposed to not end the session if the `end_session` function is called by Crew.

Now the way it works is, the `agentops.end_session` accepts `is_auto_end` flag and crewai should have passed it as `True` (its `False` by default). 

I have changed the code to pass is_auto_end=True

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-11 11:34:17 -05:00
Bowen Liang
0b0f2d30ab sort imports with isort rules by ruff linter (#1730)
* sort imports

* update

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-12-11 10:46:53 -05:00
Brandon Hancock (bhancock_ai)
1df61aba4c include event emitter in flows (#1740)
* include event emitter in flows

* Clean up

* Fix linter
2024-12-11 10:16:05 -05:00
Paul Cowgill
da9220fa81 Remove manager_callbacks reference (#1741) 2024-12-11 10:13:57 -05:00
Archkon
da4f356fab fix:typo error (#1738)
* Update base_agent_tools.py

typo error

* Update main.py

typo error

* Update base_file_knowledge_source.py

typo error

* Update test_main.py

typo error

* Update en.json

* Update prompts.json

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-10 11:18:45 -05:00
Brandon Hancock (bhancock_ai)
d932b20c6e copy googles changes. Fix tests. Improve LLM file (#1737)
* copy googles changes. Fix tests. Improve LLM file

* Fix type issue
2024-12-10 11:14:37 -05:00
Brandon Hancock (bhancock_ai)
2f9a2afd9e Update pyproject.toml and uv.lock to drop crewai-tools as a default requirement (#1711) 2024-12-09 14:17:46 -05:00
Brandon Hancock (bhancock_ai)
c1df7c410e Bugfix/restrict python version compatibility (#1736)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* drop pipeline
2024-12-09 14:07:57 -05:00
Brandon Hancock (bhancock_ai)
54ebd6cf90 restrict python version compatibility (#1731)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip
2024-12-09 14:00:18 -05:00
Carlos Souza
6b87d22a70 Fix disk I/O error when resetting short-term memory. (#1724)
* Fix disk I/O error when resetting short-term memory.

Reset chromadb client and nullifies references before
removing directory.

* Nit for clarity

* did the same for knowledge_storage

* cleanup

* cleanup order

* Cleanup after the rm of the directories

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2024-12-09 10:30:51 -08:00
Piotr Mardziel
c4f7eaf259 Add missing @functools.wraps when wrapping functions and preserve wrapped class name in @CrewBase. (#1560)
* Update annotations.py

* Update utils.py

* Update crew_base.py

* Update utils.py

* Update crew_base.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:51:12 -05:00
Tony Kipkemboi
236e42d0bc format bullet points (#1734)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:40:01 -05:00
fuckqqcom
8c90db04b5 _execute_tool_and_check_finality 结果给回调参数,这样就可以提前拿到结果信息,去做数据解析判断做预判 (#1716)
Co-authored-by: xiaohan <fuck@qq.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:37:54 -05:00
lgesuellip
1261ce513f Add doc structured tool (#1713)
* Add doc structured tool

* Fix example

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:34:07 -05:00
Tony Kipkemboi
b07c51532c Merge pull request #1733 from rokbenko/main
[DOCS] Fix Spaceflight News API docs link on Knowledge docs page
2024-12-09 11:27:01 -05:00
Tony Kipkemboi
d763eefc2e Merge branch 'main' into main 2024-12-09 11:23:36 -05:00
Aviral Jain
e01c0a0f4c call storage.search in user context search instead of memory.search (#1692)
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-12-09 08:07:52 -08:00
Rok Benko
5a7a323f3a Fix Knowledge docs Spaceflight News API dead link 2024-12-09 10:58:51 -05:00
Archkon
46be5e8097 fix:typo error (#1732)
* Update crew_agent_executor.py

typo error

* Update en.json

typo error
2024-12-09 10:53:55 -05:00
Frieda Huang
bc2a86d66a Fixed output_file not respecting system path (#1726)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 10:05:54 -05:00
Eduardo Chiarotti
11a3d4b840 docs: Add quotes to agentops installing command (#1729)
* docs: Add quotes to agentops installing command

* feat: Add ContextualMemory to __init__

* feat: remove import due to circular improt

* feat: update tasks config main template typos
2024-12-09 11:42:36 -03:00
133 changed files with 7321 additions and 12945 deletions

View File

@@ -65,7 +65,6 @@ body:
- '3.10'
- '3.11'
- '3.12'
- '3.13'
validations:
required: true
- type: input
@@ -113,4 +112,4 @@ body:
label: Additional context
description: Add any other context about the problem here.
validations:
required: true
required: true

View File

@@ -13,4 +13,4 @@ jobs:
pip install ruff
- name: Run Ruff Linter
run: ruff check --exclude "templates","__init__.py"
run: ruff check

View File

@@ -1,5 +1,10 @@
name: Mark stale issues and pull requests
permissions:
contents: write
issues: write
pull-requests: write
on:
schedule:
- cron: '10 12 * * *'
@@ -8,9 +13,6 @@ on:
jobs:
stale:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v9
with:

View File

@@ -23,7 +23,7 @@ jobs:
- name: Set up Python
run: uv python install 3.11.9
run: uv python install 3.12.8
- name: Install the project
run: uv sync --dev --all-extras

View File

@@ -1,9 +1,7 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.4.4
rev: v0.8.2
hooks:
- id: ruff
args: ["--fix"]
exclude: "templates"
- id: ruff-format
exclude: "templates"

9
.ruff.toml Normal file
View File

@@ -0,0 +1,9 @@
exclude = [
"templates",
"__init__.py",
]
[lint]
select = [
"I", # isort rules
]

160
README.md
View File

@@ -4,7 +4,7 @@
# **CrewAI**
🤖 **CrewAI**: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
🤖 **CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
<h3>
@@ -22,13 +22,17 @@
- [Why CrewAI?](#why-crewai)
- [Getting Started](#getting-started)
- [Key Features](#key-features)
- [Understanding Flows and Crews](#understanding-flows-and-crews)
- [CrewAI vs LangGraph](#how-crewai-compares)
- [Examples](#examples)
- [Quick Tutorial](#quick-tutorial)
- [Write Job Descriptions](#write-job-descriptions)
- [Trip Planner](#trip-planner)
- [Stock Analysis](#stock-analysis)
- [Using Crews and Flows Together](#using-crews-and-flows-together)
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
- [How CrewAI Compares](#how-crewai-compares)
- [Frequently Asked Questions (FAQ)](#frequently-asked-questions-faq)
- [Contribution](#contribution)
- [Telemetry](#telemetry)
- [License](#license)
@@ -36,15 +40,45 @@
## Why CrewAI?
The power of AI collaboration has too much to offer.
CrewAI is designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
CrewAI is a standalone framework, built from the ground up without dependencies on Langchain or other agent frameworks. It's designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
## Getting Started
### Learning Resources
Learn CrewAI through our comprehensive courses:
- [Multi AI Agent Systems with CrewAI](https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/) - Master the fundamentals of multi-agent systems
- [Practical Multi AI Agents and Advanced Use Cases](https://www.deeplearning.ai/short-courses/practical-multi-ai-agents-and-advanced-use-cases-with-crewai/) - Deep dive into advanced implementations
### Understanding Flows and Crews
CrewAI offers two powerful, complementary approaches that work seamlessly together to build sophisticated AI applications:
1. **Crews**: Teams of AI agents with true autonomy and agency, working together to accomplish complex tasks through role-based collaboration. Crews enable:
- Natural, autonomous decision-making between agents
- Dynamic task delegation and collaboration
- Specialized roles with defined goals and expertise
- Flexible problem-solving approaches
2. **Flows**: Production-ready, event-driven workflows that deliver precise control over complex automations. Flows provide:
- Fine-grained control over execution paths for real-world scenarios
- Secure, consistent state management between tasks
- Clean integration of AI agents with production Python code
- Conditional branching for complex business logic
The true power of CrewAI emerges when combining Crews and Flows. This synergy allows you to:
- Build complex, production-grade applications
- Balance autonomy with precise control
- Handle sophisticated real-world scenarios
- Maintain clean, maintainable code structure
### Getting Started with Installation
To get started with CrewAI, follow these simple steps:
### 1. Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, install CrewAI:
@@ -264,13 +298,16 @@ In addition to the sequential process, you can use the hierarchical process, whi
## Key Features
- **Role-Based Agent Design**: Customize agents with specific roles, goals, and tools.
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enhancing problem-solving efficiency.
- **Flexible Task Management**: Define tasks with customizable tools and assign them to agents dynamically.
- **Processes Driven**: Currently only supports `sequential` task execution and `hierarchical` processes, but more complex processes like consensual and autonomous are being worked on.
- **Save output as file**: Save the output of individual tasks as a file, so you can use it later.
- **Parse output as Pydantic or Json**: Parse the output of individual tasks as a Pydantic model or as a Json if you want to.
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models, even ones running locally!
**Note**: CrewAI is a standalone framework built from the ground up, without dependencies on Langchain or other agent frameworks.
- **Deep Customization**: Build sophisticated agents with full control over the system - from overriding inner prompts to accessing low-level APIs. Customize roles, goals, tools, and behaviors while maintaining clean abstractions.
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enabling complex problem-solving in real-world scenarios.
- **Flexible Task Management**: Define and customize tasks with granular control, from simple operations to complex multi-step processes.
- **Production-Grade Architecture**: Support for both high-level abstractions and low-level customization, with robust error handling and state management.
- **Predictable Results**: Ensure consistent, accurate outputs through programmatic guardrails, agent training capabilities, and flow-based execution control. See our [documentation on guardrails](https://docs.crewai.com/how-to/guardrails/) for implementation details.
- **Model Flexibility**: Run your crew using OpenAI or open source models with production-ready integrations. See [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) for detailed configuration options.
- **Event-Driven Flows**: Build complex, real-world workflows with precise control over execution paths, state management, and conditional logic.
- **Process Orchestration**: Achieve any workflow pattern through flows - from simple sequential and hierarchical processes to complex, custom orchestration patterns with conditional branching and parallel execution.
![CrewAI Mind Map](./docs/crewAI-mindmap.png "CrewAI Mind Map")
@@ -305,6 +342,98 @@ You can test different real life examples of AI crews in the [CrewAI-examples re
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
### Using Crews and Flows Together
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines. Here's how you can orchestrate multiple Crews within a Flow:
```python
from crewai.flow.flow import Flow, listen, start, router
from crewai import Crew, Agent, Task
from pydantic import BaseModel
# Define structured state for precise control
class MarketState(BaseModel):
sentiment: str = "neutral"
confidence: float = 0.0
recommendations: list = []
class AdvancedAnalysisFlow(Flow[MarketState]):
@start()
def fetch_market_data(self):
# Demonstrate low-level control with structured state
self.state.sentiment = "analyzing"
return {"sector": "tech", "timeframe": "1W"} # These parameters match the task description template
@listen(fetch_market_data)
def analyze_with_crew(self, market_data):
# Show crew agency through specialized roles
analyst = Agent(
role="Senior Market Analyst",
goal="Conduct deep market analysis with expert insight",
backstory="You're a veteran analyst known for identifying subtle market patterns"
)
researcher = Agent(
role="Data Researcher",
goal="Gather and validate supporting market data",
backstory="You excel at finding and correlating multiple data sources"
)
analysis_task = Task(
description="Analyze {sector} sector data for the past {timeframe}",
expected_output="Detailed market analysis with confidence score",
agent=analyst
)
research_task = Task(
description="Find supporting data to validate the analysis",
expected_output="Corroborating evidence and potential contradictions",
agent=researcher
)
# Demonstrate crew autonomy
analysis_crew = Crew(
agents=[analyst, researcher],
tasks=[analysis_task, research_task],
process=Process.sequential,
verbose=True
)
return analysis_crew.kickoff(inputs=market_data) # Pass market_data as named inputs
@router(analyze_with_crew)
def determine_next_steps(self):
# Show flow control with conditional routing
if self.state.confidence > 0.8:
return "high_confidence"
elif self.state.confidence > 0.5:
return "medium_confidence"
return "low_confidence"
@listen("high_confidence")
def execute_strategy(self):
# Demonstrate complex decision making
strategy_crew = Crew(
agents=[
Agent(role="Strategy Expert",
goal="Develop optimal market strategy")
],
tasks=[
Task(description="Create detailed strategy based on analysis",
expected_output="Step-by-step action plan")
]
)
return strategy_crew.kickoff()
@listen("medium_confidence", "low_confidence")
def request_additional_analysis(self):
self.state.recommendations.append("Gather more data")
return "Additional analysis required"
```
This example demonstrates how to:
1. Use Python code for basic data operations
2. Create and execute Crews as steps in your workflow
3. Use Flow decorators to manage the sequence of operations
4. Implement conditional branching based on Crew results
## Connecting Your Crew to a Model
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
@@ -313,9 +442,13 @@ Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-
## How CrewAI Compares
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
**CrewAI's Advantage**: CrewAI combines autonomous agent intelligence with precise workflow control through its unique Crews and Flows architecture. The framework excels at both high-level orchestration and low-level customization, enabling complex, production-grade systems with granular control.
- **Autogen**: While Autogen does good in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **LangGraph**: While LangGraph provides a foundation for building agent workflows, its approach requires significant boilerplate code and complex state management patterns. The framework's tight coupling with LangChain can limit flexibility when implementing custom agent behaviors or integrating with external systems.
*P.S. CrewAI demonstrates significant performance advantages over LangGraph, executing 5.76x faster in certain cases like this QA task example ([see comparison](https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/QA%20Agent)) while achieving higher evaluation scores with faster completion times in certain coding tasks, like in this example ([detailed analysis](https://github.com/crewAIInc/crewAI-examples/blob/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/Coding%20Assistant/coding_assistant_eval.ipynb)).*
- **Autogen**: While Autogen excels at creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
@@ -440,5 +573,8 @@ A: CrewAI uses anonymous telemetry to collect usage data for improvement purpose
### Q: Where can I find examples of CrewAI in action?
A: You can find various real-life examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), including trip planners, stock analysis tools, and more.
### Q: What is the difference between Crews and Flows?
A: Crews and Flows serve different but complementary purposes in CrewAI. Crews are teams of AI agents working together to accomplish specific tasks through role-based collaboration, delivering accurate and predictable results. Flows, on the other hand, are event-driven workflows that can orchestrate both Crews and regular Python code, allowing you to build complex automation pipelines with secure state management and conditional execution paths.
### Q: How can I contribute to CrewAI?
A: Contributions are welcome! You can fork the repository, create a new branch for your feature, add your improvement, and send a pull request. Check the Contribution section in the README for more details.

View File

@@ -32,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |

View File

@@ -8,8 +8,8 @@ icon: book
## What is Knowledge?
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
Think of it as giving your agents a reference library they can consult while working.
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
Think of it as giving your agents a reference library they can consult while working.
<Info>
Key benefits of using Knowledge:
@@ -47,7 +47,7 @@ from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSourc
# Create a knowledge source
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content,
content=content,
)
# Create an LLM with a temperature of 0 to ensure deterministic outputs
@@ -79,6 +79,55 @@ crew = Crew(
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
Here's another example with the `CrewDoclingSource`
```python Code
from crewai import LLM, Agent, Crew, Process, Task
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
# Create a knowledge source
content_source = CrewDoclingSource(
file_paths=[
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking",
"https://lilianweng.github.io/posts/2024-07-07-hallucination",
],
)
# Create an LLM with a temperature of 0 to ensure deterministic outputs
llm = LLM(model="gpt-4o-mini", temperature=0)
# Create an agent with the knowledge store
agent = Agent(
role="About papers",
goal="You know everything about the papers.",
backstory="""You are a master at understanding papers and their content.""",
verbose=True,
allow_delegation=False,
llm=llm,
)
task = Task(
description="Answer the following questions about the papers: {question}",
expected_output="An answer to the question.",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge_sources=[
content_source
], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
)
result = crew.kickoff(
inputs={
"question": "What is the reward hacking paper about? Be sure to provide sources."
}
)
```
## Knowledge Configuration
### Chunking Configuration
@@ -122,7 +171,6 @@ crewai reset-memories --knowledge
This is useful when you've updated your knowledge sources and want to ensure that the agents are using the most recent information.
## Custom Knowledge Sources
CrewAI allows you to create custom knowledge sources for any type of data by extending the `BaseKnowledgeSource` class. Let's create a practical example that fetches and processes space news articles.
@@ -141,10 +189,10 @@ from pydantic import BaseModel, Field
class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
"""Knowledge source that fetches data from Space News API."""
api_endpoint: str = Field(description="API endpoint URL")
limit: int = Field(default=10, description="Number of articles to fetch")
def load_content(self) -> Dict[Any, str]:
"""Fetch and format space news articles."""
try:
@@ -152,15 +200,15 @@ class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
f"{self.api_endpoint}?limit={self.limit}"
)
response.raise_for_status()
data = response.json()
articles = data.get('results', [])
formatted_data = self._format_articles(articles)
return {self.api_endpoint: formatted_data}
except Exception as e:
raise ValueError(f"Failed to fetch space news: {str(e)}")
def _format_articles(self, articles: list) -> str:
"""Format articles into readable text."""
formatted = "Space News Articles:\n\n"
@@ -180,7 +228,7 @@ class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
for _, text in content.items():
chunks = self._chunk_text(text)
self.chunks.extend(chunks)
self._save_documents()
# Create knowledge source
@@ -193,7 +241,7 @@ recent_news = SpaceNewsKnowledgeSource(
space_analyst = Agent(
role="Space News Analyst",
goal="Answer questions about space news accurately and comprehensively",
backstory="""You are a space industry analyst with expertise in space exploration,
backstory="""You are a space industry analyst with expertise in space exploration,
satellite technology, and space industry trends. You excel at answering questions
about space news and providing detailed, accurate information.""",
knowledge_sources=[recent_news],
@@ -220,13 +268,14 @@ result = crew.kickoff(
inputs={"user_question": "What are the latest developments in space exploration?"}
)
```
```output Output
# Agent: Space News Analyst
## Task: Answer this question about space news: What are the latest developments in space exploration?
# Agent: Space News Analyst
## Final Answer:
## Final Answer:
The latest developments in space exploration, based on recent space news articles, include the following:
1. SpaceX has received the final regulatory approvals to proceed with the second integrated Starship/Super Heavy launch, scheduled for as soon as the morning of Nov. 17, 2023. This is a significant step in SpaceX's ambitious plans for space exploration and colonization. [Source: SpaceNews](https://spacenews.com/starship-cleared-for-nov-17-launch/)
@@ -242,11 +291,13 @@ The latest developments in space exploration, based on recent space news article
6. The National Natural Science Foundation of China has outlined a five-year project for researchers to study the assembly of ultra-large spacecraft. This could lead to significant advancements in spacecraft technology and space exploration capabilities. [Source: SpaceNews](https://spacenews.com/china-researching-challenges-of-kilometer-scale-ultra-large-spacecraft/)
7. The Center for AEroSpace Autonomy Research (CAESAR) at Stanford University is focusing on spacecraft autonomy. The center held a kickoff event on May 22, 2024, to highlight the industry, academia, and government collaboration it seeks to foster. This could lead to significant advancements in autonomous spacecraft technology. [Source: SpaceNews](https://spacenews.com/stanford-center-focuses-on-spacecraft-autonomy/)
```
```
</CodeGroup>
#### Key Components Explained
1. **Custom Knowledge Source (`SpaceNewsKnowledgeSource`)**:
- Extends `BaseKnowledgeSource` for integration with CrewAI
- Configurable API endpoint and article limit
- Implements three key methods:
@@ -255,10 +306,12 @@ The latest developments in space exploration, based on recent space news article
- `add()`: Processes and stores the content
2. **Agent Configuration**:
- Specialized role as a Space News Analyst
- Uses the knowledge source to access space news
3. **Task Setup**:
- Takes a user question as input through `{user_question}`
- Designed to provide detailed answers based on the knowledge source
@@ -267,6 +320,7 @@ The latest developments in space exploration, based on recent space news article
- Handles input/output through the kickoff method
This example demonstrates how to:
- Create a custom knowledge source that fetches real-time data
- Process and format external data for AI consumption
- Use the knowledge source to answer specific user questions
@@ -274,13 +328,15 @@ This example demonstrates how to:
#### About the Spaceflight News API
The example uses the [Spaceflight News API](https://api.spaceflightnewsapi.net/v4/documentation), which:
The example uses the [Spaceflight News API](https://api.spaceflightnewsapi.net/v4/docs/), which:
- Provides free access to space-related news articles
- Requires no authentication
- Returns structured data about space news
- Supports pagination and filtering
You can customize the API query by modifying the endpoint URL:
```python
# Fetch more articles
recent_news = SpaceNewsKnowledgeSource(
@@ -303,9 +359,9 @@ recent_news = SpaceNewsKnowledgeSource(
- Consider content overlap for context preservation
- Organize related information into separate knowledge sources
</Accordion>
<Accordion title="Performance Tips">
- Adjust chunk sizes based on content complexity
- Adjust chunk sizes based on content complexity
- Configure appropriate embedding models
- Consider using local embedding providers for faster processing
</Accordion>

View File

@@ -29,7 +29,7 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
## Available Models and Their Capabilities
Here's a detailed breakdown of supported models and their capabilities:
Here's a detailed breakdown of supported models and their capabilities, you can compare performance at [lmarena.ai](https://lmarena.ai/?leaderboard) and [artificialanalysis.ai](https://artificialanalysis.ai/):
<Tabs>
<Tab title="OpenAI">
@@ -43,13 +43,104 @@ Here's a detailed breakdown of supported models and their capabilities:
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
</Note>
</Tab>
<Tab title="Nvidia NIM">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| nvidia/mistral-nemo-minitron-8b-8k-instruct | 8,192 tokens | State-of-the-art small language model delivering superior accuracy for chatbot, virtual assistants, and content generation. |
| nvidia/nemotron-4-mini-hindi-4b-instruct| 4,096 tokens | A bilingual Hindi-English SLM for on-device inference, tailored specifically for Hindi Language. |
| "nvidia/llama-3.1-nemotron-70b-instruct | 128k tokens | Llama-3.1-Nemotron-70B-Instruct is a large language model customized by NVIDIA in order to improve the helpfulness of LLM generated responses. |
| nvidia/llama3-chatqa-1.5-8b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
| nvidia/llama3-chatqa-1.5-70b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
| nvidia/vila | 128k tokens | Multi-modal vision-language model that understands text/img/video and creates informative responses |
| nvidia/neva-22| 4,096 tokens | Multi-modal vision-language model that understands text/images and generates informative responses |
| nvidia/nemotron-mini-4b-instruct | 8,192 tokens | General-purpose tasks |
| nvidia/usdcode-llama3-70b-instruct | 128k tokens | State-of-the-art LLM that answers OpenUSD knowledge queries and generates USD-Python code. |
| nvidia/nemotron-4-340b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
| meta/codellama-70b | 100k tokens | LLM capable of generating code from natural language and vice versa. |
| meta/llama2-70b | 4,096 tokens | Cutting-edge large language AI model capable of generating text and code in response to prompts. |
| meta/llama3-8b-instruct | 8,192 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
| meta/llama3-70b-instruct | 8,192 tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| meta/llama-3.1-8b-instruct | 128k tokens | Advanced state-of-the-art model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| meta/llama-3.1-405b-instruct | 128k tokens | Advanced LLM for synthetic data generation, distillation, and inference for chatbots, coding, and domain-specific tasks. |
| meta/llama-3.2-1b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.2-3b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.2-11b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.2-90b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| google/gemma-7b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/gemma-2b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/codegemma-7b | 8,192 tokens | Cutting-edge model built on Google's Gemma-7B specialized for code generation and code completion. |
| google/codegemma-1.1-7b | 8,192 tokens | Advanced programming model for code generation, completion, reasoning, and instruction following. |
| google/recurrentgemma-2b | 8,192 tokens | Novel recurrent architecture based language model for faster inference when generating long sequences. |
| google/gemma-2-9b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/gemma-2-27b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/gemma-2-2b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/deplot | 512 tokens | One-shot visual language understanding model that translates images of plots into tables. |
| google/paligemma | 8,192 tokens | Vision language model adept at comprehending text and visual inputs to produce informative responses. |
| mistralai/mistral-7b-instruct-v0.2 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| mistralai/mixtral-8x7b-instruct-v0.1 | 8,192 tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
| mistralai/mistral-large | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
| mistralai/mixtral-8x22b-instruct-v0.1 | 8,192 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
| mistralai/mistral-7b-instruct-v0.3 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| nv-mistralai/mistral-nemo-12b-instruct | 128k tokens | Most advanced language model for reasoning, code, multilingual tasks; runs on a single GPU. |
| mistralai/mamba-codestral-7b-v0.1 | 256k tokens | Model for writing and interacting with code across a wide range of programming languages and tasks. |
| microsoft/phi-3-mini-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-mini-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-small-8k-instruct | 8,192 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-small-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-medium-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-medium-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3.5-mini-instruct | 128K tokens | Lightweight multilingual LLM powering AI applications in latency bound, memory/compute constrained environments |
| microsoft/phi-3.5-moe-instruct | 128K tokens | Advanced LLM based on Mixture of Experts architecure to deliver compute efficient content generation |
| microsoft/kosmos-2 | 1,024 tokens | Groundbreaking multimodal model designed to understand and reason about visual elements in images. |
| microsoft/phi-3-vision-128k-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
| microsoft/phi-3.5-vision-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
| databricks/dbrx-instruct | 12k tokens | A general-purpose LLM with state-of-the-art performance in language understanding, coding, and RAG. |
| snowflake/arctic | 1,024 tokens | Delivers high efficiency inference for enterprise applications focused on SQL generation and coding. |
| aisingapore/sea-lion-7b-instruct | 4,096 tokens | LLM to represent and serve the linguistic and cultural diversity of Southeast Asia |
| ibm/granite-8b-code-instruct | 4,096 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
| ibm/granite-34b-code-instruct | 8,192 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
| ibm/granite-3.0-8b-instruct | 4,096 tokens | Advanced Small Language Model supporting RAG, summarization, classification, code, and agentic AI |
| ibm/granite-3.0-3b-a800m-instruct | 4,096 tokens | Highly efficient Mixture of Experts model for RAG, summarization, entity extraction, and classification |
| mediatek/breeze-7b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
| upstage/solar-10.7b-instruct | 4,096 tokens | Excels in NLP tasks, particularly in instruction-following, reasoning, and mathematics. |
| writer/palmyra-med-70b-32k | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
| writer/palmyra-med-70b | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
| writer/palmyra-fin-70b-32k | 32k tokens | Specialized LLM for financial analysis, reporting, and data processing |
| 01-ai/yi-large | 32k tokens | Powerful model trained on English and Chinese for diverse tasks including chatbot and creative writing. |
| deepseek-ai/deepseek-coder-6.7b-instruct | 2k tokens | Powerful coding model offering advanced capabilities in code generation, completion, and infilling |
| rakuten/rakutenai-7b-instruct | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
| rakuten/rakutenai-7b-chat | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
| baichuan-inc/baichuan2-13b-chat | 4,096 tokens | Support Chinese and English chat, coding, math, instruction following, solving quizzes |
<Note>
NVIDIA's NIM support for models is expanding continuously! For the most up-to-date list of available models, please visit build.nvidia.com.
</Note>
</Tab>
<Tab title="Gemini">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
<Tip>
Google's Gemini models are all multimodal, supporting audio, images, video and text, supporting context caching, json schema, function calling, etc.
These models are available via API_KEY from
[The Gemini API](https://ai.google.dev/gemini-api/docs) and also from
[Google Cloud Vertex](https://cloud.google.com/vertex-ai/generative-ai/docs/migrate/migrate-google-ai) as part of the
[Model Garden](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/explore-models).
</Tip>
</Tab>
<Tab title="Groq">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| Llama 3.1 70B/8B | 131,072 tokens | High-performance, large context tasks |
| Llama 3.2 Series | 8,192 tokens | General-purpose tasks |
| Mixtral 8x7B | 32,768 tokens | Balanced performance and context |
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
<Tip>
Groq is known for its fast inference speeds, making it suitable for real-time applications.
@@ -60,7 +151,7 @@ Here's a detailed breakdown of supported models and their capabilities:
|----------|---------------|--------------|
| Deepseek Chat | 128,000 tokens | Specialized in technical discussions |
| Claude 3 | Up to 200K tokens | Strong reasoning, code understanding |
| Gemini | Varies by model | Multimodal capabilities |
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
<Info>
Provider selection should consider factors like:
@@ -128,10 +219,10 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
# llm: anthropic/claude-2.1
# llm: anthropic/claude-2.0
# Google Models - Good for general tasks
# llm: gemini/gemini-pro
# Google Models - Strong reasoning, large cachable context window, multimodal
# llm: gemini/gemini-1.5-pro-latest
# llm: gemini/gemini-1.0-pro-latest
# llm: gemini/gemini-1.5-flash-latest
# llm: gemini/gemini-1.5-flash-8b-latest
# AWS Bedrock Models - Enterprise-grade
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
@@ -350,13 +441,18 @@ Learn how to get the most out of your LLM configuration:
<Accordion title="Google">
```python Code
# Option 1. Gemini accessed with an API key.
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
```
Example usage:
```python Code
llm = LLM(
model="gemini/gemini-pro",
model="gemini/gemini-1.5-pro-latest",
temperature=0.7
)
```
@@ -412,6 +508,20 @@ Learn how to get the most out of your LLM configuration:
```
</Accordion>
<Accordion title="Nvidia NIM">
```python Code
NVIDIA_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="nvidia_nim/meta/llama3-70b-instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="Groq">
```python Code
GROQ_API_KEY=<your-api-key>
@@ -502,20 +612,6 @@ Learn how to get the most out of your LLM configuration:
```
</Accordion>
<Accordion title="Nvidia NIM">
```python Code
NVIDIA_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="nvidia_nim/meta/llama3-70b-instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="SambaNova">
```python Code
SAMBANOVA_API_KEY=<your-api-key>

View File

@@ -35,10 +35,41 @@ By default, the memory system is disabled, and you can ensure it is active by se
The memory will use OpenAI embeddings by default, but you can change it by setting `embedder` to a different model.
It's also possible to initialize the memory instance with your own instance.
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG.
The **Long-Term Memory** uses SQLite3 to store task results. Currently, there is no way to override these storage implementations.
The data storage files are saved into a platform-specific location found using the appdirs package,
and the name of the project can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
Each memory type uses different storage implementations:
- **Short-Term Memory**: Uses Chroma for RAG (Retrieval-Augmented Generation) with configurable embeddings
- **Long-Term Memory**: Uses SQLite3 for persistent storage of task results and metadata
- **Entity Memory**: Uses either RAG storage (default) or Mem0 for entity information
- **User Memory**: Available through Mem0 integration for personalized experiences
The data storage files are saved in a platform-specific location using the appdirs package.
You can override the storage location using the **CREWAI_STORAGE_DIR** environment variable.
### Storage Implementation Details
#### Short-Term Memory
- Default: ChromaDB with RAG
- Configurable embeddings (OpenAI, Ollama, Google AI, etc.)
- Supports custom embedding functions
- Optional Mem0 integration for enhanced capabilities
#### Long-Term Memory
- SQLite3 storage with structured schema
- Stores task descriptions, metadata, timestamps, and quality scores
- Supports querying by task description with configurable limits
- Includes error handling and reset capabilities
#### Entity Memory
- Default: RAG storage with ChromaDB
- Optional Mem0 integration
- Structured entity storage (name, type, description)
- Supports metadata and relationship mapping
#### User Memory
- Requires Mem0 integration
- Stores user preferences and interaction history
- Supports personalized context building
- Configurable through memory_config
### Example: Configuring Memory for a Crew
@@ -93,11 +124,41 @@ my_crew = Crew(
)
```
## Integrating Mem0 for Enhanced User Memory
## Integrating Mem0 Provider
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications that can enhance all memory types in CrewAI. It provides advanced features for storing and retrieving contextual information.
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences.
### Configuration
To use Mem0, you'll need:
1. An API key from [Mem0 Dashboard](https://app.mem0.ai/dashboard/api-keys)
2. The `mem0ai` package installed: `pip install mem0ai`
You can configure Mem0 in two ways:
1. **Environment Variable**:
```bash
export MEM0_API_KEY="your-api-key"
```
2. **Memory Config**:
```python
memory_config = {
"provider": "mem0",
"config": {
"api_key": "your-api-key",
"user_id": "user123" # Required for user memory
}
}
```
### Memory Type Support
Mem0 can be used with all memory types:
- **Short-Term Memory**: Enhanced context retention
- **Long-Term Memory**: Improved task history storage
- **Entity Memory**: Better entity relationship tracking
- **User Memory**: Personalized user preferences and history
```python Code
@@ -135,9 +196,118 @@ crew = Crew(
```
## Additional Embedding Providers
## Memory Interface Details
### Using OpenAI embeddings (already default)
When implementing custom memory storage, be aware of these interface requirements:
### Base Memory Class
```python
class Memory:
def save(
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
"""Save data to memory with optional metadata and agent information."""
pass
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
"""Search memory with configurable limit and relevance threshold."""
pass
```
### Memory Type Specifics
1. **LongTermMemory**:
```python
class LongTermMemoryItem:
task: str # Task description
expected_output: str # Expected task output
metadata: Dict[str, Any] # Additional metadata
agent: Optional[str] = None # Associated agent
datetime: str # Timestamp
quality: float # Task quality score (0-1)
```
- Saves task results with quality scores and timestamps
- Search returns historical task data ordered by date
- Note: Implementation has type hint differences from base Memory class
2. **EntityMemory**:
```python
class EntityMemoryItem:
name: str # Entity name
type: str # Entity type
description: str # Entity description
metadata: Dict[str, Any] # Additional metadata
agent: Optional[str] = None # Associated agent
```
- Saves entity information with type and description
- Search supports entity relationship queries
- Note: Implementation has type hint differences from base Memory class
3. **ShortTermMemory**:
```python
class ShortTermMemoryItem:
data: Any # Memory content
metadata: Dict[str, Any] # Additional metadata
agent: Optional[str] = None # Associated agent
```
- Saves recent interactions with metadata
- Search supports semantic similarity
- Follows base Memory class interface exactly
### Error Handling and Reset
Each memory type includes error handling and reset capabilities:
```python
# Reset short-term memory
try:
crew.short_term_memory.reset()
except Exception as e:
print(f"Error resetting short-term memory: {e}")
# Reset entity memory
try:
crew.entity_memory.reset()
except Exception as e:
print(f"Error resetting entity memory: {e}")
# Reset long-term memory
try:
crew.long_term_memory.reset()
except Exception as e:
print(f"Error resetting long-term memory: {e}")
```
Common error scenarios:
- Database connection issues
- File permission errors
- Storage initialization failures
- Embedding generation errors
### Implementation Notes
1. **Type Hint Considerations**:
- LongTermMemory.save() expects LongTermMemoryItem
- EntityMemory.save() expects EntityMemoryItem
- ShortTermMemory.save() follows base Memory interface
2. **Storage Reset Behavior**:
- Short-term: Clears ChromaDB collection
- Long-term: Truncates SQLite table
- Entity: Clears entity storage
- Mem0: Provider-specific reset
## Embedding Providers
CrewAI supports multiple embedding providers for RAG-based memory types:
```python Code
from crewai import Crew, Agent, Task, Process

View File

@@ -6,7 +6,7 @@ icon: list-check
## Overview of a Task
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
Tasks provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
@@ -263,8 +263,148 @@ analysis_task = Task(
)
```
## Task Guardrails
Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
efeedback to agents when their output doesn't meet specific criteria.
### Using Task Guardrails
To add a guardrail to a task, provide a validation function through the `guardrail` parameter:
```python Code
from typing import Tuple, Union, Dict, Any
def validate_blog_content(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
"""Validate blog content meets requirements."""
try:
# Check word count
word_count = len(result.split())
if word_count > 200:
return (False, {
"error": "Blog content exceeds 200 words",
"code": "WORD_COUNT_ERROR",
"context": {"word_count": word_count}
})
# Additional validation logic here
return (True, result.strip())
except Exception as e:
return (False, {
"error": "Unexpected error during validation",
"code": "SYSTEM_ERROR"
})
blog_task = Task(
description="Write a blog post about AI",
expected_output="A blog post under 200 words",
agent=blog_agent,
guardrail=validate_blog_content # Add the guardrail function
)
```
### Guardrail Function Requirements
1. **Function Signature**:
- Must accept exactly one parameter (the task output)
- Should return a tuple of `(bool, Any)`
- Type hints are recommended but optional
2. **Return Values**:
- Success: Return `(True, validated_result)`
- Failure: Return `(False, error_details)`
### Error Handling Best Practices
1. **Structured Error Responses**:
```python Code
def validate_with_context(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
try:
# Main validation logic
validated_data = perform_validation(result)
return (True, validated_data)
except ValidationError as e:
return (False, {
"error": str(e),
"code": "VALIDATION_ERROR",
"context": {"input": result}
})
except Exception as e:
return (False, {
"error": "Unexpected error",
"code": "SYSTEM_ERROR"
})
```
2. **Error Categories**:
- Use specific error codes
- Include relevant context
- Provide actionable feedback
3. **Validation Chain**:
```python Code
from typing import Any, Dict, List, Tuple, Union
def complex_validation(result: str) -> Tuple[bool, Union[str, Dict[str, Any]]]:
"""Chain multiple validation steps."""
# Step 1: Basic validation
if not result:
return (False, {"error": "Empty result", "code": "EMPTY_INPUT"})
# Step 2: Content validation
try:
validated = validate_content(result)
if not validated:
return (False, {"error": "Invalid content", "code": "CONTENT_ERROR"})
# Step 3: Format validation
formatted = format_output(validated)
return (True, formatted)
except Exception as e:
return (False, {
"error": str(e),
"code": "VALIDATION_ERROR",
"context": {"step": "content_validation"}
})
```
### Handling Guardrail Results
When a guardrail returns `(False, error)`:
1. The error is sent back to the agent
2. The agent attempts to fix the issue
3. The process repeats until:
- The guardrail returns `(True, result)`
- Maximum retries are reached
Example with retry handling:
```python Code
from typing import Optional, Tuple, Union
def validate_json_output(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
"""Validate and parse JSON output."""
try:
# Try to parse as JSON
data = json.loads(result)
return (True, data)
except json.JSONDecodeError as e:
return (False, {
"error": "Invalid JSON format",
"code": "JSON_ERROR",
"context": {"line": e.lineno, "column": e.colno}
})
task = Task(
description="Generate a JSON report",
expected_output="A valid JSON object",
agent=analyst,
guardrail=validate_json_output,
max_retries=3 # Limit retry attempts
)
```
## Getting Structured Consistent Outputs from Tasks
When you need to ensure that a task outputs a structured and consistent format, you can use the `output_pydantic` or `output_json` properties on a task. These properties allow you to define the expected output structure, making it easier to parse and utilize the results in your application.
<Note>
It's also important to note that the output of the final task of a crew becomes the final output of the actual crew itself.
@@ -608,6 +748,114 @@ While creating and executing tasks, certain validation mechanisms are in place t
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
## Task Guardrails
Task guardrails provide a powerful way to validate, transform, or filter task outputs before they are passed to the next task. Guardrails are optional functions that execute before the next task starts, allowing you to ensure that task outputs meet specific requirements or formats.
### Basic Usage
```python Code
from typing import Tuple, Union
from crewai import Task
def validate_json_output(result: str) -> Tuple[bool, Union[dict, str]]:
"""Validate that the output is valid JSON."""
try:
json_data = json.loads(result)
return (True, json_data)
except json.JSONDecodeError:
return (False, "Output must be valid JSON")
task = Task(
description="Generate JSON data",
expected_output="Valid JSON object",
guardrail=validate_json_output
)
```
### How Guardrails Work
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.
2. **Execution Timing**: The guardrail function is executed before the next task starts, ensuring valid data flow between tasks.
3. **Return Format**: Guardrails must return a tuple of `(success, data)`:
- If `success` is `True`, `data` is the validated/transformed result
- If `success` is `False`, `data` is the error message
4. **Result Routing**:
- On success (`True`), the result is automatically passed to the next task
- On failure (`False`), the error is sent back to the agent to generate a new answer
### Common Use Cases
#### Data Format Validation
```python Code
def validate_email_format(result: str) -> Tuple[bool, Union[str, str]]:
"""Ensure the output contains a valid email address."""
import re
email_pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
if re.match(email_pattern, result.strip()):
return (True, result.strip())
return (False, "Output must be a valid email address")
```
#### Content Filtering
```python Code
def filter_sensitive_info(result: str) -> Tuple[bool, Union[str, str]]:
"""Remove or validate sensitive information."""
sensitive_patterns = ['SSN:', 'password:', 'secret:']
for pattern in sensitive_patterns:
if pattern.lower() in result.lower():
return (False, f"Output contains sensitive information ({pattern})")
return (True, result)
```
#### Data Transformation
```python Code
def normalize_phone_number(result: str) -> Tuple[bool, Union[str, str]]:
"""Ensure phone numbers are in a consistent format."""
import re
digits = re.sub(r'\D', '', result)
if len(digits) == 10:
formatted = f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
return (True, formatted)
return (False, "Output must be a 10-digit phone number")
```
### Advanced Features
#### Chaining Multiple Validations
```python Code
def chain_validations(*validators):
"""Chain multiple validators together."""
def combined_validator(result):
for validator in validators:
success, data = validator(result)
if not success:
return (False, data)
result = data
return (True, result)
return combined_validator
# Usage
task = Task(
description="Get user contact info",
expected_output="Email and phone",
guardrail=chain_validations(
validate_email_format,
filter_sensitive_info
)
)
```
#### Custom Retry Logic
```python Code
task = Task(
description="Generate data",
expected_output="Valid data",
guardrail=validate_data,
max_retries=5 # Override default retry limit
)
```
## Creating Directories when Saving Files
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
@@ -629,7 +877,7 @@ save_output_task = Task(
## Conclusion
Tasks are the driving force behind the actions of agents in CrewAI.
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
Tasks are the driving force behind the actions of agents in CrewAI.
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.

View File

@@ -172,6 +172,48 @@ def my_tool(question: str) -> str:
return "Result from your custom tool"
```
### Structured Tools
The `StructuredTool` class wraps functions as tools, providing flexibility and validation while reducing boilerplate. It supports custom schemas and dynamic logic for seamless integration of complex functionalities.
#### Example:
Using `StructuredTool.from_function`, you can wrap a function that interacts with an external API or system, providing a structured interface. This enables robust validation and consistent execution, making it easier to integrate complex functionalities into your applications as demonstrated in the following example:
```python
from crewai.tools.structured_tool import CrewStructuredTool
from pydantic import BaseModel
# Define the schema for the tool's input using Pydantic
class APICallInput(BaseModel):
endpoint: str
parameters: dict
# Wrapper function to execute the API call
def tool_wrapper(*args, **kwargs):
# Here, you would typically call the API using the parameters
# For demonstration, we'll return a placeholder string
return f"Call the API at {kwargs['endpoint']} with parameters {kwargs['parameters']}"
# Create and return the structured tool
def create_structured_tool():
return CrewStructuredTool.from_function(
name='Wrapper API',
description="A tool to wrap API calls with structured input.",
args_schema=APICallInput,
func=tool_wrapper,
)
# Example usage
structured_tool = create_structured_tool()
# Execute the tool with structured input
result = structured_tool._run(**{
"endpoint": "https://example.com/api",
"parameters": {"key1": "value1", "key2": "value2"}
})
print(result) # Output: Call the API at https://example.com/api with parameters {'key1': 'value1', 'key2': 'value2'}
```
### Custom Caching Mechanism
<Tip>

View File

@@ -0,0 +1,211 @@
# Portkey Integration with CrewAI
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
Portkey adds 4 core production capabilities to any CrewAI agent:
1. Routing to **200+ LLMs**
2. Making each LLM call more robust
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
1. **Install Required Packages:**
```bash
pip install -qU crewai portkey-ai
```
2. **Configure the LLM Client:**
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
```
3. **Create and Run Your First Agent:**
```python
from crewai import Agent, Task, Crew
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
## Key Features
| Feature | Description |
|---------|-------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
| 🚧 Security Controls | Set budget limits and implement role-based access control |
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
## Production Features with Portkey Configs
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
<Frame>
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
</Frame>
### 1. Use 250+ LLMs
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
Easily switch between different LLM providers:
```python
# Anthropic Configuration
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="anthropic_agent"
)
)
# Azure OpenAI Configuration
azure_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="azure_agent"
)
)
```
### 2. Caching
Improve response times and reduce costs with two powerful caching modes:
- **Simple Cache**: Perfect for exact matches
- **Semantic Cache**: Matches responses for requests that are semantically similar
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
```py
config = {
"cache": {
"mode": "semantic", # or "simple" for exact matching
}
}
```
### 3. Production Reliability
Portkey provides comprehensive reliability features:
- **Automatic Retries**: Handle temporary failures gracefully
- **Request Timeouts**: Prevent hanging operations
- **Conditional Routing**: Route requests based on specific conditions
- **Fallbacks**: Set up automatic provider failovers
- **Load Balancing**: Distribute requests efficiently
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
### 4. Metrics
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
- Cost per agent interaction
- Response times and latency
- Token usage and efficiency
- Success/failure rates
- Cache hit rates
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
### 5. Detailed Logging
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
<details>
<summary><b>Traces</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
</details>
<details>
<summary><b>Logs</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
</details>
### 6. Enterprise Security Features
- Set budget limit and rate limts per Virtual Key (disposable API keys)
- Implement role-based access control
- Track system changes with audit logs
- Configure data retention policies
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
## Resources
- [📘 Portkey Documentation](https://docs.portkey.ai)
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

@@ -57,7 +57,7 @@ This feature is useful for debugging and understanding how agents interact with
<Step title="Install AgentOps">
Install AgentOps with:
```bash
pip install crewai[agentops]
pip install 'crewai[agentops]'
```
or
```bash

View File

@@ -0,0 +1,196 @@
---
title: Agent Monitoring with MLFlow
description: How to monitor and track CrewAI Agents using MLFlow for experiment tracking and model registry.
icon: chart-line
---
# Introduction
MLFlow is an open-source platform for managing the end-to-end machine learning lifecycle. When integrated with CrewAI, it provides powerful capabilities for tracking agent performance, logging metrics, and managing experiments. This guide demonstrates how to implement precise monitoring and tracking of your CrewAI agents using MLFlow.
## MLFlow Integration
MLFlow offers comprehensive experiment tracking and model registry capabilities that complement CrewAI's agent-based workflows:
- **Experiment Tracking**: Monitor agent performance metrics and execution patterns
- **Metric Logging**: Track costs, latency, and success rates
- **Artifact Management**: Store and version agent configurations and outputs
- **Model Registry**: Maintain different versions of agent configurations
### Features
- **Real-time Monitoring**: Track agent performance as tasks are executed
- **Metric Collection**: Gather detailed statistics on agent operations
- **Experiment Organization**: Group related agent runs for comparison
- **Resource Tracking**: Monitor computational and token usage
- **Custom Metrics**: Define and track domain-specific performance indicators
## Getting Started
<Steps>
<Step title="Install Dependencies">
Install MLFlow alongside CrewAI:
```bash
pip install mlflow crewai
```
</Step>
<Step title="Configure MLFlow">
Set up MLFlow tracking in your environment:
```python
import mlflow
from crewai import Agent, Task, Crew
# Configure MLFlow tracking
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("crewai-agents")
```
</Step>
<Step title="Create Tracking Callbacks">
Implement MLFlow callbacks for monitoring:
```python
class MLFlowCallback:
def __init__(self):
self.start_time = time.time()
def on_step(self, agent, task, step_number, step_input, step_output):
mlflow.log_metrics({
"step_number": step_number,
"step_duration": time.time() - self.start_time,
"output_length": len(step_output)
})
def on_task(self, agent, task, output):
mlflow.log_metrics({
"task_duration": time.time() - self.start_time,
"final_output_length": len(output)
})
mlflow.log_param("task_description", task.description)
```
</Step>
<Step title="Integrate with CrewAI">
Apply MLFlow tracking to your CrewAI agents:
```python
# Create MLFlow callback
mlflow_callback = MLFlowCallback()
# Create agent with tracking
researcher = Agent(
role='Researcher',
goal='Conduct market analysis',
backstory='Expert market researcher with deep analytical skills',
step_callback=mlflow_callback.on_step
)
# Create crew with tracking
crew = Crew(
agents=[researcher],
tasks=[...],
task_callback=mlflow_callback.on_task
)
# Execute with MLFlow tracking
with mlflow.start_run():
result = crew.kickoff()
```
</Step>
</Steps>
## Advanced Usage
### Custom Metric Tracking
Track specific metrics relevant to your use case:
```python
class CustomMLFlowCallback:
def __init__(self):
self.metrics = {}
def on_step(self, agent, task, step_number, step_input, step_output):
# Track custom metrics
self.metrics[f"agent_{agent.role}_steps"] = step_number
# Log tool usage
if hasattr(task, 'tools'):
for tool in task.tools:
mlflow.log_param(f"tool_used_{step_number}", tool.name)
# Track token usage
mlflow.log_metric(
f"step_{step_number}_tokens",
len(step_output)
)
```
### Experiment Organization
Group related experiments for better analysis:
```python
def run_agent_experiment(agent_config, task_config):
with mlflow.start_run(
run_name=f"agent_experiment_{agent_config['role']}"
) as run:
# Log configuration
mlflow.log_params(agent_config)
mlflow.log_params(task_config)
# Create and run agent
agent = Agent(**agent_config)
task = Task(**task_config)
# Execute and log results
result = agent.execute(task)
mlflow.log_metric("execution_time", task.execution_time)
return result
```
## Best Practices
1. **Structured Logging**
- Use consistent metric names across experiments
- Group related metrics using common prefixes
- Include timestamps for temporal analysis
2. **Resource Monitoring**
- Track token usage per agent and task
- Monitor execution time for performance optimization
- Log tool usage patterns and success rates
3. **Experiment Organization**
- Use meaningful experiment names
- Group related runs under the same experiment
- Tag runs with relevant metadata
4. **Performance Optimization**
- Monitor agent efficiency metrics
- Track resource utilization
- Identify bottlenecks in task execution
## Viewing Results
Access your MLFlow dashboard to analyze agent performance:
1. Start the MLFlow UI:
```bash
mlflow ui --port 5000
```
2. Open your browser and navigate to `http://localhost:5000`
3. View experiment results including:
- Agent performance metrics
- Task execution times
- Resource utilization
- Custom metrics and parameters
## Security Considerations
- Ensure sensitive data is properly sanitized before logging
- Use appropriate access controls for MLFlow server
- Monitor and audit logged information regularly
## Conclusion
MLFlow integration provides comprehensive monitoring and experimentation capabilities for CrewAI agents. By following these guidelines and best practices, you can effectively track, analyze, and optimize your agent-based workflows while maintaining security and efficiency.

View File

@@ -0,0 +1,138 @@
---
title: Using Multimodal Agents
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
icon: image
---
# Using Multimodal Agents
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
## Enabling Multimodal Capabilities
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
```python
from crewai import Agent
agent = Agent(
role="Image Analyst",
goal="Analyze and extract insights from images",
backstory="An expert in visual content interpretation with years of experience in image analysis",
multimodal=True # This enables multimodal capabilities
)
```
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
## Working with Images
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
Here's a complete example showing how to use a multimodal agent to analyze an image:
```python
from crewai import Agent, Task, Crew
# Create a multimodal agent
image_analyst = Agent(
role="Product Analyst",
goal="Analyze product images and provide detailed descriptions",
backstory="Expert in visual product analysis with deep knowledge of design and features",
multimodal=True
)
# Create a task for image analysis
task = Task(
description="Analyze the product image at https://example.com/product.jpg and provide a detailed description",
agent=image_analyst
)
# Create and run the crew
crew = Crew(
agents=[image_analyst],
tasks=[task]
)
result = crew.kickoff()
```
### Advanced Usage with Context
You can provide additional context or specific questions about the image when creating tasks for multimodal agents. The task description can include specific aspects you want the agent to focus on:
```python
from crewai import Agent, Task, Crew
# Create a multimodal agent for detailed analysis
expert_analyst = Agent(
role="Visual Quality Inspector",
goal="Perform detailed quality analysis of product images",
backstory="Senior quality control expert with expertise in visual inspection",
multimodal=True # AddImageTool is automatically included
)
# Create a task with specific analysis requirements
inspection_task = Task(
description="""
Analyze the product image at https://example.com/product.jpg with focus on:
1. Quality of materials
2. Manufacturing defects
3. Compliance with standards
Provide a detailed report highlighting any issues found.
""",
agent=expert_analyst
)
# Create and run the crew
crew = Crew(
agents=[expert_analyst],
tasks=[inspection_task]
)
result = crew.kickoff()
```
### Tool Details
When working with multimodal agents, the `AddImageTool` is automatically configured with the following schema:
```python
class AddImageToolSchema:
image_url: str # Required: The URL or path of the image to process
action: Optional[str] = None # Optional: Additional context or specific questions about the image
```
The multimodal agent will automatically handle the image processing through its built-in tools, allowing it to:
- Access images via URLs or local file paths
- Process image content with optional context or specific questions
- Provide analysis and insights based on the visual information and task requirements
## Best Practices
When working with multimodal agents, keep these best practices in mind:
1. **Image Access**
- Ensure your images are accessible via URLs that the agent can reach
- For local images, consider hosting them temporarily or using absolute file paths
- Verify that image URLs are valid and accessible before running tasks
2. **Task Description**
- Be specific about what aspects of the image you want the agent to analyze
- Include clear questions or requirements in the task description
- Consider using the optional `action` parameter for focused analysis
3. **Resource Management**
- Image processing may require more computational resources than text-only tasks
- Some language models may require base64 encoding for image data
- Consider batch processing for multiple images to optimize performance
4. **Environment Setup**
- Verify that your environment has the necessary dependencies for image processing
- Ensure your language model supports multimodal capabilities
- Test with small images first to validate your setup
5. **Error Handling**
- Implement proper error handling for image loading failures
- Have fallback strategies for when image processing fails
- Monitor and log image processing operations for debugging

View File

@@ -7,7 +7,7 @@ icon: wrench
<Note>
**Python Version Requirements**
CrewAI requires `Python >=3.10 and <=3.13`. Here's how to check your version:
CrewAI requires `Python >=3.10 and <3.13`. Here's how to check your version:
```bash
python3 --version
```

View File

@@ -100,7 +100,8 @@
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability",
"how-to/openlit-observability"
"how-to/openlit-observability",
"how-to/mlflow-observability"
]
},
{
@@ -163,4 +164,4 @@
"linkedin": "https://www.linkedin.com/company/crewai-inc",
"youtube": "https://youtube.com/@crewAIInc"
}
}
}

View File

@@ -31,7 +31,7 @@ Remember that when using this tool, the code must be generated by the Agent itse
The code must be a Python3 code. And it will take some time for the first time to run
because it needs to build the Docker image.
```python Code
```python
from crewai import Agent
from crewai_tools import CodeInterpreterTool
@@ -43,7 +43,7 @@ Agent(
We also provide a simple way to use it directly from the Agent.
```python Code
```python
from crewai import Agent
agent = Agent(

View File

@@ -27,7 +27,7 @@ The following example demonstrates how to initialize the tool and execute a gith
1. Initialize Composio tools
```python Code
```python
from composio import App
from crewai_tools import ComposioTool
from crewai import Agent, Task
@@ -38,19 +38,19 @@ tools = [ComposioTool.from_action(action=Action.GITHUB_ACTIVITY_STAR_REPO_FOR_AU
If you don't know what action you want to use, use `from_app` and `tags` filter to get relevant actions
```python Code
```python
tools = ComposioTool.from_app(App.GITHUB, tags=["important"])
```
or use `use_case` to search relevant actions
```python Code
```python
tools = ComposioTool.from_app(App.GITHUB, use_case="Star a github repository")
```
2. Define agent
```python Code
```python
crewai_agent = Agent(
role="Github Agent",
goal="You take action on Github using Github APIs",
@@ -65,7 +65,7 @@ crewai_agent = Agent(
3. Execute task
```python Code
```python
task = Task(
description="Star a repo ComposioHQ/composio on GitHub",
agent=crewai_agent,
@@ -75,4 +75,4 @@ task = Task(
task.execute()
```
* More detailed list of tools can be found [here](https://app.composio.dev)
* More detailed list of tools can be found [here](https://app.composio.dev)

View File

@@ -22,7 +22,7 @@ pip install 'crewai[tools]'
Remember that when using this tool, the text must be generated by the Agent itself. The text must be a description of the image you want to generate.
```python Code
```python
from crewai_tools import DallETool
Agent(
@@ -31,9 +31,16 @@ Agent(
)
```
If needed you can also tweak the parameters of the DALL-E model by passing them as arguments to the `DallETool` class. For example:
## Arguments
```python Code
- `model`: The DALL-E model to use (e.g., "dall-e-3")
- `size`: Image size (e.g., "1024x1024")
- `quality`: Image quality ("standard" or "hd")
- `n`: Number of images to generate
## Configuration Example
```python
from crewai_tools import DallETool
dalle_tool = DallETool(model="dall-e-3",
@@ -48,4 +55,4 @@ Agent(
```
The parameters are based on the `client.images.generate` method from the OpenAI API. For more information on the parameters,
please refer to the [OpenAI API documentation](https://platform.openai.com/docs/guides/images/introduction?lang=python).
please refer to the [OpenAI API documentation](https://platform.openai.com/docs/guides/images/introduction?lang=python).

View File

@@ -20,11 +20,11 @@ Install the crewai_tools package to use the `FileWriterTool` in your projects:
pip install 'crewai[tools]'
```
## Example
## Usage
To get started with the `FileWriterTool`:
Here's how to use the `FileWriterTool`:
```python Code
```python
from crewai_tools import FileWriterTool
# Initialize the tool
@@ -45,4 +45,4 @@ print(result)
By integrating the `FileWriterTool` into your crews, the agents can execute the process of writing content to files and creating directories.
This tool is essential for tasks that require saving output data, creating structured file systems, and more. By adhering to the setup and usage guidelines provided,
incorporating this tool into projects is straightforward and efficient.
incorporating this tool into projects is straightforward and efficient.

View File

@@ -23,11 +23,11 @@ To install the JSONSearchTool, use the following pip command:
pip install 'crewai[tools]'
```
## Usage Examples
## Example
Here are updated examples on how to utilize the JSONSearchTool effectively for searching within JSON files. These examples take into account the current implementation and usage patterns identified in the codebase.
```python Code
```python
from crewai.json_tools import JSONSearchTool # Updated import path
# General JSON content search
@@ -47,7 +47,7 @@ tool = JSONSearchTool(json_path='./path/to/your/file.json')
The JSONSearchTool supports extensive customization through a configuration dictionary. This allows users to select different models for embeddings and summarization based on their requirements.
```python Code
```python
tool = JSONSearchTool(
config={
"llm": {
@@ -70,4 +70,4 @@ tool = JSONSearchTool(
},
}
)
```
```

View File

@@ -22,11 +22,13 @@ Before using the MDX Search Tool, ensure the `crewai_tools` package is installed
pip install 'crewai[tools]'
```
## Usage Example
## Example
To use the MDX Search Tool, you must first set up the necessary environment variables. Then, integrate the tool into your crewAI project to begin your market research. Below is a basic example of how to do this:
To use the MDX Search Tool, you must first set up the necessary environment variables for your chosen LLM and embeddings providers (e.g., OpenAI API key if using the default configuration). Then, integrate the tool into your crewAI project as shown in the examples below.
```python Code
The tool will perform semantic search using RAG technology to find and extract relevant content from your MDX files based on the search query:
```python
from crewai_tools import MDXSearchTool
# Initialize the tool to search any MDX content it learns about during execution
@@ -40,13 +42,16 @@ tool = MDXSearchTool(mdx='path/to/your/document.mdx')
## Parameters
- mdx: **Optional**. Specifies the MDX file path for the search. It can be provided during initialization.
- `mdx`: **Optional**. Specifies the MDX file path for the search. It can be provided during initialization or when running the search.
- `search_query`: **Required**. The query string to search for within the MDX content.
The tool inherits from `RagTool` which provides advanced RAG (Retrieval-Augmented Generation) capabilities for semantic search within MDX content.
## Customization of Model and Embeddings
The tool defaults to using OpenAI for embeddings and summarization. For customization, utilize a configuration dictionary as shown below:
```python Code
```python
tool = MDXSearchTool(
config=dict(
llm=dict(
@@ -70,4 +75,4 @@ tool = MDXSearchTool(
),
)
)
```
```

View File

@@ -27,7 +27,7 @@ pip install 'crewai[tools]'
The following example demonstrates how to initialize the tool and execute a search with a given query:
```python Code
```python
from crewai_tools import SerperDevTool
# Initialize the tool for internet searching capabilities
@@ -44,22 +44,27 @@ To effectively use the `SerperDevTool`, follow these steps:
## Parameters
The `SerperDevTool` comes with several parameters that will be passed to the API :
The `SerperDevTool` comes with several parameters that can be configured:
- **search_url**: The URL endpoint for the search API. (Default is `https://google.serper.dev/search`)
- **base_url**: The base URL for the Serper API. Default is `https://google.serper.dev`.
- **n_results**: Number of search results to return. Default is `10`.
- **save_file**: Boolean flag to save search results to a file. Default is `False`.
- **search_type**: Type of search to perform. Can be either `search` (default) or `news`.
Additional parameters that can be passed during search:
- **country**: Optional. Specify the country for the search results.
- **location**: Optional. Specify the location for the search results.
- **locale**: Optional. Specify the locale for the search results.
- **n_results**: Number of search results to return. Default is `10`.
The values for `country`, `location`, `locale` and `search_url` can be found on the [Serper Playground](https://serper.dev/playground).
The values for `country`, `location`, and `locale` can be found on the [Serper Playground](https://serper.dev/playground).
Note: The tool requires the `SERPER_API_KEY` environment variable to be set with your Serper API key.
## Example with Parameters
Here is an example demonstrating how to use the tool with additional parameters:
```python Code
```python
from crewai_tools import SerperDevTool
tool = SerperDevTool(
@@ -71,18 +76,29 @@ print(tool.run(search_query="ChatGPT"))
# Using Tool: Search the internet
# Search results: Title: Role of chat gpt in public health
# Link: https://link.springer.com/article/10.1007/s10439-023-03172-7
# Snippet: … ChatGPT in public health. In this overview, we will examine the potential uses of ChatGPT in
# ---
# Title: Potential use of chat gpt in global warming
# Link: https://link.springer.com/article/10.1007/s10439-023-03171-8
# Snippet: … as ChatGPT, have the potential to play a critical role in advancing our understanding of climate
# ---
# Search results:
{
"searchParameters": {
"q": "ChatGPT",
"type": "search"
},
"organic": [
{
"title": "Role of chat gpt in public health",
"link": "https://link.springer.com/article/10.1007/s10439-023-03172-7",
"snippet": "ChatGPT in public health. In this overview, we will examine the potential uses of ChatGPT in"
},
{
"title": "Potential use of chat gpt in global warming",
"link": "https://link.springer.com/article/10.1007/s10439-023-03171-8",
"snippet": "as ChatGPT, have the potential to play a critical role in advancing our understanding of climate"
}
]
}
```
```python Code
```python
from crewai_tools import SerperDevTool
tool = SerperDevTool(

View File

@@ -26,7 +26,7 @@ pip install spider-client 'crewai[tools]'
This example shows you how you can use the `SpiderTool` to enable your agent to scrape and crawl websites.
The data returned from the Spider API is already LLM-ready, so no need to do any cleaning there.
```python Code
```python
from crewai_tools import SpiderTool
def main():
@@ -89,4 +89,4 @@ if __name__ == "__main__":
| **query_selector** | `string` | CSS query selector for content extraction from markup. |
| **full_resources** | `bool` | Downloads all resources linked to the website. |
| **request_timeout** | `int` | Timeout in seconds for requests (5-60). Default is `30`. |
| **run_in_background** | `bool` | Runs the request in the background, useful for data storage and triggering dashboard crawls. No effect if `storageless` is set. |
| **run_in_background** | `bool` | Runs the request in the background, useful for data storage and triggering dashboard crawls. No effect if `storageless` is set. |

View File

@@ -19,11 +19,11 @@ Install the crewai_tools package
pip install 'crewai[tools]'
```
## Usage
## Example
In order to use the VisionTool, the OpenAI API key should be set in the environment variable `OPENAI_API_KEY`.
To use the VisionTool, first ensure the OpenAI API key is set in the environment variable `OPENAI_API_KEY`. Here's an example:
```python Code
```python
from crewai_tools import VisionTool
vision_tool = VisionTool()

View File

@@ -27,11 +27,11 @@ pip install 'crewai[tools]'
This command installs the necessary dependencies to ensure that once the tool is fully integrated, users can start using it immediately.
## Example Usage
## Example
Below are examples of how the WebsiteSearchTool could be utilized in different scenarios. Please note, these examples are illustrative and represent planned functionality:
```python Code
```python
from crewai_tools import WebsiteSearchTool
# Example of initiating tool that agents can use
@@ -52,7 +52,7 @@ tool = WebsiteSearchTool(website='https://example.com')
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
```python
tool = WebsiteSearchTool(
config=dict(
llm=dict(
@@ -74,4 +74,4 @@ tool = WebsiteSearchTool(
),
)
)
```
```

View File

@@ -29,7 +29,9 @@ pip install 'crewai[tools]'
Here are two examples demonstrating how to use the XMLSearchTool.
The first example shows searching within a specific XML file, while the second example illustrates initiating a search without predefining an XML path, providing flexibility in search scope.
```python Code
Note: The tool uses RAG (Retrieval-Augmented Generation) to perform semantic search within XML content, so results will include relevant context from the XML file based on the search query.
```python
from crewai_tools import XMLSearchTool
# Allow agents to search within any XML file's content
@@ -47,12 +49,15 @@ tool = XMLSearchTool(xml='path/to/your/xmlfile.xml')
- `xml`: This is the path to the XML file you wish to search.
It is an optional parameter during the tool's initialization but must be provided either at initialization or as part of the `run` method's arguments to execute a search.
- `search_query`: The query string to search for within the XML content. This is a required parameter when running the search.
The tool inherits from `RagTool` which provides advanced RAG (Retrieval-Augmented Generation) capabilities for semantic search within XML content.
## Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
```python
tool = XMLSearchTool(
config=dict(
llm=dict(
@@ -74,4 +79,4 @@ tool = XMLSearchTool(
),
)
)
```
```

View File

@@ -3,7 +3,7 @@ name = "crewai"
version = "0.86.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<3.13"
authors = [
{ name = "Joao Moura", email = "joao@crewai.com" }
]
@@ -15,7 +15,6 @@ dependencies = [
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3",
"regex>=2024.9.11",
"crewai-tools>=0.17.0",
"click>=8.1.7",
"python-dotenv>=1.0.0",
"appdirs>=1.4.4",
@@ -27,9 +26,10 @@ dependencies = [
"uv>=0.4.25",
"tomli-w>=1.1.0",
"tomli>=2.0.2",
"chromadb>=0.5.18",
"chromadb>=0.5.23",
"pdfplumber>=0.11.4",
"openpyxl>=3.1.5",
"blinker>=1.9.0",
]
[project.urls]
@@ -38,7 +38,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.14.0"]
tools = ["crewai-tools>=0.17.0"]
agentops = ["agentops>=0.3.0"]
fastembed = ["fastembed>=0.4.1"]
pdfplumber = [
@@ -51,10 +51,13 @@ openpyxl = [
"openpyxl>=3.1.5",
]
mem0 = ["mem0ai>=0.1.29"]
docling = [
"docling>=2.12.0",
]
[tool.uv]
dev-dependencies = [
"ruff>=0.4.10",
"ruff>=0.8.2",
"mypy>=1.10.0",
"pre-commit>=3.6.0",
"mkdocs>=1.4.3",
@@ -64,7 +67,6 @@ dev-dependencies = [
"mkdocs-material-extensions>=1.3.1",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"crewai-tools>=0.14.0",
"pytest>=8.0.0",
"pytest-vcr>=1.0.2",
"python-dotenv>=1.0.0",

View File

@@ -17,33 +17,26 @@ from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
def mock_agent_ops_provider():
def track_agent(*args, **kwargs):
try:
import agentops # type: ignore # Name "agentops" is already defined
from agentops import track_agent # type: ignore
except ImportError:
def track_agent():
def noop(f):
return f
return noop
return track_agent
agentops = None
if os.environ.get("AGENTOPS_API_KEY"):
try:
from agentops import track_agent
except ImportError:
track_agent = mock_agent_ops_provider()
else:
track_agent = mock_agent_ops_provider()
@track_agent()
class Agent(BaseAgent):
@@ -122,6 +115,10 @@ class Agent(BaseAgent):
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
multimodal: bool = Field(
default=False,
description="Whether the agent is multimodal.",
)
code_execution_mode: Literal["safe", "unsafe"] = Field(
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
@@ -414,6 +411,10 @@ class Agent(BaseAgent):
tools = agent_tools.tools()
return tools
def get_multimodal_tools(self) -> List[Tool]:
from crewai.tools.agent_tools.add_image_tool import AddImageTool
return [AddImageTool()]
def get_code_execution_tools(self):
try:
from crewai_tools import CodeInterpreterTool

View File

@@ -143,7 +143,20 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
tool_result = self._execute_tool_and_check_finality(
formatted_answer
)
formatted_answer.text += f"\nObservation: {tool_result.result}"
# Directly append the result to the messages if the
# tool is "Add image to content" in case of multimodal
# agents
if formatted_answer.tool == self._i18n.tools("add_image")["name"]:
self.messages.append(tool_result.result)
continue
else:
if self.step_callback:
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
@@ -299,7 +312,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._i18n.slice("summarizer_system_message"), role="system"
),
self._format_msg(
self._i18n.slice("sumamrize_instruction").format(group=group),
self._i18n.slice("summarize_instruction").format(group=group),
),
],
callbacks=self.callbacks,
@@ -410,7 +423,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
"""
while self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
print("Human feedback: ", human_feedback)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)

View File

@@ -1,5 +1,6 @@
import re
from typing import Any, Union
from json_repair import repair_json
from crewai.utilities import I18N

View File

@@ -5,9 +5,10 @@ from typing import Any, Dict
import requests
from rich.console import Console
from crewai.cli.tools.main import ToolCommand
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
from .utils import TokenManager, validate_token
from crewai.cli.tools.main import ToolCommand
console = Console()
@@ -79,7 +80,9 @@ class AuthenticationCommand:
style="yellow",
)
console.print("\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n")
console.print(
"\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n"
)
return
if token_data["error"] not in ("authorization_pending", "slow_down"):

View File

@@ -1,10 +1,9 @@
from .utils import TokenManager
def get_auth_token() -> str:
"""Get the authentication token."""
access_token = TokenManager().get_token()
if not access_token:
raise Exception()
return access_token

View File

@@ -1,7 +1,7 @@
from importlib.metadata import version as get_version
from typing import Optional
import click
import pkg_resources
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
@@ -25,7 +25,7 @@ from .update_crew import update_crew
@click.group()
@click.version_option(pkg_resources.get_distribution("crewai").version)
@click.version_option(get_version("crewai"))
def crewai():
"""Top-level command group for crewai."""
@@ -52,16 +52,16 @@ def create(type, name, provider, skip_provider=False):
def version(tools):
"""Show the installed version of crewai."""
try:
crewai_version = pkg_resources.get_distribution("crewai").version
crewai_version = get_version("crewai")
except Exception:
crewai_version = "unknown version"
click.echo(f"crewai version: {crewai_version}")
if tools:
try:
tools_version = pkg_resources.get_distribution("crewai-tools").version
tools_version = get_version("crewai")
click.echo(f"crewai tools version: {tools_version}")
except pkg_resources.DistributionNotFound:
except Exception:
click.echo("crewai tools not installed")

View File

@@ -1,8 +1,9 @@
import requests
from requests.exceptions import JSONDecodeError
from rich.console import Console
from crewai.cli.plus_api import PlusAPI
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.plus_api import PlusAPI
from crewai.telemetry.telemetry import Telemetry
console = Console()

View File

@@ -1,13 +1,19 @@
import json
from pathlib import Path
from pydantic import BaseModel, Field
from typing import Optional
from pydantic import BaseModel, Field
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
class Settings(BaseModel):
tool_repository_username: Optional[str] = Field(None, description="Username for interacting with the Tool Repository")
tool_repository_password: Optional[str] = Field(None, description="Password for interacting with the Tool Repository")
tool_repository_username: Optional[str] = Field(
None, description="Username for interacting with the Tool Repository"
)
tool_repository_password: Optional[str] = Field(
None, description="Password for interacting with the Tool Repository"
)
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):

View File

@@ -1,9 +1,11 @@
from typing import Optional
import requests
from os import getenv
from crewai.cli.version import get_crewai_version
from typing import Optional
from urllib.parse import urljoin
import requests
from crewai.cli.version import get_crewai_version
class PlusAPI:
"""

View File

@@ -1,11 +1,12 @@
import subprocess
import click
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
def reset_memories_command(

View File

@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install uv:

View File

@@ -12,6 +12,6 @@ reporting_task:
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
A fully fledged report with the main topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst

View File

@@ -3,7 +3,7 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.86.0,<1.0.0"
]
@@ -18,3 +18,6 @@ test = "{{folder_name}}.main:test"
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.crewai]
type = "crew"

View File

@@ -10,7 +10,7 @@ class MyCustomToolInput(BaseModel):
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
"Clear description for what this tool is useful for, your agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput

View File

@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install uv:

View File

@@ -5,7 +5,7 @@ from pydantic import BaseModel
from crewai.flow.flow import Flow, listen, start
from .crews.poem_crew.poem_crew import PoemCrew
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew
class PoemState(BaseModel):

View File

@@ -3,7 +3,7 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.86.0,<1.0.0",
]
@@ -15,3 +15,6 @@ plot = "{{folder_name}}.main:plot"
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.crewai]
type = "flow"

View File

@@ -13,7 +13,7 @@ class MyCustomToolInput(BaseModel):
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
"Clear description for what this tool is useful for, your agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput

View File

@@ -1,17 +0,0 @@
[tool.poetry]
name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.86.0,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:main"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -5,7 +5,7 @@ custom tools to power up your crews.
## Installing
Ensure you have Python >=3.10 <=3.13 installed on your system. This project
Ensure you have Python >=3.10 <3.13 installed on your system. This project
uses [UV](https://docs.astral.sh/uv/) for dependency management and package
handling, offering a seamless setup and execution experience.

View File

@@ -3,8 +3,10 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.86.0"
]
[tool.crewai]
type = "tool"

View File

@@ -117,7 +117,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
published_handle = publish_response.json()["handle"]
console.print(
f"Succesfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
f"Successfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
style="bold green",
)
@@ -138,7 +138,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
self._add_package(get_response.json())
console.print(f"Succesfully installed {handle}", style="bold green")
console.print(f"Successfully installed {handle}", style="bold green")
def login(self):
login_response = self.plus_api_client.login_to_tool_repository()

View File

@@ -33,26 +33,6 @@ def copy_template(src, dst, name, class_name, folder_name):
click.secho(f" - Created {dst}", fg="green")
# Drop the simple_toml_parser when we move to python3.11
def simple_toml_parser(content):
result = {}
current_section = result
for line in content.split("\n"):
line = line.strip()
if line.startswith("[") and line.endswith("]"):
# New section
section = line[1:-1].split(".")
current_section = result
for key in section:
current_section = current_section.setdefault(key, {})
elif "=" in line:
key, value = line.split("=", 1)
key = key.strip()
value = value.strip().strip('"')
current_section[key] = value
return result
def read_toml(file_path: str = "pyproject.toml"):
"""Read the content of a TOML file and return it as a dictionary."""
with open(file_path, "rb") as f:
@@ -63,7 +43,7 @@ def read_toml(file_path: str = "pyproject.toml"):
def parse_toml(content):
if sys.version_info >= (3, 11):
return tomllib.loads(content)
return simple_toml_parser(content)
return tomli.loads(content)
def get_project_name(

View File

@@ -1,6 +1,6 @@
import importlib.metadata
def get_crewai_version() -> str:
"""Get the version number of CrewAI running the CLI"""
return importlib.metadata.version("crewai")

View File

@@ -1,6 +1,5 @@
import asyncio
import json
import os
import uuid
import warnings
from concurrent.futures import Future
@@ -36,6 +35,7 @@ from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
@@ -49,12 +49,10 @@ from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
if os.environ.get("AGENTOPS_API_KEY"):
try:
import agentops # type: ignore
except ImportError:
pass
try:
import agentops # type: ignore
except ImportError:
agentops = None
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
@@ -536,9 +534,6 @@ class Crew(BaseModel):
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
if agent.allow_code_execution: # type: ignore # BaseAgent" has no attribute "allow_code_execution"
agent.tools += agent.get_code_execution_tools() # type: ignore # "BaseAgent" has no attribute "get_code_execution_tools"; maybe "get_delegation_tools"?
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
@@ -675,7 +670,6 @@ class Crew(BaseModel):
)
manager.tools = []
raise Exception("Manager agent should not have tools")
manager.tools = self.manager_agent.get_delegation_tools(self.agents)
else:
self.manager_llm = (
getattr(self.manager_llm, "model_name", None)
@@ -687,6 +681,7 @@ class Crew(BaseModel):
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
tools=AgentTools(agents=self.agents).tools(),
allow_delegation=True,
llm=self.manager_llm,
verbose=self.verbose,
)
@@ -729,7 +724,14 @@ class Crew(BaseModel):
f"No agent available for task: {task.description}. Ensure that either the task has an assigned agent or a manager agent is provided."
)
self._prepare_agent_tools(task)
# Determine which tools to use - task tools take precedence over agent tools
tools_for_task = task.tools or agent_to_use.tools or []
tools_for_task = self._prepare_tools(
agent_to_use,
task,
tools_for_task
)
self._log_task_start(task, agent_to_use.role)
if isinstance(task, ConditionalTask):
@@ -746,7 +748,7 @@ class Crew(BaseModel):
future = task.execute_async(
agent=agent_to_use,
context=context,
tools=agent_to_use.tools,
tools=tools_for_task,
)
futures.append((task, future, task_index))
else:
@@ -758,7 +760,7 @@ class Crew(BaseModel):
task_output = task.execute_sync(
agent=agent_to_use,
context=context,
tools=agent_to_use.tools,
tools=tools_for_task,
)
task_outputs = [task_output]
self._process_task_result(task, task_output)
@@ -795,45 +797,67 @@ class Crew(BaseModel):
return skipped_task_output
return None
def _prepare_agent_tools(self, task: Task):
if self.process == Process.hierarchical:
if self.manager_agent:
self._update_manager_tools(task)
else:
raise ValueError("Manager agent is required for hierarchical process.")
elif task.agent and task.agent.allow_delegation:
self._add_delegation_tools(task)
def _prepare_tools(self, agent: BaseAgent, task: Task, tools: List[Tool]) -> List[Tool]:
# Add delegation tools if agent allows delegation
if agent.allow_delegation:
if self.process == Process.hierarchical:
if self.manager_agent:
tools = self._update_manager_tools(task, tools)
else:
raise ValueError("Manager agent is required for hierarchical process.")
elif agent and agent.allow_delegation:
tools = self._add_delegation_tools(task, tools)
# Add code execution tools if agent allows code execution
if agent.allow_code_execution:
tools = self._add_code_execution_tools(agent, tools)
if agent and agent.multimodal:
tools = self._add_multimodal_tools(agent, tools)
return tools
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
if self.process == Process.hierarchical:
return self.manager_agent
return task.agent
def _add_delegation_tools(self, task: Task):
def _merge_tools(self, existing_tools: List[Tool], new_tools: List[Tool]) -> List[Tool]:
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
if not new_tools:
return existing_tools
# Create mapping of tool names to new tools
new_tool_map = {tool.name: tool for tool in new_tools}
# Remove any existing tools that will be replaced
tools = [tool for tool in existing_tools if tool.name not in new_tool_map]
# Add all new tools
tools.extend(new_tools)
return tools
def _inject_delegation_tools(self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]):
delegation_tools = task_agent.get_delegation_tools(agents)
return self._merge_tools(tools, delegation_tools)
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
multimodal_tools = agent.get_multimodal_tools()
return self._merge_tools(tools, multimodal_tools)
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
code_tools = agent.get_code_execution_tools()
return self._merge_tools(tools, code_tools)
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
delegation_tools = task.agent.get_delegation_tools(agents_for_delegation)
# Add tools if they are not already in task.tools
for new_tool in delegation_tools:
# Find the index of the tool with the same name
existing_tool_index = next(
(
index
for index, tool in enumerate(task.tools or [])
if tool.name == new_tool.name
),
None,
)
if not task.tools:
task.tools = []
if existing_tool_index is not None:
# Replace the existing tool
task.tools[existing_tool_index] = new_tool
else:
# Add the new tool
task.tools.append(new_tool)
if not tools:
tools = []
tools = self._inject_delegation_tools(tools, task.agent, agents_for_delegation)
return tools
def _log_task_start(self, task: Task, role: str = "None"):
if self.output_log_file:
@@ -841,14 +865,13 @@ class Crew(BaseModel):
task_name=task.name, task=task.description, agent=role, status="started"
)
def _update_manager_tools(self, task: Task):
def _update_manager_tools(self, task: Task, tools: List[Tool]):
if self.manager_agent:
if task.agent:
self.manager_agent.tools = task.agent.get_delegation_tools([task.agent])
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
else:
self.manager_agent.tools = self.manager_agent.get_delegation_tools(
self.agents
)
tools = self._inject_delegation_tools(tools, self.manager_agent, self.agents)
return tools
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
context = (
@@ -1032,6 +1055,7 @@ class Crew(BaseModel):
agentops.end_session(
end_state="Success",
end_state_reason="Finished Execution",
is_auto_end=True,
)
self._telemetry.end_crew(self, final_string_output)

View File

@@ -14,8 +14,15 @@ from typing import (
cast,
)
from blinker import Signal
from pydantic import BaseModel, ValidationError
from crewai.flow.flow_events import (
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.utils import get_possible_return_constants
from crewai.telemetry import Telemetry
@@ -73,10 +80,27 @@ def listen(condition):
return decorator
def router(method):
def router(condition):
def decorator(func):
func.__is_router__ = True
func.__router_for__ = method.__name__
# Handle conditions like listen/start
if isinstance(condition, str):
func.__trigger_methods__ = [condition]
func.__condition_type__ = "OR"
elif (
isinstance(condition, dict)
and "type" in condition
and "methods" in condition
):
func.__trigger_methods__ = condition["methods"]
func.__condition_type__ = condition["type"]
elif callable(condition) and hasattr(condition, "__name__"):
func.__trigger_methods__ = [condition.__name__]
func.__condition_type__ = "OR"
else:
raise ValueError(
"Condition must be a method, string, or a result of or_() or and_()"
)
return func
return decorator
@@ -116,8 +140,8 @@ class FlowMeta(type):
start_methods = []
listeners = {}
routers = {}
router_paths = {}
routers = set()
for attr_name, attr_value in dct.items():
if hasattr(attr_value, "__is_start_method__"):
@@ -130,18 +154,11 @@ class FlowMeta(type):
methods = attr_value.__trigger_methods__
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
elif hasattr(attr_value, "__is_router__"):
routers[attr_value.__router_for__] = attr_name
possible_returns = get_possible_return_constants(attr_value)
if possible_returns:
router_paths[attr_name] = possible_returns
# Register router as a listener to its triggering method
trigger_method_name = attr_value.__router_for__
methods = [trigger_method_name]
condition_type = "OR"
listeners[attr_name] = (condition_type, methods)
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
routers.add(attr_name)
possible_returns = get_possible_return_constants(attr_value)
if possible_returns:
router_paths[attr_name] = possible_returns
setattr(cls, "_start_methods", start_methods)
setattr(cls, "_listeners", listeners)
@@ -156,9 +173,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
_start_methods: List[str] = []
_listeners: Dict[str, tuple[str, List[str]]] = {}
_routers: Dict[str, str] = {}
_routers: Set[str] = set()
_router_paths: Dict[str, List[str]] = {}
initial_state: Union[Type[T], T, None] = None
event_emitter = Signal("event_emitter")
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
class _FlowGeneric(cls): # type: ignore
@@ -202,20 +220,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
return self._method_outputs
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
"""
Initializes or updates the state with the provided inputs.
Args:
inputs: Dictionary of inputs to initialize or update the state.
Raises:
ValueError: If inputs do not match the structured state model.
TypeError: If state is neither a BaseModel instance nor a dictionary.
"""
if isinstance(self._state, BaseModel):
# Structured state management
# Structured state
try:
# Define a function to create the dynamic class
def create_model_with_extra_forbid(
base_model: Type[BaseModel],
) -> Type[BaseModel]:
@@ -225,50 +233,33 @@ class Flow(Generic[T], metaclass=FlowMeta):
return ModelWithExtraForbid
# Create the dynamic class
ModelWithExtraForbid = create_model_with_extra_forbid(
self._state.__class__
)
# Create a new instance using the combined state and inputs
self._state = cast(
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
)
except ValidationError as e:
raise ValueError(f"Invalid inputs for structured state: {e}") from e
elif isinstance(self._state, dict):
# Unstructured state management
self._state.update(inputs)
else:
raise TypeError("State must be a BaseModel instance or a dictionary.")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Starts the execution of the flow synchronously.
self.event_emitter.send(
self,
event=FlowStartedEvent(
type="flow_started",
flow_name=self.__class__.__name__,
),
)
Args:
inputs: Optional dictionary of inputs to initialize or update the state.
Returns:
The final output from the flow execution.
"""
if inputs is not None:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Starts the execution of the flow asynchronously.
Args:
inputs: Optional dictionary of inputs to initialize or update the state.
Returns:
The final output from the flow execution.
"""
if inputs is not None:
self._initialize_state(inputs)
if not self._start_methods:
raise ValueError("No start method defined")
@@ -276,20 +267,23 @@ class Flow(Generic[T], metaclass=FlowMeta):
self.__class__.__name__, list(self._methods.keys())
)
# Create tasks for all start methods
tasks = [
self._execute_start_method(start_method)
for start_method in self._start_methods
]
# Run all start methods concurrently
await asyncio.gather(*tasks)
# Return the final output (from the last executed method)
if self._method_outputs:
return self._method_outputs[-1]
else:
return None # Or raise an exception if no methods were executed
final_output = self._method_outputs[-1] if self._method_outputs else None
self.event_emitter.send(
self,
event=FlowFinishedEvent(
type="flow_finished",
flow_name=self.__class__.__name__,
result=final_output,
),
)
return final_output
async def _execute_start_method(self, start_method_name: str) -> None:
result = await self._execute_method(
@@ -305,70 +299,105 @@ class Flow(Generic[T], metaclass=FlowMeta):
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result) # Store the output
# Track method execution counts
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
return result
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
listener_tasks = []
if trigger_method in self._routers:
router_method = self._methods[self._routers[trigger_method]]
path = await self._execute_method(
self._routers[trigger_method], router_method
# First, handle routers repeatedly until no router triggers anymore
while True:
routers_triggered = self._find_triggered_methods(
trigger_method, router_only=True
)
trigger_method = path
if not routers_triggered:
break
for router_name in routers_triggered:
await self._execute_single_listener(router_name, result)
# After executing router, the router's result is the path
# The last router executed sets the trigger_method
# The router result is the last element in self._method_outputs
trigger_method = self._method_outputs[-1]
# Now that no more routers are triggered by current trigger_method,
# execute normal listeners
listeners_triggered = self._find_triggered_methods(
trigger_method, router_only=False
)
if listeners_triggered:
tasks = [
self._execute_single_listener(listener_name, result)
for listener_name in listeners_triggered
]
await asyncio.gather(*tasks)
def _find_triggered_methods(
self, trigger_method: str, router_only: bool
) -> List[str]:
triggered = []
for listener_name, (condition_type, methods) in self._listeners.items():
is_router = listener_name in self._routers
if router_only != is_router:
continue
if condition_type == "OR":
# If the trigger_method matches any in methods, run this
if trigger_method in methods:
# Schedule the listener without preventing re-execution
listener_tasks.append(
self._execute_single_listener(listener_name, result)
)
triggered.append(listener_name)
elif condition_type == "AND":
# Initialize pending methods for this listener if not already done
if listener_name not in self._pending_and_listeners:
self._pending_and_listeners[listener_name] = set(methods)
# Remove the trigger method from pending methods
self._pending_and_listeners[listener_name].discard(trigger_method)
if trigger_method in self._pending_and_listeners[listener_name]:
self._pending_and_listeners[listener_name].discard(trigger_method)
if not self._pending_and_listeners[listener_name]:
# All required methods have been executed
listener_tasks.append(
self._execute_single_listener(listener_name, result)
)
triggered.append(listener_name)
# Reset pending methods for this listener
self._pending_and_listeners.pop(listener_name, None)
# Run all listener tasks concurrently and wait for them to complete
if listener_tasks:
await asyncio.gather(*listener_tasks)
return triggered
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
try:
method = self._methods[listener_name]
self.event_emitter.send(
self,
event=MethodExecutionStartedEvent(
type="method_execution_started",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
sig = inspect.signature(method)
params = list(sig.parameters.values())
# Exclude 'self' parameter
method_params = [p for p in params if p.name != "self"]
if method_params:
# If listener expects parameters, pass the result
listener_result = await self._execute_method(
listener_name, method, result
)
else:
# If listener does not expect parameters, call without arguments
listener_result = await self._execute_method(listener_name, method)
# Execute listeners of this listener
self.event_emitter.send(
self,
event=MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
# Execute listeners (and possibly routers) of this listener
await self._execute_listeners(listener_name, listener_result)
except Exception as e:
print(
f"[Flow._execute_single_listener] Error in method {listener_name}: {e}"
@@ -381,5 +410,4 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._telemetry.flow_plotting_span(
self.__class__.__name__, list(self._methods.keys())
)
plot_flow(self, filename)

View File

@@ -0,0 +1,33 @@
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Optional
@dataclass
class Event:
type: str
flow_name: str
timestamp: datetime = field(init=False)
def __post_init__(self):
self.timestamp = datetime.now()
@dataclass
class FlowStartedEvent(Event):
pass
@dataclass
class MethodExecutionStartedEvent(Event):
method_name: str
@dataclass
class MethodExecutionFinishedEvent(Event):
method_name: str
@dataclass
class FlowFinishedEvent(Event):
result: Optional[Any] = None

View File

@@ -31,16 +31,50 @@ def get_possible_return_constants(function):
print(f"Source code:\n{source}")
return None
return_values = []
return_values = set()
dict_definitions = {}
class DictionaryAssignmentVisitor(ast.NodeVisitor):
def visit_Assign(self, node):
# Check if this assignment is assigning a dictionary literal to a variable
if isinstance(node.value, ast.Dict) and len(node.targets) == 1:
target = node.targets[0]
if isinstance(target, ast.Name):
var_name = target.id
dict_values = []
# Extract string values from the dictionary
for val in node.value.values:
if isinstance(val, ast.Constant) and isinstance(val.value, str):
dict_values.append(val.value)
# If non-string, skip or just ignore
if dict_values:
dict_definitions[var_name] = dict_values
self.generic_visit(node)
class ReturnVisitor(ast.NodeVisitor):
def visit_Return(self, node):
# Check if the return value is a constant (Python 3.8+)
if isinstance(node.value, ast.Constant):
return_values.append(node.value.value)
# Direct string return
if isinstance(node.value, ast.Constant) and isinstance(
node.value.value, str
):
return_values.add(node.value.value)
# Dictionary-based return, like return paths[result]
elif isinstance(node.value, ast.Subscript):
# Check if we're subscripting a known dictionary variable
if isinstance(node.value.value, ast.Name):
var_name = node.value.value.id
if var_name in dict_definitions:
# Add all possible dictionary values
for v in dict_definitions[var_name]:
return_values.add(v)
self.generic_visit(node)
# First pass: identify dictionary assignments
DictionaryAssignmentVisitor().visit(code_ast)
# Second pass: identify returns
ReturnVisitor().visit(code_ast)
return return_values
return list(return_values) if return_values else None
def calculate_node_levels(flow):
@@ -61,10 +95,7 @@ def calculate_node_levels(flow):
current_level = levels[current]
visited.add(current)
for listener_name, (
condition_type,
trigger_methods,
) in flow._listeners.items():
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
if condition_type == "OR":
if current in trigger_methods:
if (
@@ -89,7 +120,7 @@ def calculate_node_levels(flow):
queue.append(listener_name)
# Handle router connections
if current in flow._routers.values():
if current in flow._routers:
router_method_name = current
paths = flow._router_paths.get(router_method_name, [])
for path in paths:
@@ -105,6 +136,7 @@ def calculate_node_levels(flow):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
return levels
@@ -142,7 +174,7 @@ def dfs_ancestors(node, ancestors, visited, flow):
dfs_ancestors(listener_name, ancestors, visited, flow)
# Handle router methods separately
if node in flow._routers.values():
if node in flow._routers:
router_method_name = node
paths = flow._router_paths.get(router_method_name, [])
for path in paths:

View File

@@ -94,12 +94,14 @@ def add_edges(net, flow, node_positions, colors):
ancestors = build_ancestor_dict(flow)
parent_children = build_parent_children_dict(flow)
# Edges for normal listeners
for method_name in flow._listeners:
condition_type, trigger_methods = flow._listeners[method_name]
is_and_condition = condition_type == "AND"
for trigger in trigger_methods:
if trigger in flow._methods or trigger in flow._routers.values():
# Check if nodes exist before adding edges
if trigger in node_positions and method_name in node_positions:
is_router_edge = any(
trigger in paths for paths in flow._router_paths.values()
)
@@ -135,7 +137,22 @@ def add_edges(net, flow, node_positions, colors):
}
net.add_edge(trigger, method_name, **edge_style)
else:
# Nodes not found in node_positions. Check if it's a known router outcome and a known method.
is_router_edge = any(
trigger in paths for paths in flow._router_paths.values()
)
# Check if method_name is a known method
method_known = method_name in flow._methods
# If it's a known router edge and the method is known, don't warn.
# This means the path is legitimate, just not reflected as nodes here.
if not (is_router_edge and method_known):
print(
f"Warning: No node found for '{trigger}' or '{method_name}'. Skipping edge."
)
# Edges for router return paths
for router_method_name, paths in flow._router_paths.items():
for path in paths:
for listener_name, (
@@ -143,36 +160,49 @@ def add_edges(net, flow, node_positions, colors):
trigger_methods,
) in flow._listeners.items():
if path in trigger_methods:
is_cycle_edge = is_ancestor(trigger, method_name, ancestors)
parent_has_multiple_children = (
len(parent_children.get(router_method_name, [])) > 1
)
needs_curvature = is_cycle_edge or parent_has_multiple_children
if (
router_method_name in node_positions
and listener_name in node_positions
):
is_cycle_edge = is_ancestor(
router_method_name, listener_name, ancestors
)
parent_has_multiple_children = (
len(parent_children.get(router_method_name, [])) > 1
)
needs_curvature = is_cycle_edge or parent_has_multiple_children
if needs_curvature:
source_pos = node_positions.get(router_method_name)
target_pos = node_positions.get(listener_name)
if needs_curvature:
source_pos = node_positions.get(router_method_name)
target_pos = node_positions.get(listener_name)
if source_pos and target_pos:
dx = target_pos[0] - source_pos[0]
smooth_type = "curvedCCW" if dx <= 0 else "curvedCW"
index = get_child_index(
router_method_name, listener_name, parent_children
)
edge_smooth = {
"type": smooth_type,
"roundness": 0.2 + (0.1 * index),
}
if source_pos and target_pos:
dx = target_pos[0] - source_pos[0]
smooth_type = "curvedCCW" if dx <= 0 else "curvedCW"
index = get_child_index(
router_method_name, listener_name, parent_children
)
edge_smooth = {
"type": smooth_type,
"roundness": 0.2 + (0.1 * index),
}
else:
edge_smooth = {"type": "cubicBezier"}
else:
edge_smooth = {"type": "cubicBezier"}
else:
edge_smooth = False
edge_smooth = False
edge_style = {
"color": colors["router_edge"],
"width": 2,
"arrows": "to",
"dashes": True,
"smooth": edge_smooth,
}
net.add_edge(router_method_name, listener_name, **edge_style)
edge_style = {
"color": colors["router_edge"],
"width": 2,
"arrows": "to",
"dashes": True,
"smooth": edge_smooth,
}
net.add_edge(router_method_name, listener_name, **edge_style)
else:
# Same check here: known router edge and known method?
method_known = listener_name in flow._methods
if not method_known:
print(
f"Warning: No node found for '{router_method_name}' or '{listener_name}'. Skipping edge."
)

View File

@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None
@@ -49,8 +49,13 @@ class Knowledge(BaseModel):
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
Raises:
ValueError: If storage is not initialized.
"""
if self.storage is None:
raise ValueError("Storage is not initialized.")
results = self.storage.search(
query,
limit,

View File

@@ -1,8 +1,8 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Union
from typing import Dict, List, Optional, Union
from pydantic import Field
from pydantic import Field, field_validator
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
@@ -14,17 +14,28 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
"""Base class for knowledge sources that load content from files."""
_logger: Logger = Logger(verbose=True)
file_path: Union[Path, List[Path], str, List[str]] = Field(
..., description="The path to the file"
file_path: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default=None,
description="[Deprecated] The path to the file. Use file_paths instead.",
)
file_paths: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default_factory=list, description="The path to the file"
)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
def validate_file_path(cls, v, values):
"""Validate that at least one of file_path or file_paths is provided."""
if v is None and ("file_path" not in values or values.get("file_path") is None):
raise ValueError("Either file_path or file_paths must be provided")
return v
def model_post_init(self, _):
"""Post-initialization method to load content."""
self.safe_file_paths = self._process_file_paths()
self.validate_paths()
self.validate_content()
self.content = self.load_content()
@abstractmethod
@@ -32,13 +43,13 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
"""Load and preprocess file content. Should be overridden by subclasses. Assume that the file path is relative to the project root in the knowledge directory."""
pass
def validate_paths(self):
def validate_content(self):
"""Validate the paths."""
for path in self.safe_file_paths:
if not path.exists():
self._logger.log(
"error",
f"File not found: {path}. Try adding sources to the knowledge directory. If its inside the knowledge directory, use the relative path.",
f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.",
color="red",
)
raise FileNotFoundError(f"File not found: {path}")
@@ -51,7 +62,10 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def _save_documents(self):
"""Save the documents to the storage."""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""
@@ -59,13 +73,30 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def _process_file_paths(self) -> List[Path]:
"""Convert file_path to a list of Path objects."""
paths = (
[self.file_path]
if isinstance(self.file_path, (str, Path))
else self.file_path
if hasattr(self, "file_path") and self.file_path is not None:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
if self.file_paths is None:
raise ValueError("Your source must be provided with a file_paths: []")
# Convert single path to list
path_list: List[Union[Path, str]] = (
[self.file_paths]
if isinstance(self.file_paths, (str, Path))
else list(self.file_paths)
if isinstance(self.file_paths, list)
else []
)
if not isinstance(paths, list):
raise ValueError("file_path must be a Path, str, or a list of these types")
if not path_list:
raise ValueError(
"file_path/file_paths must be a Path, str, or a list of these types"
)
return [self.convert_to_path(path) for path in paths]
return [self.convert_to_path(path) for path in path_list]

View File

@@ -16,12 +16,12 @@ class BaseKnowledgeSource(BaseModel, ABC):
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
collection_name: Optional[str] = Field(default=None)
@abstractmethod
def load_content(self) -> Dict[Any, str]:
def validate_content(self) -> Any:
"""Load and preprocess content from the source."""
pass
@@ -46,4 +46,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")

View File

@@ -0,0 +1,120 @@
from pathlib import Path
from typing import Iterator, List, Optional, Union
from urllib.parse import urlparse
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter
from docling.exceptions import ConversionError
from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
from docling_core.types.doc.document import DoclingDocument
from pydantic import Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
class CrewDoclingSource(BaseKnowledgeSource):
"""Default Source class for converting documents to markdown or json
This will auto support PDF, DOCX, and TXT, XLSX, Images, and HTML files without any additional dependencies and follows the docling package as the source of truth.
"""
_logger: Logger = Logger(verbose=True)
file_path: Optional[List[Union[Path, str]]] = Field(default=None)
file_paths: List[Union[Path, str]] = Field(default_factory=list)
chunks: List[str] = Field(default_factory=list)
safe_file_paths: List[Union[Path, str]] = Field(default_factory=list)
content: List[DoclingDocument] = Field(default_factory=list)
document_converter: DocumentConverter = Field(
default_factory=lambda: DocumentConverter(
allowed_formats=[
InputFormat.MD,
InputFormat.ASCIIDOC,
InputFormat.PDF,
InputFormat.DOCX,
InputFormat.HTML,
InputFormat.IMAGE,
InputFormat.XLSX,
InputFormat.PPTX,
]
)
)
def model_post_init(self, _) -> None:
if self.file_path:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
self.safe_file_paths = self.validate_content()
self.content = self._load_content()
def _load_content(self) -> List[DoclingDocument]:
try:
return self._convert_source_to_docling_documents()
except ConversionError as e:
self._logger.log(
"error",
f"Error loading content: {e}. Supported formats: {self.document_converter.allowed_formats}",
"red",
)
raise e
except Exception as e:
self._logger.log("error", f"Error loading content: {e}")
raise e
def add(self) -> None:
if self.content is None:
return
for doc in self.content:
new_chunks_iterable = self._chunk_doc(doc)
self.chunks.extend(list(new_chunks_iterable))
self._save_documents()
def _convert_source_to_docling_documents(self) -> List[DoclingDocument]:
conv_results_iter = self.document_converter.convert_all(self.safe_file_paths)
return [result.document for result in conv_results_iter]
def _chunk_doc(self, doc: DoclingDocument) -> Iterator[str]:
chunker = HierarchicalChunker()
for chunk in chunker.chunk(doc):
yield chunk.text
def validate_content(self) -> List[Union[Path, str]]:
processed_paths: List[Union[Path, str]] = []
for path in self.file_paths:
if isinstance(path, str):
if path.startswith(("http://", "https://")):
try:
if self._validate_url(path):
processed_paths.append(path)
else:
raise ValueError(f"Invalid URL format: {path}")
except Exception as e:
raise ValueError(f"Invalid URL: {path}. Error: {str(e)}")
else:
local_path = Path(KNOWLEDGE_DIRECTORY + "/" + path)
if local_path.exists():
processed_paths.append(local_path)
else:
raise FileNotFoundError(f"File not found: {local_path}")
else:
# this is an instance of Path
processed_paths.append(path)
return processed_paths
def _validate_url(self, url: str) -> bool:
try:
result = urlparse(url)
return all(
[
result.scheme in ("http", "https"),
result.netloc,
len(result.netloc.split(".")) >= 2, # Ensure domain has TLD
]
)
except Exception:
return False

View File

@@ -13,9 +13,9 @@ class StringKnowledgeSource(BaseKnowledgeSource):
def model_post_init(self, _):
"""Post-initialization method to validate content."""
self.load_content()
self.validate_content()
def load_content(self):
def validate_content(self):
"""Validate string content."""
if not isinstance(self.content, str):
raise ValueError("StringKnowledgeSource only accepts string content")

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Dict, Any, List, Optional
from typing import Any, Dict, List, Optional
class BaseKnowledgeStorage(ABC):

View File

@@ -3,6 +3,7 @@ import hashlib
import io
import logging
import os
import shutil
from typing import Any, Dict, List, Optional, Union, cast
import chromadb
@@ -13,6 +14,7 @@ from chromadb.config import Settings
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
from crewai.utilities.paths import db_storage_path
@@ -105,58 +107,77 @@ class KnowledgeStorage(BaseKnowledgeStorage):
raise Exception("Failed to create or get collection")
def reset(self):
if self.app:
self.app.reset()
else:
base_path = os.path.join(db_storage_path(), "knowledge")
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
if not self.app:
self.app = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()
self.app.reset()
shutil.rmtree(base_path)
self.app = None
self.collection = None
def save(
self,
documents: List[str],
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
):
if self.collection:
try:
if metadata is None:
metadatas: Optional[OneOrMany[chromadb.Metadata]] = None
elif isinstance(metadata, list):
metadatas = [cast(chromadb.Metadata, m) for m in metadata]
else:
metadatas = cast(chromadb.Metadata, metadata)
ids = [
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
]
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
except chromadb.errors.InvalidDimensionException as e:
Logger(verbose=True).log(
"error",
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
"red",
)
raise ValueError(
"Embedding dimension mismatch. Make sure you're using the same embedding model "
"across all operations with this collection."
"Try resetting the collection using `crewai reset-memories -a`"
) from e
except Exception as e:
Logger(verbose=True).log(
"error", f"Failed to upsert documents: {e}", "red"
)
raise
else:
if not self.collection:
raise Exception("Collection not initialized")
try:
# Create a dictionary to store unique documents
unique_docs = {}
# Generate IDs and create a mapping of id -> (document, metadata)
for idx, doc in enumerate(documents):
doc_id = hashlib.sha256(doc.encode("utf-8")).hexdigest()
doc_metadata = None
if metadata is not None:
if isinstance(metadata, list):
doc_metadata = metadata[idx]
else:
doc_metadata = metadata
unique_docs[doc_id] = (doc, doc_metadata)
# Prepare filtered lists for ChromaDB
filtered_docs = []
filtered_metadata = []
filtered_ids = []
# Build the filtered lists
for doc_id, (doc, meta) in unique_docs.items():
filtered_docs.append(doc)
filtered_metadata.append(meta)
filtered_ids.append(doc_id)
# If we have no metadata at all, set it to None
final_metadata: Optional[OneOrMany[chromadb.Metadata]] = (
None if all(m is None for m in filtered_metadata) else filtered_metadata
)
self.collection.upsert(
documents=filtered_docs,
metadatas=final_metadata,
ids=filtered_ids,
)
except chromadb.errors.InvalidDimensionException as e:
Logger(verbose=True).log(
"error",
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
"red",
)
raise ValueError(
"Embedding dimension mismatch. Make sure you're using the same embedding model "
"across all operations with this collection."
"Try resetting the collection using `crewai reset-memories -a`"
) from e
except Exception as e:
Logger(verbose=True).log("error", f"Failed to upsert documents: {e}", "red")
raise
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,

View File

@@ -43,6 +43,11 @@ LLM_CONTEXT_WINDOW_SIZES = {
"gpt-4-turbo": 128000,
"o1-preview": 128000,
"o1-mini": 128000,
# gemini
"gemini-2.0-flash": 1048576,
"gemini-1.5-pro": 2097152,
"gemini-1.5-flash": 1048576,
"gemini-1.5-flash-8b": 1048576,
# deepseek
"deepseek-chat": 128000,
# groq
@@ -59,8 +64,13 @@ LLM_CONTEXT_WINDOW_SIZES = {
"llama3-70b-8192": 8192,
"llama3-8b-8192": 8192,
"mixtral-8x7b-32768": 32768,
"llama-3.3-70b-versatile": 128000,
"llama-3.3-70b-instruct": 128000,
}
DEFAULT_CONTEXT_WINDOW_SIZE = 8192
CONTEXT_WINDOW_USAGE_RATIO = 0.75
@contextmanager
def suppress_warnings():
@@ -124,6 +134,7 @@ class LLM:
self.api_version = api_version
self.api_key = api_key
self.callbacks = callbacks
self.context_window_size = 0
self.kwargs = kwargs
litellm.drop_params = True
@@ -191,7 +202,16 @@ class LLM:
def get_context_window_size(self) -> int:
# Only using 75% of the context window size to avoid cutting the message in the middle
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
if self.context_window_size != 0:
return self.context_window_size
self.context_window_size = int(
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
)
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
if self.model.startswith(key):
self.context_window_size = int(value * CONTEXT_WINDOW_USAGE_RATIO)
return self.context_window_size
def set_callbacks(self, callbacks: List[Any]):
callback_types = [type(callback) for callback in callbacks]

View File

@@ -1,4 +1,4 @@
from typing import Optional, Dict, Any
from typing import Any, Dict, Optional
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict, Optional, List
from typing import Any, Dict, List, Optional
from crewai.memory.storage.rag_storage import RAGStorage

View File

@@ -1,4 +1,5 @@
from typing import Any, Dict, Optional
from crewai.memory.memory import Memory
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.memory.storage.rag_storage import RAGStorage
@@ -32,7 +33,10 @@ class ShortTermMemory(Memory):
storage
if storage
else RAGStorage(
type="short_term", embedder_config=embedder_config, crew=crew, path=path
type="short_term",
embedder_config=embedder_config,
crew=crew,
path=path,
)
)
super().__init__(storage)

View File

@@ -2,6 +2,7 @@ import os
from typing import Any, Dict, List
from mem0 import MemoryClient
from crewai.memory.storage.interface import Storage

View File

@@ -150,9 +150,11 @@ class RAGStorage(BaseRAGStorage):
def reset(self) -> None:
try:
shutil.rmtree(f"{db_storage_path()}/{self.type}")
if self.app:
self.app.reset()
shutil.rmtree(f"{db_storage_path()}/{self.type}")
self.app = None
self.collection = None
except Exception as e:
if "attempt to write a readonly database" in str(e):
# Ignore this specific error

View File

@@ -37,7 +37,7 @@ class UserMemory(Memory):
limit: int = 3,
score_threshold: float = 0.35,
):
results = super().search(
results = self.storage.search(
query=query,
limit=limit,
score_threshold=score_threshold,

View File

@@ -66,6 +66,8 @@ def cache_handler(func):
def crew(func) -> Callable[..., Crew]:
@wraps(func)
def wrapper(self, *args, **kwargs) -> Crew:
instantiated_tasks = []
instantiated_agents = []

View File

@@ -213,4 +213,8 @@ def CrewBase(cls: T) -> T:
callback_functions[callback]() for callback in callbacks
]
# Include base class (qual)name in the wrapper class (qual)name.
WrappedClass.__name__ = CrewBase.__name__ + "(" + cls.__name__ + ")"
WrappedClass.__qualname__ = CrewBase.__qualname__ + "(" + cls.__name__ + ")"
return cast(T, WrappedClass)

View File

@@ -1,11 +1,14 @@
from functools import wraps
def memoize(func):
cache = {}
@wraps(func)
def memoized_func(*args, **kwargs):
key = (args, tuple(kwargs.items()))
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
memoized_func.__dict__.update(func.__dict__)
return memoized_func

View File

@@ -1,12 +1,25 @@
import datetime
import inspect
import json
import os
import logging
import threading
import uuid
from concurrent.futures import Future
from copy import copy
from hashlib import md5
from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union
from pathlib import Path
from typing import (
Any,
Callable,
ClassVar,
Dict,
List,
Optional,
Set,
Tuple,
Type,
Union,
)
from opentelemetry.trace import Span
from pydantic import (
@@ -20,6 +33,7 @@ from pydantic import (
from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.guardrail_result import GuardrailResult
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
@@ -49,6 +63,7 @@ class Task(BaseModel):
"""
__hash__ = object.__hash__ # type: ignore
logger: ClassVar[logging.Logger] = logging.getLogger(__name__)
used_tools: int = 0
tools_errors: int = 0
delegations: int = 0
@@ -110,6 +125,55 @@ class Task(BaseModel):
default=None,
)
processed_by_agents: Set[str] = Field(default_factory=set)
guardrail: Optional[Callable[[TaskOutput], Tuple[bool, Any]]] = Field(
default=None,
description="Function to validate task output before proceeding to next task"
)
max_retries: int = Field(
default=3,
description="Maximum number of retries when guardrail fails"
)
retry_count: int = Field(
default=0,
description="Current number of retries"
)
@field_validator("guardrail")
@classmethod
def validate_guardrail_function(cls, v: Optional[Callable]) -> Optional[Callable]:
"""Validate that the guardrail function has the correct signature and behavior.
While type hints provide static checking, this validator ensures runtime safety by:
1. Verifying the function accepts exactly one parameter (the TaskOutput)
2. Checking return type annotations match Tuple[bool, Any] if present
3. Providing clear, immediate error messages for debugging
This runtime validation is crucial because:
- Type hints are optional and can be ignored at runtime
- Function signatures need immediate validation before task execution
- Clear error messages help users debug guardrail implementation issues
Args:
v: The guardrail function to validate
Returns:
The validated guardrail function
Raises:
ValueError: If the function signature is invalid or return annotation
doesn't match Tuple[bool, Any]
"""
if v is not None:
sig = inspect.signature(v)
if len(sig.parameters) != 1:
raise ValueError("Guardrail function must accept exactly one parameter")
# Check return annotation if present, but don't require it
return_annotation = sig.return_annotation
if return_annotation != inspect.Signature.empty:
if not (return_annotation == Tuple[bool, Any] or str(return_annotation) == 'Tuple[bool, Any]'):
raise ValueError("If return type is annotated, it must be Tuple[bool, Any]")
return v
_telemetry: Telemetry = PrivateAttr(default_factory=Telemetry)
_execution_span: Optional[Span] = PrivateAttr(default=None)
@@ -254,7 +318,6 @@ class Task(BaseModel):
)
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
name=self.name,
description=self.description,
@@ -265,6 +328,37 @@ class Task(BaseModel):
agent=agent.role,
output_format=self._get_output_format(),
)
if self.guardrail:
guardrail_result = GuardrailResult.from_tuple(self.guardrail(task_output))
if not guardrail_result.success:
if self.retry_count >= self.max_retries:
raise Exception(
f"Task failed guardrail validation after {self.max_retries} retries. "
f"Last error: {guardrail_result.error}"
)
self.retry_count += 1
context = (
f"### Previous attempt failed validation: {guardrail_result.error}\n\n\n"
f"### Previous result:\n{task_output.raw}\n\n\n"
"Try again, making sure to address the validation error."
)
return self._execute_core(agent, context, tools)
if guardrail_result.result is None:
raise Exception(
"Task guardrail returned None as result. This is not allowed."
)
if isinstance(guardrail_result.result, str):
task_output.raw = guardrail_result.result
pydantic_output, json_output = self._export_output(guardrail_result.result)
task_output.pydantic = pydantic_output
task_output.json_dict = json_output
elif isinstance(guardrail_result.result, TaskOutput):
task_output = guardrail_result.result
self.output = task_output
self._set_end_execution_time(start_time)
@@ -308,7 +402,18 @@ class Task(BaseModel):
if inputs:
self.description = self._original_description.format(**inputs)
self.expected_output = self._original_expected_output.format(**inputs)
self.expected_output = self.interpolate_only(
input_string=self._original_expected_output, inputs=inputs
)
def interpolate_only(self, input_string: str, inputs: Dict[str, Any]) -> str:
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched."""
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
for key in inputs.keys():
escaped_string = escaped_string.replace(f"{{{{{key}}}}}", f"{{{key}}}")
return escaped_string.format(**inputs)
def increment_tools_errors(self) -> None:
"""Increment the tools errors counter."""
@@ -390,21 +495,33 @@ class Task(BaseModel):
return OutputFormat.RAW
def _save_file(self, result: Any) -> None:
"""Save task output to a file.
Args:
result: The result to save to the file. Can be a dict or any stringifiable object.
Raises:
ValueError: If output_file is not set
RuntimeError: If there is an error writing to the file
"""
if self.output_file is None:
raise ValueError("output_file is not set.")
directory = os.path.dirname(self.output_file) # type: ignore # Value of type variable "AnyOrLiteralStr" of "dirname" cannot be "str | None"
try:
resolved_path = Path(self.output_file).expanduser().resolve()
directory = resolved_path.parent
if directory and not os.path.exists(directory):
os.makedirs(directory)
if not directory.exists():
directory.mkdir(parents=True, exist_ok=True)
with open(self.output_file, "w", encoding="utf-8") as file:
if isinstance(result, dict):
import json
json.dump(result, file, ensure_ascii=False, indent=2)
else:
file.write(str(result))
with resolved_path.open("w", encoding="utf-8") as file:
if isinstance(result, dict):
import json
json.dump(result, file, ensure_ascii=False, indent=2)
else:
file.write(str(result))
except (OSError, IOError) as e:
raise RuntimeError(f"Failed to save output file: {e}")
return None
def __repr__(self):

View File

@@ -0,0 +1,56 @@
"""
Module for handling task guardrail validation results.
This module provides the GuardrailResult class which standardizes
the way task guardrails return their validation results.
"""
from typing import Any, Optional, Tuple, Union
from pydantic import BaseModel, field_validator
class GuardrailResult(BaseModel):
"""Result from a task guardrail execution.
This class standardizes the return format of task guardrails,
converting tuple responses into a structured format that can
be easily handled by the task execution system.
Attributes:
success (bool): Whether the guardrail validation passed
result (Any, optional): The validated/transformed result if successful
error (str, optional): Error message if validation failed
"""
success: bool
result: Optional[Any] = None
error: Optional[str] = None
@field_validator("result", "error")
@classmethod
def validate_result_error_exclusivity(cls, v: Any, info) -> Any:
values = info.data
if "success" in values:
if values["success"] and v and "error" in values and values["error"]:
raise ValueError("Cannot have both result and error when success is True")
if not values["success"] and v and "result" in values and values["result"]:
raise ValueError("Cannot have both result and error when success is False")
return v
@classmethod
def from_tuple(cls, result: Tuple[bool, Union[Any, str]]) -> "GuardrailResult":
"""Create a GuardrailResult from a validation tuple.
Args:
result: A tuple of (success, data) where data is either
the validated result or error message.
Returns:
GuardrailResult: A new instance with the tuple data.
"""
success, data = result
return cls(
success=success,
result=data if success else None,
error=data if not success else None
)

View File

@@ -6,6 +6,7 @@ import os
import platform
import warnings
from contextlib import contextmanager
from importlib.metadata import version
from typing import TYPE_CHECKING, Any, Optional
@@ -16,12 +17,10 @@ def suppress_warnings():
yield
with suppress_warnings():
import pkg_resources
from opentelemetry import trace # noqa: E402
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter # noqa: E402
from opentelemetry.exporter.otlp.proto.http.trace_exporter import (
OTLPSpanExporter, # noqa: E402
)
from opentelemetry.sdk.resources import SERVICE_NAME, Resource # noqa: E402
from opentelemetry.sdk.trace import TracerProvider # noqa: E402
from opentelemetry.sdk.trace.export import BatchSpanProcessor # noqa: E402
@@ -104,7 +103,7 @@ class Telemetry:
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
version("crewai"),
)
self._add_attribute(span, "python_version", platform.python_version())
self._add_attribute(span, "crew_key", crew.key)
@@ -306,7 +305,7 @@ class Telemetry:
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
version("crewai"),
)
self._add_attribute(span, "tool_name", tool_name)
self._add_attribute(span, "attempts", attempts)
@@ -326,7 +325,7 @@ class Telemetry:
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
version("crewai"),
)
self._add_attribute(span, "tool_name", tool_name)
self._add_attribute(span, "attempts", attempts)
@@ -346,7 +345,7 @@ class Telemetry:
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
version("crewai"),
)
if llm:
self._add_attribute(span, "llm", llm.model)
@@ -365,7 +364,7 @@ class Telemetry:
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
version("crewai"),
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
@@ -391,7 +390,7 @@ class Telemetry:
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
version("crewai"),
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
@@ -472,7 +471,7 @@ class Telemetry:
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
version("crewai"),
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
@@ -541,7 +540,7 @@ class Telemetry:
self._add_attribute(
crew._execution_span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
version("crewai"),
)
self._add_attribute(
crew._execution_span, "crew_output", final_string_output

View File

@@ -0,0 +1,45 @@
from typing import Dict, Optional, Union
from pydantic import BaseModel, Field
from crewai.tools.base_tool import BaseTool
from crewai.utilities import I18N
i18n = I18N()
class AddImageToolSchema(BaseModel):
image_url: str = Field(..., description="The URL or path of the image to add")
action: Optional[str] = Field(
default=None,
description="Optional context or question about the image"
)
class AddImageTool(BaseTool):
"""Tool for adding images to the content"""
name: str = Field(default_factory=lambda: i18n.tools("add_image")["name"]) # type: ignore
description: str = Field(default_factory=lambda: i18n.tools("add_image")["description"]) # type: ignore
args_schema: type[BaseModel] = AddImageToolSchema
def _run(
self,
image_url: str,
action: Optional[str] = None,
**kwargs,
) -> dict:
action = action or i18n.tools("add_image")["default_action"] # type: ignore
content = [
{"type": "text", "text": action},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
}
]
return {
"role": "user",
"content": content
}

View File

@@ -1,9 +1,9 @@
from crewai.tools.base_tool import BaseTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
from crewai.utilities import I18N
from .delegate_work_tool import DelegateWorkTool
from .ask_question_tool import AskQuestionTool
from .delegate_work_tool import DelegateWorkTool
class AgentTools:
@@ -20,13 +20,13 @@ class AgentTools:
delegate_tool = DelegateWorkTool(
agents=self.agents,
i18n=self.i18n,
description=self.i18n.tools("delegate_work").format(coworkers=coworkers),
description=self.i18n.tools("delegate_work").format(coworkers=coworkers), # type: ignore
)
ask_tool = AskQuestionTool(
agents=self.agents,
i18n=self.i18n,
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
description=self.i18n.tools("ask_question").format(coworkers=coworkers), # type: ignore
)
return [delegate_tool, ask_tool]

View File

@@ -1,7 +1,9 @@
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
from typing import Optional
from pydantic import BaseModel, Field
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
class AskQuestionToolSchema(BaseModel):
question: str = Field(..., description="The question to ask")

View File

@@ -1,9 +1,10 @@
from typing import Optional, Union
from pydantic import Field
from crewai.tools.base_tool import BaseTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.task import Task
from crewai.tools.base_tool import BaseTool
from crewai.utilities import I18N
@@ -44,14 +45,14 @@ class BaseAgentTool(BaseTool):
if available_agent.role.casefold().replace("\n", "") == agent_name
]
except Exception as _:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
return self.i18n.errors("agent_tool_unexisting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)
)
if not agent:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
return self.i18n.errors("agent_tool_unexisting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)

View File

@@ -1,8 +1,9 @@
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
from typing import Optional
from pydantic import BaseModel, Field
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
class DelegateWorkToolSchema(BaseModel):
task: str = Field(..., description="The task to delegate")

View File

@@ -1,6 +1,5 @@
import ast
import datetime
import os
import time
from difflib import SequenceMatcher
from textwrap import dedent
@@ -11,18 +10,16 @@ from crewai.agents.tools_handler import ToolsHandler
from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
from crewai.utilities import I18N, Converter, ConverterError, Printer
agentops = None
if os.environ.get("AGENTOPS_API_KEY"):
try:
import agentops # type: ignore
except ImportError:
pass
OPENAI_BIGGER_MODELS = ["gpt-4", "gpt-4o", "o1-preview", "o1-mini"]
try:
import agentops # type: ignore
except ImportError:
agentops = None
OPENAI_BIGGER_MODELS = ["gpt-4", "gpt-4o", "o1-preview", "o1-mini", "o1", "o3", "o3-mini"]
class ToolUsageErrorException(Exception):
@@ -106,6 +103,19 @@ class ToolUsage:
if self.agent.verbose:
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
if isinstance(tool, CrewStructuredTool) and tool.name == self._i18n.tools("add_image")["name"]: # type: ignore
try:
result = self._use(tool_string=tool_string, tool=tool, calling=calling)
return result
except Exception as e:
error = getattr(e, "message", str(e))
self.task.increment_tools_errors()
if self.agent.verbose:
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
def _use(
@@ -422,9 +432,10 @@ class ToolUsage:
elif value.lower() in [
"true",
"false",
"null",
]: # Check for boolean and null values
value = value.lower()
value = value.lower().capitalize()
elif value.lower() == "null":
value = "None"
else:
# Assume the value is a string and needs quotes
value = '"' + value.replace('"', '\\"') + '"'

View File

@@ -1,6 +1,7 @@
from typing import Any, Dict
from pydantic import BaseModel
from datetime import datetime
from typing import Any, Dict
from pydantic import BaseModel
class ToolUsageEvent(BaseModel):

View File

@@ -12,14 +12,14 @@
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple python dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
"no_tools": "\nTo give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
"format": "I MUST either use a tool (use one at time) OR give my best final answer not both at the same time. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfy the expect criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output}\nyou MUST return the actual complete content as the final answer, not a summary.",
"human_feedback": "You got human feedback on your work, re-evaluate it and give a new Final Answer when ready.\n {human_feedback}",
"getting_input": "This is the agent's final answer: {final_answer}\n\n",
"summarizer_system_message": "You are a helpful assistant that summarizes text.",
"sumamrize_instruction": "Summarize the following text, make sure to include all the important information: {group}",
"summarize_instruction": "Summarize the following text, make sure to include all the important information: {group}",
"summary": "This is a summary of our conversation so far:\n{merged_summary}",
"manager_request": "Your best answer to your coworker asking you this, accounting for the context shared.",
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
@@ -28,7 +28,7 @@
"errors": {
"force_final_answer_error": "You can't keep going, this was the best you could do.\n {formatted_answer.text}",
"force_final_answer": "Now it's time you MUST give your absolute best final answer. You'll ignore all previous instructions, stop using any tools, and just return your absolute BEST Final answer.",
"agent_tool_unexsiting_coworker": "\nError executing tool. coworker mentioned not found, it must be one of the following options:\n{coworkers}\n",
"agent_tool_unexisting_coworker": "\nError executing tool. coworker mentioned not found, it must be one of the following options:\n{coworkers}\n",
"task_repeated_usage": "I tried reusing the same input, I must stop using this action input. I'll try something else instead.\n\n",
"tool_usage_error": "I encountered an error: {error}",
"tool_arguments_error": "Error: the Action Input is not a valid key, value dictionary.",
@@ -37,6 +37,11 @@
},
"tools": {
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them."
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them.",
"add_image": {
"name": "Add image to content",
"description": "See image to understand it's content, you can optionally ask a question about the image",
"default_action": "Please provide a detailed description of this image, including all visual elements, context, and any notable details you can observe."
}
}
}

View File

@@ -1,15 +1,17 @@
from datetime import datetime, date
import json
from uuid import UUID
from pydantic import BaseModel
from datetime import date, datetime
from decimal import Decimal
from enum import Enum
from uuid import UUID
from pydantic import BaseModel
class CrewJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, BaseModel):
return self._handle_pydantic_model(obj)
elif isinstance(obj, UUID) or isinstance(obj, Decimal):
elif isinstance(obj, UUID) or isinstance(obj, Decimal) or isinstance(obj, Enum):
return str(obj)
elif isinstance(obj, datetime) or isinstance(obj, date):

View File

@@ -1,10 +1,11 @@
import json
import regex
from typing import Any, Type
from crewai.agents.parser import OutputParserException
import regex
from pydantic import BaseModel, ValidationError
from crewai.agents.parser import OutputParserException
class CrewPydanticOutputParser:
"""Parses the text into pydantic models"""

View File

@@ -1,6 +1,7 @@
import os
from typing import Any, Dict, cast
from chromadb import EmbeddingFunction, Documents, Embeddings
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.api.types import validate_embedding_function

View File

@@ -1,13 +1,14 @@
from collections import defaultdict
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
class TaskEvaluationPydanticOutput(BaseModel):

View File

@@ -1,4 +1,3 @@
import os
from typing import List
from pydantic import BaseModel, Field
@@ -6,27 +5,17 @@ from pydantic import BaseModel, Field
from crewai.utilities import Converter
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
agentops = None
try:
from agentops import track_agent # type: ignore
except ImportError:
def mock_agent_ops_provider():
def track_agent(*args, **kwargs):
def track_agent(name):
def noop(f):
return f
return noop
return track_agent
agentops = None
if os.environ.get("AGENTOPS_API_KEY"):
try:
from agentops import track_agent
except ImportError:
track_agent = mock_agent_ops_provider()
else:
track_agent = mock_agent_ops_provider()
class Entity(BaseModel):
name: str = Field(description="The name of the entity.")

View File

@@ -1,7 +1,7 @@
from typing import Any, Callable, Generic, List, Dict, Type, TypeVar
from functools import wraps
from pydantic import BaseModel
from typing import Any, Callable, Dict, Generic, List, Type, TypeVar
from pydantic import BaseModel
T = TypeVar("T")
EVT = TypeVar("EVT", bound=BaseModel)

View File

@@ -1,6 +1,6 @@
import json
import os
from typing import Dict, Optional
from typing import Dict, Optional, Union
from pydantic import BaseModel, Field, PrivateAttr, model_validator
@@ -41,8 +41,8 @@ class I18N(BaseModel):
def errors(self, error: str) -> str:
return self.retrieve("errors", error)
def tools(self, error: str) -> str:
return self.retrieve("tools", error)
def tools(self, tool: str) -> Union[str, Dict[str, str]]:
return self.retrieve("tools", tool)
def retrieve(self, kind, key) -> str:
try:

View File

@@ -1,4 +1,5 @@
from typing import Any, List, Optional
from pydantic import BaseModel, Field
from crewai.agent import Agent

View File

@@ -1,5 +1,7 @@
from pydantic import BaseModel, Field
from typing import Any, Optional
from pydantic import BaseModel, Field
from crewai.utilities import I18N

View File

@@ -1,4 +1,4 @@
from typing import Type, get_args, get_origin, Union
from typing import Type, Union, get_args, get_origin
from pydantic import BaseModel

View File

@@ -1,6 +1,8 @@
from pydantic import BaseModel, Field
from datetime import datetime
from typing import Dict, Any, Optional, List
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)

View File

@@ -1,5 +1,6 @@
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Usage
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
@@ -11,7 +12,7 @@ class TokenCalcHandler(CustomLogger):
if self.token_cost_process is None:
return
usage : Usage = response_obj["usage"]
usage: Usage = response_obj["usage"]
self.token_cost_process.sum_successful_requests(1)
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)

Some files were not shown because too many files have changed in this diff Show More