Compare commits

..

2 Commits

Author SHA1 Message Date
Devin AI
e8c85e3bbb Fix lint issues: remove trailing whitespace from docstring
Co-Authored-By: João <joao@crewai.com>
2025-10-21 13:04:12 +00:00
Devin AI
1d575d96e3 Fix embedder validation errors to provide clear, helpful messages
Resolves #3755

Previously, when users provided an invalid embedder configuration,
they would receive 20-26 confusing validation errors from Pydantic
trying to match the input against every possible provider spec.

This commit adds a custom field validator for the embedder field that:
- Validates the provider name and lists all valid providers if invalid
- Checks for the required 'config' field for providers that need it
- Provides clear error messages with expected structure examples
- Shows the received configuration for easy comparison

The fix reduces validation errors from 25+ confusing messages to 1 clear,
actionable error message that helps users understand exactly what's wrong
and how to fix it.

Changes:
- Added validate_embedder_config field validator to Crew class
- Added comprehensive test suite in test_embedder_validation.py
- All existing tests pass without regressions

Co-Authored-By: João <joao@crewai.com>
2025-10-21 12:59:54 +00:00
288 changed files with 17085 additions and 37487 deletions

View File

@@ -2,27 +2,20 @@ name: "CodeQL Config"
paths-ignore:
# Ignore template files - these are boilerplate code that shouldn't be analyzed
- "lib/crewai/src/crewai/cli/templates/**"
- "src/crewai/cli/templates/**"
# Ignore test cassettes - these are test fixtures/recordings
- "lib/crewai/tests/cassettes/**"
- "lib/crewai-tools/tests/cassettes/**"
- "tests/cassettes/**"
# Ignore cache and build artifacts
- ".cache/**"
# Ignore documentation build artifacts
- "docs/.cache/**"
# Ignore experimental code
- "lib/crewai/src/crewai/experimental/a2a/**"
paths:
# Include all Python source code from workspace packages
- "lib/crewai/src/**"
- "lib/crewai-tools/src/**"
- "lib/devtools/src/**"
# Include tests (but exclude cassettes via paths-ignore)
- "lib/crewai/tests/**"
- "lib/crewai-tools/tests/**"
- "lib/devtools/tests/**"
# Include all Python source code
- "src/**"
# Include tests (but exclude cassettes)
- "tests/**"
# Configure specific queries or packs if needed
# queries:
# - uses: security-and-quality
# - uses: security-and-quality

View File

@@ -19,7 +19,6 @@ repos:
language: system
pass_filenames: true
types: [python]
exclude: ^(lib/crewai/src/crewai/cli/templates/|lib/crewai/tests/|lib/crewai-tools/tests/)
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.9.3
hooks:

View File

@@ -276,7 +276,6 @@
"en/observability/overview",
"en/observability/arize-phoenix",
"en/observability/braintrust",
"en/observability/datadog",
"en/observability/langdb",
"en/observability/langfuse",
"en/observability/langtrace",
@@ -701,7 +700,6 @@
"pt-BR/observability/overview",
"pt-BR/observability/arize-phoenix",
"pt-BR/observability/braintrust",
"pt-BR/observability/datadog",
"pt-BR/observability/langdb",
"pt-BR/observability/langfuse",
"pt-BR/observability/langtrace",
@@ -1134,7 +1132,6 @@
"ko/observability/overview",
"ko/observability/arize-phoenix",
"ko/observability/braintrust",
"ko/observability/datadog",
"ko/observability/langdb",
"ko/observability/langfuse",
"ko/observability/langtrace",

View File

@@ -7,7 +7,7 @@ mode: "wide"
## Overview
CrewAI integrates with multiple LLM providers through providers native sdks, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
## What are LLMs?
@@ -113,104 +113,44 @@ In this section, you'll find detailed examples that help you select, configure,
<AccordionGroup>
<Accordion title="OpenAI">
CrewAI provides native integration with OpenAI through the OpenAI Python SDK.
Set the following environment variables in your `.env` file:
```toml Code
# Required
OPENAI_API_KEY=sk-...
# Optional
OPENAI_BASE_URL=<custom-base-url>
OPENAI_API_BASE=<custom-base-url>
OPENAI_ORGANIZATION=<your-org-id>
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="openai/gpt-4o",
api_key="your-api-key", # Or set OPENAI_API_KEY
temperature=0.7,
max_tokens=4000
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="openai/gpt-4o",
api_key="your-api-key",
base_url="https://api.openai.com/v1", # Optional custom endpoint
organization="org-...", # Optional organization ID
project="proj_...", # Optional project ID
temperature=0.7,
max_tokens=4000,
max_completion_tokens=4000, # For newer models
model="openai/gpt-4", # call model by provider/model_name
temperature=0.8,
max_tokens=150,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42, # For reproducible outputs
stream=True, # Enable streaming
timeout=60.0, # Request timeout in seconds
max_retries=3, # Maximum retry attempts
logprobs=True, # Return log probabilities
top_logprobs=5, # Number of most likely tokens
reasoning_effort="medium" # For o1 models: low, medium, high
seed=42
)
```
**Structured Outputs:**
```python Code
from pydantic import BaseModel
from crewai import LLM
class ResponseFormat(BaseModel):
name: str
age: int
summary: str
llm = LLM(
model="openai/gpt-4o",
)
```
**Supported Environment Variables:**
- `OPENAI_API_KEY`: Your OpenAI API key (required)
- `OPENAI_BASE_URL`: Custom base URL for OpenAI API (optional)
**Features:**
- Native function calling support (except o1 models)
- Structured outputs with JSON schema
- Streaming support for real-time responses
- Token usage tracking
- Stop sequences support (except o1 models)
- Log probabilities for token-level insights
- Reasoning effort control for o1 models
**Supported Models:**
OpenAI is one of the leading providers of LLMs with a wide range of models and features.
| Model | Context Window | Best For |
|---------------------|------------------|-----------------------------------------------|
| gpt-4.1 | 1M tokens | Latest model with enhanced capabilities |
| gpt-4.1-mini | 1M tokens | Efficient version with large context |
| gpt-4.1-nano | 1M tokens | Ultra-efficient variant |
| gpt-4o | 128,000 tokens | Optimized for speed and intelligence |
| gpt-4o-mini | 200,000 tokens | Cost-effective with large context |
| gpt-4-turbo | 128,000 tokens | Long-form content, document analysis |
| gpt-4 | 8,192 tokens | High-accuracy tasks, complex reasoning |
| o1 | 200,000 tokens | Advanced reasoning, complex problem-solving |
| o1-preview | 128,000 tokens | Preview of reasoning capabilities |
| o1-mini | 128,000 tokens | Efficient reasoning model |
| o3-mini | 200,000 tokens | Lightweight reasoning model |
| o4-mini | 200,000 tokens | Next-gen efficient reasoning |
**Note:** To use OpenAI, install the required dependencies:
```bash
uv add "crewai[openai]"
```
| GPT-4 | 8,192 tokens | High-accuracy tasks, complex reasoning |
| GPT-4 Turbo | 128,000 tokens | Long-form content, document analysis |
| GPT-4o & GPT-4o-mini | 128,000 tokens | Cost-effective large context processing |
| o3-mini | 200,000 tokens | Fast reasoning, complex reasoning |
| o1-mini | 128,000 tokens | Fast reasoning, complex reasoning |
| o1-preview | 128,000 tokens | Fast reasoning, complex reasoning |
| o1 | 200,000 tokens | Fast reasoning, complex reasoning |
</Accordion>
<Accordion title="Meta-Llama">
@@ -247,186 +187,69 @@ In this section, you'll find detailed examples that help you select, configure,
</Accordion>
<Accordion title="Anthropic">
CrewAI provides native integration with Anthropic through the Anthropic Python SDK.
```toml Code
# Required
ANTHROPIC_API_KEY=sk-ant-...
# Optional
ANTHROPIC_API_BASE=<custom-base-url>
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="your-api-key", # Or set ANTHROPIC_API_KEY
max_tokens=4096 # Required for Anthropic
model="anthropic/claude-3-sonnet-20240229-v1:0",
temperature=0.7
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="your-api-key",
base_url="https://api.anthropic.com", # Optional custom endpoint
temperature=0.7,
max_tokens=4096, # Required parameter
top_p=0.9,
stop_sequences=["END", "STOP"], # Anthropic uses stop_sequences
stream=True, # Enable streaming
timeout=60.0, # Request timeout in seconds
max_retries=3 # Maximum retry attempts
)
```
**Supported Environment Variables:**
- `ANTHROPIC_API_KEY`: Your Anthropic API key (required)
**Features:**
- Native tool use support for Claude 3+ models
- Streaming support for real-time responses
- Automatic system message handling
- Stop sequences for controlled output
- Token usage tracking
- Multi-turn tool use conversations
**Important Notes:**
- `max_tokens` is a **required** parameter for all Anthropic models
- Claude uses `stop_sequences` instead of `stop`
- System messages are handled separately from conversation messages
- First message must be from the user (automatically handled)
- Messages must alternate between user and assistant
**Supported Models:**
| Model | Context Window | Best For |
|------------------------------|----------------|-----------------------------------------------|
| claude-3-7-sonnet | 200,000 tokens | Advanced reasoning and agentic tasks |
| claude-3-5-sonnet-20241022 | 200,000 tokens | Latest Sonnet with best performance |
| claude-3-5-haiku | 200,000 tokens | Fast, compact model for quick responses |
| claude-3-opus | 200,000 tokens | Most capable for complex tasks |
| claude-3-sonnet | 200,000 tokens | Balanced intelligence and speed |
| claude-3-haiku | 200,000 tokens | Fastest for simple tasks |
| claude-2.1 | 200,000 tokens | Extended context, reduced hallucinations |
| claude-2 | 100,000 tokens | Versatile model for various tasks |
| claude-instant | 100,000 tokens | Fast, cost-effective for everyday tasks |
**Note:** To use Anthropic, install the required dependencies:
```bash
uv add "crewai[anthropic]"
```
</Accordion>
<Accordion title="Google (Gemini API)">
CrewAI provides native integration with Google Gemini through the Google Gen AI Python SDK.
Set your API key in your `.env` file. If you need a key, check [AI Studio](https://aistudio.google.com/apikey).
Set your API key in your `.env` file. If you need a key, or need to find an
existing key, check [AI Studio](https://aistudio.google.com/apikey).
```toml .env
# Required (one of the following)
GOOGLE_API_KEY=<your-api-key>
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Optional - for Vertex AI
GOOGLE_CLOUD_PROJECT=<your-project-id>
GOOGLE_CLOUD_LOCATION=<location> # Defaults to us-central1
GOOGLE_GENAI_USE_VERTEXAI=true # Set to use Vertex AI
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
api_key="your-api-key", # Or set GOOGLE_API_KEY/GEMINI_API_KEY
temperature=0.7
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.5-flash",
api_key="your-api-key",
temperature=0.7,
top_p=0.9,
top_k=40, # Top-k sampling parameter
max_output_tokens=8192,
stop_sequences=["END", "STOP"],
stream=True, # Enable streaming
safety_settings={
"HARM_CATEGORY_HARASSMENT": "BLOCK_NONE",
"HARM_CATEGORY_HATE_SPEECH": "BLOCK_NONE"
}
)
```
**Vertex AI Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-1.5-pro",
project="your-gcp-project-id",
location="us-central1" # GCP region
)
```
**Supported Environment Variables:**
- `GOOGLE_API_KEY` or `GEMINI_API_KEY`: Your Google API key (required for Gemini API)
- `GOOGLE_CLOUD_PROJECT`: Google Cloud project ID (for Vertex AI)
- `GOOGLE_CLOUD_LOCATION`: GCP location (defaults to `us-central1`)
- `GOOGLE_GENAI_USE_VERTEXAI`: Set to `true` to use Vertex AI
**Features:**
- Native function calling support for Gemini 1.5+ and 2.x models
- Streaming support for real-time responses
- Multimodal capabilities (text, images, video)
- Safety settings configuration
- Support for both Gemini API and Vertex AI
- Automatic system instruction handling
- Token usage tracking
**Gemini Models:**
### Gemini models
Google offers a range of powerful models optimized for different use cases.
| Model | Context Window | Best For |
|--------------------------------|----------------|-------------------------------------------------------------------|
| gemini-2.5-flash | 1M tokens | Adaptive thinking, cost efficiency |
| gemini-2.5-pro | 1M tokens | Enhanced thinking and reasoning, multimodal understanding |
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking |
| gemini-2.0-flash-thinking | 32,768 tokens | Advanced reasoning with thinking process |
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
| gemini-1.5-pro | 2M tokens | Best performing, logical reasoning, coding |
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
| gemini-1.5-flash-8b | 1M tokens | Fastest, most cost-efficient |
| gemini-1.0-pro | 32,768 tokens | Earlier generation model |
**Gemma Models:**
The Gemini API also supports [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
| Model | Context Window | Best For |
|----------------|----------------|------------------------------------|
| gemma-3-1b | 32,000 tokens | Ultra-lightweight tasks |
| gemma-3-4b | 128,000 tokens | Efficient general-purpose tasks |
| gemma-3-12b | 128,000 tokens | Balanced performance and efficiency|
| gemma-3-27b | 128,000 tokens | High-performance tasks |
**Note:** To use Google Gemini, install the required dependencies:
```bash
uv add "crewai[google-genai]"
```
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
The full list of models is available in the [Gemini model docs](https://ai.google.dev/gemini-api/docs/models).
### Gemma
The Gemini API also allows you to use your API key to access [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
| Model | Context Window |
|----------------|----------------|
| gemma-3-1b-it | 32k tokens |
| gemma-3-4b-it | 32k tokens |
| gemma-3-12b-it | 32k tokens |
| gemma-3-27b-it | 128k tokens |
</Accordion>
<Accordion title="Google (Vertex AI)">
Get credentials from your Google Cloud Console and save it to a JSON file, then load it with the following code:
@@ -468,146 +291,43 @@ In this section, you'll find detailed examples that help you select, configure,
</Accordion>
<Accordion title="Azure">
CrewAI provides native integration with Azure AI Inference and Azure OpenAI through the Azure AI Inference Python SDK.
```toml Code
# Required
AZURE_API_KEY=<your-api-key>
AZURE_ENDPOINT=<your-endpoint-url>
AZURE_API_BASE=<your-resource-url>
AZURE_API_VERSION=<api-version>
# Optional
AZURE_API_VERSION=<api-version> # Defaults to 2024-06-01
AZURE_AD_TOKEN=<your-azure-ad-token>
AZURE_API_TYPE=<your-azure-api-type>
```
**Endpoint URL Formats:**
For Azure OpenAI deployments:
```
https://<resource-name>.openai.azure.com/openai/deployments/<deployment-name>
```
For Azure AI Inference endpoints:
```
https://<resource-name>.inference.azure.com
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
llm = LLM(
model="azure/gpt-4",
api_key="<your-api-key>", # Or set AZURE_API_KEY
endpoint="<your-endpoint-url>",
api_version="2024-06-01"
api_version="2023-05-15"
)
```
**Advanced Configuration:**
```python Code
llm = LLM(
model="azure/gpt-4o",
temperature=0.7,
max_tokens=4000,
top_p=0.9,
frequency_penalty=0.0,
presence_penalty=0.0,
stop=["END"],
stream=True,
timeout=60.0,
max_retries=3
)
```
**Supported Environment Variables:**
- `AZURE_API_KEY`: Your Azure API key (required)
- `AZURE_ENDPOINT`: Your Azure endpoint URL (required, also checks `AZURE_OPENAI_ENDPOINT` and `AZURE_API_BASE`)
- `AZURE_API_VERSION`: API version (optional, defaults to `2024-06-01`)
**Features:**
- Native function calling support for Azure OpenAI models (gpt-4, gpt-4o, gpt-3.5-turbo, etc.)
- Streaming support for real-time responses
- Automatic endpoint URL validation and correction
- Comprehensive error handling with retry logic
- Token usage tracking
**Note:** To use Azure AI Inference, install the required dependencies:
```bash
uv add "crewai[azure-ai-inference]"
```
</Accordion>
<Accordion title="AWS Bedrock">
CrewAI provides native integration with AWS Bedrock through the boto3 SDK using the Converse API.
```toml Code
# Required
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
# Optional
AWS_SESSION_TOKEN=<your-session-token> # For temporary credentials
AWS_DEFAULT_REGION=<your-region> # Defaults to us-east-1
AWS_DEFAULT_REGION=<your-region>
```
**Basic Usage:**
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
region_name="us-east-1"
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
Before using Amazon Bedrock, make sure you have boto3 installed in your environment
llm = LLM(
model="bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
aws_access_key_id="your-access-key", # Or set AWS_ACCESS_KEY_ID
aws_secret_access_key="your-secret-key", # Or set AWS_SECRET_ACCESS_KEY
aws_session_token="your-session-token", # For temporary credentials
region_name="us-east-1",
temperature=0.7,
max_tokens=4096,
top_p=0.9,
top_k=250, # For Claude models
stop_sequences=["END", "STOP"],
stream=True, # Enable streaming
guardrail_config={ # Optional content filtering
"guardrailIdentifier": "your-guardrail-id",
"guardrailVersion": "1"
},
additional_model_request_fields={ # Model-specific parameters
"top_k": 250
}
)
```
**Supported Environment Variables:**
- `AWS_ACCESS_KEY_ID`: AWS access key (required)
- `AWS_SECRET_ACCESS_KEY`: AWS secret key (required)
- `AWS_SESSION_TOKEN`: AWS session token for temporary credentials (optional)
- `AWS_DEFAULT_REGION`: AWS region (defaults to `us-east-1`)
**Features:**
- Native tool calling support via Converse API
- Streaming and non-streaming responses
- Comprehensive error handling with retry logic
- Guardrail configuration for content filtering
- Model-specific parameters via `additional_model_request_fields`
- Token usage tracking and stop reason logging
- Support for all Bedrock foundation models
- Automatic conversation format handling
**Important Notes:**
- Uses the modern Converse API for unified model access
- Automatic handling of model-specific conversation requirements
- System messages are handled separately from conversation
- First message must be from user (automatically handled)
- Some models (like Cohere) require conversation to end with user message
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API.
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API, enabling secure and responsible AI application development.
| Model | Context Window | Best For |
|-------------------------|----------------------|-------------------------------------------------------------------|
@@ -637,12 +357,7 @@ In this section, you'll find detailed examples that help you select, configure,
| Jamba-Instruct | Up to 256k tokens | Model with extended context window optimized for cost-effective text generation, summarization, and Q&A. |
| Mistral 7B Instruct | Up to 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| Mistral 8x7B Instruct | Up to 32k tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
| DeepSeek R1 | 32,768 tokens | Advanced reasoning model |
**Note:** To use AWS Bedrock, install the required dependencies:
```bash
uv add "crewai[bedrock]"
```
</Accordion>
<Accordion title="Amazon SageMaker">
@@ -1184,7 +899,7 @@ Learn how to get the most out of your LLM configuration:
</Accordion>
<Accordion title="Drop Additional Parameters">
CrewAI internally uses native sdks for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
CrewAI internally uses Litellm for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
For example, if you don't need to send the <code>stop</code> parameter, you can simply omit it from your LLM call:
```python
@@ -1200,52 +915,6 @@ Learn how to get the most out of your LLM configuration:
)
```
</Accordion>
<Accordion title="Transport Interceptors">
CrewAI provides message interceptors for several providers, allowing you to hook into request/response cycles at the transport layer.
**Supported Providers:**
- ✅ OpenAI
- ✅ Anthropic
**Basic Usage:**
```python
import httpx
from crewai import LLM
from crewai.llms.hooks import BaseInterceptor
class CustomInterceptor(BaseInterceptor[httpx.Request, httpx.Response]):
"""Custom interceptor to modify requests and responses."""
def on_outbound(self, request: httpx.Request) -> httpx.Request:
"""Print request before sending to the LLM provider."""
print(request)
return request
def on_inbound(self, response: httpx.Response) -> httpx.Response:
"""Process response after receiving from the LLM provider."""
print(f"Status: {response.status_code}")
print(f"Response time: {response.elapsed}")
return response
# Use the interceptor with an LLM
llm = LLM(
model="openai/gpt-4o",
interceptor=CustomInterceptor()
)
```
**Important Notes:**
- Both methods must return the received object or type of object.
- Modifying received objects may result in unexpected behavior or application crashes.
- Not all providers support interceptors - check the supported providers list above
<Info>
Interceptors operate at the transport layer. This is particularly useful for:
- Message transformation and filtering
- Debugging API interactions
</Info>
</Accordion>
</AccordionGroup>
## Common Issues and Solutions

View File

@@ -33,22 +33,6 @@ Before using the Asana integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Box integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the ClickUp integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the GitHub integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Gmail integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Google Calendar integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Google Contacts integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Google Docs integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Google Drive integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -34,22 +34,6 @@ Before using the Google Sheets integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Google Slides integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the HubSpot integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Jira integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Linear integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Microsoft Excel integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Microsoft OneDrive integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Microsoft Outlook integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Microsoft SharePoint integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Microsoft Teams integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Microsoft Word integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Before using the Notion integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -17,38 +17,6 @@ Before using the Salesforce integration, ensure you have:
- A Salesforce account with appropriate permissions
- Connected your Salesforce account through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Salesforce Integration
### 1. Connect Your Salesforce Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Salesforce** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for CRM and sales management
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **Record Management**

View File

@@ -17,38 +17,6 @@ Before using the Shopify integration, ensure you have:
- A Shopify store with appropriate admin permissions
- Connected your Shopify store through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Shopify Integration
### 1. Connect Your Shopify Store
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Shopify** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for store and product management
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **Customer Management**

View File

@@ -17,38 +17,6 @@ Before using the Slack integration, ensure you have:
- A Slack workspace with appropriate permissions
- Connected your Slack workspace through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Slack Integration
### 1. Connect Your Slack Workspace
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Slack** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for team communication
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **User Management**

View File

@@ -17,38 +17,6 @@ Before using the Stripe integration, ensure you have:
- A Stripe account with appropriate API permissions
- Connected your Stripe account through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Stripe Integration
### 1. Connect Your Stripe Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Stripe** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for payment processing
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **Customer Management**

View File

@@ -17,38 +17,6 @@ Before using the Zendesk integration, ensure you have:
- A Zendesk account with appropriate API permissions
- Connected your Zendesk account through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Zendesk Integration
### 1. Connect Your Zendesk Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Zendesk** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for ticket and user management
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **Ticket Management**

View File

@@ -1,291 +0,0 @@
---
title: Agent-to-Agent (A2A) Protocol
description: Enable CrewAI agents to delegate tasks to remote A2A-compliant agents for specialized handling
icon: network-wired
mode: "wide"
---
## A2A Agent Delegation
CrewAI supports the Agent-to-Agent (A2A) protocol, allowing agents to delegate tasks to remote specialized agents. The agent's LLM automatically decides whether to handle a task directly or delegate to an A2A agent based on the task requirements.
<Note>
A2A delegation requires the `a2a-sdk` package. Install with: `uv add 'crewai[a2a]'` or `pip install 'crewai[a2a]'`
</Note>
## How It Works
When an agent is configured with A2A capabilities:
1. The LLM analyzes each task
2. It decides to either:
- Handle the task directly using its own capabilities
- Delegate to a remote A2A agent for specialized handling
3. If delegating, the agent communicates with the remote A2A agent through the protocol
4. Results are returned to the CrewAI workflow
## Basic Configuration
Configure an agent for A2A delegation by setting the `a2a` parameter:
```python Code
from crewai import Agent, Crew, Task
from crewai.a2a import A2AConfig
agent = Agent(
role="Research Coordinator",
goal="Coordinate research tasks efficiently",
backstory="Expert at delegating to specialized research agents",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://example.com/.well-known/agent-card.json",
timeout=120,
max_turns=10
)
)
task = Task(
description="Research the latest developments in quantum computing",
expected_output="A comprehensive research report",
agent=agent
)
crew = Crew(agents=[agent], tasks=[task], verbose=True)
result = crew.kickoff()
```
## Configuration Options
The `A2AConfig` class accepts the following parameters:
<ParamField path="endpoint" type="str" required>
The A2A agent endpoint URL (typically points to `.well-known/agent-card.json`)
</ParamField>
<ParamField path="auth" type="AuthScheme" default="None">
Authentication scheme for the A2A agent. Supports Bearer tokens, OAuth2, API keys, and HTTP authentication.
</ParamField>
<ParamField path="timeout" type="int" default="120">
Request timeout in seconds
</ParamField>
<ParamField path="max_turns" type="int" default="10">
Maximum number of conversation turns with the A2A agent
</ParamField>
<ParamField path="response_model" type="type[BaseModel]" default="None">
Optional Pydantic model for requesting structured output from an A2A agent. A2A protocol does not
enforce this, so an A2A agent does not need to honor this request.
</ParamField>
<ParamField path="fail_fast" type="bool" default="True">
Whether to raise an error immediately if agent connection fails. When `False`, the agent continues with available agents and informs the LLM about unavailable ones.
</ParamField>
## Authentication
For A2A agents that require authentication, use one of the provided auth schemes:
<Tabs>
<Tab title="Bearer Token">
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import BearerTokenAuth
agent = Agent(
role="Secure Coordinator",
goal="Coordinate tasks with secured agents",
backstory="Manages secure agent communications",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://secure-agent.example.com/.well-known/agent-card.json",
auth=BearerTokenAuth(token="your-bearer-token"),
timeout=120
)
)
```
</Tab>
<Tab title="API Key">
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import APIKeyAuth
agent = Agent(
role="API Coordinator",
goal="Coordinate with API-based agents",
backstory="Manages API-authenticated communications",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://api-agent.example.com/.well-known/agent-card.json",
auth=APIKeyAuth(
api_key="your-api-key",
location="header", # or "query" or "cookie"
name="X-API-Key"
),
timeout=120
)
)
```
</Tab>
<Tab title="OAuth2">
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import OAuth2ClientCredentials
agent = Agent(
role="OAuth Coordinator",
goal="Coordinate with OAuth-secured agents",
backstory="Manages OAuth-authenticated communications",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://oauth-agent.example.com/.well-known/agent-card.json",
auth=OAuth2ClientCredentials(
token_url="https://auth.example.com/oauth/token",
client_id="your-client-id",
client_secret="your-client-secret",
scopes=["read", "write"]
),
timeout=120
)
)
```
</Tab>
<Tab title="HTTP Basic">
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import HTTPBasicAuth
agent = Agent(
role="Basic Auth Coordinator",
goal="Coordinate with basic auth agents",
backstory="Manages basic authentication communications",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://basic-agent.example.com/.well-known/agent-card.json",
auth=HTTPBasicAuth(
username="your-username",
password="your-password"
),
timeout=120
)
)
```
</Tab>
</Tabs>
## Multiple A2A Agents
Configure multiple A2A agents for delegation by passing a list:
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import BearerTokenAuth
agent = Agent(
role="Multi-Agent Coordinator",
goal="Coordinate with multiple specialized agents",
backstory="Expert at delegating to the right specialist",
llm="gpt-4o",
a2a=[
A2AConfig(
endpoint="https://research.example.com/.well-known/agent-card.json",
timeout=120
),
A2AConfig(
endpoint="https://data.example.com/.well-known/agent-card.json",
auth=BearerTokenAuth(token="data-token"),
timeout=90
)
]
)
```
The LLM will automatically choose which A2A agent to delegate to based on the task requirements.
## Error Handling
Control how agent connection failures are handled using the `fail_fast` parameter:
```python Code
from crewai.a2a import A2AConfig
# Fail immediately on connection errors (default)
agent = Agent(
role="Research Coordinator",
goal="Coordinate research tasks",
backstory="Expert at delegation",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://research.example.com/.well-known/agent-card.json",
fail_fast=True
)
)
# Continue with available agents
agent = Agent(
role="Multi-Agent Coordinator",
goal="Coordinate with multiple agents",
backstory="Expert at working with available resources",
llm="gpt-4o",
a2a=[
A2AConfig(
endpoint="https://primary.example.com/.well-known/agent-card.json",
fail_fast=False
),
A2AConfig(
endpoint="https://backup.example.com/.well-known/agent-card.json",
fail_fast=False
)
]
)
```
When `fail_fast=False`:
- If some agents fail, the LLM is informed which agents are unavailable and can delegate to working agents
- If all agents fail, the LLM receives a notice about unavailable agents and handles the task directly
- Connection errors are captured and included in the context for better decision-making
## Best Practices
<CardGroup cols={2}>
<Card title="Set Appropriate Timeouts" icon="clock">
Configure timeouts based on expected A2A agent response times. Longer-running tasks may need higher timeout values.
</Card>
<Card title="Limit Conversation Turns" icon="comments">
Use `max_turns` to prevent excessive back-and-forth. The agent will automatically conclude conversations before hitting the limit.
</Card>
<Card title="Use Resilient Error Handling" icon="shield-check">
Set `fail_fast=False` for production environments with multiple agents to gracefully handle connection failures and maintain workflow continuity.
</Card>
<Card title="Secure Your Credentials" icon="lock">
Store authentication tokens and credentials as environment variables, not in code.
</Card>
<Card title="Monitor Delegation Decisions" icon="eye">
Use verbose mode to observe when the LLM chooses to delegate versus handle tasks directly.
</Card>
</CardGroup>
## Supported Authentication Methods
- **Bearer Token** - Simple token-based authentication
- **OAuth2 Client Credentials** - OAuth2 flow for machine-to-machine communication
- **OAuth2 Authorization Code** - OAuth2 flow requiring user authorization
- **API Key** - Key-based authentication (header, query param, or cookie)
- **HTTP Basic** - Username/password authentication
- **HTTP Digest** - Digest authentication (requires `httpx-auth` package)
## Learn More
For more information about the A2A protocol and reference implementations:
- [A2A Protocol Documentation](https://a2a-protocol.org)
- [A2A Sample Implementations](https://github.com/a2aproject/a2a-samples)
- [A2A Python SDK](https://github.com/a2aproject/a2a-python)

View File

@@ -1,109 +0,0 @@
---
title: Datadog Integration
description: Learn how to integrate Datadog with CrewAI to submit LLM Observability traces to Datadog.
icon: dog
mode: "wide"
---
# Integrate Datadog with CrewAI
This guide will demonstrate how to integrate **[Datadog LLM Observability](https://docs.datadoghq.com/llm_observability/)** with **CrewAI** using [Datadog auto-instrumentation](https://docs.datadoghq.com/llm_observability/instrumentation/auto_instrumentation?tab=python). By the end of this guide, you will be able to submit LLM Observability traces to Datadog and view your CrewAI agent runs in Datadog LLM Observability's [Agentic Execution View](https://docs.datadoghq.com/llm_observability/monitoring/agent_monitoring).
## What is Datadog LLM Observability?
[Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/) helps AI engineers, data scientists, and application developers quickly develop, evaluate, and monitor LLM applications. Confidently improve output quality, performance, costs, and overall risk with structured experiments, end-to-end tracing across AI agents, and evaluations.
## Getting Started
### Install Dependencies
```shell
pip install ddtrace crewai crewai-tools
```
### Set Environment Variables
If you do not have a Datadog API key, you can [create an account](https://www.datadoghq.com/) and [get your API key](https://docs.datadoghq.com/account_management/api-app-keys/#api-keys).
You will also need to specify an ML Application name in the following environment variables. An ML Application is a grouping of LLM Observability traces associated with a specific LLM-based application. See [ML Application Naming Guidelines](https://docs.datadoghq.com/llm_observability/instrumentation/sdk?tab=python#application-naming-guidelines) for more information on limitations with ML Application names.
```shell
export DD_API_KEY=<YOUR_DD_API_KEY>
export DD_SITE=<YOUR_DD_SITE>
export DD_LLMOBS_ENABLED=true
export DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME>
export DD_LLMOBS_AGENTLESS_ENABLED=true
export DD_APM_TRACING_ENABLED=false
```
Additionally, configure any LLM provider API keys
```shell
export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
export ANTHROPIC_API_KEY=<YOUR_ANTHROPIC_API_KEY>
export GEMINI_API_KEY=<YOUR_GEMINI_API_KEY>
...
```
### Create a CrewAI Agent Application
```python
# crewai_agent.py
from crewai import Agent, Task, Crew
from crewai_tools import (
WebsiteSearchTool
)
web_rag_tool = WebsiteSearchTool()
writer = Agent(
role="Writer",
goal="You make math engaging and understandable for young children through poetry",
backstory="You're an expert in writing haikus but you know nothing of math.",
tools=[web_rag_tool],
)
task = Task(
description=("What is {multiplication}?"),
expected_output=("Compose a haiku that includes the answer."),
agent=writer
)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=False
)
output = crew.kickoff(dict(multiplication="2 * 2"))
```
### Run the Application with Datadog Auto-Instrumentation
With the [environment variables](#set-environment-variables) set, you can now run the application with Datadog auto-instrumentation.
```shell
ddtrace-run python crewai_agent.py
```
### View the Traces in Datadog
After running the application, you can view the traces in [Datadog LLM Observability's Traces View](https://app.datadoghq.com/llm/traces), selecting the ML Application name you chose from the top-left dropdown.
Clicking on a trace will show you the details of the trace, including total tokens used, number of LLM calls, models used, and estimated cost. Clicking into a specific span will narrow down these details, and show related input, output, and metadata.
<Frame>
<img src="/images/datadog-llm-observability-1.png" alt="Datadog LLM Observability Trace View" />
</Frame>
Additionally, you can view the execution graph view of the trace, which shows the control and data flow of the trace, which will scale with larger agents to show handoffs and relationships between LLM calls, tool calls, and agent interactions.
<Frame>
<img src="/images/datadog-llm-observability-2.png" alt="Datadog LLM Observability Agent Execution Flow View" />
</Frame>
## References
- [Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/)
- [Datadog LLM Observability CrewAI Auto-Instrumentation](https://docs.datadoghq.com/llm_observability/instrumentation/auto_instrumentation?tab=python#crew-ai)

View File

@@ -23,15 +23,13 @@ Here's a minimal example of how to use the tool:
```python
from crewai import Agent
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
from crewai_tools import QdrantVectorSearchTool
# Initialize the tool with QdrantConfig
# Initialize the tool
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
# Create an agent that uses the tool
@@ -84,7 +82,7 @@ def extract_text_from_pdf(pdf_path):
def get_openai_embedding(text):
response = client.embeddings.create(
input=text,
model="text-embedding-3-large"
model="text-embedding-3-small"
)
return response.data[0].embedding
@@ -92,13 +90,13 @@ def get_openai_embedding(text):
def load_pdf_to_qdrant(pdf_path, qdrant, collection_name):
# Extract text from PDF
text_chunks = extract_text_from_pdf(pdf_path)
# Create Qdrant collection
if qdrant.collection_exists(collection_name):
qdrant.delete_collection(collection_name)
qdrant.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=3072, distance=Distance.COSINE)
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
)
# Store embeddings
@@ -122,23 +120,19 @@ pdf_path = "path/to/your/document.pdf"
load_pdf_to_qdrant(pdf_path, qdrant, collection_name)
# Initialize Qdrant search tool
from crewai_tools import QdrantConfig
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
# Create CrewAI agents
search_agent = Agent(
role="Senior Semantic Search Agent",
goal="Find and analyze documents based on semantic search",
backstory="""You are an expert research assistant who can find relevant
backstory="""You are an expert research assistant who can find relevant
information using semantic search in a Qdrant database.""",
tools=[qdrant_tool],
verbose=True
@@ -147,7 +141,7 @@ search_agent = Agent(
answer_agent = Agent(
role="Senior Answer Assistant",
goal="Generate answers to questions based on the context provided",
backstory="""You are an expert answer assistant who can generate
backstory="""You are an expert answer assistant who can generate
answers to questions based on the context provided.""",
tools=[qdrant_tool],
verbose=True
@@ -186,82 +180,21 @@ print(result)
## Tool Parameters
### Required Parameters
- `qdrant_config` (QdrantConfig): Configuration object containing all Qdrant settings
### QdrantConfig Parameters
- `qdrant_url` (str): The URL of your Qdrant server
- `qdrant_api_key` (str, optional): API key for authentication with Qdrant
- `qdrant_api_key` (str): API key for authentication with Qdrant
- `collection_name` (str): Name of the Qdrant collection to search
### Optional Parameters
- `limit` (int): Maximum number of results to return (default: 3)
- `score_threshold` (float): Minimum similarity score threshold (default: 0.35)
- `filter` (Any, optional): Qdrant Filter instance for advanced filtering (default: None)
### Optional Tool Parameters
- `custom_embedding_fn` (Callable[[str], list[float]]): Custom function for text vectorization
- `qdrant_package` (str): Base package path for Qdrant (default: "qdrant_client")
- `client` (Any): Pre-initialized Qdrant client (optional)
## Advanced Filtering
The QdrantVectorSearchTool supports powerful filtering capabilities to refine your search results:
### Dynamic Filtering
Use `filter_by` and `filter_value` parameters in your search to filter results on-the-fly:
```python
# Agent will use these parameters when calling the tool
# The tool schema accepts filter_by and filter_value
# Example: search with category filter
# Results will be filtered where category == "technology"
```
### Preset Filters with QdrantConfig
For complex filtering, use Qdrant Filter instances in your configuration:
```python
from qdrant_client.http import models as qmodels
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
# Create a filter for specific conditions
preset_filter = qmodels.Filter(
must=[
qmodels.FieldCondition(
key="category",
match=qmodels.MatchValue(value="research")
),
qmodels.FieldCondition(
key="year",
match=qmodels.MatchValue(value=2024)
)
]
)
# Initialize tool with preset filter
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
filter=preset_filter # Preset filter applied to all searches
)
)
```
### Combining Filters
The tool automatically combines preset filters from `QdrantConfig` with dynamic filters from `filter_by` and `filter_value`:
```python
# If QdrantConfig has a preset filter for category="research"
# And the search uses filter_by="year", filter_value=2024
# Both filters will be combined (AND logic)
```
## Search Parameters
The tool accepts these parameters in its schema:
- `query` (str): The search query to find similar documents
- `filter_by` (str, optional): Metadata field to filter on
- `filter_value` (Any, optional): Value to filter by
- `filter_value` (str, optional): Value to filter by
## Return Format
@@ -281,7 +214,7 @@ The tool returns results in JSON format:
## Default Embedding
By default, the tool uses OpenAI's `text-embedding-3-large` model for vectorization. This requires:
By default, the tool uses OpenAI's `text-embedding-3-small` model for vectorization. This requires:
- OpenAI API key set in environment: `OPENAI_API_KEY`
## Custom Embeddings
@@ -307,22 +240,18 @@ def custom_embeddings(text: str) -> list[float]:
# Tokenize and get model outputs
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Use mean pooling to get text embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
# Convert to list of floats and return
return embeddings[0].tolist()
# Use custom embeddings with the tool
from crewai_tools import QdrantConfig
tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection"
),
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
custom_embedding_fn=custom_embeddings # Pass your custom function
)
```
@@ -340,4 +269,4 @@ Required environment variables:
```bash
export QDRANT_URL="your_qdrant_url" # If not provided in constructor
export QDRANT_API_KEY="your_api_key" # If not provided in constructor
export OPENAI_API_KEY="your_openai_key" # If using default embeddings
export OPENAI_API_KEY="your_openai_key" # If using default embeddings

View File

@@ -54,25 +54,25 @@ The following parameters can be used to customize the `CSVSearchTool`'s behavior
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
from chromadb.config import Settings
tool = CSVSearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -46,25 +46,23 @@ tool = DirectorySearchTool(directory='/path/to/directory')
The DirectorySearchTool uses OpenAI for embeddings and summarization by default. Customization options for these settings include changing the model provider and configuration, enhancing flexibility for advanced users.
```python Code
from chromadb.config import Settings
tool = DirectorySearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # Options include ollama, google, anthropic, llama2, and more
config=dict(
model="llama2",
# Additional configurations here
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -56,25 +56,25 @@ The following parameters can be used to customize the `DOCXSearchTool`'s behavio
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
from chromadb.config import Settings
tool = DOCXSearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -48,25 +48,27 @@ tool = MDXSearchTool(mdx='path/to/your/document.mdx')
The tool defaults to using OpenAI for embeddings and summarization. For customization, utilize a configuration dictionary as shown below:
```python Code
from chromadb.config import Settings
tool = MDXSearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # Options include google, openai, anthropic, llama2, etc.
config=dict(
model="llama2",
# Optional parameters can be included here.
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# Optional title for the embeddings can be added here.
# title="Embeddings",
),
),
)
)
```

View File

@@ -45,64 +45,28 @@ tool = PDFSearchTool(pdf='path/to/your/document.pdf')
## Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows. Note: a vector database is required because generated embeddings must be stored and queried from a vectordb.
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
from crewai_tools import PDFSearchTool
# - embedding_model (required): choose provider + provider-specific config
# - vectordb (required): choose vector DB and pass its config
tool = PDFSearchTool(
config={
"embedding_model": {
# Supported providers: "openai", "azure", "google-generativeai", "google-vertex",
# "voyageai", "cohere", "huggingface", "jina", "sentence-transformer",
# "text2vec", "ollama", "openclip", "instructor", "onnx", "roboflow", "watsonx", "custom"
"provider": "openai", # or: "google-generativeai", "cohere", "ollama", ...
"config": {
# Model identifier for the chosen provider. "model" will be auto-mapped to "model_name" internally.
"model": "text-embedding-3-small",
# Optional: API key. If omitted, the tool will use provider-specific env vars when available
# (e.g., OPENAI_API_KEY for provider="openai").
# "api_key": "sk-...",
# Provider-specific examples:
# --- Google Generative AI ---
# (Set provider="google-generativeai" above)
# "model": "models/embedding-001",
# "task_type": "retrieval_document",
# "title": "Embeddings",
# --- Cohere ---
# (Set provider="cohere" above)
# "model": "embed-english-v3.0",
# --- Ollama (local) ---
# (Set provider="ollama" above)
# "model": "nomic-embed-text",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# For ChromaDB: pass "settings" (chromadb.config.Settings) or rely on defaults.
# Example (uncomment and import):
# from chromadb.config import Settings
# "settings": Settings(
# persist_directory="/content/chroma",
# allow_reset=True,
# is_persistent=True,
# ),
# For Qdrant: pass "vectors_config" (qdrant_client.models.VectorParams).
# Example (uncomment and import):
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
# Note: collection name is controlled by the tool (default: "rag_tool_collection"), not set here.
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -57,41 +57,25 @@ By default, the tool uses OpenAI for both embeddings and summarization.
To customize the model, you can use a config dictionary as follows:
```python Code
from chromadb.config import Settings
tool = TXTSearchTool(
config={
# Required: embeddings provider + config
"embedding_model": {
"provider": "openai", # or google-generativeai, cohere, ollama, ...
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...", # optional if env var is set
# Provider examples:
# Google → model: "models/embedding-001", task_type: "retrieval_document"
# Cohere → model: "embed-english-v3.0"
# Ollama → model: "nomic-embed-text"
},
},
# Required: vector database config
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# Chroma settings (optional persistence)
# "settings": Settings(
# persist_directory="/content/chroma",
# allow_reset=True,
# is_persistent=True,
# ),
# Qdrant vector params example:
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
# Note: collection name is controlled by the tool (default: "rag_tool_collection").
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -54,25 +54,25 @@ It is an optional parameter during the tool's initialization but must be provide
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
from chromadb.config import Settings
tool = XMLSearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -11,7 +11,7 @@ mode: "wide"
<Card
title="Bedrock Invoke Agent Tool"
icon="cloud"
href="/en/tools/integration/bedrockinvokeagenttool"
href="/en/tools/tool-integrations/bedrockinvokeagenttool"
color="#0891B2"
>
Invoke Amazon Bedrock Agents from CrewAI to orchestrate actions across AWS services.
@@ -20,7 +20,7 @@ mode: "wide"
<Card
title="CrewAI Automation Tool"
icon="bolt"
href="/en/tools/integration/crewaiautomationtool"
href="/en/tools/tool-integrations/crewaiautomationtool"
color="#7C3AED"
>
Automate deployment and operations by integrating CrewAI with external platforms and workflows.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 370 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 738 KiB

View File

@@ -33,22 +33,6 @@ Asana 연동을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Box 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 액션
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ ClickUp 통합을 사용하기 전에 다음을 준비해야 합니다:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 동작
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ GitHub 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Gmail 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Google Calendar 통합을 사용하기 전에 다음을 준비해야 합니다:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Google Contacts 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Google Docs 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -17,38 +17,6 @@ Google Drive 통합을 사용하기 전에 다음 사항을 확인하세요:
- Google Drive 액세스 권한이 있는 Google 계정
- [통합 페이지](https://app.crewai.com/crewai_plus/connectors)를 통해 Google 계정 연결
## Google Drive 통합 설정
### 1. Google 계정 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Google Drive**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 파일 및 폴더 관리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
자세한 매개변수 및 사용법은 [영어 문서](../../../en/enterprise/integrations/google_drive)를 참조하세요.

View File

@@ -34,22 +34,6 @@ Google Sheets 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Google Slides 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ HubSpot 통합을 사용하기 전에 다음을 확인하세요.
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 액션
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Jira 통합을 사용하기 전에 다음을 준비하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Linear 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Microsoft Excel 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Microsoft OneDrive 통합을 사용하기 전에 다음 사항을 확인하세
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Microsoft Outlook 통합을 사용하기 전에 다음 사항을 확인하세요
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Microsoft SharePoint 통합을 사용하기 전에 다음 사항을 확인하세
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Microsoft Teams 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Microsoft Word 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Notion 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 액션
<AccordionGroup>

View File

@@ -17,38 +17,6 @@ Salesforce 통합을 사용하기 전에 다음을 확인하세요:
- 적절한 권한이 있는 Salesforce 계정
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Salesforce 계정 연결
## Salesforce 통합 설정
### 1. Salesforce 계정 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Salesforce**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. CRM 및 영업 관리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **레코드 관리**

View File

@@ -17,38 +17,6 @@ Shopify 연동을 사용하기 전에 다음을 확인하세요:
- 적절한 관리자 권한이 있는 Shopify 스토어
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Shopify 스토어 연결
## Shopify 통합 설정
### 1. Shopify 스토어 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Shopify**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 스토어 및 제품 관리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **고객 관리**

View File

@@ -17,38 +17,6 @@ Slack 통합을 사용하기 전에 다음을 확인하십시오:
- 적절한 권한이 있는 Slack 워크스페이스
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Slack 워크스페이스를 연결함
## Slack 통합 설정
### 1. Slack 워크스페이스 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Slack**을 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 팀 커뮤니케이션에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **사용자 관리**

View File

@@ -17,38 +17,6 @@ Stripe 통합을 사용하기 전에 다음 사항을 확인하세요:
- 적절한 API 권한이 있는 Stripe 계정
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Stripe 계정 연결
## Stripe 통합 설정
### 1. Stripe 계정 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Stripe**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 결제 처리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **고객 관리**

View File

@@ -17,38 +17,6 @@ Zendesk 통합을 사용하기 전에 다음을 확인하세요.
- 적절한 API 권한이 있는 Zendesk 계정
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Zendesk 계정 연결
## Zendesk 통합 설정
### 1. Zendesk 계정 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Zendesk**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 티켓 및 사용자 관리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **티켓 관리**

View File

@@ -1,109 +0,0 @@
---
title: Datadog 통합
description: Datadog을 CrewAI와 통합하여 LLM Observability 트레이스들을 Datadog에 제출하는 방법을 알아보세요.
icon: dog
mode: "wide"
---
# Datadog을 CrewAI와 통합하기
이 가이드에서는 Datadog 자동 계측을 사용하여 **Datadog**을 **CrewAI**와 통합하는 방법을 보여드립니다. 이 가이드가 끝나면 LLM Observability 트레이스를 Datadog에 제출하고 CrewAI 에이전트 실행을 Datadog LLM Observability의 에이전트 실행 보기에서 볼 수 있게 됩니다.
## Datadog LLM Observability란 무엇인가요?
[Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/)는 AI 엔지니어, 데이터 과학자, 애플리케이션 개발자가 LLM 애플리케이션을 신속하게 개발, 평가, 모니터링할 수 있도록 도와줍니다. 구조화된 실험, AI 에이전트 전반의 엔드투엔드 추적, 평가를 통해 결과물 품질, 성능, 비용, 전반적인 위험을 확실하게 개선할 수 있습니다.
## 시작하기
### 설치 종속성
```shell
pip install ddtrace crewai crewai-tools
```
### 환경 변수 설정하기
Datadog API 키가 없는 경우, [계정 만들기](https://www.datadoghq.com/) 및 [API 키 받기](https://docs.datadoghq.com/account_management/api-app-keys/#api-keys)를 할 수 있습니다.
또한 다음 환경 변수에 ML 애플리케이션 이름을 지정해야 합니다. ML 애플리케이션은 특정 LLM 기반 애플리케이션과 관련된 LLM Observability 트레이스의 그룹입니다. ML 애플리케이션 이름 제한에 대한 자세한 내용은 [ML 애플리케이션 이름 지정 가이드라인](https://docs.datadoghq.com/llm_observability/instrumentation/sdk?tab=python#application-naming-guidelines)을 참조하세요.
```shell
export DD_API_KEY=<YOUR_DD_API_KEY>
export DD_SITE=<YOUR_DD_SITE>
export DD_LLMOBS_ENABLED=true
export DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME>
export DD_LLMOBS_AGENTLESS_ENABLED=true
export DD_APM_TRACING_ENABLED=false
```
또한 LLM 공급자 API 키를 설정합니다.
```shell
export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
export ANTHROPIC_API_KEY=<YOUR_ANTHROPIC_API_KEY>
export GEMINI_API_KEY=<YOUR_GEMINI_API_KEY>
...
```
### 크루AI 에이전트 애플리케이션 생성하기
```python
# crewai_agent.py
from crewai import Agent, Task, Crew
from crewai_tools import (
WebsiteSearchTool
)
web_rag_tool = WebsiteSearchTool()
writer = Agent(
role="작가",
goal="시를 통해 어린이들이 수학을 흥미롭고 이해하기 쉽게 설명합니다",
backstory="당신은 하이쿠를 쓰는 전문가이지만 수학은 전혀 모릅니다.",
tools=[web_rag_tool],
)
task = Task(
description=("{곱셈}이란 무엇인가요?"),
expected_output=("답을 포함하는 하이쿠를 작성하세요."),
agent=writer
)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=False
)
output = crew.kickoff(dict(곱셈="2 * 2"))
```
### Datadog 자동 계측을 사용하여 애플리케이션 실행하기
[환경 변수](#환경-변수-설정하기)를 설정하면 이제 Datadog 자동 계측을 통해 애플리케이션을 실행할 수 있습니다.
```shell
ddtrace-run python crewai_agent.py
```
### Datadog에서 트레이스 추적하기
애플리케이션을 실행한 후 왼쪽 상단 드롭다운에서 선택한 ML 애플리케이션 이름을 선택하면 [Datadog LLM Observability의 트레이스 보기](https://app.datadoghq.com/llm/traces)에서 트레이스들을 확인할 수 있습니다.
트레이스를 클릭하면 사용된 총 토큰, LLM 호출 수, 사용된 모델, 예상 비용 등 트레이스에 대한 세부 정보가 표시됩니다. 특정 스팬(span)을 클릭하면 이러한 세부 정보의 범위가 좁혀지고 관련 입력, 출력 및 메타데이터가 표시됩니다.
<Frame>
<img src="/images/datadog-llm-observability-1.png" alt="Datadog LLM 옵저버빌리티 추적 보기" />
</Frame>
또한, 트레이스의 제어 및 데이터 흐름을 보여주는 트레이스의 실행 그래프 보기를 볼 수 있으며, 이는 더 큰 에이전트로 확장하여 LLM 호출, 도구 호출 및 에이전트 상호 작용 간의 핸드오프와 관계를 보여줍니다.
<Frame>
<img src="/images/datadog-llm-observability-2.png" alt="Datadog LLM Observability 에이전트 실행 흐름 보기" />
</Frame>
## 참조
- [Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/)
- [Datadog LLM 옵저버빌리티 크루AI 자동 계측](https://docs.datadoghq.com/llm_observability/instrumentation/auto_instrumentation?tab=python#crew-ai)

View File

@@ -23,15 +23,13 @@ uv add qdrant-client
```python
from crewai import Agent
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
from crewai_tools import QdrantVectorSearchTool
# QdrantConfig로 도구 초기화
# Initialize the tool
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
# Create an agent that uses the tool
@@ -84,7 +82,7 @@ def extract_text_from_pdf(pdf_path):
def get_openai_embedding(text):
response = client.embeddings.create(
input=text,
model="text-embedding-3-large"
model="text-embedding-3-small"
)
return response.data[0].embedding
@@ -92,13 +90,13 @@ def get_openai_embedding(text):
def load_pdf_to_qdrant(pdf_path, qdrant, collection_name):
# Extract text from PDF
text_chunks = extract_text_from_pdf(pdf_path)
# Create Qdrant collection
if qdrant.collection_exists(collection_name):
qdrant.delete_collection(collection_name)
qdrant.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=3072, distance=Distance.COSINE)
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
)
# Store embeddings
@@ -122,23 +120,19 @@ pdf_path = "path/to/your/document.pdf"
load_pdf_to_qdrant(pdf_path, qdrant, collection_name)
# Initialize Qdrant search tool
from crewai_tools import QdrantConfig
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
# Create CrewAI agents
search_agent = Agent(
role="Senior Semantic Search Agent",
goal="Find and analyze documents based on semantic search",
backstory="""You are an expert research assistant who can find relevant
backstory="""You are an expert research assistant who can find relevant
information using semantic search in a Qdrant database.""",
tools=[qdrant_tool],
verbose=True
@@ -147,7 +141,7 @@ search_agent = Agent(
answer_agent = Agent(
role="Senior Answer Assistant",
goal="Generate answers to questions based on the context provided",
backstory="""You are an expert answer assistant who can generate
backstory="""You are an expert answer assistant who can generate
answers to questions based on the context provided.""",
tools=[qdrant_tool],
verbose=True
@@ -186,82 +180,21 @@ print(result)
## 도구 매개변수
### 필수 파라미터
- `qdrant_config` (QdrantConfig): 모든 Qdrant 설정을 포함하는 구성 객체
### QdrantConfig 매개변수
- `qdrant_url` (str): Qdrant 서버의 URL
- `qdrant_api_key` (str, 선택 사항): Qdrant 인증을 위한 API 키
- `qdrant_api_key` (str): Qdrant 인증을 위한 API 키
- `collection_name` (str): 검색할 Qdrant 컬렉션의 이름
### 선택적 매개변수
- `limit` (int): 반환할 최대 결과 수 (기본값: 3)
- `score_threshold` (float): 최소 유사도 점수 임계값 (기본값: 0.35)
- `filter` (Any, 선택 사항): 고급 필터링을 위한 Qdrant Filter 인스턴스 (기본값: None)
### 선택적 도구 매개변수
- `custom_embedding_fn` (Callable[[str], list[float]]): 텍스트 벡터화를 위한 사용자 지정 함수
- `qdrant_package` (str): Qdrant의 기본 패키지 경로 (기본값: "qdrant_client")
- `client` (Any): 사전 초기화된 Qdrant 클라이언트 (선택 사항)
## 고급 필터링
QdrantVectorSearchTool은 검색 결과를 세밀하게 조정할 수 있는 강력한 필터링 기능을 지원합니다:
### 동적 필터링
검색 시 `filter_by` 및 `filter_value` 매개변수를 사용하여 즉석에서 결과를 필터링할 수 있습니다:
```python
# 에이전트는 도구를 호출할 때 이러한 매개변수를 사용합니다
# 도구 스키마는 filter_by 및 filter_value를 허용합니다
# 예시: 카테고리 필터를 사용한 검색
# 결과는 category == "기술"인 항목으로 필터링됩니다
```
### QdrantConfig를 사용한 사전 설정 필터
복잡한 필터링의 경우 구성에서 Qdrant Filter 인스턴스를 사용하세요:
```python
from qdrant_client.http import models as qmodels
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
# 특정 조건에 대한 필터 생성
preset_filter = qmodels.Filter(
must=[
qmodels.FieldCondition(
key="category",
match=qmodels.MatchValue(value="research")
),
qmodels.FieldCondition(
key="year",
match=qmodels.MatchValue(value=2024)
)
]
)
# 사전 설정 필터로 도구 초기화
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
filter=preset_filter # 모든 검색에 적용되는 사전 설정 필터
)
)
```
### 필터 결합
도구는 `QdrantConfig`의 사전 설정 필터와 `filter_by` 및 `filter_value`의 동적 필터를 자동으로 결합합니다:
```python
# QdrantConfig에 category="research"에 대한 사전 설정 필터가 있고
# 검색에서 filter_by="year", filter_value=2024를 사용하는 경우
# 두 필터가 모두 결합됩니다 (AND 논리)
```
## 검색 매개변수
이 도구는 스키마에서 다음과 같은 매개변수를 허용합니다:
- `query` (str): 유사한 문서를 찾기 위한 검색 쿼리
- `filter_by` (str, 선택 사항): 필터링할 메타데이터 필드
- `filter_value` (Any, 선택 사항): 필터 기준 값
- `filter_value` (str, 선택 사항): 필터 기준 값
## 반환 형식
@@ -281,7 +214,7 @@ qdrant_tool = QdrantVectorSearchTool(
## 기본 임베딩
기본적으로, 이 도구는 벡터화를 위해 OpenAI의 `text-embedding-3-large` 모델을 사용합니다. 이를 위해서는 다음이 필요합니다:
기본적으로, 이 도구는 벡터화를 위해 OpenAI의 `text-embedding-3-small` 모델을 사용합니다. 이를 위해서는 다음이 필요합니다:
- 환경변수에 설정된 OpenAI API 키: `OPENAI_API_KEY`
## 커스텀 임베딩
@@ -307,22 +240,18 @@ def custom_embeddings(text: str) -> list[float]:
# Tokenize and get model outputs
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Use mean pooling to get text embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
# Convert to list of floats and return
return embeddings[0].tolist()
# Use custom embeddings with the tool
from crewai_tools import QdrantConfig
tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection"
),
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
custom_embedding_fn=custom_embeddings # Pass your custom function
)
```
@@ -341,4 +270,4 @@ tool = QdrantVectorSearchTool(
export QDRANT_URL="your_qdrant_url" # If not provided in constructor
export QDRANT_API_KEY="your_api_key" # If not provided in constructor
export OPENAI_API_KEY="your_openai_key" # If using default embeddings
```
```

View File

@@ -54,25 +54,25 @@ tool = CSVSearchTool()
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 사용자 지정하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다:
```python Code
from chromadb.config import Settings
tool = CSVSearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -46,25 +46,23 @@ tool = DirectorySearchTool(directory='/path/to/directory')
DirectorySearchTool은 기본적으로 OpenAI를 사용하여 임베딩 및 요약을 수행합니다. 이 설정의 커스터마이즈 옵션에는 모델 공급자 및 구성을 변경하는 것이 포함되어 있어, 고급 사용자를 위한 유연성을 향상시킵니다.
```python Code
from chromadb.config import Settings
tool = DirectorySearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # Options include ollama, google, anthropic, llama2, and more
config=dict(
model="llama2",
# Additional configurations here
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -56,25 +56,25 @@ tool = DOCXSearchTool(docx='path/to/your/document.docx')
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 커스터마이즈하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다:
```python Code
from chromadb.config import Settings
tool = DOCXSearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -48,25 +48,27 @@ tool = MDXSearchTool(mdx='path/to/your/document.mdx')
이 도구는 기본적으로 임베딩과 요약을 위해 OpenAI를 사용합니다. 커스터마이징을 위해 아래와 같이 설정 딕셔너리를 사용할 수 있습니다.
```python Code
from chromadb.config import Settings
tool = MDXSearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # 옵션에는 google, openai, anthropic, llama2 등이 있습니다.
config=dict(
model="llama2",
# 선택적 파라미터를 여기에 포함할 수 있습니다.
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # 또는 openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# 임베딩에 대한 선택적 제목을 여기에 추가할 수 있습니다.
# title="Embeddings",
),
),
)
)
```

View File

@@ -45,60 +45,28 @@ tool = PDFSearchTool(pdf='path/to/your/document.pdf')
## 커스텀 모델 및 임베딩
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 커스터마이즈하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다. 참고: 임베딩은 벡터DB에 저장되어야 하므로 vectordb 설정이 필요합니다.
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 커스터마이즈하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다:
```python Code
from crewai_tools import PDFSearchTool
from chromadb.config import Settings # Chroma 영속성 설정
tool = PDFSearchTool(
config={
# 필수: 임베딩 제공자와 설정
"embedding_model": {
# 사용 가능 공급자: "openai", "azure", "google-generativeai", "google-vertex",
# "voyageai", "cohere", "huggingface", "jina", "sentence-transformer",
# "text2vec", "ollama", "openclip", "instructor", "onnx", "roboflow", "watsonx", "custom"
"provider": "openai",
"config": {
# "model" 키는 내부적으로 "model_name"으로 매핑됩니다.
"model": "text-embedding-3-small",
# 선택: API 키 (미설정 시 환경변수 사용)
# "api_key": "sk-...",
# 공급자별 예시
# --- Google ---
# (provider를 "google-generativeai"로 설정)
# "model": "models/embedding-001",
# "task_type": "retrieval_document",
# --- Cohere ---
# (provider를 "cohere"로 설정)
# "model": "embed-english-v3.0",
# --- Ollama(로컬) ---
# (provider를 "ollama"로 설정)
# "model": "nomic-embed-text",
},
},
# 필수: 벡터DB 설정
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# Chroma 설정 예시
# "settings": Settings(
# persist_directory="/content/chroma",
# allow_reset=True,
# is_persistent=True,
# ),
# Qdrant 설정 예시
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
# 참고: 컬렉션 이름은 도구에서 관리합니다(기본값: "rag_tool_collection").
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -57,34 +57,25 @@ tool = TXTSearchTool(txt='path/to/text/file.txt')
모델을 커스터마이징하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다:
```python Code
from chromadb.config import Settings
tool = TXTSearchTool(
config={
# 필수: 임베딩 제공자 + 설정
"embedding_model": {
"provider": "openai", # 또는 google-generativeai, cohere, ollama 등
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...", # 환경변수 사용 시 생략 가능
# 공급자별 예시: Google → model: "models/embedding-001", task_type: "retrieval_document"
},
},
# 필수: 벡터DB 설정
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# Chroma 설정(영속성 예시)
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# Qdrant 벡터 파라미터 예시:
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
# 참고: 컬렉션 이름은 도구에서 관리합니다(기본값: "rag_tool_collection").
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -54,25 +54,25 @@ tool = XMLSearchTool(xml='path/to/your/xmlfile.xml')
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 커스터마이징하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다.
```python Code
from chromadb.config import Settings
tool = XMLSearchTool(
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -33,22 +33,6 @@ Antes de usar a integração com o Asana, assegure-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de utilizar a integração com o ClickUp, certifique-se de que você possu
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração com o Gmail, certifique-se de que você possui:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração com o Google Calendar, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Google Contacts, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Google Docs, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Google Drive, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
Para informações detalhadas sobre parâmetros e uso, consulte a [documentação em inglês](../../../en/enterprise/integrations/google_drive).

View File

@@ -34,22 +34,6 @@ Antes de utilizar a integração com o Google Sheets, certifique-se de que você
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Google Slides, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de utilizar a integração com o HubSpot, certifique-se de que você possu
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de utilizar a integração com o Linear, certifique-se de que você possui
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Microsoft Excel, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Microsoft OneDrive, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Microsoft Outlook, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Microsoft SharePoint, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Microsoft Teams, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração Microsoft Word, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,22 +33,6 @@ Antes de usar a integração com o Notion, certifique-se de que você tem:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -17,38 +17,6 @@ Antes de usar a integração Salesforce, certifique-se de que você possui:
- Uma conta Salesforce com permissões apropriadas
- Sua conta Salesforce conectada via a [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Salesforce
### 1. Conecte sua Conta Salesforce
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Salesforce** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para gerenciamento de CRM e vendas
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Registros**

View File

@@ -17,38 +17,6 @@ Antes de utilizar a integração com o Shopify, certifique-se de que você possu
- Uma loja Shopify com permissões administrativas adequadas
- Sua loja Shopify conectada através da [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Shopify
### 1. Conecte sua Loja Shopify
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Shopify** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para gerenciamento de loja e produtos
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Clientes**

View File

@@ -17,38 +17,6 @@ Antes de usar a integração com o Slack, certifique-se de que você tenha:
- Um workspace do Slack com permissões apropriadas
- Seu workspace do Slack conectado por meio da [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Slack
### 1. Conecte seu Workspace do Slack
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Slack** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para comunicação em equipe
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Usuários**

View File

@@ -17,38 +17,6 @@ Antes de usar a integração com o Stripe, certifique-se de que você tem:
- Uma conta Stripe com permissões apropriadas de API
- Sua conta Stripe conectada através da [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Stripe
### 1. Conecte sua Conta Stripe
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Stripe** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para processamento de pagamentos
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Clientes**

Some files were not shown because too many files have changed in this diff Show More