Compare commits

...

2 Commits

Author SHA1 Message Date
Devin AI
88641a49f7 fix: sort imports in crew_test.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:26:34 +00:00
Devin AI
f838909220 feat: enable custom LLM support for Crew.test()
- Added new llm parameter to Crew.test() that accepts string or LLM instance
- Maintained backward compatibility with openai_model_name parameter
- Updated CrewEvaluator to handle any LLM implementation
- Added comprehensive test coverage

Fixes #2081

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:25:02 +00:00
3 changed files with 100 additions and 9 deletions

View File

@@ -1148,19 +1148,31 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
llm: Optional[Union[str, LLM]] = None,
openai_model_name: Optional[str] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
"""Test and evaluate the Crew with the given inputs for n iterations concurrently.
Args:
n_iterations: Number of test iterations to run
llm: LLM instance or model name string to use for evaluation
openai_model_name: (Deprecated) OpenAI model name string (kept for backward compatibility)
inputs: Optional dictionary of inputs to pass to each test iteration
"""
test_crew = self.copy()
model = llm or openai_model_name
if model is None:
raise ValueError("Either llm or openai_model_name must be provided")
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
str(model) if isinstance(model, LLM) else model,
)
evaluator = CrewEvaluator(test_crew, model)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -1,4 +1,5 @@
from collections import defaultdict
from typing import Union
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
@@ -6,6 +7,7 @@ from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -32,9 +34,15 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew, llm: Union[str, LLM]):
"""Initialize the CrewEvaluator.
Args:
crew: The crew to evaluate
llm: LLM instance or model name string to use for evaluation
"""
self.crew = crew
self.openai_model_name = openai_model_name
self.llm = llm if isinstance(llm, LLM) else LLM(model=llm)
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -51,7 +59,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self.llm,
)
def _evaluation_task(
@@ -95,9 +103,20 @@ class CrewEvaluator:
│ Execution Time (s) │ 42 │ 79 │ 52 │ 57 │ │
└────────────────────┴───────┴───────┴───────┴────────────┴──────────────────────────────┘
"""
# Handle empty task scores
if not self.tasks_scores:
return
task_scores_list = list(zip(*self.tasks_scores.values()))
if not task_scores_list:
return
task_averages = [
sum(scores) / len(scores) for scores in zip(*self.tasks_scores.values())
sum(scores) / len(scores) for scores in task_scores_list
]
if not task_averages:
return
crew_average = sum(task_averages) / len(task_averages)
table = Table(title="Tasks Scores \n (1-10 Higher is better)", box=HEAVY_EDGE)
@@ -177,11 +196,12 @@ class CrewEvaluator:
evaluation_result = evaluation_task.execute_sync()
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
model_name = str(self.llm) if isinstance(self.llm, LLM) else self.llm
self._test_result_span = self._telemetry.individual_test_result_span(
self.crew,
evaluation_result.pydantic.quality,
current_task.execution_duration,
self.openai_model_name,
model_name,
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(

View File

@@ -2,6 +2,7 @@
import hashlib
import json
from collections import defaultdict
from concurrent.futures import Future
from unittest import mock
from unittest.mock import MagicMock, patch
@@ -15,6 +16,7 @@ from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.project import crew
@@ -24,9 +26,16 @@ from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import Logger
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
@pytest.fixture
def crew_evaluator():
evaluator = mock.MagicMock(spec=CrewEvaluator)
evaluator.print_crew_evaluation_result = mock.MagicMock()
return evaluator
ceo = Agent(
role="CEO",
goal="Make sure the writers in your company produce amazing content.",
@@ -3339,6 +3348,56 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
]
)
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_with_llm_instance(kickoff_mock, copy_mock, evaluator_mock):
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
llm = LLM(model="gpt-4")
# Create a mock for the copied crew
copy_mock.return_value = crew
# Create a mock evaluator instance with required methods
mock_evaluator = mock.MagicMock()
mock_evaluator.set_iteration = mock.MagicMock()
mock_evaluator.evaluate = mock.MagicMock()
mock_evaluator.print_crew_evaluation_result = mock.MagicMock()
# Set up the mock class to track constructor calls and return our mock instance
evaluator_mock.side_effect = lambda crew_arg, model_arg: mock_evaluator
# Run the test
crew.test(n_iterations=2, llm=llm)
# Verify the evaluator was used correctly
kickoff_mock.assert_has_calls([
mock.call(inputs=None),
mock.call(inputs=None)
])
# Verify CrewEvaluator was instantiated with the LLM instance
evaluator_mock.assert_called_once_with(crew, llm)
# Verify print_crew_evaluation_result was called
mock_evaluator.print_crew_evaluation_result.assert_called_once()
def test_crew_testing_with_missing_model():
crew = Crew(agents=[researcher], tasks=[Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)])
with pytest.raises(ValueError, match="Either llm or openai_model_name must be provided"):
crew.test(n_iterations=2)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_manager_agent():