mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
84 Commits
docs/fix-d
...
brandon/cr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2ef5cc37a9 | ||
|
|
ba8fbed30a | ||
|
|
abfd121f99 | ||
|
|
72f0b600b8 | ||
|
|
a028566bd6 | ||
|
|
3a266d6b40 | ||
|
|
a4a14df72e | ||
|
|
8664f3912b | ||
|
|
d67c12a5a3 | ||
|
|
322780a5f3 | ||
|
|
a54d34ea5b | ||
|
|
bc793749a5 | ||
|
|
a9916940ef | ||
|
|
b7f4931de5 | ||
|
|
327b728bef | ||
|
|
a9510eec88 | ||
|
|
d6db557f50 | ||
|
|
5ae56e3f72 | ||
|
|
1c9ebb59b1 | ||
|
|
f520ceeb0d | ||
|
|
0df4d2fd4b | ||
|
|
596491d932 | ||
|
|
72fb109147 | ||
|
|
40b336d2a5 | ||
|
|
5958df71a2 | ||
|
|
26d9af8367 | ||
|
|
cdaf2d41c7 | ||
|
|
d9ee104167 | ||
|
|
0b9eeb7cdb | ||
|
|
9b558ddc51 | ||
|
|
b857afe45b | ||
|
|
1d77c8de10 | ||
|
|
503f3a6372 | ||
|
|
d2fab55561 | ||
|
|
b955416458 | ||
|
|
18a2722e4d | ||
|
|
c7e8d55926 | ||
|
|
48698bf0b7 | ||
|
|
f79b3fc322 | ||
|
|
0b9e753c2f | ||
|
|
5b3f7be1c4 | ||
|
|
f2208f5f8e | ||
|
|
79b5248b83 | ||
|
|
d4791bef28 | ||
|
|
d861cb0d74 | ||
|
|
67f19f79c2 | ||
|
|
5f359b14f7 | ||
|
|
cda1900b14 | ||
|
|
c8c0a89dc6 | ||
|
|
9a10cc15f4 | ||
|
|
345f1eacde | ||
|
|
fa937bf3a7 | ||
|
|
172758020c | ||
|
|
5ff178084e | ||
|
|
c012e0ff8d | ||
|
|
f777c1c2e0 | ||
|
|
782ce22d99 | ||
|
|
f5246039e5 | ||
|
|
4736604b4d | ||
|
|
09cba0135e | ||
|
|
8119edb495 | ||
|
|
17bffb0803 | ||
|
|
cbe139fced | ||
|
|
946d8567fe | ||
|
|
7b5d5bdeef | ||
|
|
a1551bcf2b | ||
|
|
5495825b1d | ||
|
|
6e36f84cc6 | ||
|
|
cddf2d8f7c | ||
|
|
5f17e35c5a | ||
|
|
231a833ad0 | ||
|
|
a870295d42 | ||
|
|
ddda8f6bda | ||
|
|
bf7372fefa | ||
|
|
3451b6fc7a | ||
|
|
dbf2570353 | ||
|
|
d0707fac91 | ||
|
|
35ebdd6022 | ||
|
|
92a77e5cac | ||
|
|
a2922c9ad5 | ||
|
|
9f9b52dd26 | ||
|
|
2482c7ab68 | ||
|
|
7fdabda97e | ||
|
|
7306414de7 |
35
.github/ISSUE_TEMPLATE/bug_report.md
vendored
35
.github/ISSUE_TEMPLATE/bug_report.md
vendored
@@ -1,35 +0,0 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve CrewAI
|
||||
title: "[BUG]"
|
||||
labels: bug
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Description**
|
||||
Provide a clear and concise description of what the bug is.
|
||||
|
||||
**Steps to Reproduce**
|
||||
Provide a step-by-step process to reproduce the behavior:
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Screenshots/Code snippets**
|
||||
If applicable, add screenshots or code snippets to help explain your problem.
|
||||
|
||||
**Environment Details:**
|
||||
- **Operating System**: [e.g., Ubuntu 20.04, macOS Catalina, Windows 10]
|
||||
- **Python Version**: [e.g., 3.8, 3.9, 3.10]
|
||||
- **crewAI Version**: [e.g., 0.30.11]
|
||||
- **crewAI Tools Version**: [e.g., 0.2.6]
|
||||
|
||||
**Logs**
|
||||
Include relevant logs or error messages if applicable.
|
||||
|
||||
**Possible Solution**
|
||||
Have a solution in mind? Please suggest it here, or write "None".
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
||||
116
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
116
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
@@ -0,0 +1,116 @@
|
||||
name: Bug report
|
||||
description: Create a report to help us improve CrewAI
|
||||
title: "[BUG]"
|
||||
labels: ["bug"]
|
||||
assignees: []
|
||||
body:
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: Provide a clear and concise description of what the bug is.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: steps-to-reproduce
|
||||
attributes:
|
||||
label: Steps to Reproduce
|
||||
description: Provide a step-by-step process to reproduce the behavior.
|
||||
placeholder: |
|
||||
1. Go to '...'
|
||||
2. Click on '....'
|
||||
3. Scroll down to '....'
|
||||
4. See error
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: A clear and concise description of what you expected to happen.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: screenshots-code
|
||||
attributes:
|
||||
label: Screenshots/Code snippets
|
||||
description: If applicable, add screenshots or code snippets to help explain your problem.
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating System
|
||||
description: Select the operating system you're using
|
||||
options:
|
||||
- Ubuntu 20.04
|
||||
- Ubuntu 22.04
|
||||
- Ubuntu 24.04
|
||||
- macOS Catalina
|
||||
- macOS Big Sur
|
||||
- macOS Monterey
|
||||
- macOS Ventura
|
||||
- macOS Sonoma
|
||||
- Windows 10
|
||||
- Windows 11
|
||||
- Other (specify in additional context)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: python-version
|
||||
attributes:
|
||||
label: Python Version
|
||||
description: Version of Python your Crew is running on
|
||||
options:
|
||||
- '3.10'
|
||||
- '3.11'
|
||||
- '3.12'
|
||||
- '3.13'
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
id: crewai-version
|
||||
attributes:
|
||||
label: crewAI Version
|
||||
description: What version of CrewAI are you using
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
id: crewai-tools-version
|
||||
attributes:
|
||||
label: crewAI Tools Version
|
||||
description: What version of CrewAI Tools are you using
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: virtual-environment
|
||||
attributes:
|
||||
label: Virtual Environment
|
||||
description: What Virtual Environment are you running your crew in.
|
||||
options:
|
||||
- Venv
|
||||
- Conda
|
||||
- Poetry
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: evidence
|
||||
attributes:
|
||||
label: Evidence
|
||||
description: Include relevant information, logs or error messages. These can be screenshots.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: possible-solution
|
||||
attributes:
|
||||
label: Possible Solution
|
||||
description: Have a solution in mind? Please suggest it here, or write "None".
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: additional-context
|
||||
attributes:
|
||||
label: Additional context
|
||||
description: Add any other context about the problem here.
|
||||
validations:
|
||||
required: true
|
||||
1
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
1
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1 @@
|
||||
blank_issues_enabled: false
|
||||
24
.github/ISSUE_TEMPLATE/custom.md
vendored
24
.github/ISSUE_TEMPLATE/custom.md
vendored
@@ -1,24 +0,0 @@
|
||||
---
|
||||
name: Custom issue template
|
||||
about: Describe this issue template's purpose here.
|
||||
title: "[DOCS]"
|
||||
labels: documentation
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
## Documentation Page
|
||||
<!-- Provide a link to the documentation page that needs improvement -->
|
||||
|
||||
## Description
|
||||
<!-- Describe what needs to be changed or improved in the documentation -->
|
||||
|
||||
## Suggested Changes
|
||||
<!-- If possible, provide specific suggestions for how to improve the documentation -->
|
||||
|
||||
## Additional Context
|
||||
<!-- Add any other context about the documentation issue here -->
|
||||
|
||||
## Checklist
|
||||
- [ ] I have searched the existing issues to make sure this is not a duplicate
|
||||
- [ ] I have checked the latest version of the documentation to ensure this hasn't been addressed
|
||||
65
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
65
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
@@ -0,0 +1,65 @@
|
||||
name: Feature request
|
||||
description: Suggest a new feature for CrewAI
|
||||
title: "[FEATURE]"
|
||||
labels: ["feature-request"]
|
||||
assignees: []
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this feature request!
|
||||
- type: dropdown
|
||||
id: feature-area
|
||||
attributes:
|
||||
label: Feature Area
|
||||
description: Which area of CrewAI does this feature primarily relate to?
|
||||
options:
|
||||
- Core functionality
|
||||
- Agent capabilities
|
||||
- Task management
|
||||
- Integration with external tools
|
||||
- Performance optimization
|
||||
- Documentation
|
||||
- Other (please specify in additional context)
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: problem
|
||||
attributes:
|
||||
label: Is your feature request related to a an existing bug? Please link it here.
|
||||
description: A link to the bug or NA if not related to an existing bug.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: solution
|
||||
attributes:
|
||||
label: Describe the solution you'd like
|
||||
description: A clear and concise description of what you want to happen.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: alternatives
|
||||
attributes:
|
||||
label: Describe alternatives you've considered
|
||||
description: A clear and concise description of any alternative solutions or features you've considered.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: context
|
||||
attributes:
|
||||
label: Additional context
|
||||
description: Add any other context, screenshots, or examples about the feature request here.
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: willingness-to-contribute
|
||||
attributes:
|
||||
label: Willingness to Contribute
|
||||
description: Would you be willing to contribute to the implementation of this feature?
|
||||
options:
|
||||
- Yes, I'd be happy to submit a pull request
|
||||
- I could provide more detailed specifications
|
||||
- I can test the feature once it's implemented
|
||||
- No, I'm just suggesting the idea
|
||||
validations:
|
||||
required: true
|
||||
6
.github/workflows/mkdocs.yml
vendored
6
.github/workflows/mkdocs.yml
vendored
@@ -1,10 +1,8 @@
|
||||
name: Deploy MkDocs
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
23
.github/workflows/security-checker.yml
vendored
Normal file
23
.github/workflows/security-checker.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: Security Checker
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
jobs:
|
||||
security-check:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11.9"
|
||||
|
||||
- name: Install dependencies
|
||||
run: pip install bandit
|
||||
|
||||
- name: Run Bandit
|
||||
run: bandit -c pyproject.toml -r src/ -lll
|
||||
|
||||
1
.github/workflows/stale.yml
vendored
1
.github/workflows/stale.yml
vendored
@@ -24,3 +24,4 @@ jobs:
|
||||
stale-pr-message: 'This PR is stale because it has been open for 45 days with no activity.'
|
||||
days-before-pr-stale: 45
|
||||
days-before-pr-close: -1
|
||||
operations-per-run: 1200
|
||||
|
||||
1
.github/workflows/tests.yml
vendored
1
.github/workflows/tests.yml
vendored
@@ -11,6 +11,7 @@ env:
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 15
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
|
||||
60
README.md
60
README.md
@@ -8,11 +8,11 @@
|
||||
|
||||
<h3>
|
||||
|
||||
[Homepage](https://www.crewai.io/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/joaomdmoura/crewai-examples) | [Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
[Homepage](https://www.crewai.com/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/crewAIInc/crewAI-examples) | [Discourse](https://community.crewai.com)
|
||||
|
||||
</h3>
|
||||
|
||||
[](https://github.com/joaomdmoura/crewAI)
|
||||
[](https://github.com/crewAIInc/crewAI)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
</div>
|
||||
@@ -73,6 +73,7 @@ os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
# You can pass an optional llm attribute specifying what model you wanna use.
|
||||
# It can be a local model through Ollama / LM Studio or a remote
|
||||
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
|
||||
# If you don't specify a model, the default is OpenAI gpt-4o
|
||||
#
|
||||
# import os
|
||||
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
|
||||
@@ -153,12 +154,12 @@ In addition to the sequential process, you can use the hierarchical process, whi
|
||||
|
||||
## Examples
|
||||
|
||||
You can test different real life examples of AI crews in the [crewAI-examples repo](https://github.com/joaomdmoura/crewAI-examples?tab=readme-ov-file):
|
||||
You can test different real life examples of AI crews in the [crewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
|
||||
|
||||
- [Landing Page Generator](https://github.com/joaomdmoura/crewAI-examples/tree/main/landing_page_generator)
|
||||
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/landing_page_generator)
|
||||
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
|
||||
- [Trip Planner](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner)
|
||||
- [Stock Analysis](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis)
|
||||
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner)
|
||||
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis)
|
||||
|
||||
### Quick Tutorial
|
||||
|
||||
@@ -166,19 +167,19 @@ You can test different real life examples of AI crews in the [crewAI-examples re
|
||||
|
||||
### Write Job Descriptions
|
||||
|
||||
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting) or watch a video below:
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
|
||||
|
||||
### Trip Planner
|
||||
|
||||
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner) or watch a video below:
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
|
||||
|
||||
### Stock Analysis
|
||||
|
||||
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis) or watch a video below:
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
|
||||
|
||||
@@ -190,13 +191,12 @@ Please refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-
|
||||
|
||||
## How CrewAI Compares
|
||||
|
||||
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
|
||||
|
||||
- **Autogen**: While Autogen does good in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
|
||||
|
||||
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
|
||||
|
||||
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
|
||||
|
||||
|
||||
## Contribution
|
||||
|
||||
CrewAI is open-source and we welcome contributions. If you're looking to contribute, please:
|
||||
@@ -284,3 +284,39 @@ Users can opt-in to Further Telemetry, sharing the complete telemetry data by se
|
||||
## License
|
||||
|
||||
CrewAI is released under the MIT License.
|
||||
|
||||
## Frequently Asked Questions (FAQ)
|
||||
|
||||
### Q: What is CrewAI?
|
||||
A: CrewAI is a cutting-edge framework for orchestrating role-playing, autonomous AI agents. It enables agents to work together seamlessly, tackling complex tasks through collaborative intelligence.
|
||||
|
||||
### Q: How do I install CrewAI?
|
||||
A: You can install CrewAI using pip:
|
||||
```shell
|
||||
pip install crewai
|
||||
```
|
||||
For additional tools, use:
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
### Q: Can I use CrewAI with local models?
|
||||
A: Yes, CrewAI supports various LLMs, including local models. You can configure your agents to use local models via tools like Ollama & LM Studio. Check the [LLM Connections documentation](https://docs.crewai.com/how-to/LLM-Connections/) for more details.
|
||||
|
||||
### Q: What are the key features of CrewAI?
|
||||
A: Key features include role-based agent design, autonomous inter-agent delegation, flexible task management, process-driven execution, output saving as files, and compatibility with both open-source and proprietary models.
|
||||
|
||||
### Q: How does CrewAI compare to other AI orchestration tools?
|
||||
A: CrewAI is designed with production in mind, offering flexibility similar to Autogen's conversational agents and structured processes like ChatDev, but with more adaptability for real-world applications.
|
||||
|
||||
### Q: Is CrewAI open-source?
|
||||
A: Yes, CrewAI is open-source and welcomes contributions from the community.
|
||||
|
||||
### Q: Does CrewAI collect any data?
|
||||
A: CrewAI uses anonymous telemetry to collect usage data for improvement purposes. No sensitive data (like prompts, task descriptions, or API calls) is collected. Users can opt-in to share more detailed data by setting `share_crew=True` on their Crews.
|
||||
|
||||
### Q: Where can I find examples of CrewAI in action?
|
||||
A: You can find various real-life examples in the [crewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), including trip planners, stock analysis tools, and more.
|
||||
|
||||
### Q: How can I contribute to CrewAI?
|
||||
A: Contributions are welcome! You can fork the repository, create a new branch for your feature, add your improvement, and send a pull request. Check the Contribution section in the README for more details.
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 1.0 MiB |
Binary file not shown.
|
Before Width: | Height: | Size: 810 KiB |
BIN
docs/assets/langtrace1.png
Normal file
BIN
docs/assets/langtrace1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 223 KiB |
BIN
docs/assets/langtrace2.png
Normal file
BIN
docs/assets/langtrace2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 204 KiB |
BIN
docs/assets/langtrace3.png
Normal file
BIN
docs/assets/langtrace3.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 295 KiB |
142
docs/core-concepts/Cli.md
Normal file
142
docs/core-concepts/Cli.md
Normal file
@@ -0,0 +1,142 @@
|
||||
# CrewAI CLI Documentation
|
||||
|
||||
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews and pipelines.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the CrewAI CLI, make sure you have CrewAI & Poetry installed:
|
||||
|
||||
```
|
||||
pip install crewai poetry
|
||||
```
|
||||
|
||||
## Basic Usage
|
||||
|
||||
The basic structure of a CrewAI CLI command is:
|
||||
|
||||
```
|
||||
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
```
|
||||
|
||||
## Available Commands
|
||||
|
||||
### 1. create
|
||||
|
||||
Create a new crew or pipeline.
|
||||
|
||||
```
|
||||
crewai create [OPTIONS] TYPE NAME
|
||||
```
|
||||
|
||||
- `TYPE`: Choose between "crew" or "pipeline"
|
||||
- `NAME`: Name of the crew or pipeline
|
||||
- `--router`: (Optional) Create a pipeline with router functionality
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai create crew my_new_crew
|
||||
crewai create pipeline my_new_pipeline --router
|
||||
```
|
||||
|
||||
### 2. version
|
||||
|
||||
Show the installed version of CrewAI.
|
||||
|
||||
```
|
||||
crewai version [OPTIONS]
|
||||
```
|
||||
|
||||
- `--tools`: (Optional) Show the installed version of CrewAI tools
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai version
|
||||
crewai version --tools
|
||||
```
|
||||
|
||||
### 3. train
|
||||
|
||||
Train the crew for a specified number of iterations.
|
||||
|
||||
```
|
||||
crewai train [OPTIONS]
|
||||
```
|
||||
|
||||
- `-n, --n_iterations INTEGER`: Number of iterations to train the crew (default: 5)
|
||||
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai train -n 10 -f my_training_data.pkl
|
||||
```
|
||||
|
||||
### 4. replay
|
||||
|
||||
Replay the crew execution from a specific task.
|
||||
|
||||
```
|
||||
crewai replay [OPTIONS]
|
||||
```
|
||||
|
||||
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai replay -t task_123456
|
||||
```
|
||||
|
||||
### 5. log_tasks_outputs
|
||||
|
||||
Retrieve your latest crew.kickoff() task outputs.
|
||||
|
||||
```
|
||||
crewai log_tasks_outputs
|
||||
```
|
||||
|
||||
### 6. reset_memories
|
||||
|
||||
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
|
||||
|
||||
```
|
||||
crewai reset_memories [OPTIONS]
|
||||
```
|
||||
|
||||
- `-l, --long`: Reset LONG TERM memory
|
||||
- `-s, --short`: Reset SHORT TERM memory
|
||||
- `-e, --entities`: Reset ENTITIES memory
|
||||
- `-k, --kickoff-outputs`: Reset LATEST KICKOFF TASK OUTPUTS
|
||||
- `-a, --all`: Reset ALL memories
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai reset_memories --long --short
|
||||
crewai reset_memories --all
|
||||
```
|
||||
|
||||
### 7. test
|
||||
|
||||
Test the crew and evaluate the results.
|
||||
|
||||
```
|
||||
crewai test [OPTIONS]
|
||||
```
|
||||
|
||||
- `-n, --n_iterations INTEGER`: Number of iterations to test the crew (default: 3)
|
||||
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai test -n 5 -m gpt-3.5-turbo
|
||||
```
|
||||
|
||||
### 8. run
|
||||
|
||||
Run the crew.
|
||||
|
||||
```
|
||||
crewai run
|
||||
```
|
||||
|
||||
## Note
|
||||
|
||||
Make sure to run these commands from the directory where your CrewAI project is set up. Some commands may require additional configuration or setup within your project structure.
|
||||
@@ -32,8 +32,8 @@ Each input creates its own run, flowing through all stages of the pipeline. Mult
|
||||
|
||||
## Pipeline Attributes
|
||||
|
||||
| Attribute | Parameters | Description |
|
||||
| :--------- | :--------- | :------------------------------------------------------------------------------------ |
|
||||
| Attribute | Parameters | Description |
|
||||
| :--------- | :--------- | :---------------------------------------------------------------------------------------------- |
|
||||
| **Stages** | `stages` | A list of crews, lists of crews, or routers representing the stages to be executed in sequence. |
|
||||
|
||||
## Creating a Pipeline
|
||||
@@ -239,7 +239,7 @@ email_router = Router(
|
||||
pipeline=normal_pipeline
|
||||
)
|
||||
},
|
||||
default=Pipeline(stages=[normal_pipeline]) # Default to just classification if no urgency score
|
||||
default=Pipeline(stages=[normal_pipeline]) # Default to just normal if no urgency score
|
||||
)
|
||||
|
||||
# Use the router in a main pipeline
|
||||
|
||||
@@ -131,6 +131,7 @@ research_agent = Agent(
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# to perform a semantic search for a specified query from a text's content across the internet
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
task = Task(
|
||||
@@ -312,4 +313,4 @@ save_output_task = Task(
|
||||
|
||||
## Conclusion
|
||||
|
||||
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
|
||||
@@ -0,0 +1,129 @@
|
||||
# Creating a CrewAI Pipeline Project
|
||||
|
||||
Welcome to the comprehensive guide for creating a new CrewAI pipeline project. This document will walk you through the steps to create, customize, and run your CrewAI pipeline project, ensuring you have everything you need to get started.
|
||||
|
||||
To learn more about CrewAI pipelines, visit the [CrewAI documentation](https://docs.crewai.com/core-concepts/Pipeline/).
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before getting started with CrewAI pipelines, make sure that you have installed CrewAI via pip:
|
||||
|
||||
```shell
|
||||
$ pip install crewai crewai-tools
|
||||
```
|
||||
|
||||
The same prerequisites for virtual environments and Code IDEs apply as in regular CrewAI projects.
|
||||
|
||||
## Creating a New Pipeline Project
|
||||
|
||||
To create a new CrewAI pipeline project, you have two options:
|
||||
|
||||
1. For a basic pipeline template:
|
||||
|
||||
```shell
|
||||
$ crewai create pipeline <project_name>
|
||||
```
|
||||
|
||||
2. For a pipeline example that includes a router:
|
||||
|
||||
```shell
|
||||
$ crewai create pipeline --router <project_name>
|
||||
```
|
||||
|
||||
These commands will create a new project folder with the following structure:
|
||||
|
||||
```
|
||||
<project_name>/
|
||||
├── README.md
|
||||
├── poetry.lock
|
||||
├── pyproject.toml
|
||||
├── src/
|
||||
│ └── <project_name>/
|
||||
│ ├── __init__.py
|
||||
│ ├── main.py
|
||||
│ ├── crews/
|
||||
│ │ ├── crew1/
|
||||
│ │ │ ├── crew1.py
|
||||
│ │ │ └── config/
|
||||
│ │ │ ├── agents.yaml
|
||||
│ │ │ └── tasks.yaml
|
||||
│ │ ├── crew2/
|
||||
│ │ │ ├── crew2.py
|
||||
│ │ │ └── config/
|
||||
│ │ │ ├── agents.yaml
|
||||
│ │ │ └── tasks.yaml
|
||||
│ ├── pipelines/
|
||||
│ │ ├── __init__.py
|
||||
│ │ ├── pipeline1.py
|
||||
│ │ └── pipeline2.py
|
||||
│ └── tools/
|
||||
│ ├── __init__.py
|
||||
│ └── custom_tool.py
|
||||
└── tests/
|
||||
```
|
||||
|
||||
## Customizing Your Pipeline Project
|
||||
|
||||
To customize your pipeline project, you can:
|
||||
|
||||
1. Modify the crew files in `src/<project_name>/crews/` to define your agents and tasks for each crew.
|
||||
2. Modify the pipeline files in `src/<project_name>/pipelines/` to define your pipeline structure.
|
||||
3. Modify `src/<project_name>/main.py` to set up and run your pipelines.
|
||||
4. Add your environment variables into the `.env` file.
|
||||
|
||||
### Example: Defining a Pipeline
|
||||
|
||||
Here's an example of how to define a pipeline in `src/<project_name>/pipelines/normal_pipeline.py`:
|
||||
|
||||
```python
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.normal_crew import NormalCrew
|
||||
|
||||
@PipelineBase
|
||||
class NormalPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.normal_crew = NormalCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.normal_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
```
|
||||
|
||||
### Annotations
|
||||
|
||||
The main annotation you'll use for pipelines is `@PipelineBase`. This annotation is used to decorate your pipeline classes, similar to how `@CrewBase` is used for crews.
|
||||
|
||||
## Installing Dependencies
|
||||
|
||||
To install the dependencies for your project, use Poetry:
|
||||
|
||||
```shell
|
||||
$ cd <project_name>
|
||||
$ crewai install
|
||||
```
|
||||
|
||||
## Running Your Pipeline Project
|
||||
|
||||
To run your pipeline project, use the following command:
|
||||
|
||||
```shell
|
||||
$ crewai run
|
||||
```
|
||||
|
||||
This will initialize your pipeline and begin task execution as defined in your `main.py` file.
|
||||
|
||||
## Deploying Your Pipeline Project
|
||||
|
||||
Pipelines can be deployed in the same way as regular CrewAI projects. The easiest way is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your pipeline in a few clicks.
|
||||
|
||||
Remember, when working with pipelines, you're orchestrating multiple crews to work together in a sequence or parallel fashion. This allows for more complex workflows and information processing tasks.
|
||||
@@ -17,40 +17,12 @@ Before we start, there are a couple of things to note:
|
||||
Before getting started with CrewAI, make sure that you have installed it via pip:
|
||||
|
||||
```shell
|
||||
$ pip install crewai crewai-tools
|
||||
$ pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
### Virtual Environments
|
||||
It is highly recommended that you use virtual environments to ensure that your CrewAI project is isolated from other projects and dependencies. Virtual environments provide a clean, separate workspace for each project, preventing conflicts between different versions of packages and libraries. This isolation is crucial for maintaining consistency and reproducibility in your development process. You have multiple options for setting up virtual environments depending on your operating system and Python version:
|
||||
|
||||
1. Use venv (Python's built-in virtual environment tool):
|
||||
venv is included with Python 3.3 and later, making it a convenient choice for many developers. It's lightweight and easy to use, perfect for simple project setups.
|
||||
|
||||
To set up virtual environments with venv, refer to the official [Python documentation](https://docs.python.org/3/tutorial/venv.html).
|
||||
|
||||
2. Use Conda (A Python virtual environment manager):
|
||||
Conda is an open-source package manager and environment management system for Python. It's widely used by data scientists, developers, and researchers to manage dependencies and environments in a reproducible way.
|
||||
|
||||
To set up virtual environments with Conda, refer to the official [Conda documentation](https://docs.conda.io/projects/conda/en/stable/user-guide/getting-started.html).
|
||||
|
||||
3. Use Poetry (A Python package manager and dependency management tool):
|
||||
Poetry is an open-source Python package manager that simplifies the installation of packages and their dependencies. Poetry offers a convenient way to manage virtual environments and dependencies.
|
||||
Poetry is CrewAI's preferred tool for package / dependency management in CrewAI.
|
||||
|
||||
### Code IDEs
|
||||
|
||||
Most users of CrewAI use a Code Editor / Integrated Development Environment (IDE) for building their Crews. You can use any code IDE of your choice. See below for some popular options for Code Editors / Integrated Development Environments (IDE):
|
||||
|
||||
- [Visual Studio Code](https://code.visualstudio.com/) - Most popular
|
||||
- [PyCharm](https://www.jetbrains.com/pycharm/)
|
||||
- [Cursor AI](https://cursor.com)
|
||||
|
||||
Pick one that suits your style and needs.
|
||||
|
||||
## Creating a New Project
|
||||
In this example, we will be using Venv as our virtual environment manager.
|
||||
In this example, we will be using poetry as our virtual environment manager.
|
||||
|
||||
To set up a virtual environment, run the following CLI command:
|
||||
To create a new CrewAI project, run the following CLI command:
|
||||
|
||||
```shell
|
||||
@@ -154,15 +126,15 @@ email_summarizer_task:
|
||||
Use the annotations to properly reference the agent and task in the crew.py file.
|
||||
|
||||
### Annotations include:
|
||||
* @agent
|
||||
* @task
|
||||
* @crew
|
||||
* @llm
|
||||
* @tool
|
||||
* @callback
|
||||
* @output_json
|
||||
* @output_pydantic
|
||||
* @cache_handler
|
||||
* [@agent](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L17)
|
||||
* [@task](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L4)
|
||||
* [@crew](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L69)
|
||||
* [@llm](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L23)
|
||||
* [@tool](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L39)
|
||||
* [@callback](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L44)
|
||||
* [@output_json](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L29)
|
||||
* [@output_pydantic](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L34)
|
||||
* [@cache_handler](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L49)
|
||||
|
||||
crew.py
|
||||
```py
|
||||
@@ -191,8 +163,7 @@ To install the dependencies for your project, you can use Poetry. First, navigat
|
||||
|
||||
```shell
|
||||
$ cd my_project
|
||||
$ poetry lock
|
||||
$ poetry install
|
||||
$ crewai install
|
||||
```
|
||||
|
||||
This will install the dependencies specified in the `pyproject.toml` file.
|
||||
@@ -233,11 +204,6 @@ To run your project, use the following command:
|
||||
```shell
|
||||
$ crewai run
|
||||
```
|
||||
or
|
||||
```shell
|
||||
$ poetry run my_project
|
||||
```
|
||||
|
||||
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
|
||||
|
||||
### Replay Tasks from Latest Crew Kickoff
|
||||
|
||||
@@ -4,9 +4,11 @@ description: Kickoff a Crew Asynchronously
|
||||
---
|
||||
|
||||
## Introduction
|
||||
|
||||
CrewAI provides the ability to kickoff a crew asynchronously, allowing you to start the crew execution in a non-blocking manner. This feature is particularly useful when you want to run multiple crews concurrently or when you need to perform other tasks while the crew is executing.
|
||||
|
||||
## Asynchronous Crew Execution
|
||||
|
||||
To kickoff a crew asynchronously, use the `kickoff_async()` method. This method initiates the crew execution in a separate thread, allowing the main thread to continue executing other tasks.
|
||||
|
||||
### Method Signature
|
||||
@@ -23,10 +25,20 @@ def kickoff_async(self, inputs: dict) -> CrewOutput:
|
||||
|
||||
- `CrewOutput`: An object representing the result of the crew execution.
|
||||
|
||||
## Example
|
||||
Here's an example of how to kickoff a crew asynchronously:
|
||||
## Potential Use Cases
|
||||
|
||||
- **Parallel Content Generation**: Kickoff multiple independent crews asynchronously, each responsible for generating content on different topics. For example, one crew might research and draft an article on AI trends, while another crew generates social media posts about a new product launch. Each crew operates independently, allowing content production to scale efficiently.
|
||||
|
||||
- **Concurrent Market Research Tasks**: Launch multiple crews asynchronously to conduct market research in parallel. One crew might analyze industry trends, while another examines competitor strategies, and yet another evaluates consumer sentiment. Each crew independently completes its task, enabling faster and more comprehensive insights.
|
||||
|
||||
- **Independent Travel Planning Modules**: Execute separate crews to independently plan different aspects of a trip. One crew might handle flight options, another handles accommodation, and a third plans activities. Each crew works asynchronously, allowing various components of the trip to be planned simultaneously and independently for faster results.
|
||||
|
||||
## Example: Single Asynchronous Crew Execution
|
||||
|
||||
Here's an example of how to kickoff a crew asynchronously using asyncio and awaiting the result:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai import Crew, Agent, Task
|
||||
|
||||
# Create an agent with code execution enabled
|
||||
@@ -49,6 +61,57 @@ analysis_crew = Crew(
|
||||
tasks=[data_analysis_task]
|
||||
)
|
||||
|
||||
# Execute the crew asynchronously
|
||||
result = analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
|
||||
```
|
||||
# Async function to kickoff the crew asynchronously
|
||||
async def async_crew_execution():
|
||||
result = await analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
|
||||
print("Crew Result:", result)
|
||||
|
||||
# Run the async function
|
||||
asyncio.run(async_crew_execution())
|
||||
```
|
||||
|
||||
## Example: Multiple Asynchronous Crew Executions
|
||||
|
||||
In this example, we'll show how to kickoff multiple crews asynchronously and wait for all of them to complete using asyncio.gather():
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai import Crew, Agent, Task
|
||||
|
||||
# Create an agent with code execution enabled
|
||||
coding_agent = Agent(
|
||||
role="Python Data Analyst",
|
||||
goal="Analyze data and provide insights using Python",
|
||||
backstory="You are an experienced data analyst with strong Python skills.",
|
||||
allow_code_execution=True
|
||||
)
|
||||
|
||||
# Create tasks that require code execution
|
||||
task_1 = Task(
|
||||
description="Analyze the first dataset and calculate the average age of participants. Ages: {ages}",
|
||||
agent=coding_agent
|
||||
)
|
||||
|
||||
task_2 = Task(
|
||||
description="Analyze the second dataset and calculate the average age of participants. Ages: {ages}",
|
||||
agent=coding_agent
|
||||
)
|
||||
|
||||
# Create two crews and add tasks
|
||||
crew_1 = Crew(agents=[coding_agent], tasks=[task_1])
|
||||
crew_2 = Crew(agents=[coding_agent], tasks=[task_2])
|
||||
|
||||
# Async function to kickoff multiple crews asynchronously and wait for all to finish
|
||||
async def async_multiple_crews():
|
||||
result_1 = crew_1.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
|
||||
result_2 = crew_2.kickoff_async(inputs={"ages": [20, 22, 24, 28, 30]})
|
||||
|
||||
# Wait for both crews to finish
|
||||
results = await asyncio.gather(result_1, result_2)
|
||||
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f"Crew {i} Result:", result)
|
||||
|
||||
# Run the async function
|
||||
asyncio.run(async_multiple_crews())
|
||||
```
|
||||
|
||||
@@ -88,7 +88,7 @@ There are a couple of different ways you can use HuggingFace to host your LLM.
|
||||
|
||||
### Your own HuggingFace endpoint
|
||||
```python
|
||||
from langchain_huggingface import HuggingFaceEndpoint,
|
||||
from langchain_huggingface import HuggingFaceEndpoint
|
||||
|
||||
llm = HuggingFaceEndpoint(
|
||||
repo_id="microsoft/Phi-3-mini-4k-instruct",
|
||||
@@ -112,30 +112,30 @@ Switch between APIs and models seamlessly using environment variables, supportin
|
||||
### Configuration Examples
|
||||
#### FastChat
|
||||
```sh
|
||||
os.environ[OPENAI_API_BASE]="http://localhost:8001/v1"
|
||||
os.environ[OPENAI_MODEL_NAME]='oh-2.5m7b-q51'
|
||||
os.environ[OPENAI_API_KEY]=NA
|
||||
os.environ["OPENAI_API_BASE"]='http://localhost:8001/v1'
|
||||
os.environ["OPENAI_MODEL_NAME"]='oh-2.5m7b-q51'
|
||||
os.environ[OPENAI_API_KEY]='NA'
|
||||
```
|
||||
|
||||
#### LM Studio
|
||||
Launch [LM Studio](https://lmstudio.ai) and go to the Server tab. Then select a model from the dropdown menu and wait for it to load. Once it's loaded, click the green Start Server button and use the URL, port, and API key that's shown (you can modify them). Below is an example of the default settings as of LM Studio 0.2.19:
|
||||
```sh
|
||||
os.environ[OPENAI_API_BASE]="http://localhost:1234/v1"
|
||||
os.environ[OPENAI_API_KEY]="lm-studio"
|
||||
os.environ["OPENAI_API_BASE"]='http://localhost:1234/v1'
|
||||
os.environ["OPENAI_API_KEY"]='lm-studio'
|
||||
```
|
||||
|
||||
#### Groq API
|
||||
```sh
|
||||
os.environ[OPENAI_API_KEY]=your-groq-api-key
|
||||
os.environ[OPENAI_MODEL_NAME]='llama3-8b-8192'
|
||||
os.environ[OPENAI_API_BASE]=https://api.groq.com/openai/v1
|
||||
os.environ["OPENAI_API_KEY"]='your-groq-api-key'
|
||||
os.environ["OPENAI_MODEL_NAME"]='llama3-8b-8192'
|
||||
os.environ["OPENAI_API_BASE"]='https://api.groq.com/openai/v1'
|
||||
```
|
||||
|
||||
#### Mistral API
|
||||
```sh
|
||||
os.environ[OPENAI_API_KEY]=your-mistral-api-key
|
||||
os.environ[OPENAI_API_BASE]=https://api.mistral.ai/v1
|
||||
os.environ[OPENAI_MODEL_NAME]="mistral-small"
|
||||
os.environ["OPENAI_API_KEY"]='your-mistral-api-key'
|
||||
os.environ["OPENAI_API_BASE"]='https://api.mistral.ai/v1'
|
||||
os.environ["OPENAI_MODEL_NAME"]='mistral-small'
|
||||
```
|
||||
|
||||
### Solar
|
||||
@@ -145,17 +145,16 @@ from langchain_community.chat_models.solar import SolarChat
|
||||
```sh
|
||||
os.environ[SOLAR_API_BASE]="https://api.upstage.ai/v1/solar"
|
||||
os.environ[SOLAR_API_KEY]="your-solar-api-key"
|
||||
```
|
||||
|
||||
# Free developer API key available here: https://console.upstage.ai/services/solar
|
||||
# Langchain Example: https://github.com/langchain-ai/langchain/pull/18556
|
||||
|
||||
```
|
||||
|
||||
### Cohere
|
||||
```python
|
||||
from langchain_cohere import ChatCohere
|
||||
# Initialize language model
|
||||
os.environ["COHERE_API_KEY"] = "your-cohere-api-key"
|
||||
os.environ["COHERE_API_KEY"]='your-cohere-api-key'
|
||||
llm = ChatCohere()
|
||||
|
||||
# Free developer API key available here: https://cohere.com/
|
||||
@@ -166,10 +165,10 @@ llm = ChatCohere()
|
||||
For Azure OpenAI API integration, set the following environment variables:
|
||||
```sh
|
||||
|
||||
os.environ[AZURE_OPENAI_DEPLOYMENT] = "Your deployment"
|
||||
os.environ["OPENAI_API_VERSION"] = "2023-12-01-preview"
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = "Your Endpoint"
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = "<Your API Key>"
|
||||
os.environ["AZURE_OPENAI_DEPLOYMENT"]='Your deployment'
|
||||
os.environ["OPENAI_API_VERSION"]='2023-12-01-preview'
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"]='Your Endpoint'
|
||||
os.environ["AZURE_OPENAI_API_KEY"]='Your API Key'
|
||||
```
|
||||
|
||||
### Example Agent with Azure LLM
|
||||
@@ -194,4 +193,4 @@ azure_agent = Agent(
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.
|
||||
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.
|
||||
|
||||
@@ -7,10 +7,14 @@ description: How to monitor cost, latency, and performance of CrewAI Agents usin
|
||||
|
||||
Langtrace is an open-source, external tool that helps you set up observability and evaluations for Large Language Models (LLMs), LLM frameworks, and Vector Databases. While not built directly into CrewAI, Langtrace can be used alongside CrewAI to gain deep visibility into the cost, latency, and performance of your CrewAI Agents. This integration allows you to log hyperparameters, monitor performance regressions, and establish a process for continuous improvement of your Agents.
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
## Setup Instructions
|
||||
|
||||
1. Sign up for [Langtrace](https://langtrace.ai/) by visiting [https://langtrace.ai/signup](https://langtrace.ai/signup).
|
||||
2. Create a project and generate an API key.
|
||||
2. Create a project, set the project type to crewAI & generate an API key.
|
||||
3. Install Langtrace in your CrewAI project using the following commands:
|
||||
|
||||
```bash
|
||||
@@ -32,58 +36,29 @@ langtrace.init(api_key='<LANGTRACE_API_KEY>')
|
||||
from crewai import Agent, Task, Crew
|
||||
```
|
||||
|
||||
2. Create your CrewAI agents and tasks as usual.
|
||||
|
||||
3. Use Langtrace's tracking functions to monitor your CrewAI operations. For example:
|
||||
|
||||
```python
|
||||
with langtrace.trace("CrewAI Task Execution"):
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Features and Their Application to CrewAI
|
||||
|
||||
1. **LLM Token and Cost Tracking**
|
||||
|
||||
- Monitor the token usage and associated costs for each CrewAI agent interaction.
|
||||
- Example:
|
||||
```python
|
||||
with langtrace.trace("Agent Interaction"):
|
||||
agent_response = agent.execute(task)
|
||||
```
|
||||
|
||||
2. **Trace Graph for Execution Steps**
|
||||
|
||||
- Visualize the execution flow of your CrewAI tasks, including latency and logs.
|
||||
- Useful for identifying bottlenecks in your agent workflows.
|
||||
|
||||
3. **Dataset Curation with Manual Annotation**
|
||||
|
||||
- Create datasets from your CrewAI task outputs for future training or evaluation.
|
||||
- Example:
|
||||
```python
|
||||
langtrace.log_dataset_item(task_input, agent_output, {"task_type": "research"})
|
||||
```
|
||||
|
||||
4. **Prompt Versioning and Management**
|
||||
|
||||
- Keep track of different versions of prompts used in your CrewAI agents.
|
||||
- Useful for A/B testing and optimizing agent performance.
|
||||
|
||||
5. **Prompt Playground with Model Comparisons**
|
||||
|
||||
- Test and compare different prompts and models for your CrewAI agents before deployment.
|
||||
|
||||
6. **Testing and Evaluations**
|
||||
- Set up automated tests for your CrewAI agents and tasks.
|
||||
- Example:
|
||||
```python
|
||||
langtrace.evaluate(agent_output, expected_output, "accuracy")
|
||||
```
|
||||
|
||||
## Monitoring New CrewAI Features
|
||||
|
||||
CrewAI has introduced several new features that can be monitored using Langtrace:
|
||||
|
||||
1. **Code Execution**: Monitor the performance and output of code executed by agents.
|
||||
```python
|
||||
with langtrace.trace("Agent Code Execution"):
|
||||
code_output = agent.execute_code(code_snippet)
|
||||
```
|
||||
|
||||
2. **Third-party Agent Integration**: Track interactions with LlamaIndex, LangChain, and Autogen agents.
|
||||
@@ -8,13 +8,20 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
<div style="width:25%">
|
||||
<h2>Getting Started</h2>
|
||||
<ul>
|
||||
<li><a href='./getting-started/Installing-CrewAI'>
|
||||
<li>
|
||||
<a href='./getting-started/Installing-CrewAI'>
|
||||
Installing CrewAI
|
||||
</a>
|
||||
</a>
|
||||
</li>
|
||||
<li><a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
|
||||
<li>
|
||||
<a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
|
||||
Start a New CrewAI Project: Template Method
|
||||
</a>
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href='./getting-started/Create-a-New-CrewAI-Pipeline-Template-Method'>
|
||||
Create a New CrewAI Pipeline: Template Method
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
@@ -5,24 +5,39 @@ description: Understanding the telemetry data collected by CrewAI and how it con
|
||||
|
||||
## Telemetry
|
||||
|
||||
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users. We don't offer a way to disable it now, but we will in the future.
|
||||
!!! note "Personal Information"
|
||||
By default, we collect no data that would be considered personal information under GDPR and other privacy regulations.
|
||||
We do collect Tool's names and Agent's roles, so be advised not to include any personal information in the tool's names or the Agent's roles.
|
||||
Because no personal information is collected, it's not necessary to worry about data residency.
|
||||
When `share_crew` is enabled, additional data is collected which may contain personal information if included by the user. Users should exercise caution when enabling this feature to ensure compliance with privacy regulations.
|
||||
|
||||
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy.
|
||||
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users.
|
||||
|
||||
### Data Collected Includes:
|
||||
- **Version of CrewAI**: Assessing the adoption rate of our latest version helps us understand user needs and guide our updates.
|
||||
- **Python Version**: Identifying the Python versions our users operate with assists in prioritizing our support efforts for these versions.
|
||||
- **General OS Information**: Details like the number of CPUs and the operating system type (macOS, Windows, Linux) enable us to focus our development on the most used operating systems and explore the potential for OS-specific features.
|
||||
- **Number of Agents and Tasks in a Crew**: Ensures our internal testing mirrors real-world scenarios, helping us guide users towards best practices.
|
||||
- **Crew Process Utilization**: Understanding how crews are utilized aids in directing our development focus.
|
||||
- **Memory and Delegation Use by Agents**: Insights into how these features are used help evaluate their effectiveness and future.
|
||||
- **Task Execution Mode**: Knowing whether tasks are executed in parallel or sequentially influences our emphasis on enhancing parallel execution capabilities.
|
||||
- **Language Model Utilization**: Supports our goal to improve support for the most popular languages among our users.
|
||||
- **Roles of Agents within a Crew**: Understanding the various roles agents play aids in crafting better tools, integrations, and examples.
|
||||
- **Tool Usage**: Identifying which tools are most frequently used allows us to prioritize improvements in those areas.
|
||||
It's pivotal to understand that by default, **NO personal data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables.
|
||||
When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights. This expanded data collection may include personal information if users have incorporated it into their crews or tasks. Users should carefully consider the content of their crews and tasks before enabling `share_crew`. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
|
||||
|
||||
### Data Explanation:
|
||||
| Defaulted | Data | Reason and Specifics |
|
||||
|-----------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|
||||
| Yes | CrewAI and Python Version | Tracks software versions. Example: CrewAI v1.2.3, Python 3.8.10. No personal data. |
|
||||
| Yes | Crew Metadata | Includes: randomly generated key and ID, process type (e.g., 'sequential', 'parallel'), boolean flag for memory usage (true/false), count of tasks, count of agents. All non-personal. |
|
||||
| Yes | Agent Data | Includes: randomly generated key and ID, role name (should not include personal info), boolean settings (verbose, delegation enabled, code execution allowed), max iterations, max RPM, max retry limit, LLM info (see LLM Attributes), list of tool names (should not include personal info). No personal data. |
|
||||
| Yes | Task Metadata | Includes: randomly generated key and ID, boolean execution settings (async_execution, human_input), associated agent's role and key, list of tool names. All non-personal. |
|
||||
| Yes | Tool Usage Statistics | Includes: tool name (should not include personal info), number of usage attempts (integer), LLM attributes used. No personal data. |
|
||||
| Yes | Test Execution Data | Includes: crew's randomly generated key and ID, number of iterations, model name used, quality score (float), execution time (in seconds). All non-personal. |
|
||||
| Yes | Task Lifecycle Data | Includes: creation and execution start/end times, crew and task identifiers. Stored as spans with timestamps. No personal data. |
|
||||
| Yes | LLM Attributes | Includes: name, model_name, model, top_k, temperature, and class name of the LLM. All technical, non-personal data. |
|
||||
| Yes | Crew Deployment attempt using crewAI CLI | Includes: The fact a deploy is being made and crew id, and if it's trying to pull logs, no other data. |
|
||||
| No | Agent's Expanded Data | Includes: goal description, backstory text, i18n prompt file identifier. Users should ensure no personal info is included in text fields. |
|
||||
| No | Detailed Task Information | Includes: task description, expected output description, context references. Users should ensure no personal info is included in these fields. |
|
||||
| No | Environment Information | Includes: platform, release, system, version, and CPU count. Example: 'Windows 10', 'x86_64'. No personal data. |
|
||||
| No | Crew and Task Inputs and Outputs | Includes: input parameters and output results as non-identifiable data. Users should ensure no personal info is included. |
|
||||
| No | Comprehensive Crew Execution Data | Includes: detailed logs of crew operations, all agents and tasks data, final output. All non-personal and technical in nature. |
|
||||
|
||||
Note: "No" in the "Defaulted" column indicates that this data is only collected when `share_crew` is set to `true`.
|
||||
|
||||
### Opt-In Further Telemetry Sharing
|
||||
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
|
||||
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns.
|
||||
|
||||
### Updates and Revisions
|
||||
We are committed to maintaining the accuracy and transparency of our documentation. Regular reviews and updates are performed to ensure our documentation accurately reflects the latest developments of our codebase and telemetry practices. Users are encouraged to review this section for the most current information on our data collection practices and how they contribute to the improvement of CrewAI.
|
||||
!!! warning "Potential Personal Information"
|
||||
If you enable `share_crew`, the collected data may include personal information if it has been incorporated into crew configurations, task descriptions, or outputs. Users should carefully review their data and ensure compliance with GDPR and other applicable privacy regulations before enabling this feature.
|
||||
81
docs/tools/SpiderTool.md
Normal file
81
docs/tools/SpiderTool.md
Normal file
@@ -0,0 +1,81 @@
|
||||
# SpiderTool
|
||||
|
||||
## Description
|
||||
|
||||
[Spider](https://spider.cloud/?ref=crewai) is the [fastest](https://github.com/spider-rs/spider/blob/main/benches/BENCHMARKS.md#benchmark-results) open source scraper and crawler that returns LLM-ready data. It converts any website into pure HTML, markdown, metadata or text while enabling you to crawl with custom actions using AI.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the Spider API you need to download the [Spider SDK](https://pypi.org/project/spider-client/) and the crewai[tools] SDK too:
|
||||
|
||||
```python
|
||||
pip install spider-client 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
This example shows you how you can use the Spider tool to enable your agent to scrape and crawl websites. The data returned from the Spider API is already LLM-ready, so no need to do any cleaning there.
|
||||
|
||||
```python
|
||||
from crewai_tools import SpiderTool
|
||||
|
||||
def main():
|
||||
spider_tool = SpiderTool()
|
||||
|
||||
searcher = Agent(
|
||||
role="Web Research Expert",
|
||||
goal="Find related information from specific URL's",
|
||||
backstory="An expert web researcher that uses the web extremely well",
|
||||
tools=[spider_tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
return_metadata = Task(
|
||||
description="Scrape https://spider.cloud with a limit of 1 and enable metadata",
|
||||
expected_output="Metadata and 10 word summary of spider.cloud",
|
||||
agent=searcher
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[searcher],
|
||||
tasks=[
|
||||
return_metadata,
|
||||
],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
crew.kickoff()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key` (string, optional): Specifies Spider API key. If not specified, it looks for `SPIDER_API_KEY` in environment variables.
|
||||
- `params` (object, optional): Optional parameters for the request. Defaults to `{"return_format": "markdown"}` to return the website's content in a format that fits LLMs better.
|
||||
- `request` (string): The request type to perform. Possible values are `http`, `chrome`, and `smart`. Use `smart` to perform an HTTP request by default until JavaScript rendering is needed for the HTML.
|
||||
- `limit` (int): The maximum number of pages allowed to crawl per website. Remove the value or set it to `0` to crawl all pages.
|
||||
- `depth` (int): The crawl limit for maximum depth. If `0`, no limit will be applied.
|
||||
- `cache` (bool): Use HTTP caching for the crawl to speed up repeated runs. Default is `true`.
|
||||
- `budget` (object): Object that has paths with a counter for limiting the amount of pages example `{"*":1}` for only crawling the root page.
|
||||
- `locale` (string): The locale to use for request, example `en-US`.
|
||||
- `cookies` (string): Add HTTP cookies to use for request.
|
||||
- `stealth` (bool): Use stealth mode for headless chrome request to help prevent being blocked. The default is `true` on chrome.
|
||||
- `headers` (object): Forward HTTP headers to use for all request. The object is expected to be a map of key value pairs.
|
||||
- `metadata` (bool): Boolean to store metadata about the pages and content found. This could help improve AI interopt. Defaults to `false` unless you have the website already stored with the configuration enabled.
|
||||
- `viewport` (object): Configure the viewport for chrome. Defaults to `800x600`.
|
||||
- `encoding` (string): The type of encoding to use like `UTF-8`, `SHIFT_JIS`, or etc.
|
||||
- `subdomains` (bool): Allow subdomains to be included. Default is `false`.
|
||||
- `user_agent` (string): Add a custom HTTP user agent to the request. By default this is set to a random agent.
|
||||
- `store_data` (bool): Boolean to determine if storage should be used. If set this takes precedence over `storageless`. Defaults to `false`.
|
||||
- `gpt_config` (object): Use AI to generate actions to perform during the crawl. You can pass an array for the `"prompt"` to chain steps.
|
||||
- `fingerprint` (bool): Use advanced fingerprint for chrome.
|
||||
- `storageless` (bool): Boolean to prevent storing any type of data for the request including storage and AI vectors embedding. Defaults to `false` unless you have the website already stored.
|
||||
- `readability` (bool): Use [readability](https://github.com/mozilla/readability) to pre-process the content for reading. This may drastically improve the content for LLM usage.
|
||||
`return_format` (string): The format to return the data in. Possible values are `markdown`, `raw`, `text`, and `html2text`. Use `raw` to return the default format of the page like HTML etc.
|
||||
- `proxy_enabled` (bool): Enable high performance premium proxies for the request to prevent being blocked at the network level.
|
||||
- `query_selector` (string): The CSS query selector to use when extracting content from the markup.
|
||||
- `full_resources` (bool): Crawl and download all the resources for a website.
|
||||
- `request_timeout` (int): The timeout to use for request. Timeouts can be from `5-60`. The default is `30` seconds.
|
||||
- `run_in_background` (bool): Run the request in the background. Useful if storing data and wanting to trigger crawls to the dashboard. This has no effect if storageless is set.
|
||||
@@ -2,8 +2,8 @@ site_name: crewAI
|
||||
site_author: crewAI, Inc
|
||||
site_description: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
|
||||
repo_name: crewAI
|
||||
repo_url: https://github.com/joaomdmoura/crewai/
|
||||
site_url: https://crewai.com
|
||||
repo_url: https://github.com/crewAIInc/crewAI
|
||||
site_url: https://docs.crewai.com
|
||||
edit_uri: edit/main/docs/
|
||||
copyright: Copyright © 2024 crewAI, Inc
|
||||
|
||||
@@ -129,6 +129,7 @@ nav:
|
||||
- Processes: 'core-concepts/Processes.md'
|
||||
- Crews: 'core-concepts/Crews.md'
|
||||
- Collaboration: 'core-concepts/Collaboration.md'
|
||||
- Pipeline: 'core-concepts/Pipeline.md'
|
||||
- Training: 'core-concepts/Training-Crew.md'
|
||||
- Memory: 'core-concepts/Memory.md'
|
||||
- Planning: 'core-concepts/Planning.md'
|
||||
@@ -177,6 +178,7 @@ nav:
|
||||
- PG RAG Search: 'tools/PGSearchTool.md'
|
||||
- Scrape Website: 'tools/ScrapeWebsiteTool.md'
|
||||
- Selenium Scraper: 'tools/SeleniumScrapingTool.md'
|
||||
- Spider Scraper: 'tools/SpiderTool.md'
|
||||
- TXT RAG Search: 'tools/TXTSearchTool.md'
|
||||
- Vision Tool: 'tools/VisionTool.md'
|
||||
- Website RAG Search: 'tools/WebsiteSearchTool.md'
|
||||
|
||||
2580
poetry.lock
generated
2580
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "crewai"
|
||||
version = "0.51.1"
|
||||
version = "0.55.2"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
authors = ["Joao Moura <joao@crewai.com>"]
|
||||
readme = "README.md"
|
||||
@@ -8,8 +8,8 @@ packages = [{ include = "crewai", from = "src" }]
|
||||
|
||||
[tool.poetry.urls]
|
||||
Homepage = "https://crewai.com"
|
||||
Documentation = "https://github.com/joaomdmoura/CrewAI/wiki/Index"
|
||||
Repository = "https://github.com/joaomdmoura/crewai"
|
||||
Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
@@ -20,8 +20,8 @@ opentelemetry-api = "^1.22.0"
|
||||
opentelemetry-sdk = "^1.22.0"
|
||||
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
|
||||
instructor = "1.3.3"
|
||||
regex = "^2023.12.25"
|
||||
crewai-tools = { version = "^0.8.3", optional = true }
|
||||
regex = "^2024.7.24"
|
||||
crewai-tools = { version = "^0.12.0", optional = true }
|
||||
click = "^8.1.7"
|
||||
python-dotenv = "^1.0.0"
|
||||
appdirs = "^1.4.4"
|
||||
@@ -29,6 +29,7 @@ jsonref = "^1.1.0"
|
||||
agentops = { version = "^0.3.0", optional = true }
|
||||
embedchain = "^0.1.114"
|
||||
json-repair = "^0.25.2"
|
||||
auth0-python = "^4.7.1"
|
||||
|
||||
[tool.poetry.extras]
|
||||
tools = ["crewai-tools"]
|
||||
@@ -46,7 +47,7 @@ mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
|
||||
mkdocs-material-extensions = "^1.3.1"
|
||||
pillow = "^10.2.0"
|
||||
cairosvg = "^2.7.1"
|
||||
crewai-tools = "^0.8.3"
|
||||
crewai-tools = "^0.12.0"
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
pytest = "^8.0.0"
|
||||
@@ -62,6 +63,9 @@ ignore_missing_imports = true
|
||||
disable_error_code = 'import-untyped'
|
||||
exclude = ["cli/templates"]
|
||||
|
||||
[tool.bandit]
|
||||
exclude_dirs = ["src/crewai/cli/templates"]
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
@@ -2,6 +2,7 @@ from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.pipeline import Pipeline
|
||||
from crewai.process import Process
|
||||
from crewai.routers import Router
|
||||
from crewai.task import Task
|
||||
|
||||
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline"]
|
||||
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router"]
|
||||
|
||||
@@ -113,40 +113,46 @@ class Agent(BaseAgent):
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
)
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
__pydantic_self__.agent_ops_agent_name = __pydantic_self__.role
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_agent_executor(self) -> "Agent":
|
||||
"""Ensure agent executor and token process are set."""
|
||||
if hasattr(self.llm, "model_name"):
|
||||
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
|
||||
def post_init_setup(self):
|
||||
self.agent_ops_agent_name = self.role
|
||||
|
||||
# Ensure self.llm.callbacks is a list
|
||||
if not isinstance(self.llm.callbacks, list):
|
||||
self.llm.callbacks = []
|
||||
# Different llms store the model name in different attributes
|
||||
model_name = getattr(self.llm, "model_name", None) or getattr(
|
||||
self.llm, "deployment_name", None
|
||||
)
|
||||
|
||||
# Check if an instance of TokenCalcHandler already exists in the list
|
||||
if not any(
|
||||
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
|
||||
):
|
||||
self.llm.callbacks.append(token_handler)
|
||||
|
||||
if agentops and not any(
|
||||
isinstance(handler, agentops.LangchainCallbackHandler)
|
||||
for handler in self.llm.callbacks
|
||||
):
|
||||
agentops.stop_instrumenting()
|
||||
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
|
||||
if model_name:
|
||||
self._setup_llm_callbacks(model_name)
|
||||
|
||||
if not self.agent_executor:
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
self._setup_agent_executor()
|
||||
|
||||
return self
|
||||
|
||||
def _setup_llm_callbacks(self, model_name: str):
|
||||
token_handler = TokenCalcHandler(model_name, self._token_process)
|
||||
|
||||
if not isinstance(self.llm.callbacks, list):
|
||||
self.llm.callbacks = []
|
||||
|
||||
if not any(
|
||||
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
|
||||
):
|
||||
self.llm.callbacks.append(token_handler)
|
||||
|
||||
if agentops and not any(
|
||||
isinstance(handler, agentops.LangchainCallbackHandler)
|
||||
for handler in self.llm.callbacks
|
||||
):
|
||||
agentops.stop_instrumenting()
|
||||
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
|
||||
|
||||
def _setup_agent_executor(self):
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
|
||||
def execute_task(
|
||||
self,
|
||||
task: Any,
|
||||
@@ -213,7 +219,7 @@ class Agent(BaseAgent):
|
||||
raise e
|
||||
result = self.execute_task(task, context, tools)
|
||||
|
||||
if self.max_rpm:
|
||||
if self.max_rpm and self._rpm_controller:
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
|
||||
# If there was any tool in self.tools_results that had result_as_answer
|
||||
|
||||
@@ -2,3 +2,5 @@ from .cache.cache_handler import CacheHandler
|
||||
from .executor import CrewAgentExecutor
|
||||
from .parser import CrewAgentParser
|
||||
from .tools_handler import ToolsHandler
|
||||
|
||||
__all__ = ["CacheHandler", "CrewAgentExecutor", "CrewAgentParser", "ToolsHandler"]
|
||||
|
||||
@@ -7,7 +7,6 @@ from typing import Any, Dict, List, Optional, TypeVar
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
PrivateAttr,
|
||||
@@ -20,6 +19,7 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
from crewai.utilities.config import process_config
|
||||
|
||||
T = TypeVar("T", bound="BaseAgent")
|
||||
|
||||
@@ -74,21 +74,26 @@ class BaseAgent(ABC, BaseModel):
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
_logger: Logger = PrivateAttr()
|
||||
_rpm_controller: RPMController = PrivateAttr(default=None)
|
||||
_logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=False))
|
||||
_rpm_controller: Optional[RPMController] = PrivateAttr(default=None)
|
||||
_request_within_rpm_limit: Any = PrivateAttr(default=None)
|
||||
formatting_errors: int = 0
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
_original_role: Optional[str] = PrivateAttr(default=None)
|
||||
_original_goal: Optional[str] = PrivateAttr(default=None)
|
||||
_original_backstory: Optional[str] = PrivateAttr(default=None)
|
||||
_token_process: TokenProcess = PrivateAttr(default_factory=TokenProcess)
|
||||
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
|
||||
formatting_errors: int = Field(
|
||||
default=0, description="Number of formatting errors."
|
||||
)
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent", default=None, exclude=True
|
||||
)
|
||||
cache: bool = Field(
|
||||
default=True, description="Whether the agent should use a cache for tool usage."
|
||||
)
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent", default=None
|
||||
)
|
||||
verbose: bool = Field(
|
||||
default=False, description="Verbose mode for the Agent Execution"
|
||||
)
|
||||
@@ -123,20 +128,29 @@ class BaseAgent(ABC, BaseModel):
|
||||
default=None, description="Maximum number of tokens for the agent's execution."
|
||||
)
|
||||
|
||||
_original_role: str | None = None
|
||||
_original_goal: str | None = None
|
||||
_original_backstory: str | None = None
|
||||
_token_process: TokenProcess = TokenProcess()
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def process_model_config(cls, values):
|
||||
return process_config(values, cls)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_config_attributes(self):
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
def validate_and_set_attributes(self):
|
||||
# Validate required fields
|
||||
for field in ["role", "goal", "backstory"]:
|
||||
if getattr(self, field) is None:
|
||||
raise ValueError(
|
||||
f"{field} must be provided either directly or through config"
|
||||
)
|
||||
|
||||
# Set private attributes
|
||||
self._logger = Logger(verbose=self.verbose)
|
||||
if self.max_rpm and not self._rpm_controller:
|
||||
self._rpm_controller = RPMController(
|
||||
max_rpm=self.max_rpm, logger=self._logger
|
||||
)
|
||||
if not self._token_process:
|
||||
self._token_process = TokenProcess()
|
||||
|
||||
return self
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@@ -147,14 +161,6 @@ class BaseAgent(ABC, BaseModel):
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_attributes_based_on_config(self) -> "BaseAgent":
|
||||
"""Set attributes based on the agent configuration."""
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_private_attrs(self):
|
||||
"""Set private attributes."""
|
||||
@@ -170,7 +176,7 @@ class BaseAgent(ABC, BaseModel):
|
||||
@property
|
||||
def key(self):
|
||||
source = [self.role, self.goal, self.backstory]
|
||||
return md5("|".join(source).encode()).hexdigest()
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
@abstractmethod
|
||||
def execute_task(
|
||||
|
||||
2
src/crewai/agents/cache/__init__.py
vendored
2
src/crewai/agents/cache/__init__.py
vendored
@@ -1 +1,3 @@
|
||||
from .cache_handler import CacheHandler
|
||||
|
||||
__all__ = ["CacheHandler"]
|
||||
|
||||
11
src/crewai/agents/cache/cache_handler.py
vendored
11
src/crewai/agents/cache/cache_handler.py
vendored
@@ -1,13 +1,12 @@
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, PrivateAttr
|
||||
|
||||
|
||||
class CacheHandler:
|
||||
class CacheHandler(BaseModel):
|
||||
"""Callback handler for tool usage."""
|
||||
|
||||
_cache: dict = {}
|
||||
|
||||
def __init__(self):
|
||||
self._cache = {}
|
||||
_cache: Dict[str, Any] = PrivateAttr(default_factory=dict)
|
||||
|
||||
def add(self, tool, input, output):
|
||||
self._cache[f"{tool}-{input}"] = output
|
||||
|
||||
@@ -1,33 +1,29 @@
|
||||
import threading
|
||||
import time
|
||||
from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union
|
||||
|
||||
import click
|
||||
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.agent import ExceptionTool
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils.input import get_color_mapping
|
||||
from pydantic import InstanceOf
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
|
||||
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
|
||||
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
@@ -213,11 +209,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
yield step
|
||||
return
|
||||
|
||||
yield AgentStep(
|
||||
action=AgentAction("_Exception", str(e), str(e)),
|
||||
observation=str(e),
|
||||
)
|
||||
return
|
||||
raise e
|
||||
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
|
||||
3
src/crewai/cli/authentication/__init__.py
Normal file
3
src/crewai/cli/authentication/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .main import AuthenticationCommand
|
||||
|
||||
__all__ = ["AuthenticationCommand"]
|
||||
4
src/crewai/cli/authentication/constants.py
Normal file
4
src/crewai/cli/authentication/constants.py
Normal file
@@ -0,0 +1,4 @@
|
||||
ALGORITHMS = ["RS256"]
|
||||
AUTH0_DOMAIN = "crewai.us.auth0.com"
|
||||
AUTH0_CLIENT_ID = "DEVC5Fw6NlRoSzmDCcOhVq85EfLBjKa8"
|
||||
AUTH0_AUDIENCE = "https://crewai.us.auth0.com/api/v2/"
|
||||
75
src/crewai/cli/authentication/main.py
Normal file
75
src/crewai/cli/authentication/main.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import time
|
||||
import webbrowser
|
||||
from typing import Any, Dict
|
||||
|
||||
import requests
|
||||
from rich.console import Console
|
||||
|
||||
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
|
||||
from .utils import TokenManager, validate_token
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
class AuthenticationCommand:
|
||||
DEVICE_CODE_URL = f"https://{AUTH0_DOMAIN}/oauth/device/code"
|
||||
TOKEN_URL = f"https://{AUTH0_DOMAIN}/oauth/token"
|
||||
|
||||
def __init__(self):
|
||||
self.token_manager = TokenManager()
|
||||
|
||||
def signup(self) -> None:
|
||||
"""Sign up to CrewAI+"""
|
||||
console.print("Signing Up to CrewAI+ \n", style="bold blue")
|
||||
device_code_data = self._get_device_code()
|
||||
self._display_auth_instructions(device_code_data)
|
||||
|
||||
return self._poll_for_token(device_code_data)
|
||||
|
||||
def _get_device_code(self) -> Dict[str, Any]:
|
||||
"""Get the device code to authenticate the user."""
|
||||
|
||||
device_code_payload = {
|
||||
"client_id": AUTH0_CLIENT_ID,
|
||||
"scope": "openid",
|
||||
"audience": AUTH0_AUDIENCE,
|
||||
}
|
||||
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
def _display_auth_instructions(self, device_code_data: Dict[str, str]) -> None:
|
||||
"""Display the authentication instructions to the user."""
|
||||
console.print("1. Navigate to: ", device_code_data["verification_uri_complete"])
|
||||
console.print("2. Enter the following code: ", device_code_data["user_code"])
|
||||
webbrowser.open(device_code_data["verification_uri_complete"])
|
||||
|
||||
def _poll_for_token(self, device_code_data: Dict[str, Any]) -> None:
|
||||
"""Poll the server for the token."""
|
||||
token_payload = {
|
||||
"grant_type": "urn:ietf:params:oauth:grant-type:device_code",
|
||||
"device_code": device_code_data["device_code"],
|
||||
"client_id": AUTH0_CLIENT_ID,
|
||||
}
|
||||
|
||||
attempts = 0
|
||||
while True and attempts < 5:
|
||||
response = requests.post(self.TOKEN_URL, data=token_payload)
|
||||
token_data = response.json()
|
||||
|
||||
if response.status_code == 200:
|
||||
validate_token(token_data["id_token"])
|
||||
expires_in = 360000 # Token expiration time in seconds
|
||||
self.token_manager.save_tokens(token_data["access_token"], expires_in)
|
||||
console.print("\nWelcome to CrewAI+ !!", style="green")
|
||||
return
|
||||
|
||||
if token_data["error"] not in ("authorization_pending", "slow_down"):
|
||||
raise requests.HTTPError(token_data["error_description"])
|
||||
|
||||
time.sleep(device_code_data["interval"])
|
||||
attempts += 1
|
||||
|
||||
console.print(
|
||||
"Timeout: Failed to get the token. Please try again.", style="bold red"
|
||||
)
|
||||
144
src/crewai/cli/authentication/utils.py
Normal file
144
src/crewai/cli/authentication/utils.py
Normal file
@@ -0,0 +1,144 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from auth0.authentication.token_verifier import (
|
||||
AsymmetricSignatureVerifier,
|
||||
TokenVerifier,
|
||||
)
|
||||
from cryptography.fernet import Fernet
|
||||
|
||||
from .constants import AUTH0_CLIENT_ID, AUTH0_DOMAIN
|
||||
|
||||
|
||||
def validate_token(id_token: str) -> None:
|
||||
"""
|
||||
Verify the token and its precedence
|
||||
|
||||
:param id_token:
|
||||
"""
|
||||
jwks_url = f"https://{AUTH0_DOMAIN}/.well-known/jwks.json"
|
||||
issuer = f"https://{AUTH0_DOMAIN}/"
|
||||
signature_verifier = AsymmetricSignatureVerifier(jwks_url)
|
||||
token_verifier = TokenVerifier(
|
||||
signature_verifier=signature_verifier, issuer=issuer, audience=AUTH0_CLIENT_ID
|
||||
)
|
||||
token_verifier.verify(id_token)
|
||||
|
||||
|
||||
class TokenManager:
|
||||
def __init__(self, file_path: str = "tokens.enc") -> None:
|
||||
"""
|
||||
Initialize the TokenManager class.
|
||||
|
||||
:param file_path: The file path to store the encrypted tokens. Default is "tokens.enc".
|
||||
"""
|
||||
self.file_path = file_path
|
||||
self.key = self._get_or_create_key()
|
||||
self.fernet = Fernet(self.key)
|
||||
|
||||
def _get_or_create_key(self) -> bytes:
|
||||
"""
|
||||
Get or create the encryption key.
|
||||
|
||||
:return: The encryption key.
|
||||
"""
|
||||
key_filename = "secret.key"
|
||||
key = self.read_secure_file(key_filename)
|
||||
|
||||
if key is not None:
|
||||
return key
|
||||
|
||||
new_key = Fernet.generate_key()
|
||||
self.save_secure_file(key_filename, new_key)
|
||||
return new_key
|
||||
|
||||
def save_tokens(self, access_token: str, expires_in: int) -> None:
|
||||
"""
|
||||
Save the access token and its expiration time.
|
||||
|
||||
:param access_token: The access token to save.
|
||||
:param expires_in: The expiration time of the access token in seconds.
|
||||
"""
|
||||
expiration_time = datetime.now() + timedelta(seconds=expires_in)
|
||||
data = {
|
||||
"access_token": access_token,
|
||||
"expiration": expiration_time.isoformat(),
|
||||
}
|
||||
encrypted_data = self.fernet.encrypt(json.dumps(data).encode())
|
||||
self.save_secure_file(self.file_path, encrypted_data)
|
||||
|
||||
def get_token(self) -> Optional[str]:
|
||||
"""
|
||||
Get the access token if it is valid and not expired.
|
||||
|
||||
:return: The access token if valid and not expired, otherwise None.
|
||||
"""
|
||||
encrypted_data = self.read_secure_file(self.file_path)
|
||||
|
||||
decrypted_data = self.fernet.decrypt(encrypted_data)
|
||||
data = json.loads(decrypted_data)
|
||||
|
||||
expiration = datetime.fromisoformat(data["expiration"])
|
||||
if expiration <= datetime.now():
|
||||
return None
|
||||
|
||||
return data["access_token"]
|
||||
|
||||
def get_secure_storage_path(self) -> Path:
|
||||
"""
|
||||
Get the secure storage path based on the operating system.
|
||||
|
||||
:return: The secure storage path.
|
||||
"""
|
||||
if sys.platform == "win32":
|
||||
# Windows: Use %LOCALAPPDATA%
|
||||
base_path = os.environ.get("LOCALAPPDATA")
|
||||
elif sys.platform == "darwin":
|
||||
# macOS: Use ~/Library/Application Support
|
||||
base_path = os.path.expanduser("~/Library/Application Support")
|
||||
else:
|
||||
# Linux and other Unix-like: Use ~/.local/share
|
||||
base_path = os.path.expanduser("~/.local/share")
|
||||
|
||||
app_name = "crewai/credentials"
|
||||
storage_path = Path(base_path) / app_name
|
||||
|
||||
storage_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
return storage_path
|
||||
|
||||
def save_secure_file(self, filename: str, content: bytes) -> None:
|
||||
"""
|
||||
Save the content to a secure file.
|
||||
|
||||
:param filename: The name of the file.
|
||||
:param content: The content to save.
|
||||
"""
|
||||
storage_path = self.get_secure_storage_path()
|
||||
file_path = storage_path / filename
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(content)
|
||||
|
||||
# Set appropriate permissions (read/write for owner only)
|
||||
os.chmod(file_path, 0o600)
|
||||
|
||||
def read_secure_file(self, filename: str) -> Optional[bytes]:
|
||||
"""
|
||||
Read the content of a secure file.
|
||||
|
||||
:param filename: The name of the file.
|
||||
:return: The content of the file if it exists, otherwise None.
|
||||
"""
|
||||
storage_path = self.get_secure_storage_path()
|
||||
file_path = storage_path / filename
|
||||
|
||||
if not file_path.exists():
|
||||
return None
|
||||
|
||||
with open(file_path, "rb") as f:
|
||||
return f.read()
|
||||
@@ -1,13 +1,19 @@
|
||||
from typing import Optional
|
||||
|
||||
import click
|
||||
import pkg_resources
|
||||
|
||||
from crewai.cli.create_crew import create_crew
|
||||
from crewai.cli.create_flow import create_flow
|
||||
from crewai.cli.create_pipeline import create_pipeline
|
||||
from crewai.memory.storage.kickoff_task_outputs_storage import (
|
||||
KickoffTaskOutputsSQLiteStorage,
|
||||
)
|
||||
|
||||
from .authentication.main import AuthenticationCommand
|
||||
from .deploy.main import DeployCommand
|
||||
from .evaluate_crew import evaluate_crew
|
||||
from .install_crew import install_crew
|
||||
from .replay_from_task import replay_task_command
|
||||
from .reset_memories_command import reset_memories_command
|
||||
from .run_crew import run_crew
|
||||
@@ -20,19 +26,20 @@ def crewai():
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.argument("type", type=click.Choice(["crew", "pipeline"]))
|
||||
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
|
||||
@click.argument("name")
|
||||
@click.option(
|
||||
"--router", is_flag=True, help="Create a pipeline with router functionality"
|
||||
)
|
||||
def create(type, name, router):
|
||||
"""Create a new crew or pipeline."""
|
||||
def create(type, name):
|
||||
"""Create a new crew, pipeline, or flow."""
|
||||
if type == "crew":
|
||||
create_crew(name)
|
||||
elif type == "pipeline":
|
||||
create_pipeline(name, router)
|
||||
create_pipeline(name)
|
||||
elif type == "flow":
|
||||
create_flow(name)
|
||||
else:
|
||||
click.secho("Error: Invalid type. Must be 'crew' or 'pipeline'.", fg="red")
|
||||
click.secho(
|
||||
"Error: Invalid type. Must be 'crew', 'pipeline', or 'flow'.", fg="red"
|
||||
)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@@ -165,12 +172,84 @@ def test(n_iterations: int, model: str):
|
||||
evaluate_crew(n_iterations, model)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def install():
|
||||
"""Install the Crew."""
|
||||
install_crew()
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def run():
|
||||
"""Run the crew."""
|
||||
click.echo("Running the crew")
|
||||
"""Run the Crew."""
|
||||
click.echo("Running the Crew")
|
||||
run_crew()
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def signup():
|
||||
"""Sign Up/Login to CrewAI+."""
|
||||
AuthenticationCommand().signup()
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def login():
|
||||
"""Sign Up/Login to CrewAI+."""
|
||||
AuthenticationCommand().signup()
|
||||
|
||||
|
||||
# DEPLOY CREWAI+ COMMANDS
|
||||
@crewai.group()
|
||||
def deploy():
|
||||
"""Deploy the Crew CLI group."""
|
||||
pass
|
||||
|
||||
|
||||
@deploy.command(name="create")
|
||||
@click.option("-y", "--yes", is_flag=True, help="Skip the confirmation prompt")
|
||||
def deploy_create(yes: bool):
|
||||
"""Create a Crew deployment."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.create_crew(yes)
|
||||
|
||||
|
||||
@deploy.command(name="list")
|
||||
def deploy_list():
|
||||
"""List all deployments."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.list_crews()
|
||||
|
||||
|
||||
@deploy.command(name="push")
|
||||
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
|
||||
def deploy_push(uuid: Optional[str]):
|
||||
"""Deploy the Crew."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.deploy(uuid=uuid)
|
||||
|
||||
|
||||
@deploy.command(name="status")
|
||||
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
|
||||
def deply_status(uuid: Optional[str]):
|
||||
"""Get the status of a deployment."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.get_crew_status(uuid=uuid)
|
||||
|
||||
|
||||
@deploy.command(name="logs")
|
||||
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
|
||||
def deploy_logs(uuid: Optional[str]):
|
||||
"""Get the logs of a deployment."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.get_crew_logs(uuid=uuid)
|
||||
|
||||
|
||||
@deploy.command(name="remove")
|
||||
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
|
||||
def deploy_remove(uuid: Optional[str]):
|
||||
"""Remove a deployment."""
|
||||
deploy_cmd = DeployCommand()
|
||||
deploy_cmd.remove_crew(uuid=uuid)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
crewai()
|
||||
|
||||
86
src/crewai/cli/create_flow.py
Normal file
86
src/crewai/cli/create_flow.py
Normal file
@@ -0,0 +1,86 @@
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def create_flow(name):
|
||||
"""Create a new flow."""
|
||||
folder_name = name.replace(" ", "_").replace("-", "_").lower()
|
||||
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
|
||||
|
||||
click.secho(f"Creating flow {folder_name}...", fg="green", bold=True)
|
||||
|
||||
project_root = Path(folder_name)
|
||||
if project_root.exists():
|
||||
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
|
||||
return
|
||||
|
||||
# Create directory structure
|
||||
(project_root / "src" / folder_name).mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(project_root / "tests").mkdir(exist_ok=True)
|
||||
|
||||
# Create .env file
|
||||
with open(project_root / ".env", "w") as file:
|
||||
file.write("OPENAI_API_KEY=YOUR_API_KEY")
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
templates_dir = package_dir / "templates" / "flow"
|
||||
|
||||
# List of template files to copy
|
||||
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
|
||||
src_template_files = ["__init__.py", "main.py"]
|
||||
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
|
||||
|
||||
crew_folders = [
|
||||
"poem_crew",
|
||||
]
|
||||
|
||||
def process_file(src_file, dst_file):
|
||||
with open(src_file, "r") as file:
|
||||
content = file.read()
|
||||
|
||||
content = content.replace("{{name}}", name)
|
||||
content = content.replace("{{flow_name}}", class_name)
|
||||
content = content.replace("{{folder_name}}", folder_name)
|
||||
|
||||
with open(dst_file, "w") as file:
|
||||
file.write(content)
|
||||
|
||||
# Copy and process root template files
|
||||
for file_name in root_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy and process src template files
|
||||
for file_name in src_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy tools files
|
||||
for file_name in tools_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy crew folders
|
||||
for crew_folder in crew_folders:
|
||||
src_crew_folder = templates_dir / "crews" / crew_folder
|
||||
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
|
||||
if src_crew_folder.exists():
|
||||
for src_file in src_crew_folder.rglob("*"):
|
||||
if src_file.is_file():
|
||||
relative_path = src_file.relative_to(src_crew_folder)
|
||||
dst_file = dst_crew_folder / relative_path
|
||||
dst_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
process_file(src_file, dst_file)
|
||||
else:
|
||||
click.secho(
|
||||
f"Warning: Crew folder {crew_folder} not found in template.",
|
||||
fg="yellow",
|
||||
)
|
||||
|
||||
click.secho(f"Flow {name} created successfully!", fg="green", bold=True)
|
||||
0
src/crewai/cli/deploy/__init__.py
Normal file
0
src/crewai/cli/deploy/__init__.py
Normal file
66
src/crewai/cli/deploy/api.py
Normal file
66
src/crewai/cli/deploy/api.py
Normal file
@@ -0,0 +1,66 @@
|
||||
from os import getenv
|
||||
|
||||
import requests
|
||||
|
||||
from crewai.cli.deploy.utils import get_crewai_version
|
||||
|
||||
|
||||
class CrewAPI:
|
||||
"""
|
||||
CrewAPI class to interact with the crewAI+ API.
|
||||
"""
|
||||
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self.api_key = api_key
|
||||
self.headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": f"CrewAI-CLI/{get_crewai_version()}",
|
||||
}
|
||||
self.base_url = getenv(
|
||||
"CREWAI_BASE_URL", "https://crewai.com/crewai_plus/api/v1/crews"
|
||||
)
|
||||
|
||||
def _make_request(self, method: str, endpoint: str, **kwargs) -> requests.Response:
|
||||
url = f"{self.base_url}/{endpoint}"
|
||||
return requests.request(method, url, headers=self.headers, **kwargs)
|
||||
|
||||
# Deploy
|
||||
def deploy_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("POST", f"by-name/{project_name}/deploy")
|
||||
|
||||
def deploy_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("POST", f"{uuid}/deploy")
|
||||
|
||||
# Status
|
||||
def status_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("GET", f"by-name/{project_name}/status")
|
||||
|
||||
def status_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("GET", f"{uuid}/status")
|
||||
|
||||
# Logs
|
||||
def logs_by_name(
|
||||
self, project_name: str, log_type: str = "deployment"
|
||||
) -> requests.Response:
|
||||
return self._make_request("GET", f"by-name/{project_name}/logs/{log_type}")
|
||||
|
||||
def logs_by_uuid(
|
||||
self, uuid: str, log_type: str = "deployment"
|
||||
) -> requests.Response:
|
||||
return self._make_request("GET", f"{uuid}/logs/{log_type}")
|
||||
|
||||
# Delete
|
||||
def delete_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("DELETE", f"by-name/{project_name}")
|
||||
|
||||
def delete_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("DELETE", f"{uuid}")
|
||||
|
||||
# List
|
||||
def list_crews(self) -> requests.Response:
|
||||
return self._make_request("GET", "")
|
||||
|
||||
# Create
|
||||
def create_crew(self, payload) -> requests.Response:
|
||||
return self._make_request("POST", "", json=payload)
|
||||
318
src/crewai/cli/deploy/main.py
Normal file
318
src/crewai/cli/deploy/main.py
Normal file
@@ -0,0 +1,318 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from rich.console import Console
|
||||
|
||||
from crewai.telemetry import Telemetry
|
||||
from .api import CrewAPI
|
||||
from .utils import (
|
||||
fetch_and_json_env_file,
|
||||
get_auth_token,
|
||||
get_git_remote_url,
|
||||
get_project_name,
|
||||
)
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
class DeployCommand:
|
||||
"""
|
||||
A class to handle deployment-related operations for CrewAI projects.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialize the DeployCommand with project name and API client.
|
||||
"""
|
||||
try:
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
access_token = get_auth_token()
|
||||
except Exception:
|
||||
self._deploy_signup_error_span = self._telemetry.deploy_signup_error_span()
|
||||
console.print(
|
||||
"Please sign up/login to CrewAI+ before using the CLI.",
|
||||
style="bold red",
|
||||
)
|
||||
console.print("Run 'crewai signup' to sign up/login.", style="bold green")
|
||||
raise SystemExit
|
||||
|
||||
self.project_name = get_project_name()
|
||||
if self.project_name is None:
|
||||
console.print(
|
||||
"No project name found. Please ensure your project has a valid pyproject.toml file.",
|
||||
style="bold red",
|
||||
)
|
||||
raise SystemExit
|
||||
|
||||
self.client = CrewAPI(api_key=access_token)
|
||||
|
||||
def _handle_error(self, json_response: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Handle and display error messages from API responses.
|
||||
|
||||
Args:
|
||||
json_response (Dict[str, Any]): The JSON response containing error information.
|
||||
"""
|
||||
error = json_response.get("error", "Unknown error")
|
||||
message = json_response.get("message", "No message provided")
|
||||
console.print(f"Error: {error}", style="bold red")
|
||||
console.print(f"Message: {message}", style="bold red")
|
||||
|
||||
def _standard_no_param_error_message(self) -> None:
|
||||
"""
|
||||
Display a standard error message when no UUID or project name is available.
|
||||
"""
|
||||
console.print(
|
||||
"No UUID provided, project pyproject.toml not found or with error.",
|
||||
style="bold red",
|
||||
)
|
||||
|
||||
def _display_deployment_info(self, json_response: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Display deployment information.
|
||||
|
||||
Args:
|
||||
json_response (Dict[str, Any]): The deployment information to display.
|
||||
"""
|
||||
console.print("Deploying the crew...\n", style="bold blue")
|
||||
for key, value in json_response.items():
|
||||
console.print(f"{key.title()}: [green]{value}[/green]")
|
||||
console.print("\nTo check the status of the deployment, run:")
|
||||
console.print("crewai deploy status")
|
||||
console.print(" or")
|
||||
console.print(f"crewai deploy status --uuid \"{json_response['uuid']}\"")
|
||||
|
||||
def _display_logs(self, log_messages: List[Dict[str, Any]]) -> None:
|
||||
"""
|
||||
Display log messages.
|
||||
|
||||
Args:
|
||||
log_messages (List[Dict[str, Any]]): The log messages to display.
|
||||
"""
|
||||
for log_message in log_messages:
|
||||
console.print(
|
||||
f"{log_message['timestamp']} - {log_message['level']}: {log_message['message']}"
|
||||
)
|
||||
|
||||
def deploy(self, uuid: Optional[str] = None) -> None:
|
||||
"""
|
||||
Deploy a crew using either UUID or project name.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): The UUID of the crew to deploy.
|
||||
"""
|
||||
self._start_deployment_span = self._telemetry.start_deployment_span(uuid)
|
||||
console.print("Starting deployment...", style="bold blue")
|
||||
if uuid:
|
||||
response = self.client.deploy_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.deploy_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_deployment_info(json_response)
|
||||
else:
|
||||
self._handle_error(json_response)
|
||||
|
||||
def create_crew(self, confirm: bool) -> None:
|
||||
"""
|
||||
Create a new crew deployment.
|
||||
"""
|
||||
self._create_crew_deployment_span = (
|
||||
self._telemetry.create_crew_deployment_span()
|
||||
)
|
||||
console.print("Creating deployment...", style="bold blue")
|
||||
env_vars = fetch_and_json_env_file()
|
||||
remote_repo_url = get_git_remote_url()
|
||||
|
||||
if remote_repo_url is None:
|
||||
console.print("No remote repository URL found.", style="bold red")
|
||||
console.print(
|
||||
"Please ensure your project has a valid remote repository.",
|
||||
style="yellow",
|
||||
)
|
||||
return
|
||||
|
||||
self._confirm_input(env_vars, remote_repo_url, confirm)
|
||||
payload = self._create_payload(env_vars, remote_repo_url)
|
||||
|
||||
response = self.client.create_crew(payload)
|
||||
if response.status_code == 201:
|
||||
self._display_creation_success(response.json())
|
||||
else:
|
||||
self._handle_error(response.json())
|
||||
|
||||
def _confirm_input(
|
||||
self, env_vars: Dict[str, str], remote_repo_url: str, confirm: bool
|
||||
) -> None:
|
||||
"""
|
||||
Confirm input parameters with the user.
|
||||
|
||||
Args:
|
||||
env_vars (Dict[str, str]): Environment variables.
|
||||
remote_repo_url (str): Remote repository URL.
|
||||
confirm (bool): Whether to confirm input.
|
||||
"""
|
||||
if not confirm:
|
||||
input(f"Press Enter to continue with the following Env vars: {env_vars}")
|
||||
input(
|
||||
f"Press Enter to continue with the following remote repository: {remote_repo_url}\n"
|
||||
)
|
||||
|
||||
def _create_payload(
|
||||
self,
|
||||
env_vars: Dict[str, str],
|
||||
remote_repo_url: str,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Create the payload for crew creation.
|
||||
|
||||
Args:
|
||||
remote_repo_url (str): Remote repository URL.
|
||||
env_vars (Dict[str, str]): Environment variables.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: The payload for crew creation.
|
||||
"""
|
||||
return {
|
||||
"deploy": {
|
||||
"name": self.project_name,
|
||||
"repo_clone_url": remote_repo_url,
|
||||
"env": env_vars,
|
||||
}
|
||||
}
|
||||
|
||||
def _display_creation_success(self, json_response: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Display success message after crew creation.
|
||||
|
||||
Args:
|
||||
json_response (Dict[str, Any]): The response containing crew information.
|
||||
"""
|
||||
console.print("Deployment created successfully!\n", style="bold green")
|
||||
console.print(
|
||||
f"Name: {self.project_name} ({json_response['uuid']})", style="bold green"
|
||||
)
|
||||
console.print(f"Status: {json_response['status']}", style="bold green")
|
||||
console.print("\nTo (re)deploy the crew, run:")
|
||||
console.print("crewai deploy push")
|
||||
console.print(" or")
|
||||
console.print(f"crewai deploy push --uuid {json_response['uuid']}")
|
||||
|
||||
def list_crews(self) -> None:
|
||||
"""
|
||||
List all available crews.
|
||||
"""
|
||||
console.print("Listing all Crews\n", style="bold blue")
|
||||
|
||||
response = self.client.list_crews()
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_crews(json_response)
|
||||
else:
|
||||
self._display_no_crews_message()
|
||||
|
||||
def _display_crews(self, crews_data: List[Dict[str, Any]]) -> None:
|
||||
"""
|
||||
Display the list of crews.
|
||||
|
||||
Args:
|
||||
crews_data (List[Dict[str, Any]]): List of crew data to display.
|
||||
"""
|
||||
for crew_data in crews_data:
|
||||
console.print(
|
||||
f"- {crew_data['name']} ({crew_data['uuid']}) [blue]{crew_data['status']}[/blue]"
|
||||
)
|
||||
|
||||
def _display_no_crews_message(self) -> None:
|
||||
"""
|
||||
Display a message when no crews are available.
|
||||
"""
|
||||
console.print("You don't have any Crews yet. Let's create one!", style="yellow")
|
||||
console.print(" crewai create crew <crew_name>", style="green")
|
||||
|
||||
def get_crew_status(self, uuid: Optional[str] = None) -> None:
|
||||
"""
|
||||
Get the status of a crew.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): The UUID of the crew to check.
|
||||
"""
|
||||
console.print("Fetching deployment status...", style="bold blue")
|
||||
if uuid:
|
||||
response = self.client.status_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.status_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_crew_status(json_response)
|
||||
else:
|
||||
self._handle_error(json_response)
|
||||
|
||||
def _display_crew_status(self, status_data: Dict[str, str]) -> None:
|
||||
"""
|
||||
Display the status of a crew.
|
||||
|
||||
Args:
|
||||
status_data (Dict[str, str]): The status data to display.
|
||||
"""
|
||||
console.print(f"Name:\t {status_data['name']}")
|
||||
console.print(f"Status:\t {status_data['status']}")
|
||||
|
||||
def get_crew_logs(self, uuid: Optional[str], log_type: str = "deployment") -> None:
|
||||
"""
|
||||
Get logs for a crew.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): The UUID of the crew to get logs for.
|
||||
log_type (str): The type of logs to retrieve (default: "deployment").
|
||||
"""
|
||||
self._get_crew_logs_span = self._telemetry.get_crew_logs_span(uuid, log_type)
|
||||
console.print(f"Fetching {log_type} logs...", style="bold blue")
|
||||
|
||||
if uuid:
|
||||
response = self.client.logs_by_uuid(uuid, log_type)
|
||||
elif self.project_name:
|
||||
response = self.client.logs_by_name(self.project_name, log_type)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
if response.status_code == 200:
|
||||
self._display_logs(response.json())
|
||||
else:
|
||||
self._handle_error(response.json())
|
||||
|
||||
def remove_crew(self, uuid: Optional[str]) -> None:
|
||||
"""
|
||||
Remove a crew deployment.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): The UUID of the crew to remove.
|
||||
"""
|
||||
self._remove_crew_span = self._telemetry.remove_crew_span(uuid)
|
||||
console.print("Removing deployment...", style="bold blue")
|
||||
|
||||
if uuid:
|
||||
response = self.client.delete_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.delete_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
if response.status_code == 204:
|
||||
console.print(
|
||||
f"Crew '{self.project_name}' removed successfully.", style="green"
|
||||
)
|
||||
else:
|
||||
console.print(
|
||||
f"Failed to remove crew '{self.project_name}'", style="bold red"
|
||||
)
|
||||
155
src/crewai/cli/deploy/utils.py
Normal file
155
src/crewai/cli/deploy/utils.py
Normal file
@@ -0,0 +1,155 @@
|
||||
import sys
|
||||
import re
|
||||
import subprocess
|
||||
|
||||
from rich.console import Console
|
||||
|
||||
from ..authentication.utils import TokenManager
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
import tomllib
|
||||
|
||||
|
||||
# Drop the simple_toml_parser when we move to python3.11
|
||||
def simple_toml_parser(content):
|
||||
result = {}
|
||||
current_section = result
|
||||
for line in content.split('\n'):
|
||||
line = line.strip()
|
||||
if line.startswith('[') and line.endswith(']'):
|
||||
# New section
|
||||
section = line[1:-1].split('.')
|
||||
current_section = result
|
||||
for key in section:
|
||||
current_section = current_section.setdefault(key, {})
|
||||
elif '=' in line:
|
||||
key, value = line.split('=', 1)
|
||||
key = key.strip()
|
||||
value = value.strip().strip('"')
|
||||
current_section[key] = value
|
||||
return result
|
||||
|
||||
|
||||
def parse_toml(content):
|
||||
if sys.version_info >= (3, 11):
|
||||
return tomllib.loads(content)
|
||||
else:
|
||||
return simple_toml_parser(content)
|
||||
|
||||
|
||||
def get_git_remote_url() -> str | None:
|
||||
"""Get the Git repository's remote URL."""
|
||||
try:
|
||||
# Run the git remote -v command
|
||||
result = subprocess.run(
|
||||
["git", "remote", "-v"], capture_output=True, text=True, check=True
|
||||
)
|
||||
|
||||
# Get the output
|
||||
output = result.stdout
|
||||
|
||||
# Parse the output to find the origin URL
|
||||
matches = re.findall(r"origin\s+(.*?)\s+\(fetch\)", output)
|
||||
|
||||
if matches:
|
||||
return matches[0] # Return the first match (origin URL)
|
||||
else:
|
||||
console.print("No origin remote found.", style="bold red")
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
console.print(f"Error running trying to fetch the Git Repository: {e}", style="bold red")
|
||||
except FileNotFoundError:
|
||||
console.print("Git command not found. Make sure Git is installed and in your PATH.", style="bold red")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_project_name(pyproject_path: str = "pyproject.toml") -> str | None:
|
||||
"""Get the project name from the pyproject.toml file."""
|
||||
try:
|
||||
# Read the pyproject.toml file
|
||||
with open(pyproject_path, "r") as f:
|
||||
pyproject_content = parse_toml(f.read())
|
||||
|
||||
# Extract the project name
|
||||
project_name = pyproject_content["tool"]["poetry"]["name"]
|
||||
|
||||
if "crewai" not in pyproject_content["tool"]["poetry"]["dependencies"]:
|
||||
raise Exception("crewai is not in the dependencies.")
|
||||
|
||||
return project_name
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {pyproject_path} not found.")
|
||||
except KeyError:
|
||||
print(f"Error: {pyproject_path} is not a valid pyproject.toml file.")
|
||||
except tomllib.TOMLDecodeError if sys.version_info >= (3, 11) else Exception as e: # type: ignore
|
||||
print(
|
||||
f"Error: {pyproject_path} is not a valid TOML file."
|
||||
if sys.version_info >= (3, 11)
|
||||
else f"Error reading the pyproject.toml file: {e}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error reading the pyproject.toml file: {e}")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_crewai_version(poetry_lock_path: str = "poetry.lock") -> str:
|
||||
"""Get the version number of crewai from the poetry.lock file."""
|
||||
try:
|
||||
with open(poetry_lock_path, "r") as f:
|
||||
lock_content = f.read()
|
||||
|
||||
match = re.search(
|
||||
r'\[\[package\]\]\s*name\s*=\s*"crewai"\s*version\s*=\s*"([^"]+)"',
|
||||
lock_content,
|
||||
re.DOTALL,
|
||||
)
|
||||
if match:
|
||||
return match.group(1)
|
||||
else:
|
||||
print("crewai package not found in poetry.lock")
|
||||
return "no-version-found"
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {poetry_lock_path} not found.")
|
||||
except Exception as e:
|
||||
print(f"Error reading the poetry.lock file: {e}")
|
||||
|
||||
return "no-version-found"
|
||||
|
||||
|
||||
def fetch_and_json_env_file(env_file_path: str = ".env") -> dict:
|
||||
"""Fetch the environment variables from a .env file and return them as a dictionary."""
|
||||
try:
|
||||
# Read the .env file
|
||||
with open(env_file_path, "r") as f:
|
||||
env_content = f.read()
|
||||
|
||||
# Parse the .env file content to a dictionary
|
||||
env_dict = {}
|
||||
for line in env_content.splitlines():
|
||||
if line.strip() and not line.strip().startswith("#"):
|
||||
key, value = line.split("=", 1)
|
||||
env_dict[key.strip()] = value.strip()
|
||||
|
||||
return env_dict
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {env_file_path} not found.")
|
||||
except Exception as e:
|
||||
print(f"Error reading the .env file: {e}")
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
return access_token
|
||||
21
src/crewai/cli/install_crew.py
Normal file
21
src/crewai/cli/install_crew.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def install_crew() -> None:
|
||||
"""
|
||||
Install the crew by running the Poetry command to lock and install.
|
||||
"""
|
||||
try:
|
||||
subprocess.run(["poetry", "lock"], check=True, capture_output=False, text=True)
|
||||
subprocess.run(
|
||||
["poetry", "install"], check=True, capture_output=False, text=True
|
||||
)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while running the crew: {e}", err=True)
|
||||
click.echo(e.output, err=True)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
@@ -14,12 +14,9 @@ pip install poetry
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
1. First lock the dependencies and install them by using the CLI command:
|
||||
```bash
|
||||
poetry lock
|
||||
```
|
||||
```bash
|
||||
poetry install
|
||||
crewai install
|
||||
```
|
||||
### Customizing
|
||||
|
||||
@@ -37,10 +34,6 @@ To kickstart your crew of AI agents and begin task execution, run this from the
|
||||
```bash
|
||||
$ crewai run
|
||||
```
|
||||
or
|
||||
```bash
|
||||
poetry run {{folder_name}}
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
|
||||
@@ -6,7 +6,8 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = "^0.51.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.55.2,<1.0.0" }
|
||||
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:run"
|
||||
|
||||
2
src/crewai/cli/templates/flow/.gitignore
vendored
Normal file
2
src/crewai/cli/templates/flow/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
.env
|
||||
__pycache__/
|
||||
57
src/crewai/cli/templates/flow/README.md
Normal file
57
src/crewai/cli/templates/flow/README.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# {{crew_name}} Crew
|
||||
|
||||
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
|
||||
```bash
|
||||
crewai install
|
||||
```
|
||||
|
||||
### Customizing
|
||||
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
|
||||
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
|
||||
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
|
||||
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
|
||||
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
|
||||
|
||||
## Running the Project
|
||||
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
|
||||
|
||||
## Understanding Your Crew
|
||||
|
||||
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
|
||||
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat with our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
0
src/crewai/cli/templates/flow/__init__.py
Normal file
0
src/crewai/cli/templates/flow/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
poem_writer:
|
||||
role: >
|
||||
CrewAI Poem Writer
|
||||
goal: >
|
||||
Generate a funny, light heartedpoem about how CrewAI
|
||||
is awesome with a sentence count of {sentence_count}
|
||||
backstory: >
|
||||
You're a creative poet with a talent for capturing the essence of any topic
|
||||
in a beautiful and engaging way. Known for your ability to craft poems that
|
||||
resonate with readers, you bring a unique perspective and artistic flair to
|
||||
every piece you write.
|
||||
@@ -0,0 +1,7 @@
|
||||
write_poem:
|
||||
description: >
|
||||
Write a poem about how CrewAI is awesome.
|
||||
Ensure the poem is engaging and adheres to the specified sentence count of {sentence_count}.
|
||||
expected_output: >
|
||||
A beautifully crafted poem about CrewAI, with exactly {sentence_count} sentences.
|
||||
agent: poem_writer
|
||||
31
src/crewai/cli/templates/flow/crews/poem_crew/poem_crew.py
Normal file
31
src/crewai/cli/templates/flow/crews/poem_crew/poem_crew.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
@CrewBase
|
||||
class PoemCrew():
|
||||
"""Poem Crew"""
|
||||
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def poem_writer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['poem_writer'],
|
||||
)
|
||||
|
||||
@task
|
||||
def write_poem(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['write_poem'],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Research Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
55
src/crewai/cli/templates/flow/main.py
Normal file
55
src/crewai/cli/templates/flow/main.py
Normal file
@@ -0,0 +1,55 @@
|
||||
#!/usr/bin/env python
|
||||
import asyncio
|
||||
from random import randint
|
||||
|
||||
from pydantic import BaseModel
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from .crews.poem_crew.poem_crew import PoemCrew
|
||||
|
||||
class PoemState(BaseModel):
|
||||
sentence_count: int = 1
|
||||
poem: str = ""
|
||||
|
||||
class PoemFlow(Flow[PoemState]):
|
||||
initial_state = PoemState
|
||||
|
||||
@start()
|
||||
def generate_sentence_count(self):
|
||||
print("Generating sentence count")
|
||||
# Generate a number between 1 and 5
|
||||
self.state.sentence_count = randint(1, 5)
|
||||
|
||||
@listen(generate_sentence_count)
|
||||
def generate_poem(self):
|
||||
print("Generating poem")
|
||||
print(f"State before poem: {self.state}")
|
||||
poem_crew = PoemCrew().crew()
|
||||
result = poem_crew.kickoff(inputs={"sentence_count": self.state.sentence_count})
|
||||
|
||||
print("Poem generated", result.raw)
|
||||
self.state.poem = result.raw
|
||||
|
||||
print(f"State after generate_poem: {self.state}")
|
||||
|
||||
@listen(generate_poem)
|
||||
def save_poem(self):
|
||||
print("Saving poem")
|
||||
print(f"State before save_poem: {self.state}")
|
||||
with open("poem.txt", "w") as f:
|
||||
f.write(self.state.poem)
|
||||
print(f"State after save_poem: {self.state}")
|
||||
|
||||
async def run():
|
||||
"""
|
||||
Run the flow.
|
||||
"""
|
||||
poem_flow = PoemFlow()
|
||||
await poem_flow.kickoff()
|
||||
|
||||
|
||||
def main():
|
||||
asyncio.run(run())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
18
src/crewai/cli/templates/flow/pyproject.toml
Normal file
18
src/crewai/cli/templates/flow/pyproject.toml
Normal file
@@ -0,0 +1,18 @@
|
||||
[tool.poetry]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.55.2,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
run_crew = "{{folder_name}}.main:main"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
0
src/crewai/cli/templates/flow/tools/__init__.py
Normal file
0
src/crewai/cli/templates/flow/tools/__init__.py
Normal file
12
src/crewai/cli/templates/flow/tools/custom_tool.py
Normal file
12
src/crewai/cli/templates/flow/tools/custom_tool.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from crewai_tools import BaseTool
|
||||
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "this is an example of a tool output, ignore it and move along."
|
||||
@@ -15,12 +15,11 @@ pip install poetry
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
|
||||
```bash
|
||||
poetry lock
|
||||
```
|
||||
```bash
|
||||
poetry install
|
||||
crewai install
|
||||
```
|
||||
|
||||
### Customizing
|
||||
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
@@ -35,7 +34,7 @@ poetry install
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
poetry run {{folder_name}}
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
@@ -49,6 +48,7 @@ The {{name}} Crew is composed of multiple AI agents, each with unique roles, goa
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = "^0.51.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.55.2,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
||||
@@ -16,10 +16,7 @@ Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
```bash
|
||||
poetry lock
|
||||
```
|
||||
```bash
|
||||
poetry install
|
||||
crewai install
|
||||
```
|
||||
### Customizing
|
||||
|
||||
@@ -35,7 +32,7 @@ poetry install
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
poetry run {{folder_name}}
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
@@ -6,7 +6,8 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = "^0.51.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.55.2,<1.0.0" }
|
||||
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from concurrent.futures import Future
|
||||
from hashlib import md5
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
Json,
|
||||
@@ -48,11 +47,10 @@ from crewai.utilities.planning_handler import CrewPlanner
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
@@ -106,7 +104,6 @@ class Crew(BaseModel):
|
||||
|
||||
name: Optional[str] = Field(default=None)
|
||||
cache: bool = Field(default=True)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
tasks: List[Task] = Field(default_factory=list)
|
||||
agents: List[BaseAgent] = Field(default_factory=list)
|
||||
process: Process = Field(default=Process.sequential)
|
||||
@@ -364,7 +361,7 @@ class Crew(BaseModel):
|
||||
source = [agent.key for agent in self.agents] + [
|
||||
task.key for task in self.tasks
|
||||
]
|
||||
return md5("|".join(source).encode()).hexdigest()
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
def _setup_from_config(self):
|
||||
assert self.config is not None, "Config should not be None."
|
||||
@@ -541,7 +538,7 @@ class Crew(BaseModel):
|
||||
)._handle_crew_planning()
|
||||
|
||||
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
|
||||
task.description += step_plan
|
||||
task.description += step_plan.plan
|
||||
|
||||
def _store_execution_log(
|
||||
self,
|
||||
@@ -587,7 +584,10 @@ class Crew(BaseModel):
|
||||
self.manager_agent.allow_delegation = True
|
||||
manager = self.manager_agent
|
||||
if manager.tools is not None and len(manager.tools) > 0:
|
||||
raise Exception("Manager agent should not have tools")
|
||||
self._logger.log(
|
||||
"warning", "Manager agent should not have tools", color="orange"
|
||||
)
|
||||
manager.tools = []
|
||||
manager.tools = self.manager_agent.get_delegation_tools(self.agents)
|
||||
else:
|
||||
manager = Agent(
|
||||
|
||||
@@ -1 +1,3 @@
|
||||
from .crew_output import CrewOutput
|
||||
|
||||
__all__ = ["CrewOutput"]
|
||||
|
||||
@@ -41,6 +41,14 @@ class CrewOutput(BaseModel):
|
||||
output_dict.update(self.pydantic.model_dump())
|
||||
return output_dict
|
||||
|
||||
def __getitem__(self, key):
|
||||
if self.pydantic and hasattr(self.pydantic, key):
|
||||
return getattr(self.pydantic, key)
|
||||
elif self.json_dict and key in self.json_dict:
|
||||
return self.json_dict[key]
|
||||
else:
|
||||
raise KeyError(f"Key '{key}' not found in CrewOutput.")
|
||||
|
||||
def __str__(self):
|
||||
if self.pydantic:
|
||||
return str(self.pydantic)
|
||||
|
||||
1
src/crewai/flow/decorators.py
Normal file
1
src/crewai/flow/decorators.py
Normal file
@@ -0,0 +1 @@
|
||||
# TODO:
|
||||
13
src/crewai/flow/examples/context.py
Normal file
13
src/crewai/flow/examples/context.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from crewai.flows import Flow, end_job, start_job # type: ignore
|
||||
|
||||
|
||||
class SimpleFlow(Flow):
|
||||
|
||||
@start_job()
|
||||
async def research(self, topic: str) -> str:
|
||||
print(f"Researching {topic}...")
|
||||
return f"Full report on {topic}..."
|
||||
|
||||
@end_job("research")
|
||||
async def write_post(self, report: str) -> str:
|
||||
return f"Post written: {report}"
|
||||
17
src/crewai/flow/examples/longer.py
Normal file
17
src/crewai/flow/examples/longer.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from crewai.flows import Flow, end_job, job, start_job # type: ignore
|
||||
|
||||
|
||||
class LongerFlow(Flow):
|
||||
|
||||
@start_job()
|
||||
async def research(self, topic: str) -> str:
|
||||
print(f"Researching {topic}...")
|
||||
return f"Full report on {topic}..."
|
||||
|
||||
@job("research")
|
||||
async def edit_report(self, report: str) -> str:
|
||||
return f"Edited report: {report}"
|
||||
|
||||
@end_job("edit_report")
|
||||
async def write_post(self, report: str) -> str:
|
||||
return f"Post written: {report}"
|
||||
22
src/crewai/flow/examples/router.py
Normal file
22
src/crewai/flow/examples/router.py
Normal file
@@ -0,0 +1,22 @@
|
||||
from typing import Tuple
|
||||
|
||||
from crewai.flows import Flow, end_job, router, start_job # type: ignore
|
||||
|
||||
|
||||
class RouterFlow(Flow):
|
||||
|
||||
@start_job()
|
||||
@router()
|
||||
async def classify_email(self, report: str) -> Tuple[str, str]:
|
||||
if "urgent" in report:
|
||||
return "urgent", report
|
||||
|
||||
return "normal", report
|
||||
|
||||
@end_job("urgent")
|
||||
async def write_urgent_email(self, report: str) -> str:
|
||||
return f"Urgent Email Response: {report}"
|
||||
|
||||
@end_job("normal")
|
||||
async def write_normal_email(self, report: str) -> str:
|
||||
return f"Normal Email Response: {report}"
|
||||
13
src/crewai/flow/examples/simple.py
Normal file
13
src/crewai/flow/examples/simple.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from crewai.flows import Flow, end_job, start_job # type: ignore
|
||||
|
||||
|
||||
class SimpleFlow(Flow):
|
||||
|
||||
@start_job()
|
||||
async def research(self, topic: str) -> str:
|
||||
print(f"Researching {topic}...")
|
||||
return f"Full report on {topic}..."
|
||||
|
||||
@end_job("research")
|
||||
async def write_post(self, report: str) -> str:
|
||||
return f"Post written: {report}"
|
||||
19
src/crewai/flow/examples/simple_with_crew.py
Normal file
19
src/crewai/flow/examples/simple_with_crew.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from crewai.flows import Flow, end_job, job, start_job # type: ignore
|
||||
|
||||
|
||||
class SimpleFlow(Flow):
|
||||
|
||||
@start_job()
|
||||
async def research_crew(self, topic: str) -> str:
|
||||
result = research_crew.kickoff(inputs={topic: topic})
|
||||
return result.raw
|
||||
|
||||
@job("research_crew")
|
||||
async def create_x_post(self, research: str) -> str:
|
||||
result = x_post_crew.kickoff(inputs={research: research})
|
||||
return result.raw
|
||||
|
||||
@end_job("research")
|
||||
async def post_to_x(self, post: str) -> None:
|
||||
# TODO: Post to X
|
||||
return None
|
||||
234
src/crewai/flow/flow.py
Normal file
234
src/crewai/flow/flow.py
Normal file
@@ -0,0 +1,234 @@
|
||||
import asyncio
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, Generic, List, Set, Type, TypeVar, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
# TODO: Allow people to pass results from one method to another and not just state
|
||||
|
||||
T = TypeVar("T", bound=Union[BaseModel, Dict[str, Any]])
|
||||
|
||||
|
||||
def start():
|
||||
def decorator(func):
|
||||
print(f"[start decorator] Decorating start method: {func.__name__}")
|
||||
func.__is_start_method__ = True
|
||||
return func
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def listen(condition):
|
||||
def decorator(func):
|
||||
print(
|
||||
f"[listen decorator] Decorating listener: {func.__name__} with condition: {condition}"
|
||||
)
|
||||
if isinstance(condition, str):
|
||||
func.__trigger_methods__ = [condition]
|
||||
func.__condition_type__ = "OR"
|
||||
print(
|
||||
f"[listen decorator] Set __trigger_methods__ for {func.__name__}: [{condition}] with mode: OR"
|
||||
)
|
||||
elif (
|
||||
isinstance(condition, dict)
|
||||
and "type" in condition
|
||||
and "methods" in condition
|
||||
):
|
||||
func.__trigger_methods__ = condition["methods"]
|
||||
func.__condition_type__ = condition["type"]
|
||||
print(
|
||||
f"[listen decorator] Set __trigger_methods__ for {func.__name__}: {func.__trigger_methods__} with mode: {func.__condition_type__}"
|
||||
)
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
func.__trigger_methods__ = [condition.__name__]
|
||||
func.__condition_type__ = "OR"
|
||||
print(
|
||||
f"[listen decorator] Set __trigger_methods__ for {func.__name__}: [{condition.__name__}] with mode: OR"
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Condition must be a method, string, or a result of or_() or and_()"
|
||||
)
|
||||
return func
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def or_(*conditions):
|
||||
methods = []
|
||||
for condition in conditions:
|
||||
if isinstance(condition, dict) and "methods" in condition:
|
||||
methods.extend(condition["methods"])
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
methods.append(condition.__name__)
|
||||
elif isinstance(condition, str):
|
||||
methods.append(condition)
|
||||
else:
|
||||
raise ValueError("Invalid condition in or_()")
|
||||
return {"type": "OR", "methods": methods}
|
||||
|
||||
|
||||
def and_(*conditions):
|
||||
methods = []
|
||||
for condition in conditions:
|
||||
if isinstance(condition, dict) and "methods" in condition:
|
||||
methods.extend(condition["methods"])
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
methods.append(condition.__name__)
|
||||
elif isinstance(condition, str):
|
||||
methods.append(condition)
|
||||
else:
|
||||
raise ValueError("Invalid condition in and_()")
|
||||
return {"type": "AND", "methods": methods}
|
||||
|
||||
|
||||
class FlowMeta(type):
|
||||
def __new__(mcs, name, bases, dct):
|
||||
cls = super().__new__(mcs, name, bases, dct)
|
||||
|
||||
start_methods = []
|
||||
listeners = {}
|
||||
|
||||
print(f"[FlowMeta] Processing class: {name}")
|
||||
for attr_name, attr_value in dct.items():
|
||||
print(f"[FlowMeta] Checking attribute: {attr_name}")
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
print(f"[FlowMeta] Found start method: {attr_name}")
|
||||
start_methods.append(attr_name)
|
||||
if hasattr(attr_value, "__trigger_methods__"):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
print(f"[FlowMeta] Conditions for {attr_name}:", methods)
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
|
||||
setattr(cls, "_start_methods", start_methods)
|
||||
setattr(cls, "_listeners", listeners)
|
||||
|
||||
print("[FlowMeta] ALL LISTENERS:", listeners)
|
||||
print("[FlowMeta] START METHODS:", start_methods)
|
||||
|
||||
return cls
|
||||
|
||||
|
||||
class Flow(Generic[T], metaclass=FlowMeta):
|
||||
_start_methods: List[str] = []
|
||||
_listeners: Dict[str, tuple[str, List[str]]] = {}
|
||||
initial_state: Union[Type[T], T, None] = None
|
||||
|
||||
def __class_getitem__(cls, item):
|
||||
print(f"[Flow.__class_getitem__] Getting initial state type: {item}")
|
||||
class _FlowGeneric(cls):
|
||||
_initial_state_T = item
|
||||
return _FlowGeneric
|
||||
|
||||
def __init__(self):
|
||||
print("[Flow.__init__] Initializing Flow")
|
||||
self._methods: Dict[str, Callable] = {}
|
||||
self._state = self._create_initial_state()
|
||||
self._completed_methods: Set[str] = set()
|
||||
self._pending_and_listeners: Dict[str, Set[str]] = {}
|
||||
|
||||
for method_name in dir(self):
|
||||
if callable(getattr(self, method_name)) and not method_name.startswith(
|
||||
"__"
|
||||
):
|
||||
print(f"[Flow.__init__] Adding method: {method_name}")
|
||||
self._methods[method_name] = getattr(self, method_name)
|
||||
|
||||
print("[Flow.__init__] All methods:", self._methods.keys())
|
||||
print("[Flow.__init__] Listeners:", self._listeners)
|
||||
|
||||
def _create_initial_state(self) -> T:
|
||||
print("[Flow._create_initial_state] Creating initial state")
|
||||
if self.initial_state is None and hasattr(self, "_initial_state_T"):
|
||||
return self._initial_state_T()
|
||||
elif self.initial_state is None:
|
||||
return {} # type: ignore
|
||||
elif isinstance(self.initial_state, type):
|
||||
return self.initial_state()
|
||||
else:
|
||||
return self.initial_state
|
||||
|
||||
@property
|
||||
def state(self) -> T:
|
||||
return self._state
|
||||
|
||||
async def kickoff(self):
|
||||
print("[Flow.kickoff] Starting kickoff")
|
||||
if not self._start_methods:
|
||||
raise ValueError("No start method defined")
|
||||
|
||||
for start_method in self._start_methods:
|
||||
print(f"[Flow.kickoff] Executing start method: {start_method}")
|
||||
result = await self._execute_method(self._methods[start_method])
|
||||
print(
|
||||
f"[Flow.kickoff] Start method {start_method} completed. Executing listeners."
|
||||
)
|
||||
await self._execute_listeners(start_method, result)
|
||||
|
||||
async def _execute_method(self, method: Callable, *args, **kwargs):
|
||||
print(f"[Flow._execute_method] Executing method: {method.__name__}")
|
||||
if inspect.iscoroutinefunction(method):
|
||||
return await method(*args, **kwargs)
|
||||
else:
|
||||
return method(*args, **kwargs)
|
||||
|
||||
async def _execute_listeners(self, trigger_method: str, result: Any):
|
||||
print(
|
||||
f"[Flow._execute_listeners] Executing listeners for trigger method: {trigger_method}"
|
||||
)
|
||||
listener_tasks = []
|
||||
for listener, (condition_type, methods) in self._listeners.items():
|
||||
print(
|
||||
f"[Flow._execute_listeners] Checking listener: {listener}, condition: {condition_type}, methods: {methods}"
|
||||
)
|
||||
if condition_type == "OR":
|
||||
if trigger_method in methods:
|
||||
print(
|
||||
f"[Flow._execute_listeners] TRIGGERING METHOD: {listener} due to trigger: {trigger_method}"
|
||||
)
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener, result)
|
||||
)
|
||||
elif condition_type == "AND":
|
||||
if listener not in self._pending_and_listeners:
|
||||
self._pending_and_listeners[listener] = set()
|
||||
self._pending_and_listeners[listener].add(trigger_method)
|
||||
if set(methods) == self._pending_and_listeners[listener]:
|
||||
print(
|
||||
f"[Flow._execute_listeners] All conditions met for listener: {listener}. Executing."
|
||||
)
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener, result)
|
||||
)
|
||||
del self._pending_and_listeners[listener]
|
||||
|
||||
# Run all listener tasks concurrently and wait for them to complete
|
||||
print(
|
||||
f"[Flow._execute_listeners] Executing {len(listener_tasks)} listener tasks"
|
||||
)
|
||||
await asyncio.gather(*listener_tasks)
|
||||
|
||||
async def _execute_single_listener(self, listener: str, result: Any):
|
||||
print(f"[Flow._execute_single_listener] Executing listener: {listener}")
|
||||
try:
|
||||
method = self._methods[listener]
|
||||
sig = inspect.signature(method)
|
||||
if len(sig.parameters) > 1: # More than just 'self'
|
||||
print(
|
||||
f"[Flow._execute_single_listener] Executing {listener} with result"
|
||||
)
|
||||
listener_result = await self._execute_method(method, result)
|
||||
else:
|
||||
print(
|
||||
f"[Flow._execute_single_listener] Executing {listener} without result"
|
||||
)
|
||||
listener_result = await self._execute_method(method)
|
||||
print(
|
||||
f"[Flow._execute_single_listener] {listener} completed, executing its listeners"
|
||||
)
|
||||
await self._execute_listeners(listener, listener_result)
|
||||
except Exception as e:
|
||||
print(
|
||||
f"[Flow._execute_single_listener] Error in method {listener}: {str(e)}"
|
||||
)
|
||||
46
src/crewai/flow/structured_test_flow.py
Normal file
46
src/crewai/flow/structured_test_flow.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import asyncio
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
@start()
|
||||
async def start_method(self):
|
||||
print("Starting the structured flow")
|
||||
print(f"State in start_method: {self.state}")
|
||||
self.state.message = "Hello from structured flow"
|
||||
print(f"State after start_method: {self.state}")
|
||||
return "Start result"
|
||||
|
||||
@listen(start_method)
|
||||
async def second_method(self, result):
|
||||
print(f"Second method, received: {result}")
|
||||
print(f"State before increment: {self.state}")
|
||||
self.state.counter += 1
|
||||
self.state.message += " - updated"
|
||||
print(f"State after second_method: {self.state}")
|
||||
return "Second result"
|
||||
|
||||
@listen(start_method)
|
||||
async def third_method(self, result):
|
||||
print(f"Third method, received: {result}")
|
||||
print(f"State before increment: {self.state}")
|
||||
self.state.counter += 1
|
||||
self.state.message += " - updated"
|
||||
print(f"State after third_method: {self.state}")
|
||||
return "Third result"
|
||||
|
||||
|
||||
async def main():
|
||||
flow = StructuredExampleFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
42
src/crewai/flow/structured_test_flow_and.py
Normal file
42
src/crewai/flow/structured_test_flow_and.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import asyncio
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
class StructuredExampleFlow(Flow):
|
||||
initial_state = ExampleState
|
||||
|
||||
@start()
|
||||
async def start_method(self):
|
||||
print("Starting the structured flow")
|
||||
print(f"State in start_method: {self.state}")
|
||||
self.state.message = "Hello from structured flow"
|
||||
print(f"State after start_method: {self.state}")
|
||||
return "Start result"
|
||||
|
||||
@listen(start_method)
|
||||
async def second_method(self):
|
||||
print(f"State before increment: {self.state}")
|
||||
self.state.counter += 1
|
||||
self.state.message += " - updated"
|
||||
print(f"State after second_method: {self.state}")
|
||||
return "Second result"
|
||||
|
||||
@listen(start_method and second_method)
|
||||
async def logger(self):
|
||||
print("AND METHOD RUNNING")
|
||||
print("CURRENT STATE FROM OR: ", self.state)
|
||||
|
||||
|
||||
async def main():
|
||||
flow = StructuredExampleFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
47
src/crewai/flow/structured_test_flow_or.py
Normal file
47
src/crewai/flow/structured_test_flow_or.py
Normal file
@@ -0,0 +1,47 @@
|
||||
import asyncio
|
||||
|
||||
from crewai.flow.flow import Flow, and_, listen, or_, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
initial_state = ExampleState
|
||||
|
||||
@start()
|
||||
async def start_method(self):
|
||||
print("Starting the structured flow")
|
||||
print(f"State in start_method: {self.state}")
|
||||
self.state.message = "Hello from structured flow"
|
||||
print(f"State after start_method: {self.state}")
|
||||
return "Start result"
|
||||
|
||||
@listen(start_method)
|
||||
async def second_method(self):
|
||||
print(f"State before increment: {self.state}")
|
||||
self.state.counter += 1
|
||||
self.state.message += " - updated"
|
||||
print(f"State after second_method: {self.state}")
|
||||
return "Second result"
|
||||
|
||||
@listen(or_(start_method, second_method))
|
||||
async def logger(self):
|
||||
print("LOGGER METHOD RUNNING")
|
||||
print("CURRENT STATE FROM LOGGER: ", self.state)
|
||||
|
||||
@listen(and_(start_method, second_method))
|
||||
async def and_logger(self):
|
||||
print("AND LOGGER METHOD RUNNING")
|
||||
print("CURRENT STATE FROM AND LOGGER: ", self.state)
|
||||
|
||||
|
||||
async def main():
|
||||
flow = StructuredExampleFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
33
src/crewai/flow/unstructured_test_flow.py
Normal file
33
src/crewai/flow/unstructured_test_flow.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import asyncio
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
|
||||
class FlexibleExampleFlow(Flow):
|
||||
@start()
|
||||
def start_method(self):
|
||||
print("Starting the flexible flow")
|
||||
self.state["counter"] = 1
|
||||
return "Start result"
|
||||
|
||||
@listen(start_method)
|
||||
def second_method(self, result):
|
||||
print(f"Second method, received: {result}")
|
||||
self.state["counter"] += 1
|
||||
self.state["message"] = "Hello from flexible flow"
|
||||
return "Second result"
|
||||
|
||||
@listen(second_method)
|
||||
def third_method(self, result):
|
||||
print(f"Third method, received: {result}")
|
||||
print(f"Final counter value: {self.state["counter"]}")
|
||||
print(f"Final message: {self.state["message"]}")
|
||||
return "Third result"
|
||||
|
||||
|
||||
async def main():
|
||||
flow = FlexibleExampleFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
@@ -1,3 +1,5 @@
|
||||
from .entity.entity_memory import EntityMemory
|
||||
from .long_term.long_term_memory import LongTermMemory
|
||||
from .short_term.short_term_memory import ShortTermMemory
|
||||
|
||||
__all__ = ["EntityMemory", "LongTermMemory", "ShortTermMemory"]
|
||||
|
||||
@@ -21,7 +21,7 @@ class Memory:
|
||||
if agent:
|
||||
metadata["agent"] = agent
|
||||
|
||||
self.storage.save(value, metadata) # type: ignore # Maybe BUG? Should be self.storage.save(key, value, metadata)
|
||||
self.storage.save(value, metadata)
|
||||
|
||||
def search(self, query: str) -> Dict[str, Any]:
|
||||
return self.storage.search(query)
|
||||
|
||||
@@ -5,13 +5,14 @@ import os
|
||||
import shutil
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
from embedchain import App
|
||||
from embedchain.llm.base import BaseLlm
|
||||
from embedchain.models.data_type import DataType
|
||||
from embedchain.vectordb.chroma import InvalidDimensionException
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_logging(
|
||||
@@ -77,12 +78,12 @@ class RAGStorage(Storage):
|
||||
self.app.llm = FakeLLM()
|
||||
if allow_reset:
|
||||
self.app.reset()
|
||||
|
||||
|
||||
def _sanitize_role(self, role: str) -> str:
|
||||
"""
|
||||
Sanitizes agent roles to ensure valid directory names.
|
||||
"""
|
||||
return role.replace('\n', '').replace(' ', '_').replace('/', '_')
|
||||
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
self._generate_embedding(value, metadata)
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
from crewai.pipeline.pipeline_kickoff_result import PipelineKickoffResult
|
||||
from crewai.pipeline.pipeline_output import PipelineOutput
|
||||
|
||||
__all__ = ["Pipeline", "PipelineKickoffResult", "PipelineOutput"]
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from functools import wraps
|
||||
|
||||
from crewai.project.utils import memoize
|
||||
|
||||
|
||||
@@ -5,13 +7,17 @@ def task(func):
|
||||
if not hasattr(task, "registration_order"):
|
||||
task.registration_order = []
|
||||
|
||||
func.is_task = True
|
||||
wrapped_func = memoize(func)
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
result = func(*args, **kwargs)
|
||||
if not result.name:
|
||||
result.name = func.__name__
|
||||
return result
|
||||
|
||||
# Append the function name to the registration order list
|
||||
setattr(wrapper, "is_task", True)
|
||||
task.registration_order.append(func.__name__)
|
||||
|
||||
return wrapped_func
|
||||
return memoize(wrapper)
|
||||
|
||||
|
||||
def agent(func):
|
||||
@@ -97,7 +103,8 @@ def crew(func):
|
||||
for task_name in sorted_task_names:
|
||||
task_instance = tasks[task_name]()
|
||||
instantiated_tasks.append(task_instance)
|
||||
if hasattr(task_instance, "agent"):
|
||||
agent_instance = getattr(task_instance, "agent", None)
|
||||
if agent_instance is not None:
|
||||
agent_instance = task_instance.agent
|
||||
if agent_instance.role not in agent_roles:
|
||||
instantiated_agents.append(agent_instance)
|
||||
|
||||
@@ -1,56 +1,45 @@
|
||||
import inspect
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
import yaml
|
||||
from dotenv import load_dotenv
|
||||
from pydantic import ConfigDict
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
def CrewBase(cls):
|
||||
class WrappedClass(cls):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
is_crew_class: bool = True # type: ignore
|
||||
|
||||
base_directory = None
|
||||
for frame_info in inspect.stack():
|
||||
if "site-packages" not in frame_info.filename:
|
||||
base_directory = Path(frame_info.filename).parent.resolve()
|
||||
break
|
||||
# Get the directory of the class being decorated
|
||||
base_directory = Path(inspect.getfile(cls)).parent
|
||||
|
||||
original_agents_config_path = getattr(
|
||||
cls, "agents_config", "config/agents.yaml"
|
||||
)
|
||||
|
||||
original_tasks_config_path = getattr(cls, "tasks_config", "config/tasks.yaml")
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
if self.base_directory is None:
|
||||
raise Exception(
|
||||
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
|
||||
)
|
||||
agents_config_path = self.base_directory / self.original_agents_config_path
|
||||
tasks_config_path = self.base_directory / self.original_tasks_config_path
|
||||
|
||||
self.agents_config = self.load_yaml(
|
||||
os.path.join(self.base_directory, self.original_agents_config_path)
|
||||
)
|
||||
|
||||
self.tasks_config = self.load_yaml(
|
||||
os.path.join(self.base_directory, self.original_tasks_config_path)
|
||||
)
|
||||
self.agents_config = self.load_yaml(agents_config_path)
|
||||
self.tasks_config = self.load_yaml(tasks_config_path)
|
||||
|
||||
self.map_all_agent_variables()
|
||||
self.map_all_task_variables()
|
||||
|
||||
@staticmethod
|
||||
def load_yaml(config_path: str):
|
||||
with open(config_path, "r") as file:
|
||||
# parsedContent = YamlParser.parse(file) # type: ignore # Argument 1 to "parse" has incompatible type "TextIOWrapper"; expected "YamlParser"
|
||||
return yaml.safe_load(file)
|
||||
def load_yaml(config_path: Path):
|
||||
try:
|
||||
with open(config_path, "r") as file:
|
||||
return yaml.safe_load(file)
|
||||
except FileNotFoundError:
|
||||
print(f"File not found: {config_path}")
|
||||
raise
|
||||
|
||||
def _get_all_functions(self):
|
||||
return {
|
||||
|
||||
@@ -1,24 +1,24 @@
|
||||
from typing import Callable, Dict
|
||||
|
||||
from pydantic import ConfigDict
|
||||
from typing import Any, Callable, Dict, List, Type, Union
|
||||
|
||||
from crewai.crew import Crew
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
from crewai.routers.router import Router
|
||||
|
||||
PipelineStage = Union[Crew, List[Crew], Router]
|
||||
|
||||
|
||||
# TODO: Could potentially remove. Need to check with @joao and @gui if this is needed for CrewAI+
|
||||
def PipelineBase(cls):
|
||||
def PipelineBase(cls: Type[Any]) -> Type[Any]:
|
||||
class WrappedClass(cls):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
is_pipeline_class: bool = True
|
||||
is_pipeline_class: bool = True # type: ignore
|
||||
stages: List[PipelineStage]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.stages = []
|
||||
self._map_pipeline_components()
|
||||
|
||||
def _get_all_functions(self):
|
||||
def _get_all_functions(self) -> Dict[str, Callable[..., Any]]:
|
||||
return {
|
||||
name: getattr(self, name)
|
||||
for name in dir(self)
|
||||
@@ -26,15 +26,15 @@ def PipelineBase(cls):
|
||||
}
|
||||
|
||||
def _filter_functions(
|
||||
self, functions: Dict[str, Callable], attribute: str
|
||||
) -> Dict[str, Callable]:
|
||||
self, functions: Dict[str, Callable[..., Any]], attribute: str
|
||||
) -> Dict[str, Callable[..., Any]]:
|
||||
return {
|
||||
name: func
|
||||
for name, func in functions.items()
|
||||
if hasattr(func, attribute)
|
||||
}
|
||||
|
||||
def _map_pipeline_components(self):
|
||||
def _map_pipeline_components(self) -> None:
|
||||
all_functions = self._get_all_functions()
|
||||
crew_functions = self._filter_functions(all_functions, "is_crew")
|
||||
router_functions = self._filter_functions(all_functions, "is_router")
|
||||
|
||||
@@ -1 +1,3 @@
|
||||
from crewai.routers.router import Router
|
||||
|
||||
__all__ = ["Router"]
|
||||
|
||||
@@ -1,32 +1,26 @@
|
||||
from copy import deepcopy
|
||||
from typing import Any, Callable, Dict, Generic, Tuple, TypeVar
|
||||
from typing import Any, Callable, Dict, Tuple
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
|
||||
T = TypeVar("T", bound=Dict[str, Any])
|
||||
U = TypeVar("U")
|
||||
|
||||
class Route(BaseModel):
|
||||
condition: Callable[[Dict[str, Any]], bool]
|
||||
pipeline: Any
|
||||
|
||||
|
||||
class Route(Generic[T, U]):
|
||||
condition: Callable[[T], bool]
|
||||
pipeline: U
|
||||
|
||||
def __init__(self, condition: Callable[[T], bool], pipeline: U):
|
||||
self.condition = condition
|
||||
self.pipeline = pipeline
|
||||
|
||||
|
||||
class Router(BaseModel, Generic[T, U]):
|
||||
routes: Dict[str, Route[T, U]] = Field(
|
||||
class Router(BaseModel):
|
||||
routes: Dict[str, Route] = Field(
|
||||
default_factory=dict,
|
||||
description="Dictionary of route names to (condition, pipeline) tuples",
|
||||
)
|
||||
default: U = Field(..., description="Default pipeline if no conditions are met")
|
||||
default: Any = Field(..., description="Default pipeline if no conditions are met")
|
||||
_route_types: Dict[str, type] = PrivateAttr(default_factory=dict)
|
||||
|
||||
model_config = {"arbitrary_types_allowed": True}
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def __init__(self, routes: Dict[str, Route[T, U]], default: U, **data):
|
||||
def __init__(self, routes: Dict[str, Route], default: Any, **data):
|
||||
super().__init__(routes=routes, default=default, **data)
|
||||
self._check_copyable(default)
|
||||
for name, route in routes.items():
|
||||
@@ -34,16 +28,16 @@ class Router(BaseModel, Generic[T, U]):
|
||||
self._route_types[name] = type(route.pipeline)
|
||||
|
||||
@staticmethod
|
||||
def _check_copyable(obj):
|
||||
def _check_copyable(obj: Any) -> None:
|
||||
if not hasattr(obj, "copy") or not callable(getattr(obj, "copy")):
|
||||
raise ValueError(f"Object of type {type(obj)} must have a 'copy' method")
|
||||
|
||||
def add_route(
|
||||
self,
|
||||
name: str,
|
||||
condition: Callable[[T], bool],
|
||||
pipeline: U,
|
||||
) -> "Router[T, U]":
|
||||
condition: Callable[[Dict[str, Any]], bool],
|
||||
pipeline: Any,
|
||||
) -> "Router":
|
||||
"""
|
||||
Add a named route with its condition and corresponding pipeline to the router.
|
||||
|
||||
@@ -60,7 +54,7 @@ class Router(BaseModel, Generic[T, U]):
|
||||
self._route_types[name] = type(pipeline)
|
||||
return self
|
||||
|
||||
def route(self, input_data: T) -> Tuple[U, str]:
|
||||
def route(self, input_data: Dict[str, Any]) -> Tuple[Any, str]:
|
||||
"""
|
||||
Evaluate the input against the conditions and return the appropriate pipeline.
|
||||
|
||||
@@ -76,15 +70,15 @@ class Router(BaseModel, Generic[T, U]):
|
||||
|
||||
return self.default, "default"
|
||||
|
||||
def copy(self) -> "Router[T, U]":
|
||||
def copy(self) -> "Router":
|
||||
"""Create a deep copy of the Router."""
|
||||
new_routes = {
|
||||
name: Route(
|
||||
condition=deepcopy(route.condition),
|
||||
pipeline=route.pipeline.copy(), # type: ignore
|
||||
pipeline=route.pipeline.copy(),
|
||||
)
|
||||
for name, route in self.routes.items()
|
||||
}
|
||||
new_default = self.default.copy() # type: ignore
|
||||
new_default = self.default.copy()
|
||||
|
||||
return Router(routes=new_routes, default=new_default)
|
||||
|
||||
@@ -6,16 +6,24 @@ import uuid
|
||||
from concurrent.futures import Future
|
||||
from copy import copy
|
||||
from hashlib import md5
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union
|
||||
|
||||
from opentelemetry.trace import Span
|
||||
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
Field,
|
||||
PrivateAttr,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
from crewai.utilities.config import process_config
|
||||
from crewai.utilities.converter import Converter, convert_to_model
|
||||
from crewai.utilities.i18n import I18N
|
||||
|
||||
@@ -39,9 +47,6 @@ class Task(BaseModel):
|
||||
tools: List of tools/resources limited for task execution.
|
||||
"""
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
used_tools: int = 0
|
||||
tools_errors: int = 0
|
||||
@@ -103,17 +108,29 @@ class Task(BaseModel):
|
||||
description="A converter class used to export structured output",
|
||||
default=None,
|
||||
)
|
||||
processed_by_agents: Set[str] = Field(default_factory=set)
|
||||
|
||||
_telemetry: Telemetry
|
||||
_execution_span: Span | None = None
|
||||
_original_description: str | None = None
|
||||
_original_expected_output: str | None = None
|
||||
_thread: threading.Thread | None = None
|
||||
_execution_time: float | None = None
|
||||
_telemetry: Telemetry = PrivateAttr(default_factory=Telemetry)
|
||||
_execution_span: Optional[Span] = PrivateAttr(default=None)
|
||||
_original_description: Optional[str] = PrivateAttr(default=None)
|
||||
_original_expected_output: Optional[str] = PrivateAttr(default=None)
|
||||
_thread: Optional[threading.Thread] = PrivateAttr(default=None)
|
||||
_execution_time: Optional[float] = PrivateAttr(default=None)
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def process_model_config(cls, values):
|
||||
return process_config(values, cls)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_required_fields(self):
|
||||
required_fields = ["description", "expected_output"]
|
||||
for field in required_fields:
|
||||
if getattr(self, field) is None:
|
||||
raise ValueError(
|
||||
f"{field} must be provided either directly or through config"
|
||||
)
|
||||
return self
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
@@ -137,12 +154,6 @@ class Task(BaseModel):
|
||||
return value[1:]
|
||||
return value
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_private_attrs(self) -> "Task":
|
||||
"""Set private attributes."""
|
||||
self._telemetry = Telemetry()
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_attributes_based_on_config(self) -> "Task":
|
||||
"""Set attributes based on the agent configuration."""
|
||||
@@ -185,7 +196,7 @@ class Task(BaseModel):
|
||||
expected_output = self._original_expected_output or self.expected_output
|
||||
source = [description, expected_output]
|
||||
|
||||
return md5("|".join(source).encode()).hexdigest()
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
def execute_async(
|
||||
self,
|
||||
@@ -231,6 +242,8 @@ class Task(BaseModel):
|
||||
self.prompt_context = context
|
||||
tools = tools or self.tools or []
|
||||
|
||||
self.processed_by_agents.add(agent.role)
|
||||
|
||||
result = agent.execute_task(
|
||||
task=self,
|
||||
context=context,
|
||||
@@ -240,7 +253,9 @@ class Task(BaseModel):
|
||||
pydantic_output, json_output = self._export_output(result)
|
||||
|
||||
task_output = TaskOutput(
|
||||
name=self.name,
|
||||
description=self.description,
|
||||
expected_output=self.expected_output,
|
||||
raw=result,
|
||||
pydantic=pydantic_output,
|
||||
json_dict=json_output,
|
||||
@@ -261,9 +276,7 @@ class Task(BaseModel):
|
||||
content = (
|
||||
json_output
|
||||
if json_output
|
||||
else pydantic_output.model_dump_json()
|
||||
if pydantic_output
|
||||
else result
|
||||
else pydantic_output.model_dump_json() if pydantic_output else result
|
||||
)
|
||||
self._save_file(content)
|
||||
|
||||
@@ -298,8 +311,10 @@ class Task(BaseModel):
|
||||
"""Increment the tools errors counter."""
|
||||
self.tools_errors += 1
|
||||
|
||||
def increment_delegations(self) -> None:
|
||||
def increment_delegations(self, agent_name: Optional[str]) -> None:
|
||||
"""Increment the delegations counter."""
|
||||
if agent_name:
|
||||
self.processed_by_agents.add(agent_name)
|
||||
self.delegations += 1
|
||||
|
||||
def copy(self, agents: List["BaseAgent"]) -> "Task":
|
||||
|
||||
@@ -10,6 +10,10 @@ class TaskOutput(BaseModel):
|
||||
"""Class that represents the result of a task."""
|
||||
|
||||
description: str = Field(description="Description of the task")
|
||||
name: Optional[str] = Field(description="Name of the task", default=None)
|
||||
expected_output: Optional[str] = Field(
|
||||
description="Expected output of the task", default=None
|
||||
)
|
||||
summary: Optional[str] = Field(description="Summary of the task", default=None)
|
||||
raw: str = Field(description="Raw output of the task", default="")
|
||||
pydantic: Optional[BaseModel] = Field(
|
||||
|
||||
@@ -1 +1,3 @@
|
||||
from .telemetry import Telemetry
|
||||
|
||||
__all__ = ["Telemetry"]
|
||||
|
||||
@@ -4,7 +4,7 @@ import asyncio
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
from typing import TYPE_CHECKING, Any
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
import pkg_resources
|
||||
from opentelemetry import trace
|
||||
@@ -28,18 +28,6 @@ class Telemetry:
|
||||
agents backstories or goals nor responses or any data that is being
|
||||
processed by the agents, nor any secrets and env vars.
|
||||
|
||||
Data collected includes:
|
||||
- Version of crewAI
|
||||
- Version of Python
|
||||
- General OS (e.g. number of CPUs, macOS/Windows/Linux)
|
||||
- Number of agents and tasks in a crew
|
||||
- Crew Process being used
|
||||
- If Agents are using memory or allowing delegation
|
||||
- If Tasks are being executed in parallel or sequentially
|
||||
- Language model being used
|
||||
- Roles of agents in a crew
|
||||
- Tools names available
|
||||
|
||||
Users can opt-in to sharing more complete data using the `share_crew`
|
||||
attribute in the Crew class.
|
||||
"""
|
||||
@@ -114,10 +102,17 @@ class Telemetry:
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"i18n": agent.i18n.prompt_file,
|
||||
"function_calling_llm": json.dumps(
|
||||
self._safe_llm_attributes(
|
||||
agent.function_calling_llm
|
||||
)
|
||||
),
|
||||
"llm": json.dumps(
|
||||
self._safe_llm_attributes(agent.llm)
|
||||
),
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"allow_code_execution?": agent.allow_code_execution,
|
||||
"max_retry_limit": agent.max_retry_limit,
|
||||
"tools_names": [
|
||||
tool.name.casefold()
|
||||
for tool in agent.tools or []
|
||||
@@ -165,7 +160,62 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
span, "crew_inputs", json.dumps(inputs) if inputs else None
|
||||
)
|
||||
|
||||
else:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crew_agents",
|
||||
json.dumps(
|
||||
[
|
||||
{
|
||||
"key": agent.key,
|
||||
"id": str(agent.id),
|
||||
"role": agent.role,
|
||||
"verbose?": agent.verbose,
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"function_calling_llm": json.dumps(
|
||||
self._safe_llm_attributes(
|
||||
agent.function_calling_llm
|
||||
)
|
||||
),
|
||||
"llm": json.dumps(
|
||||
self._safe_llm_attributes(agent.llm)
|
||||
),
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"allow_code_execution?": agent.allow_code_execution,
|
||||
"max_retry_limit": agent.max_retry_limit,
|
||||
"tools_names": [
|
||||
tool.name.casefold()
|
||||
for tool in agent.tools or []
|
||||
],
|
||||
}
|
||||
for agent in crew.agents
|
||||
]
|
||||
),
|
||||
)
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crew_tasks",
|
||||
json.dumps(
|
||||
[
|
||||
{
|
||||
"key": task.key,
|
||||
"id": str(task.id),
|
||||
"async_execution?": task.async_execution,
|
||||
"human_input?": task.human_input,
|
||||
"agent_role": task.agent.role
|
||||
if task.agent
|
||||
else "None",
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"tools_names": [
|
||||
tool.name.casefold()
|
||||
for tool in task.tools or []
|
||||
],
|
||||
}
|
||||
for task in crew.tasks
|
||||
]
|
||||
),
|
||||
)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
@@ -295,7 +345,7 @@ class Telemetry:
|
||||
pass
|
||||
|
||||
def individual_test_result_span(
|
||||
self, crew: Crew, quality: int, exec_time: int, model_name: str
|
||||
self, crew: Crew, quality: float, exec_time: int, model_name: str
|
||||
):
|
||||
if self.ready:
|
||||
try:
|
||||
@@ -349,6 +399,63 @@ class Telemetry:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def deploy_signup_error_span(self):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Deploy Signup Error")
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def start_deployment_span(self, uuid: Optional[str] = None):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Start Deployment")
|
||||
if uuid:
|
||||
self._add_attribute(span, "uuid", uuid)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def create_crew_deployment_span(self):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Create Crew Deployment")
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def get_crew_logs_span(self, uuid: Optional[str], log_type: str = "deployment"):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Get Crew Logs")
|
||||
self._add_attribute(span, "log_type", log_type)
|
||||
if uuid:
|
||||
self._add_attribute(span, "uuid", uuid)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def remove_crew_span(self, uuid: Optional[str] = None):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Remove Crew")
|
||||
if uuid:
|
||||
self._add_attribute(span, "uuid", uuid)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def crew_execution_span(self, crew: Crew, inputs: dict[str, Any] | None):
|
||||
"""Records the complete execution of a crew.
|
||||
This is only collected if the user has opted-in to share the crew.
|
||||
@@ -462,7 +569,7 @@ class Telemetry:
|
||||
pass
|
||||
|
||||
def _safe_llm_attributes(self, llm):
|
||||
attributes = ["name", "model_name", "base_url", "model", "top_k", "temperature"]
|
||||
attributes = ["name", "model_name", "model", "top_k", "temperature"]
|
||||
if llm:
|
||||
safe_attributes = {k: v for k, v in vars(llm).items() if k in attributes}
|
||||
safe_attributes["class"] = llm.__class__.__name__
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from langchain.tools import StructuredTool
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agents.cache import CacheHandler
|
||||
|
||||
@@ -7,11 +7,10 @@ from crewai.agents.cache import CacheHandler
|
||||
class CacheTools(BaseModel):
|
||||
"""Default tools to hit the cache."""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
name: str = "Hit Cache"
|
||||
cache_handler: CacheHandler = Field(
|
||||
description="Cache Handler for the crew",
|
||||
default=CacheHandler(),
|
||||
default_factory=CacheHandler,
|
||||
)
|
||||
|
||||
def tool(self):
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel as PydanticBaseModel
|
||||
from pydantic import Field as PydanticField
|
||||
from pydantic.v1 import BaseModel, Field
|
||||
|
||||
|
||||
class ToolCalling(BaseModel):
|
||||
|
||||
@@ -5,7 +5,7 @@ import regex
|
||||
from langchain.output_parsers import PydanticOutputParser
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.outputs import Generation
|
||||
from langchain_core.pydantic_v1 import ValidationError
|
||||
from pydantic import ValidationError
|
||||
|
||||
|
||||
class ToolOutputParser(PydanticOutputParser):
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import ast
|
||||
from difflib import SequenceMatcher
|
||||
import os
|
||||
from difflib import SequenceMatcher
|
||||
from textwrap import dedent
|
||||
from typing import Any, List, Union
|
||||
|
||||
@@ -8,6 +8,7 @@ from langchain_core.tools import BaseTool
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.task import Task
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from crewai.utilities import I18N, Converter, ConverterError, Printer
|
||||
@@ -15,7 +16,7 @@ from crewai.utilities import I18N, Converter, ConverterError, Printer
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
@@ -51,7 +52,7 @@ class ToolUsage:
|
||||
original_tools: List[Any],
|
||||
tools_description: str,
|
||||
tools_names: str,
|
||||
task: Any,
|
||||
task: Task,
|
||||
function_calling_llm: Any,
|
||||
agent: Any,
|
||||
action: Any,
|
||||
@@ -71,14 +72,14 @@ class ToolUsage:
|
||||
self.task = task
|
||||
self.action = action
|
||||
self.function_calling_llm = function_calling_llm
|
||||
|
||||
|
||||
# Handling bug (see https://github.com/langchain-ai/langchain/pull/16395): raise an error if tools_names have space for ChatOpenAI
|
||||
if isinstance(self.function_calling_llm, ChatOpenAI):
|
||||
if " " in self.tools_names:
|
||||
raise Exception(
|
||||
"Tools names should not have spaces for ChatOpenAI models."
|
||||
)
|
||||
|
||||
|
||||
# Set the maximum parsing attempts for bigger models
|
||||
if (isinstance(self.function_calling_llm, ChatOpenAI)) and (
|
||||
self.function_calling_llm.openai_api_base is None
|
||||
@@ -118,7 +119,7 @@ class ToolUsage:
|
||||
tool: BaseTool,
|
||||
calling: Union[ToolCalling, InstructorToolCalling],
|
||||
) -> str: # TODO: Fix this return type
|
||||
tool_event = agentops.ToolEvent(name=calling.tool_name) if agentops else None
|
||||
tool_event = agentops.ToolEvent(name=calling.tool_name) if agentops else None # type: ignore
|
||||
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
|
||||
try:
|
||||
result = self._i18n.errors("task_repeated_usage").format(
|
||||
@@ -154,7 +155,10 @@ class ToolUsage:
|
||||
"Delegate work to coworker",
|
||||
"Ask question to coworker",
|
||||
]:
|
||||
self.task.increment_delegations()
|
||||
coworker = (
|
||||
calling.arguments.get("coworker") if calling.arguments else None
|
||||
)
|
||||
self.task.increment_delegations(coworker)
|
||||
|
||||
if calling.arguments:
|
||||
try:
|
||||
@@ -241,7 +245,7 @@ class ToolUsage:
|
||||
result = self._remember_format(result=result) # type: ignore # "_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
return result
|
||||
|
||||
def _should_remember_format(self) -> None:
|
||||
def _should_remember_format(self) -> bool:
|
||||
return self.task.used_tools % self._remember_format_after_usages == 0
|
||||
|
||||
def _remember_format(self, result: str) -> None:
|
||||
@@ -353,10 +357,10 @@ class ToolUsage:
|
||||
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
|
||||
f'{self._i18n.errors("tool_arguments_error")}'
|
||||
)
|
||||
calling = ToolCalling( # type: ignore # Unexpected keyword argument "log" for "ToolCalling"
|
||||
calling = ToolCalling(
|
||||
tool_name=tool.name,
|
||||
arguments=arguments,
|
||||
log=tool_string,
|
||||
log=tool_string, # type: ignore
|
||||
)
|
||||
except Exception as e:
|
||||
self._run_attempts += 1
|
||||
@@ -404,19 +408,19 @@ class ToolUsage:
|
||||
'"' + value.replace('"', '\\"') + '"'
|
||||
) # Re-encapsulate with double quotes
|
||||
elif value.isdigit(): # Check if value is a digit, hence integer
|
||||
formatted_value = value
|
||||
value = value
|
||||
elif value.lower() in [
|
||||
"true",
|
||||
"false",
|
||||
"null",
|
||||
]: # Check for boolean and null values
|
||||
formatted_value = value.lower()
|
||||
value = value.lower()
|
||||
else:
|
||||
# Assume the value is a string and needs quotes
|
||||
formatted_value = '"' + value.replace('"', '\\"') + '"'
|
||||
value = '"' + value.replace('"', '\\"') + '"'
|
||||
|
||||
# Rebuild the entry with proper quoting
|
||||
formatted_entry = f'"{key}": {formatted_value}'
|
||||
formatted_entry = f'"{key}": {value}'
|
||||
formatted_entries.append(formatted_entry)
|
||||
|
||||
# Reconstruct the JSON string
|
||||
|
||||
39
src/crewai/utilities/config.py
Normal file
39
src/crewai/utilities/config.py
Normal file
@@ -0,0 +1,39 @@
|
||||
from typing import Any, Dict, Type
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
def process_config(
|
||||
values: Dict[str, Any], model_class: Type[BaseModel]
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Process the config dictionary and update the values accordingly.
|
||||
|
||||
Args:
|
||||
values (Dict[str, Any]): The dictionary of values to update.
|
||||
model_class (Type[BaseModel]): The Pydantic model class to reference for field validation.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: The updated values dictionary.
|
||||
"""
|
||||
config = values.get("config", {})
|
||||
if not config:
|
||||
return values
|
||||
|
||||
# Copy values from config (originally from YAML) to the model's attributes.
|
||||
# Only copy if the attribute isn't already set, preserving any explicitly defined values.
|
||||
for key, value in config.items():
|
||||
if key not in model_class.model_fields or values.get(key) is not None:
|
||||
continue
|
||||
|
||||
if isinstance(value, dict):
|
||||
if isinstance(values.get(key), dict):
|
||||
values[key].update(value)
|
||||
else:
|
||||
values[key] = value
|
||||
else:
|
||||
values[key] = value
|
||||
|
||||
# Remove the config from values to avoid duplicate processing
|
||||
values.pop("config", None)
|
||||
return values
|
||||
@@ -5,8 +5,7 @@ import regex
|
||||
from langchain.output_parsers import PydanticOutputParser
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.outputs import Generation
|
||||
from langchain_core.pydantic_v1 import ValidationError
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
|
||||
class CrewPydanticOutputParser(PydanticOutputParser):
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
from collections import defaultdict
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import BaseModel, Field
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import BaseModel, Field
|
||||
from rich.box import HEAVY_EDGE
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
|
||||
class TaskEvaluationPydanticOutput(BaseModel):
|
||||
@@ -77,50 +77,72 @@ class CrewEvaluator:
|
||||
def print_crew_evaluation_result(self) -> None:
|
||||
"""
|
||||
Prints the evaluation result of the crew in a table.
|
||||
A Crew with 2 tasks using the command crewai test -n 2
|
||||
A Crew with 2 tasks using the command crewai test -n 3
|
||||
will output the following table:
|
||||
|
||||
Task Scores
|
||||
Tasks Scores
|
||||
(1-10 Higher is better)
|
||||
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
|
||||
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
|
||||
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
|
||||
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
|
||||
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
|
||||
│ Crew │ 9.5 │ 9.0 │ 9.2 │
|
||||
└────────────┴───────┴───────┴────────────┘
|
||||
┏━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Tasks/Crew/Agents ┃ Run 1 ┃ Run 2 ┃ Run 3 ┃ Avg. Total ┃ Agents ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ Task 1 │ 9.0 │ 10.0 │ 9.0 │ 9.3 │ - AI LLMs Senior Researcher │
|
||||
│ │ │ │ │ │ - AI LLMs Reporting Analyst │
|
||||
│ │ │ │ │ │ │
|
||||
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │ 9.0 │ - AI LLMs Senior Researcher │
|
||||
│ │ │ │ │ │ - AI LLMs Reporting Analyst │
|
||||
│ │ │ │ │ │ │
|
||||
│ Crew │ 9.0 │ 9.5 │ 9.0 │ 9.2 │ │
|
||||
│ Execution Time (s) │ 42 │ 79 │ 52 │ 57 │ │
|
||||
└────────────────────┴───────┴───────┴───────┴────────────┴──────────────────────────────┘
|
||||
"""
|
||||
task_averages = [
|
||||
sum(scores) / len(scores) for scores in zip(*self.tasks_scores.values())
|
||||
]
|
||||
crew_average = sum(task_averages) / len(task_averages)
|
||||
|
||||
# Create a table
|
||||
table = Table(title="Tasks Scores \n (1-10 Higher is better)")
|
||||
table = Table(title="Tasks Scores \n (1-10 Higher is better)", box=HEAVY_EDGE)
|
||||
|
||||
# Add columns for the table
|
||||
table.add_column("Tasks/Crew")
|
||||
table.add_column("Tasks/Crew/Agents", style="cyan")
|
||||
for run in range(1, len(self.tasks_scores) + 1):
|
||||
table.add_column(f"Run {run}")
|
||||
table.add_column("Avg. Total")
|
||||
table.add_column(f"Run {run}", justify="center")
|
||||
table.add_column("Avg. Total", justify="center")
|
||||
table.add_column("Agents", style="green")
|
||||
|
||||
# Add rows for each task
|
||||
for task_index in range(len(task_averages)):
|
||||
for task_index, task in enumerate(self.crew.tasks):
|
||||
task_scores = [
|
||||
self.tasks_scores[run][task_index]
|
||||
for run in range(1, len(self.tasks_scores) + 1)
|
||||
]
|
||||
avg_score = task_averages[task_index]
|
||||
agents = list(task.processed_by_agents)
|
||||
|
||||
# Add the task row with the first agent
|
||||
table.add_row(
|
||||
f"Task {task_index + 1}", *map(str, task_scores), f"{avg_score:.1f}"
|
||||
f"Task {task_index + 1}",
|
||||
*[f"{score:.1f}" for score in task_scores],
|
||||
f"{avg_score:.1f}",
|
||||
f"- {agents[0]}" if agents else "",
|
||||
)
|
||||
|
||||
# Add a row for the crew average
|
||||
# Add rows for additional agents
|
||||
for agent in agents[1:]:
|
||||
table.add_row("", "", "", "", "", f"- {agent}")
|
||||
|
||||
# Add a blank separator row if it's not the last task
|
||||
if task_index < len(self.crew.tasks) - 1:
|
||||
table.add_row("", "", "", "", "", "")
|
||||
|
||||
# Add Crew and Execution Time rows
|
||||
crew_scores = [
|
||||
sum(self.tasks_scores[run]) / len(self.tasks_scores[run])
|
||||
for run in range(1, len(self.tasks_scores) + 1)
|
||||
]
|
||||
table.add_row("Crew", *map(str, crew_scores), f"{crew_average:.1f}")
|
||||
table.add_row(
|
||||
"Crew",
|
||||
*[f"{score:.2f}" for score in crew_scores],
|
||||
f"{crew_average:.1f}",
|
||||
"",
|
||||
)
|
||||
|
||||
run_exec_times = [
|
||||
int(sum(tasks_exec_times))
|
||||
@@ -128,11 +150,9 @@ class CrewEvaluator:
|
||||
]
|
||||
execution_time_avg = int(sum(run_exec_times) / len(run_exec_times))
|
||||
table.add_row(
|
||||
"Execution Time (s)",
|
||||
*map(str, run_exec_times),
|
||||
f"{execution_time_avg}",
|
||||
"Execution Time (s)", *map(str, run_exec_times), f"{execution_time_avg}", ""
|
||||
)
|
||||
# Display the table in the terminal
|
||||
|
||||
console = Console()
|
||||
console.print(table)
|
||||
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
from datetime import datetime
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
class Logger:
|
||||
_printer = Printer()
|
||||
|
||||
def __init__(self, verbose=False):
|
||||
self.verbose = verbose
|
||||
class Logger(BaseModel):
|
||||
verbose: bool = Field(default=False)
|
||||
_printer: Printer = PrivateAttr(default_factory=Printer)
|
||||
|
||||
def log(self, level, message, color="bold_green"):
|
||||
if self.verbose:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import re
|
||||
|
||||
|
||||
class YamlParser:
|
||||
@staticmethod
|
||||
def parse(file):
|
||||
@@ -16,7 +17,9 @@ class YamlParser:
|
||||
|
||||
# Replace single { and } with doubled ones, while leaving already doubled ones intact and the other special characters {# and {%
|
||||
modified_content = re.sub(r"(?<!\{){(?!\{)(?!\#)(?!\%)", "{{", content)
|
||||
modified_content = re.sub(r"(?<!\})(?<!\%)(?<!\#)\}(?!})", "}}", modified_content)
|
||||
modified_content = re.sub(
|
||||
r"(?<!\})(?<!\%)(?<!\#)\}(?!})", "}}", modified_content
|
||||
)
|
||||
|
||||
# Check for 'context:' not followed by '[' and raise an error
|
||||
if re.search(r"context:(?!\s*\[)", modified_content):
|
||||
|
||||
@@ -1,14 +1,25 @@
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
|
||||
|
||||
class PlanPerTask(BaseModel):
|
||||
task: str = Field(..., description="The task for which the plan is created")
|
||||
plan: str = Field(
|
||||
...,
|
||||
description="The step by step plan on how the agents can execute their tasks using the available tools with mastery",
|
||||
)
|
||||
|
||||
|
||||
class PlannerTaskPydanticOutput(BaseModel):
|
||||
list_of_plans_per_task: List[str]
|
||||
list_of_plans_per_task: List[PlanPerTask] = Field(
|
||||
...,
|
||||
description="Step by step plan on how the agents can execute their tasks using the available tools with mastery",
|
||||
)
|
||||
|
||||
|
||||
class CrewPlanner:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user