Compare commits

..

11 Commits

Author SHA1 Message Date
Eduardo Chiarotti
616ffe2aba feat: fix test 2024-07-25 15:30:54 -03:00
Eduardo Chiarotti
a6bce1089a feat: change opdeai model 2024-07-25 13:44:32 -03:00
Eduardo Chiarotti
cb8fbf61de feat: back to sync 2024-07-25 13:43:54 -03:00
Eduardo Chiarotti
4d2cdc3d96 feat: improve tests and fix some issue 2024-07-25 12:58:55 -03:00
Eduardo Chiarotti
890c03a0a6 docs: add docs for Testing 2024-07-25 12:09:02 -03:00
Eduardo Chiarotti
e4b419d5be feat: add raise ValueError when testing if output is not the expected 2024-07-24 13:35:29 -03:00
Eduardo Chiarotti
8ffc4f79fa feat: fix type checking issue 2024-07-24 13:34:59 -03:00
Eduardo Chiarotti
c05ef3c8cf feat: add tests 2024-07-24 13:14:20 -03:00
Eduardo Chiarotti
cf600c1a43 feat: improve testing output table 2024-07-24 11:39:43 -03:00
Eduardo Chiarotti
2a88d1d462 feat: add docs and add unit test 2024-07-24 11:05:09 -03:00
Eduardo Chiarotti
660a2ae837 feat: add crew Testing/evalauting feature 2024-07-24 09:14:09 -03:00
15 changed files with 359 additions and 491 deletions

View File

@@ -0,0 +1,41 @@
---
title: crewAI Testing
description: Learn how to test your crewAI Crew and evaluate their performance.
---
## Introduction
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. And with crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
### Using the Testing Feature
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics.
The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now the only provider available is OpenAI.
```bash
crewai test
```
If you want to run more iterations or use a different model, you can specify the parameters like this:
```bash
crewai test --n_iterations 5 --model gpt-4o
```
What happens when you run the `crewai test` command is that the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
A table of scores at the end will show the performance of the crew in terms of the following metrics:
```
Task Scores
(1-10 Higher is better)
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
│ Crew │ 9.5 │ 9.0 │ 9.2 │
└────────────┴───────┴───────┴────────────┘
```
The example above shows the test results for two runs of the crew with two tasks, with the average total score for each task and the crew as a whole.

View File

@@ -16,7 +16,7 @@ We assume you have already installed CrewAI. If not, please refer to the [instal
To create a new project, run the following CLI command:
```shell
$ crewai create <project_name>
$ crewai create my_project
```
This command will create a new project folder with the following structure:
@@ -79,77 +79,8 @@ research_candidates_task:
{job_requirements}
expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE Crew.PY FILE
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE Crew.PY FILE
- researcher
```
### Referencing Variables:
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task wont recognize the reference properly.
#### Example References
agent.yaml
```yaml
email_summarizer:
role: >
Email Summarizer
goal: >
Summarize emails into a concise and clear summary
backstory: >
You will create a 5 bullet point summary of the report
llm: mixtal_llm
```
task.yaml
```yaml
email_summarizer_task:
description: >
Summarize the email into a 5 bullet point summary
expected_output: >
A 5 bullet point summary of the email
agent: email_summarizer
context:
- reporting_task
- research_task
```
Use the annotations are used to properly reference the agent and task in the crew.py file.
### Annotations include:
* @agent
* @task
* @crew
* @llm
* @tool
* @callback
* @output_json
* @output_pydantic
* @cache_handler
crew.py
```py
...
@llm
def mixtal_llm(self):
return ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
@agent
def email_summarizer(self) -> Agent:
return Agent(
config=self.agents_config["email_summarizer"],
)
## ...other tasks defined
@task
def email_summarizer_task(self) -> Task:
return Task(
config=self.tasks_config["email_summarizer_task"],
)
...
```
## Installing Dependencies
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:

View File

@@ -129,6 +129,7 @@ nav:
- Training: 'core-concepts/Training-Crew.md'
- Memory: 'core-concepts/Memory.md'
- Planning: 'core-concepts/Planning.md'
- Testing: 'core-concepts/Testing.md'
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
- How to Guides:

View File

@@ -10,7 +10,6 @@ from .replay_from_task import replay_task_command
from .reset_memories_command import reset_memories_command
from .test_crew import test_crew
from .train_crew import train_crew
from .doc_generator import generate_documentation
@click.group()
@@ -147,18 +146,6 @@ def test(n_iterations: int, model: str):
click.echo(f"Testing the crew for {n_iterations} iterations with model {model}")
test_crew(n_iterations, model)
@crewai.command()
@click.option('--output', '-o', default='crew_documentation.md', help='Output file for the documentation')
@click.option('--format', '-f', default='markdown', help='Output format')
def generate_docs(output, format):
"""Generate documentation for the current project setup."""
try:
click.echo(f"Generating documentation in {format} format...")
generate_documentation(output, format)
click.echo(f"Documentation generated and saved to {output}")
except ValueError as e:
click.echo(f"Error: {str(e)}", err=True)
click.echo("Please ensure you are in the root directory of your CrewAI project.")
if __name__ == "__main__":
crewai()

View File

@@ -1,204 +0,0 @@
import os
import yaml
import logging
def is_project_root():
"""
Check if the current directory is the root of a CrewAI project.
Returns:
bool: True if in project root, False otherwise.
"""
# Check for key indicators of a CrewAI project root
indicators = ["pyproject.toml", "poetry.lock", "src"]
return all(os.path.exists(indicator) for indicator in indicators)
def generate_documentation(output_file, format):
"""
Generate documentation for the current CrewAI project setup.
Args:
output_file (str): The path and filename where the generated documentation
will be saved.
format (str): The desired output format for the documentation.
Supported values currently 'markdown'.
Returns:
None: The function writes the generated documentation to the specified
output file and doesn't return any value.
Raises:
ValueError: If not in the project root or if an unsupported output format is specified.
"""
if not is_project_root():
raise ValueError(
"Not in the root of a CrewAI project."
)
# Load the current project configuration
config = load_crew_configuration()
if config is None:
logging.error("Failed to load crew configuration. Exiting.")
return
if format == "markdown":
content = generate_markdown(config)
else:
raise ValueError(f"Unsupported output format: {format}")
with open(output_file, "w") as f:
f.write(content)
logging.info(f"Documentation generated and saved to {output_file}")
def find_config_dir():
"""
Find the configuration directory based on the project structure.
This function attempts to locate the configuration directory for a CrewAI project
by assuming a standard project structure. It starts from the current working
directory and constructs an expected path to the config directory.
Returns:
str or None: The path to the configuration directory if found, None otherwise.
The function performs the following steps:
1. Gets the current working directory.
2. Extracts the project name from the current directory path.
3. Constructs the expected config path using the project structure convention.
4. Checks if the expected config directory exists.
5. Returns the path if found, or None if not found.
Logging:
- Logs debug information about the search process.
- Logs the starting directory, the checked path, and the result of the search.
Note:
This function assumes a specific project structure where the config
directory is located at 'src/<project_name>/config' relative to the
project root.
"""
current_dir = os.getcwd()
logging.debug(f"Starting search from: {current_dir}")
# Split the path to get the project name
path_parts = current_dir.split(os.path.sep)
project_name = path_parts[-1]
# Construct the expected config path
expected_config_path = os.path.join(current_dir, "src", project_name, "config")
logging.debug(f"Checking for config directory: {expected_config_path}")
if os.path.isdir(expected_config_path):
logging.debug(f"Found config directory: {expected_config_path}")
return expected_config_path
logging.debug("Config directory not found in the expected location")
return None
def load_crew_configuration():
"""
Load the crew configuration from YAML files.
This function attempts to find the configuration directory and load the agents
and tasks configurations from their respective YAML files.
Returns:
dict or None: A dictionary containing 'agents' and 'tasks' configurations
if successful, None if there was an error.
The function performs the following steps:
1. Finds the configuration directory using find_config_dir().
2. Constructs paths to agents.yaml and tasks.yaml files.
3. Checks if both files exist.
4. Loads and parses the YAML content of both files.
5. Returns a dictionary with the parsed configurations.
Logging:
- Logs an error if the configuration directory is not found.
- Logs an error if either agents.yaml or tasks.yaml is not found.
Note:
This function assumes that the configuration files are named 'agents.yaml'
and 'tasks.yaml' and are located in the directory returned by find_config_dir().
"""
config_dir = find_config_dir()
if not config_dir:
logging.error(
"Configuration directory not found. Make sure you're in the root of your CrewAI project."
)
return None
agents_file = os.path.join(config_dir, "agents.yaml")
tasks_file = os.path.join(config_dir, "tasks.yaml")
if not os.path.exists(agents_file) or not os.path.exists(tasks_file):
logging.error(f"agents.yaml or tasks.yaml not found in {config_dir}")
return None
with open(agents_file, "r") as f:
agents_config = yaml.safe_load(f)
with open(tasks_file, "r") as f:
tasks_config = yaml.safe_load(f)
return {"agents": agents_config, "tasks": tasks_config}
def generate_markdown(config):
"""
Generate Markdown documentation for the CrewAI project configuration.
This function takes the parsed configuration dictionary and generates
a formatted Markdown string containing documentation for the project's
agents and tasks.
Args:
config (dict): A dictionary containing the parsed configuration
with 'agents' and 'tasks' keys.
Returns:
str: A formatted Markdown string containing the project documentation.
If the input config is None, it returns an error message.
The generated Markdown includes:
1. A title for the project documentation.
2. A section for Agents, listing each agent's name, role, goal, and backstory.
3. A section for Tasks, listing each task's name, description, expected output,
and assigned agent.
Each piece of information is wrapped in code blocks for better readability
in rendered Markdown.
Note:
This function assumes that the config dictionary has the correct structure
with 'agents' and 'tasks' keys, each containing nested dictionaries of
agent and task information respectively.
"""
if config is None:
return "# Error: No crew configuration available"
md = "# CrewAI Project Documentation\n\n"
md += "## Agents\n\n"
for agent_name, agent_data in config["agents"].items():
md += f"### \n```\n{agent_name}\n```\n"
md += f"Role: \n```\n{agent_data.get('role', 'Not specified')}\n```\n"
md += f"Goal: \n```\n{agent_data.get('goal', 'Not specified')}\n```\n"
md += f"Backstory: \n```\n{agent_data.get('backstory', 'Not specified')}\n```\n"
md += f""
md += "## Tasks\n\n"
for task_name, task_data in config["tasks"].items():
md += f"### {task_name}\n"
md += f"Description: \n```\n{task_data.get('description', 'Not specified')}\n```\n"
md += f"Expected Output: \n```\n{task_data.get('expected_output', 'Not specified')}\n```\n"
md += f"Assigned Agent: \n```\n{task_data.get('agent', 'Not assigned')}\n```\n"
return md

View File

@@ -5,7 +5,6 @@ research_task:
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
@@ -14,4 +13,3 @@ reporting_task:
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst

View File

@@ -32,12 +32,14 @@ class {{crew_name}}Crew():
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
agent=self.researcher()
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
agent=self.reporting_analyst(),
output_file='report.md'
)

View File

@@ -48,7 +48,7 @@ def test():
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), model=sys.argv[2], inputs=inputs)
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -37,6 +37,7 @@ from crewai.utilities.constants import (
TRAINED_AGENTS_DATA_FILE,
TRAINING_DATA_FILE,
)
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
@@ -967,10 +968,19 @@ class Crew(BaseModel):
return total_usage_metrics
def test(
self, n_iterations: int, model: str, inputs: Optional[Dict[str, Any]] = None
self,
n_iterations: int,
openai_model_name: str,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test the crew with the given inputs."""
pass
"""Test and evaluate the Crew with the given inputs for n iterations."""
evaluator = CrewEvaluator(self, openai_model_name)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
self.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"

View File

@@ -1,25 +1,2 @@
from .annotations import (
agent,
crew,
task,
output_json,
output_pydantic,
tool,
callback,
llm,
cache_handler,
)
from .annotations import agent, crew, task
from .crew_base import CrewBase
__all__ = [
"agent",
"crew",
"task",
"output_json",
"output_pydantic",
"tool",
"callback",
"CrewBase",
"llm",
"cache_handler",
]

View File

@@ -30,37 +30,6 @@ def agent(func):
return func
def llm(func):
func.is_llm = True
func = memoize(func)
return func
def output_json(cls):
cls.is_output_json = True
return cls
def output_pydantic(cls):
cls.is_output_pydantic = True
return cls
def tool(func):
func.is_tool = True
return memoize(func)
def callback(func):
func.is_callback = True
return memoize(func)
def cache_handler(func):
func.is_cache_handler = True
return memoize(func)
def crew(func):
def wrapper(self, *args, **kwargs):
instantiated_tasks = []

View File

@@ -1,7 +1,6 @@
import inspect
import os
from pathlib import Path
from typing import Any, Callable, Dict
import yaml
from dotenv import load_dotenv
@@ -21,6 +20,11 @@ def CrewBase(cls):
base_directory = Path(frame_info.filename).parent.resolve()
break
if base_directory is None:
raise Exception(
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
)
original_agents_config_path = getattr(
cls, "agents_config", "config/agents.yaml"
)
@@ -28,20 +32,12 @@ def CrewBase(cls):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.base_directory is None:
raise Exception(
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
)
self.agents_config = self.load_yaml(
os.path.join(self.base_directory, self.original_agents_config_path)
)
self.tasks_config = self.load_yaml(
os.path.join(self.base_directory, self.original_tasks_config_path)
)
self.map_all_agent_variables()
self.map_all_task_variables()
@staticmethod
def load_yaml(config_path: str):
@@ -49,138 +45,4 @@ def CrewBase(cls):
# parsedContent = YamlParser.parse(file) # type: ignore # Argument 1 to "parse" has incompatible type "TextIOWrapper"; expected "YamlParser"
return yaml.safe_load(file)
def _get_all_functions(self):
return {
name: getattr(self, name)
for name in dir(self)
if callable(getattr(self, name))
}
def _filter_functions(
self, functions: Dict[str, Callable], attribute: str
) -> Dict[str, Callable]:
return {
name: func
for name, func in functions.items()
if hasattr(func, attribute)
}
def map_all_agent_variables(self) -> None:
all_functions = self._get_all_functions()
llms = self._filter_functions(all_functions, "is_llm")
tool_functions = self._filter_functions(all_functions, "is_tool")
cache_handler_functions = self._filter_functions(
all_functions, "is_cache_handler"
)
callbacks = self._filter_functions(all_functions, "is_callback")
agents = self._filter_functions(all_functions, "is_agent")
for agent_name, agent_info in self.agents_config.items():
self._map_agent_variables(
agent_name,
agent_info,
agents,
llms,
tool_functions,
cache_handler_functions,
callbacks,
)
def _map_agent_variables(
self,
agent_name: str,
agent_info: Dict[str, Any],
agents: Dict[str, Callable],
llms: Dict[str, Callable],
tool_functions: Dict[str, Callable],
cache_handler_functions: Dict[str, Callable],
callbacks: Dict[str, Callable],
) -> None:
if llm := agent_info.get("llm"):
self.agents_config[agent_name]["llm"] = llms[llm]()
if tools := agent_info.get("tools"):
self.agents_config[agent_name]["tools"] = [
tool_functions[tool]() for tool in tools
]
if function_calling_llm := agent_info.get("function_calling_llm"):
self.agents_config[agent_name]["function_calling_llm"] = agents[
function_calling_llm
]()
if step_callback := agent_info.get("step_callback"):
self.agents_config[agent_name]["step_callback"] = callbacks[
step_callback
]()
if cache_handler := agent_info.get("cache_handler"):
self.agents_config[agent_name]["cache_handler"] = (
cache_handler_functions[cache_handler]()
)
def map_all_task_variables(self) -> None:
all_functions = self._get_all_functions()
agents = self._filter_functions(all_functions, "is_agent")
tasks = self._filter_functions(all_functions, "is_task")
output_json_functions = self._filter_functions(
all_functions, "is_output_json"
)
tool_functions = self._filter_functions(all_functions, "is_tool")
callback_functions = self._filter_functions(all_functions, "is_callback")
output_pydantic_functions = self._filter_functions(
all_functions, "is_output_pydantic"
)
for task_name, task_info in self.tasks_config.items():
self._map_task_variables(
task_name,
task_info,
agents,
tasks,
output_json_functions,
tool_functions,
callback_functions,
output_pydantic_functions,
)
def _map_task_variables(
self,
task_name: str,
task_info: Dict[str, Any],
agents: Dict[str, Callable],
tasks: Dict[str, Callable],
output_json_functions: Dict[str, Callable],
tool_functions: Dict[str, Callable],
callback_functions: Dict[str, Callable],
output_pydantic_functions: Dict[str, Callable],
) -> None:
if context_list := task_info.get("context"):
self.tasks_config[task_name]["context"] = [
tasks[context_task_name]() for context_task_name in context_list
]
if tools := task_info.get("tools"):
self.tasks_config[task_name]["tools"] = [
tool_functions[tool]() for tool in tools
]
if agent_name := task_info.get("agent"):
self.tasks_config[task_name]["agent"] = agents[agent_name]()
if output_json := task_info.get("output_json"):
self.tasks_config[task_name]["output_json"] = output_json_functions[
output_json
]
if output_pydantic := task_info.get("output_pydantic"):
self.tasks_config[task_name]["output_pydantic"] = (
output_pydantic_functions[output_pydantic]
)
if callbacks := task_info.get("callbacks"):
self.tasks_config[task_name]["callbacks"] = [
callback_functions[callback]() for callback in callbacks
]
return WrappedClass

View File

@@ -0,0 +1,149 @@
from collections import defaultdict
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
class TaskEvaluationPydanticOutput(BaseModel):
quality: float = Field(
description="A score from 1 to 10 evaluating on completion, quality, and overall performance from the task_description and task_expected_output to the actual Task Output."
)
class CrewEvaluator:
"""
A class to evaluate the performance of the agents in the crew based on the tasks they have performed.
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
tasks_scores: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
self.crew = crew
self.openai_model_name = openai_model_name
self._setup_for_evaluating()
def _setup_for_evaluating(self) -> None:
"""Sets up the crew for evaluating."""
for task in self.crew.tasks:
task.callback = self.evaluate
def set_iteration(self, iteration: int) -> None:
self.iteration = iteration
def _evaluator_agent(self):
return Agent(
role="Task Execution Evaluator",
goal=(
"Your goal is to evaluate the performance of the agents in the crew based on the tasks they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=ChatOpenAI(model=self.openai_model_name),
)
def _evaluation_task(
self, evaluator_agent: Agent, task_to_evaluate: Task, task_output: str
) -> Task:
return Task(
description=(
"Based on the task description and the expected output, compare and evaluate the performance of the agents in the crew based on the Task Output they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
f"task_description: {task_to_evaluate.description} "
f"task_expected_output: {task_to_evaluate.expected_output} "
f"agent: {task_to_evaluate.agent.role if task_to_evaluate.agent else None} "
f"agent_goal: {task_to_evaluate.agent.goal if task_to_evaluate.agent else None} "
f"Task Output: {task_output}"
),
expected_output="Evaluation Score from 1 to 10 based on the performance of the agents on the tasks",
agent=evaluator_agent,
output_pydantic=TaskEvaluationPydanticOutput,
)
def print_crew_evaluation_result(self) -> None:
"""
Prints the evaluation result of the crew in a table.
A Crew with 2 tasks using the command crewai test -n 2
will output the following table:
Task Scores
(1-10 Higher is better)
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
│ Crew │ 9.5 │ 9.0 │ 9.2 │
└────────────┴───────┴───────┴────────────┘
"""
task_averages = [
sum(scores) / len(scores) for scores in zip(*self.tasks_scores.values())
]
crew_average = sum(task_averages) / len(task_averages)
# Create a table
table = Table(title="Tasks Scores \n (1-10 Higher is better)")
# Add columns for the table
table.add_column("Tasks/Crew")
for run in range(1, len(self.tasks_scores) + 1):
table.add_column(f"Run {run}")
table.add_column("Avg. Total")
# Add rows for each task
for task_index in range(len(task_averages)):
task_scores = [
self.tasks_scores[run][task_index]
for run in range(1, len(self.tasks_scores) + 1)
]
avg_score = task_averages[task_index]
table.add_row(
f"Task {task_index + 1}", *map(str, task_scores), f"{avg_score:.1f}"
)
# Add a row for the crew average
crew_scores = [
sum(self.tasks_scores[run]) / len(self.tasks_scores[run])
for run in range(1, len(self.tasks_scores) + 1)
]
table.add_row("Crew", *map(str, crew_scores), f"{crew_average:.1f}")
# Display the table in the terminal
console = Console()
console.print(table)
def evaluate(self, task_output: TaskOutput):
"""Evaluates the performance of the agents in the crew based on the tasks they have performed."""
current_task = None
for task in self.crew.tasks:
if task.description == task_output.description:
current_task = task
break
if not current_task or not task_output:
raise ValueError(
"Task to evaluate and task output are required for evaluation"
)
evaluator_agent = self._evaluator_agent()
evaluation_task = self._evaluation_task(
evaluator_agent, current_task, task_output.raw
)
evaluation_result = evaluation_task.execute_sync()
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
else:
raise ValueError("Evaluation result is not in the expected format")

View File

@@ -8,6 +8,7 @@ from unittest.mock import MagicMock, patch
import pydantic_core
import pytest
from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
@@ -2499,3 +2500,34 @@ def test_conditional_should_execute():
assert condition_mock.call_count == 1
assert condition_mock() is True
assert mock_execute_sync.call_count == 2
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(mock_kickoff, crew_evaluator):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
agent=researcher,
)
crew = Crew(
agents=[researcher],
tasks=[task],
)
n_iterations = 2
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
assert len(mock_kickoff.mock_calls) == n_iterations
mock_kickoff.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
crew_evaluator.assert_has_calls(
[
mock.call(crew, "gpt-4o-mini"),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
]
)

View File

@@ -0,0 +1,113 @@
from unittest import mock
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.evaluators.crew_evaluator_handler import (
CrewEvaluator,
TaskEvaluationPydanticOutput,
)
class TestCrewEvaluator:
@pytest.fixture
def crew_planner(self):
agent = Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1")
task = Task(
description="Task 1",
expected_output="Output 1",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
return CrewEvaluator(crew, openai_model_name="gpt-4o-mini")
def test_setup_for_evaluating(self, crew_planner):
crew_planner._setup_for_evaluating()
assert crew_planner.crew.tasks[0].callback == crew_planner.evaluate
def test_set_iteration(self, crew_planner):
crew_planner.set_iteration(1)
assert crew_planner.iteration == 1
def test_evaluator_agent(self, crew_planner):
agent = crew_planner._evaluator_agent()
assert agent.role == "Task Execution Evaluator"
assert (
agent.goal
== "Your goal is to evaluate the performance of the agents in the crew based on the tasks they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
)
assert (
agent.backstory
== "Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed"
)
assert agent.verbose is False
assert agent.llm.model_name == "gpt-4o-mini"
def test_evaluation_task(self, crew_planner):
evaluator_agent = Agent(
role="Evaluator Agent",
goal="Evaluate the performance of the agents in the crew",
backstory="Master in Evaluation",
)
task_to_evaluate = Task(
description="Task 1",
expected_output="Output 1",
agent=Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1"),
)
task_output = "Task Output 1"
task = crew_planner._evaluation_task(
evaluator_agent, task_to_evaluate, task_output
)
assert task.description.startswith(
"Based on the task description and the expected output, compare and evaluate the performance of the agents in the crew based on the Task Output they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
)
assert task.agent == evaluator_agent
assert (
task.description
== "Based on the task description and the expected output, compare and evaluate "
"the performance of the agents in the crew based on the Task Output they have "
"performed using score from 1 to 10 evaluating on completion, quality, and overall "
"performance.task_description: Task 1 task_expected_output: Output 1 "
"agent: Agent 1 agent_goal: Goal 1 Task Output: Task Output 1"
)
@mock.patch("crewai.utilities.evaluators.crew_evaluator_handler.Console")
@mock.patch("crewai.utilities.evaluators.crew_evaluator_handler.Table")
def test_print_crew_evaluation_result(self, table, console, crew_planner):
crew_planner.tasks_scores = {
1: [10, 9, 8],
2: [9, 8, 7],
}
crew_planner.print_crew_evaluation_result()
table.assert_has_calls(
[
mock.call(title="Tasks Scores \n (1-10 Higher is better)"),
mock.call().add_column("Tasks/Crew"),
mock.call().add_column("Run 1"),
mock.call().add_column("Run 2"),
mock.call().add_column("Avg. Total"),
mock.call().add_row("Task 1", "10", "9", "9.5"),
mock.call().add_row("Task 2", "9", "8", "8.5"),
mock.call().add_row("Task 3", "8", "7", "7.5"),
mock.call().add_row("Crew", "9.0", "8.0", "8.5"),
]
)
console.assert_has_calls([mock.call(), mock.call().print(table())])
def test_evaluate(self, crew_planner):
task_output = TaskOutput(
description="Task 1", agent=str(crew_planner.crew.agents[0])
)
with mock.patch.object(Task, "execute_sync") as execute:
execute().pydantic = TaskEvaluationPydanticOutput(quality=9.5)
crew_planner.evaluate(task_output)
assert crew_planner.tasks_scores[0] == [9.5]