mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-21 06:48:31 +00:00
Compare commits
5 Commits
docs/train
...
lorenze/in
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1d3eba85fd | ||
|
|
12326b93fd | ||
|
|
58cf9c7908 | ||
|
|
fc729d0e67 | ||
|
|
7d7afb90b0 |
1429
.cursorrules
1429
.cursorrules
File diff suppressed because it is too large
Load Diff
45
.github/workflows/mkdocs.yml
vendored
Normal file
45
.github/workflows/mkdocs.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Deploy MkDocs
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Calculate requirements hash
|
||||
id: req-hash
|
||||
run: echo "::set-output name=hash::$(sha256sum requirements-doc.txt | awk '{print $1}')"
|
||||
|
||||
- name: Setup cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
key: mkdocs-material-${{ steps.req-hash.outputs.hash }}
|
||||
path: .cache
|
||||
restore-keys: |
|
||||
mkdocs-material-
|
||||
|
||||
- name: Install Requirements
|
||||
run: |
|
||||
sudo apt-get update &&
|
||||
sudo apt-get install pngquant &&
|
||||
pip install mkdocs-material mkdocs-material-extensions pillow cairosvg
|
||||
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GH_TOKEN }}
|
||||
|
||||
- name: Build and deploy MkDocs
|
||||
run: mkdocs gh-deploy --force
|
||||
20
.github/workflows/tests.yml
vendored
20
.github/workflows/tests.yml
vendored
@@ -7,18 +7,14 @@ permissions:
|
||||
|
||||
env:
|
||||
OPENAI_API_KEY: fake-api-key
|
||||
PYTHONUNBUFFERED: 1
|
||||
|
||||
jobs:
|
||||
tests:
|
||||
name: tests (${{ matrix.python-version }})
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 15
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
python-version: ['3.10', '3.11', '3.12', '3.13']
|
||||
group: [1, 2, 3, 4, 5, 6, 7, 8]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
@@ -27,9 +23,6 @@ jobs:
|
||||
uses: astral-sh/setup-uv@v3
|
||||
with:
|
||||
enable-cache: true
|
||||
cache-dependency-glob: |
|
||||
**/pyproject.toml
|
||||
**/uv.lock
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
run: uv python install ${{ matrix.python-version }}
|
||||
@@ -37,14 +30,5 @@ jobs:
|
||||
- name: Install the project
|
||||
run: uv sync --dev --all-extras
|
||||
|
||||
- name: Run tests (group ${{ matrix.group }} of 8)
|
||||
run: |
|
||||
uv run pytest \
|
||||
--block-network \
|
||||
--timeout=30 \
|
||||
-vv \
|
||||
--splits 8 \
|
||||
--group ${{ matrix.group }} \
|
||||
--durations=10 \
|
||||
-n auto \
|
||||
--maxfail=3
|
||||
- name: Run tests
|
||||
run: uv run pytest --block-network --timeout=60 -vv
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -21,9 +21,9 @@ crew_tasks_output.json
|
||||
.mypy_cache
|
||||
.ruff_cache
|
||||
.venv
|
||||
agentops.log
|
||||
test_flow.html
|
||||
crewairules.mdc
|
||||
plan.md
|
||||
conceptual_plan.md
|
||||
build_image
|
||||
chromadb-*.lock
|
||||
build_image
|
||||
473
docs/changelog.mdx
Normal file
473
docs/changelog.mdx
Normal file
@@ -0,0 +1,473 @@
|
||||
---
|
||||
title: Changelog
|
||||
description: View the latest updates and changes to CrewAI
|
||||
icon: timeline
|
||||
---
|
||||
|
||||
<Update label="2024-05-22" description="v0.121.0" tags={["Latest"]}>
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01210.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.121.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Fixed encoding error when creating tools
|
||||
- Fixed failing llama test
|
||||
- Updated logging configuration for consistency
|
||||
- Enhanced telemetry initialization and event handling
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Added **markdown attribute** to the Task class
|
||||
- Added **reasoning attribute** to the Agent class
|
||||
- Added **inject_date flag** to Agent for automatic date injection
|
||||
- Implemented **HallucinationGuardrail** (no-op with test coverage)
|
||||
|
||||
**Documentation & Guides**
|
||||
- Added documentation for **StagehandTool** and improved MDX structure
|
||||
- Added documentation for **MCP integration** and updated enterprise docs
|
||||
- Documented knowledge events and updated reasoning docs
|
||||
- Added stop parameter documentation
|
||||
- Fixed import references in doc examples (before_kickoff, after_kickoff)
|
||||
- General docs updates and restructuring for clarity
|
||||
</Update>
|
||||
|
||||
<Update label="2024-05-15" description="v0.120.1">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01201.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.120.1">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Fixed **interpolation with hyphens**
|
||||
</Update>
|
||||
|
||||
<Update label="2024-05-14" description="v0.120.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01200.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.120.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Enabled **full Ruff rule set** by default for stricter linting
|
||||
- Addressed race condition in FilteredStream using context managers
|
||||
- Fixed agent knowledge reset issue
|
||||
- Refactored agent fetching logic into utility module
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Added support for **loading an Agent directly from a repository**
|
||||
- Enabled setting an empty context for Task
|
||||
- Enhanced Agent repository feedback and fixed Tool auto-import behavior
|
||||
- Introduced direct initialization of knowledge (bypassing knowledge_sources)
|
||||
|
||||
**Documentation & Guides**
|
||||
- Updated security.md for current security practices
|
||||
- Cleaned up Google setup section for clarity
|
||||
- Added link to AI Studio when entering Gemini key
|
||||
- Updated Arize Phoenix observability guide
|
||||
- Refreshed flow documentation
|
||||
</Update>
|
||||
|
||||
<Update label="2024-05-08" description="v0.119.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01190.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.119.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Improved test reliability by enhancing pytest handling for flaky tests
|
||||
- Fixed memory reset crash when embedding dimensions mismatch
|
||||
- Enabled parent flow identification for Crew and LiteAgent
|
||||
- Prevented telemetry-related crashes when unavailable
|
||||
- Upgraded **LiteLLM version** for better compatibility
|
||||
- Fixed llama converter tests by removing skip_external_api
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Introduced **knowledge retrieval prompt re-writing** in Agent for improved tracking and debugging
|
||||
- Made LLM setup and quickstart guides model-agnostic
|
||||
|
||||
**Documentation & Guides**
|
||||
- Added advanced configuration docs for the RAG tool
|
||||
- Updated Windows troubleshooting guide
|
||||
- Refined documentation examples for better clarity
|
||||
- Fixed typos across docs and config files
|
||||
</Update>
|
||||
|
||||
<Update label="2024-04-28" description="v0.118.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01180.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.118.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Fixed issues with missing prompt or system templates
|
||||
- Removed global logging configuration to avoid unintended overrides
|
||||
- Renamed **TaskGuardrail to LLMGuardrail** for improved clarity
|
||||
- Downgraded litellm to version 1.167.1 for compatibility
|
||||
- Added missing init.py files to ensure proper module initialization
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Added support for **no-code Guardrail creation** to simplify AI behavior controls
|
||||
|
||||
**Documentation & Guides**
|
||||
- Removed CrewStructuredTool from public documentation to reflect internal usage
|
||||
- Updated enterprise documentation and YouTube embed for improved onboarding experience
|
||||
</Update>
|
||||
|
||||
<Update label="2024-04-20" description="v0.117.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01170.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.117.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Added `result_as_answer` parameter support in `@tool` decorator.
|
||||
- Introduced support for new language models: GPT-4.1, Gemini-2.0, and Gemini-2.5 Pro.
|
||||
- Enhanced knowledge management capabilities.
|
||||
- Added Huggingface provider option in CLI.
|
||||
- Improved compatibility and CI support for Python 3.10+.
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Fixed issues with incorrect template parameters and missing inputs.
|
||||
- Improved asynchronous flow handling with coroutine condition checks.
|
||||
- Enhanced memory management with isolated configuration and correct memory object copying.
|
||||
- Fixed initialization of lite agents with correct references.
|
||||
- Addressed Python type hint issues and removed redundant imports.
|
||||
- Updated event placement for improved tool usage tracking.
|
||||
- Raised explicit exceptions when flows fail.
|
||||
- Removed unused code and redundant comments from various modules.
|
||||
- Updated GitHub App token action to v2.
|
||||
|
||||
**Documentation & Guides**
|
||||
- Enhanced documentation structure, including enterprise deployment instructions.
|
||||
- Automatically create output folders for documentation generation.
|
||||
- Fixed broken link in WeaviateVectorSearchTool documentation.
|
||||
- Fixed guardrail documentation usage and import paths for JSON search tools.
|
||||
- Updated documentation for CodeInterpreterTool.
|
||||
- Improved SEO, contextual navigation, and error handling for documentation pages.
|
||||
</Update>
|
||||
|
||||
<Update label="2024-04-25" description="v0.117.1">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01171.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.117.1">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Upgraded **crewai-tools** to latest version
|
||||
- Upgraded **liteLLM** to latest version
|
||||
- Fixed **Mem0 OSS**
|
||||
</Update>
|
||||
|
||||
<Update label="2024-04-07" description="v0.114.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01140.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.114.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Agents as an atomic unit. (`Agent(...).kickoff()`)
|
||||
- Support for [Custom LLM implementations](https://docs.crewai.com/guides/advanced/custom-llm).
|
||||
- Integrated External Memory and [Opik observability](https://docs.crewai.com/how-to/opik-observability).
|
||||
- Enhanced YAML extraction.
|
||||
- Multimodal agent validation.
|
||||
- Added Secure fingerprints for agents and crews.
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Improved serialization, agent copying, and Python compatibility.
|
||||
- Added wildcard support to `emit()`
|
||||
- Added support for additional router calls and context window adjustments.
|
||||
- Fixed typing issues, validation, and import statements.
|
||||
- Improved method performance.
|
||||
- Enhanced agent task handling, event emissions, and memory management.
|
||||
- Fixed CLI issues, conditional tasks, cloning behavior, and tool outputs.
|
||||
|
||||
**Documentation & Guides**
|
||||
- Improved documentation structure, theme, and organization.
|
||||
- Added guides for Local NVIDIA NIM with WSL2, W&B Weave, and Arize Phoenix.
|
||||
- Updated tool configuration examples, prompts, and observability docs.
|
||||
- Guide on using singular agents within Flows.
|
||||
</Update>
|
||||
|
||||
<Update label="2024-03-17" description="v0.108.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01080.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.108.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Converted tabs to spaces in `crew.py` template
|
||||
- Enhanced LLM Streaming Response Handling and Event System
|
||||
- Included `model_name`
|
||||
- Enhanced Event Listener with rich visualization and improved logging
|
||||
- Added fingerprints
|
||||
|
||||
**Bug Fixes**
|
||||
- Fixed Mistral issues
|
||||
- Fixed a bug in documentation
|
||||
- Fixed type check error in fingerprint property
|
||||
|
||||
**Documentation Updates**
|
||||
- Improved tool documentation
|
||||
- Updated installation guide for the `uv` tool package
|
||||
- Added instructions for upgrading crewAI with the `uv` tool
|
||||
- Added documentation for `ApifyActorsTool`
|
||||
</Update>
|
||||
|
||||
<Update label="2024-03-10" description="v0.105.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01050.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.105.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Fixed issues with missing template variables and user memory configuration
|
||||
- Improved async flow support and addressed agent response formatting
|
||||
- Enhanced memory reset functionality and fixed CLI memory commands
|
||||
- Fixed type issues, tool calling properties, and telemetry decoupling
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Added Flow state export and improved state utilities
|
||||
- Enhanced agent knowledge setup with optional crew embedder
|
||||
- Introduced event emitter for better observability and LLM call tracking
|
||||
- Added support for Python 3.10 and ChatOllama from langchain_ollama
|
||||
- Integrated context window size support for the o3-mini model
|
||||
- Added support for multiple router calls
|
||||
|
||||
**Documentation & Guides**
|
||||
- Improved documentation layout and hierarchical structure
|
||||
- Added QdrantVectorSearchTool guide and clarified event listener usage
|
||||
- Fixed typos in prompts and updated Amazon Bedrock model listings
|
||||
</Update>
|
||||
|
||||
<Update label="2024-02-12" description="v0.102.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01020.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.102.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
|
||||
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
|
||||
- Memory & Storage Fixes: Fixed short-term memory handling with Bedrock, ensured correct embedder initialization, and added a reset memories function in the crew class
|
||||
- Training & Execution Reliability: Fixed broken training and interpolation issues with dict and list input types
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Advanced Knowledge Management: Improved naming conventions and enhanced embedding configuration with custom embedder support
|
||||
- Expanded Logging & Observability: Added JSON format support for logging and integrated MLflow tracing documentation
|
||||
- Data Handling Improvements: Updated excel_knowledge_source.py to process multi-tab files
|
||||
- General Performance & Codebase Clean-Up: Streamlined enterprise code alignment and resolved linting issues
|
||||
- Adding new tool: `QdrantVectorSearchTool`
|
||||
|
||||
**Documentation & Guides**
|
||||
- Updated AI & Memory Docs: Improved Bedrock, Google AI, and long-term memory documentation
|
||||
- Task & Workflow Clarity: Added "Human Input" row to Task Attributes, Langfuse guide, and FileWriterTool documentation
|
||||
- Fixed Various Typos & Formatting Issues
|
||||
</Update>
|
||||
|
||||
<Update label="2024-01-28" description="v0.100.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v01000.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.100.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Features**
|
||||
- Add Composio docs
|
||||
- Add SageMaker as a LLM provider
|
||||
|
||||
**Fixes**
|
||||
- Overall LLM connection issues
|
||||
- Using safe accessors on training
|
||||
- Add version check to crew_chat.py
|
||||
|
||||
**Documentation**
|
||||
- New docs for crewai chat
|
||||
- Improve formatting and clarity in CLI and Composio Tool docs
|
||||
</Update>
|
||||
|
||||
<Update label="2024-01-20" description="v0.98.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v0980.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.98.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**Features**
|
||||
- Conversation crew v1
|
||||
- Add unique ID to flow states
|
||||
- Add @persist decorator with FlowPersistence interface
|
||||
|
||||
**Integrations**
|
||||
- Add SambaNova integration
|
||||
- Add NVIDIA NIM provider in cli
|
||||
- Introducing VoyageAI
|
||||
|
||||
**Fixes**
|
||||
- Fix API Key Behavior and Entity Handling in Mem0 Integration
|
||||
- Fixed core invoke loop logic and relevant tests
|
||||
- Make tool inputs actual objects and not strings
|
||||
- Add important missing parts to creating tools
|
||||
- Drop litellm version to prevent windows issue
|
||||
- Before kickoff if inputs are none
|
||||
- Fixed typos, nested pydantic model issue, and docling issues
|
||||
</Update>
|
||||
|
||||
<Update label="2024-01-04" description="v0.95.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v0950.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.95.0">View on GitHub</a>
|
||||
</div>
|
||||
|
||||
**New Features**
|
||||
- Adding Multimodal Abilities to Crew
|
||||
- Programatic Guardrails
|
||||
- HITL multiple rounds
|
||||
- Gemini 2.0 Support
|
||||
- CrewAI Flows Improvements
|
||||
- Add Workflow Permissions
|
||||
- Add support for langfuse with litellm
|
||||
- Portkey Integration with CrewAI
|
||||
- Add interpolate_only method and improve error handling
|
||||
- Docling Support
|
||||
- Weviate Support
|
||||
|
||||
**Fixes**
|
||||
- output_file not respecting system path
|
||||
- disk I/O error when resetting short-term memory
|
||||
- CrewJSONEncoder now accepts enums
|
||||
- Python max version
|
||||
- Interpolation for output_file in Task
|
||||
- Handle coworker role name case/whitespace properly
|
||||
- Add tiktoken as explicit dependency and document Rust requirement
|
||||
- Include agent knowledge in planning process
|
||||
- Change storage initialization to None for KnowledgeStorage
|
||||
- Fix optional storage checks
|
||||
- include event emitter in flows
|
||||
- Docstring, Error Handling, and Type Hints Improvements
|
||||
- Suppressed userWarnings from litellm pydantic issues
|
||||
</Update>
|
||||
|
||||
<Update label="2024-12-05" description="v0.86.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v0860.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.86.0">View on GitHub</a>
|
||||
</div>
|
||||
**Changes**
|
||||
- Remove all references to pipeline and pipeline router
|
||||
- Add Nvidia NIM as provider in Custom LLM
|
||||
- Add knowledge demo + improve knowledge docs
|
||||
- Add HITL multiple rounds of followup
|
||||
- New docs about yaml crew with decorators
|
||||
- Simplify template crew
|
||||
</Update>
|
||||
|
||||
<Update label="2024-12-04" description="v0.85.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/releases/v0850.png" />
|
||||
</Frame>
|
||||
|
||||
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
|
||||
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.85.0">View on GitHub</a>
|
||||
</div>
|
||||
**Features**
|
||||
- Added knowledge to agent level
|
||||
- Feat/remove langchain
|
||||
- Improve typed task outputs
|
||||
- Log in to Tool Repository on crewai login
|
||||
|
||||
**Fixes**
|
||||
- Fixes issues with result as answer not properly exiting LLM loop
|
||||
- Fix missing key name when running with ollama provider
|
||||
- Fix spelling issue found
|
||||
|
||||
**Documentation**
|
||||
- Update readme for running mypy
|
||||
- Add knowledge to mint.json
|
||||
- Update Github actions
|
||||
- Update Agents docs to include two approaches for creating an agent
|
||||
- Improvements to LLM Configuration and Usage
|
||||
</Update>
|
||||
|
||||
<Update label="2024-11-25" description="v0.83.0">
|
||||
**New Features**
|
||||
- New before_kickoff and after_kickoff crew callbacks
|
||||
- Support to pre-seed agents with Knowledge
|
||||
- Add support for retrieving user preferences and memories using Mem0
|
||||
|
||||
**Fixes**
|
||||
- Fix Async Execution
|
||||
- Upgrade chroma and adjust embedder function generator
|
||||
- Update CLI Watson supported models + docs
|
||||
- Reduce level for Bandit
|
||||
- Fixing all tests
|
||||
|
||||
**Documentation**
|
||||
- Update Docs
|
||||
</Update>
|
||||
|
||||
<Update label="2024-11-13" description="v0.80.0">
|
||||
**Fixes**
|
||||
- Fixing Tokens callback replacement bug
|
||||
- Fixing Step callback issue
|
||||
- Add cached prompt tokens info on usage metrics
|
||||
- Fix crew_train_success test
|
||||
</Update>
|
||||
@@ -71,7 +71,7 @@ There are two ways to create agents in CrewAI: using **YAML configuration (recom
|
||||
|
||||
Using YAML configuration provides a cleaner, more maintainable way to define agents. We strongly recommend using this approach in your CrewAI projects.
|
||||
|
||||
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, navigate to the `src/latest_ai_development/config/agents.yaml` file and modify the template to match your requirements.
|
||||
After creating your CrewAI project as outlined in the [Installation](/installation) section, navigate to the `src/latest_ai_development/config/agents.yaml` file and modify the template to match your requirements.
|
||||
|
||||
<Note>
|
||||
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
|
||||
@@ -312,7 +312,7 @@ multimodal_agent = Agent(
|
||||
|
||||
<Note>
|
||||
When using custom templates, ensure that both `system_template` and `prompt_template` are defined. The `response_template` is optional but recommended for consistent output formatting.
|
||||
</Note>
|
||||
</Note>
|
||||
|
||||
<Note>
|
||||
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{backstory}` in your templates. These will be automatically populated during execution.
|
||||
@@ -425,7 +425,7 @@ strict_agent = Agent(
|
||||
```python Code
|
||||
# Perfect for document processing
|
||||
document_processor = Agent(
|
||||
role="Document Analyst",
|
||||
role="Document Analyst",
|
||||
goal="Extract insights from large research papers",
|
||||
backstory="Expert at analyzing extensive documentation",
|
||||
respect_context_window=True, # Handle large documents gracefully
|
||||
@@ -526,103 +526,6 @@ agent = Agent(
|
||||
The context window management feature works automatically in the background. You don't need to call any special functions - just set `respect_context_window` to your preferred behavior and CrewAI handles the rest!
|
||||
</Note>
|
||||
|
||||
## Direct Agent Interaction with `kickoff()`
|
||||
|
||||
Agents can be used directly without going through a task or crew workflow using the `kickoff()` method. This provides a simpler way to interact with an agent when you don't need the full crew orchestration capabilities.
|
||||
|
||||
### How `kickoff()` Works
|
||||
|
||||
The `kickoff()` method allows you to send messages directly to an agent and get a response, similar to how you would interact with an LLM but with all the agent's capabilities (tools, reasoning, etc.).
|
||||
|
||||
```python Code
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
# Create an agent
|
||||
researcher = Agent(
|
||||
role="AI Technology Researcher",
|
||||
goal="Research the latest AI developments",
|
||||
tools=[SerperDevTool()],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Use kickoff() to interact directly with the agent
|
||||
result = researcher.kickoff("What are the latest developments in language models?")
|
||||
|
||||
# Access the raw response
|
||||
print(result.raw)
|
||||
```
|
||||
|
||||
### Parameters and Return Values
|
||||
|
||||
| Parameter | Type | Description |
|
||||
| :---------------- | :---------------------------------- | :------------------------------------------------------------------------ |
|
||||
| `messages` | `Union[str, List[Dict[str, str]]]` | Either a string query or a list of message dictionaries with role/content |
|
||||
| `response_format` | `Optional[Type[Any]]` | Optional Pydantic model for structured output |
|
||||
|
||||
The method returns a `LiteAgentOutput` object with the following properties:
|
||||
|
||||
- `raw`: String containing the raw output text
|
||||
- `pydantic`: Parsed Pydantic model (if a `response_format` was provided)
|
||||
- `agent_role`: Role of the agent that produced the output
|
||||
- `usage_metrics`: Token usage metrics for the execution
|
||||
|
||||
### Structured Output
|
||||
|
||||
You can get structured output by providing a Pydantic model as the `response_format`:
|
||||
|
||||
```python Code
|
||||
from pydantic import BaseModel
|
||||
from typing import List
|
||||
|
||||
class ResearchFindings(BaseModel):
|
||||
main_points: List[str]
|
||||
key_technologies: List[str]
|
||||
future_predictions: str
|
||||
|
||||
# Get structured output
|
||||
result = researcher.kickoff(
|
||||
"Summarize the latest developments in AI for 2025",
|
||||
response_format=ResearchFindings
|
||||
)
|
||||
|
||||
# Access structured data
|
||||
print(result.pydantic.main_points)
|
||||
print(result.pydantic.future_predictions)
|
||||
```
|
||||
|
||||
### Multiple Messages
|
||||
|
||||
You can also provide a conversation history as a list of message dictionaries:
|
||||
|
||||
```python Code
|
||||
messages = [
|
||||
{"role": "user", "content": "I need information about large language models"},
|
||||
{"role": "assistant", "content": "I'd be happy to help with that! What specifically would you like to know?"},
|
||||
{"role": "user", "content": "What are the latest developments in 2025?"}
|
||||
]
|
||||
|
||||
result = researcher.kickoff(messages)
|
||||
```
|
||||
|
||||
### Async Support
|
||||
|
||||
An asynchronous version is available via `kickoff_async()` with the same parameters:
|
||||
|
||||
```python Code
|
||||
import asyncio
|
||||
|
||||
async def main():
|
||||
result = await researcher.kickoff_async("What are the latest developments in AI?")
|
||||
print(result.raw)
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
<Note>
|
||||
The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler execution flow while preserving all of the agent's configuration (role, goal, backstory, tools, etc.).
|
||||
</Note>
|
||||
|
||||
## Important Considerations and Best Practices
|
||||
|
||||
### Security and Code Execution
|
||||
@@ -4,8 +4,6 @@ description: Learn how to use the CrewAI CLI to interact with CrewAI.
|
||||
icon: terminal
|
||||
---
|
||||
|
||||
<Warning>Since release 0.140.0, CrewAI Enterprise started a process of migrating their login provider. As such, the authentication flow via CLI was updated. Users that use Google to login, or that created their account after July 3rd, 2025 will be unable to log in with older versions of the `crewai` library.</Warning>
|
||||
|
||||
## Overview
|
||||
|
||||
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews & flows.
|
||||
@@ -88,7 +86,7 @@ crewai replay [OPTIONS]
|
||||
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
```shell Terminal
|
||||
crewai replay -t task_123456
|
||||
```
|
||||
|
||||
@@ -134,7 +132,7 @@ crewai test [OPTIONS]
|
||||
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
```shell Terminal
|
||||
crewai test -n 5 -m gpt-3.5-turbo
|
||||
```
|
||||
|
||||
@@ -151,7 +149,7 @@ Starting from version 0.103.0, the `crewai run` command can be used to run both
|
||||
</Note>
|
||||
|
||||
<Note>
|
||||
Make sure to run these commands from the directory where your CrewAI project is set up.
|
||||
Make sure to run these commands from the directory where your CrewAI project is set up.
|
||||
Some commands may require additional configuration or setup within your project structure.
|
||||
</Note>
|
||||
|
||||
@@ -188,7 +186,10 @@ def crew(self) -> Crew:
|
||||
Deploy the crew or flow to [CrewAI Enterprise](https://app.crewai.com).
|
||||
|
||||
- **Authentication**: You need to be authenticated to deploy to CrewAI Enterprise.
|
||||
You can login or create an account with:
|
||||
```shell Terminal
|
||||
crewai signup
|
||||
```
|
||||
If you already have an account, you can login with:
|
||||
```shell Terminal
|
||||
crewai login
|
||||
```
|
||||
@@ -235,7 +236,7 @@ You must be authenticated to CrewAI Enterprise to use these organization managem
|
||||
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI Enterprise.
|
||||
```shell Terminal
|
||||
crewai deploy push
|
||||
```
|
||||
```
|
||||
- Initiates the deployment process on the CrewAI Enterprise platform.
|
||||
- Upon successful initiation, it will output the Deployment created successfully! message along with the Deployment Name and a unique Deployment ID (UUID).
|
||||
|
||||
@@ -284,13 +285,13 @@ Watch this video tutorial for a step-by-step demonstration of deploying your cre
|
||||
|
||||
### 11. API Keys
|
||||
|
||||
When running ```crewai create crew``` command, the CLI will show you a list of available LLM providers to choose from, followed by model selection for your chosen provider.
|
||||
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.
|
||||
|
||||
Once you've selected an LLM provider and model, you will be prompted for API keys.
|
||||
Once you've selected an LLM provider, you will be prompted for API keys.
|
||||
|
||||
#### Available LLM Providers
|
||||
#### Initial API key providers
|
||||
|
||||
Here's a list of the most popular LLM providers suggested by the CLI:
|
||||
The CLI will initially prompt for API keys for the following services:
|
||||
|
||||
* OpenAI
|
||||
* Groq
|
||||
@@ -298,11 +299,11 @@ Here's a list of the most popular LLM providers suggested by the CLI:
|
||||
* Google Gemini
|
||||
* SambaNova
|
||||
|
||||
When you select a provider, the CLI will then show you available models for that provider and prompt you to enter your API key.
|
||||
When you select a provider, the CLI will prompt you to enter your API key.
|
||||
|
||||
#### Other Options
|
||||
|
||||
If you select "other", you will be able to select from a list of LiteLLM supported providers.
|
||||
If you select option 6, you will be able to select from a list of LiteLLM supported providers.
|
||||
|
||||
When you select a provider, the CLI will prompt you to enter the Key name and the API key.
|
||||
|
||||
@@ -310,81 +311,5 @@ See the following link for each provider's key name:
|
||||
|
||||
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)
|
||||
|
||||
### 12. Configuration Management
|
||||
|
||||
Manage CLI configuration settings for CrewAI.
|
||||
|
||||
```shell Terminal
|
||||
crewai config [COMMAND] [OPTIONS]
|
||||
```
|
||||
|
||||
#### Commands:
|
||||
|
||||
- `list`: Display all CLI configuration parameters
|
||||
```shell Terminal
|
||||
crewai config list
|
||||
```
|
||||
|
||||
- `set`: Set a CLI configuration parameter
|
||||
```shell Terminal
|
||||
crewai config set <key> <value>
|
||||
```
|
||||
|
||||
- `reset`: Reset all CLI configuration parameters to default values
|
||||
```shell Terminal
|
||||
crewai config reset
|
||||
```
|
||||
|
||||
#### Available Configuration Parameters
|
||||
|
||||
- `enterprise_base_url`: Base URL of the CrewAI Enterprise instance
|
||||
- `oauth2_provider`: OAuth2 provider used for authentication (e.g., workos, okta, auth0)
|
||||
- `oauth2_audience`: OAuth2 audience value, typically used to identify the target API or resource
|
||||
- `oauth2_client_id`: OAuth2 client ID issued by the provider, used during authentication requests
|
||||
- `oauth2_domain`: OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens
|
||||
|
||||
#### Examples
|
||||
|
||||
Display current configuration:
|
||||
```shell Terminal
|
||||
crewai config list
|
||||
```
|
||||
|
||||
Example output:
|
||||
```
|
||||
CrewAI CLI Configuration
|
||||
┏━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Setting ┃ Value ┃ Description ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ enterprise_base_url│ https://app.crewai.com │ Base URL of the CrewAI Enterprise instance │
|
||||
│ org_name │ Not set │ Name of the currently active organization │
|
||||
│ org_uuid │ Not set │ UUID of the currently active organization │
|
||||
│ oauth2_provider │ workos │ OAuth2 provider used for authentication (e.g., workos, okta, auth0). │
|
||||
│ oauth2_audience │ client_01YYY │ OAuth2 audience value, typically used to identify the target API or resource. │
|
||||
│ oauth2_client_id │ client_01XXX │ OAuth2 client ID issued by the provider, used during authentication requests. │
|
||||
│ oauth2_domain │ login.crewai.com │ OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens. │
|
||||
```
|
||||
|
||||
Set the enterprise base URL:
|
||||
```shell Terminal
|
||||
crewai config set enterprise_base_url https://my-enterprise.crewai.com
|
||||
```
|
||||
|
||||
Set OAuth2 provider:
|
||||
```shell Terminal
|
||||
crewai config set oauth2_provider auth0
|
||||
```
|
||||
|
||||
Set OAuth2 domain:
|
||||
```shell Terminal
|
||||
crewai config set oauth2_domain my-company.auth0.com
|
||||
```
|
||||
|
||||
Reset all configuration to defaults:
|
||||
```shell Terminal
|
||||
crewai config reset
|
||||
```
|
||||
|
||||
<Note>
|
||||
Configuration settings are stored in `~/.config/crewai/settings.json`. Some settings like organization name and UUID are read-only and managed through authentication and organization commands. Tool repository related settings are hidden and cannot be set directly by users.
|
||||
</Note>
|
||||
@@ -20,7 +20,8 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
|
||||
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). | |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
|
||||
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
|
||||
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
|
||||
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
|
||||
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
|
||||
@@ -31,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
|
||||
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
|
||||
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | Knowledge sources available at the crew level, accessible to all the agents. |
|
||||
|
||||
<Tip>
|
||||
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
@@ -45,7 +45,7 @@ There are two ways to create crews in CrewAI: using **YAML configuration (recomm
|
||||
|
||||
Using YAML configuration provides a cleaner, more maintainable way to define crews and is consistent with how agents and tasks are defined in CrewAI projects.
|
||||
|
||||
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
|
||||
After creating your CrewAI project as outlined in the [Installation](/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
|
||||
|
||||
#### Example Crew Class with Decorators
|
||||
|
||||
@@ -66,8 +66,8 @@ class YourCrewName:
|
||||
# To see an example agent and task defined in YAML, checkout the following:
|
||||
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
|
||||
# - Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@before_kickoff
|
||||
def prepare_inputs(self, inputs):
|
||||
@@ -111,7 +111,7 @@ class YourCrewName:
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically collected by the @agent decorator
|
||||
tasks=self.tasks, # Automatically collected by the @task decorator.
|
||||
tasks=self.tasks, # Automatically collected by the @task decorator.
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -177,7 +177,14 @@ class MyCustomCrew:
|
||||
# Your crew implementation...
|
||||
```
|
||||
|
||||
This is how third-party event listeners are registered in the CrewAI codebase.
|
||||
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
|
||||
|
||||
```python
|
||||
# src/crewai/utilities/events/third_party/__init__.py
|
||||
from .agentops_listener import agentops_listener
|
||||
```
|
||||
|
||||
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
|
||||
|
||||
## Available Event Types
|
||||
|
||||
@@ -248,17 +255,6 @@ CrewAI provides a wide range of events that you can listen for:
|
||||
- **LLMCallFailedEvent**: Emitted when an LLM call fails
|
||||
- **LLMStreamChunkEvent**: Emitted for each chunk received during streaming LLM responses
|
||||
|
||||
### Memory Events
|
||||
|
||||
- **MemoryQueryStartedEvent**: Emitted when a memory query is started. Contains the query, limit, and optional score threshold.
|
||||
- **MemoryQueryCompletedEvent**: Emitted when a memory query is completed successfully. Contains the query, results, limit, score threshold, and query execution time.
|
||||
- **MemoryQueryFailedEvent**: Emitted when a memory query fails. Contains the query, limit, score threshold, and error message.
|
||||
- **MemorySaveStartedEvent**: Emitted when a memory save operation is started. Contains the value to be saved, metadata, and optional agent role.
|
||||
- **MemorySaveCompletedEvent**: Emitted when a memory save operation is completed successfully. Contains the saved value, metadata, agent role, and save execution time.
|
||||
- **MemorySaveFailedEvent**: Emitted when a memory save operation fails. Contains the value, metadata, agent role, and error message.
|
||||
- **MemoryRetrievalStartedEvent**: Emitted when memory retrieval for a task prompt starts. Contains the optional task ID.
|
||||
- **MemoryRetrievalCompletedEvent**: Emitted when memory retrieval for a task prompt completes successfully. Contains the task ID, memory content, and retrieval execution time.
|
||||
|
||||
## Event Handler Structure
|
||||
|
||||
Each event handler receives two parameters:
|
||||
@@ -273,6 +269,77 @@ The structure of the event object depends on the event type, but all events inhe
|
||||
|
||||
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
|
||||
|
||||
## Real-World Example: Integration with AgentOps
|
||||
|
||||
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
|
||||
|
||||
```python
|
||||
from typing import Optional
|
||||
|
||||
from crewai.utilities.events import (
|
||||
CrewKickoffCompletedEvent,
|
||||
ToolUsageErrorEvent,
|
||||
ToolUsageStartedEvent,
|
||||
)
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
|
||||
from crewai.utilities.events.task_events import TaskEvaluationEvent
|
||||
|
||||
try:
|
||||
import agentops
|
||||
AGENTOPS_INSTALLED = True
|
||||
except ImportError:
|
||||
AGENTOPS_INSTALLED = False
|
||||
|
||||
class AgentOpsListener(BaseEventListener):
|
||||
tool_event: Optional["agentops.ToolEvent"] = None
|
||||
session: Optional["agentops.Session"] = None
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
if not AGENTOPS_INSTALLED:
|
||||
return
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffStartedEvent)
|
||||
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
|
||||
self.session = agentops.init()
|
||||
for agent in source.agents:
|
||||
if self.session:
|
||||
self.session.create_agent(
|
||||
name=agent.role,
|
||||
agent_id=str(agent.id),
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffCompletedEvent)
|
||||
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
|
||||
if self.session:
|
||||
self.session.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageStartedEvent)
|
||||
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
|
||||
self.tool_event = agentops.ToolEvent(name=event.tool_name)
|
||||
if self.session:
|
||||
self.session.record(self.tool_event)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageErrorEvent)
|
||||
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
|
||||
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
|
||||
```
|
||||
|
||||
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
|
||||
|
||||
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
|
||||
|
||||
```python
|
||||
from .agentops_listener import agentops_listener
|
||||
```
|
||||
|
||||
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
|
||||
|
||||
## Advanced Usage: Scoped Handlers
|
||||
|
||||
@@ -270,7 +270,7 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="gemini-1.5-pro-latest", # or vertex_ai/gemini-1.5-pro-latest
|
||||
model="gemini/gemini-1.5-pro-latest",
|
||||
temperature=0.7,
|
||||
vertex_credentials=vertex_credentials_json
|
||||
)
|
||||
@@ -684,28 +684,6 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
- openrouter/deepseek/deepseek-chat
|
||||
</Info>
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Nebius AI Studio">
|
||||
Set the following environment variables in your `.env` file:
|
||||
```toml Code
|
||||
NEBIUS_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Example usage in your CrewAI project:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="nebius/Qwen/Qwen3-30B-A3B"
|
||||
)
|
||||
```
|
||||
|
||||
<Info>
|
||||
Nebius AI Studio features:
|
||||
- Large collection of open source models
|
||||
- Higher rate limits
|
||||
- Competitive pricing
|
||||
- Good balance of speed and quality
|
||||
</Info>
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## Streaming Responses
|
||||
@@ -749,58 +727,9 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
|
||||
```
|
||||
|
||||
<Tip>
|
||||
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
|
||||
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
|
||||
</Tip>
|
||||
</Tab>
|
||||
|
||||
<Tab title="Agent & Task Tracking">
|
||||
All LLM events in CrewAI include agent and task information, allowing you to track and filter LLM interactions by specific agents or tasks:
|
||||
|
||||
```python
|
||||
from crewai import LLM, Agent, Task, Crew
|
||||
from crewai.utilities.events import LLMStreamChunkEvent
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
|
||||
class MyCustomListener(BaseEventListener):
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
@crewai_event_bus.on(LLMStreamChunkEvent)
|
||||
def on_llm_stream_chunk(source, event):
|
||||
if researcher.id == event.agent_id:
|
||||
print("\n==============\n Got event:", event, "\n==============\n")
|
||||
|
||||
|
||||
my_listener = MyCustomListener()
|
||||
|
||||
llm = LLM(model="gpt-4o-mini", temperature=0, stream=True)
|
||||
|
||||
researcher = Agent(
|
||||
role="About User",
|
||||
goal="You know everything about the user.",
|
||||
backstory="""You are a master at understanding people and their preferences.""",
|
||||
llm=llm,
|
||||
)
|
||||
|
||||
search = Task(
|
||||
description="Answer the following questions about the user: {question}",
|
||||
expected_output="An answer to the question.",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[researcher], tasks=[search])
|
||||
|
||||
result = crew.kickoff(
|
||||
inputs={"question": "..."}
|
||||
)
|
||||
```
|
||||
|
||||
<Info>
|
||||
This feature is particularly useful for:
|
||||
- Debugging specific agent behaviors
|
||||
- Logging LLM usage by task type
|
||||
- Auditing which agents are making what types of LLM calls
|
||||
- Performance monitoring of specific tasks
|
||||
</Info>
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Structured LLM Calls
|
||||
@@ -896,7 +825,7 @@ Learn how to get the most out of your LLM configuration:
|
||||
Remember to regularly monitor your token usage and adjust your configuration as needed to optimize costs and performance.
|
||||
</Info>
|
||||
</Accordion>
|
||||
|
||||
|
||||
<Accordion title="Drop Additional Parameters">
|
||||
CrewAI internally uses Litellm for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
|
||||
For example, if you don't need to send the <code>stop</code> parameter, you can simply omit it from your LLM call:
|
||||
@@ -9,7 +9,8 @@ icon: database
|
||||
The CrewAI framework provides a sophisticated memory system designed to significantly enhance AI agent capabilities. CrewAI offers **three distinct memory approaches** that serve different use cases:
|
||||
|
||||
1. **Basic Memory System** - Built-in short-term, long-term, and entity memory
|
||||
2. **External Memory** - Standalone external memory providers
|
||||
2. **User Memory** - User-specific memory with Mem0 integration (legacy approach)
|
||||
3. **External Memory** - Standalone external memory providers (new approach)
|
||||
|
||||
## Memory System Components
|
||||
|
||||
@@ -18,7 +19,7 @@ The CrewAI framework provides a sophisticated memory system designed to signific
|
||||
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes using `RAG`, enabling agents to recall and utilize information relevant to their current context during the current executions.|
|
||||
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
|
||||
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
|
||||
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, `ExternalMemory` and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
|
||||
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
|
||||
|
||||
## 1. Basic Memory System (Recommended)
|
||||
|
||||
@@ -61,7 +62,7 @@ By default, CrewAI uses the `appdirs` library to determine storage locations fol
|
||||
```
|
||||
~/Library/Application Support/CrewAI/{project_name}/
|
||||
├── knowledge/ # Knowledge base ChromaDB files
|
||||
├── short_term_memory/ # Short-term memory ChromaDB files
|
||||
├── short_term_memory/ # Short-term memory ChromaDB files
|
||||
├── long_term_memory/ # Long-term memory ChromaDB files
|
||||
├── entities/ # Entity memory ChromaDB files
|
||||
└── long_term_memory_storage.db # SQLite database
|
||||
@@ -201,7 +202,7 @@ crew = Crew(
|
||||
tasks=[task],
|
||||
memory=True,
|
||||
embedder={
|
||||
"provider": "anthropic", # Match your LLM provider
|
||||
"provider": "anthropic", # Match your LLM provider
|
||||
"config": {
|
||||
"api_key": "your-anthropic-key",
|
||||
"model": "text-embedding-3-small"
|
||||
@@ -251,7 +252,7 @@ chroma_path = os.path.join(storage_path, "knowledge")
|
||||
if os.path.exists(chroma_path):
|
||||
client = chromadb.PersistentClient(path=chroma_path)
|
||||
collections = client.list_collections()
|
||||
|
||||
|
||||
print("ChromaDB Collections:")
|
||||
for collection in collections:
|
||||
print(f" - {collection.name}: {collection.count()} documents")
|
||||
@@ -268,7 +269,7 @@ crew = Crew(agents=[...], tasks=[...], memory=True)
|
||||
|
||||
# Reset specific memory types
|
||||
crew.reset_memories(command_type='short') # Short-term memory
|
||||
crew.reset_memories(command_type='long') # Long-term memory
|
||||
crew.reset_memories(command_type='long') # Long-term memory
|
||||
crew.reset_memories(command_type='entity') # Entity memory
|
||||
crew.reset_memories(command_type='knowledge') # Knowledge storage
|
||||
```
|
||||
@@ -539,71 +540,16 @@ crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
### Mem0 Provider
|
||||
|
||||
Short-Term Memory and Entity Memory both supports a tight integration with both Mem0 OSS and Mem0 Client as a provider. Here is how you can use Mem0 as a provider.
|
||||
|
||||
```python
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.memory.entity_entity_memory import EntityMemory
|
||||
|
||||
mem0_oss_embedder_config = {
|
||||
"provider": "mem0",
|
||||
"config": {
|
||||
"user_id": "john",
|
||||
"local_mem0_config": {
|
||||
"vector_store": {"provider": "qdrant","config": {"host": "localhost", "port": 6333}},
|
||||
"llm": {"provider": "openai","config": {"api_key": "your-api-key", "model": "gpt-4"}},
|
||||
"embedder": {"provider": "openai","config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}}
|
||||
},
|
||||
"infer": True # Optional defaults to True
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
mem0_client_embedder_config = {
|
||||
"provider": "mem0",
|
||||
"config": {
|
||||
"user_id": "john",
|
||||
"org_id": "my_org_id", # Optional
|
||||
"project_id": "my_project_id", # Optional
|
||||
"api_key": "custom-api-key" # Optional - overrides env var
|
||||
"run_id": "my_run_id", # Optional - for short-term memory
|
||||
"includes": "include1", # Optional
|
||||
"excludes": "exclude1", # Optional
|
||||
"infer": True # Optional defaults to True
|
||||
"custom_categories": new_categories # Optional - custom categories for user memory
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
short_term_memory_mem0_oss = ShortTermMemory(embedder_config=mem0_oss_embedder_config) # Short Term Memory with Mem0 OSS
|
||||
short_term_memory_mem0_client = ShortTermMemory(embedder_config=mem0_client_embedder_config) # Short Term Memory with Mem0 Client
|
||||
entity_memory_mem0_oss = EntityMemory(embedder_config=mem0_oss_embedder_config) # Entity Memory with Mem0 OSS
|
||||
entity_memory_mem0_client = EntityMemory(embedder_config=mem0_client_embedder_config) # Short Term Memory with Mem0 Client
|
||||
|
||||
crew = Crew(
|
||||
memory=True,
|
||||
short_term_memory=short_term_memory_mem0_oss, # or short_term_memory_mem0_client
|
||||
entity_memory=entity_memory_mem0_oss # or entity_memory_mem0_client
|
||||
)
|
||||
```
|
||||
|
||||
### Choosing the Right Embedding Provider
|
||||
|
||||
When selecting an embedding provider, consider factors like performance, privacy, cost, and integration needs.
|
||||
Below is a comparison to help you decide:
|
||||
|
||||
| Provider | Best For | Pros | Cons |
|
||||
| -------------- | ------------------------------ | --------------------------------- | ------------------------- |
|
||||
| **OpenAI** | General use, high reliability | High quality, widely tested | Paid service, API key required |
|
||||
| **Ollama** | Privacy-focused, cost savings | Free, runs locally, fully private | Requires local installation/setup |
|
||||
| **Google AI** | Integration in Google ecosystem| Strong performance, good support | Google account required |
|
||||
| **Azure OpenAI** | Enterprise & compliance needs| Enterprise-grade features, security | More complex setup process |
|
||||
| **Cohere** | Multilingual content handling | Excellent language support | More niche use cases |
|
||||
| **VoyageAI** | Information retrieval & search | Optimized for retrieval tasks | Relatively new provider |
|
||||
| **Mem0** | Per-user personalization | Search-optimized embeddings | Paid service, API key required |
|
||||
|
||||
| Provider | Best For | Pros | Cons |
|
||||
|:---------|:----------|:------|:------|
|
||||
| **OpenAI** | General use, reliability | High quality, well-tested | Cost, requires API key |
|
||||
| **Ollama** | Privacy, cost savings | Free, local, private | Requires local setup |
|
||||
| **Google AI** | Google ecosystem | Good performance | Requires Google account |
|
||||
| **Azure OpenAI** | Enterprise, compliance | Enterprise features | Complex setup |
|
||||
| **Cohere** | Multilingual content | Great language support | Specialized use case |
|
||||
| **VoyageAI** | Retrieval tasks | Optimized for search | Newer provider |
|
||||
|
||||
### Environment Variable Configuration
|
||||
|
||||
@@ -650,7 +596,7 @@ providers_to_test = [
|
||||
{
|
||||
"name": "Ollama",
|
||||
"config": {
|
||||
"provider": "ollama",
|
||||
"provider": "ollama",
|
||||
"config": {"model": "mxbai-embed-large"}
|
||||
}
|
||||
}
|
||||
@@ -658,7 +604,7 @@ providers_to_test = [
|
||||
|
||||
for provider in providers_to_test:
|
||||
print(f"\nTesting {provider['name']} embeddings...")
|
||||
|
||||
|
||||
# Create crew with specific embedder
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
@@ -666,7 +612,7 @@ for provider in providers_to_test:
|
||||
memory=True,
|
||||
embedder=provider['config']
|
||||
)
|
||||
|
||||
|
||||
# Run your test and measure performance
|
||||
result = crew.kickoff()
|
||||
print(f"{provider['name']} completed successfully")
|
||||
@@ -677,7 +623,7 @@ for provider in providers_to_test:
|
||||
**Model not found errors:**
|
||||
```python
|
||||
# Verify model availability
|
||||
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
|
||||
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
|
||||
|
||||
configurator = EmbeddingConfigurator()
|
||||
try:
|
||||
@@ -709,17 +655,17 @@ import time
|
||||
|
||||
def test_embedding_performance(embedder_config, test_text="This is a test document"):
|
||||
start_time = time.time()
|
||||
|
||||
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
memory=True,
|
||||
embedder=embedder_config
|
||||
)
|
||||
|
||||
|
||||
# Simulate memory operation
|
||||
crew.kickoff()
|
||||
|
||||
|
||||
end_time = time.time()
|
||||
return end_time - start_time
|
||||
|
||||
@@ -730,7 +676,7 @@ openai_time = test_embedding_performance({
|
||||
})
|
||||
|
||||
ollama_time = test_embedding_performance({
|
||||
"provider": "ollama",
|
||||
"provider": "ollama",
|
||||
"config": {"model": "mxbai-embed-large"}
|
||||
})
|
||||
|
||||
@@ -738,18 +684,67 @@ print(f"OpenAI: {openai_time:.2f}s")
|
||||
print(f"Ollama: {ollama_time:.2f}s")
|
||||
```
|
||||
|
||||
## 2. External Memory
|
||||
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
|
||||
## 2. User Memory with Mem0 (Legacy)
|
||||
|
||||
### Basic External Memory with Mem0
|
||||
<Warning>
|
||||
**Legacy Approach**: While fully functional, this approach is considered legacy. For new projects requiring user-specific memory, consider using External Memory instead.
|
||||
</Warning>
|
||||
|
||||
User Memory integrates with [Mem0](https://mem0.ai/) to provide user-specific memory that persists across sessions and integrates with the crew's contextual memory system.
|
||||
|
||||
### Prerequisites
|
||||
```bash
|
||||
pip install mem0ai
|
||||
```
|
||||
|
||||
### Mem0 Cloud Configuration
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.memory.external.external_memory import ExternalMemory
|
||||
from crewai import Crew, Process
|
||||
|
||||
# Create external memory instance with local Mem0 Configuration
|
||||
external_memory = ExternalMemory(
|
||||
embedder_config={
|
||||
# Set your Mem0 API key
|
||||
os.environ["MEM0_API_KEY"] = "m0-your-api-key"
|
||||
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
memory=True, # Required for contextual memory integration
|
||||
memory_config={
|
||||
"provider": "mem0",
|
||||
"config": {"user_id": "john"},
|
||||
"user_memory": {} # Required - triggers user memory initialization
|
||||
},
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
### Advanced Mem0 Configuration
|
||||
```python
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
memory=True,
|
||||
memory_config={
|
||||
"provider": "mem0",
|
||||
"config": {
|
||||
"user_id": "john",
|
||||
"org_id": "my_org_id", # Optional
|
||||
"project_id": "my_project_id", # Optional
|
||||
"api_key": "custom-api-key" # Optional - overrides env var
|
||||
},
|
||||
"user_memory": {}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Local Mem0 Configuration
|
||||
```python
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
memory=True,
|
||||
memory_config={
|
||||
"provider": "mem0",
|
||||
"config": {
|
||||
"user_id": "john",
|
||||
@@ -766,60 +761,37 @@ external_memory = ExternalMemory(
|
||||
"provider": "openai",
|
||||
"config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}
|
||||
}
|
||||
},
|
||||
"infer": True # Optional defaults to True
|
||||
}
|
||||
},
|
||||
"user_memory": {}
|
||||
}
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
external_memory=external_memory, # Separate from basic memory
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
### Advanced External Memory with Mem0 Client
|
||||
When using Mem0 Client, you can customize the memory configuration further, by using parameters like 'includes', 'excludes', 'custom_categories', 'infer' and 'run_id' (this is only for short-term memory).
|
||||
You can find more details in the [Mem0 documentation](https://docs.mem0.ai/).
|
||||
## 3. External Memory (New Approach)
|
||||
|
||||
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
|
||||
|
||||
### Basic External Memory with Mem0
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.memory.external.external_memory import ExternalMemory
|
||||
|
||||
new_categories = [
|
||||
{"lifestyle_management_concerns": "Tracks daily routines, habits, hobbies and interests including cooking, time management and work-life balance"},
|
||||
{"seeking_structure": "Documents goals around creating routines, schedules, and organized systems in various life areas"},
|
||||
{"personal_information": "Basic information about the user including name, preferences, and personality traits"}
|
||||
]
|
||||
|
||||
os.environ["MEM0_API_KEY"] = "your-api-key"
|
||||
|
||||
# Create external memory instance with Mem0 Client
|
||||
# Create external memory instance
|
||||
external_memory = ExternalMemory(
|
||||
embedder_config={
|
||||
"provider": "mem0",
|
||||
"config": {
|
||||
"user_id": "john",
|
||||
"org_id": "my_org_id", # Optional
|
||||
"project_id": "my_project_id", # Optional
|
||||
"api_key": "custom-api-key" # Optional - overrides env var
|
||||
"run_id": "my_run_id", # Optional - for short-term memory
|
||||
"includes": "include1", # Optional
|
||||
"excludes": "exclude1", # Optional
|
||||
"infer": True # Optional defaults to True
|
||||
"custom_categories": new_categories # Optional - custom categories for user memory
|
||||
},
|
||||
"provider": "mem0",
|
||||
"config": {"user_id": "U-123"}
|
||||
}
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
external_memory=external_memory, # Separate from basic memory
|
||||
external_memory=external_memory, # Separate from basic memory
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
@@ -836,8 +808,8 @@ class CustomStorage(Storage):
|
||||
|
||||
def save(self, value, metadata=None, agent=None):
|
||||
self.memories.append({
|
||||
"value": value,
|
||||
"metadata": metadata,
|
||||
"value": value,
|
||||
"metadata": metadata,
|
||||
"agent": agent
|
||||
})
|
||||
|
||||
@@ -858,18 +830,17 @@ crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
## 🧠 Memory System Comparison
|
||||
|
||||
| **Category** | **Feature** | **Basic Memory** | **External Memory** |
|
||||
|---------------------|------------------------|-----------------------------|------------------------------|
|
||||
| **Ease of Use** | Setup Complexity | Simple | Moderate |
|
||||
| | Integration | Built-in (contextual) | Standalone |
|
||||
| **Persistence** | Storage | Local files | Custom / Mem0 |
|
||||
| | Cross-session Support | ✅ | ✅ |
|
||||
| **Personalization** | User-specific Memory | ❌ | ✅ |
|
||||
| | Custom Providers | Limited | Any provider |
|
||||
| **Use Case Fit** | Recommended For | Most general use cases | Specialized / custom needs |
|
||||
## Memory System Comparison
|
||||
|
||||
| Feature | Basic Memory | User Memory (Legacy) | External Memory |
|
||||
|---------|-------------|---------------------|----------------|
|
||||
| **Setup Complexity** | Simple | Medium | Medium |
|
||||
| **Integration** | Built-in contextual | Contextual + User-specific | Standalone |
|
||||
| **Storage** | Local files | Mem0 Cloud/Local | Custom/Mem0 |
|
||||
| **Cross-session** | ✅ | ✅ | ✅ |
|
||||
| **User-specific** | ❌ | ✅ | ✅ |
|
||||
| **Custom providers** | Limited | Mem0 only | Any provider |
|
||||
| **Recommended for** | Most use cases | Legacy projects | Specialized needs |
|
||||
|
||||
## Supported Embedding Providers
|
||||
|
||||
@@ -1015,201 +986,7 @@ crew = Crew(
|
||||
- 🫡 **Enhanced Personalization:** Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences.
|
||||
- 🧠 **Improved Problem Solving:** Access to a rich memory store aids agents in making more informed decisions, drawing on past learnings and contextual insights.
|
||||
|
||||
## Memory Events
|
||||
|
||||
CrewAI's event system provides powerful insights into memory operations. By leveraging memory events, you can monitor, debug, and optimize your memory system's performance and behavior.
|
||||
|
||||
### Available Memory Events
|
||||
|
||||
CrewAI emits the following memory-related events:
|
||||
|
||||
| Event | Description | Key Properties |
|
||||
| :---- | :---------- | :------------- |
|
||||
| **MemoryQueryStartedEvent** | Emitted when a memory query begins | `query`, `limit`, `score_threshold` |
|
||||
| **MemoryQueryCompletedEvent** | Emitted when a memory query completes successfully | `query`, `results`, `limit`, `score_threshold`, `query_time_ms` |
|
||||
| **MemoryQueryFailedEvent** | Emitted when a memory query fails | `query`, `limit`, `score_threshold`, `error` |
|
||||
| **MemorySaveStartedEvent** | Emitted when a memory save operation begins | `value`, `metadata`, `agent_role` |
|
||||
| **MemorySaveCompletedEvent** | Emitted when a memory save operation completes successfully | `value`, `metadata`, `agent_role`, `save_time_ms` |
|
||||
| **MemorySaveFailedEvent** | Emitted when a memory save operation fails | `value`, `metadata`, `agent_role`, `error` |
|
||||
| **MemoryRetrievalStartedEvent** | Emitted when memory retrieval for a task prompt starts | `task_id` |
|
||||
| **MemoryRetrievalCompletedEvent** | Emitted when memory retrieval completes successfully | `task_id`, `memory_content`, `retrieval_time_ms` |
|
||||
|
||||
### Practical Applications
|
||||
|
||||
#### 1. Memory Performance Monitoring
|
||||
|
||||
Track memory operation timing to optimize your application:
|
||||
|
||||
```python
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events import (
|
||||
MemoryQueryCompletedEvent,
|
||||
MemorySaveCompletedEvent
|
||||
)
|
||||
import time
|
||||
|
||||
class MemoryPerformanceMonitor(BaseEventListener):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.query_times = []
|
||||
self.save_times = []
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
@crewai_event_bus.on(MemoryQueryCompletedEvent)
|
||||
def on_memory_query_completed(source, event: MemoryQueryCompletedEvent):
|
||||
self.query_times.append(event.query_time_ms)
|
||||
print(f"Memory query completed in {event.query_time_ms:.2f}ms. Query: '{event.query}'")
|
||||
print(f"Average query time: {sum(self.query_times)/len(self.query_times):.2f}ms")
|
||||
|
||||
@crewai_event_bus.on(MemorySaveCompletedEvent)
|
||||
def on_memory_save_completed(source, event: MemorySaveCompletedEvent):
|
||||
self.save_times.append(event.save_time_ms)
|
||||
print(f"Memory save completed in {event.save_time_ms:.2f}ms")
|
||||
print(f"Average save time: {sum(self.save_times)/len(self.save_times):.2f}ms")
|
||||
|
||||
# Create an instance of your listener
|
||||
memory_monitor = MemoryPerformanceMonitor()
|
||||
```
|
||||
|
||||
#### 2. Memory Content Logging
|
||||
|
||||
Log memory operations for debugging and insights:
|
||||
|
||||
```python
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events import (
|
||||
MemorySaveStartedEvent,
|
||||
MemoryQueryStartedEvent,
|
||||
MemoryRetrievalCompletedEvent
|
||||
)
|
||||
import logging
|
||||
|
||||
# Configure logging
|
||||
logger = logging.getLogger('memory_events')
|
||||
|
||||
class MemoryLogger(BaseEventListener):
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
@crewai_event_bus.on(MemorySaveStartedEvent)
|
||||
def on_memory_save_started(source, event: MemorySaveStartedEvent):
|
||||
if event.agent_role:
|
||||
logger.info(f"Agent '{event.agent_role}' saving memory: {event.value[:50]}...")
|
||||
else:
|
||||
logger.info(f"Saving memory: {event.value[:50]}...")
|
||||
|
||||
@crewai_event_bus.on(MemoryQueryStartedEvent)
|
||||
def on_memory_query_started(source, event: MemoryQueryStartedEvent):
|
||||
logger.info(f"Memory query started: '{event.query}' (limit: {event.limit})")
|
||||
|
||||
@crewai_event_bus.on(MemoryRetrievalCompletedEvent)
|
||||
def on_memory_retrieval_completed(source, event: MemoryRetrievalCompletedEvent):
|
||||
if event.task_id:
|
||||
logger.info(f"Memory retrieved for task {event.task_id} in {event.retrieval_time_ms:.2f}ms")
|
||||
else:
|
||||
logger.info(f"Memory retrieved in {event.retrieval_time_ms:.2f}ms")
|
||||
logger.debug(f"Memory content: {event.memory_content}")
|
||||
|
||||
# Create an instance of your listener
|
||||
memory_logger = MemoryLogger()
|
||||
```
|
||||
|
||||
#### 3. Error Tracking and Notifications
|
||||
|
||||
Capture and respond to memory errors:
|
||||
|
||||
```python
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events import (
|
||||
MemorySaveFailedEvent,
|
||||
MemoryQueryFailedEvent
|
||||
)
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
# Configure logging
|
||||
logger = logging.getLogger('memory_errors')
|
||||
|
||||
class MemoryErrorTracker(BaseEventListener):
|
||||
def __init__(self, notify_email: Optional[str] = None):
|
||||
super().__init__()
|
||||
self.notify_email = notify_email
|
||||
self.error_count = 0
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
@crewai_event_bus.on(MemorySaveFailedEvent)
|
||||
def on_memory_save_failed(source, event: MemorySaveFailedEvent):
|
||||
self.error_count += 1
|
||||
agent_info = f"Agent '{event.agent_role}'" if event.agent_role else "Unknown agent"
|
||||
error_message = f"Memory save failed: {event.error}. {agent_info}"
|
||||
logger.error(error_message)
|
||||
|
||||
if self.notify_email and self.error_count % 5 == 0:
|
||||
self._send_notification(error_message)
|
||||
|
||||
@crewai_event_bus.on(MemoryQueryFailedEvent)
|
||||
def on_memory_query_failed(source, event: MemoryQueryFailedEvent):
|
||||
self.error_count += 1
|
||||
error_message = f"Memory query failed: {event.error}. Query: '{event.query}'"
|
||||
logger.error(error_message)
|
||||
|
||||
if self.notify_email and self.error_count % 5 == 0:
|
||||
self._send_notification(error_message)
|
||||
|
||||
def _send_notification(self, message):
|
||||
# Implement your notification system (email, Slack, etc.)
|
||||
print(f"[NOTIFICATION] Would send to {self.notify_email}: {message}")
|
||||
|
||||
# Create an instance of your listener
|
||||
error_tracker = MemoryErrorTracker(notify_email="admin@example.com")
|
||||
```
|
||||
|
||||
### Integrating with Analytics Platforms
|
||||
|
||||
Memory events can be forwarded to analytics and monitoring platforms to track performance metrics, detect anomalies, and visualize memory usage patterns:
|
||||
|
||||
```python
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events import (
|
||||
MemoryQueryCompletedEvent,
|
||||
MemorySaveCompletedEvent
|
||||
)
|
||||
|
||||
class MemoryAnalyticsForwarder(BaseEventListener):
|
||||
def __init__(self, analytics_client):
|
||||
super().__init__()
|
||||
self.client = analytics_client
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
@crewai_event_bus.on(MemoryQueryCompletedEvent)
|
||||
def on_memory_query_completed(source, event: MemoryQueryCompletedEvent):
|
||||
# Forward query metrics to analytics platform
|
||||
self.client.track_metric({
|
||||
"event_type": "memory_query",
|
||||
"query": event.query,
|
||||
"duration_ms": event.query_time_ms,
|
||||
"result_count": len(event.results) if hasattr(event.results, "__len__") else 0,
|
||||
"timestamp": event.timestamp
|
||||
})
|
||||
|
||||
@crewai_event_bus.on(MemorySaveCompletedEvent)
|
||||
def on_memory_save_completed(source, event: MemorySaveCompletedEvent):
|
||||
# Forward save metrics to analytics platform
|
||||
self.client.track_metric({
|
||||
"event_type": "memory_save",
|
||||
"agent_role": event.agent_role,
|
||||
"duration_ms": event.save_time_ms,
|
||||
"timestamp": event.timestamp
|
||||
})
|
||||
```
|
||||
|
||||
### Best Practices for Memory Event Listeners
|
||||
|
||||
1. **Keep handlers lightweight**: Avoid complex processing in event handlers to prevent performance impacts
|
||||
2. **Use appropriate logging levels**: Use INFO for normal operations, DEBUG for details, ERROR for issues
|
||||
3. **Batch metrics when possible**: Accumulate metrics before sending to external systems
|
||||
4. **Handle exceptions gracefully**: Ensure your event handlers don't crash due to unexpected data
|
||||
5. **Consider memory consumption**: Be mindful of storing large amounts of event data
|
||||
|
||||
## Conclusion
|
||||
|
||||
Integrating CrewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations,
|
||||
Integrating CrewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations,
|
||||
you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.
|
||||
@@ -54,11 +54,9 @@ crew = Crew(
|
||||
| **Markdown** _(optional)_ | `markdown` | `Optional[bool]` | Whether the task should instruct the agent to return the final answer formatted in Markdown. Defaults to False. |
|
||||
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
|
||||
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
|
||||
| **Create Directory** _(optional)_ | `create_directory` | `Optional[bool]` | Whether to create the directory for output_file if it doesn't exist. Defaults to True. |
|
||||
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
|
||||
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
|
||||
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
|
||||
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
|
||||
|
||||
## Creating Tasks
|
||||
|
||||
@@ -68,7 +66,7 @@ There are two ways to create tasks in CrewAI: using **YAML configuration (recomm
|
||||
|
||||
Using YAML configuration provides a cleaner, more maintainable way to define tasks. We strongly recommend using this approach to define tasks in your CrewAI projects.
|
||||
|
||||
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, navigate to the `src/latest_ai_development/config/tasks.yaml` file and modify the template to match your specific task requirements.
|
||||
After creating your CrewAI project as outlined in the [Installation](/installation) section, navigate to the `src/latest_ai_development/config/tasks.yaml` file and modify the template to match your specific task requirements.
|
||||
|
||||
<Note>
|
||||
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
|
||||
@@ -279,7 +277,7 @@ formatted_task = Task(
|
||||
|
||||
When `markdown=True`, the agent will receive additional instructions to format the output using:
|
||||
- `#` for headers
|
||||
- `**text**` for bold text
|
||||
- `**text**` for bold text
|
||||
- `*text*` for italic text
|
||||
- `-` or `*` for bullet points
|
||||
- `` `code` `` for inline code
|
||||
@@ -334,11 +332,9 @@ Task guardrails provide a way to validate and transform task outputs before they
|
||||
are passed to the next task. This feature helps ensure data quality and provides
|
||||
feedback to agents when their output doesn't meet specific criteria.
|
||||
|
||||
Guardrails are implemented as Python functions that contain custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
|
||||
### Using Task Guardrails
|
||||
|
||||
### Function-Based Guardrails
|
||||
|
||||
To add a function-based guardrail to a task, provide a validation function through the `guardrail` parameter:
|
||||
To add a guardrail to a task, provide a validation function through the `guardrail` parameter:
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union, Dict, Any
|
||||
@@ -376,7 +372,9 @@ blog_task = Task(
|
||||
- On success: it returns a tuple of `(bool, Any)`. For example: `(True, validated_result)`
|
||||
- On Failure: it returns a tuple of `(bool, str)`. For example: `(False, "Error message explain the failure")`
|
||||
|
||||
### LLMGuardrail
|
||||
|
||||
The `LLMGuardrail` class offers a robust mechanism for validating task outputs.
|
||||
|
||||
### Error Handling Best Practices
|
||||
|
||||
@@ -800,91 +798,184 @@ While creating and executing tasks, certain validation mechanisms are in place t
|
||||
|
||||
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
|
||||
|
||||
## Task Guardrails
|
||||
|
||||
Task guardrails provide a powerful way to validate, transform, or filter task outputs before they are passed to the next task. Guardrails are optional functions that execute before the next task starts, allowing you to ensure that task outputs meet specific requirements or formats.
|
||||
|
||||
### Basic Usage
|
||||
|
||||
#### Define your own logic to validate
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union
|
||||
from crewai import Task
|
||||
|
||||
def validate_json_output(result: str) -> Tuple[bool, Union[dict, str]]:
|
||||
"""Validate that the output is valid JSON."""
|
||||
try:
|
||||
json_data = json.loads(result)
|
||||
return (True, json_data)
|
||||
except json.JSONDecodeError:
|
||||
return (False, "Output must be valid JSON")
|
||||
|
||||
task = Task(
|
||||
description="Generate JSON data",
|
||||
expected_output="Valid JSON object",
|
||||
guardrail=validate_json_output
|
||||
)
|
||||
```
|
||||
|
||||
#### Leverage a no-code approach for validation
|
||||
|
||||
```python Code
|
||||
from crewai import Task
|
||||
|
||||
task = Task(
|
||||
description="Generate JSON data",
|
||||
expected_output="Valid JSON object",
|
||||
guardrail="Ensure the response is a valid JSON object"
|
||||
)
|
||||
```
|
||||
|
||||
#### Using YAML
|
||||
|
||||
```yaml
|
||||
research_task:
|
||||
...
|
||||
guardrail: make sure each bullet contains a minimum of 100 words
|
||||
...
|
||||
```
|
||||
|
||||
```python Code
|
||||
@CrewBase
|
||||
class InternalCrew:
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
...
|
||||
@task
|
||||
def research_task(self):
|
||||
return Task(config=self.tasks_config["research_task"]) # type: ignore[index]
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
#### Use custom models for code generation
|
||||
|
||||
```python Code
|
||||
from crewai import Task
|
||||
from crewai.llm import LLM
|
||||
|
||||
task = Task(
|
||||
description="Generate JSON data",
|
||||
expected_output="Valid JSON object",
|
||||
guardrail=LLMGuardrail(
|
||||
description="Ensure the response is a valid JSON object",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
### How Guardrails Work
|
||||
|
||||
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.
|
||||
2. **Execution Timing**: The guardrail function is executed before the next task starts, ensuring valid data flow between tasks.
|
||||
3. **Return Format**: Guardrails must return a tuple of `(success, data)`:
|
||||
- If `success` is `True`, `data` is the validated/transformed result
|
||||
- If `success` is `False`, `data` is the error message
|
||||
4. **Result Routing**:
|
||||
- On success (`True`), the result is automatically passed to the next task
|
||||
- On failure (`False`), the error is sent back to the agent to generate a new answer
|
||||
|
||||
### Common Use Cases
|
||||
|
||||
#### Data Format Validation
|
||||
```python Code
|
||||
def validate_email_format(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Ensure the output contains a valid email address."""
|
||||
import re
|
||||
email_pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
|
||||
if re.match(email_pattern, result.strip()):
|
||||
return (True, result.strip())
|
||||
return (False, "Output must be a valid email address")
|
||||
```
|
||||
|
||||
#### Content Filtering
|
||||
```python Code
|
||||
def filter_sensitive_info(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Remove or validate sensitive information."""
|
||||
sensitive_patterns = ['SSN:', 'password:', 'secret:']
|
||||
for pattern in sensitive_patterns:
|
||||
if pattern.lower() in result.lower():
|
||||
return (False, f"Output contains sensitive information ({pattern})")
|
||||
return (True, result)
|
||||
```
|
||||
|
||||
#### Data Transformation
|
||||
```python Code
|
||||
def normalize_phone_number(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Ensure phone numbers are in a consistent format."""
|
||||
import re
|
||||
digits = re.sub(r'\D', '', result)
|
||||
if len(digits) == 10:
|
||||
formatted = f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
|
||||
return (True, formatted)
|
||||
return (False, "Output must be a 10-digit phone number")
|
||||
```
|
||||
|
||||
### Advanced Features
|
||||
|
||||
#### Chaining Multiple Validations
|
||||
```python Code
|
||||
def chain_validations(*validators):
|
||||
"""Chain multiple validators together."""
|
||||
def combined_validator(result):
|
||||
for validator in validators:
|
||||
success, data = validator(result)
|
||||
if not success:
|
||||
return (False, data)
|
||||
result = data
|
||||
return (True, result)
|
||||
return combined_validator
|
||||
|
||||
# Usage
|
||||
task = Task(
|
||||
description="Get user contact info",
|
||||
expected_output="Email and phone",
|
||||
guardrail=chain_validations(
|
||||
validate_email_format,
|
||||
filter_sensitive_info
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
#### Custom Retry Logic
|
||||
```python Code
|
||||
task = Task(
|
||||
description="Generate data",
|
||||
expected_output="Valid data",
|
||||
guardrail=validate_data,
|
||||
max_retries=5 # Override default retry limit
|
||||
)
|
||||
```
|
||||
|
||||
## Creating Directories when Saving Files
|
||||
|
||||
The `create_directory` parameter controls whether CrewAI should automatically create directories when saving task outputs to files. This feature is particularly useful for organizing outputs and ensuring that file paths are correctly structured, especially when working with complex project hierarchies.
|
||||
|
||||
### Default Behavior
|
||||
|
||||
By default, `create_directory=True`, which means CrewAI will automatically create any missing directories in the output file path:
|
||||
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
|
||||
|
||||
```python Code
|
||||
# Default behavior - directories are created automatically
|
||||
report_task = Task(
|
||||
description='Generate a comprehensive market analysis report',
|
||||
expected_output='A detailed market analysis with charts and insights',
|
||||
agent=analyst_agent,
|
||||
output_file='reports/2025/market_analysis.md', # Creates 'reports/2025/' if it doesn't exist
|
||||
markdown=True
|
||||
# ...
|
||||
|
||||
save_output_task = Task(
|
||||
description='Save the summarized AI news to a file',
|
||||
expected_output='File saved successfully',
|
||||
agent=research_agent,
|
||||
tools=[file_save_tool],
|
||||
output_file='outputs/ai_news_summary.txt',
|
||||
create_directory=True
|
||||
)
|
||||
```
|
||||
|
||||
### Disabling Directory Creation
|
||||
|
||||
If you want to prevent automatic directory creation and ensure that the directory already exists, set `create_directory=False`:
|
||||
|
||||
```python Code
|
||||
# Strict mode - directory must already exist
|
||||
strict_output_task = Task(
|
||||
description='Save critical data that requires existing infrastructure',
|
||||
expected_output='Data saved to pre-configured location',
|
||||
agent=data_agent,
|
||||
output_file='secure/vault/critical_data.json',
|
||||
create_directory=False # Will raise RuntimeError if 'secure/vault/' doesn't exist
|
||||
)
|
||||
```
|
||||
|
||||
### YAML Configuration
|
||||
|
||||
You can also configure this behavior in your YAML task definitions:
|
||||
|
||||
```yaml tasks.yaml
|
||||
analysis_task:
|
||||
description: >
|
||||
Generate quarterly financial analysis
|
||||
expected_output: >
|
||||
A comprehensive financial report with quarterly insights
|
||||
agent: financial_analyst
|
||||
output_file: reports/quarterly/q4_2024_analysis.pdf
|
||||
create_directory: true # Automatically create 'reports/quarterly/' directory
|
||||
|
||||
audit_task:
|
||||
description: >
|
||||
Perform compliance audit and save to existing audit directory
|
||||
expected_output: >
|
||||
A compliance audit report
|
||||
agent: auditor
|
||||
output_file: audit/compliance_report.md
|
||||
create_directory: false # Directory must already exist
|
||||
```
|
||||
|
||||
### Use Cases
|
||||
|
||||
**Automatic Directory Creation (`create_directory=True`):**
|
||||
- Development and prototyping environments
|
||||
- Dynamic report generation with date-based folders
|
||||
- Automated workflows where directory structure may vary
|
||||
- Multi-tenant applications with user-specific folders
|
||||
|
||||
**Manual Directory Management (`create_directory=False`):**
|
||||
- Production environments with strict file system controls
|
||||
- Security-sensitive applications where directories must be pre-configured
|
||||
- Systems with specific permission requirements
|
||||
- Compliance environments where directory creation is audited
|
||||
|
||||
### Error Handling
|
||||
|
||||
When `create_directory=False` and the directory doesn't exist, CrewAI will raise a `RuntimeError`:
|
||||
|
||||
```python Code
|
||||
try:
|
||||
result = crew.kickoff()
|
||||
except RuntimeError as e:
|
||||
# Handle missing directory error
|
||||
print(f"Directory creation failed: {e}")
|
||||
# Create directory manually or use fallback location
|
||||
#...
|
||||
```
|
||||
|
||||
Check out the video below to see how to use structured outputs in CrewAI:
|
||||
67
docs/concepts/training.mdx
Normal file
67
docs/concepts/training.mdx
Normal file
@@ -0,0 +1,67 @@
|
||||
---
|
||||
title: Training
|
||||
description: Learn how to train your CrewAI agents by giving them feedback early on and get consistent results.
|
||||
icon: dumbbell
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The training feature in CrewAI allows you to train your AI agents using the command-line interface (CLI).
|
||||
By running the command `crewai train -n <n_iterations>`, you can specify the number of iterations for the training process.
|
||||
|
||||
During training, CrewAI utilizes techniques to optimize the performance of your agents along with human feedback.
|
||||
This helps the agents improve their understanding, decision-making, and problem-solving abilities.
|
||||
|
||||
### Training Your Crew Using the CLI
|
||||
|
||||
To use the training feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
|
||||
```shell
|
||||
crewai train -n <n_iterations> <filename> (optional)
|
||||
```
|
||||
<Tip>
|
||||
Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`.
|
||||
</Tip>
|
||||
|
||||
### Training Your Crew Programmatically
|
||||
|
||||
To train your crew programmatically, use the following steps:
|
||||
|
||||
1. Define the number of iterations for training.
|
||||
2. Specify the input parameters for the training process.
|
||||
3. Execute the training command within a try-except block to handle potential errors.
|
||||
|
||||
```python Code
|
||||
n_iterations = 2
|
||||
inputs = {"topic": "CrewAI Training"}
|
||||
filename = "your_model.pkl"
|
||||
|
||||
try:
|
||||
YourCrewName_Crew().crew().train(
|
||||
n_iterations=n_iterations,
|
||||
inputs=inputs,
|
||||
filename=filename
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
```
|
||||
|
||||
### Key Points to Note
|
||||
|
||||
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
|
||||
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
|
||||
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
|
||||
|
||||
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
|
||||
|
||||
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
|
||||
|
||||
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.
|
||||
|
||||
Happy training with CrewAI! 🚀
|
||||
|
||||
1372
docs/docs.json
1372
docs/docs.json
File diff suppressed because it is too large
Load Diff
@@ -1,7 +0,0 @@
|
||||
---
|
||||
title: "GET /inputs"
|
||||
description: "Get required inputs for your crew"
|
||||
openapi: "/enterprise-api.en.yaml GET /inputs"
|
||||
---
|
||||
|
||||
|
||||
@@ -1,7 +0,0 @@
|
||||
---
|
||||
title: "POST /kickoff"
|
||||
description: "Start a crew execution"
|
||||
openapi: "/enterprise-api.en.yaml POST /kickoff"
|
||||
---
|
||||
|
||||
|
||||
@@ -1,7 +0,0 @@
|
||||
---
|
||||
title: "GET /status/{kickoff_id}"
|
||||
description: "Get execution status"
|
||||
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
|
||||
---
|
||||
|
||||
|
||||
@@ -1,196 +0,0 @@
|
||||
---
|
||||
title: Training
|
||||
description: Learn how to train your CrewAI agents by giving them feedback early on and get consistent results.
|
||||
icon: dumbbell
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The training feature in CrewAI allows you to train your AI agents using the command-line interface (CLI).
|
||||
By running the command `crewai train -n <n_iterations>`, you can specify the number of iterations for the training process.
|
||||
|
||||
During training, CrewAI utilizes techniques to optimize the performance of your agents along with human feedback.
|
||||
This helps the agents improve their understanding, decision-making, and problem-solving abilities.
|
||||
|
||||
### Training Your Crew Using the CLI
|
||||
|
||||
To use the training feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
|
||||
```shell
|
||||
crewai train -n <n_iterations> -f <filename.pkl>
|
||||
```
|
||||
<Tip>
|
||||
Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`.
|
||||
</Tip>
|
||||
|
||||
<Note>
|
||||
If you omit `-f`, the output defaults to `trained_agents_data.pkl` in the current working directory. You can pass an absolute path to control where the file is written.
|
||||
</Note>
|
||||
|
||||
### Training your Crew programmatically
|
||||
|
||||
To train your crew programmatically, use the following steps:
|
||||
|
||||
1. Define the number of iterations for training.
|
||||
2. Specify the input parameters for the training process.
|
||||
3. Execute the training command within a try-except block to handle potential errors.
|
||||
|
||||
```python Code
|
||||
n_iterations = 2
|
||||
inputs = {"topic": "CrewAI Training"}
|
||||
filename = "your_model.pkl"
|
||||
|
||||
try:
|
||||
YourCrewName_Crew().crew().train(
|
||||
n_iterations=n_iterations,
|
||||
inputs=inputs,
|
||||
filename=filename
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
```
|
||||
|
||||
## How trained data is used by agents
|
||||
|
||||
CrewAI uses the training artifacts in two ways: during training to incorporate your human feedback, and after training to guide agents with consolidated suggestions.
|
||||
|
||||
### Training data flow
|
||||
|
||||
```mermaid
|
||||
flowchart TD
|
||||
A["Start training<br/>CLI: crewai train -n -f<br/>or Python: crew.train(...)"] --> B["Setup training mode<br/>- task.human_input = true<br/>- disable delegation<br/>- init training_data.pkl + trained file"]
|
||||
|
||||
subgraph "Iterations"
|
||||
direction LR
|
||||
C["Iteration i<br/>initial_output"] --> D["User human_feedback"]
|
||||
D --> E["improved_output"]
|
||||
E --> F["Append to training_data.pkl<br/>by agent_id and iteration"]
|
||||
end
|
||||
|
||||
B --> C
|
||||
F --> G{"More iterations?"}
|
||||
G -- "Yes" --> C
|
||||
G -- "No" --> H["Evaluate per agent<br/>aggregate iterations"]
|
||||
|
||||
H --> I["Consolidate<br/>suggestions[] + quality + final_summary"]
|
||||
I --> J["Save by agent role to trained file<br/>(default: trained_agents_data.pkl)"]
|
||||
|
||||
J --> K["Normal (non-training) runs"]
|
||||
K --> L["Auto-load suggestions<br/>from trained_agents_data.pkl"]
|
||||
L --> M["Append to prompt<br/>for consistent improvements"]
|
||||
```
|
||||
|
||||
### During training runs
|
||||
|
||||
- On each iteration, the system records for every agent:
|
||||
- `initial_output`: the agent’s first answer
|
||||
- `human_feedback`: your inline feedback when prompted
|
||||
- `improved_output`: the agent’s follow-up answer after feedback
|
||||
- This data is stored in a working file named `training_data.pkl` keyed by the agent’s internal ID and iteration.
|
||||
- While training is active, the agent automatically appends your prior human feedback to its prompt to enforce those instructions on subsequent attempts within the training session.
|
||||
Training is interactive: tasks set `human_input = true`, so running in a non-interactive environment will block on user input.
|
||||
|
||||
### After training completes
|
||||
|
||||
- When `train(...)` finishes, CrewAI evaluates the collected training data per agent and produces a consolidated result containing:
|
||||
- `suggestions`: clear, actionable instructions distilled from your feedback and the difference between initial/improved outputs
|
||||
- `quality`: a 0–10 score capturing improvement
|
||||
- `final_summary`: a step-by-step set of action items for future tasks
|
||||
- These consolidated results are saved to the filename you pass to `train(...)` (default via CLI is `trained_agents_data.pkl`). Entries are keyed by the agent’s `role` so they can be applied across sessions.
|
||||
- During normal (non-training) execution, each agent automatically loads its consolidated `suggestions` and appends them to the task prompt as mandatory instructions. This gives you consistent improvements without changing your agent definitions.
|
||||
|
||||
### File summary
|
||||
|
||||
- `training_data.pkl` (ephemeral, per-session):
|
||||
- Structure: `agent_id -> { iteration_number: { initial_output, human_feedback, improved_output } }`
|
||||
- Purpose: capture raw data and human feedback during training
|
||||
- Location: saved in the current working directory (CWD)
|
||||
- `trained_agents_data.pkl` (or your custom filename):
|
||||
- Structure: `agent_role -> { suggestions: string[], quality: number, final_summary: string }`
|
||||
- Purpose: persist consolidated guidance for future runs
|
||||
- Location: written to the CWD by default; use `-f` to set a custom (including absolute) path
|
||||
|
||||
## Small Language Model Considerations
|
||||
|
||||
<Warning>
|
||||
When using smaller language models (≤7B parameters) for training data evaluation, be aware that they may face challenges with generating structured outputs and following complex instructions.
|
||||
</Warning>
|
||||
|
||||
### Limitations of Small Models in Training Evaluation
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="JSON Output Accuracy" icon="triangle-exclamation">
|
||||
Smaller models often struggle with producing valid JSON responses needed for structured training evaluations, leading to parsing errors and incomplete data.
|
||||
</Card>
|
||||
<Card title="Evaluation Quality" icon="chart-line">
|
||||
Models under 7B parameters may provide less nuanced evaluations with limited reasoning depth compared to larger models.
|
||||
</Card>
|
||||
<Card title="Instruction Following" icon="list-check">
|
||||
Complex training evaluation criteria may not be fully followed or considered by smaller models.
|
||||
</Card>
|
||||
<Card title="Consistency" icon="rotate">
|
||||
Evaluations across multiple training iterations may lack consistency with smaller models.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Recommendations for Training
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Best Practice">
|
||||
For optimal training quality and reliable evaluations, we strongly recommend using models with at least 7B parameters or larger:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Crew, Task, LLM
|
||||
|
||||
# Recommended minimum for training evaluation
|
||||
llm = LLM(model="mistral/open-mistral-7b")
|
||||
|
||||
# Better options for reliable training evaluation
|
||||
llm = LLM(model="anthropic/claude-3-sonnet-20240229-v1:0")
|
||||
llm = LLM(model="gpt-4o")
|
||||
|
||||
# Use this LLM with your agents
|
||||
agent = Agent(
|
||||
role="Training Evaluator",
|
||||
goal="Provide accurate training feedback",
|
||||
llm=llm
|
||||
)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
More powerful models provide higher quality feedback with better reasoning, leading to more effective training iterations.
|
||||
</Tip>
|
||||
</Tab>
|
||||
<Tab title="Small Model Usage">
|
||||
If you must use smaller models for training evaluation, be aware of these constraints:
|
||||
|
||||
```python
|
||||
# Using a smaller model (expect some limitations)
|
||||
llm = LLM(model="huggingface/microsoft/Phi-3-mini-4k-instruct")
|
||||
```
|
||||
|
||||
<Warning>
|
||||
While CrewAI includes optimizations for small models, expect less reliable and less nuanced evaluation results that may require more human intervention during training.
|
||||
</Warning>
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
### Key Points to Note
|
||||
|
||||
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
|
||||
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
|
||||
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
|
||||
- Trained guidance is applied at prompt time; it does not modify your Python/YAML agent configuration.
|
||||
- Agents automatically load trained suggestions from a file named `trained_agents_data.pkl` located in the current working directory. If you trained to a different filename, either rename it to `trained_agents_data.pkl` before running, or adjust the loader in code.
|
||||
- You can change the output filename when calling `crewai train` with `-f/--filename`. Absolute paths are supported if you want to save outside the CWD.
|
||||
|
||||
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
|
||||
|
||||
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
|
||||
|
||||
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.
|
||||
@@ -1,155 +0,0 @@
|
||||
---
|
||||
title: 'Agent Repositories'
|
||||
description: 'Learn how to use Agent Repositories to share and reuse your agents across teams and projects'
|
||||
icon: 'database'
|
||||
---
|
||||
|
||||
Agent Repositories allow enterprise users to store, share, and reuse agent definitions across teams and projects. This feature enables organizations to maintain a centralized library of standardized agents, promoting consistency and reducing duplication of effort.
|
||||
|
||||
## Benefits of Agent Repositories
|
||||
|
||||
- **Standardization**: Maintain consistent agent definitions across your organization
|
||||
- **Reusability**: Create an agent once and use it in multiple crews and projects
|
||||
- **Governance**: Implement organization-wide policies for agent configurations
|
||||
- **Collaboration**: Enable teams to share and build upon each other's work
|
||||
|
||||
## Using Agent Repositories
|
||||
|
||||
### Prerequisites
|
||||
|
||||
1. You must have an account at CrewAI, try the [free plan](https://app.crewai.com).
|
||||
2. You need to be authenticated using the CrewAI CLI.
|
||||
3. If you have more than one organization, make sure you are switched to the correct organization using the CLI command:
|
||||
|
||||
```bash
|
||||
crewai org switch <org_id>
|
||||
```
|
||||
|
||||
### Creating and Managing Agents in Repositories
|
||||
|
||||
To create and manage agents in repositories,Enterprise Dashboard.
|
||||
|
||||
### Loading Agents from Repositories
|
||||
|
||||
You can load agents from repositories in your code using the `from_repository` parameter:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
|
||||
# Create an agent by loading it from a repository
|
||||
# The agent is loaded with all its predefined configurations
|
||||
researcher = Agent(
|
||||
from_repository="market-research-agent"
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
### Overriding Repository Settings
|
||||
|
||||
You can override specific settings from the repository by providing them in the configuration:
|
||||
|
||||
```python
|
||||
researcher = Agent(
|
||||
from_repository="market-research-agent",
|
||||
goal="Research the latest trends in AI development", # Override the repository goal
|
||||
verbose=True # Add a setting not in the repository
|
||||
)
|
||||
```
|
||||
|
||||
### Example: Creating a Crew with Repository Agents
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent, Task
|
||||
|
||||
# Load agents from repositories
|
||||
researcher = Agent(
|
||||
from_repository="market-research-agent"
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
from_repository="content-writer-agent"
|
||||
)
|
||||
|
||||
# Create tasks
|
||||
research_task = Task(
|
||||
description="Research the latest trends in AI",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
writing_task = Task(
|
||||
description="Write a comprehensive report based on the research",
|
||||
agent=writer
|
||||
)
|
||||
|
||||
# Create the crew
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research_task, writing_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Run the crew
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Example: Using `kickoff()` with Repository Agents
|
||||
|
||||
You can also use repository agents directly with the `kickoff()` method for simpler interactions:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from pydantic import BaseModel
|
||||
from typing import List
|
||||
|
||||
# Define a structured output format
|
||||
class MarketAnalysis(BaseModel):
|
||||
key_trends: List[str]
|
||||
opportunities: List[str]
|
||||
recommendation: str
|
||||
|
||||
# Load an agent from repository
|
||||
analyst = Agent(
|
||||
from_repository="market-analyst-agent",
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Get a free-form response
|
||||
result = analyst.kickoff("Analyze the AI market in 2025")
|
||||
print(result.raw) # Access the raw response
|
||||
|
||||
# Get structured output
|
||||
structured_result = analyst.kickoff(
|
||||
"Provide a structured analysis of the AI market in 2025",
|
||||
response_format=MarketAnalysis
|
||||
)
|
||||
|
||||
# Access structured data
|
||||
print(f"Key Trends: {structured_result.pydantic.key_trends}")
|
||||
print(f"Recommendation: {structured_result.pydantic.recommendation}")
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Naming Convention**: Use clear, descriptive names for your repository agents
|
||||
2. **Documentation**: Include comprehensive descriptions for each agent
|
||||
3. **Tool Management**: Ensure that tools referenced by repository agents are available in your environment
|
||||
4. **Access Control**: Manage permissions to ensure only authorized team members can modify repository agents
|
||||
|
||||
## Organization Management
|
||||
|
||||
To switch between organizations or see your current organization, use the CrewAI CLI:
|
||||
|
||||
```bash
|
||||
# View current organization
|
||||
crewai org current
|
||||
|
||||
# Switch to a different organization
|
||||
crewai org switch <org_id>
|
||||
|
||||
# List all available organizations
|
||||
crewai org list
|
||||
```
|
||||
|
||||
<Note>
|
||||
When loading agents from repositories, you must be authenticated and switched to the correct organization. If you receive errors, check your authentication status and organization settings using the CLI commands above.
|
||||
</Note>
|
||||
@@ -1,103 +0,0 @@
|
||||
---
|
||||
title: "Role-Based Access Control (RBAC)"
|
||||
description: "Control access to crews, tools, and data with roles, scopes, and granular permissions."
|
||||
icon: "shield"
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
RBAC in CrewAI Enterprise enables secure, scalable access management through a combination of organization‑level roles and automation‑level visibility controls.
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/users_and_roles.png" alt="RBAC overview in CrewAI Enterprise" />
|
||||
|
||||
</Frame>
|
||||
|
||||
## Users and Roles
|
||||
|
||||
Each member in your CrewAI workspace is assigned a role, which determines their access across various features.
|
||||
|
||||
You can:
|
||||
|
||||
- Use predefined roles (Owner, Member)
|
||||
- Create custom roles tailored to specific permissions
|
||||
- Assign roles at any time through the settings panel
|
||||
|
||||
You can configure users and roles in Settings → Roles.
|
||||
|
||||
<Steps>
|
||||
<Step title="Open Roles settings">
|
||||
Go to <b>Settings → Roles</b> in CrewAI Enterprise.
|
||||
</Step>
|
||||
<Step title="Choose a role type">
|
||||
Use a predefined role (<b>Owner</b>, <b>Member</b>) or click <b>Create role</b> to define a custom one.
|
||||
</Step>
|
||||
<Step title="Assign to members">
|
||||
Select users and assign the role. You can change this anytime.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Configuration summary
|
||||
|
||||
| Area | Where to configure | Options |
|
||||
|:---|:---|:---|
|
||||
| Users & Roles | Settings → Roles | Predefined: Owner, Member; Custom roles |
|
||||
| Automation visibility | Automation → Settings → Visibility | Private; Whitelist users/roles |
|
||||
|
||||
## Automation‑level Access Control
|
||||
|
||||
In addition to organization‑wide roles, CrewAI Automations support fine‑grained visibility settings that let you restrict access to specific automations by user or role.
|
||||
|
||||
This is useful for:
|
||||
|
||||
- Keeping sensitive or experimental automations private
|
||||
- Managing visibility across large teams or external collaborators
|
||||
- Testing automations in isolated contexts
|
||||
|
||||
Deployments can be configured as private, meaning only whitelisted users and roles will be able to:
|
||||
|
||||
- View the deployment
|
||||
- Run it or interact with its API
|
||||
- Access its logs, metrics, and settings
|
||||
|
||||
The organization owner always has access, regardless of visibility settings.
|
||||
|
||||
You can configure automation‑level access control in Automation → Settings → Visibility tab.
|
||||
|
||||
<Steps>
|
||||
<Step title="Open Visibility tab">
|
||||
Navigate to <b>Automation → Settings → Visibility</b>.
|
||||
</Step>
|
||||
<Step title="Set visibility">
|
||||
Choose <b>Private</b> to restrict access. The organization owner always retains access.
|
||||
</Step>
|
||||
<Step title="Whitelist access">
|
||||
Add specific users and roles allowed to view, run, and access logs/metrics/settings.
|
||||
</Step>
|
||||
<Step title="Save and verify">
|
||||
Save changes, then confirm that non‑whitelisted users cannot view or run the automation.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Private visibility: access outcomes
|
||||
|
||||
| Action | Owner | Whitelisted user/role | Not whitelisted |
|
||||
|:---|:---|:---|:---|
|
||||
| View automation | ✓ | ✓ | ✗ |
|
||||
| Run automation/API | ✓ | ✓ | ✗ |
|
||||
| Access logs/metrics/settings | ✓ | ✓ | ✗ |
|
||||
|
||||
<Tip>
|
||||
The organization owner always has access. In private mode, only whitelisted users and roles can view, run, and access logs/metrics/settings.
|
||||
</Tip>
|
||||
|
||||
<Frame>
|
||||
<img src="/images/enterprise/visibility.png" alt="Automation Visibility settings in CrewAI Enterprise" />
|
||||
|
||||
</Frame>
|
||||
|
||||
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
|
||||
Contact our support team for assistance with RBAC questions.
|
||||
</Card>
|
||||
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
---
|
||||
title: CrewAI Cookbooks
|
||||
description: Feature-focused quickstarts and notebooks for learning patterns fast.
|
||||
icon: book
|
||||
---
|
||||
|
||||
## Quickstarts & Demos
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Task Guardrails" icon="shield-check" href="https://github.com/crewAIInc/crewAI-quickstarts/tree/main/Task%20Guardrails">
|
||||
Interactive notebooks for hands-on exploration.
|
||||
</Card>
|
||||
<Card title="Browse Quickstarts" icon="bolt" href="https://github.com/crewAIInc/crewAI-quickstarts">
|
||||
Feature demos and small projects showcasing specific CrewAI capabilities.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
<Tip>
|
||||
Use Cookbooks to learn a pattern quickly, then jump to Full Examples for production‑grade implementations.
|
||||
</Tip>
|
||||
|
||||
|
||||
@@ -1,85 +0,0 @@
|
||||
---
|
||||
title: CrewAI Examples
|
||||
description: Explore curated examples organized by Crews, Flows, Integrations, and Notebooks.
|
||||
icon: rocket-launch
|
||||
---
|
||||
|
||||
## Crews
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Marketing Strategy" icon="bullhorn" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/marketing_strategy">
|
||||
Multi‑agent marketing campaign planning.
|
||||
</Card>
|
||||
<Card title="Surprise Trip" icon="plane" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/surprise_trip">
|
||||
Personalized surprise travel planning.
|
||||
</Card>
|
||||
<Card title="Match Profile to Positions" icon="id-card" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/match_profile_to_positions">
|
||||
CV‑to‑job matching with vector search.
|
||||
</Card>
|
||||
<Card title="Job Posting" icon="newspaper" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting">
|
||||
Automated job description creation.
|
||||
</Card>
|
||||
<Card title="Game Builder Crew" icon="gamepad" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/game-builder-crew">
|
||||
Multi‑agent team that designs and builds Python games.
|
||||
</Card>
|
||||
<Card title="Recruitment" icon="user-group" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/recruitment">
|
||||
Candidate sourcing and evaluation.
|
||||
</Card>
|
||||
<Card title="Browse all Crews" icon="users" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews">
|
||||
See the full list of crew examples.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## Flows
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Content Creator Flow" icon="pen" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/content_creator_flow">
|
||||
Multi‑crew content generation with routing.
|
||||
</Card>
|
||||
<Card title="Email Auto Responder" icon="envelope" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/email_auto_responder_flow">
|
||||
Automated email monitoring and replies.
|
||||
</Card>
|
||||
<Card title="Lead Score Flow" icon="chart-line" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/lead_score_flow">
|
||||
Lead qualification with human‑in‑the‑loop.
|
||||
</Card>
|
||||
<Card title="Meeting Assistant Flow" icon="calendar" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/meeting_assistant_flow">
|
||||
Notes processing with integrations.
|
||||
</Card>
|
||||
<Card title="Self Evaluation Loop" icon="rotate" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/self_evaluation_loop_flow">
|
||||
Iterative self‑improvement workflows.
|
||||
</Card>
|
||||
<Card title="Write a Book (Flows)" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/write_a_book_with_flows">
|
||||
Parallel chapter generation.
|
||||
</Card>
|
||||
<Card title="Browse all Flows" icon="diagram-project" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows">
|
||||
See the full list of flow examples.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## Integrations
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="CrewAI ↔ LangGraph" icon="link" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/crewai-langgraph">
|
||||
Integration with LangGraph framework.
|
||||
</Card>
|
||||
<Card title="Azure OpenAI" icon="cloud" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/azure_model">
|
||||
Using CrewAI with Azure OpenAI.
|
||||
</Card>
|
||||
<Card title="NVIDIA Models" icon="microchip" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/nvidia_models">
|
||||
NVIDIA ecosystem integrations.
|
||||
</Card>
|
||||
<Card title="Browse Integrations" icon="puzzle-piece" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations">
|
||||
See all integration examples.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## Notebooks
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Simple QA Crew + Flow" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/Simple%20QA%20Crew%20%2B%20Flow">
|
||||
Simple QA Crew + Flow.
|
||||
</Card>
|
||||
<Card title="All Notebooks" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks">
|
||||
Interactive examples for learning and experimentation.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
@@ -1,286 +0,0 @@
|
||||
---
|
||||
title: LangDB Integration
|
||||
description: Govern, secure, and optimize your CrewAI workflows with LangDB AI Gateway—access 350+ models, automatic routing, cost optimization, and full observability.
|
||||
icon: database
|
||||
---
|
||||
|
||||
# Introduction
|
||||
|
||||
[LangDB AI Gateway](https://langdb.ai) provides OpenAI-compatible APIs to connect with multiple Large Language Models and serves as an observability platform that makes it effortless to trace CrewAI workflows end-to-end while providing access to 350+ language models. With a single `init()` call, all agent interactions, task executions, and LLM calls are captured, providing comprehensive observability and production-ready AI infrastructure for your applications.
|
||||
|
||||
<Frame caption="LangDB CrewAI Trace Example">
|
||||
<img src="/images/langdb-1.png" alt="LangDB CrewAI trace example" />
|
||||
</Frame>
|
||||
|
||||
**Checkout:** [View the live trace example](https://app.langdb.ai/sharing/threads/3becbfed-a1be-ae84-ea3c-4942867a3e22)
|
||||
|
||||
## Features
|
||||
|
||||
### AI Gateway Capabilities
|
||||
- **Access to 350+ LLMs**: Connect to all major language models through a single integration
|
||||
- **Virtual Models**: Create custom model configurations with specific parameters and routing rules
|
||||
- **Virtual MCP**: Enable compatibility and integration with MCP (Model Context Protocol) systems for enhanced agent communication
|
||||
- **Guardrails**: Implement safety measures and compliance controls for agent behavior
|
||||
|
||||
### Observability & Tracing
|
||||
- **Automatic Tracing**: Single `init()` call captures all CrewAI interactions
|
||||
- **End-to-End Visibility**: Monitor agent workflows from start to finish
|
||||
- **Tool Usage Tracking**: Track which tools agents use and their outcomes
|
||||
- **Model Call Monitoring**: Detailed insights into LLM interactions
|
||||
- **Performance Analytics**: Monitor latency, token usage, and costs
|
||||
- **Debugging Support**: Step-through execution for troubleshooting
|
||||
- **Real-time Monitoring**: Live traces and metrics dashboard
|
||||
|
||||
## Setup Instructions
|
||||
|
||||
<Steps>
|
||||
<Step title="Install LangDB">
|
||||
Install the LangDB client with CrewAI feature flag:
|
||||
```bash
|
||||
pip install 'pylangdb[crewai]'
|
||||
```
|
||||
</Step>
|
||||
<Step title="Set Environment Variables">
|
||||
Configure your LangDB credentials:
|
||||
```bash
|
||||
export LANGDB_API_KEY="<your_langdb_api_key>"
|
||||
export LANGDB_PROJECT_ID="<your_langdb_project_id>"
|
||||
export LANGDB_API_BASE_URL='https://api.us-east-1.langdb.ai'
|
||||
```
|
||||
</Step>
|
||||
<Step title="Initialize Tracing">
|
||||
Import and initialize LangDB before configuring your CrewAI code:
|
||||
```python
|
||||
from pylangdb.crewai import init
|
||||
# Initialize LangDB
|
||||
init()
|
||||
```
|
||||
</Step>
|
||||
<Step title="Configure CrewAI with LangDB">
|
||||
Set up your LLM with LangDB headers:
|
||||
```python
|
||||
from crewai import Agent, Task, Crew, LLM
|
||||
import os
|
||||
|
||||
# Configure LLM with LangDB headers
|
||||
llm = LLM(
|
||||
model="openai/gpt-4o", # Replace with the model you want to use
|
||||
api_key=os.getenv("LANGDB_API_KEY"),
|
||||
base_url=os.getenv("LANGDB_API_BASE_URL"),
|
||||
extra_headers={"x-project-id": os.getenv("LANGDB_PROJECT_ID")}
|
||||
)
|
||||
```
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
## Quick Start Example
|
||||
|
||||
Here's a simple example to get you started with LangDB and CrewAI:
|
||||
|
||||
```python
|
||||
import os
|
||||
from pylangdb.crewai import init
|
||||
from crewai import Agent, Task, Crew, LLM
|
||||
|
||||
# Initialize LangDB before any CrewAI imports
|
||||
init()
|
||||
|
||||
def create_llm(model):
|
||||
return LLM(
|
||||
model=model,
|
||||
api_key=os.environ.get("LANGDB_API_KEY"),
|
||||
base_url=os.environ.get("LANGDB_API_BASE_URL"),
|
||||
extra_headers={"x-project-id": os.environ.get("LANGDB_PROJECT_ID")}
|
||||
)
|
||||
|
||||
# Define your agent
|
||||
researcher = Agent(
|
||||
role="Research Specialist",
|
||||
goal="Research topics thoroughly",
|
||||
backstory="Expert researcher with skills in finding information",
|
||||
llm=create_llm("openai/gpt-4o"), # Replace with the model you want to use
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create a task
|
||||
task = Task(
|
||||
description="Research the given topic and provide a comprehensive summary",
|
||||
agent=researcher,
|
||||
expected_output="Detailed research summary with key findings"
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(agents=[researcher], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Complete Example: Research and Planning Agent
|
||||
|
||||
This comprehensive example demonstrates a multi-agent workflow with research and planning capabilities.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
```bash
|
||||
pip install crewai 'pylangdb[crewai]' crewai_tools setuptools python-dotenv
|
||||
```
|
||||
|
||||
### Environment Setup
|
||||
|
||||
```bash
|
||||
# LangDB credentials
|
||||
export LANGDB_API_KEY="<your_langdb_api_key>"
|
||||
export LANGDB_PROJECT_ID="<your_langdb_project_id>"
|
||||
export LANGDB_API_BASE_URL='https://api.us-east-1.langdb.ai'
|
||||
|
||||
# Additional API keys (optional)
|
||||
export SERPER_API_KEY="<your_serper_api_key>" # For web search capabilities
|
||||
```
|
||||
|
||||
### Complete Implementation
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
import sys
|
||||
from pylangdb.crewai import init
|
||||
init() # Initialize LangDB before any CrewAI imports
|
||||
from dotenv import load_dotenv
|
||||
from crewai import Agent, Task, Crew, Process, LLM
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
load_dotenv()
|
||||
|
||||
def create_llm(model):
|
||||
return LLM(
|
||||
model=model,
|
||||
api_key=os.environ.get("LANGDB_API_KEY"),
|
||||
base_url=os.environ.get("LANGDB_API_BASE_URL"),
|
||||
extra_headers={"x-project-id": os.environ.get("LANGDB_PROJECT_ID")}
|
||||
)
|
||||
|
||||
class ResearchPlanningCrew:
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
role="Research Specialist",
|
||||
goal="Research topics thoroughly and compile comprehensive information",
|
||||
backstory="Expert researcher with skills in finding and analyzing information from various sources",
|
||||
tools=[SerperDevTool()],
|
||||
llm=create_llm("openai/gpt-4o"),
|
||||
verbose=True
|
||||
)
|
||||
|
||||
def planner(self) -> Agent:
|
||||
return Agent(
|
||||
role="Strategic Planner",
|
||||
goal="Create actionable plans based on research findings",
|
||||
backstory="Strategic planner who breaks down complex challenges into executable plans",
|
||||
reasoning=True,
|
||||
max_reasoning_attempts=3,
|
||||
llm=create_llm("openai/anthropic/claude-3.7-sonnet"),
|
||||
verbose=True
|
||||
)
|
||||
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
description="Research the topic thoroughly and compile comprehensive information",
|
||||
agent=self.researcher(),
|
||||
expected_output="Comprehensive research report with key findings and insights"
|
||||
)
|
||||
|
||||
def planning_task(self) -> Task:
|
||||
return Task(
|
||||
description="Create a strategic plan based on the research findings",
|
||||
agent=self.planner(),
|
||||
expected_output="Strategic execution plan with phases, goals, and actionable steps",
|
||||
context=[self.research_task()]
|
||||
)
|
||||
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=[self.researcher(), self.planner()],
|
||||
tasks=[self.research_task(), self.planning_task()],
|
||||
verbose=True,
|
||||
process=Process.sequential
|
||||
)
|
||||
|
||||
def main():
|
||||
topic = sys.argv[1] if len(sys.argv) > 1 else "Artificial Intelligence in Healthcare"
|
||||
|
||||
crew_instance = ResearchPlanningCrew()
|
||||
|
||||
# Update task descriptions with the specific topic
|
||||
crew_instance.research_task().description = f"Research {topic} thoroughly and compile comprehensive information"
|
||||
crew_instance.planning_task().description = f"Create a strategic plan for {topic} based on the research findings"
|
||||
|
||||
result = crew_instance.crew().kickoff()
|
||||
print(result)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
### Running the Example
|
||||
|
||||
```bash
|
||||
python main.py "Sustainable Energy Solutions"
|
||||
```
|
||||
|
||||
## Viewing Traces in LangDB
|
||||
|
||||
After running your CrewAI application, you can view detailed traces in the LangDB dashboard:
|
||||
|
||||
<Frame caption="LangDB Trace Dashboard">
|
||||
<img src="/images/langdb-2.png" alt="LangDB trace dashboard showing CrewAI workflow" />
|
||||
</Frame>
|
||||
|
||||
### What You'll See
|
||||
|
||||
- **Agent Interactions**: Complete flow of agent conversations and task handoffs
|
||||
- **Tool Usage**: Which tools were called, their inputs, and outputs
|
||||
- **Model Calls**: Detailed LLM interactions with prompts image.pngand responses
|
||||
- **Performance Metrics**: Latency, token usage, and cost tracking
|
||||
- **Execution Timeline**: Step-by-step view of the entire workflow
|
||||
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
- **No traces appearing**: Ensure `init()` is called before any CrewAI imports
|
||||
- **Authentication errors**: Verify your LangDB API key and project ID
|
||||
|
||||
|
||||
## Resources
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="LangDB Documentation" icon="book" href="https://docs.langdb.ai">
|
||||
Official LangDB documentation and guides
|
||||
</Card>
|
||||
<Card title="LangDB Guides" icon="graduation-cap" href="https://docs.langdb.ai/guides">
|
||||
Step-by-step tutorials for building AI agents
|
||||
</Card>
|
||||
<Card title="GitHub Examples" icon="github" href="https://github.com/langdb/langdb-samples/tree/main/examples/crewai" >
|
||||
Complete CrewAI integration examples
|
||||
</Card>
|
||||
<Card title="LangDB Dashboard" icon="chart-line" href="https://app.langdb.ai">
|
||||
Access your traces and analytics
|
||||
</Card>
|
||||
<Card title="Model Catalog" icon="list" href="https://app.langdb.ai/models">
|
||||
Browse 350+ available language models
|
||||
</Card>
|
||||
<Card title="Enterprise Features" icon="building" href="https://docs.langdb.ai/enterprise">
|
||||
Self-hosted options and enterprise capabilities
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## Next Steps
|
||||
|
||||
This guide covered the basics of integrating LangDB AI Gateway with CrewAI. To further enhance your AI workflows, explore:
|
||||
|
||||
- **Virtual Models**: Create custom model configurations with routing strategies
|
||||
- **Guardrails & Safety**: Implement content filtering and compliance controls
|
||||
- **Production Deployment**: Configure fallbacks, retries, and load balancing
|
||||
|
||||
For more advanced features and use cases, visit the [LangDB Documentation](https://docs.langdb.ai) or explore the [Model Catalog](https://app.langdb.ai/models) to discover all available models.
|
||||
@@ -1,231 +0,0 @@
|
||||
---
|
||||
title: "Maxim Integration"
|
||||
description: "Start Agent monitoring, evaluation, and observability"
|
||||
icon: "infinity"
|
||||
---
|
||||
|
||||
# Maxim Overview
|
||||
|
||||
Maxim AI provides comprehensive agent monitoring, evaluation, and observability for your CrewAI applications. With Maxim's one-line integration, you can easily trace and analyse agent interactions, performance metrics, and more.
|
||||
|
||||
## Features
|
||||
|
||||
### Prompt Management
|
||||
|
||||
Maxim's Prompt Management capabilities enable you to create, organize, and optimize prompts for your CrewAI agents. Rather than hardcoding instructions, leverage Maxim’s SDK to dynamically retrieve and apply version-controlled prompts.
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Prompt Playground">
|
||||
Create, refine, experiment and deploy your prompts via the playground. Organize of your prompts using folders and versions, experimenting with the real world cases by linking tools and context, and deploying based on custom logic.
|
||||
|
||||
Easily experiment across models by [**configuring models**](https://www.getmaxim.ai/docs/introduction/quickstart/setting-up-workspace#add-model-api-keys) and selecting the relevant model from the dropdown at the top of the prompt playground.
|
||||
|
||||
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_playground.png'> </img>
|
||||
</Tab>
|
||||
<Tab title="Prompt Versions">
|
||||
As teams build their AI applications, a big part of experimentation is iterating on the prompt structure. In order to collaborate effectively and organize your changes clearly, Maxim allows prompt versioning and comparison runs across versions.
|
||||
|
||||
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_versions.png'> </img>
|
||||
</Tab>
|
||||
<Tab title="Prompt Comparisons">
|
||||
Iterating on Prompts as you evolve your AI application would need experiments across models, prompt structures, etc. In order to compare versions and make informed decisions about changes, the comparison playground allows a side by side view of results.
|
||||
|
||||
## **Why use Prompt comparison?**
|
||||
|
||||
Prompt comparison combines multiple single Prompts into one view, enabling a streamlined approach for various workflows:
|
||||
|
||||
1. **Model comparison**: Evaluate the performance of different models on the same Prompt.
|
||||
2. **Prompt optimization**: Compare different versions of a Prompt to identify the most effective formulation.
|
||||
3. **Cross-Model consistency**: Ensure consistent outputs across various models for the same Prompt.
|
||||
4. **Performance benchmarking**: Analyze metrics like latency, cost, and token count across different models and Prompts.
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
### Observability & Evals
|
||||
|
||||
Maxim AI provides comprehensive observability & evaluation for your CrewAI agents, helping you understand exactly what's happening during each execution.
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Agent Tracing">
|
||||
Track your agent’s complete lifecycle, including tool calls, agent trajectories, and decision flows effortlessly.
|
||||
|
||||
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_agent_tracking.png'> </img>
|
||||
</Tab>
|
||||
<Tab title="Analytics + Evals">
|
||||
Run detailed evaluations on full traces or individual nodes with support for:
|
||||
|
||||
- Multi-step interactions and granular trace analysis
|
||||
- Session Level Evaluations
|
||||
- Simulations for real-world testing
|
||||
|
||||
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_trace_eval.png'> </img>
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Auto Evals on Logs" icon="e" href="https://www.getmaxim.ai/docs/observe/how-to/evaluate-logs/auto-evaluation">
|
||||
<p>
|
||||
Evaluate captured logs automatically from the UI based on filters and sampling
|
||||
|
||||
</p>
|
||||
</Card>
|
||||
<Card title="Human Evals on Logs" icon="hand" href="https://www.getmaxim.ai/docs/observe/how-to/evaluate-logs/human-evaluation">
|
||||
<p>
|
||||
Use human evaluation or rating to assess the quality of your logs and evaluate them.
|
||||
|
||||
</p>
|
||||
</Card>
|
||||
<Card title="Node Level Evals" icon="road" href="https://www.getmaxim.ai/docs/observe/how-to/evaluate-logs/node-level-evaluation">
|
||||
<p>
|
||||
Evaluate any component of your trace or log to gain insights into your agent’s behavior.
|
||||
|
||||
</p>
|
||||
</Card>
|
||||
</CardGroup>
|
||||
---
|
||||
</Tab>
|
||||
<Tab title="Alerting">
|
||||
Set thresholds on **error**, **cost, token usage, user feedback, latency** and get real-time alerts via Slack or PagerDuty.
|
||||
|
||||
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_alerts_1.png'> </img>
|
||||
</Tab>
|
||||
<Tab title="Dashboards">
|
||||
Visualize Traces over time, usage metrics, latency & error rates with ease.
|
||||
|
||||
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_dashboard_1.png'> </img>
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Prerequisites
|
||||
|
||||
|
||||
- Python version \>=3.10
|
||||
- A Maxim account ([sign up here](https://getmaxim.ai/))
|
||||
- Generate Maxim API Key
|
||||
- A CrewAI project
|
||||
|
||||
### Installation
|
||||
|
||||
Install the Maxim SDK via pip:
|
||||
|
||||
```python
|
||||
pip install maxim-py
|
||||
```
|
||||
|
||||
Or add it to your `requirements.txt`:
|
||||
|
||||
```
|
||||
maxim-py
|
||||
```
|
||||
### Basic Setup
|
||||
|
||||
### 1. Set up environment variables
|
||||
|
||||
```python
|
||||
### Environment Variables Setup
|
||||
|
||||
# Create a `.env` file in your project root:
|
||||
|
||||
# Maxim API Configuration
|
||||
MAXIM_API_KEY=your_api_key_here
|
||||
MAXIM_LOG_REPO_ID=your_repo_id_here
|
||||
```
|
||||
|
||||
### 2. Import the required packages
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
from maxim import Maxim
|
||||
from maxim.logger.crewai import instrument_crewai
|
||||
```
|
||||
|
||||
### 3. Initialise Maxim with your API key
|
||||
|
||||
|
||||
```python {8}
|
||||
# Instrument CrewAI with just one line
|
||||
instrument_crewai(Maxim().logger())
|
||||
```
|
||||
|
||||
### 4. Create and run your CrewAI application as usual
|
||||
|
||||
```python
|
||||
# Create your agent
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Uncover cutting-edge developments in AI',
|
||||
backstory="You are an expert researcher at a tech think tank...",
|
||||
verbose=True,
|
||||
llm=llm
|
||||
)
|
||||
|
||||
# Define the task
|
||||
research_task = Task(
|
||||
description="Research the latest AI advancements...",
|
||||
expected_output="",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Configure and run the crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
try:
|
||||
result = crew.kickoff()
|
||||
finally:
|
||||
maxim.cleanup() # Ensure cleanup happens even if errors occur
|
||||
```
|
||||
|
||||
|
||||
That's it\! All your CrewAI agent interactions will now be logged and available in your Maxim dashboard.
|
||||
|
||||
Check this Google Colab Notebook for a quick reference - [Notebook](https://colab.research.google.com/drive/1ZKIZWsmgQQ46n8TH9zLsT1negKkJA6K8?usp=sharing)
|
||||
|
||||
## Viewing Your Traces
|
||||
|
||||
After running your CrewAI application:
|
||||
|
||||
1. Log in to your [Maxim Dashboard](https://app.getmaxim.ai/login)
|
||||
2. Navigate to your repository
|
||||
3. View detailed agent traces, including:
|
||||
- Agent conversations
|
||||
- Tool usage patterns
|
||||
- Performance metrics
|
||||
- Cost analytics
|
||||
|
||||
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/crewai_traces.gif'> </img>
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
- **No traces appearing**: Ensure your API key and repository ID are correct
|
||||
- Ensure you've **`called instrument_crewai()`** **_before_** running your crew. This initializes logging hooks correctly.
|
||||
- Set `debug=True` in your `instrument_crewai()` call to surface any internal errors:
|
||||
|
||||
```python
|
||||
instrument_crewai(logger, debug=True)
|
||||
```
|
||||
- Configure your agents with `verbose=True` to capture detailed logs:
|
||||
|
||||
```python
|
||||
agent = CrewAgent(..., verbose=True)
|
||||
```
|
||||
- Double-check that `instrument_crewai()` is called **before** creating or executing agents. This might be obvious, but it's a common oversight.
|
||||
|
||||
## Resources
|
||||
|
||||
<CardGroup cols="3">
|
||||
<Card title="CrewAI Docs" icon="book" href="https://docs.crewai.com/">
|
||||
Official CrewAI documentation
|
||||
</Card>
|
||||
<Card title="Maxim Docs" icon="book" href="https://getmaxim.ai/docs">
|
||||
Official Maxim documentation
|
||||
</Card>
|
||||
<Card title="Maxim Github" icon="github" href="https://github.com/maximhq">
|
||||
Maxim Github
|
||||
</Card>
|
||||
</CardGroup>
|
||||
@@ -1,134 +0,0 @@
|
||||
---
|
||||
title: Neatlogs Integration
|
||||
description: Understand, debug, and share your CrewAI agent runs
|
||||
icon: magnifying-glass-chart
|
||||
---
|
||||
|
||||
# Introduction
|
||||
|
||||
Neatlogs helps you **see what your agent did**, **why**, and **share it**.
|
||||
|
||||
It captures every step: thoughts, tool calls, responses, evaluations. No raw logs. Just clear, structured traces. Great for debugging and collaboration.
|
||||
|
||||
## Why use Neatlogs?
|
||||
|
||||
CrewAI agents use multiple tools and reasoning steps. When something goes wrong, you need context — not just errors.
|
||||
|
||||
Neatlogs lets you:
|
||||
|
||||
- Follow the full decision path
|
||||
- Add feedback directly on steps
|
||||
- Chat with the trace using AI assistant
|
||||
- Share runs publicly for feedback
|
||||
- Turn insights into tasks
|
||||
|
||||
All in one place.
|
||||
|
||||
Manage your traces effortlessly
|
||||
|
||||

|
||||

|
||||
|
||||
The best UX to view a CrewAI trace. Post comments anywhere you want. Use AI to debug.
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
## Core Features
|
||||
|
||||
- **Trace Viewer**: Track thoughts, tools, and decisions in sequence
|
||||
- **Inline Comments**: Tag teammates on any trace step
|
||||
- **Feedback & Evaluation**: Mark outputs as correct or incorrect
|
||||
- **Error Highlighting**: Automatic flagging of API/tool failures
|
||||
- **Task Conversion**: Convert comments into assigned tasks
|
||||
- **Ask the Trace (AI)**: Chat with your trace using Neatlogs AI bot
|
||||
- **Public Sharing**: Publish trace links to your community
|
||||
|
||||
## Quick Setup with CrewAI
|
||||
|
||||
<Steps>
|
||||
<Step title="Sign Up & Get API Key">
|
||||
Visit [neatlogs.com](https://neatlogs.com/?utm_source=crewAI-docs), create a project, copy the API key.
|
||||
</Step>
|
||||
<Step title="Install SDK">
|
||||
```bash
|
||||
pip install neatlogs
|
||||
```
|
||||
(Latest version 0.8.0, Python 3.8+; MIT license)
|
||||
</Step>
|
||||
<Step title="Initialize Neatlogs">
|
||||
Before starting Crew agents, add:
|
||||
|
||||
```python
|
||||
import neatlogs
|
||||
neatlogs.init("YOUR_PROJECT_API_KEY")
|
||||
```
|
||||
|
||||
Agents run as usual. Neatlogs captures everything automatically.
|
||||
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
|
||||
|
||||
## Under the Hood
|
||||
|
||||
According to GitHub, Neatlogs:
|
||||
|
||||
- Captures thoughts, tool calls, responses, errors, and token stats
|
||||
- Supports AI-powered task generation and robust evaluation workflows
|
||||
|
||||
All with just two lines of code.
|
||||
|
||||
|
||||
|
||||
## Watch It Work
|
||||
|
||||
### 🔍 Full Demo (4 min)
|
||||
|
||||
<iframe
|
||||
width="100%"
|
||||
height="315"
|
||||
src="https://www.youtube.com/embed/8KDme9T2I7Q?si=b8oHteaBwFNs_Duk"
|
||||
title="YouTube video player"
|
||||
frameBorder="0"
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
||||
allowFullScreen
|
||||
></iframe>
|
||||
|
||||
### ⚙️ CrewAI Integration (30 s)
|
||||
|
||||
<iframe
|
||||
className="w-full aspect-video rounded-xl"
|
||||
src="https://www.loom.com/embed/9c78b552af43452bb3e4783cb8d91230?sid=e9d7d370-a91a-49b0-809e-2f375d9e801d"
|
||||
title="Loom video player"
|
||||
frameBorder="0"
|
||||
allowFullScreen
|
||||
></iframe>
|
||||
|
||||
|
||||
|
||||
## Links & Support
|
||||
|
||||
- 📘 [Neatlogs Docs](https://docs.neatlogs.com/)
|
||||
- 🔐 [Dashboard & API Key](https://app.neatlogs.com/)
|
||||
- 🐦 [Follow on Twitter](https://twitter.com/neatlogs)
|
||||
- 📧 Contact: hello@neatlogs.com
|
||||
- 🛠 [GitHub SDK](https://github.com/NeatLogs/neatlogs)
|
||||
|
||||
|
||||
|
||||
## TL;DR
|
||||
|
||||
With just:
|
||||
|
||||
```bash
|
||||
pip install neatlogs
|
||||
|
||||
import neatlogs
|
||||
neatlogs.init("YOUR_API_KEY")
|
||||
|
||||
You can now capture, understand, share, and act on your CrewAI agent runs in seconds.
|
||||
No setup overhead. Full trace transparency. Full team collaboration.
|
||||
```
|
||||
@@ -1,146 +0,0 @@
|
||||
---
|
||||
title: TrueFoundry Integration
|
||||
icon: chart-line
|
||||
---
|
||||
|
||||
TrueFoundry provides an enterprise-ready [AI Gateway](https://www.truefoundry.com/ai-gateway) which can integrate with agentic frameworks like CrewAI and provides governance and observability for your AI Applications. TrueFoundry AI Gateway serves as a unified interface for LLM access, providing:
|
||||
|
||||
- **Unified API Access**: Connect to 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) through one API
|
||||
- **Low Latency**: Sub-3ms internal latency with intelligent routing and load balancing
|
||||
- **Enterprise Security**: SOC 2, HIPAA, GDPR compliance with RBAC and audit logging
|
||||
- **Quota and cost management**: Token-based quotas, rate limiting, and comprehensive usage tracking
|
||||
- **Observability**: Full request/response logging, metrics, and traces with customizable retention
|
||||
|
||||
## How TrueFoundry Integrates with CrewAI
|
||||
|
||||
|
||||
### Installation & Setup
|
||||
|
||||
<Steps>
|
||||
<Step title="Install CrewAI">
|
||||
```bash
|
||||
pip install crewai
|
||||
```
|
||||
</Step>
|
||||
|
||||
<Step title="Get TrueFoundry Access Token">
|
||||
1. Sign up for a [TrueFoundry account](https://www.truefoundry.com/register)
|
||||
2. Follow the steps here in [Quick start](https://docs.truefoundry.com/gateway/quick-start)
|
||||
</Step>
|
||||
|
||||
<Step title="Configure CrewAI with TrueFoundry">
|
||||

|
||||
|
||||
```python
|
||||
from crewai import LLM
|
||||
|
||||
# Create an LLM instance with TrueFoundry AI Gateway
|
||||
truefoundry_llm = LLM(
|
||||
model="openai-main/gpt-4o", # Similarly, you can call any model from any provider
|
||||
base_url="your_truefoundry_gateway_base_url",
|
||||
api_key="your_truefoundry_api_key"
|
||||
)
|
||||
|
||||
# Use in your CrewAI agents
|
||||
from crewai import Agent
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
llm=truefoundry_llm,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Complete CrewAI Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew, LLM
|
||||
|
||||
# Configure LLM with TrueFoundry
|
||||
llm = LLM(
|
||||
model="openai-main/gpt-4o",
|
||||
base_url="your_truefoundry_gateway_base_url",
|
||||
api_key="your_truefoundry_api_key"
|
||||
)
|
||||
|
||||
# Create agents
|
||||
researcher = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Conduct detailed market research',
|
||||
backstory='Expert market analyst with attention to detail',
|
||||
llm=llm,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role='Content Writer',
|
||||
goal='Create comprehensive reports',
|
||||
backstory='Experienced technical writer',
|
||||
llm=llm,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create tasks
|
||||
research_task = Task(
|
||||
description='Research AI market trends for 2024',
|
||||
agent=researcher,
|
||||
expected_output='Comprehensive research summary'
|
||||
)
|
||||
|
||||
writing_task = Task(
|
||||
description='Create a market research report',
|
||||
agent=writer,
|
||||
expected_output='Well-structured report with insights',
|
||||
context=[research_task]
|
||||
)
|
||||
|
||||
# Create and execute crew
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research_task, writing_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Observability and Governance
|
||||
|
||||
Monitor your CrewAI agents through TrueFoundry's metrics tab:
|
||||

|
||||
|
||||
With Truefoundry's AI gateway, you can monitor and analyze:
|
||||
|
||||
- **Performance Metrics**: Track key latency metrics like Request Latency, Time to First Token (TTFS), and Inter-Token Latency (ITL) with P99, P90, and P50 percentiles
|
||||
- **Cost and Token Usage**: Gain visibility into your application's costs with detailed breakdowns of input/output tokens and the associated expenses for each model
|
||||
- **Usage Patterns**: Understand how your application is being used with detailed analytics on user activity, model distribution, and team-based usage
|
||||
- **Rate limit and Load balancing**: You can set up rate limiting, load balancing and fallback for your models
|
||||
|
||||
## Tracing
|
||||
|
||||
For a more detailed understanding on tracing, please see [getting-started-tracing](https://docs.truefoundry.com/docs/tracing/tracing-getting-started).For tracing, you can add the Traceloop SDK:
|
||||
For tracing, you can add the Traceloop SDK:
|
||||
|
||||
```bash
|
||||
pip install traceloop-sdk
|
||||
```
|
||||
|
||||
```python
|
||||
from traceloop.sdk import Traceloop
|
||||
|
||||
# Initialize enhanced tracing
|
||||
Traceloop.init(
|
||||
api_endpoint="https://your-truefoundry-endpoint/api/tracing",
|
||||
headers={
|
||||
"Authorization": f"Bearer {your_truefoundry_pat_token}",
|
||||
"TFY-Tracing-Project": "your_project_name",
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
This provides additional trace correlation across your entire CrewAI workflow.
|
||||

|
||||
@@ -1,58 +0,0 @@
|
||||
---
|
||||
title: Zapier Actions Tool
|
||||
description: The `ZapierActionsAdapter` exposes Zapier actions as CrewAI tools for automation.
|
||||
icon: bolt
|
||||
---
|
||||
|
||||
# `ZapierActionsAdapter`
|
||||
|
||||
## Description
|
||||
|
||||
Use the Zapier adapter to list and call Zapier actions as CrewAI tools. This enables agents to trigger automations across thousands of apps.
|
||||
|
||||
## Installation
|
||||
|
||||
This adapter is included with `crewai-tools`. No extra install required.
|
||||
|
||||
## Environment Variables
|
||||
|
||||
- `ZAPIER_API_KEY` (required): Zapier API key. Get one from the Zapier Actions dashboard at https://actions.zapier.com/ (create an account, then generate an API key). You can also pass `zapier_api_key` directly when constructing the adapter.
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools.adapters.zapier_adapter import ZapierActionsAdapter
|
||||
|
||||
adapter = ZapierActionsAdapter(api_key="your_zapier_api_key")
|
||||
tools = adapter.tools()
|
||||
|
||||
agent = Agent(
|
||||
role="Automator",
|
||||
goal="Execute Zapier actions",
|
||||
backstory="Automation specialist",
|
||||
tools=tools,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Create a new Google Sheet and add a row using Zapier actions",
|
||||
expected_output="Confirmation with created resource IDs",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes & limits
|
||||
|
||||
- The adapter lists available actions for your key and creates `BaseTool` wrappers dynamically.
|
||||
- Handle action‑specific required fields in your task instructions or tool call.
|
||||
- Rate limits depend on your Zapier plan; see the Zapier Actions docs.
|
||||
|
||||
## Notes
|
||||
|
||||
- The adapter fetches available actions and generates `BaseTool` wrappers dynamically.
|
||||
|
||||
|
||||
@@ -1,168 +0,0 @@
|
||||
---
|
||||
title: MongoDB Vector Search Tool
|
||||
description: The `MongoDBVectorSearchTool` performs vector search on MongoDB Atlas with optional indexing helpers.
|
||||
icon: "leaf"
|
||||
---
|
||||
|
||||
# `MongoDBVectorSearchTool`
|
||||
|
||||
## Description
|
||||
|
||||
Perform vector similarity queries on MongoDB Atlas collections. Supports index creation helpers and bulk insert of embedded texts.
|
||||
|
||||
MongoDB Atlas supports native vector search. Learn more:
|
||||
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/
|
||||
|
||||
## Installation
|
||||
|
||||
Install with the MongoDB extra:
|
||||
|
||||
```shell
|
||||
pip install crewai-tools[mongodb]
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```shell
|
||||
uv add crewai-tools --extra mongodb
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### Initialization
|
||||
|
||||
- `connection_string` (str, required)
|
||||
- `database_name` (str, required)
|
||||
- `collection_name` (str, required)
|
||||
- `vector_index_name` (str, default `vector_index`)
|
||||
- `text_key` (str, default `text`)
|
||||
- `embedding_key` (str, default `embedding`)
|
||||
- `dimensions` (int, default `1536`)
|
||||
|
||||
### Run Parameters
|
||||
|
||||
- `query` (str, required): Natural language query to embed and search.
|
||||
|
||||
## Quick start
|
||||
|
||||
```python Code
|
||||
from crewai_tools import MongoDBVectorSearchTool
|
||||
|
||||
tool = MongoDBVectorSearchTool(
|
||||
connection_string="mongodb+srv://...",
|
||||
database_name="mydb",
|
||||
collection_name="docs",
|
||||
)
|
||||
|
||||
print(tool.run(query="how to create vector index"))
|
||||
```
|
||||
|
||||
## Index creation helpers
|
||||
|
||||
Use `create_vector_search_index(...)` to provision an Atlas Vector Search index with the correct dimensions and similarity.
|
||||
|
||||
## Common issues
|
||||
|
||||
- Authentication failures: ensure your Atlas IP Access List allows your runner and the connection string includes credentials.
|
||||
- Index not found: create the vector index first; name must match `vector_index_name`.
|
||||
- Dimensions mismatch: align embedding model dimensions with `dimensions`.
|
||||
|
||||
## More examples
|
||||
|
||||
### Basic initialization
|
||||
|
||||
```python Code
|
||||
from crewai_tools import MongoDBVectorSearchTool
|
||||
|
||||
tool = MongoDBVectorSearchTool(
|
||||
database_name="example_database",
|
||||
collection_name="example_collection",
|
||||
connection_string="<your_mongodb_connection_string>",
|
||||
)
|
||||
```
|
||||
|
||||
### Custom query configuration
|
||||
|
||||
```python Code
|
||||
from crewai_tools import MongoDBVectorSearchConfig, MongoDBVectorSearchTool
|
||||
|
||||
query_config = MongoDBVectorSearchConfig(limit=10, oversampling_factor=2)
|
||||
tool = MongoDBVectorSearchTool(
|
||||
database_name="example_database",
|
||||
collection_name="example_collection",
|
||||
connection_string="<your_mongodb_connection_string>",
|
||||
query_config=query_config,
|
||||
vector_index_name="my_vector_index",
|
||||
)
|
||||
|
||||
rag_agent = Agent(
|
||||
name="rag_agent",
|
||||
role="You are a helpful assistant that can answer questions with the help of the MongoDBVectorSearchTool.",
|
||||
goal="...",
|
||||
backstory="...",
|
||||
tools=[tool],
|
||||
)
|
||||
```
|
||||
|
||||
### Preloading the database and creating the index
|
||||
|
||||
```python Code
|
||||
import os
|
||||
from crewai_tools import MongoDBVectorSearchTool
|
||||
|
||||
tool = MongoDBVectorSearchTool(
|
||||
database_name="example_database",
|
||||
collection_name="example_collection",
|
||||
connection_string="<your_mongodb_connection_string>",
|
||||
)
|
||||
|
||||
# Load text content from a local folder and add to MongoDB
|
||||
texts = []
|
||||
for fname in os.listdir("knowledge"):
|
||||
path = os.path.join("knowledge", fname)
|
||||
if os.path.isfile(path):
|
||||
with open(path, "r", encoding="utf-8") as f:
|
||||
texts.append(f.read())
|
||||
|
||||
tool.add_texts(texts)
|
||||
|
||||
# Create the Atlas Vector Search index (e.g., 3072 dims for text-embedding-3-large)
|
||||
tool.create_vector_search_index(dimensions=3072)
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import MongoDBVectorSearchTool
|
||||
|
||||
tool = MongoDBVectorSearchTool(
|
||||
connection_string="mongodb+srv://...",
|
||||
database_name="mydb",
|
||||
collection_name="docs",
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role="RAG Agent",
|
||||
goal="Answer using MongoDB vector search",
|
||||
backstory="Knowledge retrieval specialist",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Find relevant content for 'indexing guidance'",
|
||||
expected_output="A concise answer citing the most relevant matches",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
|
||||
@@ -1,61 +0,0 @@
|
||||
---
|
||||
title: SingleStore Search Tool
|
||||
description: The `SingleStoreSearchTool` safely executes SELECT/SHOW queries on SingleStore with pooling.
|
||||
icon: circle
|
||||
---
|
||||
|
||||
# `SingleStoreSearchTool`
|
||||
|
||||
## Description
|
||||
|
||||
Execute read‑only queries (`SELECT`/`SHOW`) against SingleStore with connection pooling and input validation.
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
uv add crewai-tools[singlestore]
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
Variables like `SINGLESTOREDB_HOST`, `SINGLESTOREDB_USER`, `SINGLESTOREDB_PASSWORD`, etc., can be used, or `SINGLESTOREDB_URL` as a single DSN.
|
||||
|
||||
Generate the API key from the SingleStore dashboard, [docs here](https://docs.singlestore.com/cloud/reference/management-api/#generate-an-api-key).
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SingleStoreSearchTool
|
||||
|
||||
tool = SingleStoreSearchTool(
|
||||
tables=["products"],
|
||||
host="host",
|
||||
user="user",
|
||||
password="pass",
|
||||
database="db",
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role="Analyst",
|
||||
goal="Query SingleStore",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="List 5 products",
|
||||
expected_output="5 rows as JSON/text",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
|
||||
@@ -1,89 +0,0 @@
|
||||
---
|
||||
title: OCR Tool
|
||||
description: The `OCRTool` extracts text from local images or image URLs using an LLM with vision.
|
||||
icon: image
|
||||
---
|
||||
|
||||
# `OCRTool`
|
||||
|
||||
## Description
|
||||
|
||||
Extract text from images (local path or URL). Uses a vision‑capable LLM via CrewAI’s LLM interface.
|
||||
|
||||
## Installation
|
||||
|
||||
No extra install beyond `crewai-tools`. Ensure your selected LLM supports vision.
|
||||
|
||||
## Parameters
|
||||
|
||||
### Run Parameters
|
||||
|
||||
- `image_path_url` (str, required): Local image path or HTTP(S) URL.
|
||||
|
||||
## Examples
|
||||
|
||||
### Direct usage
|
||||
|
||||
```python Code
|
||||
from crewai_tools import OCRTool
|
||||
|
||||
print(OCRTool().run(image_path_url="/tmp/receipt.png"))
|
||||
```
|
||||
|
||||
### With an agent
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import OCRTool
|
||||
|
||||
ocr = OCRTool()
|
||||
|
||||
agent = Agent(
|
||||
role="OCR",
|
||||
goal="Extract text",
|
||||
tools=[ocr],
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Extract text from https://example.com/invoice.jpg",
|
||||
expected_output="All detected text in plain text",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Ensure the selected LLM supports image inputs.
|
||||
- For large images, consider downscaling to reduce token usage.
|
||||
- You can pass a specific LLM instance to the tool (e.g., `LLM(model="gpt-4o")`) if needed, matching the README guidance.
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import OCRTool
|
||||
|
||||
tool = OCRTool()
|
||||
|
||||
agent = Agent(
|
||||
role="OCR Specialist",
|
||||
goal="Extract text from images",
|
||||
backstory="Vision‑enabled analyst",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Extract text from https://example.com/receipt.png",
|
||||
expected_output="All detected text in plain text",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
|
||||
@@ -1,76 +0,0 @@
|
||||
---
|
||||
title: PDF Text Writing Tool
|
||||
description: The `PDFTextWritingTool` writes text to specific positions in a PDF, supporting custom fonts.
|
||||
icon: file-pdf
|
||||
---
|
||||
|
||||
# `PDFTextWritingTool`
|
||||
|
||||
## Description
|
||||
|
||||
Write text at precise coordinates on a PDF page, optionally embedding a custom TrueType font.
|
||||
|
||||
## Parameters
|
||||
|
||||
### Run Parameters
|
||||
|
||||
- `pdf_path` (str, required): Path to the input PDF.
|
||||
- `text` (str, required): Text to add.
|
||||
- `position` (tuple[int, int], required): `(x, y)` coordinates.
|
||||
- `font_size` (int, default `12`)
|
||||
- `font_color` (str, default `"0 0 0 rg"`)
|
||||
- `font_name` (str, default `"F1"`)
|
||||
- `font_file` (str, optional): Path to `.ttf` file.
|
||||
- `page_number` (int, default `0`)
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import PDFTextWritingTool
|
||||
|
||||
tool = PDFTextWritingTool()
|
||||
|
||||
agent = Agent(
|
||||
role="PDF Editor",
|
||||
goal="Annotate PDFs",
|
||||
backstory="Documentation specialist",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Write 'CONFIDENTIAL' at (72, 720) on page 1 of ./sample.pdf",
|
||||
expected_output="Confirmation message",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Direct usage
|
||||
|
||||
```python Code
|
||||
from crewai_tools import PDFTextWritingTool
|
||||
|
||||
PDFTextWritingTool().run(
|
||||
pdf_path="./input.pdf",
|
||||
text="CONFIDENTIAL",
|
||||
position=(72, 720),
|
||||
font_size=18,
|
||||
page_number=0,
|
||||
)
|
||||
```
|
||||
|
||||
## Tips
|
||||
|
||||
- Coordinate origin is the bottom‑left corner.
|
||||
- If using a custom font (`font_file`), ensure it is a valid `.ttf`.
|
||||
|
||||
|
||||
@@ -1,112 +0,0 @@
|
||||
---
|
||||
title: Arxiv Paper Tool
|
||||
description: The `ArxivPaperTool` searches arXiv for papers matching a query and optionally downloads PDFs.
|
||||
icon: box-archive
|
||||
---
|
||||
|
||||
# `ArxivPaperTool`
|
||||
|
||||
## Description
|
||||
|
||||
The `ArxivPaperTool` queries the arXiv API for academic papers and returns compact, readable results. It can also optionally download PDFs to disk.
|
||||
|
||||
## Installation
|
||||
|
||||
This tool has no special installation beyond `crewai-tools`.
|
||||
|
||||
```shell
|
||||
uv add crewai-tools
|
||||
```
|
||||
|
||||
No API key is required. This tool uses the public arXiv Atom API.
|
||||
|
||||
## Steps to Get Started
|
||||
|
||||
1. Initialize the tool.
|
||||
2. Provide a `search_query` (e.g., "transformer neural network").
|
||||
3. Optionally set `max_results` (1–100) and enable PDF downloads in the constructor.
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import ArxivPaperTool
|
||||
|
||||
tool = ArxivPaperTool(
|
||||
download_pdfs=False,
|
||||
save_dir="./arxiv_pdfs",
|
||||
use_title_as_filename=True,
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role="Researcher",
|
||||
goal="Find relevant arXiv papers",
|
||||
backstory="Expert at literature discovery",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Search arXiv for 'transformer neural network' and list top 5 results.",
|
||||
expected_output="A concise list of 5 relevant papers with titles, links, and summaries.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Direct usage (without Agent)
|
||||
|
||||
```python Code
|
||||
from crewai_tools import ArxivPaperTool
|
||||
|
||||
tool = ArxivPaperTool(
|
||||
download_pdfs=True,
|
||||
save_dir="./arxiv_pdfs",
|
||||
)
|
||||
print(tool.run(search_query="mixture of experts", max_results=3))
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### Initialization Parameters
|
||||
|
||||
- `download_pdfs` (bool, default `False`): Whether to download PDFs.
|
||||
- `save_dir` (str, default `./arxiv_pdfs`): Directory to save PDFs.
|
||||
- `use_title_as_filename` (bool, default `False`): Use paper titles for filenames.
|
||||
|
||||
### Run Parameters
|
||||
|
||||
- `search_query` (str, required): The arXiv search query.
|
||||
- `max_results` (int, default `5`, range 1–100): Number of results.
|
||||
|
||||
## Output format
|
||||
|
||||
The tool returns a human‑readable list of papers with:
|
||||
- Title
|
||||
- Link (abs page)
|
||||
- Snippet/summary (truncated)
|
||||
|
||||
When `download_pdfs=True`, PDFs are saved to disk and the summary mentions saved files.
|
||||
|
||||
## Usage Notes
|
||||
|
||||
- The tool returns formatted text with key metadata and links.
|
||||
- When `download_pdfs=True`, PDFs will be stored in `save_dir`.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
- If you receive a network timeout, re‑try or reduce `max_results`.
|
||||
- Invalid XML errors indicate an arXiv response parse issue; try a simpler query.
|
||||
- File system errors (e.g., permission denied) may occur when saving PDFs; ensure `save_dir` is writable.
|
||||
|
||||
## Related links
|
||||
|
||||
- arXiv API docs: https://info.arxiv.org/help/api/index.html
|
||||
|
||||
## Error Handling
|
||||
|
||||
- Network issues, invalid XML, and OS errors are handled with informative messages.
|
||||
|
||||
|
||||
@@ -1,80 +0,0 @@
|
||||
---
|
||||
title: Databricks SQL Query Tool
|
||||
description: The `DatabricksQueryTool` executes SQL queries against Databricks workspace tables.
|
||||
icon: trowel-bricks
|
||||
---
|
||||
|
||||
# `DatabricksQueryTool`
|
||||
|
||||
## Description
|
||||
|
||||
Run SQL against Databricks workspace tables with either CLI profile or direct host/token authentication.
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
uv add crewai-tools[databricks-sdk]
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
- `DATABRICKS_CONFIG_PROFILE` or (`DATABRICKS_HOST` + `DATABRICKS_TOKEN`)
|
||||
|
||||
Create a personal access token and find host details in the Databricks workspace under User Settings → Developer.
|
||||
Docs: https://docs.databricks.com/en/dev-tools/auth/pat.html
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import DatabricksQueryTool
|
||||
|
||||
tool = DatabricksQueryTool(
|
||||
default_catalog="main",
|
||||
default_schema="default",
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role="Data Analyst",
|
||||
goal="Query Databricks",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="SELECT * FROM my_table LIMIT 10",
|
||||
expected_output="10 rows",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
)
|
||||
result = crew.kickoff()
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
- `query` (required): SQL query to execute
|
||||
- `catalog` (optional): Override default catalog
|
||||
- `db_schema` (optional): Override default schema
|
||||
- `warehouse_id` (optional): Override default SQL warehouse
|
||||
- `row_limit` (optional): Maximum rows to return (default: 1000)
|
||||
|
||||
## Defaults on initialization
|
||||
|
||||
- `default_catalog`
|
||||
- `default_schema`
|
||||
- `default_warehouse_id`
|
||||
|
||||
### Error handling & tips
|
||||
|
||||
- Authentication errors: verify `DATABRICKS_HOST` begins with `https://` and token is valid.
|
||||
- Permissions: ensure your SQL warehouse and schema are accessible by your token.
|
||||
- Limits: long‑running queries should be avoided in agent loops; add filters/limits.
|
||||
|
||||
|
||||
@@ -1,93 +0,0 @@
|
||||
---
|
||||
title: "Overview"
|
||||
description: "Perform web searches, find repositories, and research information across the internet"
|
||||
icon: "face-smile"
|
||||
---
|
||||
|
||||
These tools enable your agents to search the web, research topics, and find information across various platforms including search engines, GitHub, and YouTube.
|
||||
|
||||
## **Available Tools**
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Serper Dev Tool" icon="google" href="/en/tools/search-research/serperdevtool">
|
||||
Google search API integration for comprehensive web search capabilities.
|
||||
</Card>
|
||||
|
||||
<Card title="Brave Search Tool" icon="shield" href="/en/tools/search-research/bravesearchtool">
|
||||
Privacy-focused search with Brave's independent search index.
|
||||
</Card>
|
||||
|
||||
<Card title="Exa Search Tool" icon="magnifying-glass" href="/en/tools/search-research/exasearchtool">
|
||||
AI-powered search for finding specific and relevant content.
|
||||
</Card>
|
||||
|
||||
<Card title="LinkUp Search Tool" icon="link" href="/en/tools/search-research/linkupsearchtool">
|
||||
Real-time web search with fresh content indexing.
|
||||
</Card>
|
||||
|
||||
<Card title="GitHub Search Tool" icon="github" href="/en/tools/search-research/githubsearchtool">
|
||||
Search GitHub repositories, code, issues, and documentation.
|
||||
</Card>
|
||||
|
||||
<Card title="Website Search Tool" icon="globe" href="/en/tools/search-research/websitesearchtool">
|
||||
Search within specific websites and domains.
|
||||
</Card>
|
||||
|
||||
<Card title="Code Docs Search Tool" icon="code" href="/en/tools/search-research/codedocssearchtool">
|
||||
Search through code documentation and technical resources.
|
||||
</Card>
|
||||
|
||||
<Card title="YouTube Channel Search" icon="youtube" href="/en/tools/search-research/youtubechannelsearchtool">
|
||||
Search YouTube channels for specific content and creators.
|
||||
</Card>
|
||||
|
||||
<Card title="YouTube Video Search" icon="play" href="/en/tools/search-research/youtubevideosearchtool">
|
||||
Find and analyze YouTube videos by topic, keyword, or criteria.
|
||||
</Card>
|
||||
|
||||
<Card title="Tavily Search Tool" icon="magnifying-glass" href="/en/tools/search-research/tavilysearchtool">
|
||||
Comprehensive web search using Tavily's AI-powered search API.
|
||||
</Card>
|
||||
|
||||
<Card title="Tavily Extractor Tool" icon="file-text" href="/en/tools/search-research/tavilyextractortool">
|
||||
Extract structured content from web pages using the Tavily API.
|
||||
</Card>
|
||||
|
||||
<Card title="Arxiv Paper Tool" icon="box-archive" href="/en/tools/search-research/arxivpapertool">
|
||||
Search arXiv and optionally download PDFs.
|
||||
</Card>
|
||||
|
||||
<Card title="SerpApi Google Search" icon="search" href="/en/tools/search-research/serpapi-googlesearchtool">
|
||||
Google search via SerpApi with structured results.
|
||||
</Card>
|
||||
|
||||
<Card title="SerpApi Google Shopping" icon="cart-shopping" href="/en/tools/search-research/serpapi-googleshoppingtool">
|
||||
Google Shopping queries via SerpApi.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## **Common Use Cases**
|
||||
|
||||
- **Market Research**: Search for industry trends and competitor analysis
|
||||
- **Content Discovery**: Find relevant articles, videos, and resources
|
||||
- **Code Research**: Search repositories and documentation for solutions
|
||||
- **Lead Generation**: Research companies and individuals
|
||||
- **Academic Research**: Find scholarly articles and technical papers
|
||||
|
||||
```python
|
||||
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool, TavilySearchTool, TavilyExtractorTool
|
||||
|
||||
# Create research tools
|
||||
web_search = SerperDevTool()
|
||||
code_search = GitHubSearchTool()
|
||||
video_research = YoutubeVideoSearchTool()
|
||||
tavily_search = TavilySearchTool()
|
||||
content_extractor = TavilyExtractorTool()
|
||||
|
||||
# Add to your agent
|
||||
agent = Agent(
|
||||
role="Research Analyst",
|
||||
tools=[web_search, code_search, video_research, tavily_search, content_extractor],
|
||||
goal="Gather comprehensive information on any topic"
|
||||
)
|
||||
```
|
||||
@@ -1,65 +0,0 @@
|
||||
---
|
||||
title: SerpApi Google Search Tool
|
||||
description: The `SerpApiGoogleSearchTool` performs Google searches using the SerpApi service.
|
||||
icon: google
|
||||
---
|
||||
|
||||
# `SerpApiGoogleSearchTool`
|
||||
|
||||
## Description
|
||||
|
||||
Use the `SerpApiGoogleSearchTool` to run Google searches with SerpApi and retrieve structured results. Requires a SerpApi API key.
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
uv add crewai-tools[serpapi]
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
- `SERPAPI_API_KEY` (required): API key for SerpApi. Create one at https://serpapi.com/ (free tier available).
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerpApiGoogleSearchTool
|
||||
|
||||
tool = SerpApiGoogleSearchTool()
|
||||
|
||||
agent = Agent(
|
||||
role="Researcher",
|
||||
goal="Answer questions using Google search",
|
||||
backstory="Search specialist",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Search for the latest CrewAI releases",
|
||||
expected_output="A concise list of relevant results with titles and links",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Set `SERPAPI_API_KEY` in the environment. Create a key at https://serpapi.com/
|
||||
- See also Google Shopping via SerpApi: `/en/tools/search-research/serpapi-googleshoppingtool`
|
||||
|
||||
## Parameters
|
||||
|
||||
### Run Parameters
|
||||
|
||||
- `search_query` (str, required): The Google query.
|
||||
- `location` (str, optional): Geographic location parameter.
|
||||
|
||||
## Notes
|
||||
|
||||
- This tool wraps SerpApi and returns structured search results.
|
||||
|
||||
|
||||
@@ -1,61 +0,0 @@
|
||||
---
|
||||
title: SerpApi Google Shopping Tool
|
||||
description: The `SerpApiGoogleShoppingTool` searches Google Shopping results using SerpApi.
|
||||
icon: cart-shopping
|
||||
---
|
||||
|
||||
# `SerpApiGoogleShoppingTool`
|
||||
|
||||
## Description
|
||||
|
||||
Leverage `SerpApiGoogleShoppingTool` to query Google Shopping via SerpApi and retrieve product-oriented results.
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
uv add crewai-tools[serpapi]
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
- `SERPAPI_API_KEY` (required): API key for SerpApi. Create one at https://serpapi.com/ (free tier available).
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerpApiGoogleShoppingTool
|
||||
|
||||
tool = SerpApiGoogleShoppingTool()
|
||||
|
||||
agent = Agent(
|
||||
role="Shopping Researcher",
|
||||
goal="Find relevant products",
|
||||
backstory="Expert in product search",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Search Google Shopping for 'wireless noise-canceling headphones'",
|
||||
expected_output="Top relevant products with titles and links",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Set `SERPAPI_API_KEY` in the environment. Create a key at https://serpapi.com/
|
||||
- See also Google Web Search via SerpApi: `/en/tools/search-research/serpapi-googlesearchtool`
|
||||
|
||||
## Parameters
|
||||
|
||||
### Run Parameters
|
||||
|
||||
- `search_query` (str, required): Product search query.
|
||||
- `location` (str, optional): Geographic location parameter.
|
||||
|
||||
|
||||
@@ -1,139 +0,0 @@
|
||||
---
|
||||
title: "Tavily Extractor Tool"
|
||||
description: "Extract structured content from web pages using the Tavily API"
|
||||
icon: square-poll-horizontal
|
||||
---
|
||||
|
||||
The `TavilyExtractorTool` allows CrewAI agents to extract structured content from web pages using the Tavily API. It can process single URLs or lists of URLs and provides options for controlling the extraction depth and including images.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the `TavilyExtractorTool`, you need to install the `tavily-python` library:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]' tavily-python
|
||||
```
|
||||
|
||||
You also need to set your Tavily API key as an environment variable:
|
||||
|
||||
```bash
|
||||
export TAVILY_API_KEY='your-tavily-api-key'
|
||||
```
|
||||
|
||||
## Example Usage
|
||||
|
||||
Here's how to initialize and use the `TavilyExtractorTool` within a CrewAI agent:
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import TavilyExtractorTool
|
||||
|
||||
# Ensure TAVILY_API_KEY is set in your environment
|
||||
# os.environ["TAVILY_API_KEY"] = "YOUR_API_KEY"
|
||||
|
||||
# Initialize the tool
|
||||
tavily_tool = TavilyExtractorTool()
|
||||
|
||||
# Create an agent that uses the tool
|
||||
extractor_agent = Agent(
|
||||
role='Web Content Extractor',
|
||||
goal='Extract key information from specified web pages',
|
||||
backstory='You are an expert at extracting relevant content from websites using the Tavily API.',
|
||||
tools=[tavily_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Define a task for the agent
|
||||
extract_task = Task(
|
||||
description='Extract the main content from the URL https://example.com using basic extraction depth.',
|
||||
expected_output='A JSON string containing the extracted content from the URL.',
|
||||
agent=extractor_agent
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[extractor_agent],
|
||||
tasks=[extract_task],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
||||
The `TavilyExtractorTool` accepts the following arguments:
|
||||
|
||||
- `urls` (Union[List[str], str]): **Required**. A single URL string or a list of URL strings to extract data from.
|
||||
- `include_images` (Optional[bool]): Whether to include images in the extraction results. Defaults to `False`.
|
||||
- `extract_depth` (Literal["basic", "advanced"]): The depth of extraction. Use `"basic"` for faster, surface-level extraction or `"advanced"` for more comprehensive extraction. Defaults to `"basic"`.
|
||||
- `timeout` (int): The maximum time in seconds to wait for the extraction request to complete. Defaults to `60`.
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Multiple URLs with Advanced Extraction
|
||||
|
||||
```python
|
||||
# Example with multiple URLs and advanced extraction
|
||||
multi_extract_task = Task(
|
||||
description='Extract content from https://example.com and https://anotherexample.org using advanced extraction.',
|
||||
expected_output='A JSON string containing the extracted content from both URLs.',
|
||||
agent=extractor_agent
|
||||
)
|
||||
|
||||
# Configure the tool with custom parameters
|
||||
custom_extractor = TavilyExtractorTool(
|
||||
extract_depth='advanced',
|
||||
include_images=True,
|
||||
timeout=120
|
||||
)
|
||||
|
||||
agent_with_custom_tool = Agent(
|
||||
role="Advanced Content Extractor",
|
||||
goal="Extract comprehensive content with images",
|
||||
tools=[custom_extractor]
|
||||
)
|
||||
```
|
||||
|
||||
### Tool Parameters
|
||||
|
||||
You can customize the tool's behavior by setting parameters during initialization:
|
||||
|
||||
```python
|
||||
# Initialize with custom configuration
|
||||
extractor_tool = TavilyExtractorTool(
|
||||
extract_depth='advanced', # More comprehensive extraction
|
||||
include_images=True, # Include image results
|
||||
timeout=90 # Custom timeout
|
||||
)
|
||||
```
|
||||
|
||||
## Features
|
||||
|
||||
- **Single or Multiple URLs**: Extract content from one URL or process multiple URLs in a single request
|
||||
- **Configurable Depth**: Choose between basic (fast) and advanced (comprehensive) extraction modes
|
||||
- **Image Support**: Optionally include images in the extraction results
|
||||
- **Structured Output**: Returns well-formatted JSON containing the extracted content
|
||||
- **Error Handling**: Robust handling of network timeouts and extraction errors
|
||||
|
||||
## Response Format
|
||||
|
||||
The tool returns a JSON string representing the structured data extracted from the provided URL(s). The exact structure depends on the content of the pages and the `extract_depth` used.
|
||||
|
||||
Common response elements include:
|
||||
- **Title**: The page title
|
||||
- **Content**: Main text content of the page
|
||||
- **Images**: Image URLs and metadata (when `include_images=True`)
|
||||
- **Metadata**: Additional page information like author, description, etc.
|
||||
|
||||
## Use Cases
|
||||
|
||||
- **Content Analysis**: Extract and analyze content from competitor websites
|
||||
- **Research**: Gather structured data from multiple sources for analysis
|
||||
- **Content Migration**: Extract content from existing websites for migration
|
||||
- **Monitoring**: Regular extraction of content for change detection
|
||||
- **Data Collection**: Systematic extraction of information from web sources
|
||||
|
||||
Refer to the [Tavily API documentation](https://docs.tavily.com/docs/tavily-api/python-sdk#extract) for detailed information about the response structure and available options.
|
||||
@@ -1,124 +0,0 @@
|
||||
---
|
||||
title: "Tavily Search Tool"
|
||||
description: "Perform comprehensive web searches using the Tavily Search API"
|
||||
icon: "magnifying-glass"
|
||||
---
|
||||
|
||||
The `TavilySearchTool` provides an interface to the Tavily Search API, enabling CrewAI agents to perform comprehensive web searches. It allows for specifying search depth, topics, time ranges, included/excluded domains, and whether to include direct answers, raw content, or images in the results.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the `TavilySearchTool`, you need to install the `tavily-python` library:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]' tavily-python
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
Ensure your Tavily API key is set as an environment variable:
|
||||
|
||||
```bash
|
||||
export TAVILY_API_KEY='your_tavily_api_key'
|
||||
```
|
||||
|
||||
Get an API key at https://app.tavily.com/ (sign up, then create a key).
|
||||
|
||||
## Example Usage
|
||||
|
||||
Here's how to initialize and use the `TavilySearchTool` within a CrewAI agent:
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import TavilySearchTool
|
||||
|
||||
# Ensure the TAVILY_API_KEY environment variable is set
|
||||
# os.environ["TAVILY_API_KEY"] = "YOUR_TAVILY_API_KEY"
|
||||
|
||||
# Initialize the tool
|
||||
tavily_tool = TavilySearchTool()
|
||||
|
||||
# Create an agent that uses the tool
|
||||
researcher = Agent(
|
||||
role='Market Researcher',
|
||||
goal='Find information about the latest AI trends',
|
||||
backstory='An expert market researcher specializing in technology.',
|
||||
tools=[tavily_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create a task for the agent
|
||||
research_task = Task(
|
||||
description='Search for the top 3 AI trends in 2024.',
|
||||
expected_output='A JSON report summarizing the top 3 AI trends found.',
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Form the crew and kick it off
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
||||
The `TavilySearchTool` accepts the following arguments during initialization or when calling the `run` method:
|
||||
|
||||
- `query` (str): **Required**. The search query string.
|
||||
- `search_depth` (Literal["basic", "advanced"], optional): The depth of the search. Defaults to `"basic"`.
|
||||
- `topic` (Literal["general", "news", "finance"], optional): The topic to focus the search on. Defaults to `"general"`.
|
||||
- `time_range` (Literal["day", "week", "month", "year"], optional): The time range for the search. Defaults to `None`.
|
||||
- `days` (int, optional): The number of days to search back. Relevant if `time_range` is not set. Defaults to `7`.
|
||||
- `max_results` (int, optional): The maximum number of search results to return. Defaults to `5`.
|
||||
- `include_domains` (Sequence[str], optional): A list of domains to prioritize in the search. Defaults to `None`.
|
||||
- `exclude_domains` (Sequence[str], optional): A list of domains to exclude from the search. Defaults to `None`.
|
||||
- `include_answer` (Union[bool, Literal["basic", "advanced"]], optional): Whether to include a direct answer synthesized from the search results. Defaults to `False`.
|
||||
- `include_raw_content` (bool, optional): Whether to include the raw HTML content of the searched pages. Defaults to `False`.
|
||||
- `include_images` (bool, optional): Whether to include image results. Defaults to `False`.
|
||||
- `timeout` (int, optional): The request timeout in seconds. Defaults to `60`.
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
You can configure the tool with custom parameters:
|
||||
|
||||
```python
|
||||
# Example: Initialize with specific parameters
|
||||
custom_tavily_tool = TavilySearchTool(
|
||||
search_depth='advanced',
|
||||
max_results=10,
|
||||
include_answer=True
|
||||
)
|
||||
|
||||
# The agent will use these defaults
|
||||
agent_with_custom_tool = Agent(
|
||||
role="Advanced Researcher",
|
||||
goal="Conduct detailed research with comprehensive results",
|
||||
tools=[custom_tavily_tool]
|
||||
)
|
||||
```
|
||||
|
||||
## Features
|
||||
|
||||
- **Comprehensive Search**: Access to Tavily's powerful search index
|
||||
- **Configurable Depth**: Choose between basic and advanced search modes
|
||||
- **Topic Filtering**: Focus searches on general, news, or finance topics
|
||||
- **Time Range Control**: Limit results to specific time periods
|
||||
- **Domain Control**: Include or exclude specific domains
|
||||
- **Direct Answers**: Get synthesized answers from search results
|
||||
- **Content Filtering**: Prevent context window issues with automatic content truncation
|
||||
|
||||
## Response Format
|
||||
|
||||
The tool returns search results as a JSON string containing:
|
||||
- Search results with titles, URLs, and content snippets
|
||||
- Optional direct answers to queries
|
||||
- Optional image results
|
||||
- Optional raw HTML content (when enabled)
|
||||
|
||||
Content for each result is automatically truncated to prevent context window issues while maintaining the most relevant information.
|
||||
@@ -1,111 +0,0 @@
|
||||
---
|
||||
title: Bright Data Tools
|
||||
description: Bright Data integrations for SERP search, Web Unlocker scraping, and Dataset API.
|
||||
icon: spider
|
||||
---
|
||||
|
||||
# Bright Data Tools
|
||||
|
||||
This set of tools integrates Bright Data services for web extraction.
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
uv add crewai-tools requests aiohttp
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
- `BRIGHT_DATA_API_KEY` (required)
|
||||
- `BRIGHT_DATA_ZONE` (for SERP/Web Unlocker)
|
||||
|
||||
Create credentials at https://brightdata.com/ (sign up, then create an API token and zone).
|
||||
See their docs: https://developers.brightdata.com/
|
||||
|
||||
## Included Tools
|
||||
|
||||
- `BrightDataSearchTool`: SERP search (Google/Bing/Yandex) with geo/language/device options.
|
||||
- `BrightDataWebUnlockerTool`: Scrape pages with anti-bot bypass and rendering.
|
||||
- `BrightDataDatasetTool`: Run Dataset API jobs and fetch results.
|
||||
|
||||
## Examples
|
||||
|
||||
### SERP Search
|
||||
|
||||
```python Code
|
||||
from crewai_tools import BrightDataSearchTool
|
||||
|
||||
tool = BrightDataSearchTool(
|
||||
query="CrewAI",
|
||||
country="us",
|
||||
)
|
||||
|
||||
print(tool.run())
|
||||
```
|
||||
|
||||
### Web Unlocker
|
||||
|
||||
```python Code
|
||||
from crewai_tools import BrightDataWebUnlockerTool
|
||||
|
||||
tool = BrightDataWebUnlockerTool(
|
||||
url="https://example.com",
|
||||
format="markdown",
|
||||
)
|
||||
|
||||
print(tool.run(url="https://example.com"))
|
||||
```
|
||||
|
||||
### Dataset API
|
||||
|
||||
```python Code
|
||||
from crewai_tools import BrightDataDatasetTool
|
||||
|
||||
tool = BrightDataDatasetTool(
|
||||
dataset_type="ecommerce",
|
||||
url="https://example.com/product",
|
||||
)
|
||||
|
||||
print(tool.run())
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
- 401/403: verify `BRIGHT_DATA_API_KEY` and `BRIGHT_DATA_ZONE`.
|
||||
- Empty/blocked content: enable rendering or try a different zone.
|
||||
|
||||
## Example
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import BrightDataSearchTool
|
||||
|
||||
tool = BrightDataSearchTool(
|
||||
query="CrewAI",
|
||||
country="us",
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role="Web Researcher",
|
||||
goal="Search with Bright Data",
|
||||
backstory="Finds reliable results",
|
||||
tools=[tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Search for CrewAI and summarize top results",
|
||||
expected_output="Short summary with links",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
|
||||
@@ -1,236 +0,0 @@
|
||||
---
|
||||
title: Oxylabs Scrapers
|
||||
description: >
|
||||
Oxylabs Scrapers allow to easily access the information from the respective sources. Please see the list of available sources below:
|
||||
- `Amazon Product`
|
||||
- `Amazon Search`
|
||||
- `Google Seach`
|
||||
- `Universal`
|
||||
icon: globe
|
||||
---
|
||||
|
||||
## Installation
|
||||
|
||||
Get the credentials by creating an Oxylabs Account [here](https://oxylabs.io).
|
||||
```shell
|
||||
pip install 'crewai[tools]' oxylabs
|
||||
```
|
||||
Check [Oxylabs Documentation](https://developers.oxylabs.io/scraping-solutions/web-scraper-api/targets) to get more information about API parameters.
|
||||
|
||||
# `OxylabsAmazonProductScraperTool`
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
from crewai_tools import OxylabsAmazonProductScraperTool
|
||||
|
||||
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
|
||||
tool = OxylabsAmazonProductScraperTool()
|
||||
|
||||
result = tool.run(query="AAAAABBBBCC")
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- `query` - 10-symbol ASIN code.
|
||||
- `domain` - domain localization for Amazon.
|
||||
- `geo_location` - the _Deliver to_ location.
|
||||
- `user_agent_type` - device type and browser.
|
||||
- `render` - enables JavaScript rendering when set to `html`.
|
||||
- `callback_url` - URL to your callback endpoint.
|
||||
- `context` - Additional advanced settings and controls for specialized requirements.
|
||||
- `parse` - returns parsed data when set to true.
|
||||
- `parsing_instructions` - define your own parsing and data transformation logic that will be executed on an HTML scraping result.
|
||||
|
||||
### Advanced example
|
||||
|
||||
```python
|
||||
from crewai_tools import OxylabsAmazonProductScraperTool
|
||||
|
||||
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
|
||||
tool = OxylabsAmazonProductScraperTool(
|
||||
config={
|
||||
"domain": "com",
|
||||
"parse": True,
|
||||
"context": [
|
||||
{
|
||||
"key": "autoselect_variant",
|
||||
"value": True
|
||||
}
|
||||
]
|
||||
}
|
||||
)
|
||||
|
||||
result = tool.run(query="AAAAABBBBCC")
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
# `OxylabsAmazonSearchScraperTool`
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
from crewai_tools import OxylabsAmazonSearchScraperTool
|
||||
|
||||
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
|
||||
tool = OxylabsAmazonSearchScraperTool()
|
||||
|
||||
result = tool.run(query="headsets")
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- `query` - Amazon search term.
|
||||
- `domain` - Domain localization for Bestbuy.
|
||||
- `start_page` - starting page number.
|
||||
- `pages` - number of pages to retrieve.
|
||||
- `geo_location` - the _Deliver to_ location.
|
||||
- `user_agent_type` - device type and browser.
|
||||
- `render` - enables JavaScript rendering when set to `html`.
|
||||
- `callback_url` - URL to your callback endpoint.
|
||||
- `context` - Additional advanced settings and controls for specialized requirements.
|
||||
- `parse` - returns parsed data when set to true.
|
||||
- `parsing_instructions` - define your own parsing and data transformation logic that will be executed on an HTML scraping result.
|
||||
|
||||
### Advanced example
|
||||
|
||||
```python
|
||||
from crewai_tools import OxylabsAmazonSearchScraperTool
|
||||
|
||||
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
|
||||
tool = OxylabsAmazonSearchScraperTool(
|
||||
config={
|
||||
"domain": 'nl',
|
||||
"start_page": 2,
|
||||
"pages": 2,
|
||||
"parse": True,
|
||||
"context": [
|
||||
{'key': 'category_id', 'value': 16391693031}
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
result = tool.run(query='nirvana tshirt')
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
# `OxylabsGoogleSearchScraperTool`
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
from crewai_tools import OxylabsGoogleSearchScraperTool
|
||||
|
||||
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
|
||||
tool = OxylabsGoogleSearchScraperTool()
|
||||
|
||||
result = tool.run(query="iPhone 16")
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- `query` - search keyword.
|
||||
- `domain` - domain localization for Google.
|
||||
- `start_page` - starting page number.
|
||||
- `pages` - number of pages to retrieve.
|
||||
- `limit` - number of results to retrieve in each page.
|
||||
- `locale` - `Accept-Language` header value which changes your Google search page web interface language.
|
||||
- `geo_location` - the geographical location that the result should be adapted for. Using this parameter correctly is extremely important to get the right data.
|
||||
- `user_agent_type` - device type and browser.
|
||||
- `render` - enables JavaScript rendering when set to `html`.
|
||||
- `callback_url` - URL to your callback endpoint.
|
||||
- `context` - Additional advanced settings and controls for specialized requirements.
|
||||
- `parse` - returns parsed data when set to true.
|
||||
- `parsing_instructions` - define your own parsing and data transformation logic that will be executed on an HTML scraping result.
|
||||
|
||||
### Advanced example
|
||||
|
||||
```python
|
||||
from crewai_tools import OxylabsGoogleSearchScraperTool
|
||||
|
||||
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
|
||||
tool = OxylabsGoogleSearchScraperTool(
|
||||
config={
|
||||
"parse": True,
|
||||
"geo_location": "Paris, France",
|
||||
"user_agent_type": "tablet",
|
||||
}
|
||||
)
|
||||
|
||||
result = tool.run(query="iPhone 16")
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
# `OxylabsUniversalScraperTool`
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
from crewai_tools import OxylabsUniversalScraperTool
|
||||
|
||||
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
|
||||
tool = OxylabsUniversalScraperTool()
|
||||
|
||||
result = tool.run(url="https://ip.oxylabs.io")
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- `url` - website url to scrape.
|
||||
- `user_agent_type` - device type and browser.
|
||||
- `geo_location` - sets the proxy's geolocation to retrieve data.
|
||||
- `render` - enables JavaScript rendering when set to `html`.
|
||||
- `callback_url` - URL to your callback endpoint.
|
||||
- `context` - Additional advanced settings and controls for specialized requirements.
|
||||
- `parse` - returns parsed data when set to `true`, as long as a dedicated parser exists for the submitted URL's page type.
|
||||
- `parsing_instructions` - define your own parsing and data transformation logic that will be executed on an HTML scraping result.
|
||||
|
||||
|
||||
### Advanced example
|
||||
|
||||
```python
|
||||
from crewai_tools import OxylabsUniversalScraperTool
|
||||
|
||||
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
|
||||
tool = OxylabsUniversalScraperTool(
|
||||
config={
|
||||
"render": "html",
|
||||
"user_agent_type": "mobile",
|
||||
"context": [
|
||||
{"key": "force_headers", "value": True},
|
||||
{"key": "force_cookies", "value": True},
|
||||
{
|
||||
"key": "headers",
|
||||
"value": {
|
||||
"Custom-Header-Name": "custom header content",
|
||||
},
|
||||
},
|
||||
{
|
||||
"key": "cookies",
|
||||
"value": [
|
||||
{"key": "NID", "value": "1234567890"},
|
||||
{"key": "1P JAR", "value": "0987654321"},
|
||||
],
|
||||
},
|
||||
{"key": "http_method", "value": "get"},
|
||||
{"key": "follow_redirects", "value": True},
|
||||
{"key": "successful_status_codes", "value": [808, 909]},
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
result = tool.run(url="https://ip.oxylabs.io")
|
||||
|
||||
print(result)
|
||||
```
|
||||
@@ -1,100 +0,0 @@
|
||||
---
|
||||
title: Serper Scrape Website
|
||||
description: The `SerperScrapeWebsiteTool` is designed to scrape websites and extract clean, readable content using Serper's scraping API.
|
||||
icon: globe
|
||||
---
|
||||
|
||||
# `SerperScrapeWebsiteTool`
|
||||
|
||||
## Description
|
||||
|
||||
This tool is designed to scrape website content and extract clean, readable text from any website URL. It utilizes the [serper.dev](https://serper.dev) scraping API to fetch and process web pages, optionally including markdown formatting for better structure and readability.
|
||||
|
||||
## Installation
|
||||
|
||||
To effectively use the `SerperScrapeWebsiteTool`, follow these steps:
|
||||
|
||||
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for an account at `serper.dev`.
|
||||
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
|
||||
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
The following example demonstrates how to initialize the tool and scrape a website:
|
||||
|
||||
```python Code
|
||||
from crewai_tools import SerperScrapeWebsiteTool
|
||||
|
||||
# Initialize the tool for website scraping capabilities
|
||||
tool = SerperScrapeWebsiteTool()
|
||||
|
||||
# Scrape a website with markdown formatting
|
||||
result = tool.run(url="https://example.com", include_markdown=True)
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
The `SerperScrapeWebsiteTool` accepts the following arguments:
|
||||
|
||||
- **url**: Required. The URL of the website to scrape.
|
||||
- **include_markdown**: Optional. Whether to include markdown formatting in the scraped content. Defaults to `True`.
|
||||
|
||||
## Example with Parameters
|
||||
|
||||
Here is an example demonstrating how to use the tool with different parameters:
|
||||
|
||||
```python Code
|
||||
from crewai_tools import SerperScrapeWebsiteTool
|
||||
|
||||
tool = SerperScrapeWebsiteTool()
|
||||
|
||||
# Scrape with markdown formatting (default)
|
||||
markdown_result = tool.run(
|
||||
url="https://docs.crewai.com",
|
||||
include_markdown=True
|
||||
)
|
||||
|
||||
# Scrape without markdown formatting for plain text
|
||||
plain_result = tool.run(
|
||||
url="https://docs.crewai.com",
|
||||
include_markdown=False
|
||||
)
|
||||
|
||||
print("Markdown formatted content:")
|
||||
print(markdown_result)
|
||||
|
||||
print("\nPlain text content:")
|
||||
print(plain_result)
|
||||
```
|
||||
|
||||
## Use Cases
|
||||
|
||||
The `SerperScrapeWebsiteTool` is particularly useful for:
|
||||
|
||||
- **Content Analysis**: Extract and analyze website content for research purposes
|
||||
- **Data Collection**: Gather structured information from web pages
|
||||
- **Documentation Processing**: Convert web-based documentation into readable formats
|
||||
- **Competitive Analysis**: Scrape competitor websites for market research
|
||||
- **Content Migration**: Extract content from existing websites for migration purposes
|
||||
|
||||
## Error Handling
|
||||
|
||||
The tool includes comprehensive error handling for:
|
||||
|
||||
- **Network Issues**: Handles connection timeouts and network errors gracefully
|
||||
- **API Errors**: Provides detailed error messages for API-related issues
|
||||
- **Invalid URLs**: Validates and reports issues with malformed URLs
|
||||
- **Authentication**: Clear error messages for missing or invalid API keys
|
||||
|
||||
## Security Considerations
|
||||
|
||||
- Always store your `SERPER_API_KEY` in environment variables, never hardcode it in your source code
|
||||
- Be mindful of rate limits imposed by the Serper API
|
||||
- Respect robots.txt and website terms of service when scraping content
|
||||
- Consider implementing delays between requests for large-scale scraping operations
|
||||
@@ -1,435 +0,0 @@
|
||||
openapi: 3.0.3
|
||||
info:
|
||||
title: CrewAI Enterprise API
|
||||
description: |
|
||||
REST API for interacting with your deployed CrewAI crews on CrewAI Enterprise.
|
||||
|
||||
## Getting Started
|
||||
|
||||
1. **Find your crew URL**: Get your unique crew URL from the CrewAI Enterprise dashboard
|
||||
2. **Copy examples**: Use the code examples from each endpoint page as templates
|
||||
3. **Replace placeholders**: Update URLs and tokens with your actual values
|
||||
4. **Test with your tools**: Use cURL, Postman, or your preferred API client
|
||||
|
||||
## Authentication
|
||||
|
||||
All API requests require a bearer token for authentication. There are two types of tokens:
|
||||
|
||||
- **Bearer Token**: Organization-level token for full crew operations
|
||||
- **User Bearer Token**: User-scoped token for individual access with limited permissions
|
||||
|
||||
You can find your bearer tokens in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
|
||||
|
||||
## Reference Documentation
|
||||
|
||||
This documentation provides comprehensive examples for each endpoint:
|
||||
|
||||
- **Request formats** with all required and optional parameters
|
||||
- **Response examples** for success and error scenarios
|
||||
- **Code samples** in multiple programming languages
|
||||
- **Authentication patterns** with proper Bearer token usage
|
||||
|
||||
Copy the examples and customize them with your actual crew URL and authentication tokens.
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Discover inputs** using `GET /inputs`
|
||||
2. **Start execution** using `POST /kickoff`
|
||||
3. **Monitor progress** using `GET /status/{kickoff_id}`
|
||||
version: 1.0.0
|
||||
contact:
|
||||
name: CrewAI Support
|
||||
email: support@crewai.com
|
||||
url: https://crewai.com
|
||||
servers:
|
||||
- url: https://your-actual-crew-name.crewai.com
|
||||
description: Replace with your actual deployed crew URL from the CrewAI Enterprise dashboard
|
||||
- url: https://my-travel-crew.crewai.com
|
||||
description: Example travel planning crew (replace with your URL)
|
||||
- url: https://content-creation-crew.crewai.com
|
||||
description: Example content creation crew (replace with your URL)
|
||||
- url: https://research-assistant-crew.crewai.com
|
||||
description: Example research assistant crew (replace with your URL)
|
||||
security:
|
||||
- BearerAuth: []
|
||||
paths:
|
||||
/inputs:
|
||||
get:
|
||||
summary: Get Required Inputs
|
||||
description: |
|
||||
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
|
||||
|
||||
Retrieves the list of all required input parameters that your crew expects for execution.
|
||||
Use this endpoint to discover what inputs you need to provide when starting a crew execution.
|
||||
operationId: getRequiredInputs
|
||||
responses:
|
||||
'200':
|
||||
description: Successfully retrieved required inputs
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
inputs:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
description: Array of required input parameter names
|
||||
example: ["budget", "interests", "duration", "age"]
|
||||
examples:
|
||||
travel_crew:
|
||||
summary: Travel planning crew inputs
|
||||
value:
|
||||
inputs: ["budget", "interests", "duration", "age"]
|
||||
outreach_crew:
|
||||
summary: Outreach crew inputs
|
||||
value:
|
||||
inputs: ["name", "title", "company", "industry", "our_product", "linkedin_url"]
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
$ref: '#/components/responses/NotFoundError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
/kickoff:
|
||||
post:
|
||||
summary: Start Crew Execution
|
||||
description: |
|
||||
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
|
||||
|
||||
Initiates a new crew execution with the provided inputs. Returns a kickoff ID that can be used
|
||||
to track the execution progress and retrieve results.
|
||||
|
||||
Crew executions can take anywhere from seconds to minutes depending on their complexity.
|
||||
Consider using webhooks for real-time notifications or implement polling with the status endpoint.
|
||||
operationId: startCrewExecution
|
||||
requestBody:
|
||||
required: true
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
required:
|
||||
- inputs
|
||||
properties:
|
||||
inputs:
|
||||
type: object
|
||||
description: Key-value pairs of all required inputs for your crew
|
||||
additionalProperties:
|
||||
type: string
|
||||
example:
|
||||
budget: "1000 USD"
|
||||
interests: "games, tech, ai, relaxing hikes, amazing food"
|
||||
duration: "7 days"
|
||||
age: "35"
|
||||
meta:
|
||||
type: object
|
||||
description: Additional metadata to pass to the crew
|
||||
additionalProperties: true
|
||||
example:
|
||||
requestId: "user-request-12345"
|
||||
source: "mobile-app"
|
||||
taskWebhookUrl:
|
||||
type: string
|
||||
format: uri
|
||||
description: Callback URL executed after each task completion
|
||||
example: "https://your-server.com/webhooks/task"
|
||||
stepWebhookUrl:
|
||||
type: string
|
||||
format: uri
|
||||
description: Callback URL executed after each agent thought/action
|
||||
example: "https://your-server.com/webhooks/step"
|
||||
crewWebhookUrl:
|
||||
type: string
|
||||
format: uri
|
||||
description: Callback URL executed when the crew execution completes
|
||||
example: "https://your-server.com/webhooks/crew"
|
||||
examples:
|
||||
travel_planning:
|
||||
summary: Travel planning crew
|
||||
value:
|
||||
inputs:
|
||||
budget: "1000 USD"
|
||||
interests: "games, tech, ai, relaxing hikes, amazing food"
|
||||
duration: "7 days"
|
||||
age: "35"
|
||||
meta:
|
||||
requestId: "travel-req-123"
|
||||
source: "web-app"
|
||||
outreach_campaign:
|
||||
summary: Outreach crew with webhooks
|
||||
value:
|
||||
inputs:
|
||||
name: "John Smith"
|
||||
title: "CTO"
|
||||
company: "TechCorp"
|
||||
industry: "Software"
|
||||
our_product: "AI Development Platform"
|
||||
linkedin_url: "https://linkedin.com/in/johnsmith"
|
||||
taskWebhookUrl: "https://api.example.com/webhooks/task"
|
||||
crewWebhookUrl: "https://api.example.com/webhooks/crew"
|
||||
responses:
|
||||
'200':
|
||||
description: Crew execution started successfully
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
kickoff_id:
|
||||
type: string
|
||||
format: uuid
|
||||
description: Unique identifier for tracking this execution
|
||||
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
'400':
|
||||
description: Invalid request body or missing required inputs
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'422':
|
||||
description: Validation error - ensure all required inputs are provided
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/ValidationError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
/status/{kickoff_id}:
|
||||
get:
|
||||
summary: Get Execution Status
|
||||
description: |
|
||||
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
|
||||
|
||||
Retrieves the current status and results of a crew execution using its kickoff ID.
|
||||
|
||||
The response structure varies depending on the execution state:
|
||||
- **running**: Execution in progress with current task info
|
||||
- **completed**: Execution finished with full results
|
||||
- **error**: Execution failed with error details
|
||||
operationId: getExecutionStatus
|
||||
parameters:
|
||||
- name: kickoff_id
|
||||
in: path
|
||||
required: true
|
||||
description: The kickoff ID returned from the /kickoff endpoint
|
||||
schema:
|
||||
type: string
|
||||
format: uuid
|
||||
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
responses:
|
||||
'200':
|
||||
description: Successfully retrieved execution status
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/ExecutionRunning'
|
||||
- $ref: '#/components/schemas/ExecutionCompleted'
|
||||
- $ref: '#/components/schemas/ExecutionError'
|
||||
examples:
|
||||
running:
|
||||
summary: Execution in progress
|
||||
value:
|
||||
status: "running"
|
||||
current_task: "research_task"
|
||||
progress:
|
||||
completed_tasks: 1
|
||||
total_tasks: 3
|
||||
completed:
|
||||
summary: Execution completed successfully
|
||||
value:
|
||||
status: "completed"
|
||||
result:
|
||||
output: "Comprehensive travel itinerary for 7 days in Japan focusing on tech culture..."
|
||||
tasks:
|
||||
- task_id: "research_task"
|
||||
output: "Research findings on tech destinations in Japan..."
|
||||
agent: "Travel Researcher"
|
||||
execution_time: 45.2
|
||||
- task_id: "planning_task"
|
||||
output: "7-day detailed itinerary with activities and recommendations..."
|
||||
agent: "Trip Planner"
|
||||
execution_time: 62.8
|
||||
execution_time: 108.5
|
||||
error:
|
||||
summary: Execution failed
|
||||
value:
|
||||
status: "error"
|
||||
error: "Task execution failed: Invalid API key for external service"
|
||||
execution_time: 23.1
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
description: Kickoff ID not found
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
example:
|
||||
error: "Execution not found"
|
||||
message: "No execution found with ID: abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
components:
|
||||
securitySchemes:
|
||||
BearerAuth:
|
||||
type: http
|
||||
scheme: bearer
|
||||
description: |
|
||||
**📋 Reference Documentation** - *The tokens shown in examples are placeholders for reference only.*
|
||||
|
||||
Use your actual Bearer Token or User Bearer Token from the CrewAI Enterprise dashboard for real API calls.
|
||||
|
||||
**Bearer Token**: Organization-level access for full crew operations
|
||||
**User Bearer Token**: User-scoped access with limited permissions
|
||||
|
||||
schemas:
|
||||
ExecutionRunning:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["running"]
|
||||
example: "running"
|
||||
current_task:
|
||||
type: string
|
||||
description: Name of the currently executing task
|
||||
example: "research_task"
|
||||
progress:
|
||||
type: object
|
||||
properties:
|
||||
completed_tasks:
|
||||
type: integer
|
||||
description: Number of completed tasks
|
||||
example: 1
|
||||
total_tasks:
|
||||
type: integer
|
||||
description: Total number of tasks in the crew
|
||||
example: 3
|
||||
|
||||
ExecutionCompleted:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["completed"]
|
||||
example: "completed"
|
||||
result:
|
||||
type: object
|
||||
properties:
|
||||
output:
|
||||
type: string
|
||||
description: Final output from the crew execution
|
||||
example: "Comprehensive travel itinerary..."
|
||||
tasks:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TaskResult'
|
||||
execution_time:
|
||||
type: number
|
||||
description: Total execution time in seconds
|
||||
example: 108.5
|
||||
|
||||
ExecutionError:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["error"]
|
||||
example: "error"
|
||||
error:
|
||||
type: string
|
||||
description: Error message describing what went wrong
|
||||
example: "Task execution failed: Invalid API key"
|
||||
execution_time:
|
||||
type: number
|
||||
description: Time until error occurred in seconds
|
||||
example: 23.1
|
||||
|
||||
TaskResult:
|
||||
type: object
|
||||
properties:
|
||||
task_id:
|
||||
type: string
|
||||
description: Unique identifier for the task
|
||||
example: "research_task"
|
||||
output:
|
||||
type: string
|
||||
description: Output generated by this task
|
||||
example: "Research findings..."
|
||||
agent:
|
||||
type: string
|
||||
description: Name of the agent that executed this task
|
||||
example: "Travel Researcher"
|
||||
execution_time:
|
||||
type: number
|
||||
description: Time taken to execute this task in seconds
|
||||
example: 45.2
|
||||
|
||||
Error:
|
||||
type: object
|
||||
properties:
|
||||
error:
|
||||
type: string
|
||||
description: Error type or title
|
||||
example: "Authentication Error"
|
||||
message:
|
||||
type: string
|
||||
description: Detailed error message
|
||||
example: "Invalid bearer token provided"
|
||||
|
||||
ValidationError:
|
||||
type: object
|
||||
properties:
|
||||
error:
|
||||
type: string
|
||||
example: "Validation Error"
|
||||
message:
|
||||
type: string
|
||||
example: "Missing required inputs"
|
||||
details:
|
||||
type: object
|
||||
properties:
|
||||
missing_inputs:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
example: ["budget", "interests"]
|
||||
|
||||
responses:
|
||||
UnauthorizedError:
|
||||
description: Authentication failed - check your bearer token
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
example:
|
||||
error: "Unauthorized"
|
||||
message: "Invalid or missing bearer token"
|
||||
|
||||
NotFoundError:
|
||||
description: Resource not found
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
example:
|
||||
error: "Not Found"
|
||||
message: "The requested resource was not found"
|
||||
|
||||
ServerError:
|
||||
description: Internal server error
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
example:
|
||||
error: "Internal Server Error"
|
||||
message: "An unexpected error occurred"
|
||||
|
||||
@@ -1,231 +0,0 @@
|
||||
openapi: 3.0.3
|
||||
info:
|
||||
title: CrewAI 엔터프라이즈 API
|
||||
description: |
|
||||
CrewAI Enterprise에 배포된 crew와 상호작용하기 위한 REST API입니다.
|
||||
|
||||
## 시작하기
|
||||
1. **Crew URL 확인**: 대시보드에서 고유한 crew URL을 확인하세요
|
||||
2. **예제 복사**: 각 엔드포인트의 예제를 템플릿으로 사용하세요
|
||||
3. **플레이스홀더 교체**: 실제 URL과 토큰으로 바꾸세요
|
||||
4. **도구로 테스트**: cURL, Postman 등 선호하는 도구로 테스트하세요
|
||||
version: 1.0.0
|
||||
contact:
|
||||
name: CrewAI 지원
|
||||
email: support@crewai.com
|
||||
url: https://crewai.com
|
||||
servers:
|
||||
- url: https://your-actual-crew-name.crewai.com
|
||||
description: 대시보드의 실제 crew URL로 교체하세요
|
||||
security:
|
||||
- BearerAuth: []
|
||||
paths:
|
||||
/inputs:
|
||||
get:
|
||||
summary: 필요 입력값 조회
|
||||
description: |
|
||||
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
|
||||
|
||||
실행에 필요한 입력 파라미터 목록을 반환합니다.
|
||||
operationId: getRequiredInputs
|
||||
responses:
|
||||
'200':
|
||||
description: 입력값을 성공적으로 조회
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
inputs:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
$ref: '#/components/responses/NotFoundError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
/kickoff:
|
||||
post:
|
||||
summary: Crew 실행 시작
|
||||
description: |
|
||||
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
|
||||
|
||||
제공된 입력으로 새로운 실행을 시작하고 kickoff ID를 반환합니다.
|
||||
operationId: startCrewExecution
|
||||
requestBody:
|
||||
required: true
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
required:
|
||||
- inputs
|
||||
properties:
|
||||
inputs:
|
||||
type: object
|
||||
additionalProperties:
|
||||
type: string
|
||||
responses:
|
||||
'200':
|
||||
description: 실행이 성공적으로 시작됨
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
kickoff_id:
|
||||
type: string
|
||||
format: uuid
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
/status/{kickoff_id}:
|
||||
get:
|
||||
summary: 실행 상태 조회
|
||||
description: |
|
||||
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
|
||||
|
||||
kickoff ID로 실행 상태와 결과를 조회합니다.
|
||||
operationId: getExecutionStatus
|
||||
parameters:
|
||||
- name: kickoff_id
|
||||
in: path
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
format: uuid
|
||||
responses:
|
||||
'200':
|
||||
description: 상태를 성공적으로 조회
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/ExecutionRunning'
|
||||
- $ref: '#/components/schemas/ExecutionCompleted'
|
||||
- $ref: '#/components/schemas/ExecutionError'
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
description: Kickoff ID를 찾을 수 없음
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
components:
|
||||
securitySchemes:
|
||||
BearerAuth:
|
||||
type: http
|
||||
scheme: bearer
|
||||
description: |
|
||||
**📋 참고** - *예시의 토큰은 자리 표시자입니다.* 실제 토큰을 사용하세요.
|
||||
|
||||
schemas:
|
||||
ExecutionRunning:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["running"]
|
||||
current_task:
|
||||
type: string
|
||||
progress:
|
||||
type: object
|
||||
properties:
|
||||
completed_tasks:
|
||||
type: integer
|
||||
total_tasks:
|
||||
type: integer
|
||||
|
||||
ExecutionCompleted:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["completed"]
|
||||
result:
|
||||
type: object
|
||||
properties:
|
||||
output:
|
||||
type: string
|
||||
tasks:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TaskResult'
|
||||
execution_time:
|
||||
type: number
|
||||
|
||||
ExecutionError:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["error"]
|
||||
error:
|
||||
type: string
|
||||
execution_time:
|
||||
type: number
|
||||
|
||||
TaskResult:
|
||||
type: object
|
||||
properties:
|
||||
task_id:
|
||||
type: string
|
||||
output:
|
||||
type: string
|
||||
agent:
|
||||
type: string
|
||||
execution_time:
|
||||
type: number
|
||||
|
||||
Error:
|
||||
type: object
|
||||
properties:
|
||||
error:
|
||||
type: string
|
||||
message:
|
||||
type: string
|
||||
|
||||
ValidationError:
|
||||
type: object
|
||||
properties:
|
||||
error:
|
||||
type: string
|
||||
message:
|
||||
type: string
|
||||
details:
|
||||
type: object
|
||||
properties:
|
||||
missing_inputs:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
|
||||
responses:
|
||||
UnauthorizedError:
|
||||
description: 인증 실패
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
NotFoundError:
|
||||
description: 리소스를 찾을 수 없음
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
ServerError:
|
||||
description: 서버 내부 오류
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
|
||||
@@ -1,268 +0,0 @@
|
||||
openapi: 3.0.3
|
||||
info:
|
||||
title: CrewAI Enterprise API
|
||||
description: |
|
||||
REST API para interagir com suas crews implantadas no CrewAI Enterprise.
|
||||
|
||||
## Introdução
|
||||
|
||||
1. **Encontre a URL da sua crew**: Obtenha sua URL única no painel do CrewAI Enterprise
|
||||
2. **Copie os exemplos**: Use os exemplos de cada endpoint como modelo
|
||||
3. **Substitua os placeholders**: Atualize URLs e tokens com seus valores reais
|
||||
4. **Teste com suas ferramentas**: Use cURL, Postman ou seu cliente preferido
|
||||
|
||||
## Autenticação
|
||||
|
||||
Todas as requisições exigem um token bearer. Existem dois tipos:
|
||||
|
||||
- **Bearer Token**: Token em nível de organização para operações completas
|
||||
- **User Bearer Token**: Token com escopo de usuário com permissões limitadas
|
||||
|
||||
Você encontra os tokens na aba Status da sua crew no painel do CrewAI Enterprise.
|
||||
|
||||
## Documentação de Referência
|
||||
|
||||
Este documento fornece exemplos completos para cada endpoint:
|
||||
|
||||
- **Formatos de requisição** com parâmetros obrigatórios e opcionais
|
||||
- **Exemplos de resposta** para sucesso e erro
|
||||
- **Amostras de código** em várias linguagens
|
||||
- **Padrões de autenticação** com uso correto de Bearer token
|
||||
|
||||
Copie os exemplos e personalize com sua URL e tokens reais.
|
||||
|
||||
## Fluxo
|
||||
|
||||
1. **Descubra os inputs** usando `GET /inputs`
|
||||
2. **Inicie a execução** usando `POST /kickoff`
|
||||
3. **Monitore o progresso** usando `GET /status/{kickoff_id}`
|
||||
version: 1.0.0
|
||||
contact:
|
||||
name: CrewAI Suporte
|
||||
email: support@crewai.com
|
||||
url: https://crewai.com
|
||||
servers:
|
||||
- url: https://your-actual-crew-name.crewai.com
|
||||
description: Substitua pela URL real da sua crew no painel do CrewAI Enterprise
|
||||
security:
|
||||
- BearerAuth: []
|
||||
paths:
|
||||
/inputs:
|
||||
get:
|
||||
summary: Obter Inputs Requeridos
|
||||
description: |
|
||||
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
|
||||
|
||||
Retorna a lista de parâmetros de entrada que sua crew espera.
|
||||
operationId: getRequiredInputs
|
||||
responses:
|
||||
'200':
|
||||
description: Inputs requeridos obtidos com sucesso
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
inputs:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
description: Nomes dos parâmetros de entrada
|
||||
example: ["budget", "interests", "duration", "age"]
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
$ref: '#/components/responses/NotFoundError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
/kickoff:
|
||||
post:
|
||||
summary: Iniciar Execução da Crew
|
||||
description: |
|
||||
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
|
||||
|
||||
Inicia uma nova execução da crew com os inputs fornecidos e retorna um kickoff ID.
|
||||
operationId: startCrewExecution
|
||||
requestBody:
|
||||
required: true
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
required:
|
||||
- inputs
|
||||
properties:
|
||||
inputs:
|
||||
type: object
|
||||
additionalProperties:
|
||||
type: string
|
||||
example:
|
||||
budget: "1000 USD"
|
||||
interests: "games, tech, ai, relaxing hikes, amazing food"
|
||||
duration: "7 days"
|
||||
age: "35"
|
||||
|
||||
responses:
|
||||
'200':
|
||||
description: Execução iniciada com sucesso
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
kickoff_id:
|
||||
type: string
|
||||
format: uuid
|
||||
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
/status/{kickoff_id}:
|
||||
get:
|
||||
summary: Obter Status da Execução
|
||||
description: |
|
||||
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
|
||||
|
||||
Retorna o status atual e os resultados de uma execução usando o kickoff ID.
|
||||
operationId: getExecutionStatus
|
||||
parameters:
|
||||
- name: kickoff_id
|
||||
in: path
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
format: uuid
|
||||
responses:
|
||||
'200':
|
||||
description: Status recuperado com sucesso
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/ExecutionRunning'
|
||||
- $ref: '#/components/schemas/ExecutionCompleted'
|
||||
- $ref: '#/components/schemas/ExecutionError'
|
||||
'401':
|
||||
$ref: '#/components/responses/UnauthorizedError'
|
||||
'404':
|
||||
description: Kickoff ID não encontrado
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
'500':
|
||||
$ref: '#/components/responses/ServerError'
|
||||
|
||||
components:
|
||||
securitySchemes:
|
||||
BearerAuth:
|
||||
type: http
|
||||
scheme: bearer
|
||||
description: |
|
||||
**📋 Referência** - *Os tokens mostrados são apenas exemplos.*
|
||||
Use seus tokens reais do painel do CrewAI Enterprise.
|
||||
|
||||
schemas:
|
||||
ExecutionRunning:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["running"]
|
||||
current_task:
|
||||
type: string
|
||||
progress:
|
||||
type: object
|
||||
properties:
|
||||
completed_tasks:
|
||||
type: integer
|
||||
total_tasks:
|
||||
type: integer
|
||||
|
||||
ExecutionCompleted:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["completed"]
|
||||
result:
|
||||
type: object
|
||||
properties:
|
||||
output:
|
||||
type: string
|
||||
tasks:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TaskResult'
|
||||
execution_time:
|
||||
type: number
|
||||
|
||||
ExecutionError:
|
||||
type: object
|
||||
properties:
|
||||
status:
|
||||
type: string
|
||||
enum: ["error"]
|
||||
error:
|
||||
type: string
|
||||
execution_time:
|
||||
type: number
|
||||
|
||||
TaskResult:
|
||||
type: object
|
||||
properties:
|
||||
task_id:
|
||||
type: string
|
||||
output:
|
||||
type: string
|
||||
agent:
|
||||
type: string
|
||||
execution_time:
|
||||
type: number
|
||||
|
||||
Error:
|
||||
type: object
|
||||
properties:
|
||||
error:
|
||||
type: string
|
||||
message:
|
||||
type: string
|
||||
|
||||
ValidationError:
|
||||
type: object
|
||||
properties:
|
||||
error:
|
||||
type: string
|
||||
message:
|
||||
type: string
|
||||
details:
|
||||
type: object
|
||||
properties:
|
||||
missing_inputs:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
|
||||
responses:
|
||||
UnauthorizedError:
|
||||
description: Autenticação falhou
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
NotFoundError:
|
||||
description: Recurso não encontrado
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
ServerError:
|
||||
description: Erro interno do servidor
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/Error'
|
||||
|
||||
@@ -124,7 +124,7 @@ from crewai_tools import CrewaiEnterpriseTools
|
||||
enterprise_tools = CrewaiEnterpriseTools(
|
||||
actions_list=["gmail_find_email"] # only gmail_find_email tool will be available
|
||||
)
|
||||
gmail_tool = enterprise_tools["gmail_find_email"]
|
||||
gmail_tool = enterprise_tools[0]
|
||||
|
||||
gmail_agent = Agent(
|
||||
role="Gmail Manager",
|
||||
@@ -35,22 +35,6 @@ crewai tool install <tool-name>
|
||||
|
||||
This installs the tool and adds it to `pyproject.toml`.
|
||||
|
||||
You can use the tool by importing it and adding it to your agents:
|
||||
|
||||
```python
|
||||
from your_tool.tool import YourTool
|
||||
|
||||
custom_tool = YourTool()
|
||||
|
||||
researcher = Agent(
|
||||
role='Market Research Analyst',
|
||||
goal='Provide up-to-date market analysis of the AI industry',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[custom_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Creating and Publishing Tools
|
||||
|
||||
To create a new tool project:
|
||||
@@ -10,11 +10,11 @@ icon: "people-arrows"
|
||||
|
||||
## Getting Started
|
||||
|
||||
<iframe
|
||||
<iframe
|
||||
width="100%"
|
||||
height="400"
|
||||
src="https://www.youtube.com/embed/-kSOTtYzgEw"
|
||||
title="Building Crews with CrewAI CLI"
|
||||
title="Building Crews with CrewAI CLI"
|
||||
frameborder="0"
|
||||
style={{ borderRadius: '10px' }}
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
||||
@@ -23,13 +23,13 @@ icon: "people-arrows"
|
||||
|
||||
### Installation and Setup
|
||||
|
||||
<Card title="Follow Standard Installation" icon="wrench" href="/en/installation">
|
||||
<Card title="Follow Standard Installation" icon="wrench" href="/installation">
|
||||
Follow our standard installation guide to set up CrewAI CLI and create your first project.
|
||||
</Card>
|
||||
|
||||
### Building Your Crew
|
||||
|
||||
<Card title="Quickstart Tutorial" icon="rocket" href="/en/quickstart">
|
||||
<Card title="Quickstart Tutorial" icon="rocket" href="/quickstart">
|
||||
Follow our quickstart guide to create your first agent crew using YAML configuration.
|
||||
</Card>
|
||||
|
||||
@@ -40,4 +40,4 @@ For Enterprise-specific support or questions, contact our dedicated support team
|
||||
|
||||
<Card title="Schedule a Demo" icon="calendar" href="mailto:support@crewai.com">
|
||||
Book time with our team to learn more about Enterprise features and how they can benefit your organization.
|
||||
</Card>
|
||||
</Card>
|
||||
@@ -41,8 +41,11 @@ The CLI provides the fastest way to deploy locally developed crews to the Enterp
|
||||
First, you need to authenticate your CLI with the CrewAI Enterprise platform:
|
||||
|
||||
```bash
|
||||
# If you already have a CrewAI Enterprise account, or want to create one:
|
||||
# If you already have a CrewAI Enterprise account
|
||||
crewai login
|
||||
|
||||
# If you're creating a new account
|
||||
crewai signup
|
||||
```
|
||||
|
||||
When you run either command, the CLI will:
|
||||
@@ -119,7 +122,7 @@ The CrewAI CLI offers several commands to manage your deployments:
|
||||
|
||||
# Remove a deployment
|
||||
crewai deploy remove <deployment_id>
|
||||
```
|
||||
```
|
||||
|
||||
## Option 2: Deploy Directly via Web Interface
|
||||
|
||||
@@ -129,14 +132,14 @@ You can also deploy your crews directly through the CrewAI Enterprise web interf
|
||||
|
||||
<Step title="Pushing to GitHub">
|
||||
|
||||
You need to push your crew to a GitHub repository. If you haven't created a crew yet, you can [follow this tutorial](/en/quickstart).
|
||||
You need to push your crew to a GitHub repository. If you haven't created a crew yet, you can [follow this tutorial](/quickstart).
|
||||
|
||||
</Step>
|
||||
|
||||
<Step title="Connecting GitHub to CrewAI Enterprise">
|
||||
|
||||
1. Log in to [CrewAI Enterprise](https://app.crewai.com)
|
||||
2. Click on the button "Connect GitHub"
|
||||
2. Click on the button "Connect GitHub"
|
||||
|
||||
<Frame>
|
||||

|
||||
@@ -198,20 +201,20 @@ For security reasons, the following environment variable naming patterns are **a
|
||||
|
||||
**Blocked Patterns:**
|
||||
- Variables ending with `_TOKEN` (e.g., `MY_API_TOKEN`)
|
||||
- Variables ending with `_PASSWORD` (e.g., `DB_PASSWORD`)
|
||||
- Variables ending with `_PASSWORD` (e.g., `DB_PASSWORD`)
|
||||
- Variables ending with `_SECRET` (e.g., `API_SECRET`)
|
||||
- Variables ending with `_KEY` in certain contexts
|
||||
|
||||
**Specific Blocked Variables:**
|
||||
- `GITHUB_USER`, `GITHUB_TOKEN`
|
||||
- `AWS_REGION`, `AWS_DEFAULT_REGION`
|
||||
- `AWS_REGION`, `AWS_DEFAULT_REGION`
|
||||
- Various internal CrewAI system variables
|
||||
|
||||
### Allowed Exceptions
|
||||
|
||||
Some variables are explicitly allowed despite matching blocked patterns:
|
||||
- `AZURE_AD_TOKEN`
|
||||
- `AZURE_OPENAI_AD_TOKEN`
|
||||
- `AZURE_OPENAI_AD_TOKEN`
|
||||
- `ENTERPRISE_ACTION_TOKEN`
|
||||
- `CREWAI_ENTEPRISE_TOOLS_TOKEN`
|
||||
|
||||
@@ -225,7 +228,7 @@ OPENAI_TOKEN=sk-...
|
||||
DATABASE_PASSWORD=mypassword
|
||||
API_SECRET=secret123
|
||||
|
||||
# ✅ Use these naming patterns instead
|
||||
# ✅ Use these naming patterns instead
|
||||
OPENAI_API_KEY=sk-...
|
||||
DATABASE_CREDENTIALS=mypassword
|
||||
API_CONFIG=secret123
|
||||
@@ -56,8 +56,8 @@ CrewAI Enterprise extends the power of the open-source framework with features d
|
||||
<Steps>
|
||||
<Step title="Sign up for an account">
|
||||
Create your account at [app.crewai.com](https://app.crewai.com)
|
||||
<Card
|
||||
title="Sign Up"
|
||||
<Card
|
||||
title="Sign Up"
|
||||
icon="user"
|
||||
href="https://app.crewai.com/signup"
|
||||
>
|
||||
@@ -66,34 +66,34 @@ CrewAI Enterprise extends the power of the open-source framework with features d
|
||||
</Step>
|
||||
<Step title="Build your first crew">
|
||||
Use code or Crew Studio to build your crew
|
||||
<Card
|
||||
title="Build Crew"
|
||||
<Card
|
||||
title="Build Crew"
|
||||
icon="paintbrush"
|
||||
href="/en/enterprise/guides/build-crew"
|
||||
href="/enterprise/guides/build-crew"
|
||||
>
|
||||
Build Crew
|
||||
</Card>
|
||||
</Step>
|
||||
<Step title="Deploy your crew">
|
||||
Deploy your crew to the Enterprise platform
|
||||
<Card
|
||||
title="Deploy Crew"
|
||||
<Card
|
||||
title="Deploy Crew"
|
||||
icon="rocket"
|
||||
href="/en/enterprise/guides/deploy-crew"
|
||||
href="/enterprise/guides/deploy-crew"
|
||||
>
|
||||
Deploy Crew
|
||||
</Card>
|
||||
</Step>
|
||||
<Step title="Access your crew">
|
||||
Integrate with your crew via the generated API endpoints
|
||||
<Card
|
||||
title="API Access"
|
||||
<Card
|
||||
title="API Access"
|
||||
icon="code"
|
||||
href="/en/enterprise/guides/kickoff-crew"
|
||||
href="/enterprise/guides/use-crew-api"
|
||||
>
|
||||
Use the Crew API
|
||||
</Card>
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
For detailed instructions, check out our [deployment guide](/en/enterprise/guides/deploy-crew) or click the button below to get started.
|
||||
For detailed instructions, check out our [deployment guide](/enterprise/guides/deploy-crew) or click the button below to get started.
|
||||
@@ -48,12 +48,12 @@ icon: "circle-question"
|
||||
|
||||
To integrate human input into agent execution, set the `human_input` flag in the task definition. When enabled, the agent prompts the user for input before delivering its final answer. This input can provide extra context, clarify ambiguities, or validate the agent's output.
|
||||
|
||||
For detailed implementation guidance, see our [Human-in-the-Loop guide](/en/how-to/human-in-the-loop).
|
||||
For detailed implementation guidance, see our [Human-in-the-Loop guide](/how-to/human-in-the-loop).
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="What advanced customization options are available for tailoring and enhancing agent behavior and capabilities in CrewAI?">
|
||||
CrewAI provides a range of advanced customization options:
|
||||
|
||||
|
||||
- **Language Model Customization**: Agents can be customized with specific language models (`llm`) and function-calling language models (`function_calling_llm`)
|
||||
- **Performance and Debugging Settings**: Adjust an agent's performance and monitor its operations
|
||||
- **Verbose Mode**: Enables detailed logging of an agent's actions, useful for debugging and optimization
|
||||
@@ -129,12 +129,12 @@ icon: "circle-question"
|
||||
|
||||
Here's a tutorial on how to consistently get structured outputs from your agents:
|
||||
<Frame>
|
||||
<iframe
|
||||
<iframe
|
||||
height="400"
|
||||
width="100%"
|
||||
src="https://www.youtube.com/embed/dNpKQk5uxHw"
|
||||
title="YouTube video player" frameborder="0"
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
||||
src="https://www.youtube.com/embed/dNpKQk5uxHw"
|
||||
title="YouTube video player" frameborder="0"
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
||||
allowfullscreen></iframe>
|
||||
</Frame>
|
||||
</Accordion>
|
||||
@@ -148,4 +148,4 @@ icon: "circle-question"
|
||||
<Accordion title="How can you control the maximum number of requests per minute that the entire crew can perform?">
|
||||
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
</AccordionGroup>
|
||||
62
docs/examples/example.mdx
Normal file
62
docs/examples/example.mdx
Normal file
@@ -0,0 +1,62 @@
|
||||
---
|
||||
title: CrewAI Examples
|
||||
description: A collection of examples that show how to use CrewAI framework to automate workflows.
|
||||
icon: rocket-launch
|
||||
---
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card
|
||||
title="Marketing Strategy"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/crewAIInc/crewAI-examples/tree/main/marketing_strategy"
|
||||
icon="bullhorn"
|
||||
iconType="solid"
|
||||
>
|
||||
Automate marketing strategy creation with CrewAI.
|
||||
</Card>
|
||||
<Card
|
||||
title="Surprise Trip"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/crewAIInc/crewAI-examples/tree/main/surprise_trip"
|
||||
icon="plane"
|
||||
iconType="duotone"
|
||||
>
|
||||
Create a surprise trip itinerary with CrewAI.
|
||||
</Card>
|
||||
<Card
|
||||
title="Match Profile to Positions"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/crewAIInc/crewAI-examples/tree/main/match_profile_to_positions"
|
||||
icon="linkedin"
|
||||
iconType="duotone"
|
||||
>
|
||||
Match a profile to jobpositions with CrewAI.
|
||||
</Card>
|
||||
<Card
|
||||
title="Create Job Posting"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting"
|
||||
icon="newspaper"
|
||||
iconType="duotone"
|
||||
>
|
||||
Create a job posting with CrewAI.
|
||||
</Card>
|
||||
<Card
|
||||
title="Game Generator"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/crewAIInc/crewAI-examples/tree/main/game-builder-crew"
|
||||
icon="gamepad"
|
||||
iconType="duotone"
|
||||
>
|
||||
Create a game with CrewAI.
|
||||
</Card>
|
||||
<Card
|
||||
title="Find Job Candidates"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/crewAIInc/crewAI-examples/tree/main/recruitment"
|
||||
icon="user-group"
|
||||
iconType="duotone"
|
||||
>
|
||||
Find job candidates with CrewAI.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
@@ -44,7 +44,7 @@ Based on your agent configuration, CrewAI adds different default instructions:
|
||||
"I MUST use these formats, my job depends on it!"
|
||||
```
|
||||
|
||||
#### For Agents With Tools
|
||||
#### For Agents With Tools
|
||||
```text
|
||||
"IMPORTANT: Use the following format in your response:
|
||||
|
||||
@@ -127,7 +127,7 @@ custom_prompt_template = """Task: {input}
|
||||
Please complete this task thoughtfully."""
|
||||
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
role="Research Assistant",
|
||||
goal="Help users find accurate information",
|
||||
backstory="You are a helpful research assistant.",
|
||||
system_template=custom_system_template,
|
||||
@@ -164,7 +164,7 @@ crew = Crew(
|
||||
```python
|
||||
agent = Agent(
|
||||
role="Analyst",
|
||||
goal="Analyze data",
|
||||
goal="Analyze data",
|
||||
backstory="Expert analyst",
|
||||
use_system_prompt=False # Disables system prompt separation
|
||||
)
|
||||
@@ -174,13 +174,13 @@ agent = Agent(
|
||||
|
||||
For production transparency, integrate with observability platforms to monitor all prompts and LLM interactions. This allows you to see exactly what prompts (including default instructions) are being sent to your LLMs.
|
||||
|
||||
See our [Observability documentation](/en/observability/overview) for detailed integration guides with various platforms including Langfuse, MLflow, Weights & Biases, and custom logging solutions.
|
||||
See our [Observability documentation](/how-to/observability) for detailed integration guides with various platforms including Langfuse, MLflow, Weights & Biases, and custom logging solutions.
|
||||
|
||||
### Best Practices for Production
|
||||
|
||||
1. **Always inspect generated prompts** before deploying to production
|
||||
2. **Use custom templates** when you need full control over prompt content
|
||||
3. **Integrate observability tools** for ongoing prompt monitoring (see [Observability docs](/en/observability/overview))
|
||||
3. **Integrate observability tools** for ongoing prompt monitoring (see [Observability docs](/how-to/observability))
|
||||
4. **Test with different LLMs** as default instructions may work differently across models
|
||||
5. **Document your prompt customizations** for team transparency
|
||||
|
||||
@@ -313,4 +313,4 @@ Low-level prompt customization in CrewAI opens the door to super custom, complex
|
||||
|
||||
<Check>
|
||||
You now have the foundation for advanced prompt customizations in CrewAI. Whether you're adapting for model-specific structures or domain-specific constraints, this low-level approach lets you shape agent interactions in highly specialized ways.
|
||||
</Check>
|
||||
</Check>
|
||||
@@ -448,5 +448,5 @@ Congratulations! You now understand the principles and practices of effective ag
|
||||
## Next Steps
|
||||
|
||||
- Experiment with different agent configurations for your specific use case
|
||||
- Learn about [building your first crew](/en/guides/crews/first-crew) to see how agents work together
|
||||
- Explore [CrewAI Flows](/en/guides/flows/first-flow) for more advanced orchestration
|
||||
- Learn about [building your first crew](/guides/crews/first-crew) to see how agents work together
|
||||
- Explore [CrewAI Flows](/guides/flows/first-flow) for more advanced orchestration
|
||||
@@ -11,7 +11,7 @@ When building AI applications with CrewAI, one of the most important decisions y
|
||||
At the heart of this decision is understanding the relationship between **complexity** and **precision** in your application:
|
||||
|
||||
<Frame caption="Complexity vs. Precision Matrix for CrewAI Applications">
|
||||
<img src="/images/complexity_precision.png" alt="Complexity vs. Precision Matrix" />
|
||||
<img src="../../images/complexity_precision.png" alt="Complexity vs. Precision Matrix" />
|
||||
</Frame>
|
||||
|
||||
This matrix helps visualize how different approaches align with varying requirements for complexity and precision. Let's explore what each quadrant means and how it guides your architectural choices.
|
||||
@@ -497,7 +497,7 @@ You now have a framework for evaluating CrewAI use cases and choosing the right
|
||||
|
||||
## Next Steps
|
||||
|
||||
- Learn more about [crafting effective agents](/en/guides/agents/crafting-effective-agents)
|
||||
- Explore [building your first crew](/en/guides/crews/first-crew)
|
||||
- Dive into [mastering flow state management](/en/guides/flows/mastering-flow-state)
|
||||
- Check out the [core concepts](/en/concepts/agents) for deeper understanding
|
||||
- Learn more about [crafting effective agents](/guides/agents/crafting-effective-agents)
|
||||
- Explore [building your first crew](/guides/crews/first-crew)
|
||||
- Dive into [mastering flow state management](/guides/flows/mastering-flow-state)
|
||||
- Check out the [core concepts](/concepts/agents) for deeper understanding
|
||||
@@ -32,9 +32,9 @@ Let's get started building your first crew!
|
||||
|
||||
Before starting, make sure you have:
|
||||
|
||||
1. Installed CrewAI following the [installation guide](/en/installation)
|
||||
1. Installed CrewAI following the [installation guide](/installation)
|
||||
2. Set up your LLM API key in your environment, following the [LLM setup
|
||||
guide](/en/concepts/llms#setting-up-your-llm)
|
||||
guide](/concepts/llms#setting-up-your-llm)
|
||||
3. Basic understanding of Python
|
||||
|
||||
## Step 1: Create a New CrewAI Project
|
||||
@@ -54,7 +54,7 @@ This will generate a project with the basic structure needed for your crew. The
|
||||
- A main script to run the crew
|
||||
|
||||
<Frame caption="CrewAI Framework Overview">
|
||||
<img src="/images/crews.png" alt="CrewAI Framework Overview" />
|
||||
<img src="../../images/crews.png" alt="CrewAI Framework Overview" />
|
||||
</Frame>
|
||||
|
||||
|
||||
@@ -287,7 +287,7 @@ SERPER_API_KEY=your_serper_api_key
|
||||
# Add your provider's API key here too.
|
||||
```
|
||||
|
||||
See the [LLM Setup guide](/en/concepts/llms#setting-up-your-llm) for details on configuring your provider of choice. You can get a Serper API key from [Serper.dev](https://serper.dev/).
|
||||
See the [LLM Setup guide](/concepts/llms#setting-up-your-llm) for details on configuring your provider of choice. You can get a Serper API key from [Serper.dev](https://serper.dev/).
|
||||
|
||||
## Step 8: Install Dependencies
|
||||
|
||||
@@ -388,7 +388,7 @@ Now that you've built your first crew, you can:
|
||||
2. Try more complex task structures and workflows
|
||||
3. Implement custom tools to give your agents new capabilities
|
||||
4. Apply your crew to different topics or problem domains
|
||||
5. Explore [CrewAI Flows](/en/guides/flows/first-flow) for more advanced workflows with procedural programming
|
||||
5. Explore [CrewAI Flows](/guides/flows/first-flow) for more advanced workflows with procedural programming
|
||||
|
||||
<Check>
|
||||
Congratulations! You've successfully built your first CrewAI crew that can research and analyze any topic you provide. This foundational experience has equipped you with the skills to create increasingly sophisticated AI systems that can tackle complex, multi-stage problems through collaborative intelligence.
|
||||
@@ -42,9 +42,9 @@ Let's dive in and build your first flow!
|
||||
|
||||
Before starting, make sure you have:
|
||||
|
||||
1. Installed CrewAI following the [installation guide](/en/installation)
|
||||
1. Installed CrewAI following the [installation guide](/installation)
|
||||
2. Set up your LLM API key in your environment, following the [LLM setup
|
||||
guide](/en/concepts/llms#setting-up-your-llm)
|
||||
guide](/concepts/llms#setting-up-your-llm)
|
||||
3. Basic understanding of Python
|
||||
|
||||
## Step 1: Create a New CrewAI Flow Project
|
||||
@@ -59,7 +59,7 @@ cd guide_creator_flow
|
||||
This will generate a project with the basic structure needed for your flow.
|
||||
|
||||
<Frame caption="CrewAI Framework Overview">
|
||||
<img src="/images/flows.png" alt="CrewAI Framework Overview" />
|
||||
<img src="../../images/flows.png" alt="CrewAI Framework Overview" />
|
||||
</Frame>
|
||||
|
||||
## Step 2: Understanding the Project Structure
|
||||
@@ -443,7 +443,7 @@ This is the power of flows - combining different types of processing (user inter
|
||||
## Step 6: Set Up Your Environment Variables
|
||||
|
||||
Create a `.env` file in your project root with your API keys. See the [LLM setup
|
||||
guide](/en/concepts/llms#setting-up-your-llm) for details on configuring a provider.
|
||||
guide](/concepts/llms#setting-up-your-llm) for details on configuring a provider.
|
||||
|
||||
```sh .env
|
||||
OPENAI_API_KEY=your_openai_api_key
|
||||
@@ -767,5 +767,5 @@ You've now mastered the concepts and practices of state management in CrewAI Flo
|
||||
|
||||
- Experiment with both structured and unstructured state in your flows
|
||||
- Try implementing state persistence for long-running workflows
|
||||
- Explore [building your first crew](/en/guides/crews/first-crew) to see how crews and flows can work together
|
||||
- Check out the [Flow reference documentation](/en/concepts/flows) for more advanced features
|
||||
- Explore [building your first crew](/guides/crews/first-crew) to see how crews and flows can work together
|
||||
- Check out the [Flow reference documentation](/concepts/flows) for more advanced features
|
||||
BIN
docs/images/agentops-overview.png
Normal file
BIN
docs/images/agentops-overview.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 288 KiB |
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user