Compare commits

...

4 Commits

Author SHA1 Message Date
Devin AI
c79700874c fix: sort imports in crew.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 21:25:09 +00:00
Devin AI
639e5342de fix: improve type safety and error handling
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 21:23:34 +00:00
Devin AI
257780ff6a fix: update telemetry to use llm model name
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 21:07:22 +00:00
Devin AI
22d886be11 fix: enable any llm to run test functionality
- Update CrewEvaluator to accept any LLM type
- Modify Crew.test() to support both custom LLMs and maintain backward compatibility
- Add comprehensive test coverage for both new functionality and backward compatibility

Fixes #2072

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 21:05:18 +00:00
4 changed files with 282 additions and 69 deletions

View File

@@ -6,7 +6,7 @@ import warnings
from concurrent.futures import Future
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Sequence, Set, Tuple, Union
from pydantic import (
UUID4,
@@ -37,7 +37,7 @@ from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.tools.base_tool import BaseTool, Tool
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
@@ -179,7 +179,7 @@ class Crew(BaseModel):
default=None,
description="Maximum number of requests per minute for the crew execution to be respected.",
)
prompt_file: str = Field(
prompt_file: Optional[str] = Field(
default=None,
description="Path to the prompt json file to be used for the crew.",
)
@@ -473,7 +473,16 @@ class Crew(BaseModel):
"missing_keys_in_config", "Config should have 'agents' and 'tasks'.", {}
)
self.process = self.config.get("process", self.process)
# Get process from config with proper type handling
process_value = self.config.get("process")
if process_value is not None:
if not isinstance(process_value, Process):
try:
process_value = Process(process_value)
except ValueError:
raise ValueError(f"Invalid process value: {process_value}")
self.process = process_value
self.agents = [Agent(**agent) for agent in self.config["agents"]]
self.tasks = [self._create_task(task) for task in self.config["tasks"]]
@@ -749,8 +758,12 @@ class Crew(BaseModel):
)
# Determine which tools to use - task tools take precedence over agent tools
tools_for_task = task.tools or agent_to_use.tools or []
tools_for_task = self._prepare_tools(agent_to_use, task, tools_for_task)
initial_tools: List[BaseTool] = []
if task.tools:
initial_tools = list(task.tools)
elif agent_to_use.tools:
initial_tools = list(agent_to_use.tools)
tools_for_task = self._prepare_tools(agent_to_use, task, initial_tools)
self._log_task_start(task, agent_to_use.role)
@@ -766,10 +779,12 @@ class Crew(BaseModel):
context = self._get_context(
task, [last_sync_output] if last_sync_output else []
)
# Convert Sequence to List for execute_async
tools_list = list(tools_for_task) if tools_for_task else None
future = task.execute_async(
agent=agent_to_use,
context=context,
tools=tools_for_task,
tools=tools_list,
)
futures.append((task, future, task_index))
else:
@@ -778,10 +793,12 @@ class Crew(BaseModel):
futures.clear()
context = self._get_context(task, task_outputs)
# Convert Sequence to List for execute_sync
tools_list = list(tools_for_task) if tools_for_task else None
task_output = task.execute_sync(
agent=agent_to_use,
context=context,
tools=tools_for_task,
tools=tools_list,
)
task_outputs.append(task_output)
self._process_task_result(task, task_output)
@@ -819,27 +836,37 @@ class Crew(BaseModel):
return None
def _prepare_tools(
self, agent: BaseAgent, task: Task, tools: List[Tool]
) -> List[Tool]:
self, agent: BaseAgent, task: Task, tools: Sequence[BaseTool]
) -> Sequence[BaseTool]:
"""Prepare tools for the agent.
Args:
agent: The agent to prepare tools for
task: The task being executed
tools: Initial set of tools
Returns:
Updated sequence of tools with additional capabilities based on agent configuration
"""
# Add delegation tools if agent allows delegation
if agent.allow_delegation:
if getattr(agent, "allow_delegation", False):
if self.process == Process.hierarchical:
if self.manager_agent:
tools = self._update_manager_tools(task, tools)
tools = self._update_manager_tools(task, tools) # type: ignore[arg-type]
else:
raise ValueError(
"Manager agent is required for hierarchical process."
)
elif agent and agent.allow_delegation:
tools = self._add_delegation_tools(task, tools)
elif agent:
tools = self._add_delegation_tools(task, tools) # type: ignore[arg-type]
# Add code execution tools if agent allows code execution
if agent.allow_code_execution:
tools = self._add_code_execution_tools(agent, tools)
if getattr(agent, "allow_code_execution", False):
tools = self._add_code_execution_tools(agent, tools) # type: ignore[arg-type]
if agent and agent.multimodal:
tools = self._add_multimodal_tools(agent, tools)
if agent and getattr(agent, "multimodal", False):
tools = self._add_multimodal_tools(agent, tools) # type: ignore[arg-type]
return tools
@@ -849,9 +876,17 @@ class Crew(BaseModel):
return task.agent
def _merge_tools(
self, existing_tools: List[Tool], new_tools: List[Tool]
) -> List[Tool]:
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
self, existing_tools: Sequence[BaseTool], new_tools: Sequence[BaseTool]
) -> Sequence[BaseTool]:
"""Merge new tools into existing tools list, avoiding duplicates by tool name.
Args:
existing_tools: Current sequence of tools
new_tools: New tools to merge in
Returns:
Updated sequence of tools with duplicates removed
"""
if not new_tools:
return existing_tools
@@ -867,24 +902,67 @@ class Crew(BaseModel):
return tools
def _inject_delegation_tools(
self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]
):
delegation_tools = task_agent.get_delegation_tools(agents)
self, tools: Sequence[BaseTool], task_agent: BaseAgent, agents: List[BaseAgent]
) -> Sequence[BaseTool]:
"""Add delegation tools for the agent.
Args:
tools: Current set of tools
task_agent: Agent that will use the tools
agents: List of agents that can be delegated to
Returns:
Updated sequence of tools with delegation capabilities
"""
delegation_tools = task_agent.get_delegation_tools(agents) # type: ignore[attr-defined]
return self._merge_tools(tools, delegation_tools)
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
multimodal_tools = agent.get_multimodal_tools()
def _add_multimodal_tools(
self, agent: BaseAgent, tools: Sequence[BaseTool]
) -> Sequence[BaseTool]:
"""Add multimodal tools for the agent.
Args:
agent: Agent that will use the tools
tools: Current set of tools
Returns:
Updated sequence of tools with multimodal capabilities
"""
multimodal_tools = agent.get_multimodal_tools() # type: ignore[attr-defined]
return self._merge_tools(tools, multimodal_tools)
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
code_tools = agent.get_code_execution_tools()
def _add_code_execution_tools(
self, agent: BaseAgent, tools: Sequence[BaseTool]
) -> Sequence[BaseTool]:
"""Add code execution tools for the agent.
Args:
agent: Agent that will use the tools
tools: Current set of tools
Returns:
Updated sequence of tools with code execution capabilities
"""
code_tools = agent.get_code_execution_tools() # type: ignore[attr-defined]
return self._merge_tools(tools, code_tools)
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
def _add_delegation_tools(
self, task: Task, tools: Sequence[BaseTool]
) -> Sequence[BaseTool]:
"""Add delegation tools for the task's agent.
Args:
task: Task being executed
tools: Current set of tools
Returns:
Updated sequence of tools with delegation capabilities
"""
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
if not tools:
tools = []
tools = [] # type: ignore[assignment]
tools = self._inject_delegation_tools(
tools, task.agent, agents_for_delegation
)
@@ -896,7 +974,18 @@ class Crew(BaseModel):
task_name=task.name, task=task.description, agent=role, status="started"
)
def _update_manager_tools(self, task: Task, tools: List[Tool]):
def _update_manager_tools(
self, task: Task, tools: Sequence[BaseTool]
) -> Sequence[BaseTool]:
"""Update tools for manager agent.
Args:
task: Task being executed
tools: Current set of tools
Returns:
Updated sequence of tools with manager capabilities
"""
if self.manager_agent:
if task.agent:
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
@@ -1148,19 +1237,42 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
llm: Optional[Union[str, LLM]] = None,
openai_model_name: Optional[str] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
"""Test and evaluate the Crew with the given inputs for n iterations.
Args:
n_iterations: Number of test iterations to run
llm: LLM instance or model name to use for evaluation
openai_model_name: (Deprecated) OpenAI model name to use for evaluation
inputs: Optional dictionary of inputs for the crew
Raises:
ValueError: If inputs is not a dictionary or if LLM configuration is invalid
TypeError: If n_iterations is not a positive integer
"""
if n_iterations < 1:
raise TypeError("n_iterations must be a positive integer")
if inputs is not None and not isinstance(inputs, dict):
raise ValueError("inputs must be a dictionary")
# Validate LLM configuration
if isinstance(llm, str) and not llm.strip():
raise ValueError("LLM model name cannot be empty")
test_llm: Union[str, LLM, None] = llm if llm is not None else openai_model_name
test_crew = self.copy()
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
test_llm,
)
evaluator = CrewEvaluator(test_crew, test_llm)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -1,4 +1,5 @@
from collections import defaultdict
from typing import Union
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
@@ -6,6 +7,7 @@ from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -32,9 +34,27 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew, llm: Union[str, LLM, None] = None):
"""Initialize the CrewEvaluator.
Args:
crew: The crew to evaluate
llm: LLM instance or model name to use for evaluation
Raises:
ValueError: If LLM model name is empty or invalid
RuntimeError: If evaluator agent initialization fails
"""
self.crew = crew
self.openai_model_name = openai_model_name
if isinstance(llm, str) and not llm.strip():
raise ValueError("LLM model name cannot be empty")
try:
self._llm = llm if isinstance(llm, LLM) else LLM(model=llm) if llm else None
except Exception as e:
raise RuntimeError(f"Failed to initialize LLM: {str(e)}")
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -51,7 +71,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self._llm,
)
def _evaluation_task(
@@ -181,7 +201,7 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task.execution_duration,
self.openai_model_name,
self._llm.model if self._llm else "default",
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(

View File

@@ -15,6 +15,7 @@ from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.project import crew
@@ -24,6 +25,9 @@ from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import Logger
from crewai.utilities.evaluators.crew_evaluator_handler import (
TaskEvaluationPydanticOutput,
)
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
@@ -3305,39 +3309,95 @@ def test_conditional_should_execute():
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
@mock.patch.object(Crew, "copy")
@mock.patch.object(Crew, "kickoff")
def test_crew_test_with_custom_llm(mock_kickoff, mock_copy, mock_evaluator):
"""Test that Crew.test() works with a custom LLM implementation."""
task = Task(description="Test task", expected_output="Test output", agent=researcher)
crew = Crew(agents=[researcher], tasks=[task])
mock_copy.return_value = crew
mock_evaluator.return_value = mock.MagicMock()
llm = LLM(model="gpt-4")
crew.test(n_iterations=1, llm=llm)
# Verify CrewEvaluator was called with the LLM instance
mock_evaluator.assert_called_once()
args = mock_evaluator.call_args[0]
assert args[1] == llm
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch.object(Crew, "copy")
@mock.patch.object(Crew, "kickoff")
def test_crew_test_backward_compatibility(mock_kickoff, mock_copy, mock_evaluator):
"""Test that Crew.test() maintains backward compatibility with openai_model_name."""
task = Task(description="Test task", expected_output="Test output", agent=researcher)
crew = Crew(agents=[researcher], tasks=[task])
mock_copy.return_value = crew
mock_evaluator.return_value = mock.MagicMock()
crew.test(n_iterations=1, openai_model_name="gpt-4")
# Verify CrewEvaluator was called with the model name
mock_evaluator.assert_called_once()
args = mock_evaluator.call_args[0]
assert args[1] == "gpt-4"
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch.object(Crew, "copy")
@mock.patch.object(Crew, "kickoff")
def test_crew_test_with_invalid_inputs(mock_kickoff, mock_copy, mock_evaluator):
"""Test that Crew.test() validates inputs properly."""
task = Task(description="Test task", expected_output="Test output", agent=researcher)
crew = Crew(agents=[researcher], tasks=[task])
mock_copy.return_value = crew
with pytest.raises(TypeError):
crew.test(n_iterations=0) # Invalid iterations
with pytest.raises(ValueError):
crew.test(n_iterations=1, inputs="invalid") # Invalid inputs type
with pytest.raises(ValueError):
crew.test(n_iterations=1, llm="") # Empty LLM name
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch.object(Crew, "copy")
@mock.patch.object(Crew, "kickoff")
def test_crew_test_concurrent_execution(mock_kickoff, mock_copy, mock_evaluator):
"""Test that Crew.test() handles concurrent execution properly."""
task = Task(description="Test task", expected_output="Test output", agent=researcher)
crew = Crew(agents=[researcher], tasks=[task])
mock_copy.return_value = crew
mock_evaluator.return_value = mock.MagicMock()
n_iterations = 3
crew.test(n_iterations=n_iterations)
assert mock_evaluator.return_value.set_iteration.call_count == n_iterations
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch.object(Crew, "copy")
@mock.patch.object(Crew, "kickoff")
def test_crew_testing_function(mock_kickoff, mock_copy, mock_evaluator):
"""Test that Crew.test() works with basic functionality."""
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(
agents=[researcher],
tasks=[task],
)
# Create a mock for the copied crew
copy_mock.return_value = crew
n_iterations = 2
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
crew_evaluator.assert_has_calls(
[
mock.call(crew, "gpt-4o-mini"),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
]
)
crew = Crew(agents=[researcher], tasks=[task])
mock_copy.return_value = crew
mock_evaluator.return_value = mock.MagicMock()
crew.test(n_iterations=1)
# Verify CrewEvaluator was called with None as llm (default behavior)
mock_evaluator.assert_called_once()
args = mock_evaluator.call_args[0]
assert args[1] is None
# Verify kickoff was called
mock_kickoff.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])

View File

@@ -4,6 +4,7 @@ import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.evaluators.crew_evaluator_handler import (
@@ -140,3 +141,23 @@ class InternalCrewEvaluator:
execute().pydantic = TaskEvaluationPydanticOutput(quality=9.5)
crew_planner.evaluate(task_output)
assert crew_planner.tasks_scores[0] == [9.5]
def test_crew_evaluator_with_llm_instance(self):
"""Test that CrewEvaluator works with an LLM instance."""
agent = Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1")
task = Task(description="Task 1", expected_output="Output 1", agent=agent)
crew = Crew(agents=[agent], tasks=[task])
llm = LLM(model="gpt-4")
evaluator = CrewEvaluator(crew, llm)
assert evaluator._llm == llm
def test_crew_evaluator_with_model_name(self):
"""Test that CrewEvaluator works with a model name string."""
agent = Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1")
task = Task(description="Task 1", expected_output="Output 1", agent=agent)
crew = Crew(agents=[agent], tasks=[task])
evaluator = CrewEvaluator(crew, "gpt-4")
assert isinstance(evaluator._llm, LLM)
assert evaluator._llm.model == "gpt-4"