Compare commits

...

8 Commits

Author SHA1 Message Date
lorenzejay
023a32758d docstrings added 2025-04-18 18:25:23 -07:00
lorenzejay
d7e97ed509 Enhance KnowledgeConfig with field descriptions
- Updated `results_limit` and `score_threshold` in `KnowledgeConfig` to use Pydantic's `Field` for improved documentation and clarity.
- Added descriptions to both parameters to provide better context for their usage in knowledge retrieval configuration.
2025-04-18 18:17:46 -07:00
lorenzejay
3981d8591a Update documentation to format parameter names in code style
- Changed the formatting of `results_limit` and `score_threshold` in the documentation to use code style for better clarity and emphasis.
- Ensured consistency in documentation presentation to enhance user understanding of configuration options.
2025-04-17 17:10:33 -07:00
lorenzejay
5d41ded7ed Add VCR support for agent tests with query limits and score thresholds
- Introduced `@pytest.mark.vcr` decorator in `agent_test.py` for tests involving knowledge sources, ensuring consistent recording of HTTP interactions.
- Added new YAML cassette files for `test_agent_with_knowledge_sources_with_query_limit_and_score_threshold` and `test_agent_with_knowledge_sources_with_query_limit_and_score_threshold_default`, capturing the expected API responses for these tests.
- Enhanced test reliability by utilizing VCR to manage external API calls during testing.
2025-04-17 16:48:16 -07:00
lorenzejay
3b72278631 Refactor agent tests to utilize mock knowledge storage
- Updated test cases in `agent_test.py` to use `KnowledgeStorage` for mocking knowledge sources, enhancing test reliability and clarity.
- Renamed `limit` to `results_limit` in `KnowledgeConfig` for consistency with recent changes.
- Ensured that knowledge queries are properly mocked to return expected results during tests.
2025-04-17 16:38:59 -07:00
lorenzejay
379d0faf52 Merge branch 'main' of github.com:crewAIInc/crewAI into improvement/knowledge-query-limits-and-context 2025-04-17 15:51:42 -07:00
lorenzejay
18db1cd294 Refactor knowledge configuration parameters in CrewAI
- Renamed `limit` to `results_limit` in `KnowledgeConfig`, `query_knowledge`, and `query` methods for consistency and clarity.
- Updated related documentation to reflect the new parameter name, ensuring users understand the configuration options for knowledge retrieval.
2025-04-17 15:49:03 -07:00
lorenzejay
d93e08a3a6 Enhance knowledge management in CrewAI
- Added `KnowledgeConfig` class to configure knowledge retrieval parameters such as `limit` and `score_threshold`.
- Updated `Agent` and `Crew` classes to utilize the new knowledge configuration for querying knowledge sources.
- Enhanced documentation to clarify the addition of knowledge sources at both agent and crew levels.
- Introduced new tips in documentation to guide users on knowledge source management and configuration.
2025-04-17 15:45:09 -07:00
10 changed files with 836 additions and 22 deletions

View File

@@ -42,6 +42,16 @@ CrewAI supports various types of knowledge sources out of the box:
| `collection_name` | **str** | No | Name of the collection where the knowledge will be stored. Used to identify different sets of knowledge. Defaults to "knowledge" if not provided. |
| `storage` | **Optional[KnowledgeStorage]** | No | Custom storage configuration for managing how the knowledge is stored and retrieved. If not provided, a default storage will be created. |
<Tip>
Unlike retrieval from a vector database using a tool, agents preloaded with knowledge will not need a retrieval persona or task.
Simply add the relevant knowledge sources your agent or crew needs to function.
Knowledge sources can be added at the agent or crew level.
Crew level knowledge sources will be used by **all agents** in the crew.
Agent level knowledge sources will be used by the **specific agent** that is preloaded with the knowledge.
</Tip>
## Quickstart Example
<Tip>
@@ -146,6 +156,26 @@ result = crew.kickoff(
)
```
## Knowledge Configuration
You can configure the knowledge configuration for the crew or agent.
```python Code
from crewai.knowledge.knowledge_config import KnowledgeConfig
knowledge_config = KnowledgeConfig(results_limit=10, score_threshold=0.5)
agent = Agent(
...
knowledge_config=knowledge_config
)
```
<Tip>
`results_limit`: is the number of relevant documents to return. Default is 3.
`score_threshold`: is the minimum score for a document to be considered relevant. Default is 0.35.
</Tip>
## More Examples
Here are examples of how to use different types of knowledge sources:

View File

@@ -114,6 +114,14 @@ class Agent(BaseAgent):
default=None,
description="Embedder configuration for the agent.",
)
agent_knowledge_context: Optional[str] = Field(
default=None,
description="Knowledge context for the agent.",
)
crew_knowledge_context: Optional[str] = Field(
default=None,
description="Knowledge context for the crew.",
)
@model_validator(mode="after")
def post_init_setup(self):
@@ -234,22 +242,30 @@ class Agent(BaseAgent):
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
knowledge_config = (
self.knowledge_config.model_dump() if self.knowledge_config else {}
)
if self.knowledge:
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
agent_knowledge_snippets = self.knowledge.query(
[task.prompt()], **knowledge_config
)
if agent_knowledge_snippets:
agent_knowledge_context = extract_knowledge_context(
self.agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
)
if agent_knowledge_context:
task_prompt += agent_knowledge_context
if self.agent_knowledge_context:
task_prompt += self.agent_knowledge_context
if self.crew:
knowledge_snippets = self.crew.query_knowledge([task.prompt()])
knowledge_snippets = self.crew.query_knowledge(
[task.prompt()], **knowledge_config
)
if knowledge_snippets:
crew_knowledge_context = extract_knowledge_context(knowledge_snippets)
if crew_knowledge_context:
task_prompt += crew_knowledge_context
self.crew_knowledge_context = extract_knowledge_context(
knowledge_snippets
)
if self.crew_knowledge_context:
task_prompt += self.crew_knowledge_context
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)

View File

@@ -19,6 +19,7 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.knowledge_config import KnowledgeConfig
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.security.security_config import SecurityConfig
from crewai.tools.base_tool import BaseTool, Tool
@@ -155,6 +156,10 @@ class BaseAgent(ABC, BaseModel):
adapted_agent: bool = Field(
default=False, description="Whether the agent is adapted"
)
knowledge_config: Optional[KnowledgeConfig] = Field(
default=None,
description="Knowledge configuration for the agent such as limits and threshold",
)
@model_validator(mode="before")
@classmethod

View File

@@ -304,9 +304,7 @@ class Crew(BaseModel):
"""Initialize private memory attributes."""
self._external_memory = (
# External memory doesnt support a default value since it was designed to be managed entirely externally
self.external_memory.set_crew(self)
if self.external_memory
else None
self.external_memory.set_crew(self) if self.external_memory else None
)
self._long_term_memory = self.long_term_memory
@@ -1136,9 +1134,13 @@ class Crew(BaseModel):
result = self._execute_tasks(self.tasks, start_index, True)
return result
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
def query_knowledge(
self, query: List[str], results_limit: int = 3, score_threshold: float = 0.35
) -> Union[List[Dict[str, Any]], None]:
if self.knowledge:
return self.knowledge.query(query)
return self.knowledge.query(
query, results_limit=results_limit, score_threshold=score_threshold
)
return None
def fetch_inputs(self) -> Set[str]:
@@ -1220,9 +1222,13 @@ class Crew(BaseModel):
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
if self.short_term_memory:
copied_data["short_term_memory"] = self.short_term_memory.model_copy(deep=True)
copied_data["short_term_memory"] = self.short_term_memory.model_copy(
deep=True
)
if self.long_term_memory:
copied_data["long_term_memory"] = self.long_term_memory.model_copy(deep=True)
copied_data["long_term_memory"] = self.long_term_memory.model_copy(
deep=True
)
if self.entity_memory:
copied_data["entity_memory"] = self.entity_memory.model_copy(deep=True)
if self.external_memory:
@@ -1230,7 +1236,6 @@ class Crew(BaseModel):
if self.user_memory:
copied_data["user_memory"] = self.user_memory.model_copy(deep=True)
copied_data.pop("agents", None)
copied_data.pop("tasks", None)
@@ -1403,7 +1408,10 @@ class Crew(BaseModel):
"short": (getattr(self, "_short_term_memory", None), "short term"),
"entity": (getattr(self, "_entity_memory", None), "entity"),
"knowledge": (getattr(self, "knowledge", None), "knowledge"),
"kickoff_outputs": (getattr(self, "_task_output_handler", None), "task output"),
"kickoff_outputs": (
getattr(self, "_task_output_handler", None),
"task output",
),
"external": (getattr(self, "_external_memory", None), "external"),
}

View File

@@ -43,7 +43,9 @@ class Knowledge(BaseModel):
self.storage.initialize_knowledge_storage()
self._add_sources()
def query(self, query: List[str], limit: int = 3) -> List[Dict[str, Any]]:
def query(
self, query: List[str], results_limit: int = 3, score_threshold: float = 0.35
) -> List[Dict[str, Any]]:
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
@@ -56,7 +58,8 @@ class Knowledge(BaseModel):
results = self.storage.search(
query,
limit,
limit=results_limit,
score_threshold=score_threshold,
)
return results

View File

@@ -0,0 +1,16 @@
from pydantic import BaseModel, Field
class KnowledgeConfig(BaseModel):
"""Configuration for knowledge retrieval.
Args:
results_limit (int): The number of relevant documents to return.
score_threshold (float): The minimum score for a document to be considered relevant.
"""
results_limit: int = Field(default=3, description="The number of results to return")
score_threshold: float = Field(
default=0.35,
description="The minimum score for a result to be considered relevant",
)

View File

@@ -4,7 +4,7 @@ import io
import logging
import os
import shutil
from typing import Any, Dict, List, Optional, Union, cast
from typing import Any, Dict, List, Optional, Union
import chromadb
import chromadb.errors

View File

@@ -10,6 +10,8 @@ from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
from crewai.agents.parser import CrewAgentParser, OutputParserException
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.knowledge_config import KnowledgeConfig
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
@@ -259,7 +261,9 @@ def test_cache_hitting():
def handle_tool_end(source, event):
received_events.append(event)
with (patch.object(CacheHandler, "read") as read,):
with (
patch.object(CacheHandler, "read") as read,
):
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
@@ -1611,6 +1615,78 @@ def test_agent_with_knowledge_sources():
assert "red" in result.raw.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
knowledge_config = KnowledgeConfig(results_limit=10, score_threshold=0.5)
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{"content": content}]
with patch.object(Knowledge, "query") as mock_knowledge_query:
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
knowledge_config=knowledge_config,
)
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert agent.knowledge is not None
mock_knowledge_query.assert_called_once_with(
[task.prompt()],
**knowledge_config.model_dump(),
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources_with_query_limit_and_score_threshold_default():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
knowledge_config = KnowledgeConfig()
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{"content": content}]
with patch.object(Knowledge, "query") as mock_knowledge_query:
string_source = StringKnowledgeSource(content=content)
knowledge_config = KnowledgeConfig()
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
knowledge_config=knowledge_config,
)
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert agent.knowledge is not None
mock_knowledge_query.assert_called_once_with(
[task.prompt()],
**knowledge_config.model_dump(),
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources_extensive_role():
content = "Brandon's favorite color is red and he likes Mexican food."

View File

@@ -0,0 +1,330 @@
interactions:
- request:
body: '{"input": ["Brandon''s favorite color is red and he likes Mexican food."],
"model": "text-embedding-3-small", "encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '137'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SaWw+yPtfmz59Pced/yrwR2bV9zhAQ2UkRFHEymYAiOxHZtEDfvN99ovdkNicm
YiNpu1bXdf1W//Nff/7802V1fp/++feff17VOP3z377PHumU/vPvP//9X3/+/Pnzn7/P/29k3mb5
41G9i9/w34/V+5Ev//z7D/9/nvzfQf/+889JZZQeb+UOCJHjaQqtRQfv1mXUaf0OTfTuHjx+CvAU
CWC/KEik3pNeZScAwr5Zzkgne4Gqd6jX2+oDW3BxGx8nMkfrxaq0GM2PNaV5G6QZM0P1joRJl32W
BVuXtTPPo02jZhRX8gjWdj7MgDz2D+wRexhoUHsaTN9P0RfLw5itFrmbCgzCHVFOdx/wQte1qJvK
FxH556YeT0pqoJ0RTNhqPwiskhTe0T7qIpzrwS4arGS24D4uc6y90d4VpMq+wy7hntS8mG297p2B
QNrwZ5pV1p4RZ6vPEHEPDtuWVA0L/w451CylgPUZBhFvXaQWWqXwwKobdNmavrcCyvDk4aRDezby
2c5Hym33obtXgLKlioYGKUfZovrOBtkSu6cOQbHw6POcJoyE+vmMxtegUst+HNh2ZImhpFTNsJ4V
73p1XlWO8NsSscGvH7asThqCqtoe6anKt+6SsI0K91Ef0UtGS5dIB8DD3QV2vtwaybB8lksCj5K7
pTjWccSrU5igG+hfVOuSRl+4sPGhtJ4Qtfr4w4g0EQcaRfCgnrKxXVFD8hnSZ6jTk5PN9ax4JxU5
T/5MsnTwskU6ARNOHnCJYHpsoPbgFfDzsRYaLe9dPbfLoiDTls800h+6vjruXYDSGiGs3fJFXw5Z
2APLfh+ok3y2YDvrfQvLm3/x5fPervlV0QUUF5c33aFAzQRua0JwHeCKb5/FGITQVzsgc1KIg6vA
Mmo+Xg5CiY/80LSf2UqSFwdOKDHoMVyBvk6jq0DzTRTs1uUHLFui9ciAyYGq8fHOhDqzzoCpgkE9
Ta/q9aW/VnRO/IR6zaVjs8DvQ9Q/byvOji+YzUV7ztGHji4+b4t7LZqHuwO9+NRR9aZ0YFFWKQF8
oXu+5D2rgfee2RlmG3/CO+mFXbq0SgJ35cGm+JxKjEnnY6vsjlOI9+aSsPUqdSNMj3FBD3qdMHHA
UgCXpjj46xaeI6GBnAZtrfZJOLMKLKg6VrDCz5jaF6K6/LjWGpwt36FHS430JTwlHtrvYIL3q03d
JUkWDWVaEtKLvglq9sj4HiRDHtFo3yjuyGe2D/nPY8ER4xwmtq/AQtvoptF7rdiAX9jdgRtn7+Bn
tJEZJc2GgD4yNZz3YBjWu3ziAaFrhXenYwImk8wNpOrj/M13t+Y7wz/D3/57Lz0b2K1kHixsVceP
ztUy8VYyH90e/AbvXU+sGZ8aDnKhc6LWu9nVPJp3CYqztfBbYCn6DDf9CG16+VBf9VswK6seI7h7
nqirt5POrDOr4LC/ExoMssgmx6EzlCfv+s2fnS5e3vIM9VeX0YDfaUxs04EHhXb/4KPzJoC1ac2j
jeltac5xgc5gd++B3PYI22Bmw1g9KgFZx+cdGynQMv7ilz7yDuFKkP351LMfTiYsJQCpLhIpWguN
76FsiVd6cLRJX4LU5qEFOUQdt3OBGCfJHX7PD/x7H+9L1xThHJQYF+HiUrWYe6DvogzvTlKvM6OP
EijuT5i01wcF7Pg6QvgK4pZ6vlzo82dzCmBAD4zuU7MfFvypHbRLREZku91ma5+PBfjGjz8e7mbN
sFByKDkcInrs5Iv+oVDhoTppJTYI17LVHD4qvBBo4NB9lmyRDuYMt0bqkQWbJZteYsaBUpZNvFf7
Su+cVQ5gr6YI+7u3A0Sev83KJowLXyzuwGV7N5jR68Zc6iWPoB71O63gwiqEtU9sR3wq2yG0nPZE
ja7fuKuzmQ10PnUctriPysROHCtogQ3D+JPs3O1a1AGULo+SauHJ0XlpX8ZI350yeqCtmjFn4T0w
SHyDz/xqg+2xnU3UZWJP7VURXHaDlgBHg8P00NhvfTy2rgqPRM1pvKIjmPwodNDU8neq2ydTZ2O7
C1F5qFKKX8PFHRZvXGFV81eaBMou4wcOjzLwbk/qpxe1/uyMoEAmCc4Yl4GQrZzstsgq+Qe9D4cZ
LFkbJCg6NjG9Wy8pWzj/3cBY7VSaymuf0eK2jnBXmRE+bZkJlqdp+NAf6gFbh9saPQ/d7Q6siTtg
HG1ubDtLnA8/1fuK/TpfXVbO7gijGR7pQ3e2EVPA2qJ170v+FosWWEPf6iBRgI6dku7Z0ianM2Jl
scWq4R/Z9qkd2l98YU3isD7z7UuBtw4V9Hbef+pZu2wEEE/3DCdFdXDF6j7NMOmftg99uXDFME1T
MCX6SA/OvAGTcm4tlJ1uFoHzsdQZvxHu8BQ+eurtkiXrcuobMLzW2Tf+TCZka+8or+FpYqypDhBU
5eahY3a54ftLBzULDTuF0f3t4X2N7+4QGrsUifHG8We0fdXzbCoOQHjzJlwbKFk/umYDMQsqmunt
0RUDj2ko+/QP6ofSW19xoDVQUHHuw289YJf3MiM+vwQ+f5Xf9Xw3OwIT3eNwcu59sDruWUBjOQ/f
/FPd+V0FDZKlWPrG71Nf1UJvYOyh2R+rUxQxL88D0KnUoeq8sfTV3+cBME6Pid5uPnDXZBOk6Fyf
ZRxe02wQd6LdweOknzHu4zYj42WV0P5QddSbjzv3qydMEMutia3sHgOmk0CDnZ5gjO1HEwm9kUsg
7R47cu6j7bBWwVlDfsy9sNHXls5jXV+R6sYt3hdSyJZQdAo4dvGeWtHJGeYUpzEUkpzhg3UT6l5c
+hVAw4rxJeUfmejpQYAe7+6CdUM4ZGPt2wW4RvRBTtK2rCdD9yE8lUGK3fdJjNa++ljoKDsbsnkN
F53pZyeF72U806h3OnfVpwqiOx8+fbEH2F1lv65QNhUrPp6FYGChsUuQ44QG+XyWpu72qOHhmi4W
tqSLrI8lfOXwu/4EWcF+WPwK3OHNF2y8++UP90gq6LuCgdXyqkXisl5N+DS3D38cDjOb2LrpQYap
R+1XvGckOz8lKB7gGVtNyA9MLeYO1uSe/I1/sm/kM4Q0FPAh4LfR3JwXH+7ulYbNfa6yZdqPBZyK
k0b4Q5zrM4hUAscBB/7mUXRgtsU2hJvLcaDhV691b0uDCJ2G2lcS2YqEX/1Q93NMFi0wIuZTJYQf
73yhd1Tm7Lee8Fffn2G0YyR5OTMEiiz81cNzNXkWKOjJwLio9IHXmm6Gh06JCVceLPbyo9BCttTY
9EGHhz562zGGhnn1iOQLA1jj65BCw5NaelNnkTGzLGcknMDNp+c0ASztKgWN+mZPeLtvXbYTdx0q
J5Zh4/OqgNhc5xWl92tMHca9I4L7xEPcqzDopdvfwGLnxxGQ15nhOMWSPj60xoROc8uwNRhwWC9Z
pwFXwzufhMctYKdJilFrhyN1JbQOS+ExCV5KMaA4JUUtkkYkcHekId1J23KYPlc8Q6F+nbHpiAYT
/H0cgqbY7nF2/SzDeidTAcXus6exvKsznvVVBWzcaVitLu+azP2OQ3nQ3vFR35rDSuswAN/zi6bc
0XZnTnvwEOXrlSyXThyW4v7wIS5eDwJvAj98/VGOXpVWUvVkDBnLrZhAr4MTTQ63NXv1JTThZz8D
ejZOlc7sgFNgs9SCr4xwBMOK3AQw8bDHTnhQ3fmcOxVQRVvyW+cdZrNw23RQTsuQXvdvEnXCTezg
V/9jXyyFYU7eUwC+649x0A/Z2F6bEH52UovvrviKmGQ0AZQjJPn0W8+WROs0eNPGJ/7uV0ZO4baH
7MnLOEorLZtruvGgbGw0uie3sl5W89Er6fFc0KvCDpHYEHuGj6zoaWC/FzDSOMqha60ZvcX3ldEw
TRN48Z83ImSSP7ztfeijDzftyLwXm2hpa0GFtVFb1Lrtp3q2XC+AN5+38a1Gu2HN1spCfpC5fu1F
Klubq05A9zIdvFPfE2P35xIgpQptvAOew8b+Up1RoEUJWVq31L/+xwKdOjk+SIcxG7/+BT6FmMM7
3f/UyzbaqlAe8RG7toOG1RtTC87BpyXKc5gzej51K5DTOiTrz3+MrtlC7Xzf0MygOViFneEgTWMG
EU/PdqDQxyr4xruvnP2rK1YCSGDPVkbk1dOjNS83IXynuUV2TjYPrBJYgooP4b/1XAbjwB0IspIX
wvjrJxfjcW+g/RjI3/zeEsG1ABUqTNAeopppx5CgQx2bRA53Z33xo9SCX/9CQ6fh9NkQtg5U+qnx
pcVadfbYvVV4lOwtdV3dHOayuvLwr5442DAah3uoAilsYuqm2Y0xv0g4aDTWilWeXob+5yerbRHS
3OMXtvRjl8DoNu588P0/oVlOZyTprMWHT5jUc1xsW8QB80z3NYb6Kk2tBQzz4vmgrZuaeGNooe/+
4Hs7hvo69zsICkuT8eGCz7qwSS0Ic1F442P08CIWJ0n+mx/OT3iumXB8KNAk4Zna25HLuqYJKyV/
uRXWb29uIHxnqYg7jDmOv/p5xYHTgs/HWbB52PYubV2nAr1xCjEOoxIsFSYQds1B9cEwCvqH65Cn
tLkAqblbeMZW2ZxBe3R3hKvzVV/VxvLh6SjVON9fpYg8thcffuOF7le+yJazUUL4He+DMDjWq9AK
Ofz6bep/kBmtgfoJwM+P//QSAcPowcpUF2oNZ6zz2+nSwmePI+p847G/eKIJvzzG59zsOKzFsYOQ
K7dbrOW2Fq3skRH48rueujh/RYufcwJMQ2nxV0n9AJ7TLgI8vh8G9oZr/eUxZwOs9v74t77MQWMb
cFrhAf/4AlnDdwJrkifY9rpZnwu1smBwMix6KRxVF+JFVmFgCasv3MpXtBYPJ4Bf/uR/84P1nlZ7
sDrZIba//n972BYB7ByXYrtGZT13ecYB4zNp1N33VT3xaOBgkjCf2l//skRPysHPTmmpcxzLaN4e
hgA+5DjA9qrE7rLDyAdAgwrWpdsH9N94Adc0EPGVxRMYXwKRBN1PMVXdwIrGSpzv6PIIbGorh4e+
3MP1DrlPevOVIi7ZOp24EH6su4rdp+nqc7o1eoBs74AzdXPK1s/q3OGzmAm9G45c08tbXuGrkUey
kblRX81LoMIg2kRkMa4gm8N+nuFq+hrWw/RabzNPWxEHjDPeqWKRfeshgXypxv6WB9eMNRFvIWJ0
2pff2GB94EpBT7uoaGRvJDAE6NSDn5/An6TUZ/JZUmgZqkj9n59Mt0YHvTeqMW5QFTFOnnv0KE3g
S9JFdsku6EOIL3dINet4ZswwPsbPj1Kz6gX2V/898tsWm5F20lnwVjsISTQS5uAh+/kLkBi+hfeL
a4P1Jdkqsh8f8ounaO2yJYeeax+wh5ZTti2ESoDILDVqA61gLdjLCrw/1AjnXaNFQmqqFpJkofzq
rXMtPLJDAwf7qpNNGJVs1Squh0shSr5eTWRgnZYoP/5Hf/V9eegnBzk93JJlSSx3+3EH86/+TJxs
0sePw2k/v4F97TW7rDrZBuTX8UT98HgBf+P9wlcXapy2a0Q9PQhhnM0FtnxhYKstqykiUS8RepR0
ff6ej+jnv9WrEGWdwB9D+OODNnu9o+X1MM8wf9kVVu3rJluaUuNQuz1wVP2spfv14xU0p8ih2lfv
j/1pGuH7cYmw7WIXTOZ+10FWVlsif/VmZa3JqHz1IE6Q2mdTzXcK+PmPmzpfmdjbaovW07mmh1sf
slwB+wKi+pLjQ35p3JHgYYXvQr3R5+x8shliwwBBWkzU6U6gZkpshYB1Jv7LE8lbEO+wjo869SWv
05dVkRQYO+aLajei12xrEg+ixEM07tddLcZJkENjy084v6V3MJfVk4dKTxu6S/U4E19GKoDlnYXY
GODodibRq59/95tOWQZi9887hMcW+BsBnrKuv1Qxep42nE8bpGX0OSUdsvqT9NX7N3196dMK3jGT
8Y8v0vvF4+DcKcDnC/rK2NVYC9gmUYXNuW3qsTnLPuT4QvnL36gZWjkgVnHF8VDw0ZJ06Rn89OXh
y5/nYotm8KwH2R+Ss66z80hWeLZvnb9aj0O09pJigVbYW2TzfG/qL//t4fvVfDCWudFlfc8F4Fuv
/RmUj+FvfP/48zGTXH3eo0aA3SFofHFNunruPlao6PcbwCY7qpFgrQGBJ0f18cXakujzOy/uZPTp
MVVeTOQbKf/xJh8Yu1GfnFtC/uphR65EMCpVpaLwg2O6D8I3G7n7cIfh5xhT9cu/tk2pwb/n704o
5ZrlUOb++m9POIvscxpzD/C6N/scM69s9kdlhPFbcrGfjL07J+uphfkwQiIAS3HZrAQxOoXPHtuq
ttdZ6ZxS2NCtgs3XfaOz1H+EEE/jiUZZsNX71wOkcHFaAWP+1X39b5LA5elCbHCtNyyf10xgfUQT
tsL2FgkuYHf441Xu+3TNVuUSeSDMjS3+zg9M9ypa4Tk71PjohoW7dNtUhd4hWKm1nwFgr7zI4U9f
eN/6Roqu5cBV0yvy+vLHJXx/PAhvpMV6L6VsNHZlBcUYOfiIPM9d3pakKi+xWagfd+eBedIgKXUV
E+zue60WY1LeUX1fH4Trmiqa72OmAtDGM7WGjZqtvixX8DQQ++cHojZLzhWyLmSlh52oAvLVI1Ai
RPXnznZqwQTOGZJBOn737wAYy9UZXomI/K6Sg4wqh2sMPvsV+Eyyxay5pHsJSmEb00MPqD5yZnqH
h13n+gVYAp0gq+GQ8nzr2KrkOXsqr7KFocZdsEfXSm+8/XGEsekH2NIClQnNoUrhV/9hz8nL7Dt/
Dfn87OIo0P1sCuaUh6Of8Pi51FM04scpgYdOinE4LZa7ts1gQOsyrth5C3B4r9E5h29gyT48qaK+
wh0KfvoIm6P7AsupWCowjKNMjU451bM1cw388lYfda4W8T//8tO3qL40NZ3C4QzltkMkXa5DvV7e
xgjD7WVHrbCVo/Vz5Xl4dYMdPnz546/fBNVrfiLsNDZsLTTY/+XBzlu418365DyABK32pQDPOuOC
HUGPdRWwffOBvn75E7D3fuRvP2TOft+V3/ltPOOdvrinZw7H10elKh7e+qwr8vyXJ+jLuxx+fAea
B9X20bc/Jy7r0wT1W+KoSUI4rHC3DWBQrTr2PmQEM51LE3KPgFDHPmn1ll7VCpW9EhDu64f7Je16
CPJDSv/y09/+QXIa8U14V+53fh3gdq5B/Uxn2boeNPJ3v3+8aL7HjgbsVvH9zVqGNVPNWkWFC3yM
maeDWZ3SBB57y8YPN1RdsT4ad3iuY5kweZ3YlHnajMjj8PDrxlwZKVgWKN/8JLydsmGcH64FvvyG
2l7yqIXJPDXw16+5uJ445C03E7Sl1egPYVHojNJGQy3sK7LVYkVfvL0yg/FWX+h+cT9gDo6z+ePZ
1PsQD/A7fbgrWtH09FLWjT7LmRKD24frCT9fB33clpICnVug4PjC37J5rG0Cw3MXUHVBU0buZKqg
9pAbIn/95dZpUAKNIvz2x6gwEJl/8Art04akzwyB1VkOFij8JvKRKZbRXDMmwFLv9vj2kMdo2Vyu
IXwKZw5rEoEDO5eage7lOyVojsmwGn53/ulzwmXRC3Q/fbbi7o3d8fqu57MUWCiWGxMb57cyrPHE
J3Cjdi+q7kUjEz+N3/x4Az7qzjZjiHox9Iz3RL/nq1v20tGAuXUx8SGWnJpwsttA8VE1VK0uh0E0
9WsFke0fiJArn+jbLwgB7qwdVvFwcLfpLr//rV93NfV0QZ96CF3zEGMHZCoQxtkq4MtZL1g7GLo7
f/UUcJos80EkGy7jnrWKmizkCbt4G7AU94uHCpBSAvNyD2axGTiYB82dgAFag6iatQY3jZZh/Cgs
9u0H8gicu+2X56g1PxmbHF6r4ogvQjOBbhaDFZqmusEnutHB+uuH3o2Vo4ar9+58wKqCEsOzsMtX
jM03q+pQrfYMHxVniZaW0zuknfPNr75m7CxGBrSLM4+vn2pwl3Qrj8BiRYKdahrc6ZhgCwqaUmNL
/zRg+PYf//qLxxBw0fzrXzqiUdCQShyjXz+tpM6QUe/L9+kkXToI1nuGL1qc6uu9VgVk1G6HHRO/
f/mz/vgNdpX247L+eWrR1WogVpOyAV9+3EKBozw2/L0BmKy+O0iiTsJJHL0yui0YD6XLsyTAdh71
Mj9mH/7zuxXwX//68+d//G4YtN0jf30vBkz5Mv3H/7kq8B/if4xt+nr9vYZAxrTI//n3/76B8M9n
6NrP9D+nrsnf4z///rMV/t41+GfqpvT1/z7/1/dV//Wv/wUAAP//AwBcfFVx4CAAAA==
headers:
CF-RAY:
- 931fcf607c16eb34-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 17 Apr 2025 23:47:53 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=CncSMPCav.9EJL3emmM0sTqugx5GN6_Oy8JPFBssVho-1744933673-1.0.1.1-Q1XMvHbQdrfEWkkCYeeNHwFdZ1NpjAGJ_0jOUYIk_APelFe7nCanjW_xlOj12b3JQql9.iWQDiHvCeYJDTWkdxnNiMQOEiFMYHX5YZXUuJs;
path=/; expires=Fri, 18-Apr-25 00:17:53 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=unfPTYCpF5COtm5PuZDuaJqlhefP0iibfjsXHc9lKq0-1744933673515-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '75'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
via:
- envoy-router-8687b6cbdb-4qpmr
x-envoy-upstream-service-time:
- '46'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999986'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_b8c884a7fe2bd4732903ecbdc632576d
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
information based on knowledge sources\nTo give my best complete final answer
to the task respond using the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: Your final answer must be the great and the
most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '926'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jJNNi9swEIbv+RWDLr0ki/NBvm5NYUsplFK29NAuZiKNnWlkjVaSk02X
/PdiJxtn2y30YrCeecfvvCM/9QAUG7UEpTeYdOXtYPXp7vbLw7evm4ePmObvt/jrsVgVn9/5dbhj
1W8Usv5JOj2rbrRU3lJicSesA2GiputwNpksxuPpbNyCSgzZRlb6NJjIoGLHg1E2mgyy2WA4P6s3
wpqiWsL3HgDAU/tsfDpDj2oJWf/5pKIYsSS1vBQBqCC2OVEYI8eELql+B7W4RK61/gGc7EGjg5J3
BAhlYxvQxT0FgB/ulh1aeNu+L2EV0BlxbyIUuJPAiUCLlQAcwUkCX68ta3sAI7quyCUywA72bMge
AHfIFteWYOtkb8mUBFHqoCneXPsLVNQRm4xcbe0VQOckYZNxm8z9mRwvWVgpfZB1/EOqCnYcN3kg
jOKauWMSr1p67AHct5nXL2JUPkjlU55kS+3nhtP5qZ/qVt3R0fQMkyS0V6rFpP9Kv9xQQrbxamtK
o96Q6aTdirE2LFegdzX1325e632anF35P+07oDX5RCb3gQzrlxN3ZYGaP+FfZZeUW8MqUtixpjwx
hWYThgqs7el+qniIiaq8YFdS8IFPl7TweTZejOajUbbIVO/Y+w0AAP//AwA4a1/QsgMAAA==
headers:
CF-RAY:
- 931fcf649bdbed40-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 17 Apr 2025 23:47:54 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=8vySwO0xqpm0u93_1_rXQwTeEIWa2ei3_CD5sAdoo3o-1744933674-1.0.1.1-iqZDpH5poOUp4Rcnhfrb0N2Z0c2662RBiPEcx_gefNW.m3tBA3qyFa8tmFv7PitH8u9vyYK7jxUwy4lPiSi830QWNbTMgCMTbrJ7iaUV7hY;
path=/; expires=Fri, 18-Apr-25 00:17:54 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=IXAyT8eWpFERM53ngcYNmaqhocfGbOHWSoe7SFNdoGI-1744933674288-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '489'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999801'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_151f9d0b786f2022f249ee20ea108b43
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,330 @@
interactions:
- request:
body: '{"input": ["Brandon''s favorite color is red and he likes Mexican food."],
"model": "text-embedding-3-small", "encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '137'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SaWw+yPtfmz59Pced/yrwR2bV9zhAQ2UkRFHEymYAiOxHZtEDfvN99ovdkNicm
YiNpu1bXdf1W//Nff/7802V1fp/++feff17VOP3z377PHumU/vPvP//9X3/+/Pnzn7/P/29k3mb5
41G9i9/w34/V+5Ev//z7D/9/nvzfQf/+889JZZQeb+UOCJHjaQqtRQfv1mXUaf0OTfTuHjx+CvAU
CWC/KEik3pNeZScAwr5Zzkgne4Gqd6jX2+oDW3BxGx8nMkfrxaq0GM2PNaV5G6QZM0P1joRJl32W
BVuXtTPPo02jZhRX8gjWdj7MgDz2D+wRexhoUHsaTN9P0RfLw5itFrmbCgzCHVFOdx/wQte1qJvK
FxH556YeT0pqoJ0RTNhqPwiskhTe0T7qIpzrwS4arGS24D4uc6y90d4VpMq+wy7hntS8mG297p2B
QNrwZ5pV1p4RZ6vPEHEPDtuWVA0L/w451CylgPUZBhFvXaQWWqXwwKobdNmavrcCyvDk4aRDezby
2c5Hym33obtXgLKlioYGKUfZovrOBtkSu6cOQbHw6POcJoyE+vmMxtegUst+HNh2ZImhpFTNsJ4V
73p1XlWO8NsSscGvH7asThqCqtoe6anKt+6SsI0K91Ef0UtGS5dIB8DD3QV2vtwaybB8lksCj5K7
pTjWccSrU5igG+hfVOuSRl+4sPGhtJ4Qtfr4w4g0EQcaRfCgnrKxXVFD8hnSZ6jTk5PN9ax4JxU5
T/5MsnTwskU6ARNOHnCJYHpsoPbgFfDzsRYaLe9dPbfLoiDTls800h+6vjruXYDSGiGs3fJFXw5Z
2APLfh+ok3y2YDvrfQvLm3/x5fPervlV0QUUF5c33aFAzQRua0JwHeCKb5/FGITQVzsgc1KIg6vA
Mmo+Xg5CiY/80LSf2UqSFwdOKDHoMVyBvk6jq0DzTRTs1uUHLFui9ciAyYGq8fHOhDqzzoCpgkE9
Ta/q9aW/VnRO/IR6zaVjs8DvQ9Q/byvOji+YzUV7ztGHji4+b4t7LZqHuwO9+NRR9aZ0YFFWKQF8
oXu+5D2rgfee2RlmG3/CO+mFXbq0SgJ35cGm+JxKjEnnY6vsjlOI9+aSsPUqdSNMj3FBD3qdMHHA
UgCXpjj46xaeI6GBnAZtrfZJOLMKLKg6VrDCz5jaF6K6/LjWGpwt36FHS430JTwlHtrvYIL3q03d
JUkWDWVaEtKLvglq9sj4HiRDHtFo3yjuyGe2D/nPY8ER4xwmtq/AQtvoptF7rdiAX9jdgRtn7+Bn
tJEZJc2GgD4yNZz3YBjWu3ziAaFrhXenYwImk8wNpOrj/M13t+Y7wz/D3/57Lz0b2K1kHixsVceP
ztUy8VYyH90e/AbvXU+sGZ8aDnKhc6LWu9nVPJp3CYqztfBbYCn6DDf9CG16+VBf9VswK6seI7h7
nqirt5POrDOr4LC/ExoMssgmx6EzlCfv+s2fnS5e3vIM9VeX0YDfaUxs04EHhXb/4KPzJoC1ac2j
jeltac5xgc5gd++B3PYI22Bmw1g9KgFZx+cdGynQMv7ilz7yDuFKkP351LMfTiYsJQCpLhIpWguN
76FsiVd6cLRJX4LU5qEFOUQdt3OBGCfJHX7PD/x7H+9L1xThHJQYF+HiUrWYe6DvogzvTlKvM6OP
EijuT5i01wcF7Pg6QvgK4pZ6vlzo82dzCmBAD4zuU7MfFvypHbRLREZku91ma5+PBfjGjz8e7mbN
sFByKDkcInrs5Iv+oVDhoTppJTYI17LVHD4qvBBo4NB9lmyRDuYMt0bqkQWbJZteYsaBUpZNvFf7
Su+cVQ5gr6YI+7u3A0Sev83KJowLXyzuwGV7N5jR68Zc6iWPoB71O63gwiqEtU9sR3wq2yG0nPZE
ja7fuKuzmQ10PnUctriPysROHCtogQ3D+JPs3O1a1AGULo+SauHJ0XlpX8ZI350yeqCtmjFn4T0w
SHyDz/xqg+2xnU3UZWJP7VURXHaDlgBHg8P00NhvfTy2rgqPRM1pvKIjmPwodNDU8neq2ydTZ2O7
C1F5qFKKX8PFHRZvXGFV81eaBMou4wcOjzLwbk/qpxe1/uyMoEAmCc4Yl4GQrZzstsgq+Qe9D4cZ
LFkbJCg6NjG9Wy8pWzj/3cBY7VSaymuf0eK2jnBXmRE+bZkJlqdp+NAf6gFbh9saPQ/d7Q6siTtg
HG1ubDtLnA8/1fuK/TpfXVbO7gijGR7pQ3e2EVPA2qJ170v+FosWWEPf6iBRgI6dku7Z0ianM2Jl
scWq4R/Z9qkd2l98YU3isD7z7UuBtw4V9Hbef+pZu2wEEE/3DCdFdXDF6j7NMOmftg99uXDFME1T
MCX6SA/OvAGTcm4tlJ1uFoHzsdQZvxHu8BQ+eurtkiXrcuobMLzW2Tf+TCZka+8or+FpYqypDhBU
5eahY3a54ftLBzULDTuF0f3t4X2N7+4QGrsUifHG8We0fdXzbCoOQHjzJlwbKFk/umYDMQsqmunt
0RUDj2ko+/QP6ofSW19xoDVQUHHuw289YJf3MiM+vwQ+f5Xf9Xw3OwIT3eNwcu59sDruWUBjOQ/f
/FPd+V0FDZKlWPrG71Nf1UJvYOyh2R+rUxQxL88D0KnUoeq8sfTV3+cBME6Pid5uPnDXZBOk6Fyf
ZRxe02wQd6LdweOknzHu4zYj42WV0P5QddSbjzv3qydMEMutia3sHgOmk0CDnZ5gjO1HEwm9kUsg
7R47cu6j7bBWwVlDfsy9sNHXls5jXV+R6sYt3hdSyJZQdAo4dvGeWtHJGeYUpzEUkpzhg3UT6l5c
+hVAw4rxJeUfmejpQYAe7+6CdUM4ZGPt2wW4RvRBTtK2rCdD9yE8lUGK3fdJjNa++ljoKDsbsnkN
F53pZyeF72U806h3OnfVpwqiOx8+fbEH2F1lv65QNhUrPp6FYGChsUuQ44QG+XyWpu72qOHhmi4W
tqSLrI8lfOXwu/4EWcF+WPwK3OHNF2y8++UP90gq6LuCgdXyqkXisl5N+DS3D38cDjOb2LrpQYap
R+1XvGckOz8lKB7gGVtNyA9MLeYO1uSe/I1/sm/kM4Q0FPAh4LfR3JwXH+7ulYbNfa6yZdqPBZyK
k0b4Q5zrM4hUAscBB/7mUXRgtsU2hJvLcaDhV691b0uDCJ2G2lcS2YqEX/1Q93NMFi0wIuZTJYQf
73yhd1Tm7Lee8Fffn2G0YyR5OTMEiiz81cNzNXkWKOjJwLio9IHXmm6Gh06JCVceLPbyo9BCttTY
9EGHhz562zGGhnn1iOQLA1jj65BCw5NaelNnkTGzLGcknMDNp+c0ASztKgWN+mZPeLtvXbYTdx0q
J5Zh4/OqgNhc5xWl92tMHca9I4L7xEPcqzDopdvfwGLnxxGQ15nhOMWSPj60xoROc8uwNRhwWC9Z
pwFXwzufhMctYKdJilFrhyN1JbQOS+ExCV5KMaA4JUUtkkYkcHekId1J23KYPlc8Q6F+nbHpiAYT
/H0cgqbY7nF2/SzDeidTAcXus6exvKsznvVVBWzcaVitLu+azP2OQ3nQ3vFR35rDSuswAN/zi6bc
0XZnTnvwEOXrlSyXThyW4v7wIS5eDwJvAj98/VGOXpVWUvVkDBnLrZhAr4MTTQ63NXv1JTThZz8D
ejZOlc7sgFNgs9SCr4xwBMOK3AQw8bDHTnhQ3fmcOxVQRVvyW+cdZrNw23RQTsuQXvdvEnXCTezg
V/9jXyyFYU7eUwC+649x0A/Z2F6bEH52UovvrviKmGQ0AZQjJPn0W8+WROs0eNPGJ/7uV0ZO4baH
7MnLOEorLZtruvGgbGw0uie3sl5W89Er6fFc0KvCDpHYEHuGj6zoaWC/FzDSOMqha60ZvcX3ldEw
TRN48Z83ImSSP7ztfeijDzftyLwXm2hpa0GFtVFb1Lrtp3q2XC+AN5+38a1Gu2HN1spCfpC5fu1F
Klubq05A9zIdvFPfE2P35xIgpQptvAOew8b+Up1RoEUJWVq31L/+xwKdOjk+SIcxG7/+BT6FmMM7
3f/UyzbaqlAe8RG7toOG1RtTC87BpyXKc5gzej51K5DTOiTrz3+MrtlC7Xzf0MygOViFneEgTWMG
EU/PdqDQxyr4xruvnP2rK1YCSGDPVkbk1dOjNS83IXynuUV2TjYPrBJYgooP4b/1XAbjwB0IspIX
wvjrJxfjcW+g/RjI3/zeEsG1ABUqTNAeopppx5CgQx2bRA53Z33xo9SCX/9CQ6fh9NkQtg5U+qnx
pcVadfbYvVV4lOwtdV3dHOayuvLwr5442DAah3uoAilsYuqm2Y0xv0g4aDTWilWeXob+5yerbRHS
3OMXtvRjl8DoNu588P0/oVlOZyTprMWHT5jUc1xsW8QB80z3NYb6Kk2tBQzz4vmgrZuaeGNooe/+
4Hs7hvo69zsICkuT8eGCz7qwSS0Ic1F442P08CIWJ0n+mx/OT3iumXB8KNAk4Zna25HLuqYJKyV/
uRXWb29uIHxnqYg7jDmOv/p5xYHTgs/HWbB52PYubV2nAr1xCjEOoxIsFSYQds1B9cEwCvqH65Cn
tLkAqblbeMZW2ZxBe3R3hKvzVV/VxvLh6SjVON9fpYg8thcffuOF7le+yJazUUL4He+DMDjWq9AK
Ofz6bep/kBmtgfoJwM+P//QSAcPowcpUF2oNZ6zz2+nSwmePI+p847G/eKIJvzzG59zsOKzFsYOQ
K7dbrOW2Fq3skRH48rueujh/RYufcwJMQ2nxV0n9AJ7TLgI8vh8G9oZr/eUxZwOs9v74t77MQWMb
cFrhAf/4AlnDdwJrkifY9rpZnwu1smBwMix6KRxVF+JFVmFgCasv3MpXtBYPJ4Bf/uR/84P1nlZ7
sDrZIba//n972BYB7ByXYrtGZT13ecYB4zNp1N33VT3xaOBgkjCf2l//skRPysHPTmmpcxzLaN4e
hgA+5DjA9qrE7rLDyAdAgwrWpdsH9N94Adc0EPGVxRMYXwKRBN1PMVXdwIrGSpzv6PIIbGorh4e+
3MP1DrlPevOVIi7ZOp24EH6su4rdp+nqc7o1eoBs74AzdXPK1s/q3OGzmAm9G45c08tbXuGrkUey
kblRX81LoMIg2kRkMa4gm8N+nuFq+hrWw/RabzNPWxEHjDPeqWKRfeshgXypxv6WB9eMNRFvIWJ0
2pff2GB94EpBT7uoaGRvJDAE6NSDn5/An6TUZ/JZUmgZqkj9n59Mt0YHvTeqMW5QFTFOnnv0KE3g
S9JFdsku6EOIL3dINet4ZswwPsbPj1Kz6gX2V/898tsWm5F20lnwVjsISTQS5uAh+/kLkBi+hfeL
a4P1Jdkqsh8f8ounaO2yJYeeax+wh5ZTti2ESoDILDVqA61gLdjLCrw/1AjnXaNFQmqqFpJkofzq
rXMtPLJDAwf7qpNNGJVs1Squh0shSr5eTWRgnZYoP/5Hf/V9eegnBzk93JJlSSx3+3EH86/+TJxs
0sePw2k/v4F97TW7rDrZBuTX8UT98HgBf+P9wlcXapy2a0Q9PQhhnM0FtnxhYKstqykiUS8RepR0
ff6ej+jnv9WrEGWdwB9D+OODNnu9o+X1MM8wf9kVVu3rJluaUuNQuz1wVP2spfv14xU0p8ih2lfv
j/1pGuH7cYmw7WIXTOZ+10FWVlsif/VmZa3JqHz1IE6Q2mdTzXcK+PmPmzpfmdjbaovW07mmh1sf
slwB+wKi+pLjQ35p3JHgYYXvQr3R5+x8shliwwBBWkzU6U6gZkpshYB1Jv7LE8lbEO+wjo869SWv
05dVkRQYO+aLajei12xrEg+ixEM07tddLcZJkENjy084v6V3MJfVk4dKTxu6S/U4E19GKoDlnYXY
GODodibRq59/95tOWQZi9887hMcW+BsBnrKuv1Qxep42nE8bpGX0OSUdsvqT9NX7N3196dMK3jGT
8Y8v0vvF4+DcKcDnC/rK2NVYC9gmUYXNuW3qsTnLPuT4QvnL36gZWjkgVnHF8VDw0ZJ06Rn89OXh
y5/nYotm8KwH2R+Ss66z80hWeLZvnb9aj0O09pJigVbYW2TzfG/qL//t4fvVfDCWudFlfc8F4Fuv
/RmUj+FvfP/48zGTXH3eo0aA3SFofHFNunruPlao6PcbwCY7qpFgrQGBJ0f18cXakujzOy/uZPTp
MVVeTOQbKf/xJh8Yu1GfnFtC/uphR65EMCpVpaLwg2O6D8I3G7n7cIfh5xhT9cu/tk2pwb/n704o
5ZrlUOb++m9POIvscxpzD/C6N/scM69s9kdlhPFbcrGfjL07J+uphfkwQiIAS3HZrAQxOoXPHtuq
ttdZ6ZxS2NCtgs3XfaOz1H+EEE/jiUZZsNX71wOkcHFaAWP+1X39b5LA5elCbHCtNyyf10xgfUQT
tsL2FgkuYHf441Xu+3TNVuUSeSDMjS3+zg9M9ypa4Tk71PjohoW7dNtUhd4hWKm1nwFgr7zI4U9f
eN/6Roqu5cBV0yvy+vLHJXx/PAhvpMV6L6VsNHZlBcUYOfiIPM9d3pakKi+xWagfd+eBedIgKXUV
E+zue60WY1LeUX1fH4Trmiqa72OmAtDGM7WGjZqtvixX8DQQ++cHojZLzhWyLmSlh52oAvLVI1Ai
RPXnznZqwQTOGZJBOn737wAYy9UZXomI/K6Sg4wqh2sMPvsV+Eyyxay5pHsJSmEb00MPqD5yZnqH
h13n+gVYAp0gq+GQ8nzr2KrkOXsqr7KFocZdsEfXSm+8/XGEsekH2NIClQnNoUrhV/9hz8nL7Dt/
Dfn87OIo0P1sCuaUh6Of8Pi51FM04scpgYdOinE4LZa7ts1gQOsyrth5C3B4r9E5h29gyT48qaK+
wh0KfvoIm6P7AsupWCowjKNMjU451bM1cw388lYfda4W8T//8tO3qL40NZ3C4QzltkMkXa5DvV7e
xgjD7WVHrbCVo/Vz5Xl4dYMdPnz546/fBNVrfiLsNDZsLTTY/+XBzlu418365DyABK32pQDPOuOC
HUGPdRWwffOBvn75E7D3fuRvP2TOft+V3/ltPOOdvrinZw7H10elKh7e+qwr8vyXJ+jLuxx+fAea
B9X20bc/Jy7r0wT1W+KoSUI4rHC3DWBQrTr2PmQEM51LE3KPgFDHPmn1ll7VCpW9EhDu64f7Je16
CPJDSv/y09/+QXIa8U14V+53fh3gdq5B/Uxn2boeNPJ3v3+8aL7HjgbsVvH9zVqGNVPNWkWFC3yM
maeDWZ3SBB57y8YPN1RdsT4ad3iuY5kweZ3YlHnajMjj8PDrxlwZKVgWKN/8JLydsmGcH64FvvyG
2l7yqIXJPDXw16+5uJ445C03E7Sl1egPYVHojNJGQy3sK7LVYkVfvL0yg/FWX+h+cT9gDo6z+ePZ
1PsQD/A7fbgrWtH09FLWjT7LmRKD24frCT9fB33clpICnVug4PjC37J5rG0Cw3MXUHVBU0buZKqg
9pAbIn/95dZpUAKNIvz2x6gwEJl/8Art04akzwyB1VkOFij8JvKRKZbRXDMmwFLv9vj2kMdo2Vyu
IXwKZw5rEoEDO5eage7lOyVojsmwGn53/ulzwmXRC3Q/fbbi7o3d8fqu57MUWCiWGxMb57cyrPHE
J3Cjdi+q7kUjEz+N3/x4Az7qzjZjiHox9Iz3RL/nq1v20tGAuXUx8SGWnJpwsttA8VE1VK0uh0E0
9WsFke0fiJArn+jbLwgB7qwdVvFwcLfpLr//rV93NfV0QZ96CF3zEGMHZCoQxtkq4MtZL1g7GLo7
f/UUcJos80EkGy7jnrWKmizkCbt4G7AU94uHCpBSAvNyD2axGTiYB82dgAFag6iatQY3jZZh/Cgs
9u0H8gicu+2X56g1PxmbHF6r4ogvQjOBbhaDFZqmusEnutHB+uuH3o2Vo4ar9+58wKqCEsOzsMtX
jM03q+pQrfYMHxVniZaW0zuknfPNr75m7CxGBrSLM4+vn2pwl3Qrj8BiRYKdahrc6ZhgCwqaUmNL
/zRg+PYf//qLxxBw0fzrXzqiUdCQShyjXz+tpM6QUe/L9+kkXToI1nuGL1qc6uu9VgVk1G6HHRO/
f/mz/vgNdpX247L+eWrR1WogVpOyAV9+3EKBozw2/L0BmKy+O0iiTsJJHL0yui0YD6XLsyTAdh71
Mj9mH/7zuxXwX//68+d//G4YtN0jf30vBkz5Mv3H/7kq8B/if4xt+nr9vYZAxrTI//n3/76B8M9n
6NrP9D+nrsnf4z///rMV/t41+GfqpvT1/z7/1/dV//Wv/wUAAP//AwBcfFVx4CAAAA==
headers:
CF-RAY:
- 931fceef786ded38-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 17 Apr 2025 23:47:35 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=fj4RMXSXRDQjE2CFC6CGC3dVcJ8cl2Cbu8alijwMHA8-1744933655-1.0.1.1-M3c3AI4XQa.0GJoanNACuOm2aEL4xjqHR1grxIP3olFvq3e0eFHwQTvCF20YwR_OLiMJUH87eNUwgziawMccsxjR9OVZyDr5._5Wts6CrqA;
path=/; expires=Fri, 18-Apr-25 00:17:35 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=MSkpJsQZtdyIGvrl2mIwy0a_We8H6CIrS7etFgRBl2Y-1744933655703-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '140'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
via:
- envoy-router-84959bbcd5-rzqvq
x-envoy-upstream-service-time:
- '110'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999986'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_dd3ef61c4765b46ed7db80ddfe261f41
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
information based on knowledge sources\nTo give my best complete final answer
to the task respond using the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: Your final answer must be the great and the
most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '926'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLBbtswDL37KwhdeokLx0mbOLd2WIAC63YZdthWGIpMO9xkUZDkpEWR
fx/kpLG7dUAvBszHR733yOcEQFAlViDUVgbVWp3efv66LvKPRd7Q/f57vtaf7m6ePjze774sv23E
JDJ48wtVeGFdKm6txkBsjrByKAPGqdPFfF7MZtdXVz3QcoU60hob0jmnLRlK8yyfp9kinS5P7C2T
Qi9W8CMBAHjuv1GnqfBRrCCbvFRa9F42KFbnJgDhWMeKkN6TD9IEMRlAxSag6aXfgeE9KGmgoR2C
hCbKBmn8Hh3AT7MmIzXc9P8ruHXSVGwuPNRyx44CgmLNDsjDRnd4OX7GYd15Ga2aTusRII3hIGNU
vcGHE3I4W9LcWMcb/xdV1GTIb0uH0rOJ8n1gK3r0kAA89NF1r9IQ1nFrQxn4N/bPTa+Xx3li2NgI
LU5g4CD1qL5cTN6YV1YYJGk/Cl8oqbZYDdRhU7KriEdAMnL9r5q3Zh+dk2neM34AlEIbsCqtw4rU
a8dDm8N40P9rO6fcCxYe3Y4UloHQxU1UWMtOH89M+CcfsC1rMg066+h4a7Uts1mRL/M8KzKRHJI/
AAAA//8DALRhJdF5AwAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 931fcef51a67f947-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 17 Apr 2025 23:47:36 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=7agwu5JV1OJvEFNhvfvqdgWf.HoMyIni9D85soRl3WE-1744933656-1.0.1.1-dKUwAZnjjuuiswFKWGsxpwHNBJUpjhYlZvfZpyNQIejxEJrXMCppgPvtQ9wa4SKezLmKqftvn_H.bAx_AEFJD2EWm5V6R_uK8.odneErR6A;
path=/; expires=Fri, 18-Apr-25 00:17:36 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=LdTrzwZYrB6ZyQLY7NdaaHVpDVFvIjYm3arSpNy87wU-1744933656504-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '540'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999802'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8837be6510731522fd5ac4b75c11d486
status:
code: 200
message: OK
version: 1