mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-28 17:48:13 +00:00
Compare commits
9 Commits
devin/1762
...
devin/1762
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3ea38280d7 | ||
|
|
7e154ebc16 | ||
|
|
416c2665a7 | ||
|
|
d141078e72 | ||
|
|
c205d2e8de | ||
|
|
fcb5b19b2e | ||
|
|
01f0111d52 | ||
|
|
6b52587c67 | ||
|
|
629f7f34ce |
11
.github/dependabot.yml
vendored
Normal file
11
.github/dependabot.yml
vendored
Normal file
@@ -0,0 +1,11 @@
|
||||
# To get started with Dependabot version updates, you'll need to specify which
|
||||
# package ecosystems to update and where the package manifests are located.
|
||||
# Please see the documentation for all configuration options:
|
||||
# https://docs.github.com/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: uv # See documentation for possible values
|
||||
directory: "/" # Location of package manifests
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
@@ -60,6 +60,7 @@ crew = Crew(
|
||||
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
|
||||
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
|
||||
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
|
||||
| **Guardrails** _(optional)_ | `guardrails` | `Optional[List[Callable] | List[str]]` | List of guardrails to validate task output before proceeding to next task. |
|
||||
| **Guardrail Max Retries** _(optional)_ | `guardrail_max_retries` | `Optional[int]` | Maximum number of retries when guardrail validation fails. Defaults to 3. |
|
||||
|
||||
<Note type="warning" title="Deprecated: max_retries">
|
||||
@@ -223,6 +224,7 @@ By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput`
|
||||
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
|
||||
| **Agent** | `agent` | `str` | The agent that executed the task. |
|
||||
| **Output Format** | `output_format` | `OutputFormat` | The format of the task output, with options including RAW, JSON, and Pydantic. The default is RAW. |
|
||||
| **Messages** | `messages` | `list[LLMMessage]` | The messages from the last task execution. |
|
||||
|
||||
### Task Methods and Properties
|
||||
|
||||
@@ -341,7 +343,11 @@ Task guardrails provide a way to validate and transform task outputs before they
|
||||
are passed to the next task. This feature helps ensure data quality and provides
|
||||
feedback to agents when their output doesn't meet specific criteria.
|
||||
|
||||
Guardrails are implemented as Python functions that contain custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
|
||||
CrewAI supports two types of guardrails:
|
||||
|
||||
1. **Function-based guardrails**: Python functions with custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
|
||||
|
||||
2. **LLM-based guardrails**: String descriptions that use the agent's LLM to validate outputs based on natural language criteria. These are ideal for complex or subjective validation requirements.
|
||||
|
||||
### Function-Based Guardrails
|
||||
|
||||
@@ -355,12 +361,12 @@ def validate_blog_content(result: TaskOutput) -> Tuple[bool, Any]:
|
||||
"""Validate blog content meets requirements."""
|
||||
try:
|
||||
# Check word count
|
||||
word_count = len(result.split())
|
||||
word_count = len(result.raw.split())
|
||||
if word_count > 200:
|
||||
return (False, "Blog content exceeds 200 words")
|
||||
|
||||
# Additional validation logic here
|
||||
return (True, result.strip())
|
||||
return (True, result.raw.strip())
|
||||
except Exception as e:
|
||||
return (False, "Unexpected error during validation")
|
||||
|
||||
@@ -372,6 +378,147 @@ blog_task = Task(
|
||||
)
|
||||
```
|
||||
|
||||
### LLM-Based Guardrails (String Descriptions)
|
||||
|
||||
Instead of writing custom validation functions, you can use string descriptions that leverage LLM-based validation. When you provide a string to the `guardrail` or `guardrails` parameter, CrewAI automatically creates an `LLMGuardrail` that uses the agent's LLM to validate the output based on your description.
|
||||
|
||||
**Requirements**:
|
||||
- The task must have an `agent` assigned (the guardrail uses the agent's LLM)
|
||||
- Provide a clear, descriptive string explaining the validation criteria
|
||||
|
||||
```python Code
|
||||
from crewai import Task
|
||||
|
||||
# Single LLM-based guardrail
|
||||
blog_task = Task(
|
||||
description="Write a blog post about AI",
|
||||
expected_output="A blog post under 200 words",
|
||||
agent=blog_agent,
|
||||
guardrail="The blog post must be under 200 words and contain no technical jargon"
|
||||
)
|
||||
```
|
||||
|
||||
LLM-based guardrails are particularly useful for:
|
||||
- **Complex validation logic** that's difficult to express programmatically
|
||||
- **Subjective criteria** like tone, style, or quality assessments
|
||||
- **Natural language requirements** that are easier to describe than code
|
||||
|
||||
The LLM guardrail will:
|
||||
1. Analyze the task output against your description
|
||||
2. Return `(True, output)` if the output complies with the criteria
|
||||
3. Return `(False, feedback)` with specific feedback if validation fails
|
||||
|
||||
**Example with detailed validation criteria**:
|
||||
|
||||
```python Code
|
||||
research_task = Task(
|
||||
description="Research the latest developments in quantum computing",
|
||||
expected_output="A comprehensive research report",
|
||||
agent=researcher_agent,
|
||||
guardrail="""
|
||||
The research report must:
|
||||
- Be at least 1000 words long
|
||||
- Include at least 5 credible sources
|
||||
- Cover both technical and practical applications
|
||||
- Be written in a professional, academic tone
|
||||
- Avoid speculation or unverified claims
|
||||
"""
|
||||
)
|
||||
```
|
||||
|
||||
### Multiple Guardrails
|
||||
|
||||
You can apply multiple guardrails to a task using the `guardrails` parameter. Multiple guardrails are executed sequentially, with each guardrail receiving the output from the previous one. This allows you to chain validation and transformation steps.
|
||||
|
||||
The `guardrails` parameter accepts:
|
||||
- A list of guardrail functions or string descriptions
|
||||
- A single guardrail function or string (same as `guardrail`)
|
||||
|
||||
**Note**: If `guardrails` is provided, it takes precedence over `guardrail`. The `guardrail` parameter will be ignored when `guardrails` is set.
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Any
|
||||
from crewai import TaskOutput, Task
|
||||
|
||||
def validate_word_count(result: TaskOutput) -> Tuple[bool, Any]:
|
||||
"""Validate word count is within limits."""
|
||||
word_count = len(result.raw.split())
|
||||
if word_count < 100:
|
||||
return (False, f"Content too short: {word_count} words. Need at least 100 words.")
|
||||
if word_count > 500:
|
||||
return (False, f"Content too long: {word_count} words. Maximum is 500 words.")
|
||||
return (True, result.raw)
|
||||
|
||||
def validate_no_profanity(result: TaskOutput) -> Tuple[bool, Any]:
|
||||
"""Check for inappropriate language."""
|
||||
profanity_words = ["badword1", "badword2"] # Example list
|
||||
content_lower = result.raw.lower()
|
||||
for word in profanity_words:
|
||||
if word in content_lower:
|
||||
return (False, f"Inappropriate language detected: {word}")
|
||||
return (True, result.raw)
|
||||
|
||||
def format_output(result: TaskOutput) -> Tuple[bool, Any]:
|
||||
"""Format and clean the output."""
|
||||
formatted = result.raw.strip()
|
||||
# Capitalize first letter
|
||||
formatted = formatted[0].upper() + formatted[1:] if formatted else formatted
|
||||
return (True, formatted)
|
||||
|
||||
# Apply multiple guardrails sequentially
|
||||
blog_task = Task(
|
||||
description="Write a blog post about AI",
|
||||
expected_output="A well-formatted blog post between 100-500 words",
|
||||
agent=blog_agent,
|
||||
guardrails=[
|
||||
validate_word_count, # First: validate length
|
||||
validate_no_profanity, # Second: check content
|
||||
format_output # Third: format the result
|
||||
],
|
||||
guardrail_max_retries=3
|
||||
)
|
||||
```
|
||||
|
||||
In this example, the guardrails execute in order:
|
||||
1. `validate_word_count` checks the word count
|
||||
2. `validate_no_profanity` checks for inappropriate language (using the output from step 1)
|
||||
3. `format_output` formats the final result (using the output from step 2)
|
||||
|
||||
If any guardrail fails, the error is sent back to the agent, and the task is retried up to `guardrail_max_retries` times.
|
||||
|
||||
**Mixing function-based and LLM-based guardrails**:
|
||||
|
||||
You can combine both function-based and string-based guardrails in the same list:
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Any
|
||||
from crewai import TaskOutput, Task
|
||||
|
||||
def validate_word_count(result: TaskOutput) -> Tuple[bool, Any]:
|
||||
"""Validate word count is within limits."""
|
||||
word_count = len(result.raw.split())
|
||||
if word_count < 100:
|
||||
return (False, f"Content too short: {word_count} words. Need at least 100 words.")
|
||||
if word_count > 500:
|
||||
return (False, f"Content too long: {word_count} words. Maximum is 500 words.")
|
||||
return (True, result.raw)
|
||||
|
||||
# Mix function-based and LLM-based guardrails
|
||||
blog_task = Task(
|
||||
description="Write a blog post about AI",
|
||||
expected_output="A well-formatted blog post between 100-500 words",
|
||||
agent=blog_agent,
|
||||
guardrails=[
|
||||
validate_word_count, # Function-based: precise word count check
|
||||
"The content must be engaging and suitable for a general audience", # LLM-based: subjective quality check
|
||||
"The writing style should be clear, concise, and free of technical jargon" # LLM-based: style validation
|
||||
],
|
||||
guardrail_max_retries=3
|
||||
)
|
||||
```
|
||||
|
||||
This approach combines the precision of programmatic validation with the flexibility of LLM-based assessment for subjective criteria.
|
||||
|
||||
### Guardrail Function Requirements
|
||||
|
||||
1. **Function Signature**:
|
||||
|
||||
@@ -12,12 +12,16 @@ from pydantic.types import ImportString
|
||||
|
||||
|
||||
class QdrantToolSchema(BaseModel):
|
||||
query: str = Field(..., description="Query to search in Qdrant DB")
|
||||
query: str = Field(
|
||||
..., description="Query to search in Qdrant DB - always required."
|
||||
)
|
||||
filter_by: str | None = Field(
|
||||
default=None, description="Parameter to filter the search by."
|
||||
default=None,
|
||||
description="Parameter to filter the search by. When filtering, needs to be used in conjunction with filter_value.",
|
||||
)
|
||||
filter_value: Any | None = Field(
|
||||
default=None, description="Value to filter the search by."
|
||||
default=None,
|
||||
description="Value to filter the search by. When filtering, needs to be used in conjunction with filter_by.",
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -753,3 +753,99 @@ def get_a2a_agents_and_response_model(
|
||||
"""
|
||||
a2a_agents, agent_ids = extract_a2a_agent_ids_from_config(a2a_config=a2a_config)
|
||||
return a2a_agents, create_agent_response_model(agent_ids)
|
||||
|
||||
|
||||
def extract_agent_identifiers_from_cards(
|
||||
a2a_agents: list[A2AConfig],
|
||||
agent_cards: dict[str, AgentCard],
|
||||
) -> tuple[str, ...]:
|
||||
"""Extract all valid agent identifiers (endpoints and skill IDs) from agent cards.
|
||||
|
||||
Args:
|
||||
a2a_agents: List of A2A agent configurations
|
||||
agent_cards: Dictionary mapping endpoints to AgentCards
|
||||
|
||||
Returns:
|
||||
Tuple of all valid identifiers (endpoints + skill IDs)
|
||||
"""
|
||||
identifiers = set()
|
||||
|
||||
for config in a2a_agents:
|
||||
identifiers.add(config.endpoint)
|
||||
|
||||
for card in agent_cards.values():
|
||||
if card.skills:
|
||||
for skill in card.skills:
|
||||
identifiers.add(skill.id)
|
||||
|
||||
return tuple(sorted(identifiers))
|
||||
|
||||
|
||||
def resolve_agent_identifier(
|
||||
identifier: str,
|
||||
a2a_agents: list[A2AConfig],
|
||||
agent_cards: dict[str, AgentCard],
|
||||
) -> str:
|
||||
"""Resolve an agent identifier (endpoint or skill ID) to a canonical endpoint.
|
||||
|
||||
This function allows both endpoint URLs and skill IDs to be used as agent identifiers.
|
||||
If the identifier is already an endpoint, it's returned as-is. If it's a skill ID,
|
||||
it's resolved to the endpoint of the agent card that contains that skill.
|
||||
|
||||
Args:
|
||||
identifier: Either an endpoint URL or a skill ID
|
||||
a2a_agents: List of A2A agent configurations
|
||||
agent_cards: Dictionary mapping endpoints to AgentCards
|
||||
|
||||
Returns:
|
||||
The canonical endpoint URL
|
||||
|
||||
Raises:
|
||||
ValueError: If the identifier is unknown or ambiguous (matches multiple agents)
|
||||
|
||||
Examples:
|
||||
>>> # Endpoint passthrough
|
||||
>>> resolve_agent_identifier(
|
||||
... "http://localhost:10001/.well-known/agent-card.json",
|
||||
... a2a_agents,
|
||||
... agent_cards
|
||||
... )
|
||||
'http://localhost:10001/.well-known/agent-card.json'
|
||||
|
||||
>>> # Skill ID resolution
|
||||
>>> resolve_agent_identifier("Research", a2a_agents, agent_cards)
|
||||
'http://localhost:10001/.well-known/agent-card.json'
|
||||
"""
|
||||
endpoints = {config.endpoint for config in a2a_agents}
|
||||
if identifier in endpoints:
|
||||
return identifier
|
||||
|
||||
matching_endpoints: list[str] = []
|
||||
for endpoint, card in agent_cards.items():
|
||||
if card.skills:
|
||||
for skill in card.skills:
|
||||
if skill.id == identifier:
|
||||
matching_endpoints.append(endpoint)
|
||||
break
|
||||
|
||||
if len(matching_endpoints) == 0:
|
||||
available_endpoints = ", ".join(sorted(endpoints))
|
||||
available_skill_ids = []
|
||||
for card in agent_cards.values():
|
||||
if card.skills:
|
||||
available_skill_ids.extend([skill.id for skill in card.skills])
|
||||
available_skills = ", ".join(sorted(set(available_skill_ids))) if available_skill_ids else "none"
|
||||
raise ValueError(
|
||||
f"Unknown A2A agent identifier '{identifier}'. "
|
||||
f"Available endpoints: {available_endpoints}. "
|
||||
f"Available skill IDs: {available_skills}."
|
||||
)
|
||||
|
||||
if len(matching_endpoints) > 1:
|
||||
endpoints_list = ", ".join(sorted(matching_endpoints))
|
||||
raise ValueError(
|
||||
f"Ambiguous skill ID '{identifier}' found in multiple agents: {endpoints_list}. "
|
||||
f"Please use the specific endpoint URL to disambiguate."
|
||||
)
|
||||
|
||||
return matching_endpoints[0]
|
||||
|
||||
@@ -23,9 +23,12 @@ from crewai.a2a.templates import (
|
||||
)
|
||||
from crewai.a2a.types import AgentResponseProtocol
|
||||
from crewai.a2a.utils import (
|
||||
create_agent_response_model,
|
||||
execute_a2a_delegation,
|
||||
extract_agent_identifiers_from_cards,
|
||||
fetch_agent_card,
|
||||
get_a2a_agents_and_response_model,
|
||||
resolve_agent_identifier,
|
||||
)
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
@@ -190,6 +193,9 @@ def _execute_task_with_a2a(
|
||||
finally:
|
||||
task.description = original_description
|
||||
|
||||
agent_identifiers = extract_agent_identifiers_from_cards(a2a_agents, agent_cards)
|
||||
agent_response_model = create_agent_response_model(agent_identifiers)
|
||||
|
||||
task.description = _augment_prompt_with_a2a(
|
||||
a2a_agents=a2a_agents,
|
||||
task_description=original_description,
|
||||
@@ -301,6 +307,13 @@ def _augment_prompt_with_a2a(
|
||||
IMPORTANT: You have the ability to delegate this task to remote A2A agents.
|
||||
|
||||
{agents_text}
|
||||
|
||||
AGENT IDENTIFICATION: When setting a2a_ids, you may use either:
|
||||
1. The agent's endpoint URL (e.g., "http://localhost:10001/.well-known/agent-card.json")
|
||||
2. The exact skill.id from the agent's skills list (e.g., "Research")
|
||||
|
||||
Prefer using endpoint URLs when possible to avoid ambiguity. If a skill.id appears on multiple agents, you MUST use the endpoint URL to specify which agent you want.
|
||||
|
||||
{history_text}{turn_info}
|
||||
|
||||
|
||||
@@ -373,6 +386,9 @@ def _handle_agent_response_and_continue(
|
||||
if "agent_card" in a2a_result and agent_id not in agent_cards_dict:
|
||||
agent_cards_dict[agent_id] = a2a_result["agent_card"]
|
||||
|
||||
agent_identifiers = extract_agent_identifiers_from_cards(a2a_agents, agent_cards_dict)
|
||||
agent_response_model = create_agent_response_model(agent_identifiers)
|
||||
|
||||
task.description = _augment_prompt_with_a2a(
|
||||
a2a_agents=a2a_agents,
|
||||
task_description=original_task_description,
|
||||
@@ -445,16 +461,20 @@ def _delegate_to_a2a(
|
||||
ImportError: If a2a-sdk is not installed
|
||||
"""
|
||||
a2a_agents, agent_response_model = get_a2a_agents_and_response_model(self.a2a)
|
||||
agent_ids = tuple(config.endpoint for config in a2a_agents)
|
||||
current_request = str(agent_response.message)
|
||||
agent_id = agent_response.a2a_ids[0]
|
||||
agent_identifier = agent_response.a2a_ids[0]
|
||||
|
||||
if agent_id not in agent_ids:
|
||||
raise ValueError(
|
||||
f"Unknown A2A agent ID(s): {agent_response.a2a_ids} not in {agent_ids}"
|
||||
agent_cards_dict = agent_cards or {}
|
||||
try:
|
||||
agent_endpoint = resolve_agent_identifier(
|
||||
agent_identifier, a2a_agents, agent_cards_dict
|
||||
)
|
||||
except ValueError as e:
|
||||
raise ValueError(
|
||||
f"Failed to resolve A2A agent identifier '{agent_identifier}': {e}"
|
||||
) from e
|
||||
|
||||
agent_config = next(filter(lambda x: x.endpoint == agent_id, a2a_agents))
|
||||
agent_config = next(filter(lambda x: x.endpoint == agent_endpoint, a2a_agents))
|
||||
task_config = task.config or {}
|
||||
context_id = task_config.get("context_id")
|
||||
task_id_config = task_config.get("task_id")
|
||||
@@ -488,7 +508,7 @@ def _delegate_to_a2a(
|
||||
metadata=metadata,
|
||||
extensions=extensions,
|
||||
conversation_history=conversation_history,
|
||||
agent_id=agent_id,
|
||||
agent_id=agent_endpoint,
|
||||
agent_role=Role.user,
|
||||
agent_branch=agent_branch,
|
||||
response_model=agent_config.response_model,
|
||||
@@ -501,7 +521,7 @@ def _delegate_to_a2a(
|
||||
final_result, next_request = _handle_agent_response_and_continue(
|
||||
self=self,
|
||||
a2a_result=a2a_result,
|
||||
agent_id=agent_id,
|
||||
agent_id=agent_endpoint,
|
||||
agent_cards=agent_cards,
|
||||
a2a_agents=a2a_agents,
|
||||
original_task_description=original_task_description,
|
||||
|
||||
@@ -119,6 +119,7 @@ class Agent(BaseAgent):
|
||||
|
||||
_times_executed: int = PrivateAttr(default=0)
|
||||
_mcp_clients: list[Any] = PrivateAttr(default_factory=list)
|
||||
_last_messages: list[LLMMessage] = PrivateAttr(default_factory=list)
|
||||
max_execution_time: int | None = Field(
|
||||
default=None,
|
||||
description="Maximum execution time for an agent to execute a task",
|
||||
@@ -538,6 +539,12 @@ class Agent(BaseAgent):
|
||||
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
|
||||
)
|
||||
|
||||
self._last_messages = (
|
||||
self.agent_executor.messages.copy()
|
||||
if self.agent_executor and hasattr(self.agent_executor, "messages")
|
||||
else []
|
||||
)
|
||||
|
||||
self._cleanup_mcp_clients()
|
||||
|
||||
return result
|
||||
@@ -1341,6 +1348,15 @@ class Agent(BaseAgent):
|
||||
def set_fingerprint(self, fingerprint: Fingerprint) -> None:
|
||||
self.security_config.fingerprint = fingerprint
|
||||
|
||||
@property
|
||||
def last_messages(self) -> list[LLMMessage]:
|
||||
"""Get messages from the last task execution.
|
||||
|
||||
Returns:
|
||||
List of LLM messages from the most recent task execution.
|
||||
"""
|
||||
return self._last_messages
|
||||
|
||||
def _get_knowledge_search_query(self, task_prompt: str, task: Task) -> str | None:
|
||||
"""Generate a search query for the knowledge base based on the task description."""
|
||||
crewai_event_bus.emit(
|
||||
|
||||
@@ -38,6 +38,10 @@ from crewai.utilities.agent_utils import (
|
||||
)
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.i18n import I18N, get_i18n
|
||||
from crewai.utilities.llm_call_hooks import (
|
||||
get_after_llm_call_hooks,
|
||||
get_before_llm_call_hooks,
|
||||
)
|
||||
from crewai.utilities.printer import Printer
|
||||
from crewai.utilities.tool_utils import execute_tool_and_check_finality
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
@@ -130,6 +134,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self.messages: list[LLMMessage] = []
|
||||
self.iterations = 0
|
||||
self.log_error_after = 3
|
||||
self.before_llm_call_hooks: list[Callable] = []
|
||||
self.after_llm_call_hooks: list[Callable] = []
|
||||
self.before_llm_call_hooks.extend(get_before_llm_call_hooks())
|
||||
self.after_llm_call_hooks.extend(get_after_llm_call_hooks())
|
||||
if self.llm:
|
||||
# This may be mutating the shared llm object and needs further evaluation
|
||||
existing_stop = getattr(self.llm, "stop", [])
|
||||
@@ -226,6 +234,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
from_task=self.task,
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
executor_context=self,
|
||||
)
|
||||
formatted_answer = process_llm_response(answer, self.use_stop_words) # type: ignore[assignment]
|
||||
|
||||
|
||||
@@ -809,6 +809,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
"json_dict": output.json_dict,
|
||||
"output_format": output.output_format,
|
||||
"agent": output.agent,
|
||||
"messages": output.messages,
|
||||
},
|
||||
"task_index": task_index,
|
||||
"inputs": inputs,
|
||||
@@ -1236,6 +1237,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
pydantic=stored_output["pydantic"],
|
||||
json_dict=stored_output["json_dict"],
|
||||
output_format=stored_output["output_format"],
|
||||
messages=stored_output.get("messages", []),
|
||||
)
|
||||
self.tasks[i].output = task_output
|
||||
|
||||
|
||||
@@ -358,6 +358,7 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
messages=self._messages,
|
||||
)
|
||||
|
||||
# Process guardrail if set
|
||||
|
||||
@@ -6,6 +6,8 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.utilities.types import LLMMessage
|
||||
|
||||
|
||||
class LiteAgentOutput(BaseModel):
|
||||
"""Class that represents the result of a LiteAgent execution."""
|
||||
@@ -20,6 +22,7 @@ class LiteAgentOutput(BaseModel):
|
||||
usage_metrics: dict[str, Any] | None = Field(
|
||||
description="Token usage metrics for this execution", default=None
|
||||
)
|
||||
messages: list[LLMMessage] = Field(description="Messages of the agent", default=[])
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert pydantic_output to a dictionary."""
|
||||
|
||||
@@ -539,6 +539,7 @@ class Task(BaseModel):
|
||||
json_dict=json_output,
|
||||
agent=agent.role,
|
||||
output_format=self._get_output_format(),
|
||||
messages=agent.last_messages,
|
||||
)
|
||||
|
||||
if self._guardrails:
|
||||
@@ -949,6 +950,7 @@ Follow these guidelines:
|
||||
json_dict=json_output,
|
||||
agent=agent.role,
|
||||
output_format=self._get_output_format(),
|
||||
messages=agent.last_messages,
|
||||
)
|
||||
|
||||
return task_output
|
||||
|
||||
@@ -6,6 +6,7 @@ from typing import Any
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.utilities.types import LLMMessage
|
||||
|
||||
|
||||
class TaskOutput(BaseModel):
|
||||
@@ -40,6 +41,7 @@ class TaskOutput(BaseModel):
|
||||
output_format: OutputFormat = Field(
|
||||
description="Output format of the task", default=OutputFormat.RAW
|
||||
)
|
||||
messages: list[LLMMessage] = Field(description="Messages of the task", default=[])
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_summary(self):
|
||||
|
||||
@@ -33,6 +33,7 @@ from crewai.utilities.types import LLMMessage
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.agent import Agent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.lite_agent import LiteAgent
|
||||
from crewai.llm import LLM
|
||||
from crewai.task import Task
|
||||
@@ -51,40 +52,6 @@ class SummaryContent(TypedDict):
|
||||
console = Console()
|
||||
|
||||
_MULTIPLE_NEWLINES: Final[re.Pattern[str]] = re.compile(r"\n+")
|
||||
_REACT_FIELD_PATTERN: Final[re.Pattern[str]] = re.compile(
|
||||
r"^(Thought|Action|Action Input|Observation):\s*",
|
||||
re.MULTILINE
|
||||
)
|
||||
|
||||
|
||||
def sanitize_react_output(text: str) -> str:
|
||||
"""Sanitize agent output by removing internal ReAct fields.
|
||||
|
||||
This function removes lines that start with internal ReAct formatting
|
||||
markers like "Thought:", "Action:", "Action Input:", and "Observation:".
|
||||
These fields are used internally by the agent execution loop but should
|
||||
not be exposed in final user-facing outputs.
|
||||
|
||||
Args:
|
||||
text: The raw agent output text that may contain ReAct fields.
|
||||
|
||||
Returns:
|
||||
Sanitized text with internal ReAct fields removed.
|
||||
"""
|
||||
if not text:
|
||||
return text
|
||||
|
||||
lines = text.split("\n")
|
||||
sanitized_lines = [
|
||||
line for line in lines if not _REACT_FIELD_PATTERN.match(line)
|
||||
]
|
||||
|
||||
result = "\n".join(sanitized_lines).strip()
|
||||
|
||||
if not result:
|
||||
return "Unable to complete the task."
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def parse_tools(tools: list[BaseTool]) -> list[CrewStructuredTool]:
|
||||
@@ -207,13 +174,10 @@ def handle_max_iterations_exceeded(
|
||||
# If format_answer returned an AgentAction, convert it to AgentFinish
|
||||
if isinstance(formatted, AgentFinish):
|
||||
return formatted
|
||||
|
||||
sanitized_output = sanitize_react_output(formatted.text)
|
||||
|
||||
return AgentFinish(
|
||||
thought=formatted.thought,
|
||||
output=sanitized_output,
|
||||
text=sanitized_output,
|
||||
output=formatted.text,
|
||||
text=formatted.text,
|
||||
)
|
||||
|
||||
|
||||
@@ -246,11 +210,10 @@ def format_answer(answer: str) -> AgentAction | AgentFinish:
|
||||
try:
|
||||
return parse(answer)
|
||||
except Exception:
|
||||
sanitized_output = sanitize_react_output(answer)
|
||||
return AgentFinish(
|
||||
thought="Failed to parse LLM response",
|
||||
output=sanitized_output,
|
||||
text=sanitized_output,
|
||||
output=answer,
|
||||
text=answer,
|
||||
)
|
||||
|
||||
|
||||
@@ -274,6 +237,7 @@ def get_llm_response(
|
||||
from_task: Task | None = None,
|
||||
from_agent: Agent | LiteAgent | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
executor_context: CrewAgentExecutor | None = None,
|
||||
) -> str:
|
||||
"""Call the LLM and return the response, handling any invalid responses.
|
||||
|
||||
@@ -285,6 +249,7 @@ def get_llm_response(
|
||||
from_task: Optional task context for the LLM call
|
||||
from_agent: Optional agent context for the LLM call
|
||||
response_model: Optional Pydantic model for structured outputs
|
||||
executor_context: Optional executor context for hook invocation
|
||||
|
||||
Returns:
|
||||
The response from the LLM as a string
|
||||
@@ -293,6 +258,11 @@ def get_llm_response(
|
||||
Exception: If an error occurs.
|
||||
ValueError: If the response is None or empty.
|
||||
"""
|
||||
|
||||
if executor_context is not None:
|
||||
_setup_before_llm_call_hooks(executor_context, printer)
|
||||
messages = executor_context.messages
|
||||
|
||||
try:
|
||||
answer = llm.call(
|
||||
messages,
|
||||
@@ -310,7 +280,7 @@ def get_llm_response(
|
||||
)
|
||||
raise ValueError("Invalid response from LLM call - None or empty.")
|
||||
|
||||
return answer
|
||||
return _setup_after_llm_call_hooks(executor_context, answer, printer)
|
||||
|
||||
|
||||
def process_llm_response(
|
||||
@@ -699,3 +669,92 @@ def load_agent_from_repository(from_repository: str) -> dict[str, Any]:
|
||||
else:
|
||||
attributes[key] = value
|
||||
return attributes
|
||||
|
||||
|
||||
def _setup_before_llm_call_hooks(
|
||||
executor_context: CrewAgentExecutor | None, printer: Printer
|
||||
) -> None:
|
||||
"""Setup and invoke before_llm_call hooks for the executor context.
|
||||
|
||||
Args:
|
||||
executor_context: The executor context to setup the hooks for.
|
||||
printer: Printer instance for error logging.
|
||||
"""
|
||||
if executor_context and executor_context.before_llm_call_hooks:
|
||||
from crewai.utilities.llm_call_hooks import LLMCallHookContext
|
||||
|
||||
original_messages = executor_context.messages
|
||||
|
||||
hook_context = LLMCallHookContext(executor_context)
|
||||
try:
|
||||
for hook in executor_context.before_llm_call_hooks:
|
||||
hook(hook_context)
|
||||
except Exception as e:
|
||||
printer.print(
|
||||
content=f"Error in before_llm_call hook: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
if not isinstance(executor_context.messages, list):
|
||||
printer.print(
|
||||
content=(
|
||||
"Warning: before_llm_call hook replaced messages with non-list. "
|
||||
"Restoring original messages list. Hooks should modify messages in-place, "
|
||||
"not replace the list (e.g., use context.messages.append() not context.messages = [])."
|
||||
),
|
||||
color="yellow",
|
||||
)
|
||||
if isinstance(original_messages, list):
|
||||
executor_context.messages = original_messages
|
||||
else:
|
||||
executor_context.messages = []
|
||||
|
||||
|
||||
def _setup_after_llm_call_hooks(
|
||||
executor_context: CrewAgentExecutor | None,
|
||||
answer: str,
|
||||
printer: Printer,
|
||||
) -> str:
|
||||
"""Setup and invoke after_llm_call hooks for the executor context.
|
||||
|
||||
Args:
|
||||
executor_context: The executor context to setup the hooks for.
|
||||
answer: The LLM response string.
|
||||
printer: Printer instance for error logging.
|
||||
|
||||
Returns:
|
||||
The potentially modified response string.
|
||||
"""
|
||||
if executor_context and executor_context.after_llm_call_hooks:
|
||||
from crewai.utilities.llm_call_hooks import LLMCallHookContext
|
||||
|
||||
original_messages = executor_context.messages
|
||||
|
||||
hook_context = LLMCallHookContext(executor_context, response=answer)
|
||||
try:
|
||||
for hook in executor_context.after_llm_call_hooks:
|
||||
modified_response = hook(hook_context)
|
||||
if modified_response is not None and isinstance(modified_response, str):
|
||||
answer = modified_response
|
||||
|
||||
except Exception as e:
|
||||
printer.print(
|
||||
content=f"Error in after_llm_call hook: {e}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
if not isinstance(executor_context.messages, list):
|
||||
printer.print(
|
||||
content=(
|
||||
"Warning: after_llm_call hook replaced messages with non-list. "
|
||||
"Restoring original messages list. Hooks should modify messages in-place, "
|
||||
"not replace the list (e.g., use context.messages.append() not context.messages = [])."
|
||||
),
|
||||
color="yellow",
|
||||
)
|
||||
if isinstance(original_messages, list):
|
||||
executor_context.messages = original_messages
|
||||
else:
|
||||
executor_context.messages = []
|
||||
|
||||
return answer
|
||||
|
||||
115
lib/crewai/src/crewai/utilities/llm_call_hooks.py
Normal file
115
lib/crewai/src/crewai/utilities/llm_call_hooks.py
Normal file
@@ -0,0 +1,115 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Callable
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
|
||||
|
||||
class LLMCallHookContext:
|
||||
"""Context object passed to LLM call hooks with full executor access.
|
||||
|
||||
Provides hooks with complete access to the executor state, allowing
|
||||
modification of messages, responses, and executor attributes.
|
||||
|
||||
Attributes:
|
||||
executor: Full reference to the CrewAgentExecutor instance
|
||||
messages: Direct reference to executor.messages (mutable list).
|
||||
Can be modified in both before_llm_call and after_llm_call hooks.
|
||||
Modifications in after_llm_call hooks persist to the next iteration,
|
||||
allowing hooks to modify conversation history for subsequent LLM calls.
|
||||
IMPORTANT: Modify messages in-place (e.g., append, extend, remove items).
|
||||
Do NOT replace the list (e.g., context.messages = []), as this will break
|
||||
the executor. Use context.messages.append() or context.messages.extend()
|
||||
instead of assignment.
|
||||
agent: Reference to the agent executing the task
|
||||
task: Reference to the task being executed
|
||||
crew: Reference to the crew instance
|
||||
llm: Reference to the LLM instance
|
||||
iterations: Current iteration count
|
||||
response: LLM response string (only set for after_llm_call hooks).
|
||||
Can be modified by returning a new string from after_llm_call hook.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
executor: CrewAgentExecutor,
|
||||
response: str | None = None,
|
||||
) -> None:
|
||||
"""Initialize hook context with executor reference.
|
||||
|
||||
Args:
|
||||
executor: The CrewAgentExecutor instance
|
||||
response: Optional response string (for after_llm_call hooks)
|
||||
"""
|
||||
self.executor = executor
|
||||
self.messages = executor.messages
|
||||
self.agent = executor.agent
|
||||
self.task = executor.task
|
||||
self.crew = executor.crew
|
||||
self.llm = executor.llm
|
||||
self.iterations = executor.iterations
|
||||
self.response = response
|
||||
|
||||
|
||||
# Global hook registries (optional convenience feature)
|
||||
_before_llm_call_hooks: list[Callable[[LLMCallHookContext], None]] = []
|
||||
_after_llm_call_hooks: list[Callable[[LLMCallHookContext], str | None]] = []
|
||||
|
||||
|
||||
def register_before_llm_call_hook(
|
||||
hook: Callable[[LLMCallHookContext], None],
|
||||
) -> None:
|
||||
"""Register a global before_llm_call hook.
|
||||
|
||||
Global hooks are added to all executors automatically.
|
||||
This is a convenience function for registering hooks that should
|
||||
apply to all LLM calls across all executors.
|
||||
|
||||
Args:
|
||||
hook: Function that receives LLMCallHookContext and can modify
|
||||
context.messages directly. Should return None.
|
||||
IMPORTANT: Modify messages in-place (append, extend, remove items).
|
||||
Do NOT replace the list (context.messages = []), as this will break execution.
|
||||
"""
|
||||
_before_llm_call_hooks.append(hook)
|
||||
|
||||
|
||||
def register_after_llm_call_hook(
|
||||
hook: Callable[[LLMCallHookContext], str | None],
|
||||
) -> None:
|
||||
"""Register a global after_llm_call hook.
|
||||
|
||||
Global hooks are added to all executors automatically.
|
||||
This is a convenience function for registering hooks that should
|
||||
apply to all LLM calls across all executors.
|
||||
|
||||
Args:
|
||||
hook: Function that receives LLMCallHookContext and can modify:
|
||||
- The response: Return modified response string or None to keep original
|
||||
- The messages: Modify context.messages directly (mutable reference)
|
||||
Both modifications are supported and can be used together.
|
||||
IMPORTANT: Modify messages in-place (append, extend, remove items).
|
||||
Do NOT replace the list (context.messages = []), as this will break execution.
|
||||
"""
|
||||
_after_llm_call_hooks.append(hook)
|
||||
|
||||
|
||||
def get_before_llm_call_hooks() -> list[Callable[[LLMCallHookContext], None]]:
|
||||
"""Get all registered global before_llm_call hooks.
|
||||
|
||||
Returns:
|
||||
List of registered before hooks
|
||||
"""
|
||||
return _before_llm_call_hooks.copy()
|
||||
|
||||
|
||||
def get_after_llm_call_hooks() -> list[Callable[[LLMCallHookContext], str | None]]:
|
||||
"""Get all registered global after_llm_call hooks.
|
||||
|
||||
Returns:
|
||||
List of registered after hooks
|
||||
"""
|
||||
return _after_llm_call_hooks.copy()
|
||||
@@ -1,6 +1,8 @@
|
||||
"""Types for CrewAI utilities."""
|
||||
|
||||
from typing import Any, Literal, TypedDict
|
||||
from typing import Any, Literal
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
|
||||
class LLMMessage(TypedDict):
|
||||
|
||||
245
lib/crewai/tests/a2a/test_resolve_agent_identifier.py
Normal file
245
lib/crewai/tests/a2a/test_resolve_agent_identifier.py
Normal file
@@ -0,0 +1,245 @@
|
||||
"""Test resolve_agent_identifier function for A2A skill ID resolution."""
|
||||
|
||||
import pytest
|
||||
from a2a.types import AgentCapabilities, AgentCard, AgentSkill
|
||||
|
||||
from crewai.a2a.config import A2AConfig
|
||||
from crewai.a2a.utils import resolve_agent_identifier
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_agent_configs():
|
||||
"""Create sample A2A agent configurations."""
|
||||
return [
|
||||
A2AConfig(endpoint="http://localhost:10001/.well-known/agent-card.json"),
|
||||
A2AConfig(endpoint="http://localhost:10002/.well-known/agent-card.json"),
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_agent_cards():
|
||||
"""Create sample AgentCards with skills."""
|
||||
card1 = AgentCard(
|
||||
name="Research Agent",
|
||||
description="An expert research agent",
|
||||
url="http://localhost:10001",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Research",
|
||||
name="Research",
|
||||
description="Conduct comprehensive research",
|
||||
tags=["research", "analysis"],
|
||||
examples=["Research quantum computing"],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
card2 = AgentCard(
|
||||
name="Writing Agent",
|
||||
description="An expert writing agent",
|
||||
url="http://localhost:10002",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Writing",
|
||||
name="Writing",
|
||||
description="Write high-quality content",
|
||||
tags=["writing", "content"],
|
||||
examples=["Write a blog post"],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
return {
|
||||
"http://localhost:10001/.well-known/agent-card.json": card1,
|
||||
"http://localhost:10002/.well-known/agent-card.json": card2,
|
||||
}
|
||||
|
||||
|
||||
def test_resolve_endpoint_passthrough(sample_agent_configs, sample_agent_cards):
|
||||
"""Test that endpoint URLs are returned as-is."""
|
||||
endpoint = "http://localhost:10001/.well-known/agent-card.json"
|
||||
result = resolve_agent_identifier(endpoint, sample_agent_configs, sample_agent_cards)
|
||||
assert result == endpoint
|
||||
|
||||
|
||||
def test_resolve_unique_skill_id(sample_agent_configs, sample_agent_cards):
|
||||
"""Test that a unique skill ID resolves to the correct endpoint."""
|
||||
result = resolve_agent_identifier("Research", sample_agent_configs, sample_agent_cards)
|
||||
assert result == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
result = resolve_agent_identifier("Writing", sample_agent_configs, sample_agent_cards)
|
||||
assert result == "http://localhost:10002/.well-known/agent-card.json"
|
||||
|
||||
|
||||
def test_resolve_unknown_identifier(sample_agent_configs, sample_agent_cards):
|
||||
"""Test that unknown identifiers raise a descriptive error."""
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
resolve_agent_identifier("UnknownSkill", sample_agent_configs, sample_agent_cards)
|
||||
|
||||
error_msg = str(exc_info.value)
|
||||
assert "Unknown A2A agent identifier 'UnknownSkill'" in error_msg
|
||||
assert "Available endpoints:" in error_msg
|
||||
assert "Available skill IDs:" in error_msg
|
||||
assert "Research" in error_msg
|
||||
assert "Writing" in error_msg
|
||||
|
||||
|
||||
def test_resolve_ambiguous_skill_id():
|
||||
"""Test that ambiguous skill IDs raise a descriptive error."""
|
||||
configs = [
|
||||
A2AConfig(endpoint="http://localhost:10001/.well-known/agent-card.json"),
|
||||
A2AConfig(endpoint="http://localhost:10002/.well-known/agent-card.json"),
|
||||
]
|
||||
|
||||
card1 = AgentCard(
|
||||
name="Research Agent 1",
|
||||
description="First research agent",
|
||||
url="http://localhost:10001",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Research",
|
||||
name="Research",
|
||||
description="Conduct research",
|
||||
tags=["research"],
|
||||
examples=["Research topic"],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
card2 = AgentCard(
|
||||
name="Research Agent 2",
|
||||
description="Second research agent",
|
||||
url="http://localhost:10002",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Research",
|
||||
name="Research",
|
||||
description="Conduct research",
|
||||
tags=["research"],
|
||||
examples=["Research topic"],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
cards = {
|
||||
"http://localhost:10001/.well-known/agent-card.json": card1,
|
||||
"http://localhost:10002/.well-known/agent-card.json": card2,
|
||||
}
|
||||
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
resolve_agent_identifier("Research", configs, cards)
|
||||
|
||||
error_msg = str(exc_info.value)
|
||||
assert "Ambiguous skill ID 'Research'" in error_msg
|
||||
assert "found in multiple agents" in error_msg
|
||||
assert "http://localhost:10001/.well-known/agent-card.json" in error_msg
|
||||
assert "http://localhost:10002/.well-known/agent-card.json" in error_msg
|
||||
assert "Please use the specific endpoint URL to disambiguate" in error_msg
|
||||
|
||||
|
||||
def test_resolve_with_no_skills():
|
||||
"""Test resolution when agent cards have no skills."""
|
||||
configs = [
|
||||
A2AConfig(endpoint="http://localhost:10001/.well-known/agent-card.json"),
|
||||
]
|
||||
|
||||
card = AgentCard(
|
||||
name="Agent Without Skills",
|
||||
description="An agent without skills",
|
||||
url="http://localhost:10001",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[],
|
||||
)
|
||||
|
||||
cards = {
|
||||
"http://localhost:10001/.well-known/agent-card.json": card,
|
||||
}
|
||||
|
||||
result = resolve_agent_identifier(
|
||||
"http://localhost:10001/.well-known/agent-card.json", configs, cards
|
||||
)
|
||||
assert result == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
resolve_agent_identifier("SomeSkill", configs, cards)
|
||||
|
||||
error_msg = str(exc_info.value)
|
||||
assert "Unknown A2A agent identifier 'SomeSkill'" in error_msg
|
||||
assert "Available skill IDs: none" in error_msg
|
||||
|
||||
|
||||
def test_resolve_with_multiple_skills_same_card(sample_agent_configs):
|
||||
"""Test resolution when a card has multiple skills."""
|
||||
card = AgentCard(
|
||||
name="Multi-Skill Agent",
|
||||
description="An agent with multiple skills",
|
||||
url="http://localhost:10001",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Research",
|
||||
name="Research",
|
||||
description="Conduct research",
|
||||
tags=["research"],
|
||||
examples=["Research topic"],
|
||||
),
|
||||
AgentSkill(
|
||||
id="Analysis",
|
||||
name="Analysis",
|
||||
description="Analyze data",
|
||||
tags=["analysis"],
|
||||
examples=["Analyze data"],
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
cards = {
|
||||
"http://localhost:10001/.well-known/agent-card.json": card,
|
||||
}
|
||||
|
||||
result1 = resolve_agent_identifier("Research", sample_agent_configs[:1], cards)
|
||||
assert result1 == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
result2 = resolve_agent_identifier("Analysis", sample_agent_configs[:1], cards)
|
||||
assert result2 == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
|
||||
def test_resolve_empty_agent_cards():
|
||||
"""Test resolution with empty agent cards dictionary."""
|
||||
configs = [
|
||||
A2AConfig(endpoint="http://localhost:10001/.well-known/agent-card.json"),
|
||||
]
|
||||
cards = {}
|
||||
|
||||
result = resolve_agent_identifier(
|
||||
"http://localhost:10001/.well-known/agent-card.json", configs, cards
|
||||
)
|
||||
assert result == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
resolve_agent_identifier("SomeSkill", configs, cards)
|
||||
|
||||
error_msg = str(exc_info.value)
|
||||
assert "Unknown A2A agent identifier 'SomeSkill'" in error_msg
|
||||
287
lib/crewai/tests/a2a/test_skill_id_integration.py
Normal file
287
lib/crewai/tests/a2a/test_skill_id_integration.py
Normal file
@@ -0,0 +1,287 @@
|
||||
"""Integration test for A2A skill ID resolution (issue #3897)."""
|
||||
|
||||
import pytest
|
||||
from a2a.types import AgentCapabilities, AgentCard, AgentSkill
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.a2a.config import A2AConfig
|
||||
from crewai.a2a.utils import (
|
||||
create_agent_response_model,
|
||||
extract_agent_identifiers_from_cards,
|
||||
resolve_agent_identifier,
|
||||
)
|
||||
|
||||
|
||||
def test_skill_id_resolution_integration():
|
||||
"""Test the complete flow of skill ID resolution as described in issue #3897.
|
||||
|
||||
This test replicates the exact scenario from the bug report:
|
||||
1. User creates A2A config with endpoint URL
|
||||
2. Remote agent has AgentCard with skill.id="Research"
|
||||
3. LLM returns a2a_ids=["Research"] instead of the endpoint URL
|
||||
4. System should resolve "Research" to the endpoint and proceed successfully
|
||||
"""
|
||||
a2a_config = A2AConfig(
|
||||
endpoint="http://localhost:10001/.well-known/agent-card.json"
|
||||
)
|
||||
a2a_agents = [a2a_config]
|
||||
|
||||
agent_card = AgentCard(
|
||||
name="Research Agent",
|
||||
description="An expert research agent that can conduct thorough research",
|
||||
url="http://localhost:10001",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Research",
|
||||
name="Research",
|
||||
description="Conduct comprehensive research on any topic",
|
||||
tags=["research", "analysis", "information-gathering"],
|
||||
examples=[
|
||||
"Research the latest developments in quantum computing",
|
||||
"What are the current trends in renewable energy?",
|
||||
],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
agent_cards = {
|
||||
"http://localhost:10001/.well-known/agent-card.json": agent_card
|
||||
}
|
||||
|
||||
identifiers = extract_agent_identifiers_from_cards(a2a_agents, agent_cards)
|
||||
|
||||
assert "http://localhost:10001/.well-known/agent-card.json" in identifiers
|
||||
assert "Research" in identifiers
|
||||
|
||||
agent_response_model = create_agent_response_model(identifiers)
|
||||
|
||||
agent_response_data = {
|
||||
"a2a_ids": ["Research"], # LLM uses skill ID instead of endpoint
|
||||
"message": "Please research quantum computing developments",
|
||||
"is_a2a": True,
|
||||
}
|
||||
|
||||
agent_response = agent_response_model.model_validate(agent_response_data)
|
||||
assert agent_response.a2a_ids == ("Research",)
|
||||
assert agent_response.message == "Please research quantum computing developments"
|
||||
assert agent_response.is_a2a is True
|
||||
|
||||
resolved_endpoint = resolve_agent_identifier(
|
||||
"Research", a2a_agents, agent_cards
|
||||
)
|
||||
assert resolved_endpoint == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
resolved_endpoint_direct = resolve_agent_identifier(
|
||||
"http://localhost:10001/.well-known/agent-card.json",
|
||||
a2a_agents,
|
||||
agent_cards,
|
||||
)
|
||||
assert resolved_endpoint_direct == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
|
||||
def test_skill_id_validation_error_before_fix():
|
||||
"""Test that demonstrates the original bug (for documentation purposes).
|
||||
|
||||
Before the fix, creating an AgentResponse model with only endpoints
|
||||
would cause a validation error when the LLM returned a skill ID.
|
||||
"""
|
||||
endpoints_only = ("http://localhost:10001/.well-known/agent-card.json",)
|
||||
agent_response_model_old = create_agent_response_model(endpoints_only)
|
||||
|
||||
agent_response_data = {
|
||||
"a2a_ids": ["Research"],
|
||||
"message": "Please research quantum computing",
|
||||
"is_a2a": True,
|
||||
}
|
||||
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
agent_response_model_old.model_validate(agent_response_data)
|
||||
|
||||
error_msg = str(exc_info.value)
|
||||
assert "validation error" in error_msg.lower() or "literal" in error_msg.lower()
|
||||
|
||||
|
||||
def test_multiple_agents_with_unique_skill_ids():
|
||||
"""Test that multiple agents with unique skill IDs work correctly."""
|
||||
a2a_agents = [
|
||||
A2AConfig(endpoint="http://localhost:10001/.well-known/agent-card.json"),
|
||||
A2AConfig(endpoint="http://localhost:10002/.well-known/agent-card.json"),
|
||||
]
|
||||
|
||||
card1 = AgentCard(
|
||||
name="Research Agent",
|
||||
description="Research agent",
|
||||
url="http://localhost:10001",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Research",
|
||||
name="Research",
|
||||
description="Conduct research",
|
||||
tags=["research"],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
card2 = AgentCard(
|
||||
name="Writing Agent",
|
||||
description="Writing agent",
|
||||
url="http://localhost:10002",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Writing",
|
||||
name="Writing",
|
||||
description="Write content",
|
||||
tags=["writing"],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
agent_cards = {
|
||||
"http://localhost:10001/.well-known/agent-card.json": card1,
|
||||
"http://localhost:10002/.well-known/agent-card.json": card2,
|
||||
}
|
||||
|
||||
identifiers = extract_agent_identifiers_from_cards(a2a_agents, agent_cards)
|
||||
|
||||
assert len(identifiers) == 4
|
||||
assert "http://localhost:10001/.well-known/agent-card.json" in identifiers
|
||||
assert "http://localhost:10002/.well-known/agent-card.json" in identifiers
|
||||
assert "Research" in identifiers
|
||||
assert "Writing" in identifiers
|
||||
|
||||
agent_response_model = create_agent_response_model(identifiers)
|
||||
|
||||
response1 = agent_response_model.model_validate({
|
||||
"a2a_ids": ["Research"],
|
||||
"message": "Do research",
|
||||
"is_a2a": True,
|
||||
})
|
||||
assert response1.a2a_ids == ("Research",)
|
||||
|
||||
response2 = agent_response_model.model_validate({
|
||||
"a2a_ids": ["Writing"],
|
||||
"message": "Write content",
|
||||
"is_a2a": True,
|
||||
})
|
||||
assert response2.a2a_ids == ("Writing",)
|
||||
|
||||
endpoint1 = resolve_agent_identifier("Research", a2a_agents, agent_cards)
|
||||
assert endpoint1 == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
endpoint2 = resolve_agent_identifier("Writing", a2a_agents, agent_cards)
|
||||
assert endpoint2 == "http://localhost:10002/.well-known/agent-card.json"
|
||||
|
||||
|
||||
def test_multi_turn_skill_id_resolution():
|
||||
"""Test that skill IDs work in multi-turn A2A conversations.
|
||||
|
||||
This test verifies the fix in _handle_agent_response_and_continue()
|
||||
that rebuilds the AgentResponse model with both endpoints and skill IDs
|
||||
for subsequent turns in multi-turn conversations.
|
||||
|
||||
Scenario:
|
||||
1. First turn: LLM returns skill ID "Research"
|
||||
2. A2A agent responds
|
||||
3. Second turn: LLM returns skill ID "Writing" (different agent)
|
||||
4. Both turns should accept skill IDs without validation errors
|
||||
"""
|
||||
a2a_agents = [
|
||||
A2AConfig(endpoint="http://localhost:10001/.well-known/agent-card.json"),
|
||||
A2AConfig(endpoint="http://localhost:10002/.well-known/agent-card.json"),
|
||||
]
|
||||
|
||||
card1 = AgentCard(
|
||||
name="Research Agent",
|
||||
description="Research agent",
|
||||
url="http://localhost:10001",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Research",
|
||||
name="Research",
|
||||
description="Conduct research",
|
||||
tags=["research"],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
card2 = AgentCard(
|
||||
name="Writing Agent",
|
||||
description="Writing agent",
|
||||
url="http://localhost:10002",
|
||||
version="1.0.0",
|
||||
capabilities=AgentCapabilities(),
|
||||
default_input_modes=["text/plain"],
|
||||
default_output_modes=["text/plain"],
|
||||
skills=[
|
||||
AgentSkill(
|
||||
id="Writing",
|
||||
name="Writing",
|
||||
description="Write content",
|
||||
tags=["writing"],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
agent_cards_turn1 = {
|
||||
"http://localhost:10001/.well-known/agent-card.json": card1,
|
||||
}
|
||||
|
||||
identifiers_turn1 = extract_agent_identifiers_from_cards(a2a_agents, agent_cards_turn1)
|
||||
model_turn1 = create_agent_response_model(identifiers_turn1)
|
||||
|
||||
response_turn1 = model_turn1.model_validate({
|
||||
"a2a_ids": ["Research"],
|
||||
"message": "Please research quantum computing",
|
||||
"is_a2a": True,
|
||||
})
|
||||
assert response_turn1.a2a_ids == ("Research",)
|
||||
|
||||
endpoint_turn1 = resolve_agent_identifier("Research", a2a_agents, agent_cards_turn1)
|
||||
assert endpoint_turn1 == "http://localhost:10001/.well-known/agent-card.json"
|
||||
|
||||
agent_cards_turn2 = {
|
||||
"http://localhost:10001/.well-known/agent-card.json": card1,
|
||||
"http://localhost:10002/.well-known/agent-card.json": card2,
|
||||
}
|
||||
|
||||
identifiers_turn2 = extract_agent_identifiers_from_cards(a2a_agents, agent_cards_turn2)
|
||||
model_turn2 = create_agent_response_model(identifiers_turn2)
|
||||
|
||||
assert "Research" in identifiers_turn2
|
||||
assert "Writing" in identifiers_turn2
|
||||
|
||||
response_turn2 = model_turn2.model_validate({
|
||||
"a2a_ids": ["Writing"],
|
||||
"message": "Now write a report based on the research",
|
||||
"is_a2a": True,
|
||||
})
|
||||
assert response_turn2.a2a_ids == ("Writing",)
|
||||
|
||||
endpoint_turn2 = resolve_agent_identifier("Writing", a2a_agents, agent_cards_turn2)
|
||||
assert endpoint_turn2 == "http://localhost:10002/.well-known/agent-card.json"
|
||||
|
||||
response_turn3 = model_turn2.model_validate({
|
||||
"a2a_ids": ["Research"],
|
||||
"message": "Research more details",
|
||||
"is_a2a": True,
|
||||
})
|
||||
assert response_turn3.a2a_ids == ("Research",)
|
||||
|
||||
endpoint_turn3 = resolve_agent_identifier("Research", a2a_agents, agent_cards_turn2)
|
||||
assert endpoint_turn3 == "http://localhost:10001/.well-known/agent-card.json"
|
||||
@@ -2714,3 +2714,293 @@ def test_agent_without_apps_no_platform_tools():
|
||||
|
||||
tools = crew._prepare_tools(agent, task, [])
|
||||
assert tools == []
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_before_llm_call_hook_modifies_messages():
|
||||
"""Test that before_llm_call hooks can modify messages."""
|
||||
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_before_llm_call_hook
|
||||
|
||||
hook_called = False
|
||||
original_message_count = 0
|
||||
|
||||
def before_hook(context: LLMCallHookContext) -> None:
|
||||
nonlocal hook_called, original_message_count
|
||||
hook_called = True
|
||||
original_message_count = len(context.messages)
|
||||
context.messages.append({
|
||||
"role": "user",
|
||||
"content": "Additional context: This is a test modification."
|
||||
})
|
||||
|
||||
register_before_llm_call_hook(before_hook)
|
||||
|
||||
try:
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Say hello",
|
||||
expected_output="A greeting",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert hook_called, "before_llm_call hook should have been called"
|
||||
assert len(agent.agent_executor.messages) > original_message_count
|
||||
assert result is not None
|
||||
finally:
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_after_llm_call_hook_modifies_messages_for_next_iteration():
|
||||
"""Test that after_llm_call hooks can modify messages for the next iteration."""
|
||||
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_after_llm_call_hook
|
||||
|
||||
hook_call_count = 0
|
||||
hook_iterations = []
|
||||
messages_added_in_iteration_0 = False
|
||||
test_message_content = "HOOK_ADDED_MESSAGE_FOR_NEXT_ITERATION"
|
||||
|
||||
def after_hook(context: LLMCallHookContext) -> str | None:
|
||||
nonlocal hook_call_count, hook_iterations, messages_added_in_iteration_0
|
||||
hook_call_count += 1
|
||||
current_iteration = context.iterations
|
||||
hook_iterations.append(current_iteration)
|
||||
|
||||
if current_iteration == 0:
|
||||
messages_before = len(context.messages)
|
||||
context.messages.append({
|
||||
"role": "user",
|
||||
"content": test_message_content
|
||||
})
|
||||
messages_added_in_iteration_0 = True
|
||||
assert len(context.messages) == messages_before + 1
|
||||
|
||||
return None
|
||||
|
||||
register_after_llm_call_hook(after_hook)
|
||||
|
||||
try:
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory",
|
||||
allow_delegation=False,
|
||||
max_iter=3,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Count to 3, taking your time",
|
||||
expected_output="A count",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert hook_call_count > 0, "after_llm_call hook should have been called"
|
||||
assert messages_added_in_iteration_0, "Message should have been added in iteration 0"
|
||||
|
||||
executor_messages = agent.agent_executor.messages
|
||||
message_contents = [msg.get("content", "") for msg in executor_messages if isinstance(msg, dict)]
|
||||
assert any(test_message_content in content for content in message_contents), (
|
||||
f"Message added by hook in iteration 0 should be present in executor messages. "
|
||||
f"Messages: {message_contents}"
|
||||
)
|
||||
|
||||
assert len(executor_messages) > 2, "Executor should have more than initial messages"
|
||||
assert result is not None
|
||||
finally:
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_after_llm_call_hook_modifies_messages():
|
||||
"""Test that after_llm_call hooks can modify messages for next iteration."""
|
||||
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_after_llm_call_hook
|
||||
|
||||
hook_called = False
|
||||
messages_before_hook = 0
|
||||
|
||||
def after_hook(context: LLMCallHookContext) -> str | None:
|
||||
nonlocal hook_called, messages_before_hook
|
||||
hook_called = True
|
||||
messages_before_hook = len(context.messages)
|
||||
context.messages.append({
|
||||
"role": "user",
|
||||
"content": "Remember: This is iteration 2 context."
|
||||
})
|
||||
return None # Don't modify response
|
||||
|
||||
register_after_llm_call_hook(after_hook)
|
||||
|
||||
try:
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory",
|
||||
allow_delegation=False,
|
||||
max_iter=2,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Count to 2",
|
||||
expected_output="A count",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert hook_called, "after_llm_call hook should have been called"
|
||||
assert len(agent.agent_executor.messages) > messages_before_hook
|
||||
assert result is not None
|
||||
finally:
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_hooks_with_crew():
|
||||
"""Test that LLM call hooks work with crew execution."""
|
||||
from crewai.utilities.llm_call_hooks import (
|
||||
LLMCallHookContext,
|
||||
register_after_llm_call_hook,
|
||||
register_before_llm_call_hook,
|
||||
)
|
||||
|
||||
before_hook_called = False
|
||||
after_hook_called = False
|
||||
|
||||
def before_hook(context: LLMCallHookContext) -> None:
|
||||
nonlocal before_hook_called
|
||||
before_hook_called = True
|
||||
assert context.executor is not None
|
||||
assert context.agent is not None
|
||||
assert context.task is not None
|
||||
context.messages.append({
|
||||
"role": "system",
|
||||
"content": "Additional system context from hook."
|
||||
})
|
||||
|
||||
def after_hook(context: LLMCallHookContext) -> str | None:
|
||||
nonlocal after_hook_called
|
||||
after_hook_called = True
|
||||
assert context.response is not None
|
||||
assert len(context.messages) > 0
|
||||
return None
|
||||
|
||||
register_before_llm_call_hook(before_hook)
|
||||
register_after_llm_call_hook(after_hook)
|
||||
|
||||
try:
|
||||
agent = Agent(
|
||||
role="Researcher",
|
||||
goal="Research topics",
|
||||
backstory="You are a researcher",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Research AI frameworks",
|
||||
expected_output="A research summary",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
|
||||
assert before_hook_called, "before_llm_call hook should have been called"
|
||||
assert after_hook_called, "after_llm_call hook should have been called"
|
||||
assert result is not None
|
||||
assert result.raw is not None
|
||||
finally:
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_hooks_can_modify_executor_attributes():
|
||||
"""Test that hooks can access and modify executor attributes like tools."""
|
||||
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_before_llm_call_hook
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def test_tool() -> str:
|
||||
"""A test tool."""
|
||||
return "test result"
|
||||
|
||||
hook_called = False
|
||||
original_tools_count = 0
|
||||
|
||||
def before_hook(context: LLMCallHookContext) -> None:
|
||||
nonlocal hook_called, original_tools_count
|
||||
hook_called = True
|
||||
original_tools_count = len(context.executor.tools)
|
||||
assert context.executor.max_iter > 0
|
||||
assert context.executor.iterations >= 0
|
||||
assert context.executor.tools is not None
|
||||
|
||||
register_before_llm_call_hook(before_hook)
|
||||
|
||||
try:
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory",
|
||||
tools=[test_tool],
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Use the test tool",
|
||||
expected_output="Tool result",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert hook_called, "before_llm_call hook should have been called"
|
||||
assert original_tools_count >= 0
|
||||
assert result is not None
|
||||
finally:
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_hooks_error_handling():
|
||||
"""Test that hook errors don't break execution."""
|
||||
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_before_llm_call_hook
|
||||
|
||||
hook_called = False
|
||||
|
||||
def error_hook(context: LLMCallHookContext) -> None:
|
||||
nonlocal hook_called
|
||||
hook_called = True
|
||||
raise ValueError("Test hook error")
|
||||
|
||||
register_before_llm_call_hook(error_hook)
|
||||
|
||||
try:
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Say hello",
|
||||
expected_output="A greeting",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert hook_called, "before_llm_call hook should have been called"
|
||||
assert result is not None
|
||||
finally:
|
||||
pass
|
||||
|
||||
@@ -238,6 +238,27 @@ def test_lite_agent_returns_usage_metrics():
|
||||
assert result.usage_metrics["total_tokens"] > 0
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_lite_agent_output_includes_messages():
|
||||
"""Test that LiteAgentOutput includes messages from agent execution."""
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Find information about the population of Tokyo",
|
||||
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
|
||||
llm=llm,
|
||||
tools=[WebSearchTool()],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
result = agent.kickoff("What is the population of Tokyo?")
|
||||
|
||||
assert isinstance(result, LiteAgentOutput)
|
||||
assert hasattr(result, "messages")
|
||||
assert isinstance(result.messages, list)
|
||||
assert len(result.messages) > 0
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.mark.asyncio
|
||||
async def test_lite_agent_returns_usage_metrics_async():
|
||||
|
||||
@@ -0,0 +1,126 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
|
||||
personal goal is: Test goal\nTo give my best complete final answer to the task
|
||||
respond using the exact following format:\n\nThought: I now can give a great
|
||||
answer\nFinal Answer: Your final answer must be the great and the most complete
|
||||
as possible, it must be outcome described.\n\nI MUST use these formats, my job
|
||||
depends on it!"},{"role":"user","content":"\nCurrent Task: Count to 2\n\nThis
|
||||
is the expected criteria for your final answer: A count\nyou MUST return the
|
||||
actual complete content as the final answer, not a summary.\n\nBegin! This is
|
||||
VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought:"},{"role":"user","content":"Additional context:
|
||||
This is a test modification."}],"model":"gpt-4.1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '849'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFJNb5wwEL3zK0Y+QwSI7LLcokqVcujHoR9S2wg5ZsBujceyTdIo2v9e
|
||||
GTYLaROpFyTmzXt+b2YeEwCmOtYAE5IHMVqdveH09UHKLx+/2eFzkAdZXL8XJPr9h3dFydLIoNuf
|
||||
KMIT60LQaDUGRWaBhUMeMKoW+11ZH/K8rmZgpA51pA02ZNVFkY3KqKzMy8ssr7KiOtElKYGeNfA9
|
||||
AQB4nL/RqOnwN2sgT58qI3rPB2TNuQmAOdKxwrj3ygduAktXUJAJaGbvnyRNgwwNXIOhexDcwKDu
|
||||
EDgMMQBw4+/R/TBvleEarua/BooUyq2gw37yPKYyk9YbgBtDgcepzFFuTsjxbF7TYB3d+r+orFdG
|
||||
edk65J5MNOoDWTajxwTgZh7S9Cw3s45GG9pAv3B+rtgdFj22LmeD1icwUOB6W9+nL+i1HQautN+M
|
||||
mQkuJHYrdd0JnzpFGyDZpP7XzUvaS3Jlhv+RXwEh0AbsWuuwU+J54rXNYbzd19rOU54NM4/uTgls
|
||||
g0IXN9Fhzye9HBTzDz7g2PbKDOisU8tV9batRFlfFn29K1lyTP4AAAD//wMApumqgWQDAAA=
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99d044543db94e48-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:41:25 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=KLlCOQ_zxXquDvj96O28ObVFEoAbFE8R7zlmuiuXH1M-1762890085-1.0.1.1-UChItG1GnLDHrErY60dUpkbD3lEkSvfkTQpOmEtzd0fjjm_y1pJQiB.VDXVi2pPIMSelir0ZgiVXSh5.hGPb3RjQqbH3pv0Rr_2dQ59OIQ8;
|
||||
path=/; expires=Tue, 11-Nov-25 20:11:25 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=u.Z6xV9tQd3ucK35BinKtlCkewcI6q_uQicyeEeeR18-1762890085355-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '559'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '735'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999817'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999817'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_bcaa0f8500714ed09f967488b238ce2e
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,222 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"trace_id": "aeb82647-004a-4a30-9481-d55f476d5659", "execution_type":
|
||||
"crew", "user_identifier": null, "execution_context": {"crew_fingerprint": null,
|
||||
"crew_name": "Unknown Crew", "flow_name": null, "crewai_version": "1.4.1", "privacy_level":
|
||||
"standard"}, "execution_metadata": {"expected_duration_estimate": 300, "agent_count":
|
||||
0, "task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-11-11T19:45:17.648657+00:00"}}'
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate, zstd
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '434'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- CrewAI-CLI/1.4.1
|
||||
X-Crewai-Version:
|
||||
- 1.4.1
|
||||
method: POST
|
||||
uri: https://app.crewai.com/crewai_plus/api/v1/tracing/batches
|
||||
response:
|
||||
body:
|
||||
string: '{"error":"bad_credentials","message":"Bad credentials"}'
|
||||
headers:
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '55'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:45:17 GMT
|
||||
cache-control:
|
||||
- no-store
|
||||
content-security-policy:
|
||||
- 'default-src ''self'' *.app.crewai.com app.crewai.com; script-src ''self''
|
||||
''unsafe-inline'' *.app.crewai.com app.crewai.com https://cdn.jsdelivr.net/npm/apexcharts
|
||||
https://www.gstatic.com https://run.pstmn.io https://apis.google.com https://apis.google.com/js/api.js
|
||||
https://accounts.google.com https://accounts.google.com/gsi/client https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.min.css.map
|
||||
https://*.google.com https://docs.google.com https://slides.google.com https://js.hs-scripts.com
|
||||
https://js.sentry-cdn.com https://browser.sentry-cdn.com https://www.googletagmanager.com
|
||||
https://js-na1.hs-scripts.com https://js.hubspot.com http://js-na1.hs-scripts.com
|
||||
https://bat.bing.com https://cdn.amplitude.com https://cdn.segment.com https://d1d3n03t5zntha.cloudfront.net/
|
||||
https://descriptusercontent.com https://edge.fullstory.com https://googleads.g.doubleclick.net
|
||||
https://js.hs-analytics.net https://js.hs-banner.com https://js.hsadspixel.net
|
||||
https://js.hscollectedforms.net https://js.usemessages.com https://snap.licdn.com
|
||||
https://static.cloudflareinsights.com https://static.reo.dev https://www.google-analytics.com
|
||||
https://share.descript.com/; style-src ''self'' ''unsafe-inline'' *.app.crewai.com
|
||||
app.crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self'' data:
|
||||
*.app.crewai.com app.crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com
|
||||
https://cdn.jsdelivr.net https://forms.hsforms.com https://track.hubspot.com
|
||||
https://px.ads.linkedin.com https://px4.ads.linkedin.com https://www.google.com
|
||||
https://www.google.com.br; font-src ''self'' data: *.app.crewai.com app.crewai.com;
|
||||
connect-src ''self'' *.app.crewai.com app.crewai.com https://zeus.tools.crewai.com
|
||||
https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/*
|
||||
https://run.pstmn.io https://connect.tools.crewai.com/ https://*.sentry.io
|
||||
https://www.google-analytics.com https://edge.fullstory.com https://rs.fullstory.com
|
||||
https://api.hubspot.com https://forms.hscollectedforms.net https://api.hubapi.com
|
||||
https://px.ads.linkedin.com https://px4.ads.linkedin.com https://google.com/pagead/form-data/16713662509
|
||||
https://google.com/ccm/form-data/16713662509 https://www.google.com/ccm/collect
|
||||
https://worker-actionkit.tools.crewai.com https://api.reo.dev; frame-src ''self''
|
||||
*.app.crewai.com app.crewai.com https://connect.useparagon.com/ https://zeus.tools.crewai.com
|
||||
https://zeus.useparagon.com/* https://connect.tools.crewai.com/ https://docs.google.com
|
||||
https://drive.google.com https://slides.google.com https://accounts.google.com
|
||||
https://*.google.com https://app.hubspot.com/ https://td.doubleclick.net https://www.googletagmanager.com/
|
||||
https://www.youtube.com https://share.descript.com'
|
||||
expires:
|
||||
- '0'
|
||||
permissions-policy:
|
||||
- camera=(), microphone=(self), geolocation=()
|
||||
pragma:
|
||||
- no-cache
|
||||
referrer-policy:
|
||||
- strict-origin-when-cross-origin
|
||||
strict-transport-security:
|
||||
- max-age=63072000; includeSubDomains
|
||||
vary:
|
||||
- Accept
|
||||
x-content-type-options:
|
||||
- nosniff
|
||||
x-frame-options:
|
||||
- SAMEORIGIN
|
||||
x-permitted-cross-domain-policies:
|
||||
- none
|
||||
x-request-id:
|
||||
- 48a89b0d-206b-4c1b-aa0d-ecc3b4ab525c
|
||||
x-runtime:
|
||||
- '0.088251'
|
||||
x-xss-protection:
|
||||
- 1; mode=block
|
||||
status:
|
||||
code: 401
|
||||
message: Unauthorized
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
|
||||
personal goal is: Test goal\nTo give my best complete final answer to the task
|
||||
respond using the exact following format:\n\nThought: I now can give a great
|
||||
answer\nFinal Answer: Your final answer must be the great and the most complete
|
||||
as possible, it must be outcome described.\n\nI MUST use these formats, my job
|
||||
depends on it!"},{"role":"user","content":"\nCurrent Task: Count to 3, taking
|
||||
your time\n\nThis is the expected criteria for your final answer: A count\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4.1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '790'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFJNa9wwEL37Vww6r43tOpuNb2nKQgslOSy0NA1mIo9tdWVJSHK2Jex/
|
||||
L/J+2Ns20IuE5s0bzXszrxEAEzUrgfEOPe+NjO9Q41atP3/79GG7vX8QD0Xq15svX9/fUd+yRWDo
|
||||
5x/E/YmVcN0bSV5odYC5JfQUqmbXy3x1k77LViPQ65pkoLXGx0WSxb1QIs7T/CpOizgrjvROC06O
|
||||
lfAYAQC8jmdoVNX0k5WQLk6RnpzDllh5TgJgVssQYeiccB6VZ4sJ5Fp5UmPvm04PbedL+AhK74Cj
|
||||
gla8ECC0QQCgcjuy39VaKJRwO75KuFeUJAlsdnq8OkuUzD+w1AwOg0o1SDkDUCntMbg0Sns6Ivuz
|
||||
GKlbY/Wz+4PKGqGE6ypL6LQKjTuvDRvRfQTwNJo2XPjAjNW98ZXXWxq/y5ZH09g0rBl6cwS99ihn
|
||||
8esTcFGvqsmjkG5mO+PIO6on6jQjHGqhZ0A0U/13N/+qfVAuVPs/5SeAczKe6spYqgW/VDylWQq7
|
||||
/Fba2eWxYebIvghOlRdkwyRqanCQhwVj7pfz1FeNUC1ZY8VhyxpTFTxfXWXNapmzaB/9BgAA//8D
|
||||
AL0LXHV0AwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99d04a06dc4d1949-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:45:18 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=KnsnYxgmlpoHf.5TWnNgU30xb2tc0gK7SC2BbUkud2M-1762890318-1.0.1.1-3KeaQY59x5mY6n8DINELLaH9_b68w7W4ZZ0KeOknBHmQyDwx5qbtDonfYxOjsO_KykjtJLHpB0bsINSNEa9TrjNQHqUWTlRhldfTLenUG44;
|
||||
path=/; expires=Tue, 11-Nov-25 20:15:18 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=ekC35NRP79GCMP.eTi_odl5.6DIsAeFEXKlanWUZOH4-1762890318589-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '598'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '632'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999827'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999827'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_cb36cbe6c33b42a28675e8c6d9a36fe9
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,127 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
|
||||
personal goal is: Test goal\nTo give my best complete final answer to the task
|
||||
respond using the exact following format:\n\nThought: I now can give a great
|
||||
answer\nFinal Answer: Your final answer must be the great and the most complete
|
||||
as possible, it must be outcome described.\n\nI MUST use these formats, my job
|
||||
depends on it!"},{"role":"user","content":"\nCurrent Task: Say hello\n\nThis
|
||||
is the expected criteria for your final answer: A greeting\nyou MUST return
|
||||
the actual complete content as the final answer, not a summary.\n\nBegin! This
|
||||
is VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought:"},{"role":"user","content":"Additional context:
|
||||
This is a test modification."}],"model":"gpt-4.1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '851'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFJdi9swEHz3r9jqOT5sk+RSvx2lJW1poXDQ0vYwirS21cpaIclJr0f+
|
||||
+yE7F/s+Cn0xeGdnNLO7dwkAU5KVwETLg+isTt9w+rr/YESx27+93RaHVm4/ff7y8Vpcffv+ly0i
|
||||
g3a/UIQH1oWgzmoMiswIC4c8YFTNL9fF5nWWbfIB6EiijrTGhnR5kaedMiotsmKVZss0X57oLSmB
|
||||
npXwIwEAuBu+0aiR+IeVkC0eKh16zxtk5bkJgDnSscK498oHbgJbTKAgE9AM3q9b6ps2lPAeDB1A
|
||||
cAON2iNwaGIA4MYf0P0075ThGq6GvxK2qDW9mks6rHvPYy7Taz0DuDEUeJzLEObmhBzP9jU11tHO
|
||||
P6GyWhnl28oh92SiVR/IsgE9JgA3w5j6R8mZddTZUAX6jcNz+fpy1GPTembo6gQGClzP6pti8YJe
|
||||
JTFwpf1s0Exw0aKcqNNWeC8VzYBklvq5m5e0x+TKNP8jPwFCoA0oK+tQKvE48dTmMF7vv9rOUx4M
|
||||
M49urwRWQaGLm5BY816PJ8X8rQ/YVbUyDTrr1HhXta2Wotis8nqzLlhyTO4BAAD//wMAuV0QSWYD
|
||||
AAA=
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99d044428f103c35-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:41:22 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=jp.mByP87tLw_KZOIh7lXZ9UMACecreCMNwHwtJmUvQ-1762890082-1.0.1.1-D76UWkvWlN8e0zlQpgSlSHjrhx3Rkh_r8bz4XKx8kljJt8s9Okre9bo7M62ewJNFK9O9iuHkADMKeAEwlsc4Hg0MsF2vt2Hu1J0xikSInv0;
|
||||
path=/; expires=Tue, 11-Nov-25 20:11:22 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=pzTqogdMFPJY2.Yrj49LODdUKbD8UBctCWNyIZVsvK4-1762890082258-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '460'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '478'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999817'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999820'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_3bda51e6d3e34f8cadcc12551dc29ab0
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,261 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Research Assistant. You
|
||||
are a helpful research assistant who can search for information about the population
|
||||
of Tokyo.\nYour personal goal is: Find information about the population of Tokyo\n\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: search_web\nTool Arguments: {''query'': {''description'':
|
||||
None, ''type'': ''str''}}\nTool Description: Search the web for information
|
||||
about a topic.\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
|
||||
you should always think about what to do\nAction: the action to take, only one
|
||||
name of [search_web], just the name, exactly as it''s written.\nAction Input:
|
||||
the input to the action, just a simple JSON object, enclosed in curly braces,
|
||||
using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
|
||||
all necessary information is gathered, return the following format:\n\n```\nThought:
|
||||
I now know the final answer\nFinal Answer: the final answer to the original
|
||||
input question\n```"},{"role":"user","content":"What is the population of Tokyo?"}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1160'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jJM9b9swEIZ3/YoDZzvwd2xtRTI0HZolcIcqkGnqJLGheCx5Suoa/u+F
|
||||
5A/JTQp00XDPva/ui/sIQOhMxCBUKVlVzgzv5Lf7fDtbmcfRV1M9/l5/Wa/N6/r+7fNydycGjYK2
|
||||
P1DxWXWjqHIGWZM9YuVRMjau49vFZDleLVbzFlSUoWlkhePhjIaVtno4GU1mw9HtcLw8qUvSCoOI
|
||||
4XsEALBvv02dNsNfIobR4BypMARZoIgvSQDCk2kiQoagA0vLYtBBRZbRtqVvNpvEPpVUFyXH8AAW
|
||||
MQMmCCi9KiEnD1wiGMkYGLTNyVeyaRI8FtJn2hZtgiNXmyOgHJ7oZUc3if2kmkh8ckvfcHuOwYN1
|
||||
NcewT8TPGv0uEXEiVO09Wv7IDCajyTQRh8RuNpt+Lx7zOshmnrY2pgektcStSTvF5xM5XOZmqHCe
|
||||
tuEvqci11aFMPcpAtplRYHKipYcI4LndT301cuE8VY5TphdsfzeZnvYjurPo6HR5gkwsTU+1OIMr
|
||||
vzRDltqE3oaFkqrErJN25yDrTFMPRL2u31fzkfexc22L/7HvgFLoGLPUecy0uu64S/PYvJp/pV2m
|
||||
3BYsAvpXrTBljb7ZRIa5rM3xlkXYBcYqzbUt0Duvjwedu3S+GMl8gfP5SkSH6A8AAAD//wMAJGbR
|
||||
+94DAAA=
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99c98dd3ddb9ce6c-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 00:08:16 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=6maCeRS26vR_uzqYdtL7RXY7kzGdvLhWcE2RP2PnZS0-1762819696-1.0.1.1-72zCZZVBiGDdwPDvETKS_fUA4DYCLVyVHDYW2qpSxxAUuWKNPLxQQ1PpeI7YuB9v.y1e3oapeuV5mBjcP4c9_ZbH.ZI14TUNOexPUB6yCaQ;
|
||||
path=/; expires=Tue, 11-Nov-25 00:38:16 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=a.XOUFuP.5IthR7ITJrIWIZSWWAkmHU._pM9.qhCnhM-1762819696364-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1199'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '1351'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999735'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999735'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_50a8251d98f748bb8e73304a2548b694
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Research Assistant. You
|
||||
are a helpful research assistant who can search for information about the population
|
||||
of Tokyo.\nYour personal goal is: Find information about the population of Tokyo\n\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: search_web\nTool Arguments: {''query'': {''description'':
|
||||
None, ''type'': ''str''}}\nTool Description: Search the web for information
|
||||
about a topic.\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
|
||||
you should always think about what to do\nAction: the action to take, only one
|
||||
name of [search_web], just the name, exactly as it''s written.\nAction Input:
|
||||
the input to the action, just a simple JSON object, enclosed in curly braces,
|
||||
using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
|
||||
all necessary information is gathered, return the following format:\n\n```\nThought:
|
||||
I now know the final answer\nFinal Answer: the final answer to the original
|
||||
input question\n```"},{"role":"user","content":"What is the population of Tokyo?"},{"role":"assistant","content":"```\nThought:
|
||||
I need to search for the latest information regarding the population of Tokyo.\nAction:
|
||||
search_web\nAction Input: {\"query\":\"current population of Tokyo 2023\"}\n```\nObservation:
|
||||
Tokyo''s population in 2023 was approximately 21 million people in the city
|
||||
proper, and 37 million in the greater metropolitan area."}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1521'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=6maCeRS26vR_uzqYdtL7RXY7kzGdvLhWcE2RP2PnZS0-1762819696-1.0.1.1-72zCZZVBiGDdwPDvETKS_fUA4DYCLVyVHDYW2qpSxxAUuWKNPLxQQ1PpeI7YuB9v.y1e3oapeuV5mBjcP4c9_ZbH.ZI14TUNOexPUB6yCaQ;
|
||||
_cfuvid=a.XOUFuP.5IthR7ITJrIWIZSWWAkmHU._pM9.qhCnhM-1762819696364-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFPLbtswELz7KxY8W4Es+RHr1ifgQw8F3OZQBxJDrSTWFJcgqSRG4H8v
|
||||
KD+kNCnQCwFyZpazs+TLBIDJkmXARMO9aI2KPvG7z81d8mWf4E/cxN9+PK5SvfkYf08Pe8+mQUEP
|
||||
v1H4i+pGUGsUekn6BAuL3GOoOlstk9vZerle9UBLJaogq42P5hS1UssoiZN5FK+i2e1Z3ZAU6FgG
|
||||
vyYAAC/9GnzqEp9ZBvH0ctKic7xGll1JAMySCieMOyed5/rk+QwK0h51b70oip3eNtTVjc9gA5qe
|
||||
YB8W3yBUUnMFXLsntDv9td996HcZbBsEQ6ZTPLQMVMGW9gcCqSGJkxSkA26MpWfZco/qAMkMWqlU
|
||||
IBskozBQwy1C+gMYSwYtcF1CuroSz4y6j9JCi96SISU918At8pudLopi3JrFqnM8xKs7pUYA15p8
|
||||
77UP9f6MHK8xKqqNpQf3l5RVUkvX5Ba5Ix0ic54M69HjBOC+H1f3agLMWGqNzz3tsb8ujdNTPTa8
|
||||
kgGdX0BPnquRar6cvlMvL9Fzqdxo4Exw0WA5SIfXwbtS0giYjLp+6+a92qfOpa7/p/wACIHGY5kb
|
||||
i6UUrzseaBbDJ/oX7Zpyb5g5tI9SYO4l2jCJEiveqfN3dAfnsc0rqWu0xsrT+65MvljGvFriYrFm
|
||||
k+PkDwAAAP//AwDgLjwY7QMAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99c98dde7fc9ce6c-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 00:08:18 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1339'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '1523'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999657'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999657'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_ade054352f8c4dfdba50683755eba41d
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,262 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
|
||||
personal goal is: Test goal\nYou ONLY have access to the following tools, and
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: test_tool\nTool
|
||||
Arguments: {}\nTool Description: A test tool.\n\nIMPORTANT: Use the following
|
||||
format in your response:\n\n```\nThought: you should always think about what
|
||||
to do\nAction: the action to take, only one name of [test_tool], just the name,
|
||||
exactly as it''s written.\nAction Input: the input to the action, just a simple
|
||||
JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n```\n\nOnce all necessary information is gathered,
|
||||
return the following format:\n\n```\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
|
||||
Task: Use the test tool\n\nThis is the expected criteria for your final answer:
|
||||
Tool result\nyou MUST return the actual complete content as the final answer,
|
||||
not a summary.\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"},{"role":"user","content":"Additional
|
||||
context: This is a test modification."}],"model":"gpt-4.1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1311'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xTy47bMAy85ysIneMgcbNp1reizwXaXrpAD83CVmTaViqLWolu2gb590LOw94+
|
||||
gF504HBGw6F0mAAIXYoMhGokq9aZ5KWkz/vdTn14i/dv9h9f19tXi3dtun789H71U0wjg7Y7VHxh
|
||||
zRS1ziBrsidYeZSMUXXxfJWub+fzddoDLZVoIq12nCxni6TVVifpPL1J5stksTzTG9IKg8jgywQA
|
||||
4NCf0agt8bvIYD69VFoMQdYosmsTgPBkYkXIEHRgaVlMB1CRZbS996IoNva+oa5uOIM7CA11poQu
|
||||
IHCDwBg4ZyIDTFAj90WPj532WIK2FflWxqGhIt+DlbbSgLRhj362sS9URLNB6FKCO+s6zuBw3Nii
|
||||
KMb2PFZdkDEj2xkzAqS1xP11fTAPZ+R4jcJQ7Txtw29UUWmrQ5N7lIFsHDswOdGjxwnAQx959yRF
|
||||
4Ty1Lnr+iv116Wp10hPDqgf02XkfgomlGbFuL6wnenmJLLUJo6UJJVWD5UAdNiy7UtMImIym/tPN
|
||||
37RPk2tb/4/8ACiFjrHMncdSq6cTD20e40/4V9s15d6wCOi/aYU5a/RxEyVWsjOn5ynCj8DY5pW2
|
||||
NXrn9emNVi5fqnR9s6jWq1RMjpNfAAAA//8DANALR4WyAwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99d044470bdeb976-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:41:23 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=p01_b1BsQgwR2woMBWf1E0gJMDDl7pvqkEVHpHAsMJA-1762890083-1.0.1.1-u8iYLTTx0lmfSR1.CzuuYiHgt03yVVUMsBD8WgExXWm7ts.grUwM1ifj9p6xIz.HElrnQdfDSBD5Lv045aNr61YcB8WW3Vz33W9N0Gn0P3w;
|
||||
path=/; expires=Tue, 11-Nov-25 20:11:23 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=2gUmBgxb3VydVYt8.t_P6bY8U_pS.a4KeYpZWDDYM9Q-1762890083295-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '729'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '759'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999707'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999707'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_70c7033dbc5e4ced80d3fdcbcda2c675
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
|
||||
personal goal is: Test goal\nYou ONLY have access to the following tools, and
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: test_tool\nTool
|
||||
Arguments: {}\nTool Description: A test tool.\n\nIMPORTANT: Use the following
|
||||
format in your response:\n\n```\nThought: you should always think about what
|
||||
to do\nAction: the action to take, only one name of [test_tool], just the name,
|
||||
exactly as it''s written.\nAction Input: the input to the action, just a simple
|
||||
JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n```\n\nOnce all necessary information is gathered,
|
||||
return the following format:\n\n```\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
|
||||
Task: Use the test tool\n\nThis is the expected criteria for your final answer:
|
||||
Tool result\nyou MUST return the actual complete content as the final answer,
|
||||
not a summary.\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"},{"role":"user","content":"Additional
|
||||
context: This is a test modification."},{"role":"assistant","content":"```\nThought:
|
||||
I should use the test_tool to get the required information for the final answer.\nAction:
|
||||
test_tool\nAction Input: {}\n```\nObservation: test result"},{"role":"user","content":"Additional
|
||||
context: This is a test modification."}],"model":"gpt-4.1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1584'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=p01_b1BsQgwR2woMBWf1E0gJMDDl7pvqkEVHpHAsMJA-1762890083-1.0.1.1-u8iYLTTx0lmfSR1.CzuuYiHgt03yVVUMsBD8WgExXWm7ts.grUwM1ifj9p6xIz.HElrnQdfDSBD5Lv045aNr61YcB8WW3Vz33W9N0Gn0P3w;
|
||||
_cfuvid=2gUmBgxb3VydVYt8.t_P6bY8U_pS.a4KeYpZWDDYM9Q-1762890083295-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFLBbtQwEL3nKyyfN1WS3S5pbhRRKCeEkCpgq8RrTxJTxzb2pC1U++/I
|
||||
TrtJoUhcLNlv3vN7M/OQEEKloBWhvGfIB6vSN8xc3b+/FG/P3rX8x9X+y8dfHy7O8fYra88/0VVg
|
||||
mP134PjEOuFmsApQGj3B3AFDCKr5q21RnmVZuY7AYASoQOssppuTPB2klmmRFadptknzzSO9N5KD
|
||||
pxX5lhBCyEM8g1Et4J5WJFs9vQzgPeuAVsciQqgzKrxQ5r30yDTS1QxyoxF09N40zU5/7s3Y9ViR
|
||||
S6LNHbkJB/ZAWqmZIkz7O3A7fRFvr+OtIggeiQM/KtzppmmW+g7a0bMQUo9KLQCmtUEWmhSTXT8i
|
||||
h2MWZTrrzN7/QaWt1NL3tQPmjQ6+PRpLI3pICLmOPRuftYFaZwaLNZobiN+t83LSo/OsZvQIokGm
|
||||
Fqz1dvWCXi0AmVR+0XXKGe9BzNR5RGwU0iyAZJH6bzcvaU/Jpe7+R34GOAeLIGrrQEj+PPFc5iCs
|
||||
8r/Kjl2OhqkHdys51CjBhUkIaNmopv2i/qdHGOpW6g6cdXJastbWG16Up3lbbguaHJLfAAAA//8D
|
||||
AJW0fwtzAwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99d0444cbd6db976-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:41:23 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '527'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '578'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999655'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999655'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_6b1d84dcdde643cea5160e155ee624db
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,159 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"name":"llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '22'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.78.5
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
body:
|
||||
string: '{"error":"model ''llama3.2:3b'' not found"}'
|
||||
headers:
|
||||
Content-Length:
|
||||
- '41'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:41:28 GMT
|
||||
status:
|
||||
code: 404
|
||||
message: Not Found
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
|
||||
personal goal is: Test goal\nTo give my best complete final answer to the task
|
||||
respond using the exact following format:\n\nThought: I now can give a great
|
||||
answer\nFinal Answer: Your final answer must be the great and the most complete
|
||||
as possible, it must be outcome described.\n\nI MUST use these formats, my job
|
||||
depends on it!"},{"role":"user","content":"\nCurrent Task: Say hello\n\nThis
|
||||
is the expected criteria for your final answer: A greeting\nyou MUST return
|
||||
the actual complete content as the final answer, not a summary.\n\nBegin! This
|
||||
is VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought:"},{"role":"user","content":"Additional context:
|
||||
This is a test modification."}],"model":"gpt-4.1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '851'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFLRbtQwEHzPVyx+vlRJmrte84KOSqgFCSFAqLRUkc/ZJAbHa9lOy6m6
|
||||
f0dOrpe0gMRLpHh2Znd29jECYLJiBTDRci86o+ILTten/ccPFzyp398srz9/2/o3X/PN6btN84kt
|
||||
AoO2P1D4J9aJoM4o9JL0CAuL3GNQTc9W2fo8SdbnA9BRhSrQGuPj/CSNO6llnCXZMk7yOM0P9Jak
|
||||
QMcKuI0AAB6HbxhUV/iLFZAsnl46dI43yIpjEQCzpMIL485J57n2bDGBgrRHPcz+paW+aX0BV6Dp
|
||||
AQTX0Mh7BA5NMABcuwe03/VbqbmCzfBXwCUqRa/g8sC4grEN7KgHTxXfvZ63s1j3jgfPuldqBnCt
|
||||
yfOws8Ho3QHZH60paoylrXtBZbXU0rWlRe5IBxvOk2EDuo8A7oYV9s+2woylzvjS008c2qWrs1GP
|
||||
TdFNaJYdQE+eqxlrTPGlXlmh51K5WQhMcNFiNVGnxHhfSZoB0cz1n9P8TXt0LnXzP/ITIAQaj1Vp
|
||||
LFZSPHc8lVkMl/2vsuOWh4GZQ3svBZZeog1JVFjzXo3nxtzOeezKWuoGrbFyvLnalLnI1su0Xq8y
|
||||
Fu2j3wAAAP//AwDurzwzggMAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99d0446e698367ab-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:41:30 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=b52crfzdOm5rh4aOc2LfM8aQKFI.ZL9WCZXaPBDdG5k-1762890090-1.0.1.1-T2xhtwX0vuEnMIb8NRgP4w3RRn1N1ZwSjuhKBob1vDLDmN7XhCKkoIg3IrlC9KEyhA65IGa5DWsHfmlRKKxqw6sIPA98BSO6E3wsTRspHw4;
|
||||
path=/; expires=Tue, 11-Nov-25 20:11:30 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=0TH0Kjp_5t6yhwXKA1wlKBHaczp.TeWhM2A5t6by1sI-1762890090153-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1049'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '1387'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999817'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999817'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_4b132b998ed941b5b6a85ddbb36e2b65
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
182
lib/crewai/tests/cassettes/test_llm_call_hooks_with_crew.yaml
Normal file
182
lib/crewai/tests/cassettes/test_llm_call_hooks_with_crew.yaml
Normal file
@@ -0,0 +1,182 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Researcher. You are a
|
||||
researcher\nYour personal goal is: Research topics\nTo give my best complete
|
||||
final answer to the task respond using the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
|
||||
Research AI frameworks\n\nThis is the expected criteria for your final answer:
|
||||
A research summary\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nYou MUST follow these instructions: \n - Include specific
|
||||
examples and real-world case studies to enhance the credibility and depth of
|
||||
the article ideas.\n - Incorporate mentions of notable companies, projects,
|
||||
or tools relevant to each topic to provide concrete context.\n - Add diverse
|
||||
viewpoints such as interviews with experts, users, or thought leaders to enrich
|
||||
the narrative and lend authority.\n - Address ethical, social, and emotional
|
||||
considerations explicitly to reflect a balanced and comprehensive analysis.\n
|
||||
- Enhance the descriptions by including implications for future developments
|
||||
and the potential impact on society.\n - Use more engaging and vivid language
|
||||
that draws the reader into each topic''s nuances and importance.\n - Include
|
||||
notes or summaries that contextualize each set of ideas in terms of relevance
|
||||
and potential reader engagement.\n - In future tasks, focus on elaborating initial
|
||||
outlines into more detailed and nuanced article proposals with richer content
|
||||
and insights.\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"},{"role":"user","content":"Additional
|
||||
context: This is a test modification."}],"model":"gpt-4.1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1894'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA2RXTXPbOBK9z6/o8smpkrRJJjPJ6OZy4ownceKKnY+qzaUJNMmOQTQLACUrc5kf
|
||||
sZf9e/NLtrpBycrsRWWTINh4/V6/xz9/Ajhhf7KGE9djccMYlucoX57duvj+fXn/+hrzz8/v3j7f
|
||||
dL/35y9efDlZ6BPSfCNX9k+tnAxjoMIS622XCAvprk+e//r0xW+PH//22G4M4inoY91Yls9WT5YD
|
||||
R14+ffz0l+XjZ8snz+bHe2FH+WQN//4JAOBP+9VCo6f7kzXYZnZloJyxo5P1YRHASZKgV04wZ84F
|
||||
YzlZPNx0EgtFq/22l6nryxouIcoWHEboeEOA0OkBAGPeUvoaLzhigDP7b/01fo0fKBMm18PNNAyY
|
||||
diARzi7hIuFAW0l3WRddxpLET05hWX+NZ6lwy44xwGUsFAJ3FB3B6dnlI2gPTwImgtITNOjuGokE
|
||||
0oLCluwVnjYUZBwolgWMSTbsOXaQS5pcmRJ5oLjhJFFXZMDooYiEDKXHAhSxCQRpLp9SXgDFjiPZ
|
||||
n7paW4mRKUMR8JS5iwsoCTnW+57GIDsY0PUcCQJhilqBdTYDtXpGiiXsVnDbcz68DPKMlecNZeBY
|
||||
BAb8JkmP9XD+BSTCsNxKCh5wHAM7VAS10tKzw2BlZDEkncTMntJ+id6i+5FSAY6Zu77kBXAIUy66
|
||||
JnYKLSdokqAHHkZ0RZtXyPVRgnS7w+5Uditt45MVvN9Q2jBttRVvCQ3xH9q9/hqXcEsxS7oIsoXT
|
||||
1yJdoEdreF8bqA0dJBcYZZwCJpCR4jLLlBxB4CZhUsinTB5aSf8Pb4WexsOV1dH7/v7rvxnaQPes
|
||||
3VWwuZDRATAE2ea5a8oJQJckZzi//pgX8Np+dfPb6495BbVu22/KVvnRqTgq41T4GQLf0bwabhPG
|
||||
HLCQbTRfvO6lSIaeuz5YH4BLhuwwYMOBSwV6lC2llaJ3vbsVZcnpFRX81wU6akTuHq3hTZRtNFB0
|
||||
A7+LOLAzmk7F2o4BuoRjvzjswRla3IiqgeMRAakoBfJhM8J6Rk/N1HV7mI0/rFhhgDYReRmUy/TA
|
||||
0lp3Bq3VwEK/weioio7jXB4l2HBmibZvxDIlDBAwdhN2pGA6ylnfe/ru7fUjw+FsRNcTXH15RwVO
|
||||
zwb8LvHRGm4MuFAhPohsMa/L0zhKKnrsXKpa96fh2FLSQbOAQBtK2JGHZgd1Z/hMDdwoux1lOD37
|
||||
fPOo6j7whlSZS594QxFckMlDnldapVesTJK2wLl0kYtOzluRcMcFTs/f3b5R+ret4nRUcN4f5Ac2
|
||||
w0iplTQoiNaePBK5fgE8YEeVoYXuyxFmC5gKB/5em3woxtpxLqlgRHvs5m43PnBU0oHDdog/zr4c
|
||||
qfVchoYjZXg3Ddc72HLpAaciAxZ24Lk1LAsb7yrbrz8COkdhnkEL6GbwS0Ib/T9Q0Hb8UUQvicYr
|
||||
jt4KPwtjjxcSvI2epyv4oMPwsw3Dc2XrTZk8Ux04vxOG0js1DC3liryNx8sBlcvrY+n2mKEh7WOa
|
||||
bHBy3FvJPMzyLhcaMjgcrT3SAmEKO3VFRwk86UjZH3tM+jIbqCMW7SzIVJwMlBeQJ9cDZht6+9NV
|
||||
f7DWesaGFM9EhaOMWHo1BeyiZK5dOZuKRBlkyvCJenaB8vpY3T3hhsMOaNCxVgl9SznUjn9sKOkB
|
||||
66jPFFpjsRa7b8RCnaMkbqZqClJdp/CgxHQm2uWAd3sVRTLpRiomfx7UeqvcrWBNCNGA3YtpPUtz
|
||||
nhRtwskfgTjbJRb44/pKUocRznvMtKgere9VLVOy1w+iPXZuSjplS2/phL1SsZ390cq4MdXAB3JV
|
||||
kRLX/1TGu9s3R3OMYq/t9darYw1Ke4RImcWjhe9HwAJmeJwMwxT3Lr23l/2Qy7X2TDgEyhWsGxsF
|
||||
Wjnsg9TahKgsPYiJlGVSiHX4B/PcPev0Paakg1w0NWwkTHqPv+vahh/s3KepA8/ZyYZSdfWfV/Cq
|
||||
5gRjTKYEn5i2o3Asqi6NaOb5Jg8+jkyzbNMKLoiXF8TwlheAkEidijzcFIytJKu/pZwlWXmEmo/u
|
||||
HReqRtzIVAx4T4M4nR/fK8bSqiJrbtswqhWnZZuYog+7H7JSMxVAcDhVZdqOesiWzer2NFOw9NaY
|
||||
ZDRtFEpjojJb8QqubVjpJnpALEcx0E777tPly8sz1VuPmb/XhBppTitH6bWIdlCGQbxSlQZKZqw9
|
||||
Jr/FyuLaX0lzE/UTYFCrnXJewas55J1dqqmKw0IZMGR5iBKqXUcp7kMt5t1xwJG2iq6dbJcZgsGe
|
||||
pHt0lBotrWHMmkNbiFJAp2g7haDJNqpHGkueHepZwI0lzmpFrwaZk8f5DwF0/TVqTkg4sj/OBHNH
|
||||
j3BSqj+0nbzettGrDVHYrbN6bJ4/I8hD4nyX//7rP1o64DCGg/r1W4A36HZASbJd0Dq/SaO8HwPW
|
||||
OlZwIUlB0M+1BQRMFkPIEgP5PVbNxKHG4p4yHZc94A449pS4MndM9G3yFh5oaMj76saHBOKx4Ooh
|
||||
KIN9GGrntTqltSJhX1x+KjtlD2tphplNnRE1vFQZt8gpUs7QkkapY6v5RxauZuMwefDiJstyB++a
|
||||
fcQWqhK6OmzofgzIcZ9OTX0r6zqVHQxTLtBgsOHIMcqmbmgMTtRNYZ5/NrOqM3L0vGE/YYBUI7CF
|
||||
twN3thTCsiHLMpRHUn4FxRcyxVwDVcsU/CzC/uD3Rs5fVnAxWch/+fBRWN9Rq7YsoF84ysu3Ijau
|
||||
W0lbTH4B/wMAAP//jFjNbtswDL73KQSfWiAo0Kwbgt2GXVZgP6fdVgSKTNtcZUnQT7ocCuwh9oR7
|
||||
koGkYjtZBuxMR7Ep8vs7nUdaTULQfaXDqTFqLDYjrbOd1dr1QrqSLKs6rVoJXVr0Kvse8gDxZnWU
|
||||
UDRg577mmqj+08cb+SXbbogKHMT+MMlGc/SSIfoRaWvTqGOGuJqYkV6GZAvBhjAQupZcHwJtTBf9
|
||||
qKAtsi2qpKo5E10E79/stEJgGFv4aG3V6B1mH2sHlbFIH6TMoF0PasSMvdAwacglcn4J4OilXKs+
|
||||
VJNB5oYbbquXROJqndkXZ0/Xw7Y5ELbUj1rgG48c+UeeUbGCA1TPStJOXK20q/PFtW8XnWR9ShdV
|
||||
ejoNWjWUUbsT8FnN6HP03HvsUYZfTIWxJeGeFsUM2lpwPbuCb+49xSs/Mg39Z59BIPFSDIDVHB5U
|
||||
BAt77TJ39t2DCksyWqngLZrDqJ+mjIKQhzkMEsuEsrNobtUD4Sz7Dc38FWGgPdqDSk6HNPhcCcMW
|
||||
gy0Ty+CfzxaB/c7Jhg9o2auNgbfaRMzckgidrWrOu2WuQAPcdWwx+GZqt4TYDan4JCp+GVeQ1iB8
|
||||
fQIRztkHNBTO6MmYGpI/O8sa0fgSa0W5IhqOFU6J5GmXiYakA4IUc7jBHkB2XNQjaR5mVnnXSwBB
|
||||
RPmdgJAP5yYwTP7++SsPcOBnqhzMh6NzDFZnkpVJpUGHGsEQuJMH8pSddWfB1q366lqIlNy1c2Rz
|
||||
OqDz1MlITOty5E9MClJisya2Y9BMHtXuoFPP+lAVBIPfkeclWbIHtQMHEtjVqSM+YoFMm3q7zBRJ
|
||||
OyRNwaYr1i4K2jkv1MNp5mOtvEz5pfV9iH6Xzn7adOgwDdsIOnlHWWXKPjRcfblS6pFz0nISfTYy
|
||||
o9vsn4D/7tV9zUmbOZ+dq5vNplazz9rOhbv1+lg5OXHbQtZo0yJrbQyFFe382zmYZRJYFK4W3/33
|
||||
+1w6W74dXf8/x88FYyBkaLezWbj0WAQav389NvWZX7ipnmebESLdRQudLlZS5UaM87ZD15OoRomW
|
||||
u7C9N+vN67tu82bdXL1c/QEAAP//AwBbY8c8aRcAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99d0447958ce36e8-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 19:41:45 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=dSe1gQEFfPpE4AOsFi3S3RQkzPCQnV1.Ywe__K7cSSU-1762890105-1.0.1.1-I1CSTO8ri4tjbaHdIHQ9YP9c2pa.y9WwMQFRaUztT95T_OAe5V0ndTFN4pO1RiCXh15TUpWmBxRdxIWjcYDMqrDIvKWInLO5aavGFWZ1rys;
|
||||
path=/; expires=Tue, 11-Nov-25 20:11:45 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=LMf_4EPFZGfTiqcjmjEk7WxOTuX2ukd3Cs_R8170wJ4-1762890105804-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '15065'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '15254'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999560'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999560'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_c49c9fba20ff4f05903eff3c78797ce1
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,423 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Researcher. You''re an
|
||||
expert researcher, specialized in technology, software engineering, AI and startups.
|
||||
You work as a freelancer and is now working on doing research and analysis for
|
||||
a new customer.\nYour personal goal is: Make the best research and analysis
|
||||
on content about AI and AI agents\nTo give my best complete final answer to
|
||||
the task respond using the exact following format:\n\nThought: I now can give
|
||||
a great answer\nFinal Answer: Your final answer must be the great and the most
|
||||
complete as possible, it must be outcome described.\n\nI MUST use these formats,
|
||||
my job depends on it!"},{"role":"user","content":"\nCurrent Task: Give me a
|
||||
list of 3 interesting ideas about AI.\n\nThis is the expected criteria for your
|
||||
final answer: Bullet point list of 3 ideas.\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nYou MUST follow these instructions:
|
||||
\n - Include specific examples and real-world case studies to enhance the credibility
|
||||
and depth of the article ideas.\n - Incorporate mentions of notable companies,
|
||||
projects, or tools relevant to each topic to provide concrete context.\n - Add
|
||||
diverse viewpoints such as interviews with experts, users, or thought leaders
|
||||
to enrich the narrative and lend authority.\n - Address ethical, social, and
|
||||
emotional considerations explicitly to reflect a balanced and comprehensive
|
||||
analysis.\n - Enhance the descriptions by including implications for future
|
||||
developments and the potential impact on society.\n - Use more engaging and
|
||||
vivid language that draws the reader into each topic''s nuances and importance.\n
|
||||
- Include notes or summaries that contextualize each set of ideas in terms of
|
||||
relevance and potential reader engagement.\n - In future tasks, focus on elaborating
|
||||
initial outlines into more detailed and nuanced article proposals with richer
|
||||
content and insights.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4.1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2076'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1xXS44kxw3d6xREbwwMqgsaWWPJvSvNT21roIE0kAx5NswIViWnI4MpMiKra7TR
|
||||
IbTxSbz3UXQSgxFZ1S1tGuiMH/n43iPrl08Arjhe3cBVGLGEaU7Xz/HHL3/YfTz+9GJ69sPXL8sr
|
||||
e/bT9JMefv4Ql39dbfyEDB8olPOpbZBpTlRYcl8OSljIb336xd8++/Lp3//6xbO2MEmk5McOc7n+
|
||||
fPv0euLM1599+tmz608/v376+Xp8FA5kVzfw708AAH5pfz3QHOn+6gY+3Zy/TGSGB7q6uWwCuFJJ
|
||||
/uUKzdgK5nK1eVgMkgvlFvu7UephLDdwC1mOEDDDgRcChIMnAJjtSPo+v+KMCXbtv5v3+X2+hidP
|
||||
drfXL5QXyvCW1CRj4o8U4WvCVMaASjfwHS2SqsPCHzkf4C0Wplzg21qCTGTwblSPAN4qRQ7F395l
|
||||
TKfCwZ48eZ8B3o1swJEQ6H5OomQwyhF2t8AGRTHbXnTyy8fLwzCcgDIOqX3mw5hOwDnywrGuURbP
|
||||
b/JY5oTZYECjCJJhXkOMWBAwR5gfQmvFsy28EgXODmygDXjtMTMZJL4juP3qDfyIxSSvUMCIC0Gi
|
||||
hRQPFD30IoCe5keCyW/HBEpBNNoGDpRl4mCb9npInNt6UcZkfrIgJ1EvViCFMpLi7K/XzD9XSiew
|
||||
ysVTFCAM4zmjLbwgmt9wjr//+h/zKOxkhSYY0cBGOWaYVSY2As6XrPMB7jhmcgA/VD0BoabTBgwX
|
||||
X0u8kEFZqzirYEeKcyFdKHvpt3Db/mM6GhzZAXmo1KyyJzN2+ljHu4droLQQJhikjEC5jNUYbYK9
|
||||
KOxuWw6zOJEZU4dKHJBsgIPUArPyguHUlloxjUJVLqdNpwQfxpYelbEBHDnRNKF59iPm2MhjlI3X
|
||||
jJxn2BP6XgJjchyK09NG3hcIUlMEpVgDQWSbUbl4YfzCh4wxBDKDoRbAZALKdmdA9xhIB2whcaaf
|
||||
najlBLzvfBFHRwlqpoVyOvkDRXmoheIWXk5SGoQe0gXAgTLtucBeZYJRZmpY8DSrLOTElkMW4x7L
|
||||
5Hj0iOh+JmXKwQ/cM5UTyEIKWItMbmsQKbDX7HrCO86HLbyqpSr53YlDA8nTDqlGgt3t9SxHUoqw
|
||||
sJaKaYUDLvbUK6+E6brw5ELLXEQdi0aYI6HikAgGFi+JqG1WtvoeBJtQC+kGJlECJZslm5ftEfAU
|
||||
ZGV8GfFcLrovlCMk3lPLO7ioO2nOJZB9Xz4kGRzhbfekIjMHNyGlRAvm0g5RPuChxWTABYrUMLpl
|
||||
1QkzHCml64HacgGEfc0R3YQwNX/oPOa8cCG/FyNpk3zwbGJXu2tLHWSCAZObAAxUjkQZCoUxS5JD
|
||||
T6Axu9GvmQxn2l68uxbJMkltRrA7NL5whudui47bbY7VCUZ2Ay/vZ8zRo/5KPGL/6qjstGzgTTUO
|
||||
3au+L6KnQsmV82fzjpSWJoUi/iL2F5thfjtTXgX9YvfNN//778um8YXNqYL+yD/qHUUKd+2ZR/v9
|
||||
+yD3bf/kgTQzFpes5B5URtWe0oEyKRZRA6vB2eeRvKj5QL75D70knHGYVVyuZF51MnpQYxgxJcoH
|
||||
8pORu/4gSye/7F0uo6iNPHd76lc6o4YTBEkJB9Eu+O6KjSOoha0YtBYTaaYcKZd0OoffousdfAvf
|
||||
uWKOoilCQCOwUmN3nC69H1Ezaa/RKmun2+XJ3e117C28ozerxBo8gxays+11RY2MGeY6JLbRz+5u
|
||||
r9do3EaEinpHmFHdDPrGAJEGLOSwtRkD0krnVnOnQEsUvqM933nTj+IebKHapcNTHp3f9lCOUZQ/
|
||||
SrYNHEdOBHZHs88KcBTV0+r8HnbkPnd4ITqwdPZIB0J7z+kN59JFPsjQjDthoDYbOK/Wgmzh5aVR
|
||||
tCBbmfcSqvnYEGQ+qVvoBuSYqZV9cwHRqeBvhNVP3BIb1BQ98jt73FIe5BFpkuA1/3hpG24GZzA6
|
||||
D5t546lbd5Bpksj7k4fdKPso7+jFb2lzXqTpEZ0vDvFffABxLCX//utvR8nuNh7+Hi1wbpYOC6lV
|
||||
O4PONnWbefSABcmZQrl0hKKUo9u7H5jdtEzmka00B2vD0IMUXJrNm6s/750hQqipVMXUSX9fHj/p
|
||||
TeBcvHTy1kt7zs1etQAXo7TfPjKhgHPhBR+baxtUyDwUzq1W+2orb/5kp77YqWQzK3ul93vS3oCU
|
||||
w/jIaxrGWRa8aIldxlxOFws+02l3C6+9vWan+g18VTk1r33nfjSjUi4b2IUgNZfWA79vTcw6OeGd
|
||||
VitH0TKeVswfWW/vURijNg9rKVR1ckEmiu2KveJEjYRA2ap2gUP0fiRzkwEmPmR77FILpkq2AZrm
|
||||
Ea0P9+UScDhtnK89Yk5t5upcYs1ktoXnf5yZX4scEl0G1Lb5DQcVk33p8zOZZ882dtKsvW0QbENz
|
||||
dwPOXLgV4MHie7dowmj9+DIcOJQtzznJafqznVqgjMry4KXOPx+c1Fr784Fo4ParYY8u3TbBH3Jr
|
||||
BOtobVB9fThBwiOQT5DdWDZA9+Sz0p77uru3rbLsDv8HfJ4nwjZAw+52A4p97DEJTD47YEKdVvOz
|
||||
qgtx6oNBm33ZgvK0anjr3Zz03Hvf8ZS5wGsatLbd/3SJPlc87kXbiLiw5+6TrJN1JjUfkhrEkhsC
|
||||
7ZwVraEL1X8ouL7degaKsUvr8nvDf9jERUJvZfvW50KqbVqLZHzI6zB4qOkccpfKZd7utJ5VhpXT
|
||||
k2grwFpZPs9tzSrdVVbnquaaX8X8fwAAAP//jFjNbtwgEL7vUyBfcmkr7SZt95pjpLxCZBF7sFEw
|
||||
EMCtcth3j74BL3jbSj2PjT3AfH+squh9ZfwrhN2Iok3jxr3cp0B3UQBLjLn5++k6xs1JjhrfBjXL
|
||||
N5qd2SSdh72xgO4wafbOW7M7LZ+5NGHIBbg3b3sdtcQ3e7VFdXNvi056khv7KZKBRaospvDxSSw6
|
||||
rpGgMW4p75t4do5pXM4kR+64zh6jgVMZNfOFyghWTsuFD8GwjamsGhToTSFpdfUGIKxXQgYgvP7l
|
||||
kjRfduhTrEv2PHGWMA+vwcnRZCzOpgnZyQI7v5PkMQVnJ+YDpBJAe0auDfKLT6SxkQsYJffVO1Pu
|
||||
uV68HFKm6p0oL/6WmW7FuWLYZ+kzC6hMer9xS1r6oIUdUBRB4gaB5GwmuUXbzR6AHNqcJpBao0RY
|
||||
ZFdjmoK01qW8kUiIXkrlcs2EjJswHPHm1Q7kGOc+kIzOIv+JyfmOq5eDEC+cPa27OKmDy/KpT+6N
|
||||
+HP355I9dTXzqtWfD/elmnCotXA8nrbKbsV+JOQZscmvukEOM4313Rp2Qa64pnBo+v7zf/62du5d
|
||||
2+l/lq+FAdqIxn6LRdqe62OBEAr+67HrPvMPdxGRyEB90hRwFiMpuZqc1HUZKnuFiQ8+6BzXKd8/
|
||||
DKfz96M6/zh1h8vhEwAA//8DAJPMJFq9FAAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99c98602dfefcf4d-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 00:03:08 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=ObqPLq12_9tJ06.V1RkHCM6FH_YGcLoC2ykIFBEawa8-1762819388-1.0.1.1-l7PJTVbZ1vCcKdeOe8GQVuFL59SCk0xhO_dMFY2wuH5Ybd1hhM_Xcv_QivXVhZlBGlRgRAgG631P99JOs_IYAYcNFJReE.3NpPl34VfPVeQ;
|
||||
path=/; expires=Tue, 11-Nov-25 00:33:08 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=kdn.HizdlSPG7cBu_zv1ZPcu0jMwDQIA4H9YvMXu6a0-1762819388587-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '13504'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '13638'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149999507'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999507'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_2de40e1beb5f42ea896664df36e8ce8f
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: "{\"messages\":[{\"role\":\"system\",\"content\":\"You are Researcher. You're
|
||||
an expert researcher, specialized in technology, software engineering, AI and
|
||||
startups. You work as a freelancer and is now working on doing research and
|
||||
analysis for a new customer.\\nYour personal goal is: Make the best research
|
||||
and analysis on content about AI and AI agents\\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\\n\\nThought: I
|
||||
now can give a great answer\\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\\n\\nI MUST
|
||||
use these formats, my job depends on it!\"},{\"role\":\"user\",\"content\":\"\\nCurrent
|
||||
Task: Summarize the ideas from the previous task.\\n\\nThis is the expected
|
||||
criteria for your final answer: A summary of the ideas.\\nyou MUST return the
|
||||
actual complete content as the final answer, not a summary.\\n\\nThis is the
|
||||
context you're working with:\\n- **AI-Driven Personalized Healthcare: Revolutionizing
|
||||
Patient Outcomes Through Predictive Analytics**\\n This idea explores how AI
|
||||
is transforming healthcare by enabling highly individualized treatment plans
|
||||
based on patient data and predictive models. For instance, companies like IBM
|
||||
Watson Health have leveraged AI to analyze medical records, genomics, and clinical
|
||||
trials to tailor cancer therapies uniquely suited to each patient. DeepMind\u2019s
|
||||
AI system has shown promise in predicting kidney injury early, saving lives
|
||||
through proactive intervention. Interviews with healthcare professionals and
|
||||
patients reveal both enthusiasm for AI\u2019s potential and concerns about privacy
|
||||
and data security, highlighting ethical dilemmas in handling sensitive information.
|
||||
Socially, this shift could reduce disparities in healthcare access but also
|
||||
risks exacerbating inequality if AI tools are unevenly distributed. Emotionally,
|
||||
patients benefit from hope and improved prognosis but might also experience
|
||||
anxiety over automated decision-making. Future implications include AI-powered
|
||||
virtual health assistants and real-time monitoring with wearable biosensors,
|
||||
promising a smarter, more responsive healthcare ecosystem that could extend
|
||||
life expectancy and quality of life globally. This topic is relevant and engaging
|
||||
as it touches human well-being at a fundamental level and invites readers to
|
||||
consider the intricate balance between technology and ethics in medicine.\\n\\n-
|
||||
**Autonomous AI Agents in Creative Industries: Expanding Boundaries of Art,
|
||||
Music, and Storytelling**\\n This idea delves into AI agents like OpenAI\u2019s
|
||||
DALL\xB7E for visual art, Jukedeck and OpenAI\u2019s Jukebox for music composition,
|
||||
and narrative generators such as AI Dungeon, transforming creative processes.
|
||||
These AI tools challenge traditional notions of authorship and creativity by
|
||||
collaborating with human artists or independently generating content. Real-world
|
||||
case studies include Warner Music experimenting with AI-driven music production
|
||||
and the Guardian publishing AI-generated poetry, sparking public debate. Thought
|
||||
leaders like AI artist Refik Anadol discuss how AI enhances creative horizons,
|
||||
while skeptics worry about the dilution of human emotional expression and potential
|
||||
job displacement for artists. Ethical discussions focus on copyright, ownership,
|
||||
and the authenticity of AI-produced works. Socially, AI agents democratize access
|
||||
to creative tools but may also commodify art. The emotional dimension involves
|
||||
audiences' reception\u2014wonder and fascination versus skepticism and emotional
|
||||
disconnect. Future trends anticipate sophisticated AI collaborators that understand
|
||||
cultural context and emotions, potentially redefining art itself. This idea
|
||||
captivates readers interested in the fusion of technology and the human spirit,
|
||||
offering a rich narrative on innovation and identity.\\n\\n- **Ethical AI Governance:
|
||||
Building Transparent, Accountable Systems for a Trustworthy Future**\\n This
|
||||
topic addresses the urgent need for frameworks ensuring AI development aligns
|
||||
with human values, emphasizing transparency, accountability, and fairness. Companies
|
||||
like Google DeepMind and Microsoft have established AI ethics boards, while
|
||||
initiatives such as OpenAI commit to responsible AI deployment. Real-world scenarios
|
||||
include controversies over biased facial recognition systems used by law enforcement,
|
||||
exemplified by cases involving companies like Clearview AI, raising societal
|
||||
alarm about surveillance and discrimination. Experts like Timnit Gebru and Kate
|
||||
Crawford provide critical perspectives on bias and structural injustice embedded
|
||||
in AI systems, advocating for inclusive design and regulation. Ethically, this
|
||||
topic probes the moral responsibility of creators versus users and the consequences
|
||||
of autonomous AI decisions. Socially, there's a call for inclusive governance
|
||||
involving diverse stakeholders to prevent marginalization. Emotionally, public
|
||||
trust hinges on transparent communication and mitigation of fears related to
|
||||
AI misuse or job displacement. Looking ahead, the establishment of international
|
||||
AI regulatory standards and ethical certifications may become pivotal, ensuring
|
||||
AI benefits are shared broadly and risks minimized. This topic strongly resonates
|
||||
with readers concerned about the socio-political impact of AI and invites active
|
||||
discourse on shaping a future where technology empowers rather than undermines
|
||||
humanity.\\n\\nYou MUST follow these instructions: \\n - Include specific examples
|
||||
and real-world case studies to enhance the credibility and depth of the article
|
||||
ideas.\\n - Incorporate mentions of notable companies, projects, or tools relevant
|
||||
to each topic to provide concrete context.\\n - Add diverse viewpoints such
|
||||
as interviews with experts, users, or thought leaders to enrich the narrative
|
||||
and lend authority.\\n - Address ethical, social, and emotional considerations
|
||||
explicitly to reflect a balanced and comprehensive analysis.\\n - Enhance the
|
||||
descriptions by including implications for future developments and the potential
|
||||
impact on society.\\n - Use more engaging and vivid language that draws the
|
||||
reader into each topic's nuances and importance.\\n - Include notes or summaries
|
||||
that contextualize each set of ideas in terms of relevance and potential reader
|
||||
engagement.\\n - In future tasks, focus on elaborating initial outlines into
|
||||
more detailed and nuanced article proposals with richer content and insights.\\n\\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\\n\\nThought:\"}],\"model\":\"gpt-4.1-mini\"}"
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '6552'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=ObqPLq12_9tJ06.V1RkHCM6FH_YGcLoC2ykIFBEawa8-1762819388-1.0.1.1-l7PJTVbZ1vCcKdeOe8GQVuFL59SCk0xhO_dMFY2wuH5Ybd1hhM_Xcv_QivXVhZlBGlRgRAgG631P99JOs_IYAYcNFJReE.3NpPl34VfPVeQ;
|
||||
_cfuvid=kdn.HizdlSPG7cBu_zv1ZPcu0jMwDQIA4H9YvMXu6a0-1762819388587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1xXzY4bxxG++ykKexRIQlKcRN7b2pIcBrItSwIUIL4Ue4ozJfZ0tau6yR35oofw
|
||||
JU+Sex5FTxJUz3BJ6bLAcqa66+f7qfnjG4Ab7m5u4SYMWMKY4/oHfP/sw1v99WM3vvzX8x9//3mr
|
||||
rx4f3te85WflZuURsvtAoZyjNkHGHKmwpPlxUMJCfuqTv//t6bMn3/3l2XftwSgdRQ/rc1l/u3my
|
||||
Hjnx+unjp39dP/52/eTbJXwQDmQ3t/DvbwAA/mh/PdHU0f3NLTxenX8ZyQx7url9eAngRiX6Lzdo
|
||||
xlYwzUkvD4OkQqnl/m6Q2g/lFraQ5AQBE/R8JEDovQDAZCdSgN/SS04Y4a79f+s//JYePbrbrp8r
|
||||
HynBa1KThJE/Ugf/IIxlCKh0C2/oKLF6Y/gjpx5eY2FKBX6pJchIBu8G9RzgtVLHofjtdwnjVDjY
|
||||
o0d+07uBDbgjhECpkBpIgjIQFMVke9ERW1gWz1X2cLcFTjA8ZLGC00BKkC9X4PkKoIS7SDBMmXSd
|
||||
r8so3oLRk80Rk0FBjqL+QNr1nIpywELQkT8zv5tTx0fuKkbIS6kdFtzAa5ZEpN4DBwsmJoPIB4Lt
|
||||
9z/Beywmaekc1MKeghdSBIz3BcrSpiNagdHrwAhKQbSzFfSUZPRq/C6jYivA1EGInNqLRRkj7D25
|
||||
1NsKguK+eCo7siwH8skHUi9LMXtmZfDxR+6Tty2wUZzgxGUAPBf2+dN/DGri36u3VvYcaQNveeSI
|
||||
GqcVPCfKP3Hq2nvYHf2KzmuyyQqNBgMevXejJCvqdIHIe1obHluXMOOOI5cJdhNgCNXfiRPsRSmg
|
||||
tfwx1EJw4C7RBJw+VPXkcSDsfBo2jbnIaIA5E3rzV4AxysljsxKNucHh3FB2fB0pOV43sE3G/VD2
|
||||
9fyA6WRzEy7ggqwYCnuEQ9PbvvTHYOB+iH4EIDRIJFRtYP386c/TwJFgxDQBjTvF4PNuvcoqIxt5
|
||||
ocBjVjlSB3ImjN8wSKZVmxaB52DcJ95zwFQgiI8yGeBO6ow+yMpHDFOLpTK0Wq3QCbWzgXNrFSXj
|
||||
r5qxcMt70Uh4Di3+riSoqSO1IOppwYgfRMEkMBWM0NEOC902qmRxxXEMzvQsAjvlrqfrRmIIZAY9
|
||||
ZoMjqVVrscp2mOFYE/3uXezYivKuqcrDgRINRpzgJGqUgO55RkjHllG5MNkGXoziQRgdnw9jcoXs
|
||||
wPEOQcVMBTv7/OnPHSXac2nH7FVG2FEppD6fPokts/hCM2a5mahAr5hz9NAGmJoIjUCOpIC1yNjw
|
||||
flV95yRjSXZpVpzAanbxaSkMdcQEH2rXuyht4JXIoaUm6oNseABKx3YMdbCvparLVIi1I4O77bpJ
|
||||
JHVwZC3eyfl+eLCJuaIToTZR3LE4LEQNOop8nOVLCeO68EgwSuIiM61cOWLXOAk2ohbSFYyi5IBM
|
||||
FL4ql4LMMrCBtzUMwCnJsWHtgv8iQGlw2YA+yg5j0weg+0yhYFrw7JBwkZB9e7yCEVtbiiO2SObQ
|
||||
2JuagilFOjpLGhMuaAAlH6I/MOACRWoYaAag49tPn/t/ohjXO2qFusRijNaYipDqLHE7jC3pHZUT
|
||||
UYJQG4bW5IAvFIYkUfo5+zPZGrVss/hqLZJklOpDg7u+oZQT/OCO5BTdpq46B8hu4cV9xqbr8L3U
|
||||
1GFTQGeFlhX8VI3DbAZvi+hUKDomr4y1yUUu3tXYiDzIqSH0kgDOCfjYlGzA3OT5nMueKboHhQFj
|
||||
pNSfO4O14bSNQrHjudWQZB6y7M9H+PDmgDKIuh5t4F3jszky0OCXTGnRxud3r179778v3PHI/aCZ
|
||||
6VwUHNkc1Khlpmuh+4Zyx1N2T1wk13vS4sRaVu7vxbVuMeR/1gN1FA4tq6u7/fed3F91J05zEQSi
|
||||
3LcVyST1toGfz0oPrSVnr7/bwvOaepIEerUZEdjVdJrfnV2qmxKOPsNmQTivLzlKgY6OFCXPG8pC
|
||||
7N0Ed9sNvHGKnkRjB02FwsIsjrE2r30giA2+XSwaAe9RE+mMmlayc03Zr8AI1eii31mlq4F87Fr8
|
||||
rjJMS2uLYjjMUvJuIPixonaMqR24k9hBrrtzTvOB6/M4O8hCRacVuGo3HrvuxGmJcTkPUtXI7Xkf
|
||||
62Irx7YvP/QYtbAVeEN7Pvg62UkEGvOA5r12hN9tvbbG4DOQB1H+KMlW8054kdz5NGt7n6+cgTxM
|
||||
0rIoNF0a+QKw4HYTDALOFtXMSylyUwVJfrlbFal0dFGhRgA/MpwZ4d4VfTF4yNH3LDJr77ufLYY8
|
||||
e61T1CUAguRJfe9YgZx8LRk4rx449nDFLIu8n5xjXwzhJHqwB0bTxU09JEYKZ15l0jLBXnGkFrOB
|
||||
txJ49tcykNHFnH3RCw69j3TF/BVIptSALu4zrqQ7N2D3WW984DwDZVfLF9YYZByl4/3UBEcdxEVg
|
||||
RLP1gs22NOVavjZ+rB1TcrwoenVNLGakUwrtuBP5PuDqn+RIcUnYKeQL+YGyJ2bj3NO2OzVqXM0y
|
||||
MqVld3o5G/EVX50cS2nNoJXQOPVu+JIH73Voc7jbQpAYcSeKxdvTluJI85dGIc1KbS6hxlIVI7SP
|
||||
u/uv/G1xptUX/bss0SfHJ/tnBc4FLpqGWpbFb7bRgL4tN6Ap+YRs/gbq66w83q59tYXVV0bXNiB/
|
||||
OvPJMiuXlS/gtjgEwh4tcJqV6WFNPg+h1WoUzopx2RZW/mWYSkOS1zzn0Pot+4W5HHy6OvNmsdgX
|
||||
Zfg/AAAA//+MWctu5DYQvPsriDnLRmxsAiM3Z5E1jE1O8XUx4FAtDdcUKfMxGwfwvwfVTUmciQ85
|
||||
GQZHlNiP6qoid87Dk3oEKfMI0K/qt2KFxDyj0WcdyedOPRgTis8c+b+qeJGR/xxLyhX8JM3taGUc
|
||||
AF8+0oRDnChlO3IA+VTTTPWc2C2GQ0m5aSZFPhWmXA9PZ2jP2ECzC2/yL8s0DjJzFYnySbtC2wzN
|
||||
64EMQrWciAWWhG7QNnpK6Ub9QZqDgBQqju4qVh9DGB2t2o4f/NOCNochi6KbRelK+QqvUYegWagK
|
||||
QIY4am//qR3F+8qYbRQF97fN0i05gHnMwSeLHOCHmADNmEPdQyjFZCl1daDxLLU6gQxrwBIr5tHL
|
||||
1F9kqERSStjpH4qgewxJaEcgQmX6F7r9syPNmlA9PHU8WicUMHFueyBLZJqTSjyRdcIJ8YmRNHLi
|
||||
+/oJdaxFy89zUY/anXS1TOrkq7oOHcmmjXK1B5cMP9vJ26we6RAL7/4VH/M56h9DiD3Q+mR7hhub
|
||||
UHNcnq+okeAhQanvqVfajSHafMRXIXZrV6UcixGQgdBGW1GC+pkpF0YrJh8dpH4w0sisYJEKvLBT
|
||||
9FqsdFFPkKy8d6SxOKDbm5rIHLW3aWpGm0HSe+4TFAuzJgCDTDrIEk/ysrVCqmlQ2TcwFHgWqjon
|
||||
31+XtGj1C5mGt9FrkekAADkjwkvFVIVhp1kbtgdW8XYx/za60giFbazhzOOKPoq9wWq9WG9CnANT
|
||||
3B7KKyED+oWOwWE2VsLDRIxARNSkIzPQ2lf1rAlIiM5eDYQb9QXzTvtmPkDDQlRxliIdFhRkhaKt
|
||||
z9r6phQzUA99Q74XN25DS+7b4iu96xQNg2ysJsvgt4n2yaaSqBKTvmeA9qP6Hg4r86lw97clEfCL
|
||||
5mWHpyrehJKy6ci/XQajNJIAfFNhLPUBRWdWiKGY2T6RGhOzKKnZngJ4bw5qLDpqn4kkO1UQVINA
|
||||
pBGzFve2uRMk6Ih1eBhpC4V7U7B9J1gGZxO2J5pXMYoxIY7bylcqBmBnNnfqd6yeC/sRwdWxI/UJ
|
||||
MDzZ6pYtikSPElrr1SLo9DI3xSxtxjdNLC+SDBb0VtTwnhCLagJNUh8283i9vr7Gn98Bc2zc2qQO
|
||||
2rwIRuAQkTKJkVDhW3N946Cpg0ZklFgBtxN6lhXgdg7WLw4nVCvI7CVMgItJcjuODv6eU6Ieqqb2
|
||||
LFQKJyAx3VqTVAmK0uoEU7dTU3HZDtoQm5Xa98nouYqixbobGJisiBMDWwue0pkd3dJfBqEVA5pk
|
||||
NRQrqGjNcaNF3HMtBzqHPtm0ZQErB2XNIzaTCcXBJIqcSqokkyptDyU7lq3r61Ha7HOj+oBgjuXI
|
||||
HJJm63sQdwglTEB99k6lzxZCb6dGiw6rWfh2015PRBpK0rgj8cW5ZkF71AU/jIuRb3Xlfb0KcWGc
|
||||
Yziki0d3g/U2Hfcg2cHj2iPlMO949f1KqW985VLOblF24hnsc3ghft3t7e0n2XC33fU0yz+tyxmY
|
||||
sa3c3d7ddx/sua+XBs3Fzc5oc6R+e3a75QEEhGbhqjn5fz/oo73l9NaP/2f7bcHAHKJ+v9ydtIfe
|
||||
fhbpOzt8H/9sjTR/8C7BSTe0z5YistHToIur92oyYveDBX2ao5V7qmHefzJ39z/fDve/3O2u3q/+
|
||||
BQAA//8DAPcawNa2GwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 99c9865b6af3cf4d-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 11 Nov 2025 00:03:32 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '22788'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '22942'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-project-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-project-tokens:
|
||||
- '149998392'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998392'
|
||||
x-ratelimit-reset-project-tokens:
|
||||
- 0s
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_48c359c72cdc47aeb89c6d6eeffdce7d
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -1,167 +0,0 @@
|
||||
"""Tests for agent output sanitization to prevent internal fields from leaking."""
|
||||
|
||||
import pytest
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
from crewai import Agent, Crew, Task
|
||||
from crewai.agents.parser import AgentAction, AgentFinish
|
||||
from crewai.process import Process
|
||||
from crewai.utilities.agent_utils import (
|
||||
format_answer,
|
||||
handle_max_iterations_exceeded,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_llm():
|
||||
"""Create a mock LLM that returns ReAct-style output."""
|
||||
llm = Mock()
|
||||
llm.call = Mock()
|
||||
llm.supports_stop_words = Mock(return_value=True)
|
||||
llm.get_context_window_size = Mock(return_value=4096)
|
||||
return llm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_printer():
|
||||
"""Create a mock printer."""
|
||||
printer = Mock()
|
||||
printer.print = Mock()
|
||||
return printer
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_i18n():
|
||||
"""Create a mock i18n."""
|
||||
i18n = Mock()
|
||||
i18n.errors = Mock(return_value="Please provide a final answer.")
|
||||
return i18n
|
||||
|
||||
|
||||
def test_handle_max_iterations_with_agent_action_should_not_leak_internal_fields(
|
||||
mock_llm, mock_printer, mock_i18n
|
||||
):
|
||||
"""Test that when max iterations is exceeded and we have an AgentAction,
|
||||
the final output doesn't contain internal ReAct fields like 'Thought:' and 'Action:'.
|
||||
|
||||
This reproduces issue #3873 where hierarchical crews would return internal
|
||||
fields in the final answer when delegated tasks failed.
|
||||
"""
|
||||
formatted_answer = AgentAction(
|
||||
thought="I need to fetch the database tables",
|
||||
tool="PostgresTool",
|
||||
tool_input="list_tables",
|
||||
text="Thought: I need to fetch the database tables\nAction: PostgresTool\nAction Input: list_tables",
|
||||
)
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Fetch list of tables from postgres db"},
|
||||
]
|
||||
|
||||
mock_llm.call.return_value = (
|
||||
"Thought: I should try to connect to the database\n"
|
||||
"Action: PostgresTool\n"
|
||||
"Action Input: connect"
|
||||
)
|
||||
|
||||
callbacks = []
|
||||
|
||||
result = handle_max_iterations_exceeded(
|
||||
formatted_answer=formatted_answer,
|
||||
printer=mock_printer,
|
||||
i18n=mock_i18n,
|
||||
messages=messages,
|
||||
llm=mock_llm,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
|
||||
assert isinstance(result, AgentFinish)
|
||||
|
||||
assert "Thought:" not in result.output, (
|
||||
f"Output should not contain 'Thought:' but got: {result.output}"
|
||||
)
|
||||
assert "Action:" not in result.output, (
|
||||
f"Output should not contain 'Action:' but got: {result.output}"
|
||||
)
|
||||
assert "Action Input:" not in result.output, (
|
||||
f"Output should not contain 'Action Input:' but got: {result.output}"
|
||||
)
|
||||
|
||||
|
||||
def test_format_answer_with_unparseable_output_should_not_leak_internal_fields():
|
||||
"""Test that when format_answer receives unparseable output with ReAct fields,
|
||||
it sanitizes them from the final output.
|
||||
"""
|
||||
raw_answer = (
|
||||
"Thought: I tried to connect to the database but failed\n"
|
||||
"Action: PostgresTool\n"
|
||||
"Action Input: connect\n"
|
||||
"Observation: Error: Database configuration not found"
|
||||
)
|
||||
|
||||
with patch("crewai.utilities.agent_utils.parse") as mock_parse:
|
||||
mock_parse.side_effect = Exception("Failed to parse")
|
||||
|
||||
result = format_answer(raw_answer)
|
||||
|
||||
assert isinstance(result, AgentFinish)
|
||||
|
||||
assert "Thought:" not in result.output, (
|
||||
f"Output should not contain 'Thought:' but got: {result.output}"
|
||||
)
|
||||
assert "Action:" not in result.output, (
|
||||
f"Output should not contain 'Action:' but got: {result.output}"
|
||||
)
|
||||
assert "Action Input:" not in result.output, (
|
||||
f"Output should not contain 'Action Input:' but got: {result.output}"
|
||||
)
|
||||
assert "Observation:" not in result.output, (
|
||||
f"Output should not contain 'Observation:' but got: {result.output}"
|
||||
)
|
||||
|
||||
|
||||
def test_hierarchical_crew_with_failing_task_should_not_leak_internal_fields():
|
||||
"""Integration test: hierarchical crew with a failing delegated task
|
||||
should not leak internal ReAct fields in the final output.
|
||||
|
||||
This is a full integration test that reproduces issue #3873.
|
||||
|
||||
Note: This test is skipped for now as it requires VCR cassettes.
|
||||
The unit tests above cover the core functionality.
|
||||
"""
|
||||
pytest.skip("Integration test requires VCR cassettes - covered by unit tests")
|
||||
expert = Agent(
|
||||
role="Database Expert",
|
||||
goal="Fetch database information",
|
||||
backstory="You are an expert in database operations.",
|
||||
max_iter=2, # Set low max_iter to trigger the bug
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Fetch list of tables from postgres database",
|
||||
expected_output="A list of database tables",
|
||||
agent=expert,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[expert],
|
||||
tasks=[task],
|
||||
process=Process.hierarchical,
|
||||
manager_llm="gpt-4o",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Execute the crew
|
||||
result = crew.kickoff()
|
||||
|
||||
assert "Thought:" not in result.raw, (
|
||||
f"Final output should not contain 'Thought:' but got: {result.raw}"
|
||||
)
|
||||
assert "Action:" not in result.raw, (
|
||||
f"Final output should not contain 'Action:' but got: {result.raw}"
|
||||
)
|
||||
assert "Action Input:" not in result.raw, (
|
||||
f"Final output should not contain 'Action Input:' but got: {result.raw}"
|
||||
)
|
||||
@@ -340,7 +340,7 @@ def test_sync_task_execution(researcher, writer):
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Because we are mocking execute_sync, we never hit the underlying _execute_core
|
||||
@@ -412,7 +412,7 @@ def test_manager_agent_delegating_to_assigned_task_agent(researcher, writer):
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Because we are mocking execute_sync, we never hit the underlying _execute_core
|
||||
@@ -513,7 +513,7 @@ def test_manager_agent_delegates_with_varied_role_cases():
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
task.output = mock_task_output
|
||||
|
||||
@@ -611,7 +611,7 @@ def test_crew_with_delegating_agents_should_not_override_task_tools(ceo, writer)
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Because we are mocking execute_sync, we never hit the underlying _execute_core
|
||||
@@ -669,7 +669,7 @@ def test_crew_with_delegating_agents_should_not_override_agent_tools(ceo, writer
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Because we are mocking execute_sync, we never hit the underlying _execute_core
|
||||
@@ -788,7 +788,7 @@ def test_task_tools_override_agent_tools_with_allow_delegation(researcher, write
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# We mock execute_sync to verify which tools get used at runtime
|
||||
@@ -1225,7 +1225,7 @@ async def test_async_task_execution_call_count(researcher, writer):
|
||||
|
||||
# Create a valid TaskOutput instance to mock the return value
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Create a MagicMock Future instance
|
||||
@@ -1784,7 +1784,7 @@ def test_hierarchical_kickoff_usage_metrics_include_manager(researcher):
|
||||
Task,
|
||||
"execute_sync",
|
||||
return_value=TaskOutput(
|
||||
description="dummy", raw="Hello", agent=researcher.role
|
||||
description="dummy", raw="Hello", agent=researcher.role, messages=[]
|
||||
),
|
||||
):
|
||||
crew.kickoff()
|
||||
@@ -1828,7 +1828,7 @@ def test_hierarchical_crew_creation_tasks_with_agents(researcher, writer):
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Because we are mocking execute_sync, we never hit the underlying _execute_core
|
||||
@@ -1881,7 +1881,7 @@ def test_hierarchical_crew_creation_tasks_with_async_execution(researcher, write
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Create a mock Future that returns our TaskOutput
|
||||
@@ -2246,11 +2246,13 @@ def test_conditional_task_uses_last_output(researcher, writer):
|
||||
description="First task output",
|
||||
raw="First success output", # Will be used by third task's condition
|
||||
agent=researcher.role,
|
||||
messages=[],
|
||||
)
|
||||
mock_third = TaskOutput(
|
||||
description="Third task output",
|
||||
raw="Third task executed", # Output when condition succeeds using first task output
|
||||
agent=writer.role,
|
||||
messages=[],
|
||||
)
|
||||
|
||||
# Set up mocks for task execution and conditional logic
|
||||
@@ -2318,11 +2320,13 @@ def test_conditional_tasks_result_collection(researcher, writer):
|
||||
description="Success output",
|
||||
raw="Success output", # Triggers third task's condition
|
||||
agent=researcher.role,
|
||||
messages=[],
|
||||
)
|
||||
mock_conditional = TaskOutput(
|
||||
description="Conditional output",
|
||||
raw="Conditional task executed",
|
||||
agent=writer.role,
|
||||
messages=[],
|
||||
)
|
||||
|
||||
# Set up mocks for task execution and conditional logic
|
||||
@@ -2399,6 +2403,7 @@ def test_multiple_conditional_tasks(researcher, writer):
|
||||
description="Mock success",
|
||||
raw="Success and proceed output",
|
||||
agent=researcher.role,
|
||||
messages=[],
|
||||
)
|
||||
|
||||
# Set up mocks for task execution
|
||||
@@ -2806,7 +2811,7 @@ def test_manager_agent(researcher, writer):
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Because we are mocking execute_sync, we never hit the underlying _execute_core
|
||||
@@ -3001,6 +3006,7 @@ def test_replay_feature(researcher, writer):
|
||||
output_format=OutputFormat.RAW,
|
||||
pydantic=None,
|
||||
summary="Mocked output for list of ideas",
|
||||
messages=[],
|
||||
)
|
||||
|
||||
crew.kickoff()
|
||||
@@ -3052,6 +3058,7 @@ def test_crew_task_db_init():
|
||||
output_format=OutputFormat.RAW,
|
||||
pydantic=None,
|
||||
summary="Write about AI in healthcare...",
|
||||
messages=[],
|
||||
)
|
||||
|
||||
crew.kickoff()
|
||||
@@ -3114,6 +3121,7 @@ def test_replay_task_with_context():
|
||||
output_format=OutputFormat.RAW,
|
||||
pydantic=None,
|
||||
summary="Detailed report on AI advancements...",
|
||||
messages=[],
|
||||
)
|
||||
mock_task_output2 = TaskOutput(
|
||||
description="Summarize the AI advancements report.",
|
||||
@@ -3123,6 +3131,7 @@ def test_replay_task_with_context():
|
||||
output_format=OutputFormat.RAW,
|
||||
pydantic=None,
|
||||
summary="Summary of the AI advancements report...",
|
||||
messages=[],
|
||||
)
|
||||
mock_task_output3 = TaskOutput(
|
||||
description="Write an article based on the AI advancements summary.",
|
||||
@@ -3132,6 +3141,7 @@ def test_replay_task_with_context():
|
||||
output_format=OutputFormat.RAW,
|
||||
pydantic=None,
|
||||
summary="Article on AI advancements...",
|
||||
messages=[],
|
||||
)
|
||||
mock_task_output4 = TaskOutput(
|
||||
description="Create a presentation based on the AI advancements article.",
|
||||
@@ -3141,6 +3151,7 @@ def test_replay_task_with_context():
|
||||
output_format=OutputFormat.RAW,
|
||||
pydantic=None,
|
||||
summary="Presentation on AI advancements...",
|
||||
messages=[],
|
||||
)
|
||||
|
||||
with patch.object(Task, "execute_sync") as mock_execute_task:
|
||||
@@ -3164,6 +3175,70 @@ def test_replay_task_with_context():
|
||||
db_handler.reset()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_replay_preserves_messages():
|
||||
"""Test that replay preserves messages from stored task outputs."""
|
||||
from crewai.utilities.types import LLMMessage
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test goal",
|
||||
backstory="Test backstory",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Say hello",
|
||||
expected_output="A greeting",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task], process=Process.sequential)
|
||||
|
||||
mock_messages: list[LLMMessage] = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Say hello"},
|
||||
{"role": "assistant", "content": "Hello!"},
|
||||
]
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Say hello",
|
||||
raw="Hello!",
|
||||
agent="Test Agent",
|
||||
messages=mock_messages,
|
||||
)
|
||||
|
||||
with patch.object(Task, "execute_sync", return_value=mock_task_output):
|
||||
crew.kickoff()
|
||||
|
||||
# Verify the task output was stored with messages
|
||||
db_handler = TaskOutputStorageHandler()
|
||||
stored_outputs = db_handler.load()
|
||||
assert stored_outputs is not None
|
||||
assert len(stored_outputs) > 0
|
||||
|
||||
# Verify messages are in the stored output
|
||||
stored_output = stored_outputs[0]["output"]
|
||||
assert "messages" in stored_output
|
||||
assert len(stored_output["messages"]) == 3
|
||||
assert stored_output["messages"][0]["role"] == "system"
|
||||
assert stored_output["messages"][1]["role"] == "user"
|
||||
assert stored_output["messages"][2]["role"] == "assistant"
|
||||
|
||||
# Replay the task and verify messages are preserved
|
||||
with patch.object(Task, "execute_sync", return_value=mock_task_output):
|
||||
replayed_output = crew.replay(str(task.id))
|
||||
|
||||
# Verify the replayed task output has messages
|
||||
assert len(replayed_output.tasks_output) > 0
|
||||
replayed_task_output = replayed_output.tasks_output[0]
|
||||
assert hasattr(replayed_task_output, "messages")
|
||||
assert isinstance(replayed_task_output.messages, list)
|
||||
assert len(replayed_task_output.messages) == 3
|
||||
|
||||
db_handler.reset()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_replay_with_context():
|
||||
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
|
||||
@@ -3181,6 +3256,7 @@ def test_replay_with_context():
|
||||
pydantic=None,
|
||||
json_dict={},
|
||||
output_format=OutputFormat.RAW,
|
||||
messages=[],
|
||||
)
|
||||
task1.output = context_output
|
||||
|
||||
@@ -3241,6 +3317,7 @@ def test_replay_with_context_set_to_nullable():
|
||||
description="Test Task Output",
|
||||
raw="test raw output",
|
||||
agent="test_agent",
|
||||
messages=[],
|
||||
)
|
||||
crew.kickoff()
|
||||
|
||||
@@ -3264,6 +3341,7 @@ def test_replay_with_invalid_task_id():
|
||||
pydantic=None,
|
||||
json_dict={},
|
||||
output_format=OutputFormat.RAW,
|
||||
messages=[],
|
||||
)
|
||||
task1.output = context_output
|
||||
|
||||
@@ -3328,6 +3406,7 @@ def test_replay_interpolates_inputs_properly(mock_interpolate_inputs):
|
||||
pydantic=None,
|
||||
json_dict={},
|
||||
output_format=OutputFormat.RAW,
|
||||
messages=[],
|
||||
)
|
||||
task1.output = context_output
|
||||
|
||||
@@ -3386,6 +3465,7 @@ def test_replay_setup_context():
|
||||
pydantic=None,
|
||||
json_dict={},
|
||||
output_format=OutputFormat.RAW,
|
||||
messages=[],
|
||||
)
|
||||
task1.output = context_output
|
||||
crew = Crew(agents=[agent], tasks=[task1, task2], process=Process.sequential)
|
||||
@@ -3619,6 +3699,7 @@ def test_conditional_should_skip(researcher, writer):
|
||||
description="Task 1 description",
|
||||
raw="Task 1 output",
|
||||
agent="Researcher",
|
||||
messages=[],
|
||||
)
|
||||
|
||||
result = crew_met.kickoff()
|
||||
@@ -3653,6 +3734,7 @@ def test_conditional_should_execute(researcher, writer):
|
||||
description="Task 1 description",
|
||||
raw="Task 1 output",
|
||||
agent="Researcher",
|
||||
messages=[],
|
||||
)
|
||||
|
||||
crew_met.kickoff()
|
||||
@@ -3824,7 +3906,7 @@ def test_task_tools_preserve_code_execution_tools():
|
||||
)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
with patch.object(
|
||||
@@ -3878,7 +3960,7 @@ def test_multimodal_flag_adds_multimodal_tools():
|
||||
crew = Crew(agents=[multimodal_agent], tasks=[task], process=Process.sequential)
|
||||
|
||||
mock_task_output = TaskOutput(
|
||||
description="Mock description", raw="mocked output", agent="mocked agent"
|
||||
description="Mock description", raw="mocked output", agent="mocked agent", messages=[]
|
||||
)
|
||||
|
||||
# Mock execute_sync to verify the tools passed at runtime
|
||||
@@ -3942,6 +4024,7 @@ def test_multimodal_agent_image_tool_handling():
|
||||
description="Mock description",
|
||||
raw="A detailed analysis of the image",
|
||||
agent="Image Analyst",
|
||||
messages=[],
|
||||
)
|
||||
|
||||
with patch.object(Task, "execute_sync") as mock_execute_sync:
|
||||
|
||||
@@ -162,6 +162,7 @@ def test_task_callback_returns_task_output():
|
||||
"name": task.name or task.description,
|
||||
"expected_output": "Bullet point list of 5 interesting ideas.",
|
||||
"output_format": OutputFormat.RAW,
|
||||
"messages": [],
|
||||
}
|
||||
assert output_dict == expected_output
|
||||
|
||||
@@ -1680,3 +1681,44 @@ def test_task_copy_with_list_context():
|
||||
assert isinstance(copied_task2.context, list)
|
||||
assert len(copied_task2.context) == 1
|
||||
assert copied_task2.context[0] is task1
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_task_output_includes_messages():
|
||||
"""Test that TaskOutput includes messages from agent execution."""
|
||||
researcher = Agent(
|
||||
role="Researcher",
|
||||
goal="Make the best research and analysis on content about AI and AI agents",
|
||||
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task1 = Task(
|
||||
description="Give me a list of 3 interesting ideas about AI.",
|
||||
expected_output="Bullet point list of 3 ideas.",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
task2 = Task(
|
||||
description="Summarize the ideas from the previous task.",
|
||||
expected_output="A summary of the ideas.",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[researcher], tasks=[task1, task2], process=Process.sequential)
|
||||
result = crew.kickoff()
|
||||
|
||||
# Verify both tasks have messages
|
||||
assert len(result.tasks_output) == 2
|
||||
|
||||
# Check first task output has messages
|
||||
task1_output = result.tasks_output[0]
|
||||
assert hasattr(task1_output, "messages")
|
||||
assert isinstance(task1_output.messages, list)
|
||||
assert len(task1_output.messages) > 0
|
||||
|
||||
# Check second task output has messages
|
||||
task2_output = result.tasks_output[1]
|
||||
assert hasattr(task2_output, "messages")
|
||||
assert isinstance(task2_output.messages, list)
|
||||
assert len(task2_output.messages) > 0
|
||||
|
||||
@@ -38,6 +38,7 @@ def test_task_without_guardrail():
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(description="Test task", expected_output="Output")
|
||||
|
||||
@@ -56,6 +57,7 @@ def test_task_with_successful_guardrail_func():
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test task", expected_output="Output", guardrail=guardrail
|
||||
@@ -76,6 +78,7 @@ def test_task_with_failing_guardrail():
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.side_effect = ["bad result", "good result"]
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test task",
|
||||
@@ -103,6 +106,7 @@ def test_task_with_guardrail_retries():
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "bad result"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test task",
|
||||
@@ -128,6 +132,7 @@ def test_guardrail_error_in_context():
|
||||
agent = Mock()
|
||||
agent.role = "test_agent"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test task",
|
||||
@@ -295,6 +300,7 @@ def test_hallucination_guardrail_integration():
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
mock_llm = Mock(spec=LLM)
|
||||
guardrail = HallucinationGuardrail(
|
||||
@@ -342,6 +348,7 @@ def test_multiple_guardrails_sequential_processing():
|
||||
agent.role = "sequential_agent"
|
||||
agent.execute_task.return_value = "original text"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test sequential guardrails",
|
||||
@@ -391,6 +398,7 @@ def test_multiple_guardrails_with_validation_failure():
|
||||
agent.role = "validation_agent"
|
||||
agent.execute_task = mock_execute_task
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test guardrails with validation",
|
||||
@@ -432,6 +440,7 @@ def test_multiple_guardrails_with_mixed_string_and_taskoutput():
|
||||
agent.role = "mixed_agent"
|
||||
agent.execute_task.return_value = "original"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test mixed return types",
|
||||
@@ -469,6 +478,7 @@ def test_multiple_guardrails_with_retry_on_middle_guardrail():
|
||||
agent.role = "retry_agent"
|
||||
agent.execute_task.return_value = "base"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test retry in middle guardrail",
|
||||
@@ -500,6 +510,7 @@ def test_multiple_guardrails_with_max_retries_exceeded():
|
||||
agent.role = "failing_agent"
|
||||
agent.execute_task.return_value = "test"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test max retries with multiple guardrails",
|
||||
@@ -523,6 +534,7 @@ def test_multiple_guardrails_empty_list():
|
||||
agent.role = "empty_agent"
|
||||
agent.execute_task.return_value = "no guardrails"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test empty guardrails list",
|
||||
@@ -582,6 +594,7 @@ def test_multiple_guardrails_processing_order():
|
||||
agent.role = "order_agent"
|
||||
agent.execute_task.return_value = "base"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test processing order",
|
||||
@@ -625,6 +638,7 @@ def test_multiple_guardrails_with_pydantic_output():
|
||||
agent.role = "pydantic_agent"
|
||||
agent.execute_task.return_value = "test content"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test guardrails with Pydantic",
|
||||
@@ -658,6 +672,7 @@ def test_guardrails_vs_single_guardrail_mutual_exclusion():
|
||||
agent.role = "exclusion_agent"
|
||||
agent.execute_task.return_value = "test"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test mutual exclusion",
|
||||
@@ -700,6 +715,7 @@ def test_per_guardrail_independent_retry_tracking():
|
||||
agent.role = "independent_retry_agent"
|
||||
agent.execute_task.return_value = "base"
|
||||
agent.crew = None
|
||||
agent.last_messages = []
|
||||
|
||||
task = create_smart_task(
|
||||
description="Test independent retry tracking",
|
||||
|
||||
@@ -15,7 +15,7 @@ dev = [
|
||||
"pytest>=8.4.2",
|
||||
"pytest-asyncio>=1.2.0",
|
||||
"pytest-subprocess>=1.5.3",
|
||||
"vcrpy==7.0.0",
|
||||
"vcrpy==7.0.0", # pinned, less versions break pytest-recording
|
||||
"pytest-recording>=0.13.4",
|
||||
"pytest-randomly>=4.0.1",
|
||||
"pytest-timeout>=2.4.0",
|
||||
|
||||
Reference in New Issue
Block a user