Compare commits

..

2 Commits

Author SHA1 Message Date
Devin AI
fffd401fd1 Fix lint and type checker issues
- Remove unused imports (pytest, Mock) from test file
- Add type ignore comment for ToolAnswerResult assignment

Co-Authored-By: João <joao@crewai.com>
2025-08-18 06:13:39 +00:00
Devin AI
9d16fde9bf Fix result_as_answer=True bypassing conversion
- Add ToolAnswerResult wrapper class to signal when tool results should bypass conversion
- Modify agent.execute_task to return ToolAnswerResult when result_as_answer=True
- Update task._export_output to skip conversion for ToolAnswerResult instances
- Add comprehensive tests covering the fix and edge cases
- Fixes issue #3335 where tools with result_as_answer=True still triggered LLM conversion

Co-Authored-By: João <joao@crewai.com>
2025-08-18 06:10:14 +00:00
317 changed files with 3606 additions and 18423 deletions

View File

@@ -15,19 +15,8 @@ jobs:
- name: Fetch Target Branch
run: git fetch origin $TARGET_BRANCH --depth=1
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
cache-dependency-glob: |
**/pyproject.toml
**/uv.lock
- name: Set up Python
run: uv python install 3.11
- name: Install dependencies
run: uv sync --dev --no-install-project
- name: Install Ruff
run: pip install ruff
- name: Get Changed Python Files
id: changed-files
@@ -44,4 +33,4 @@ jobs:
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
| xargs -I{} ruff check "{}"

View File

@@ -10,20 +10,14 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
cache-dependency-glob: |
**/pyproject.toml
**/uv.lock
- name: Set up Python
run: uv python install 3.11
uses: actions/setup-python@v5
with:
python-version: "3.11.9"
- name: Install dependencies
run: uv sync --dev --no-install-project
run: pip install bandit
- name: Run Bandit
run: uv run bandit -c pyproject.toml -r src/ -ll
run: bandit -c pyproject.toml -r src/ -ll

View File

@@ -24,7 +24,7 @@ jobs:
uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
uses: astral-sh/setup-uv@v3
with:
enable-cache: true
cache-dependency-glob: |

View File

@@ -6,78 +6,21 @@ permissions:
contents: write
jobs:
type-checker-matrix:
name: type-checker (${{ matrix.python-version }})
type-checker:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v5
with:
fetch-depth: 0 # Fetch all history for proper diff
python-version: "3.11.9"
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
cache-dependency-glob: |
**/pyproject.toml
**/uv.lock
- name: Set up Python ${{ matrix.python-version }}
run: uv python install ${{ matrix.python-version }}
- name: Install dependencies
run: uv sync --dev --no-install-project
- name: Get changed Python files
id: changed-files
- name: Install Requirements
run: |
# Get the list of changed Python files compared to the base branch
echo "Fetching changed files..."
git diff --name-only --diff-filter=ACMRT origin/${{ github.base_ref }}...HEAD -- '*.py' > changed_files.txt
pip install mypy
# Filter for files in src/ and tests/ directories
grep -E "^(src/|tests/)" changed_files.txt > filtered_changed_files.txt || true
# Check if there are any changed files
if [ -s filtered_changed_files.txt ]; then
echo "Changed Python files in src/ and tests/:"
cat filtered_changed_files.txt
echo "has_changes=true" >> $GITHUB_OUTPUT
# Convert newlines to spaces for mypy command
echo "files=$(cat filtered_changed_files.txt | tr '\n' ' ')" >> $GITHUB_OUTPUT
else
echo "No Python files changed in src/ or tests/"
echo "has_changes=false" >> $GITHUB_OUTPUT
fi
- name: Run type checks on changed files
if: steps.changed-files.outputs.has_changes == 'true'
run: |
echo "Running mypy on changed files with Python ${{ matrix.python-version }}..."
uv run mypy ${{ steps.changed-files.outputs.files }}
- name: No files to check
if: steps.changed-files.outputs.has_changes == 'false'
run: echo "No Python files in src/ or tests/ were modified - skipping type checks"
# Summary job to provide single status for branch protection
type-checker:
name: type-checker
runs-on: ubuntu-latest
needs: type-checker-matrix
if: always()
steps:
- name: Check matrix results
run: |
if [ "${{ needs.type-checker-matrix.result }}" == "success" ] || [ "${{ needs.type-checker-matrix.result }}" == "skipped" ]; then
echo "✅ All type checks passed"
else
echo "❌ Type checks failed"
exit 1
fi
- name: Run type checks
run: mypy src

View File

@@ -1,14 +1,7 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.12.11
rev: v0.8.2
hooks:
- id: ruff
args: ["--config", "pyproject.toml"]
args: ["--fix"]
- id: ruff-format
args: ["--config", "pyproject.toml"]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.17.1
hooks:
- id: mypy
args: ["--config-file", "pyproject.toml"]

4
.ruff.toml Normal file
View File

@@ -0,0 +1,4 @@
exclude = [
"templates",
"__init__.py",
]

View File

@@ -418,10 +418,10 @@ Choose CrewAI to easily build powerful, adaptable, and production-ready AI autom
You can test different real life examples of AI crews in the [CrewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/landing_page_generator)
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/landing_page_generator)
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis)
### Quick Tutorial
@@ -429,19 +429,19 @@ You can test different real life examples of AI crews in the [CrewAI-examples re
### Write Job Descriptions
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting) or watch a video below:
[![Jobs postings](https://img.youtube.com/vi/u98wEMz-9to/maxresdefault.jpg)](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
### Trip Planner
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner) or watch a video below:
[![Trip Planner](https://img.youtube.com/vi/xis7rWp-hjs/maxresdefault.jpg)](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
### Stock Analysis
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis) or watch a video below:
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")

View File

@@ -320,7 +320,6 @@
"en/enterprise/guides/update-crew",
"en/enterprise/guides/enable-crew-studio",
"en/enterprise/guides/azure-openai-setup",
"en/enterprise/guides/automation-triggers",
"en/enterprise/guides/hubspot-trigger",
"en/enterprise/guides/react-component-export",
"en/enterprise/guides/salesforce-trigger",
@@ -342,12 +341,11 @@
"groups": [
{
"group": "Getting Started",
"pages": [
"en/api-reference/introduction",
"en/api-reference/inputs",
"en/api-reference/kickoff",
"en/api-reference/status"
]
"pages": ["en/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.en.yaml"
}
]
},
@@ -659,7 +657,6 @@
"pt-BR/enterprise/guides/update-crew",
"pt-BR/enterprise/guides/enable-crew-studio",
"pt-BR/enterprise/guides/azure-openai-setup",
"pt-BR/enterprise/guides/automation-triggers",
"pt-BR/enterprise/guides/hubspot-trigger",
"pt-BR/enterprise/guides/react-component-export",
"pt-BR/enterprise/guides/salesforce-trigger",
@@ -683,12 +680,11 @@
"groups": [
{
"group": "Começando",
"pages": [
"pt-BR/api-reference/introduction",
"pt-BR/api-reference/inputs",
"pt-BR/api-reference/kickoff",
"pt-BR/api-reference/status"
]
"pages": ["pt-BR/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.pt-BR.yaml"
}
]
},
@@ -713,7 +709,7 @@
"icon": "globe"
},
{
"anchor": "포럼",
"anchor": "법정",
"href": "https://community.crewai.com",
"icon": "discourse"
},
@@ -723,7 +719,7 @@
"icon": "robot"
},
{
"anchor": "릴리스",
"anchor": "출시",
"href": "https://github.com/crewAIInc/crewAI/releases",
"icon": "tag"
}
@@ -738,22 +734,22 @@
"pages": ["ko/introduction", "ko/installation", "ko/quickstart"]
},
{
"group": "가이드",
"group": "안내서",
"pages": [
{
"group": "전략",
"pages": ["ko/guides/concepts/evaluating-use-cases"]
},
{
"group": "에이전트 (Agents)",
"group": "Agents",
"pages": ["ko/guides/agents/crafting-effective-agents"]
},
{
"group": "크루 (Crews)",
"group": "Crews",
"pages": ["ko/guides/crews/first-crew"]
},
{
"group": "플로우 (Flows)",
"group": "Flows",
"pages": [
"ko/guides/flows/first-flow",
"ko/guides/flows/mastering-flow-state"
@@ -801,7 +797,7 @@
]
},
{
"group": "도구 (Tools)",
"group": "도구",
"pages": [
"ko/tools/overview",
{
@@ -891,7 +887,7 @@
]
},
{
"group": "클라우드 & 스토리지",
"group": "클라우드 & 저장",
"pages": [
"ko/tools/cloud-storage/overview",
"ko/tools/cloud-storage/s3readertool",
@@ -913,7 +909,7 @@
]
},
{
"group": "Observability",
"group": "오브저버빌리티",
"pages": [
"ko/observability/overview",
"ko/observability/arize-phoenix",
@@ -931,7 +927,7 @@
]
},
{
"group": "학습",
"group": "익히다",
"pages": [
"ko/learn/overview",
"ko/learn/llm-selection-guide",
@@ -955,13 +951,13 @@
]
},
{
"group": "Telemetry",
"group": "원격측정",
"pages": ["ko/telemetry"]
}
]
},
{
"tab": "엔터프라이즈",
"tab": "기업",
"groups": [
{
"group": "시작 안내",
@@ -1001,7 +997,7 @@
]
},
{
"group": "How-To Guides",
"group": "사용 안내서",
"pages": [
"ko/enterprise/guides/build-crew",
"ko/enterprise/guides/deploy-crew",
@@ -1009,7 +1005,6 @@
"ko/enterprise/guides/update-crew",
"ko/enterprise/guides/enable-crew-studio",
"ko/enterprise/guides/azure-openai-setup",
"ko/enterprise/guides/automation-triggers",
"ko/enterprise/guides/hubspot-trigger",
"ko/enterprise/guides/react-component-export",
"ko/enterprise/guides/salesforce-trigger",
@@ -1031,12 +1026,11 @@
"groups": [
{
"group": "시작 안내",
"pages": [
"ko/api-reference/introduction",
"ko/api-reference/inputs",
"ko/api-reference/kickoff",
"ko/api-reference/status"
]
"pages": ["ko/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.ko.yaml"
}
]
},
@@ -1087,10 +1081,6 @@
"indexing": "all"
},
"redirects": [
{
"source": "/api-reference",
"destination": "/en/api-reference/introduction"
},
{
"source": "/introduction",
"destination": "/en/introduction"
@@ -1143,18 +1133,6 @@
"source": "/api-reference/:path*",
"destination": "/en/api-reference/:path*"
},
{
"source": "/en/api-reference",
"destination": "/en/api-reference/introduction"
},
{
"source": "/pt-BR/api-reference",
"destination": "/pt-BR/api-reference/introduction"
},
{
"source": "/ko/api-reference",
"destination": "/ko/api-reference/introduction"
},
{
"source": "/examples/:path*",
"destination": "/en/examples/:path*"

View File

@@ -1,7 +0,0 @@
---
title: "GET /inputs"
description: "Get required inputs for your crew"
openapi: "/enterprise-api.en.yaml GET /inputs"
---

View File

@@ -1,7 +0,0 @@
---
title: "POST /kickoff"
description: "Start a crew execution"
openapi: "/enterprise-api.en.yaml POST /kickoff"
---

View File

@@ -1,7 +0,0 @@
---
title: "GET /status/{kickoff_id}"
description: "Get execution status"
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
---

View File

@@ -282,25 +282,7 @@ Watch this video tutorial for a step-by-step demonstration of deploying your cre
allowfullscreen
></iframe>
### 12. Login
Authenticate with CrewAI Enterprise using a secure device code flow (no email entry required).
```shell Terminal
crewai login
```
What happens:
- A verification URL and short code are displayed in your terminal
- Your browser opens to the verification URL
- Enter/confirm the code to complete authentication
Notes:
- The OAuth2 provider and domain are configured via `crewai config` (defaults use `login.crewai.com`)
- After successful login, the CLI also attempts to authenticate to the Tool Repository automatically
- If you reset your configuration, run `crewai login` again to re-authenticate
### 13. API Keys
### 11. API Keys
When running ```crewai create crew``` command, the CLI will show you a list of available LLM providers to choose from, followed by model selection for your chosen provider.
@@ -328,7 +310,7 @@ See the following link for each provider's key name:
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)
### 14. Configuration Management
### 12. Configuration Management
Manage CLI configuration settings for CrewAI.
@@ -403,10 +385,6 @@ Reset all configuration to defaults:
crewai config reset
```
<Tip>
After resetting configuration, re-run `crewai login` to authenticate again.
</Tip>
<Note>
Configuration settings are stored in `~/.config/crewai/settings.json`. Some settings like organization name and UUID are read-only and managed through authentication and organization commands. Tool repository related settings are hidden and cannot be set directly by users.
</Note>

View File

@@ -44,12 +44,12 @@ To create a custom event listener, you need to:
Here's a simple example of a custom event listener class:
```python
from crewai.events import (
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
@@ -146,7 +146,7 @@ my_project/
```python
# my_custom_listener.py
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
@@ -279,7 +279,7 @@ Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` i
For temporary event handling (useful for testing or specific operations), you can use the `scoped_handlers` context manager:
```python
from crewai.events import crewai_event_bus, CrewKickoffStartedEvent
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)

View File

@@ -97,13 +97,7 @@ The state's unique ID and stored data can be useful for tracking flow executions
### @start()
The `@start()` decorator marks entry points for a Flow. You can:
- Declare multiple unconditional starts: `@start()`
- Gate a start on a prior method or router label: `@start("method_or_label")`
- Provide a callable condition to control when a start should fire
All satisfied `@start()` methods will execute (often in parallel) when the Flow begins or resumes.
The `@start()` decorator is used to mark a method as the starting point of a Flow. When a Flow is started, all the methods decorated with `@start()` are executed in parallel. You can have multiple start methods in a Flow, and they will all be executed when the Flow is started.
### @listen()

View File

@@ -24,41 +24,6 @@ For file-based Knowledge Sources, make sure to place your files in a `knowledge`
Also, use relative paths from the `knowledge` directory when creating the source.
</Tip>
### Vector store (RAG) client configuration
CrewAI exposes a provider-neutral RAG client abstraction for vector stores. The default provider is ChromaDB, and Qdrant is supported as well. You can switch providers using configuration utilities.
Supported today:
- ChromaDB (default)
- Qdrant
```python Code
from crewai.rag.config.utils import set_rag_config, get_rag_client, clear_rag_config
# ChromaDB (default)
from crewai.rag.chromadb.config import ChromaDBConfig
set_rag_config(ChromaDBConfig())
chromadb_client = get_rag_client()
# Qdrant
from crewai.rag.qdrant.config import QdrantConfig
set_rag_config(QdrantConfig())
qdrant_client = get_rag_client()
# Example operations (same API for any provider)
client = qdrant_client # or chromadb_client
client.create_collection(collection_name="docs")
client.add_documents(
collection_name="docs",
documents=[{"id": "1", "content": "CrewAI enables collaborative AI agents."}],
)
results = client.search(collection_name="docs", query="collaborative agents", limit=3)
clear_rag_config() # optional reset
```
This RAG client is separate from Knowledges built-in storage. Use it when you need direct vector-store control or custom retrieval pipelines.
### Basic String Knowledge Example
```python Code
@@ -716,11 +681,11 @@ CrewAI emits events during the knowledge retrieval process that you can listen f
#### Example: Monitoring Knowledge Retrieval
```python
from crewai.events import (
from crewai.utilities.events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
BaseEventListener,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class KnowledgeMonitorListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -733,10 +733,10 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
CrewAI emits events for each chunk received during streaming:
```python
from crewai.events import (
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@@ -758,8 +758,8 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
```python
from crewai import LLM, Agent, Task, Crew
from crewai.events import LLMStreamChunkEvent
from crewai.events import BaseEventListener
from crewai.utilities.events import LLMStreamChunkEvent
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -738,17 +738,6 @@ print(f"OpenAI: {openai_time:.2f}s")
print(f"Ollama: {ollama_time:.2f}s")
```
### Entity Memory batching behavior
Entity Memory supports batching when saving multiple entities at once. When you pass a list of `EntityMemoryItem`, the system:
- Emits a single MemorySaveStartedEvent with `entity_count`
- Saves each entity internally, collecting any partial errors
- Emits MemorySaveCompletedEvent with aggregate metadata (saved count, errors)
- Raises a partial-save exception if some entities failed (includes counts)
This improves performance and observability when writing many entities in one operation.
## 2. External Memory
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
@@ -1052,8 +1041,8 @@ CrewAI emits the following memory-related events:
Track memory operation timing to optimize your application:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)
@@ -1087,8 +1076,8 @@ memory_monitor = MemoryPerformanceMonitor()
Log memory operations for debugging and insights:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemorySaveStartedEvent,
MemoryQueryStartedEvent,
MemoryRetrievalCompletedEvent
@@ -1128,8 +1117,8 @@ memory_logger = MemoryLogger()
Capture and respond to memory errors:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemorySaveFailedEvent,
MemoryQueryFailedEvent
)
@@ -1178,8 +1167,8 @@ error_tracker = MemoryErrorTracker(notify_email="admin@example.com")
Memory events can be forwarded to analytics and monitoring platforms to track performance metrics, detect anomalies, and visualize memory usage patterns:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)

View File

@@ -59,12 +59,6 @@ crew = Crew(
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
| **Guardrail Max Retries** _(optional)_ | `guardrail_max_retries` | `Optional[int]` | Maximum number of retries when guardrail validation fails. Defaults to 3. |
<Note type="warning" title="Deprecated: max_retries">
The task attribute `max_retries` is deprecated and will be removed in v1.0.0.
Use `guardrail_max_retries` instead to control retry attempts when a guardrail fails.
</Note>
## Creating Tasks
@@ -437,7 +431,7 @@ When a guardrail returns `(False, error)`:
2. The agent attempts to fix the issue
3. The process repeats until:
- The guardrail returns `(True, result)`
- Maximum retries are reached (`guardrail_max_retries`)
- Maximum retries are reached
Example with retry handling:
```python Code
@@ -458,7 +452,7 @@ task = Task(
expected_output="A valid JSON object",
agent=analyst,
guardrail=validate_json_output,
guardrail_max_retries=3 # Limit retry attempts
max_retries=3 # Limit retry attempts
)
```

View File

@@ -21,17 +21,13 @@ To use the training feature, follow these steps:
3. Run the following command:
```shell
crewai train -n <n_iterations> -f <filename.pkl>
crewai train -n <n_iterations> <filename> (optional)
```
<Tip>
Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`.
</Tip>
<Note>
If you omit `-f`, the output defaults to `trained_agents_data.pkl` in the current working directory. You can pass an absolute path to control where the file is written.
</Note>
### Training your Crew programmatically
### Training Your Crew Programmatically
To train your crew programmatically, use the following steps:
@@ -55,65 +51,19 @@ except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
```
## How trained data is used by agents
### Key Points to Note
CrewAI uses the training artifacts in two ways: during training to incorporate your human feedback, and after training to guide agents with consolidated suggestions.
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
### Training data flow
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
```mermaid
flowchart TD
A["Start training<br/>CLI: crewai train -n -f<br/>or Python: crew.train(...)"] --> B["Setup training mode<br/>- task.human_input = true<br/>- disable delegation<br/>- init training_data.pkl + trained file"]
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
subgraph "Iterations"
direction LR
C["Iteration i<br/>initial_output"] --> D["User human_feedback"]
D --> E["improved_output"]
E --> F["Append to training_data.pkl<br/>by agent_id and iteration"]
end
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.
B --> C
F --> G{"More iterations?"}
G -- "Yes" --> C
G -- "No" --> H["Evaluate per agent<br/>aggregate iterations"]
H --> I["Consolidate<br/>suggestions[] + quality + final_summary"]
I --> J["Save by agent role to trained file<br/>(default: trained_agents_data.pkl)"]
J --> K["Normal (non-training) runs"]
K --> L["Auto-load suggestions<br/>from trained_agents_data.pkl"]
L --> M["Append to prompt<br/>for consistent improvements"]
```
### During training runs
- On each iteration, the system records for every agent:
- `initial_output`: the agents first answer
- `human_feedback`: your inline feedback when prompted
- `improved_output`: the agents follow-up answer after feedback
- This data is stored in a working file named `training_data.pkl` keyed by the agents internal ID and iteration.
- While training is active, the agent automatically appends your prior human feedback to its prompt to enforce those instructions on subsequent attempts within the training session.
Training is interactive: tasks set `human_input = true`, so running in a non-interactive environment will block on user input.
### After training completes
- When `train(...)` finishes, CrewAI evaluates the collected training data per agent and produces a consolidated result containing:
- `suggestions`: clear, actionable instructions distilled from your feedback and the difference between initial/improved outputs
- `quality`: a 010 score capturing improvement
- `final_summary`: a step-by-step set of action items for future tasks
- These consolidated results are saved to the filename you pass to `train(...)` (default via CLI is `trained_agents_data.pkl`). Entries are keyed by the agents `role` so they can be applied across sessions.
- During normal (non-training) execution, each agent automatically loads its consolidated `suggestions` and appends them to the task prompt as mandatory instructions. This gives you consistent improvements without changing your agent definitions.
### File summary
- `training_data.pkl` (ephemeral, per-session):
- Structure: `agent_id -> { iteration_number: { initial_output, human_feedback, improved_output } }`
- Purpose: capture raw data and human feedback during training
- Location: saved in the current working directory (CWD)
- `trained_agents_data.pkl` (or your custom filename):
- Structure: `agent_role -> { suggestions: string[], quality: number, final_summary: string }`
- Purpose: persist consolidated guidance for future runs
- Location: written to the CWD by default; use `-f` to set a custom (including absolute) path
Happy training with CrewAI! 🚀
## Small Language Model Considerations
@@ -179,18 +129,3 @@ flowchart TD
</Warning>
</Tab>
</Tabs>
### Key Points to Note
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
- Trained guidance is applied at prompt time; it does not modify your Python/YAML agent configuration.
- Agents automatically load trained suggestions from a file named `trained_agents_data.pkl` located in the current working directory. If you trained to a different filename, either rename it to `trained_agents_data.pkl` before running, or adjust the loader in code.
- You can change the output filename when calling `crewai train` with `-f/--filename`. Absolute paths are supported if you want to save outside the CWD.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.

View File

@@ -59,7 +59,7 @@ Before using Authentication Integrations, ensure you have:
3. Click **Connect** on your desired service from the Authentication Integrations section
4. Complete the OAuth authentication flow
5. Grant necessary permissions for your use case
6. All set! Get your Enterprise Token from your [CrewAI Enterprise](https://app.crewai.com) in **Integration** tab
6. Get your Enterprise Token from your [CrewAI Enterprise](https://app.crewai.com) account page - https://app.crewai.com/crewai_plus/settings/account
<Frame>
![Integrations](/images/enterprise/enterprise_action_auth_token.png)

View File

@@ -35,22 +35,6 @@ crewai tool install <tool-name>
This installs the tool and adds it to `pyproject.toml`.
You can use the tool by importing it and adding it to your agents:
```python
from your_tool.tool import YourTool
custom_tool = YourTool()
researcher = Agent(
role='Market Research Analyst',
goal='Provide up-to-date market analysis of the AI industry',
backstory='An expert analyst with a keen eye for market trends.',
tools=[custom_tool],
verbose=True
)
```
## Creating and Publishing Tools
To create a new tool project:

View File

@@ -141,16 +141,6 @@ Traces are invaluable for troubleshooting issues with your crews:
</Step>
</Steps>
## Performance and batching
CrewAI batches trace uploads to reduce overhead on high-volume runs:
- A TraceBatchManager buffers events and sends them in batches via the Plus API client
- Reduces network chatter and improves reliability on flaky connections
- Automatically enabled in the default trace listener; no configuration needed
This yields more stable tracing under load while preserving detailed task/agent telemetry.
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with trace analysis or any other CrewAI Enterprise features.
</Card>

View File

@@ -1,178 +0,0 @@
---
title: "Automation Triggers"
description: "Automatically execute your CrewAI workflows when specific events occur in connected integrations"
icon: "bolt"
---
Automation triggers enable you to automatically run your CrewAI deployments when specific events occur in your connected integrations, creating powerful event-driven workflows that respond to real-time changes in your business systems.
## Overview
With automation triggers, you can:
- **Respond to real-time events** - Automatically execute workflows when specific conditions are met
- **Integrate with external systems** - Connect with platforms like Gmail, Outlook, OneDrive, JIRA, Slack, Stripe and more
- **Scale your automation** - Handle high-volume events without manual intervention
- **Maintain context** - Access trigger data within your crews and flows
## Managing Automation Triggers
### Viewing Available Triggers
To access and manage your automation triggers:
1. Navigate to your deployment in the CrewAI dashboard
2. Click on the **Triggers** tab to view all available trigger integrations
<Frame>
<img src="/images/enterprise/list-available-triggers.png" alt="List of available automation triggers" />
</Frame>
This view shows all the trigger integrations available for your deployment, along with their current connection status.
### Enabling and Disabling Triggers
Each trigger can be easily enabled or disabled using the toggle switch:
<Frame>
<img src="/images/enterprise/trigger-selected.png" alt="Enable or disable triggers with toggle" />
</Frame>
- **Enabled (blue toggle)**: The trigger is active and will automatically execute your deployment when the specified events occur
- **Disabled (gray toggle)**: The trigger is inactive and will not respond to events
Simply click the toggle to change the trigger state. Changes take effect immediately.
### Monitoring Trigger Executions
Track the performance and history of your triggered executions:
<Frame>
<img src="/images/enterprise/list-executions.png" alt="List of executions triggered by automation" />
</Frame>
## Building Automation
Before building your automation, it's helpful to understand the structure of trigger payloads that your crews and flows will receive.
### Payload Samples Repository
We maintain a comprehensive repository with sample payloads from various trigger sources to help you build and test your automations:
**🔗 [CrewAI Enterprise Trigger Payload Samples](https://github.com/crewAIInc/crewai-enterprise-trigger-payload-samples)**
This repository contains:
- **Real payload examples** from different trigger sources (Gmail, Google Drive, etc.)
- **Payload structure documentation** showing the format and available fields
### Triggers with Crew
Your existing crew definitions work seamlessly with triggers, you just need to have a task to parse the received payload:
```python
@CrewBase
class MyAutomatedCrew:
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
)
@task
def parse_trigger_payload(self) -> Task:
return Task(
config=self.tasks_config['parse_trigger_payload'],
agent=self.researcher(),
)
@task
def analyze_trigger_content(self) -> Task:
return Task(
config=self.tasks_config['analyze_trigger_data'],
agent=self.researcher(),
)
```
The crew will automatically receive and can access the trigger payload through the standard CrewAI context mechanisms.
<Note>
Crew and Flow inputs can include `crewai_trigger_payload`. CrewAI automatically injects this payload:
- Tasks: appended to the first task's description by default ("Trigger Payload: {crewai_trigger_payload}")
- Control via `allow_crewai_trigger_context`: set `True` to always inject, `False` to never inject
- Flows: any `@start()` method that accepts a `crewai_trigger_payload` parameter will receive it
</Note>
### Integration with Flows
For flows, you have more control over how trigger data is handled:
#### Accessing Trigger Payload
All `@start()` methods in your flows will accept an additional parameter called `crewai_trigger_payload`:
```python
from crewai.flow import Flow, start, listen
class MyAutomatedFlow(Flow):
@start()
def handle_trigger(self, crewai_trigger_payload: dict = None):
"""
This start method can receive trigger data
"""
if crewai_trigger_payload:
# Process the trigger data
trigger_id = crewai_trigger_payload.get('id')
event_data = crewai_trigger_payload.get('payload', {})
# Store in flow state for use by other methods
self.state.trigger_id = trigger_id
self.state.trigger_type = event_data
return event_data
# Handle manual execution
return None
@listen(handle_trigger)
def process_data(self, trigger_data):
"""
Process the data from the trigger
"""
# ... process the trigger
```
#### Triggering Crews from Flows
When kicking off a crew within a flow that was triggered, pass the trigger payload as it:
```python
@start()
def delegate_to_crew(self, crewai_trigger_payload: dict = None):
"""
Delegate processing to a specialized crew
"""
crew = MySpecializedCrew()
# Pass the trigger payload to the crew
result = crew.crew().kickoff(
inputs={
'a_custom_parameter': "custom_value",
'crewai_trigger_payload': crewai_trigger_payload
},
)
return result
```
## Troubleshooting
**Trigger not firing:**
- Verify the trigger is enabled
- Check integration connection status
**Execution failures:**
- Check the execution logs for error details
- If you are developing, make sure the inputs include the `crewai_trigger_payload` parameter with the correct payload
Automation triggers transform your CrewAI deployments into responsive, event-driven systems that can seamlessly integrate with your existing business processes and tools.

View File

@@ -348,31 +348,6 @@ class SelectivePersistFlow(Flow):
## Advanced State Patterns
### Conditional starts and resumable execution
Flows support conditional `@start()` and resumable execution for HITL/cyclic scenarios:
```python
from crewai.flow.flow import Flow, start, listen, and_, or_
class ResumableFlow(Flow):
@start() # unconditional start
def init(self):
...
# Conditional start: run after "init" or external trigger name
@start("init")
def maybe_begin(self):
...
@listen(and_(init, maybe_begin))
def proceed(self):
...
```
- Conditional `@start()` accepts a method name, a router label, or a callable condition.
- During resume, listeners continue from prior checkpoints; cycle/router branches honor resumption flags.
### State-Based Conditional Logic
You can use state to implement complex conditional logic in your flows:

View File

@@ -30,12 +30,6 @@ Watch this video tutorial for a step-by-step demonstration of the installation p
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
</Note>
<Note>
**OpenAI SDK Requirement**
CrewAI 0.175.0 requires `openai >= 1.13.3`. If you manage dependencies yourself, ensure your environment satisfies this constraint to avoid import/runtime issues.
</Note>
CrewAI uses the `uv` as its dependency management and package handling tool. It simplifies project setup and execution, offering a seamless experience.
If you haven't installed `uv` yet, follow **step 1** to quickly get it set up on your system, else you can skip to **step 2**.

View File

@@ -1,13 +1,13 @@
---
title: Weaviate Vector Search
description: The `WeaviateVectorSearchTool` is designed to search a Weaviate vector database for semantically similar documents using hybrid search.
description: The `WeaviateVectorSearchTool` is designed to search a Weaviate vector database for semantically similar documents.
icon: network-wired
---
## Overview
The `WeaviateVectorSearchTool` is specifically crafted for conducting semantic searches within documents stored in a Weaviate vector database. This tool allows you to find semantically similar documents to a given query, leveraging the power of vector and keyword search for more accurate and contextually relevant search results.
The `WeaviateVectorSearchTool` is specifically crafted for conducting semantic searches within documents stored in a Weaviate vector database. This tool allows you to find semantically similar documents to a given query, leveraging the power of vector embeddings for more accurate and contextually relevant search results.
[Weaviate](https://weaviate.io/) is a vector database that stores and queries vector embeddings, enabling semantic search capabilities.
@@ -39,7 +39,6 @@ from crewai_tools import WeaviateVectorSearchTool
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
alpha=0.75,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
@@ -64,7 +63,6 @@ The `WeaviateVectorSearchTool` accepts the following parameters:
- **weaviate_cluster_url**: Required. The URL of the Weaviate cluster.
- **weaviate_api_key**: Required. The API key for the Weaviate cluster.
- **limit**: Optional. The number of results to return. Default is `3`.
- **alpha**: Optional. Controls the weighting between vector and keyword (BM25) search. alpha = 0 -> BM25 only, alpha = 1 -> vector search only. Default is `0.75`.
- **vectorizer**: Optional. The vectorizer to use. If not provided, it will use `text2vec_openai` with the `nomic-embed-text` model.
- **generative_model**: Optional. The generative model to use. If not provided, it will use OpenAI's `gpt-4o`.
@@ -80,7 +78,6 @@ from weaviate.classes.config import Configure
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
alpha=0.75,
vectorizer=Configure.Vectorizer.text2vec_openai(model="nomic-embed-text"),
generative_model=Configure.Generative.openai(model="gpt-4o-mini"),
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
@@ -131,7 +128,6 @@ with test_docs.batch.dynamic() as batch:
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
alpha=0.75,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
@@ -149,7 +145,6 @@ from crewai_tools import WeaviateVectorSearchTool
weaviate_tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
alpha=0.75,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)

View File

@@ -117,19 +117,4 @@ agent = Agent(
)
```
## **Max Usage Count**
You can set a maximum usage count for a tool to prevent it from being used more than a certain number of times.
By default, the max usage count is unlimited.
```python
from crewai_tools import FileReadTool
tool = FileReadTool(max_usage_count=5, ...)
```
Ready to explore? Pick a category above to discover tools that fit your use case!

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 330 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

View File

@@ -1,7 +0,0 @@
---
title: "GET /inputs"
description: "크루가 필요로 하는 입력 확인"
openapi: "/enterprise-api.ko.yaml GET /inputs"
---

View File

@@ -1,7 +0,0 @@
---
title: "POST /kickoff"
description: "크루 실행 시작"
openapi: "/enterprise-api.ko.yaml POST /kickoff"
---

View File

@@ -1,7 +0,0 @@
---
title: "GET /status/{kickoff_id}"
description: "실행 상태 조회"
openapi: "/enterprise-api.ko.yaml GET /status/{kickoff_id}"
---

View File

@@ -44,12 +44,12 @@ Prompt Tracing을 통해 다음과 같은 작업이 가능합니다:
아래는 커스텀 이벤트 리스너 클래스의 간단한 예시입니다:
```python
from crewai.events import (
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
@@ -146,7 +146,7 @@ my_project/
```python
# my_custom_listener.py
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
@@ -279,7 +279,7 @@ CrewAI는 여러분이 청취할 수 있는 다양한 이벤트를 제공합니
임시 이벤트 처리가 필요한 경우(테스트 또는 특정 작업에 유용함), `scoped_handlers` 컨텍스트 관리자를 사용할 수 있습니다:
```python
from crewai.events import crewai_event_bus, CrewKickoffStartedEvent
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)

View File

@@ -683,11 +683,11 @@ CrewAI는 knowledge 검색 과정에서 이벤트를 발생시키며, 이벤트
#### 예시: Knowledge Retrieval 모니터링
```python
from crewai.events import (
from crewai.utilities.events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
BaseEventListener,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class KnowledgeMonitorListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -731,10 +731,10 @@ CrewAI는 LLM의 스트리밍 응답을 지원하여, 애플리케이션이 출
CrewAI는 스트리밍 중 수신되는 각 청크에 대해 이벤트를 발생시킵니다:
```python
from crewai.events import (
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@@ -756,8 +756,8 @@ CrewAI는 LLM의 스트리밍 응답을 지원하여, 애플리케이션이 출
```python
from crewai import LLM, Agent, Task, Crew
from crewai.events import LLMStreamChunkEvent
from crewai.events import BaseEventListener
from crewai.utilities.events import LLMStreamChunkEvent
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -985,8 +985,8 @@ CrewAI는 다음과 같은 메모리 관련 이벤트를 발생시킵니다:
애플리케이션을 최적화하기 위해 메모리 작업 타이밍을 추적하세요:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)
@@ -1020,8 +1020,8 @@ memory_monitor = MemoryPerformanceMonitor()
디버깅 및 인사이트를 위해 메모리 작업을 로깅합니다:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemorySaveStartedEvent,
MemoryQueryStartedEvent,
MemoryRetrievalCompletedEvent
@@ -1061,8 +1061,8 @@ memory_logger = MemoryLogger()
메모리 오류를 캡처하고 대응합니다:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemorySaveFailedEvent,
MemoryQueryFailedEvent
)
@@ -1111,8 +1111,8 @@ error_tracker = MemoryErrorTracker(notify_email="admin@example.com")
메모리 이벤트는 분석 및 모니터링 플랫폼으로 전달되어 성능 지표를 추적하고, 이상 징후를 감지하며, 메모리 사용 패턴을 시각화할 수 있습니다:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)

View File

@@ -59,7 +59,6 @@ crew = Crew(
| **Pydantic 출력** _(선택 사항)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | 태스크 출력용 Pydantic 모델입니다. |
| **콜백** _(선택 사항)_ | `callback` | `Optional[Any]` | 태스크 완료 후 실행할 함수/객체입니다. |
| **가드레일** _(선택 사항)_ | `guardrail` | `Optional[Callable]` | 다음 태스크로 진행하기 전에 태스크 출력을 검증하는 함수입니다. |
| **가드레일 최대 재시도** _(선택 사항)_ | `guardrail_max_retries` | `Optional[int]` | 가드레일 검증 실패 시 최대 재시도 횟수입니다. 기본값은 3입니다. |
## 작업 생성하기
@@ -449,7 +448,7 @@ task = Task(
expected_output="A valid JSON object",
agent=analyst,
guardrail=validate_json_output,
guardrail_max_retries=3 # 재시도 횟수 제한
max_retries=3 # Limit retry attempts
)
```
@@ -900,4 +899,4 @@ except RuntimeError as e:
작업(task)은 CrewAI 에이전트의 행동을 이끄는 원동력입니다.
작업과 그 결과를 적절하게 정의함으로써, 에이전트가 독립적으로 또는 협업 단위로 효과적으로 작동할 수 있는 기반을 마련할 수 있습니다.
작업에 적합한 도구를 장착하고, 실행 과정을 이해하며, 견고한 검증 절차를 따르는 것은 CrewAI의 잠재력을 극대화하는 데 필수적입니다.
이를 통해 에이전트가 할당된 작업에 효과적으로 준비되고, 작업이 의도대로 수행될 수 있습니다.
이를 통해 에이전트가 할당된 작업에 효과적으로 준비되고, 작업이 의도대로 수행될 수 있습니다.

View File

@@ -58,7 +58,7 @@ Authentication Integrations를 사용하기 전에 다음이 준비되어 있는
3. Authentication Integrations 섹션에서 원하는 서비스의 **Connect** 버튼을 클릭합니다.
4. OAuth 인증 과정을 완료합니다.
5. 사용 사례에 필요한 권한을 부여합니다.
6. 완료! [CrewAI Enterprise](https://app.crewai.com)의 **Integration** 탭에서 Enterprise Token을 받습니다.
6. [CrewAI Enterprise](https://app.crewai.com) 계정 페이지 - https://app.crewai.com/crewai_plus/settings/account 에서 Enterprise Token을 받습니다.
<Frame>
![Integrations](/images/enterprise/enterprise_action_auth_token.png)
@@ -176,4 +176,4 @@ crew를 배포하고 각 통합을 특정 사용자에게 범위 지정할 수
<Card title="도움이 필요하신가요?" icon="headset" href="mailto:support@crewai.com">
통합 설정이나 문제 해결에 대한 지원이 필요하시면 저희 지원팀에 문의하세요.
</Card>
</Card>

View File

@@ -1,171 +0,0 @@
---
title: "자동화 트리거"
description: "연결된 통합에서 특정 이벤트가 발생할 때 CrewAI 워크플로우를 자동으로 실행합니다"
icon: "bolt"
---
자동화 트리거를 사용하면 연결된 통합에서 특정 이벤트가 발생할 때 CrewAI 배포를 자동으로 실행할 수 있어, 비즈니스 시스템의 실시간 변화에 반응하는 강력한 이벤트 기반 워크플로우를 만들 수 있습니다.
## 개요
자동화 트리거를 사용하면 다음을 수행할 수 있습니다:
- **실시간 이벤트에 응답** - 특정 조건이 충족될 때 워크플로우를 자동으로 실행
- **외부 시스템과 통합** - Gmail, Outlook, OneDrive, JIRA, Slack, Stripe 등의 플랫폼과 연결
- **자동화 확장** - 수동 개입 없이 대용량 이벤트 처리
- **컨텍스트 유지** - crew와 flow 내에서 트리거 데이터에 액세스
## 자동화 트리거 관리
### 사용 가능한 트리거 보기
자동화 트리거에 액세스하고 관리하려면:
1. CrewAI 대시보드에서 배포로 이동
2. **트리거** 탭을 클릭하여 사용 가능한 모든 트리거 통합 보기
<Frame>
<img src="/images/enterprise/list-available-triggers.png" alt="사용 가능한 자동화 트리거 목록" />
</Frame>
이 보기는 배포에 사용 가능한 모든 트리거 통합과 현재 연결 상태를 보여줍니다.
### 트리거 활성화 및 비활성화
각 트리거는 토글 스위치를 사용하여 쉽게 활성화하거나 비활성화할 수 있습니다:
<Frame>
<img src="/images/enterprise/trigger-selected.png" alt="토글로 트리거 활성화 또는 비활성화" />
</Frame>
- **활성화됨 (파란색 토글)**: 트리거가 활성 상태이며 지정된 이벤트가 발생할 때 배포를 자동으로 실행합니다
- **비활성화됨 (회색 토글)**: 트리거가 비활성 상태이며 이벤트에 응답하지 않습니다
토글을 클릭하기만 하면 트리거 상태를 변경할 수 있습니다. 변경 사항은 즉시 적용됩니다.
### 트리거 실행 모니터링
트리거된 실행의 성능과 기록을 추적합니다:
<Frame>
<img src="/images/enterprise/list-executions.png" alt="자동화에 의해 트리거된 실행 목록" />
</Frame>
## 자동화 구축
자동화를 구축하기 전에 crew와 flow가 받을 트리거 페이로드의 구조를 이해하는 것이 도움이 됩니다.
### 페이로드 샘플 저장소
자동화를 구축하고 테스트하는 데 도움이 되도록 다양한 트리거 소스의 샘플 페이로드가 포함된 포괄적인 저장소를 유지 관리하고 있습니다:
**🔗 [CrewAI Enterprise 트리거 페이로드 샘플](https://github.com/crewAIInc/crewai-enterprise-trigger-payload-samples)**
이 저장소에는 다음이 포함되어 있습니다:
- **실제 페이로드 예제** - 다양한 트리거 소스(Gmail, Google Drive 등)에서 가져온 예제
- **페이로드 구조 문서** - 형식과 사용 가능한 필드를 보여주는 문서
### Crew와 트리거
기존 crew 정의는 트리거와 완벽하게 작동하며, 받은 페이로드를 분석하는 작업만 있으면 됩니다:
```python
@CrewBase
class MyAutomatedCrew:
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
)
@task
def parse_trigger_payload(self) -> Task:
return Task(
config=self.tasks_config['parse_trigger_payload'],
agent=self.researcher(),
)
@task
def analyze_trigger_content(self) -> Task:
return Task(
config=self.tasks_config['analyze_trigger_data'],
agent=self.researcher(),
)
```
crew는 자동으로 트리거 페이로드를 받고 표준 CrewAI 컨텍스트 메커니즘을 통해 액세스할 수 있습니다.
### Flow와의 통합
flow의 경우 트리거 데이터 처리 방법을 더 세밀하게 제어할 수 있습니다:
#### 트리거 페이로드 액세스
flow의 모든 `@start()` 메서드는 `crewai_trigger_payload`라는 추가 매개변수를 허용합니다:
```python
from crewai.flow import Flow, start, listen
class MyAutomatedFlow(Flow):
@start()
def handle_trigger(self, crewai_trigger_payload: dict = None):
"""
이 start 메서드는 트리거 데이터를 받을 수 있습니다
"""
if crewai_trigger_payload:
# 트리거 데이터 처리
trigger_id = crewai_trigger_payload.get('id')
event_data = crewai_trigger_payload.get('payload', {})
# 다른 메서드에서 사용할 수 있도록 flow 상태에 저장
self.state.trigger_id = trigger_id
self.state.trigger_type = event_data
return event_data
# 수동 실행 처리
return None
@listen(handle_trigger)
def process_data(self, trigger_data):
"""
트리거 데이터 처리
"""
# ... 트리거 처리
```
#### Flow에서 Crew 트리거하기
트리거된 flow 내에서 crew를 시작할 때 트리거 페이로드를 전달합니다:
```python
@start()
def delegate_to_crew(self, crewai_trigger_payload: dict = None):
"""
전문 crew에 처리 위임
"""
crew = MySpecializedCrew()
# crew에 트리거 페이로드 전달
result = crew.crew().kickoff(
inputs={
'a_custom_parameter': "custom_value",
'crewai_trigger_payload': crewai_trigger_payload
},
)
return result
```
## 문제 해결
**트리거가 작동하지 않는 경우:**
- 트리거가 활성화되어 있는지 확인
- 통합 연결 상태 확인
**실행 실패:**
- 오류 세부 정보는 실행 로그 확인
- 개발 중인 경우 입력에 올바른 페이로드가 포함된 `crewai_trigger_payload` 매개변수가 포함되어 있는지 확인
자동화 트리거는 CrewAI 배포를 기존 비즈니스 프로세스 및 도구와 완벽하게 통합할 수 있는 반응형 이벤트 기반 시스템으로 변환합니다.

View File

@@ -1,65 +1,65 @@
---
title: 소개
description: 함께 협력하여 복잡한 작업을 해결하는 AI agent 팀 구축
description: 함께 협력하여 복잡한 작업을 해결하는 AI 에이전트 팀 구축
icon: handshake
---
# CrewAI란 무엇인가?
**CrewAI는 LangChain이나 기타 agent 프레임워크에 의존하지 않고, 완전히 독립적으로 처음부터 스크래치로 개발된 가볍고 매우 빠른 Python 프레임워크입니다.**
**CrewAI는 완전히 독립적으로, LangChain이나 기타 agent 프레임워크에 의존하지 않고 처음부터 스크래치로 개발된 가볍고 매우 빠른 Python 프레임워크입니다.**
CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공하여, 어떤 시나리오에도 맞춤화된 자율 AI agent를 만드는 데 이상적입니다:
- **[CrewAI Crews](/ko/guides/crews/first-crew)**: 자율성과 협업 지능을 극대화하여, 각 agent가 특정 역할, 도구, 목표를 가진 AI 팀을 만들 수 있습니다.
- **[CrewAI Flows](/ko/guides/flows/first-flow)**: 이벤트 기반의 세밀한 제어와 단일 LLM 호출을 통한 정확한 작업 orchestration을 지원하며, Crews 네이티브로 통합됩니다.
- **[CrewAI Flows](/ko/guides/flows/first-flow)**: 세밀한 이벤트 기반 제어와 단일 LLM 호출을 통한 정확한 작업 오케스트레이션을 가능하게 하며 Crews 네이티브로 지원합니다.
10만 명이 넘는 개발자가 커뮤니티 과정을 통해 인증을 받았으며, CrewAI는 기업용 AI 자동화의 표준으로 빠르게 자리잡고 있습니다.
## Crew의 작동 방식
## 크루 작동 방식
<Note>
회사가 비즈니스 목표를 달성하기 위해 여러 부서(영업, 엔지니어링, 마케팅 등)가 리더십 아래에서 함께 일하는 것처럼, CrewAI는 복잡한 작업을 달성하기 위해 전문화된 역할의 AI agent들이 협력하는 조직을 만들 수 있도록 도와줍니다.
회사가 비즈니스 목표를 달성하기 위해 여러 부서(영업, 엔지니어링, 마케팅 등)가 리더십 아래에서 함께 일하는 것처럼, CrewAI는 복잡한 작업을 달성하기 위해 전문화된 역할의 AI 에이전트들이 협력하는 조직을 만들 수 있도록 도와줍니다.
</Note>
<Frame caption="CrewAI Framework Overview">
<Frame caption="CrewAI 프레임워크 개요">
<img src="/images/crews.png" alt="CrewAI Framework Overview" />
</Frame>
| 구성 요소 | 설명 | 주요 특징 |
|:----------|:----:|:----------|
| **Crew** | 최상위 조직 | • AI agent 팀 관리<br/>• workflow 감독<br/>• 협업 보장<br/>• 결과 전달 |
| **AI agents** | 전문 팀원 | • 특정 역할 보유(Researcher, Writer 등)<br/>• 지정된 도구 사용<br/>• 작업 위임 가능<br/>• 자율적 의사결정 가능 |
| **Process** | workflow 관리 시스템 | • 협업 패턴 정의<br/>• 작업 할당 제어<br/>• 상호작용 관리<br/>• 효율적 실행 보장 |
| **Task** | 개별 할당 | • 명확한 목표 보유<br/>• 특정 도구 사용<br/>• 더 큰 프로세스에 기여<br/>• 실행 가능한 결과 도출 |
| 구성 요소 | 설명 | 주요 특징 |
|:--------------|:---------------------:|:----------|
| **크루** | 최상위 조직 | • AI 에이전트 팀 관리<br/>• 워크플로우 감독<br/>• 협업 보장<br/>• 결과 전달 |
| **AI 에이전트** | 전문 팀원 | • 특정 역할 보유(연구원, 작가 등)<br/>• 지정된 도구 사용<br/>• 작업 위임 가능<br/>• 자율적 의사결정 가능 |
| **프로세스** | 워크플로우 관리 시스템 | • 협업 패턴 정의<br/>• 작업 할당 제어<br/>• 상호작용 관리<br/>• 효율적 실행 보장 |
| **작업** | 개별 할당 | • 명확한 목표 보유<br/>• 특정 도구 사용<br/>• 더 큰 프로세스에 기여<br/>• 실행 가능한 결과 도출 |
### 전체 구조의 동작 방식
### 어떻게 모두 함께 작동하는가
1. **Crew**가 전체 운영을 조직합니다
2. **AI agents**가 자신들의 전문 작업을 수행합니다
2. **AI Agents**가 자신들의 전문 작업을 수행합니다
3. **Process**가 원활한 협업을 보장합니다
4. **Tasks**가 완료되어 목표를 달성합니다
## 주요 기능
<CardGroup cols={2}>
<Card title="역할 기반 agent" icon="users">
Researcher, Analyst, Writer 등 다양한 역할 전문성, 목표를 가진 agent를 생성할 수 있습니다
<Card title="역할 기반 에이전트" icon="users">
연구원, 분석가, 작가 등 다양한 역할, 전문성, 목표를 가진 전문 에이전트를 생성할 수 있습니다
</Card>
<Card title="유연한 도구" icon="screwdriver-wrench">
agent에게 외부 서비스 및 데이터 소스와 상호작용할 수 있는 맞춤형 도구와 API를 제공합니다
에이전트에게 외부 서비스 및 데이터 소스와 상호작용할 수 있는 맞춤형 도구와 API를 제공합니다
</Card>
<Card title="지능형 협업" icon="people-arrows">
agent들이 함께 작업하며, 인사이트를 공유하고 작업을 조율하여 복잡한 목표를 달성합니다
에이전트가 함께 작업하며, 인사이트를 공유하고 작업을 조율하여 복잡한 목표를 달성합니다
</Card>
<Card title="작업 관리" icon="list-check">
순차적 또는 병렬 workflow를 정의할 수 있으며, agent가 작업 의존성을 자동으로 처리합니다
순차적 또는 병렬 워크플로우를 정의할 수 있으며, 에이전트가 작업 의존성을 자동으로 처리합니다
</Card>
</CardGroup>
## Flow의 작동 원리
## 플로우의 작동 원리
<Note>
Crew 자율 협업에 탁월하다면, Flow는 구조화된 자동화를 제공하여 workflow 실행에 대한 세밀한 제어를 제공합니다. Flow는 조건부 로직, 반복문, 동적 상태 관리를 정확하게 처리하면서 작업이 신뢰성 있게, 안전하게, 효율적으로 실행되도록 보장합니다. FlowCrew와 원활하게 통합되어 높은 자율성과 엄격한 제어의 균형을 이룰 수 있게 해줍니다.
crew 자율 협업에 탁월한 반면, 플로우는 구조화된 자동화를 제공하여 워크플로우 실행에 대한 세밀한 제어를 제공합니다. 플로우는 조건부 로직, 반복문, 동적 상태 관리를 정확하게 처리하면서 작업이 신뢰성 있게, 안전하게, 효율적으로 실행되도록 보장합니다. 플로우crew와 원활하게 통합되어 높은 자율성과 엄격한 제어의 균형을 이룰 수 있게 해줍니다.
</Note>
<Frame caption="CrewAI Framework Overview">
@@ -68,41 +68,41 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
| 구성 요소 | 설명 | 주요 기능 |
|:----------|:-----------:|:------------|
| **Flow** | 구조화된 workflow orchestration | • 실행 경로 관리<br/>• 상태 전환 처리<br/>• 작업 순서 제어<br/>• 신뢰성 있는 실행 보장 |
| **Events** | workflow 액션 트리거 | • 특정 프로세스 시작<br/>• 동적 응답 가능<br/>• 조건부 분기 지원<br/>• 실시간 적응 허용 |
| **States** | workflow 실행 컨텍스트 | • 실행 데이터 유지<br/>• 데이터 영속성 지원<br/>• 재개 가능성 보장<br/>• 실행 무결성 확보 |
| **Crew Support** | workflow 자동화 강화 | • 필요할 때 agency 삽입<br/>• 구조화된 workflow 보완<br/>• 자동화와 인텔리전스의 균형<br/>• 적응적 의사결정 지원 |
| **Flow** | 구조화된 워크플로우 오케스트레이션 | • 실행 경로 관리<br/>• 상태 전환 처리<br/>• 작업 순서 제어<br/>• 신뢰성 있는 실행 보장 |
| **Events** | 워크플로우 액션 트리거 | • 특정 프로세스 시작<br/>• 동적 응답 가능<br/>• 조건부 분기 지원<br/>• 실시간 적응 허용 |
| **States** | 워크플로우 실행 컨텍스트 | • 실행 데이터 유지<br/>• 데이터 영속성 지원<br/>• 재개 가능성 보장<br/>• 실행 무결성 확보 |
| **Crew Support** | 워크플로우 자동화 강화 | • 필요할 때 agency 삽입<br/>• 구조화된 워크플로우 보완<br/>• 자동화와 인텔리전스의 균형<br/>• 적응적 의사결정 지원 |
### 주요 기능
<CardGroup cols={2}>
<Card title="이벤트 기반 orchestration" icon="bolt">
이벤트에 동적으로 반응하여 정밀한 실행 경로 정의합니다
<Card title="이벤트 기반 오케스트레이션" icon="bolt">
이벤트에 동적으로 반응하여 정밀한 실행 경로 정의
</Card>
<Card title="세밀한 제어" icon="sliders">
workflow 상태와 조건부 실행을 안전하고 효율적으로 관리합니다
워크플로우 상태와 조건부 실행을 안전하고 효율적으로 관리
</Card>
<Card title="네이티브 Crew 통합" icon="puzzle-piece">
Crews와 손쉽게 결합하여 자율성과 지능 강화합니다
Crews와 손쉽게 결합하여 자율성과 지능 강화
</Card>
<Card title="결정론적 실행" icon="route">
명시적 제어 흐름과 오류 처리로 예측 가능한 결과 보장합니다
명시적 제어 흐름과 오류 처리로 예측 가능한 결과 보장
</Card>
</CardGroup>
## CrewFlow를 언제 사용할까
## 크루(Crews)와 플로우(Flows)를 언제 사용할까
<Note>
[Crew](/ko/guides/crews/first-crew)와 [Flow](/ko/guides/flows/first-flow)를 언제 사용할지 이해하는 것은 CrewAI의 잠재력을 애플리케이션에서 극대화하는 데 핵심적입니다.
[크루](/ko/guides/crews/first-crew)와 [플로우](/ko/guides/flows/first-flow)를 언제 사용할지 이해하는 것은 CrewAI의 잠재력을 애플리케이션에서 극대화하는 데 핵심적입니다.
</Note>
| 사용 사례 | 권장 접근 방식 | 이유 |
|:---------|:---------------------|:-----|
| **개방형 연구** | [Crew](/ko/guides/crews/first-crew) | 창의적 사고, 탐색, 적응이 필요한 작업에 적합 |
| **콘텐츠 생성** | [Crew](/ko/guides/crews/first-crew) | 기사, 보고서, 마케팅 자료 등 협업형 생성에 적합 |
| **의사결정 workflow** | [Flow](/ko/guides/flows/first-flow) | 예측 가능하고 감사 가능한 의사결정 경로 및 정밀 제어가 필요할 때 |
| **API orchestration** | [Flow](/ko/guides/flows/first-flow) | 특정 순서로 여러 외부 서비스에 신뢰성 있게 통합할 때 |
| **하이브리드 애플리케이션** | 혼합 접근 방식 | [Flow](/ko/guides/flows/first-flow)로 전체 프로세스를 orchestration하고, [Crew](/ko/guides/crews/first-crew)로 복잡한 하위 작업을 처리 |
| **개방형 연구** | [크루](/ko/guides/crews/first-crew) | 과제가 창의적 사고, 탐색, 적응이 필요할 때 |
| **콘텐츠 생성** | [크루](/ko/guides/crews/first-crew) | 기사, 보고서, 마케팅 자료 등 협업형 생성 |
| **의사결정 워크플로우** | [플로우](/ko/guides/flows/first-flow) | 예측 가능하고 감사 가능한 의사결정 경로 및 정밀 제어가 필요할 때 |
| **API 오케스트레이션** | [플로우](/ko/guides/flows/first-flow) | 특정 순서로 여러 외부 서비스에 신뢰성 있게 통합할 때 |
| **하이브리드 애플리케이션** | 혼합 접근 방식 | [플로우](/ko/guides/flows/first-flow)로 전체 프로세스를 오케스트레이션하고, [크루](/ko/guides/crews/first-crew)로 복잡한 하위 작업을 처리 |
### 의사결정 프레임워크
@@ -112,8 +112,8 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
## CrewAI를 선택해야 하는 이유?
- 🧠 **자율적 운영**: agent가 자신의 역할과 사용 가능한 도구를 바탕으로 지능적인 결정을 내립니다
- 📝 **자연스러운 상호작용**: agent가 인간 팀원처럼 소통하고 협업합니다
- 🧠 **자율적 운영**: 에이전트가 자신의 역할과 사용 가능한 도구를 바탕으로 지능적인 결정을 내립니다
- 📝 **자연스러운 상호작용**: 에이전트가 인간 팀원처럼 소통하고 협업합니다
- 🛠️ **확장 가능한 설계**: 새로운 도구, 역할, 기능을 쉽게 추가할 수 있습니다
- 🚀 **프로덕션 준비 완료**: 실제 환경에서의 신뢰성과 확장성을 고려하여 구축되었습니다
- 🔒 **보안 중심**: 엔터프라이즈 보안 요구 사항을 고려하여 설계되었습니다
@@ -134,7 +134,7 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
icon="diagram-project"
href="/ko/guides/flows/first-flow"
>
실행을 정밀하게 제어할 수 있는 구조화된, 이벤트 기반 workflow를 만드는 방법을 배워보세요.
실행을 정밀하게 제어할 수 있는 구조화된, 이벤트 기반 워크플로우를 만드는 방법을 배워보세요.
</Card>
</CardGroup>
@@ -151,7 +151,7 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
icon="bolt"
href="ko/quickstart"
>
빠른 시작 가이드를 따라 첫 번째 CrewAI agent를 만들고 직접 경험해 보세요.
빠른 시작 가이드를 따라 첫 번째 CrewAI 에이전트를 만들고 직접 경험해 보세요.
</Card>
<Card
title="커뮤니티 가입하기"

View File

@@ -1,7 +0,0 @@
---
title: "GET /inputs"
description: "Obter entradas necessárias para sua crew"
openapi: "/enterprise-api.pt-BR.yaml GET /inputs"
---

View File

@@ -1,7 +0,0 @@
---
title: "POST /kickoff"
description: "Iniciar a execução da crew"
openapi: "/enterprise-api.pt-BR.yaml POST /kickoff"
---

View File

@@ -1,7 +0,0 @@
---
title: "GET /status/{kickoff_id}"
description: "Obter o status da execução"
openapi: "/enterprise-api.pt-BR.yaml GET /status/{kickoff_id}"
---

View File

@@ -44,12 +44,12 @@ Para criar um listener de evento personalizado, você precisa:
Veja um exemplo simples de uma classe de listener de evento personalizado:
```python
from crewai.events import (
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MeuListenerPersonalizado(BaseEventListener):
def __init__(self):
@@ -146,7 +146,7 @@ my_project/
```python
# my_custom_listener.py
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... importe events ...
class MyCustomListener(BaseEventListener):
@@ -268,7 +268,7 @@ Campos adicionais variam pelo tipo de evento. Por exemplo, `CrewKickoffCompleted
Para lidar temporariamente com eventos (útil para testes ou operações específicas), você pode usar o context manager `scoped_handlers`:
```python
from crewai.events import crewai_event_bus, CrewKickoffStartedEvent
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)

View File

@@ -681,11 +681,11 @@ O CrewAI emite eventos durante o processo de recuperação de knowledge que voc
#### Exemplo: Monitorando Recuperação de Knowledge
```python
from crewai.events import (
from crewai.utilities.events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
BaseEventListener,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class KnowledgeMonitorListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -708,10 +708,10 @@ O CrewAI suporta respostas em streaming de LLMs, permitindo que sua aplicação
O CrewAI emite eventos para cada chunk recebido durante o streaming:
```python
from crewai.events import (
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -59,7 +59,6 @@ crew = Crew(
| **Output Pydantic** _(opcional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | Um modelo Pydantic para a saída da tarefa. |
| **Callback** _(opcional)_ | `callback` | `Optional[Any]` | Função/objeto a ser executado após a conclusão da tarefa. |
| **Guardrail** _(opcional)_ | `guardrail` | `Optional[Callable]` | Função para validar a saída da tarefa antes de prosseguir para a próxima tarefa. |
| **Max Tentativas Guardrail** _(opcional)_ | `guardrail_max_retries` | `Optional[int]` | Número máximo de tentativas quando a validação do guardrail falha. Padrão é 3. |
## Criando Tarefas
@@ -451,7 +450,7 @@ task = Task(
expected_output="Um objeto JSON válido",
agent=analyst,
guardrail=validate_json_output,
guardrail_max_retries=3 # Limite de tentativas
max_retries=3 # Limite de tentativas
)
```
@@ -936,7 +935,7 @@ task = Task(
description="Gerar dados",
expected_output="Dados válidos",
guardrail=validate_data,
guardrail_max_retries=5 # Sobrescreve o limite padrão de tentativas
max_retries=5 # Sobrescreve o limite padrão de tentativas
)
```

View File

@@ -58,7 +58,7 @@ Antes de usar as Integrações de Autenticação, certifique-se de que você pos
3. Clique em **Conectar** no serviço desejado na seção Integrações de Autenticação
4. Complete o fluxo de autenticação OAuth
5. Conceda as permissões necessárias para seu caso de uso
6. Pronto! Obtenha seu Token Enterprise do [CrewAI Enterprise](https://app.crewai.com) na aba **Integration**
6. Obtenha seu Token Enterprise na sua página de conta do [CrewAI Enterprise](https://app.crewai.com) - https://app.crewai.com/crewai_plus/settings/account
<Frame>
![Integrações](/images/enterprise/enterprise_action_auth_token.png)
@@ -176,4 +176,4 @@ Use o `user_bearer_token` para direcionar a integração a um usuário específi
<Card title="Precisa de ajuda?" icon="headset" href="mailto:support@crewai.com">
Entre em contato com nosso time de suporte para assistência com a configuração de integrações ou solução de problemas.
</Card>
</Card>

View File

@@ -1,171 +0,0 @@
---
title: "Triggers de Automação"
description: "Execute automaticamente seus workflows CrewAI quando eventos específicos ocorrem em integrações conectadas"
icon: "bolt"
---
Os triggers de automação permitem executar automaticamente suas implantações CrewAI quando eventos específicos ocorrem em suas integrações conectadas, criando workflows poderosos orientados por eventos que respondem a mudanças em tempo real em seus sistemas de negócio.
## Visão Geral
Com triggers de automação, você pode:
- **Responder a eventos em tempo real** - Execute workflows automaticamente quando condições específicas forem atendidas
- **Integrar com sistemas externos** - Conecte com plataformas como Gmail, Outlook, OneDrive, JIRA, Slack, Stripe e muito mais
- **Escalar sua automação** - Lide com eventos de alto volume sem intervenção manual
- **Manter contexto** - Acesse dados do trigger dentro de suas crews e flows
## Gerenciando Triggers de Automação
### Visualizando Triggers Disponíveis
Para acessar e gerenciar seus triggers de automação:
1. Navegue até sua implantação no painel do CrewAI
2. Clique na aba **Triggers** para visualizar todas as integrações de trigger disponíveis
<Frame>
<img src="/images/enterprise/list-available-triggers.png" alt="Lista de triggers de automação disponíveis" />
</Frame>
Esta visualização mostra todas as integrações de trigger disponíveis para sua implantação, junto com seus status de conexão atuais.
### Habilitando e Desabilitando Triggers
Cada trigger pode ser facilmente habilitado ou desabilitado usando o botão de alternância:
<Frame>
<img src="/images/enterprise/trigger-selected.png" alt="Habilitar ou desabilitar triggers com alternância" />
</Frame>
- **Habilitado (alternância azul)**: O trigger está ativo e executará automaticamente sua implantação quando os eventos especificados ocorrerem
- **Desabilitado (alternância cinza)**: O trigger está inativo e não responderá a eventos
Simplesmente clique na alternância para mudar o estado do trigger. As alterações entram em vigor imediatamente.
### Monitorando Execuções de Trigger
Acompanhe o desempenho e histórico de suas execuções acionadas:
<Frame>
<img src="/images/enterprise/list-executions.png" alt="Lista de execuções acionadas por automação" />
</Frame>
## Construindo Automação
Antes de construir sua automação, é útil entender a estrutura dos payloads de trigger que suas crews e flows receberão.
### Repositório de Amostras de Payload
Mantemos um repositório abrangente com amostras de payload de várias fontes de trigger para ajudá-lo a construir e testar suas automações:
**🔗 [Amostras de Payload de Trigger CrewAI Enterprise](https://github.com/crewAIInc/crewai-enterprise-trigger-payload-samples)**
Este repositório contém:
- **Exemplos reais de payload** de diferentes fontes de trigger (Gmail, Google Drive, etc.)
- **Documentação da estrutura de payload** mostrando o formato e campos disponíveis
### Triggers com Crew
Suas definições de crew existentes funcionam perfeitamente com triggers, você só precisa ter uma tarefa para analisar o payload recebido:
```python
@CrewBase
class MinhaCrewAutomatizada:
@agent
def pesquisador(self) -> Agent:
return Agent(
config=self.agents_config['pesquisador'],
)
@task
def analisar_payload_trigger(self) -> Task:
return Task(
config=self.tasks_config['analisar_payload_trigger'],
agent=self.pesquisador(),
)
@task
def analisar_conteudo_trigger(self) -> Task:
return Task(
config=self.tasks_config['analisar_dados_trigger'],
agent=self.pesquisador(),
)
```
A crew receberá automaticamente e pode acessar o payload do trigger através dos mecanismos de contexto padrão do CrewAI.
### Integração com Flows
Para flows, você tem mais controle sobre como os dados do trigger são tratados:
#### Acessando Payload do Trigger
Todos os métodos `@start()` em seus flows aceitarão um parâmetro adicional chamado `crewai_trigger_payload`:
```python
from crewai.flow import Flow, start, listen
class MeuFlowAutomatizado(Flow):
@start()
def lidar_com_trigger(self, crewai_trigger_payload: dict = None):
"""
Este método start pode receber dados do trigger
"""
if crewai_trigger_payload:
# Processa os dados do trigger
trigger_id = crewai_trigger_payload.get('id')
dados_evento = crewai_trigger_payload.get('payload', {})
# Armazena no estado do flow para uso por outros métodos
self.state.trigger_id = trigger_id
self.state.trigger_type = dados_evento
return dados_evento
# Lida com execução manual
return None
@listen(lidar_com_trigger)
def processar_dados(self, dados_trigger):
"""
Processa os dados do trigger
"""
# ... processa o trigger
```
#### Acionando Crews a partir de Flows
Ao iniciar uma crew dentro de um flow que foi acionado, passe o payload do trigger conforme ele:
```python
@start()
def delegar_para_crew(self, crewai_trigger_payload: dict = None):
"""
Delega processamento para uma crew especializada
"""
crew = MinhaCrewEspecializada()
# Passa o payload do trigger para a crew
resultado = crew.crew().kickoff(
inputs={
'parametro_personalizado': "valor_personalizado",
'crewai_trigger_payload': crewai_trigger_payload
},
)
return resultado
```
## Solução de Problemas
**Trigger não está sendo disparado:**
- Verifique se o trigger está habilitado
- Verifique o status de conexão da integração
**Falhas de execução:**
- Verifique os logs de execução para detalhes do erro
- Se você está desenvolvendo, certifique-se de que as entradas incluem o parâmetro `crewai_trigger_payload` com o payload correto
Os triggers de automação transformam suas implantações CrewAI em sistemas responsivos orientados por eventos que podem se integrar perfeitamente com seus processos de negócio e ferramentas existentes.

View File

@@ -48,7 +48,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.69.0"]
tools = ["crewai-tools~=0.62.0"]
embeddings = [
"tiktoken~=0.8.0"
]
@@ -68,16 +68,12 @@ docling = [
aisuite = [
"aisuite>=0.1.10",
]
qdrant = [
"qdrant-client[fastembed]>=1.14.3",
]
[tool.uv]
dev-dependencies = [
"ruff>=0.12.11",
"mypy>=1.17.1",
"pre-commit>=4.3.0",
"bandit>=1.8.6",
"ruff>=0.8.2",
"mypy>=1.10.0",
"pre-commit>=3.6.0",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"pytest>=8.0.0",
@@ -89,50 +85,19 @@ dev-dependencies = [
"pytest-timeout>=2.3.1",
"pytest-xdist>=3.6.1",
"pytest-split>=0.9.0",
"types-requests==2.32.*",
"types-pyyaml==6.0.*",
"types-regex==2024.11.6.*",
"types-appdirs==1.4.*",
]
[project.scripts]
crewai = "crewai.cli.cli:crewai"
[tool.ruff]
exclude = [
"src/crewai/cli/templates",
]
fix = true
[tool.ruff.lint]
select = [
"B006",
"UP006",
"UP007",
"UP035",
"UP037",
"UP004",
"UP008",
"UP010",
"UP018",
"UP031",
"UP032",
"I001",
"I002",
]
[tool.mypy]
strict = true
exclude = ["src/crewai/cli/templates"]
ignore_missing_imports = true
disable_error_code = 'import-untyped'
exclude = ["cli/templates"]
[tool.bandit]
exclude_dirs = ["src/crewai/cli/templates"]
[tool.pytest.ini_options]
markers = [
"telemetry: mark test as a telemetry test (don't mock telemetry)",
]
# PyTorch index configuration, since torch 2.5.0 is not compatible with python 3.13
[[tool.uv.index]]
name = "pytorch-nightly"

View File

@@ -1,30 +1,4 @@
import warnings
from typing import Any
def _suppress_pydantic_deprecation_warnings() -> None:
"""Suppress Pydantic deprecation warnings using targeted monkey patch."""
original_warn = warnings.warn
def filtered_warn(
message: Any,
category: type | None = None,
stacklevel: int = 1,
source: Any = None,
) -> Any:
if (
category
and hasattr(category, "__module__")
and category.__module__ == "pydantic.warnings"
):
return None
return original_warn(message, category, stacklevel + 1, source)
setattr(warnings, "warn", filtered_warn)
_suppress_pydantic_deprecation_warnings()
import threading
import urllib.request
@@ -41,10 +15,17 @@ from crewai.tasks.llm_guardrail import LLMGuardrail
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
warnings.filterwarnings(
"ignore",
message="Pydantic serializer warnings:",
category=UserWarning,
module="pydantic.main",
)
_telemetry_submitted = False
def _track_install() -> None:
def _track_install():
"""Track package installation/first-use via Scarf analytics."""
global _telemetry_submitted
@@ -55,7 +36,7 @@ def _track_install() -> None:
pixel_url = "https://api.scarf.sh/v2/packages/CrewAI/crewai/docs/00f2dad1-8334-4a39-934e-003b2e1146db"
req = urllib.request.Request(pixel_url)
req.add_header("User-Agent", f"CrewAI-Python/{__version__}")
req.add_header('User-Agent', f'CrewAI-Python/{__version__}')
with urllib.request.urlopen(req, timeout=2): # nosec B310
_telemetry_submitted = True
@@ -64,7 +45,7 @@ def _track_install() -> None:
pass
def _track_install_async() -> None:
def _track_install_async():
"""Track installation in background thread to avoid blocking imports."""
if not Telemetry._is_telemetry_disabled():
thread = threading.Thread(target=_track_install, daemon=True)
@@ -73,7 +54,7 @@ def _track_install_async() -> None:
_track_install_async()
__version__ = "0.177.0"
__version__ = "0.159.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,15 +1,7 @@
import shutil
import subprocess
import time
from typing import (
Any,
Callable,
Literal,
Optional,
Sequence,
Type,
Union,
)
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -35,17 +27,17 @@ from crewai.utilities.agent_utils import (
)
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.events.types.agent_events import (
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.memory_events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.memory_events import (
MemoryRetrievalStartedEvent,
MemoryRetrievalCompletedEvent,
)
from crewai.events.types.knowledge_events import (
from crewai.utilities.events.knowledge_events import (
KnowledgeQueryCompletedEvent,
KnowledgeQueryFailedEvent,
KnowledgeQueryStartedEvent,
@@ -148,7 +140,7 @@ class Agent(BaseAgent):
default=None,
description="Maximum number of reasoning attempts before executing the task. If None, will try until ready.",
)
embedder: Optional[dict[str, Any]] = Field(
embedder: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
@@ -168,9 +160,9 @@ class Agent(BaseAgent):
default=None,
description="The Agent's role to be used from your repository.",
)
guardrail: Optional[Union[Callable[[Any], tuple[bool, Any]], str]] = Field(
guardrail: Optional[Union[Callable[[Any], Tuple[bool, Any]], str]] = Field(
default=None,
description="Function or string description of a guardrail to validate agent output",
description="Function or string description of a guardrail to validate agent output"
)
guardrail_max_retries: int = Field(
default=3, description="Maximum number of retries when guardrail fails"
@@ -205,7 +197,7 @@ class Agent(BaseAgent):
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def set_knowledge(self, crew_embedder: Optional[dict[str, Any]] = None):
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
try:
if self.embedder is None and crew_embedder:
self.embedder = crew_embedder
@@ -242,7 +234,7 @@ class Agent(BaseAgent):
self,
task: Task,
context: Optional[str] = None,
tools: Optional[list[BaseTool]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
"""Execute a task with the agent.
@@ -284,7 +276,7 @@ class Agent(BaseAgent):
self._inject_date_to_task(task)
if self.tools_handler:
self.tools_handler.last_used_tool = None
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
task_prompt = task.prompt()
@@ -317,20 +309,15 @@ class Agent(BaseAgent):
event=MemoryRetrievalStartedEvent(
task_id=str(task.id) if task else None,
source_type="agent",
from_agent=self,
from_task=task,
),
)
start_time = time.time()
contextual_memory = ContextualMemory(
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._external_memory,
agent=self,
task=task,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
@@ -343,14 +330,13 @@ class Agent(BaseAgent):
memory_content=memory,
retrieval_time_ms=(time.time() - start_time) * 1000,
source_type="agent",
from_agent=self,
from_task=task,
),
)
knowledge_config = (
self.knowledge_config.model_dump() if self.knowledge_config else {}
)
if self.knowledge or (self.crew and self.crew.knowledge):
crewai_event_bus.emit(
self,
@@ -491,7 +477,8 @@ class Agent(BaseAgent):
# result_as_answer set to True
for tool_result in self.tools_results: # type: ignore # Item "None" of "list[Any] | None" has no attribute "__iter__" (not iterable)
if tool_result.get("result_as_answer", False):
result = tool_result["result"]
from crewai.tools.tool_types import ToolAnswerResult
result = ToolAnswerResult(tool_result["result"]) # type: ignore
crewai_event_bus.emit(
self,
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
@@ -551,14 +538,14 @@ class Agent(BaseAgent):
)["output"]
def create_agent_executor(
self, tools: Optional[list[BaseTool]] = None, task=None
self, tools: Optional[List[BaseTool]] = None, task=None
) -> None:
"""Create an agent executor for the agent.
Returns:
An instance of the CrewAgentExecutor class.
"""
raw_tools: list[BaseTool] = tools or self.tools or []
raw_tools: List[BaseTool] = tools or self.tools or []
parsed_tools = parse_tools(raw_tools)
prompt = Prompts(
@@ -600,7 +587,7 @@ class Agent(BaseAgent):
callbacks=[TokenCalcHandler(self._token_process)],
)
def get_delegation_tools(self, agents: list[BaseAgent]):
def get_delegation_tools(self, agents: List[BaseAgent]):
agent_tools = AgentTools(agents=agents)
tools = agent_tools.tools()
return tools
@@ -651,7 +638,7 @@ class Agent(BaseAgent):
)
return task_prompt
def _render_text_description(self, tools: list[Any]) -> str:
def _render_text_description(self, tools: List[Any]) -> str:
"""Render the tool name and description in plain text.
Output will be in the format of:
@@ -793,7 +780,7 @@ class Agent(BaseAgent):
def kickoff(
self,
messages: Union[str, list[dict[str, str]]],
messages: Union[str, List[Dict[str, str]]],
response_format: Optional[Type[Any]] = None,
) -> LiteAgentOutput:
"""
@@ -833,7 +820,7 @@ class Agent(BaseAgent):
async def kickoff_async(
self,
messages: Union[str, list[dict[str, str]]],
messages: Union[str, List[Dict[str, str]]],
response_format: Optional[Type[Any]] = None,
) -> LiteAgentOutput:
"""

View File

@@ -1,5 +1,5 @@
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.parser import parse, AgentAction, AgentFinish, OutputParserException
from crewai.agents.tools_handler import ToolsHandler
from .cache.cache_handler import CacheHandler
from .parser import CrewAgentParser
from .tools_handler import ToolsHandler
__all__ = ["CacheHandler", "parse", "AgentAction", "AgentFinish", "OutputParserException", "ToolsHandler"]
__all__ = ["CacheHandler", "CrewAgentParser", "ToolsHandler"]

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Optional
from typing import Any, Dict, List, Optional
from pydantic import PrivateAttr
@@ -16,16 +16,16 @@ class BaseAgentAdapter(BaseAgent, ABC):
"""
adapted_structured_output: bool = False
_agent_config: Optional[dict[str, Any]] = PrivateAttr(default=None)
_agent_config: Optional[Dict[str, Any]] = PrivateAttr(default=None)
model_config = {"arbitrary_types_allowed": True}
def __init__(self, agent_config: Optional[dict[str, Any]] = None, **kwargs: Any):
def __init__(self, agent_config: Optional[Dict[str, Any]] = None, **kwargs: Any):
super().__init__(adapted_agent=True, **kwargs)
self._agent_config = agent_config
@abstractmethod
def configure_tools(self, tools: Optional[list[BaseTool]] = None) -> None:
def configure_tools(self, tools: Optional[List[BaseTool]] = None) -> None:
"""Configure and adapt tools for the specific agent implementation.
Args:

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Optional
from typing import Any, List, Optional
from crewai.tools.base_tool import BaseTool
@@ -12,15 +12,15 @@ class BaseToolAdapter(ABC):
different frameworks and platforms.
"""
original_tools: list[BaseTool]
converted_tools: list[Any]
original_tools: List[BaseTool]
converted_tools: List[Any]
def __init__(self, tools: Optional[list[BaseTool]] = None):
def __init__(self, tools: Optional[List[BaseTool]] = None):
self.original_tools = tools or []
self.converted_tools = []
@abstractmethod
def configure_tools(self, tools: list[BaseTool]) -> None:
def configure_tools(self, tools: List[BaseTool]) -> None:
"""Configure and convert tools for the specific implementation.
Args:
@@ -28,7 +28,7 @@ class BaseToolAdapter(ABC):
"""
pass
def tools(self) -> list[Any]:
def tools(self) -> List[Any]:
"""Return all converted tools."""
return self.converted_tools

View File

@@ -1,4 +1,4 @@
from typing import Any, Optional
from typing import Any, AsyncIterable, Dict, List, Optional
from pydantic import Field, PrivateAttr
@@ -14,14 +14,15 @@ from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import BaseTool
from crewai.utilities import Logger
from crewai.utilities.converter import Converter
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.agent_events import (
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
try:
from langchain_core.messages import ToolMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
@@ -51,10 +52,10 @@ class LangGraphAgentAdapter(BaseAgentAdapter):
role: str,
goal: str,
backstory: str,
tools: Optional[list[BaseTool]] = None,
tools: Optional[List[BaseTool]] = None,
llm: Any = None,
max_iterations: int = 10,
agent_config: Optional[dict[str, Any]] = None,
agent_config: Optional[Dict[str, Any]] = None,
**kwargs,
):
"""Initialize the LangGraph agent adapter."""
@@ -81,7 +82,7 @@ class LangGraphAgentAdapter(BaseAgentAdapter):
try:
self._memory = MemorySaver()
converted_tools: list[Any] = self._tool_adapter.tools()
converted_tools: List[Any] = self._tool_adapter.tools()
if self._agent_config:
self._graph = create_react_agent(
model=self.llm,
@@ -124,7 +125,7 @@ class LangGraphAgentAdapter(BaseAgentAdapter):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[list[BaseTool]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
"""Execute a task using the LangGraph workflow."""
self.create_agent_executor(tools)
@@ -197,11 +198,11 @@ class LangGraphAgentAdapter(BaseAgentAdapter):
)
raise
def create_agent_executor(self, tools: Optional[list[BaseTool]] = None) -> None:
def create_agent_executor(self, tools: Optional[List[BaseTool]] = None) -> None:
"""Configure the LangGraph agent for execution."""
self.configure_tools(tools)
def configure_tools(self, tools: Optional[list[BaseTool]] = None) -> None:
def configure_tools(self, tools: Optional[List[BaseTool]] = None) -> None:
"""Configure tools for the LangGraph agent."""
if tools:
all_tools = list(self.tools or []) + list(tools or [])
@@ -209,7 +210,7 @@ class LangGraphAgentAdapter(BaseAgentAdapter):
available_tools = self._tool_adapter.tools()
self._graph.tools = available_tools
def get_delegation_tools(self, agents: list[BaseAgent]) -> list[BaseTool]:
def get_delegation_tools(self, agents: List[BaseAgent]) -> List[BaseTool]:
"""Implement delegation tools support for LangGraph."""
agent_tools = AgentTools(agents=agents)
return agent_tools.tools()

View File

@@ -1,5 +1,5 @@
import inspect
from typing import Any, Optional
from typing import Any, List, Optional
from crewai.agents.agent_adapters.base_tool_adapter import BaseToolAdapter
from crewai.tools.base_tool import BaseTool
@@ -8,11 +8,11 @@ from crewai.tools.base_tool import BaseTool
class LangGraphToolAdapter(BaseToolAdapter):
"""Adapts CrewAI tools to LangGraph agent tool compatible format"""
def __init__(self, tools: Optional[list[BaseTool]] = None):
def __init__(self, tools: Optional[List[BaseTool]] = None):
self.original_tools = tools or []
self.converted_tools = []
def configure_tools(self, tools: list[BaseTool]) -> None:
def configure_tools(self, tools: List[BaseTool]) -> None:
"""
Configure and convert CrewAI tools to LangGraph-compatible format.
LangGraph expects tools in langchain_core.tools format.
@@ -57,5 +57,5 @@ class LangGraphToolAdapter(BaseToolAdapter):
self.converted_tools = converted_tools
def tools(self) -> list[Any]:
def tools(self) -> List[Any]:
return self.converted_tools or []

View File

@@ -1,4 +1,4 @@
from typing import Any, Optional
from typing import Any, List, Optional
from pydantic import Field, PrivateAttr
@@ -10,8 +10,8 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities import Logger
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.agent_events import (
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
@@ -44,7 +44,7 @@ class OpenAIAgentAdapter(BaseAgentAdapter):
def __init__(
self,
model: str = "gpt-4o-mini",
tools: Optional[list[BaseTool]] = None,
tools: Optional[List[BaseTool]] = None,
agent_config: Optional[dict] = None,
**kwargs,
):
@@ -85,7 +85,7 @@ class OpenAIAgentAdapter(BaseAgentAdapter):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[list[BaseTool]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
"""Execute a task using the OpenAI Assistant"""
self._converter_adapter.configure_structured_output(task)
@@ -131,7 +131,7 @@ class OpenAIAgentAdapter(BaseAgentAdapter):
)
raise
def create_agent_executor(self, tools: Optional[list[BaseTool]] = None) -> None:
def create_agent_executor(self, tools: Optional[List[BaseTool]] = None) -> None:
"""
Configure the OpenAI agent for execution.
While OpenAI handles execution differently through Runner,
@@ -152,7 +152,7 @@ class OpenAIAgentAdapter(BaseAgentAdapter):
self.agent_executor = Runner
def configure_tools(self, tools: Optional[list[BaseTool]] = None) -> None:
def configure_tools(self, tools: Optional[List[BaseTool]] = None) -> None:
"""Configure tools for the OpenAI Assistant"""
if tools:
self._tool_adapter.configure_tools(tools)
@@ -163,7 +163,7 @@ class OpenAIAgentAdapter(BaseAgentAdapter):
"""Process OpenAI Assistant execution result converting any structured output to a string"""
return self._converter_adapter.post_process_result(result.final_output)
def get_delegation_tools(self, agents: list[BaseAgent]) -> list[BaseTool]:
def get_delegation_tools(self, agents: List[BaseAgent]) -> List[BaseTool]:
"""Implement delegation tools support"""
agent_tools = AgentTools(agents=agents)
tools = agent_tools.tools()

View File

@@ -1,5 +1,5 @@
import inspect
from typing import Any, Optional
from typing import Any, List, Optional
from agents import FunctionTool, Tool
@@ -10,10 +10,10 @@ from crewai.tools import BaseTool
class OpenAIAgentToolAdapter(BaseToolAdapter):
"""Adapter for OpenAI Assistant tools"""
def __init__(self, tools: Optional[list[BaseTool]] = None):
def __init__(self, tools: Optional[List[BaseTool]] = None):
self.original_tools = tools or []
def configure_tools(self, tools: list[BaseTool]) -> None:
def configure_tools(self, tools: List[BaseTool]) -> None:
"""Configure tools for the OpenAI Assistant"""
if self.original_tools:
all_tools = tools + self.original_tools
@@ -23,8 +23,8 @@ class OpenAIAgentToolAdapter(BaseToolAdapter):
self.converted_tools = self._convert_tools_to_openai_format(all_tools)
def _convert_tools_to_openai_format(
self, tools: Optional[list[BaseTool]]
) -> list[Tool]:
self, tools: Optional[List[BaseTool]]
) -> List[Tool]:
"""Convert CrewAI tools to OpenAI Assistant tool format"""
if not tools:
return []

View File

@@ -2,7 +2,7 @@ import uuid
from abc import ABC, abstractmethod
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Optional, TypeVar
from typing import Any, Callable, Dict, List, Optional, TypeVar
from pydantic import (
UUID4,
@@ -40,11 +40,11 @@ class BaseAgent(ABC, BaseModel):
goal (str): Objective of the agent.
backstory (str): Backstory of the agent.
cache (bool): Whether the agent should use a cache for tool usage.
config (Optional[dict[str, Any]]): Configuration for the agent.
config (Optional[Dict[str, Any]]): Configuration for the agent.
verbose (bool): Verbose mode for the Agent Execution.
max_rpm (Optional[int]): Maximum number of requests per minute for the agent execution.
allow_delegation (bool): Allow delegation of tasks to agents.
tools (Optional[list[Any]]): Tools at the agent's disposal.
tools (Optional[List[Any]]): Tools at the agent's disposal.
max_iter (int): Maximum iterations for an agent to execute a task.
agent_executor (InstanceOf): An instance of the CrewAgentExecutor class.
llm (Any): Language model that will run the agent.
@@ -59,15 +59,15 @@ class BaseAgent(ABC, BaseModel):
Methods:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[list[BaseTool]] = None) -> str:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[BaseTool]] = None) -> str:
Abstract method to execute a task.
create_agent_executor(tools=None) -> None:
Abstract method to create an agent executor.
get_delegation_tools(agents: list["BaseAgent"]):
get_delegation_tools(agents: List["BaseAgent"]):
Abstract method to set the agents task tools for handling delegation and question asking to other agents in crew.
get_output_converter(llm, model, instructions):
Abstract method to get the converter class for the agent to create json/pydantic outputs.
interpolate_inputs(inputs: dict[str, Any]) -> None:
interpolate_inputs(inputs: Dict[str, Any]) -> None:
Interpolate inputs into the agent description and backstory.
set_cache_handler(cache_handler: CacheHandler) -> None:
Set the cache handler for the agent.
@@ -91,7 +91,7 @@ class BaseAgent(ABC, BaseModel):
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
config: Optional[dict[str, Any]] = Field(
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent", default=None, exclude=True
)
cache: bool = Field(
@@ -108,7 +108,7 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[list[BaseTool]] = Field(
tools: Optional[List[BaseTool]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: int = Field(
@@ -129,7 +129,7 @@ class BaseAgent(ABC, BaseModel):
default_factory=ToolsHandler,
description="An instance of the ToolsHandler class.",
)
tools_results: list[dict[str, Any]] = Field(
tools_results: List[Dict[str, Any]] = Field(
default=[], description="Results of the tools used by the agent."
)
max_tokens: Optional[int] = Field(
@@ -138,7 +138,7 @@ class BaseAgent(ABC, BaseModel):
knowledge: Optional[Knowledge] = Field(
default=None, description="Knowledge for the agent."
)
knowledge_sources: Optional[list[BaseKnowledgeSource]] = Field(
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
@@ -150,7 +150,7 @@ class BaseAgent(ABC, BaseModel):
default_factory=SecurityConfig,
description="Security configuration for the agent, including fingerprinting.",
)
callbacks: list[Callable] = Field(
callbacks: List[Callable] = Field(
default=[], description="Callbacks to be used for the agent"
)
adapted_agent: bool = Field(
@@ -168,7 +168,7 @@ class BaseAgent(ABC, BaseModel):
@field_validator("tools")
@classmethod
def validate_tools(cls, tools: list[Any]) -> list[BaseTool]:
def validate_tools(cls, tools: List[Any]) -> List[BaseTool]:
"""Validate and process the tools provided to the agent.
This method ensures that each tool is either an instance of BaseTool
@@ -253,7 +253,7 @@ class BaseAgent(ABC, BaseModel):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[list[BaseTool]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
pass
@@ -262,7 +262,7 @@ class BaseAgent(ABC, BaseModel):
pass
@abstractmethod
def get_delegation_tools(self, agents: list["BaseAgent"]) -> list[BaseTool]:
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[BaseTool]:
"""Set the task tools that init BaseAgenTools class."""
pass
@@ -320,7 +320,7 @@ class BaseAgent(ABC, BaseModel):
return copied_agent
def interpolate_inputs(self, inputs: dict[str, Any]) -> None:
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolate inputs into the agent description and backstory."""
if self._original_role is None:
self._original_role = self.role
@@ -362,5 +362,5 @@ class BaseAgent(ABC, BaseModel):
self._rpm_controller = rpm_controller
self.create_agent_executor()
def set_knowledge(self, crew_embedder: Optional[dict[str, Any]] = None):
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
pass

View File

@@ -1,5 +1,5 @@
import time
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Dict, List
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
@@ -7,7 +7,7 @@ from crewai.utilities import I18N
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.printer import Printer
from crewai.events.event_listener import event_listener
from crewai.utilities.events.event_listener import event_listener
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -21,7 +21,7 @@ class CrewAgentExecutorMixin:
task: "Task"
iterations: int
max_iter: int
messages: list[dict[str, str]]
messages: List[Dict[str, str]]
_i18n: I18N
_printer: Printer = Printer()
@@ -43,6 +43,7 @@ class CrewAgentExecutorMixin:
metadata={
"observation": self.task.description,
},
agent=self.agent.role,
)
except Exception as e:
print(f"Failed to add to short term memory: {e}")
@@ -64,6 +65,7 @@ class CrewAgentExecutorMixin:
"description": self.task.description,
"messages": self.messages,
},
agent=self.agent.role,
)
except Exception as e:
print(f"Failed to add to external memory: {e}")
@@ -98,8 +100,8 @@ class CrewAgentExecutorMixin:
)
self.crew._long_term_memory.save(long_term_memory)
entity_memories = [
EntityMemoryItem(
for entity in evaluation.entities:
entity_memory = EntityMemoryItem(
name=entity.name,
type=entity.type,
description=entity.description,
@@ -107,10 +109,7 @@ class CrewAgentExecutorMixin:
[f"- {r}" for r in entity.relationships]
),
)
for entity in evaluation.entities
]
if entity_memories:
self.crew._entity_memory.save(entity_memories)
self.crew._entity_memory.save(entity_memory)
except AttributeError as e:
print(f"Missing attributes for long term memory: {e}")
pass
@@ -159,9 +158,7 @@ class CrewAgentExecutorMixin:
self._printer.print(content=prompt, color="bold_yellow")
response = input()
if response.strip() != "":
self._printer.print(
content="\nProcessing your feedback...", color="cyan"
)
self._printer.print(content="\nProcessing your feedback...", color="cyan")
return response
finally:
event_listener.formatter.resume_live_updates()

View File

@@ -1,4 +1,4 @@
from typing import Any, Optional
from typing import Any, Dict, Optional
from pydantic import BaseModel, PrivateAttr
@@ -6,7 +6,7 @@ from pydantic import BaseModel, PrivateAttr
class CacheHandler(BaseModel):
"""Callback handler for tool usage."""
_cache: dict[str, Any] = PrivateAttr(default_factory=dict)
_cache: Dict[str, Any] = PrivateAttr(default_factory=dict)
def add(self, tool, input, output):
self._cache[f"{tool}-{input}"] = output

View File

@@ -1,27 +0,0 @@
"""Constants for agent-related modules."""
import re
from typing import Final
# crewai.agents.parser constants
FINAL_ANSWER_ACTION: Final[str] = "Final Answer:"
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE: Final[str] = (
"I did it wrong. Invalid Format: I missed the 'Action:' after 'Thought:'. I will do right next, and don't use a tool I have already used.\n"
)
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE: Final[str] = (
"I did it wrong. Invalid Format: I missed the 'Action Input:' after 'Action:'. I will do right next, and don't use a tool I have already used.\n"
)
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE: Final[str] = (
"I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other"
)
UNABLE_TO_REPAIR_JSON_RESULTS: Final[list[str]] = ['""', "{}"]
ACTION_INPUT_REGEX: Final[re.Pattern[str]] = re.compile(
r"Action\s*\d*\s*:\s*(.*?)\s*Action\s*\d*\s*Input\s*\d*\s*:\s*(.*)", re.DOTALL
)
ACTION_REGEX: Final[re.Pattern[str]] = re.compile(
r"Action\s*\d*\s*:\s*(.*?)", re.DOTALL
)
ACTION_INPUT_ONLY_REGEX: Final[re.Pattern[str]] = re.compile(
r"\s*Action\s*\d*\s*Input\s*\d*\s*:\s*(.*)", re.DOTALL
)

View File

@@ -1,4 +1,4 @@
from typing import Any, Callable, Optional, Union
from typing import Any, Callable, Dict, List, Optional, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
@@ -30,11 +30,11 @@ from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.logger import Logger
from crewai.utilities.tool_utils import execute_tool_and_check_finality
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.events.types.logging_events import (
from crewai.utilities.events.agent_events import (
AgentLogsStartedEvent,
AgentLogsExecutionEvent,
)
from crewai.events.event_bus import crewai_event_bus
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
class CrewAgentExecutor(CrewAgentExecutorMixin):
@@ -48,17 +48,17 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent: BaseAgent,
prompt: dict[str, str],
max_iter: int,
tools: list[CrewStructuredTool],
tools: List[CrewStructuredTool],
tools_names: str,
stop_words: list[str],
stop_words: List[str],
tools_description: str,
tools_handler: ToolsHandler,
step_callback: Any = None,
original_tools: list[Any] | None = None,
original_tools: List[Any] = [],
function_calling_llm: Any = None,
respect_context_window: bool = False,
request_within_rpm_limit: Optional[Callable[[], bool]] = None,
callbacks: list[Any] | None = None,
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm: BaseLLM = llm
@@ -70,10 +70,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.tools_names = tools_names
self.stop = stop_words
self.max_iter = max_iter
self.callbacks = callbacks or []
self.callbacks = callbacks
self._printer: Printer = Printer()
self.tools_handler = tools_handler
self.original_tools = original_tools or []
self.original_tools = original_tools
self.step_callback = step_callback
self.use_stop_words = self.llm.supports_stop_words()
self.tools_description = tools_description
@@ -81,10 +81,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.respect_context_window = respect_context_window
self.request_within_rpm_limit = request_within_rpm_limit
self.ask_for_human_input = False
self.messages: list[dict[str, str]] = []
self.messages: List[Dict[str, str]] = []
self.iterations = 0
self.log_error_after = 3
self.tool_name_to_tool_map: dict[str, Union[CrewStructuredTool, BaseTool]] = {
self.tool_name_to_tool_map: Dict[str, Union[CrewStructuredTool, BaseTool]] = {
tool.name: tool for tool in self.tools
}
existing_stop = self.llm.stop or []
@@ -96,7 +96,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
)
def invoke(self, inputs: dict[str, str]) -> dict[str, Any]:
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
@@ -122,6 +122,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
handle_unknown_error(self._printer, e)
raise
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
@@ -155,7 +156,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
messages=self.messages,
callbacks=self.callbacks,
printer=self._printer,
from_task=self.task,
from_task=self.task
)
formatted_answer = process_llm_response(answer, self.use_stop_words)
@@ -371,7 +372,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
training_data[agent_id] = agent_training_data
training_handler.save(training_data)
def _format_prompt(self, prompt: str, inputs: dict[str, str]) -> str:
def _format_prompt(self, prompt: str, inputs: Dict[str, str]) -> str:
prompt = prompt.replace("{input}", inputs["input"])
prompt = prompt.replace("{tool_names}", inputs["tool_names"])
prompt = prompt.replace("{tools}", inputs["tools"])

View File

@@ -1,67 +1,50 @@
"""Agent output parsing module for ReAct-style LLM responses.
This module provides parsing functionality for agent outputs that follow
the ReAct (Reasoning and Acting) format, converting them into structured
AgentAction or AgentFinish objects.
"""
from dataclasses import dataclass
import re
from typing import Any, Optional, Union
from json_repair import repair_json
from crewai.agents.constants import (
ACTION_INPUT_REGEX,
ACTION_REGEX,
ACTION_INPUT_ONLY_REGEX,
FINAL_ANSWER_ACTION,
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE,
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
UNABLE_TO_REPAIR_JSON_RESULTS,
)
from crewai.utilities import I18N
_I18N = I18N()
FINAL_ANSWER_ACTION = "Final Answer:"
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = "I did it wrong. Invalid Format: I missed the 'Action:' after 'Thought:'. I will do right next, and don't use a tool I have already used.\n"
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = "I did it wrong. Invalid Format: I missed the 'Action Input:' after 'Action:'. I will do right next, and don't use a tool I have already used.\n"
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other"
@dataclass
class AgentAction:
"""Represents an action to be taken by an agent."""
thought: str
tool: str
tool_input: str
text: str
result: str | None = None
result: str
def __init__(self, thought: str, tool: str, tool_input: str, text: str):
self.thought = thought
self.tool = tool
self.tool_input = tool_input
self.text = text
@dataclass
class AgentFinish:
"""Represents the final answer from an agent."""
thought: str
output: str
text: str
def __init__(self, thought: str, output: str, text: str):
self.thought = thought
self.output = output
self.text = text
class OutputParserException(Exception):
"""Exception raised when output parsing fails.
error: str
Attributes:
error: The error message.
"""
def __init__(self, error: str) -> None:
"""Initialize OutputParserException.
Args:
error: The error message.
"""
def __init__(self, error: str):
self.error = error
super().__init__(error)
def parse(text: str) -> AgentAction | AgentFinish:
"""Parse agent output text into AgentAction or AgentFinish.
class CrewAgentParser:
"""Parses ReAct-style LLM calls that have a single tool input.
Expects output to be in one of two formats.
@@ -79,117 +62,108 @@ def parse(text: str) -> AgentAction | AgentFinish:
Thought: agent thought here
Final Answer: The temperature is 100 degrees
Args:
text: The agent output text to parse.
Returns:
AgentAction or AgentFinish based on the content.
Raises:
OutputParserException: If the text format is invalid.
"""
thought = _extract_thought(text)
includes_answer = FINAL_ANSWER_ACTION in text
action_match = ACTION_INPUT_REGEX.search(text)
if includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought=thought, output=final_answer, text=text)
_i18n: I18N = I18N()
agent: Any = None
elif action_match:
action = action_match.group(1)
clean_action = _clean_action(action)
def __init__(self, agent: Optional[Any] = None):
self.agent = agent
action_input = action_match.group(2).strip()
@staticmethod
def parse_text(text: str) -> Union[AgentAction, AgentFinish]:
"""
Static method to parse text into an AgentAction or AgentFinish without needing to instantiate the class.
tool_input = action_input.strip(" ").strip('"')
safe_tool_input = _safe_repair_json(tool_input)
Args:
text: The text to parse.
return AgentAction(
thought=thought, tool=clean_action, tool_input=safe_tool_input, text=text
Returns:
Either an AgentAction or AgentFinish based on the parsed content.
"""
parser = CrewAgentParser()
return parser.parse(text)
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
thought = self._extract_thought(text)
includes_answer = FINAL_ANSWER_ACTION in text
regex = (
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
)
action_match = re.search(regex, text, re.DOTALL)
if includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
if not ACTION_REGEX.search(text):
raise OutputParserException(
f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{_I18N.slice('final_answer_format')}",
)
elif not ACTION_INPUT_ONLY_REGEX.search(text):
raise OutputParserException(
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
)
else:
err_format = _I18N.slice("format_without_tools")
error = f"{err_format}"
raise OutputParserException(
error,
)
elif action_match:
action = action_match.group(1)
clean_action = self._clean_action(action)
action_input = action_match.group(2).strip()
def _extract_thought(text: str) -> str:
"""Extract the thought portion from the text.
tool_input = action_input.strip(" ").strip('"')
safe_tool_input = self._safe_repair_json(tool_input)
Args:
text: The full agent output text.
return AgentAction(thought, clean_action, safe_tool_input, text)
Returns:
The extracted thought string.
"""
thought_index = text.find("\nAction")
if thought_index == -1:
thought_index = text.find("\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
raise OutputParserException(
f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}",
)
elif not re.search(
r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL
):
raise OutputParserException(
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
)
else:
format = self._i18n.slice("format_without_tools")
error = f"{format}"
raise OutputParserException(
error,
)
def _extract_thought(self, text: str) -> str:
thought_index = text.find("\nAction")
if thought_index == -1:
thought_index = text.find("\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
def _clean_action(text: str) -> str:
"""Clean action string by removing non-essential formatting characters.
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""
return text.strip().strip("*").strip()
Args:
text: The action text to clean.
def _safe_repair_json(self, tool_input: str) -> str:
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]
Returns:
The cleaned action string.
"""
return text.strip().strip("*").strip()
# Skip repair if the input starts and ends with square brackets
# Explanation: The JSON parser has issues handling inputs that are enclosed in square brackets ('[]').
# These are typically valid JSON arrays or strings that do not require repair. Attempting to repair such inputs
# might lead to unintended alterations, such as wrapping the entire input in additional layers or modifying
# the structure in a way that changes its meaning. By skipping the repair for inputs that start and end with
# square brackets, we preserve the integrity of these valid JSON structures and avoid unnecessary modifications.
if tool_input.startswith("[") and tool_input.endswith("]"):
return tool_input
# Before repair, handle common LLM issues:
# 1. Replace """ with " to avoid JSON parser errors
def _safe_repair_json(tool_input: str) -> str:
"""Safely repair JSON input.
tool_input = tool_input.replace('"""', '"')
Args:
tool_input: The tool input string to repair.
result = repair_json(tool_input)
if result in UNABLE_TO_REPAIR_JSON_RESULTS:
return tool_input
Returns:
The repaired JSON string or original if repair fails.
"""
# Skip repair if the input starts and ends with square brackets
# Explanation: The JSON parser has issues handling inputs that are enclosed in square brackets ('[]').
# These are typically valid JSON arrays or strings that do not require repair. Attempting to repair such inputs
# might lead to unintended alterations, such as wrapping the entire input in additional layers or modifying
# the structure in a way that changes its meaning. By skipping the repair for inputs that start and end with
# square brackets, we preserve the integrity of these valid JSON structures and avoid unnecessary modifications.
if tool_input.startswith("[") and tool_input.endswith("]"):
return tool_input
# Before repair, handle common LLM issues:
# 1. Replace """ with " to avoid JSON parser errors
tool_input = tool_input.replace('"""', '"')
result = repair_json(tool_input)
if result in UNABLE_TO_REPAIR_JSON_RESULTS:
return tool_input
return str(result)
return str(result)

View File

@@ -1,41 +1,29 @@
"""Tools handler for managing tool execution and caching."""
from typing import Any, Optional, Union
from crewai.tools.cache_tools.cache_tools import CacheTools
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.agents.cache.cache_handler import CacheHandler
from ..tools.cache_tools.cache_tools import CacheTools
from ..tools.tool_calling import InstructorToolCalling, ToolCalling
from .cache.cache_handler import CacheHandler
class ToolsHandler:
"""Callback handler for tool usage.
"""Callback handler for tool usage."""
Attributes:
last_used_tool: The most recently used tool calling instance.
cache: Optional cache handler for storing tool outputs.
"""
last_used_tool: ToolCalling = {} # type: ignore # BUG?: Incompatible types in assignment (expression has type "Dict[...]", variable has type "ToolCalling")
cache: Optional[CacheHandler]
def __init__(self, cache: CacheHandler | None = None) -> None:
"""Initialize the callback handler.
Args:
cache: Optional cache handler for storing tool outputs.
"""
self.cache: CacheHandler | None = cache
self.last_used_tool: ToolCalling | InstructorToolCalling | None = None
def __init__(self, cache: Optional[CacheHandler] = None):
"""Initialize the callback handler."""
self.cache = cache
self.last_used_tool = {} # type: ignore # BUG?: same as above
def on_tool_use(
self,
calling: ToolCalling | InstructorToolCalling,
calling: Union[ToolCalling, InstructorToolCalling],
output: str,
should_cache: bool = True,
) -> None:
"""Run when tool ends running.
Args:
calling: The tool calling instance.
output: The output from the tool execution.
should_cache: Whether to cache the tool output.
"""
self.last_used_tool = calling
) -> Any:
"""Run when tool ends running."""
self.last_used_tool = calling # type: ignore # BUG?: Incompatible types in assignment (expression has type "Union[ToolCalling, InstructorToolCalling]", variable has type "ToolCalling")
if self.cache and should_cache and calling.tool_name != CacheTools().name:
self.cache.add(
tool=calling.tool_name,

View File

@@ -1 +1,6 @@
ALGORITHMS = ["RS256"]
#TODO: The AUTH0 constants should be removed after WorkOS migration is completed
AUTH0_DOMAIN = "crewai.us.auth0.com"
AUTH0_CLIENT_ID = "DEVC5Fw6NlRoSzmDCcOhVq85EfLBjKa8"
AUTH0_AUDIENCE = "https://crewai.us.auth0.com/api/v2/"

View File

@@ -1,33 +1,30 @@
import time
import webbrowser
from typing import Any, Optional
from typing import Any, Dict, Optional
import requests
from rich.console import Console
from pydantic import BaseModel, Field
from .utils import validate_jwt_token
from crewai.cli.shared.token_manager import TokenManager
from .utils import TokenManager, validate_jwt_token
from urllib.parse import quote
from crewai.cli.plus_api import PlusAPI
from crewai.cli.config import Settings
from crewai.cli.authentication.constants import (
AUTH0_AUDIENCE,
AUTH0_CLIENT_ID,
AUTH0_DOMAIN,
)
console = Console()
class Oauth2Settings(BaseModel):
provider: str = Field(
description="OAuth2 provider used for authentication (e.g., workos, okta, auth0)."
)
client_id: str = Field(
description="OAuth2 client ID issued by the provider, used during authentication requests."
)
domain: str = Field(
description="OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens."
)
audience: Optional[str] = Field(
description="OAuth2 audience value, typically used to identify the target API or resource.",
default=None,
)
provider: str = Field(description="OAuth2 provider used for authentication (e.g., workos, okta, auth0).")
client_id: str = Field(description="OAuth2 client ID issued by the provider, used during authentication requests.")
domain: str = Field(description="OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens.")
audience: Optional[str] = Field(description="OAuth2 audience value, typically used to identify the target API or resource.", default=None)
@classmethod
def from_settings(cls):
@@ -47,15 +44,11 @@ class ProviderFactory:
settings = settings or Oauth2Settings.from_settings()
import importlib
module = importlib.import_module(
f"crewai.cli.authentication.providers.{settings.provider.lower()}"
)
module = importlib.import_module(f"crewai.cli.authentication.providers.{settings.provider.lower()}")
provider = getattr(module, f"{settings.provider.capitalize()}Provider")
return provider(settings)
class AuthenticationCommand:
def __init__(self):
self.token_manager = TokenManager()
@@ -65,12 +58,26 @@ class AuthenticationCommand:
"""Sign up to CrewAI+"""
console.print("Signing in to CrewAI Enterprise...\n", style="bold blue")
# TODO: WORKOS - Next line and conditional are temporary until migration to WorkOS is complete.
user_provider = self._determine_user_provider()
if user_provider == "auth0":
settings = Oauth2Settings(
provider="auth0",
client_id=AUTH0_CLIENT_ID,
domain=AUTH0_DOMAIN,
audience=AUTH0_AUDIENCE
)
self.oauth2_provider = ProviderFactory.from_settings(settings)
# End of temporary code.
device_code_data = self._get_device_code()
self._display_auth_instructions(device_code_data)
return self._poll_for_token(device_code_data)
def _get_device_code(self) -> dict[str, Any]:
def _get_device_code(
self
) -> Dict[str, Any]:
"""Get the device code to authenticate the user."""
device_code_payload = {
@@ -79,20 +86,20 @@ class AuthenticationCommand:
"audience": self.oauth2_provider.get_audience(),
}
response = requests.post(
url=self.oauth2_provider.get_authorize_url(),
data=device_code_payload,
timeout=20,
url=self.oauth2_provider.get_authorize_url(), data=device_code_payload, timeout=20
)
response.raise_for_status()
return response.json()
def _display_auth_instructions(self, device_code_data: dict[str, str]) -> None:
def _display_auth_instructions(self, device_code_data: Dict[str, str]) -> None:
"""Display the authentication instructions to the user."""
console.print("1. Navigate to: ", device_code_data["verification_uri_complete"])
console.print("2. Enter the following code: ", device_code_data["user_code"])
webbrowser.open(device_code_data["verification_uri_complete"])
def _poll_for_token(self, device_code_data: dict[str, Any]) -> None:
def _poll_for_token(
self, device_code_data: Dict[str, Any]
) -> None:
"""Polls the server for the token until it is received, or max attempts are reached."""
token_payload = {
@@ -105,9 +112,7 @@ class AuthenticationCommand:
attempts = 0
while True and attempts < 10:
response = requests.post(
self.oauth2_provider.get_token_url(), data=token_payload, timeout=30
)
response = requests.post(self.oauth2_provider.get_token_url(), data=token_payload, timeout=30)
token_data = response.json()
if response.status_code == 200:
@@ -135,7 +140,7 @@ class AuthenticationCommand:
"Timeout: Failed to get the token. Please try again.", style="bold red"
)
def _validate_and_save_token(self, token_data: dict[str, Any]) -> None:
def _validate_and_save_token(self, token_data: Dict[str, Any]) -> None:
"""Validates the JWT token and saves the token to the token manager."""
jwt_token = token_data["access_token"]
@@ -187,3 +192,30 @@ class AuthenticationCommand:
"\nRun [bold]crewai login[/bold] to try logging in again.\n",
style="yellow",
)
# TODO: WORKOS - This method is temporary until migration to WorkOS is complete.
def _determine_user_provider(self) -> str:
"""Determine which provider to use for authentication."""
console.print(
"Enter your CrewAI Enterprise account email: ", style="bold blue", end=""
)
email = input()
email_encoded = quote(email)
# It's not correct to call this method directly, but it's temporary until migration is complete.
response = PlusAPI("")._make_request(
"GET", f"/crewai_plus/api/v1/me/provider?email={email_encoded}"
)
if response.status_code == 200:
if response.json().get("provider") == "auth0":
return "auth0"
else:
return "workos"
else:
console.print(
"Error: Failed to authenticate with crewai enterprise. Ensure that you are using the latest crewai version and please try again. If the problem persists, contact support@crewai.com.",
style="red",
)
raise SystemExit

View File

@@ -1,4 +1,4 @@
from crewai.cli.shared.token_manager import TokenManager
from .utils import TokenManager
class AuthError(Exception):

View File

@@ -1,5 +1,12 @@
import json
import os
import sys
from datetime import datetime
from pathlib import Path
from typing import Optional
import jwt
from jwt import PyJWKClient
from cryptography.fernet import Fernet
def validate_jwt_token(
@@ -60,3 +67,118 @@ def validate_jwt_token(
raise Exception(f"JWKS or key processing error: {str(e)}")
except jwt.InvalidTokenError as e:
raise Exception(f"Invalid token: {str(e)}")
class TokenManager:
def __init__(self, file_path: str = "tokens.enc") -> None:
"""
Initialize the TokenManager class.
:param file_path: The file path to store the encrypted tokens. Default is "tokens.enc".
"""
self.file_path = file_path
self.key = self._get_or_create_key()
self.fernet = Fernet(self.key)
def _get_or_create_key(self) -> bytes:
"""
Get or create the encryption key.
:return: The encryption key.
"""
key_filename = "secret.key"
key = self.read_secure_file(key_filename)
if key is not None:
return key
new_key = Fernet.generate_key()
self.save_secure_file(key_filename, new_key)
return new_key
def save_tokens(self, access_token: str, expires_at: int) -> None:
"""
Save the access token and its expiration time.
:param access_token: The access token to save.
:param expires_at: The UNIX timestamp of the expiration time.
"""
expiration_time = datetime.fromtimestamp(expires_at)
data = {
"access_token": access_token,
"expiration": expiration_time.isoformat(),
}
encrypted_data = self.fernet.encrypt(json.dumps(data).encode())
self.save_secure_file(self.file_path, encrypted_data)
def get_token(self) -> Optional[str]:
"""
Get the access token if it is valid and not expired.
:return: The access token if valid and not expired, otherwise None.
"""
encrypted_data = self.read_secure_file(self.file_path)
decrypted_data = self.fernet.decrypt(encrypted_data) # type: ignore
data = json.loads(decrypted_data)
expiration = datetime.fromisoformat(data["expiration"])
if expiration <= datetime.now():
return None
return data["access_token"]
def get_secure_storage_path(self) -> Path:
"""
Get the secure storage path based on the operating system.
:return: The secure storage path.
"""
if sys.platform == "win32":
# Windows: Use %LOCALAPPDATA%
base_path = os.environ.get("LOCALAPPDATA")
elif sys.platform == "darwin":
# macOS: Use ~/Library/Application Support
base_path = os.path.expanduser("~/Library/Application Support")
else:
# Linux and other Unix-like: Use ~/.local/share
base_path = os.path.expanduser("~/.local/share")
app_name = "crewai/credentials"
storage_path = Path(base_path) / app_name
storage_path.mkdir(parents=True, exist_ok=True)
return storage_path
def save_secure_file(self, filename: str, content: bytes) -> None:
"""
Save the content to a secure file.
:param filename: The name of the file.
:param content: The content to save.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
with open(file_path, "wb") as f:
f.write(content)
# Set appropriate permissions (read/write for owner only)
os.chmod(file_path, 0o600)
def read_secure_file(self, filename: str) -> Optional[bytes]:
"""
Read the content of a secure file.
:param filename: The name of the file.
:return: The content of the file if it exists, otherwise None.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
if not file_path.exists():
return None
with open(file_path, "rb") as f:
return f.read()

View File

@@ -11,7 +11,6 @@ from crewai.cli.constants import (
CREWAI_ENTERPRISE_DEFAULT_OAUTH2_CLIENT_ID,
CREWAI_ENTERPRISE_DEFAULT_OAUTH2_DOMAIN,
)
from crewai.cli.shared.token_manager import TokenManager
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
@@ -54,7 +53,6 @@ HIDDEN_SETTINGS_KEYS = [
"tool_repository_password",
]
class Settings(BaseModel):
enterprise_base_url: Optional[str] = Field(
default=DEFAULT_CLI_SETTINGS["enterprise_base_url"],
@@ -76,12 +74,12 @@ class Settings(BaseModel):
oauth2_provider: str = Field(
description="OAuth2 provider used for authentication (e.g., workos, okta, auth0).",
default=DEFAULT_CLI_SETTINGS["oauth2_provider"],
default=DEFAULT_CLI_SETTINGS["oauth2_provider"]
)
oauth2_audience: Optional[str] = Field(
description="OAuth2 audience value, typically used to identify the target API or resource.",
default=DEFAULT_CLI_SETTINGS["oauth2_audience"],
default=DEFAULT_CLI_SETTINGS["oauth2_audience"]
)
oauth2_client_id: str = Field(
@@ -91,7 +89,7 @@ class Settings(BaseModel):
oauth2_domain: str = Field(
description="OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens.",
default=DEFAULT_CLI_SETTINGS["oauth2_domain"],
default=DEFAULT_CLI_SETTINGS["oauth2_domain"]
)
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
@@ -118,7 +116,6 @@ class Settings(BaseModel):
"""Reset all settings to default values"""
self._reset_user_settings()
self._reset_cli_settings()
self._clear_auth_tokens()
self.dump()
def dump(self) -> None:
@@ -142,7 +139,3 @@ class Settings(BaseModel):
"""Reset all CLI settings to default values"""
for key in CLI_SETTINGS_KEYS:
setattr(self, key, DEFAULT_CLI_SETTINGS.get(key))
def _clear_auth_tokens(self) -> None:
"""Clear all authentication tokens"""
TokenManager().clear_tokens()

View File

@@ -5,7 +5,7 @@ import sys
import threading
import time
from pathlib import Path
from typing import Any, Optional
from typing import Any, Dict, List, Optional, Set, Tuple
import click
import tomli
@@ -157,7 +157,7 @@ def build_system_message(crew_chat_inputs: ChatInputs) -> str:
)
def create_tool_function(crew: Crew, messages: list[dict[str, str]]) -> Any:
def create_tool_function(crew: Crew, messages: List[Dict[str, str]]) -> Any:
"""Creates a wrapper function for running the crew tool with messages."""
def run_crew_tool_with_messages(**kwargs):
@@ -221,9 +221,9 @@ def get_user_input() -> str:
def handle_user_input(
user_input: str,
chat_llm: LLM,
messages: list[dict[str, str]],
crew_tool_schema: dict[str, Any],
available_functions: dict[str, Any],
messages: List[Dict[str, str]],
crew_tool_schema: Dict[str, Any],
available_functions: Dict[str, Any],
) -> None:
if user_input.strip().lower() == "exit":
click.echo("Exiting chat. Goodbye!")
@@ -281,13 +281,13 @@ def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
}
def run_crew_tool(crew: Crew, messages: list[dict[str, str]], **kwargs):
def run_crew_tool(crew: Crew, messages: List[Dict[str, str]], **kwargs):
"""
Runs the crew using crew.kickoff(inputs=kwargs) and returns the output.
Args:
crew (Crew): The crew instance to run.
messages (list[dict[str, str]]): The chat messages up to this point.
messages (List[Dict[str, str]]): The chat messages up to this point.
**kwargs: The inputs collected from the user.
Returns:
@@ -314,12 +314,12 @@ def run_crew_tool(crew: Crew, messages: list[dict[str, str]], **kwargs):
sys.exit(1)
def load_crew_and_name() -> tuple[Crew, str]:
def load_crew_and_name() -> Tuple[Crew, str]:
"""
Loads the crew by importing the crew class from the user's project.
Returns:
tuple[Crew, str]: A tuple containing the Crew instance and the name of the crew.
Tuple[Crew, str]: A tuple containing the Crew instance and the name of the crew.
"""
# Get the current working directory
cwd = Path.cwd()
@@ -395,7 +395,7 @@ def generate_crew_chat_inputs(crew: Crew, crew_name: str, chat_llm) -> ChatInput
)
def fetch_required_inputs(crew: Crew) -> set[str]:
def fetch_required_inputs(crew: Crew) -> Set[str]:
"""
Extracts placeholders from the crew's tasks and agents.
@@ -403,10 +403,10 @@ def fetch_required_inputs(crew: Crew) -> set[str]:
crew (Crew): The crew object.
Returns:
set[str]: A set of placeholder names.
Set[str]: A set of placeholder names.
"""
placeholder_pattern = re.compile(r"\{(.+?)\}")
required_inputs: set[str] = set()
required_inputs: Set[str] = set()
# Scan tasks
for task in crew.tasks:

View File

@@ -1,4 +1,4 @@
from typing import Any, Optional
from typing import Any, Dict, List, Optional
from rich.console import Console
@@ -32,12 +32,12 @@ class DeployCommand(BaseCommand, PlusAPIMixin):
style="bold red",
)
def _display_deployment_info(self, json_response: dict[str, Any]) -> None:
def _display_deployment_info(self, json_response: Dict[str, Any]) -> None:
"""
Display deployment information.
Args:
json_response (dict[str, Any]): The deployment information to display.
json_response (Dict[str, Any]): The deployment information to display.
"""
console.print("Deploying the crew...\n", style="bold blue")
for key, value in json_response.items():
@@ -47,12 +47,12 @@ class DeployCommand(BaseCommand, PlusAPIMixin):
console.print(" or")
console.print(f"crewai deploy status --uuid \"{json_response['uuid']}\"")
def _display_logs(self, log_messages: list[dict[str, Any]]) -> None:
def _display_logs(self, log_messages: List[Dict[str, Any]]) -> None:
"""
Display log messages.
Args:
log_messages (list[dict[str, Any]]): The log messages to display.
log_messages (List[Dict[str, Any]]): The log messages to display.
"""
for log_message in log_messages:
console.print(
@@ -110,13 +110,13 @@ class DeployCommand(BaseCommand, PlusAPIMixin):
self._display_creation_success(response.json())
def _confirm_input(
self, env_vars: dict[str, str], remote_repo_url: str, confirm: bool
self, env_vars: Dict[str, str], remote_repo_url: str, confirm: bool
) -> None:
"""
Confirm input parameters with the user.
Args:
env_vars (dict[str, str]): Environment variables.
env_vars (Dict[str, str]): Environment variables.
remote_repo_url (str): Remote repository URL.
confirm (bool): Whether to confirm input.
"""
@@ -128,18 +128,18 @@ class DeployCommand(BaseCommand, PlusAPIMixin):
def _create_payload(
self,
env_vars: dict[str, str],
env_vars: Dict[str, str],
remote_repo_url: str,
) -> dict[str, Any]:
) -> Dict[str, Any]:
"""
Create the payload for crew creation.
Args:
remote_repo_url (str): Remote repository URL.
env_vars (dict[str, str]): Environment variables.
env_vars (Dict[str, str]): Environment variables.
Returns:
dict[str, Any]: The payload for crew creation.
Dict[str, Any]: The payload for crew creation.
"""
return {
"deploy": {
@@ -149,12 +149,12 @@ class DeployCommand(BaseCommand, PlusAPIMixin):
}
}
def _display_creation_success(self, json_response: dict[str, Any]) -> None:
def _display_creation_success(self, json_response: Dict[str, Any]) -> None:
"""
Display success message after crew creation.
Args:
json_response (dict[str, Any]): The response containing crew information.
json_response (Dict[str, Any]): The response containing crew information.
"""
console.print("Deployment created successfully!\n", style="bold green")
console.print(
@@ -179,12 +179,12 @@ class DeployCommand(BaseCommand, PlusAPIMixin):
else:
self._display_no_crews_message()
def _display_crews(self, crews_data: list[dict[str, Any]]) -> None:
def _display_crews(self, crews_data: List[Dict[str, Any]]) -> None:
"""
Display the list of crews.
Args:
crews_data (list[dict[str, Any]]): List of crew data to display.
crews_data (List[Dict[str, Any]]): List of crew data to display.
"""
for crew_data in crews_data:
console.print(
@@ -217,12 +217,12 @@ class DeployCommand(BaseCommand, PlusAPIMixin):
self._validate_response(response)
self._display_crew_status(response.json())
def _display_crew_status(self, status_data: dict[str, str]) -> None:
def _display_crew_status(self, status_data: Dict[str, str]) -> None:
"""
Display the status of a crew.
Args:
status_data (dict[str, str]): The status data to display.
status_data (Dict[str, str]): The status data to display.
"""
console.print(f"Name:\t {status_data['name']}")
console.print(f"Status:\t {status_data['status']}")

View File

@@ -1,5 +1,5 @@
import requests
from typing import Any
from typing import Dict, Any
from rich.console import Console
from requests.exceptions import RequestException, JSONDecodeError
@@ -32,7 +32,7 @@ class EnterpriseConfigureCommand(BaseCommand):
console.print(f"❌ Failed to configure Enterprise settings: {str(e)}", style="bold red")
raise SystemExit(1)
def _fetch_oauth_config(self, enterprise_url: str) -> dict[str, Any]:
def _fetch_oauth_config(self, enterprise_url: str) -> Dict[str, Any]:
oauth_endpoint = f"{enterprise_url}/auth/parameters"
try:
@@ -64,7 +64,7 @@ class EnterpriseConfigureCommand(BaseCommand):
except Exception as e:
raise ValueError(f"Error fetching OAuth2 configuration: {str(e)}")
def _update_oauth_settings(self, enterprise_url: str, oauth_config: dict[str, Any]) -> None:
def _update_oauth_settings(self, enterprise_url: str, oauth_config: Dict[str, Any]) -> None:
try:
config_mapping = {
'enterprise_base_url': enterprise_url,

View File

@@ -1,4 +1,4 @@
from typing import Optional
from typing import List, Optional
from urllib.parse import urljoin
import requests
@@ -58,7 +58,7 @@ class PlusAPI:
version: str,
description: Optional[str],
encoded_file: str,
available_exports: Optional[list[str]] = None,
available_exports: Optional[List[str]] = None,
):
params = {
"handle": handle,
@@ -117,19 +117,17 @@ class PlusAPI:
def get_organizations(self) -> requests.Response:
return self._make_request("GET", self.ORGANIZATIONS_RESOURCE)
def send_trace_batch(self, payload) -> requests.Response:
return self._make_request("POST", self.TRACING_RESOURCE, json=payload)
def initialize_trace_batch(self, payload) -> requests.Response:
return self._make_request(
"POST",
f"{self.TRACING_RESOURCE}/batches",
json=payload,
timeout=30,
"POST", f"{self.TRACING_RESOURCE}/batches", json=payload
)
def initialize_ephemeral_trace_batch(self, payload) -> requests.Response:
return self._make_request(
"POST",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches",
json=payload,
"POST", f"{self.EPHEMERAL_TRACING_RESOURCE}/batches", json=payload
)
def send_trace_events(self, trace_batch_id: str, payload) -> requests.Response:
@@ -137,7 +135,6 @@ class PlusAPI:
"POST",
f"{self.TRACING_RESOURCE}/batches/{trace_batch_id}/events",
json=payload,
timeout=30,
)
def send_ephemeral_trace_events(
@@ -147,7 +144,6 @@ class PlusAPI:
"POST",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches/{trace_batch_id}/events",
json=payload,
timeout=30,
)
def finalize_trace_batch(self, trace_batch_id: str, payload) -> requests.Response:
@@ -155,7 +151,6 @@ class PlusAPI:
"PATCH",
f"{self.TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
timeout=30,
)
def finalize_ephemeral_trace_batch(
@@ -165,5 +160,4 @@ class PlusAPI:
"PATCH",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
timeout=30,
)

View File

@@ -1,6 +1,6 @@
import subprocess
from enum import Enum
from typing import Optional
from typing import List, Optional
import click
from packaging import version

View File

@@ -10,9 +10,8 @@ console = Console()
class SettingsCommand(BaseCommand):
"""A class to handle CLI configuration commands."""
def __init__(self, settings_kwargs: dict[str, Any] | None = None):
def __init__(self, settings_kwargs: dict[str, Any] = {}):
super().__init__()
settings_kwargs = settings_kwargs or {}
self.settings = Settings(**settings_kwargs)
def list(self) -> None:

View File

@@ -1,141 +0,0 @@
import json
import os
import sys
from datetime import datetime
from pathlib import Path
from typing import Optional
from cryptography.fernet import Fernet
class TokenManager:
def __init__(self, file_path: str = "tokens.enc") -> None:
"""
Initialize the TokenManager class.
:param file_path: The file path to store the encrypted tokens. Default is "tokens.enc".
"""
self.file_path = file_path
self.key = self._get_or_create_key()
self.fernet = Fernet(self.key)
def _get_or_create_key(self) -> bytes:
"""
Get or create the encryption key.
:return: The encryption key.
"""
key_filename = "secret.key"
key = self.read_secure_file(key_filename)
if key is not None:
return key
new_key = Fernet.generate_key()
self.save_secure_file(key_filename, new_key)
return new_key
def save_tokens(self, access_token: str, expires_at: int) -> None:
"""
Save the access token and its expiration time.
:param access_token: The access token to save.
:param expires_at: The UNIX timestamp of the expiration time.
"""
expiration_time = datetime.fromtimestamp(expires_at)
data = {
"access_token": access_token,
"expiration": expiration_time.isoformat(),
}
encrypted_data = self.fernet.encrypt(json.dumps(data).encode())
self.save_secure_file(self.file_path, encrypted_data)
def get_token(self) -> Optional[str]:
"""
Get the access token if it is valid and not expired.
:return: The access token if valid and not expired, otherwise None.
"""
encrypted_data = self.read_secure_file(self.file_path)
if encrypted_data is None:
return None
decrypted_data = self.fernet.decrypt(encrypted_data) # type: ignore
data = json.loads(decrypted_data)
expiration = datetime.fromisoformat(data["expiration"])
if expiration <= datetime.now():
return None
return data["access_token"]
def clear_tokens(self) -> None:
"""
Clear the tokens.
"""
self.delete_secure_file(self.file_path)
def get_secure_storage_path(self) -> Path:
"""
Get the secure storage path based on the operating system.
:return: The secure storage path.
"""
if sys.platform == "win32":
# Windows: Use %LOCALAPPDATA%
base_path = os.environ.get("LOCALAPPDATA")
elif sys.platform == "darwin":
# macOS: Use ~/Library/Application Support
base_path = os.path.expanduser("~/Library/Application Support")
else:
# Linux and other Unix-like: Use ~/.local/share
base_path = os.path.expanduser("~/.local/share")
app_name = "crewai/credentials"
storage_path = Path(base_path) / app_name
storage_path.mkdir(parents=True, exist_ok=True)
return storage_path
def save_secure_file(self, filename: str, content: bytes) -> None:
"""
Save the content to a secure file.
:param filename: The name of the file.
:param content: The content to save.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
with open(file_path, "wb") as f:
f.write(content)
# Set appropriate permissions (read/write for owner only)
os.chmod(file_path, 0o600)
def read_secure_file(self, filename: str) -> Optional[bytes]:
"""
Read the content of a secure file.
:param filename: The name of the file.
:return: The content of the file if it exists, otherwise None.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
if not file_path.exists():
return None
with open(file_path, "rb") as f:
return f.read()
def delete_secure_file(self, filename: str) -> None:
"""
Delete the secure file.
:param filename: The name of the file.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
if file_path.exists():
file_path.unlink(missing_ok=True)

View File

@@ -1,10 +1,7 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai import Task
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
@@ -13,8 +10,8 @@ if TYPE_CHECKING:
class {{crew_name}}():
"""{{crew_name}} crew"""
agents: list["BaseAgent"]
tasks: list["Task"]
agents: List[BaseAgent]
tasks: List[Task]
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.177.0,<1.0.0"
"crewai[tools]>=0.159.0,<1.0.0"
]
[project.scripts]

View File

@@ -1,6 +1,7 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
@@ -11,8 +12,8 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
class PoemCrew:
"""Poem Crew"""
agents: list[BaseAgent]
tasks: list[Task]
agents: List[BaseAgent]
tasks: List[Task]
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.177.0,<1.0.0",
"crewai[tools]>=0.159.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.177.0"
"crewai[tools]>=0.159.0"
]
[tool.crewai]

View File

@@ -44,9 +44,8 @@ def migrate_pyproject(input_file, output_file):
]
new_pyproject["project"]["requires-python"] = poetry_data.get("python")
else:
# If it's already in the new format, just copy the project and tool sections
# If it's already in the new format, just copy the project section
new_pyproject["project"] = pyproject_data.get("project", {})
new_pyproject["tool"] = pyproject_data.get("tool", {})
# Migrate or copy dependencies
if "dependencies" in new_pyproject["project"]:

View File

@@ -5,7 +5,7 @@ import sys
from functools import reduce
from inspect import getmro, isclass, isfunction, ismethod
from pathlib import Path
from typing import Any, get_type_hints
from typing import Any, Dict, List, get_type_hints
import click
import tomli
@@ -77,7 +77,7 @@ def get_project_description(
def _get_project_attribute(
pyproject_path: str, keys: list[str], require: bool
pyproject_path: str, keys: List[str], require: bool
) -> Any | None:
"""Get an attribute from the pyproject.toml file."""
attribute = None
@@ -117,7 +117,7 @@ def _get_project_attribute(
return attribute
def _get_nested_value(data: dict[str, Any], keys: list[str]) -> Any:
def _get_nested_value(data: Dict[str, Any], keys: List[str]) -> Any:
return reduce(dict.__getitem__, keys, data)

View File

@@ -1,7 +1,6 @@
import asyncio
import json
import re
import threading
import uuid
import warnings
from concurrent.futures import Future
@@ -10,7 +9,11 @@ from hashlib import md5
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Set,
Tuple,
Union,
cast,
)
@@ -56,8 +59,7 @@ from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import NOT_SPECIFIED, TRAINING_DATA_FILE
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.events.types.crew_events import (
CrewKickoffCancelledEvent,
from crewai.utilities.events.crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
@@ -68,15 +70,16 @@ from crewai.events.types.crew_events import (
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from crewai.events.event_bus import crewai_event_bus
from crewai.events.event_listener import EventListener
from crewai.events.listeners.tracing.trace_listener import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.event_listener import EventListener
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
from crewai.events.listeners.tracing.utils import (
from crewai.utilities.events.listeners.tracing.utils import (
is_tracing_enabled,
on_first_execution_tracing_confirmation,
)
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
@@ -128,19 +131,18 @@ class Crew(FlowTrackable, BaseModel):
_external_memory: Optional[InstanceOf[ExternalMemory]] = PrivateAttr()
_train: Optional[bool] = PrivateAttr(default=False)
_train_iteration: Optional[int] = PrivateAttr()
_inputs: Optional[dict[str, Any]] = PrivateAttr(default=None)
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
_logging_color: str = PrivateAttr(
default="bold_purple",
)
_task_output_handler: TaskOutputStorageHandler = PrivateAttr(
default_factory=TaskOutputStorageHandler
)
_cancellation_event: threading.Event = PrivateAttr(default_factory=threading.Event)
name: Optional[str] = Field(default="crew")
cache: bool = Field(default=True)
tasks: list[Task] = Field(default_factory=list)
agents: list[BaseAgent] = Field(default_factory=list)
tasks: List[Task] = Field(default_factory=list)
agents: List[BaseAgent] = Field(default_factory=list)
process: Process = Field(default=Process.sequential)
verbose: bool = Field(default=False)
memory: bool = Field(
@@ -180,7 +182,7 @@ class Crew(FlowTrackable, BaseModel):
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
description="Language model that will run the agent.", default=None
)
config: Optional[Union[Json, dict[str, Any]]] = Field(default=None)
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
share_crew: Optional[bool] = Field(default=False)
step_callback: Optional[Any] = Field(
@@ -191,13 +193,13 @@ class Crew(FlowTrackable, BaseModel):
default=None,
description="Callback to be executed after each task for all agents execution.",
)
before_kickoff_callbacks: list[
Callable[[Optional[dict[str, Any]]], Optional[dict[str, Any]]]
before_kickoff_callbacks: List[
Callable[[Optional[Dict[str, Any]]], Optional[Dict[str, Any]]]
] = Field(
default_factory=list,
description="List of callbacks to be executed before crew kickoff. It may be used to adjust inputs before the crew is executed.",
)
after_kickoff_callbacks: list[Callable[[CrewOutput], CrewOutput]] = Field(
after_kickoff_callbacks: List[Callable[[CrewOutput], CrewOutput]] = Field(
default_factory=list,
description="List of callbacks to be executed after crew kickoff. It may be used to adjust the output of the crew.",
)
@@ -221,15 +223,15 @@ class Crew(FlowTrackable, BaseModel):
default=None,
description="Language model that will run the AgentPlanner if planning is True.",
)
task_execution_output_json_files: Optional[list[str]] = Field(
task_execution_output_json_files: Optional[List[str]] = Field(
default=None,
description="List of file paths for task execution JSON files.",
)
execution_logs: list[dict[str, Any]] = Field(
execution_logs: List[Dict[str, Any]] = Field(
default=[],
description="List of execution logs for tasks",
)
knowledge_sources: Optional[list[BaseKnowledgeSource]] = Field(
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
@@ -266,8 +268,8 @@ class Crew(FlowTrackable, BaseModel):
@field_validator("config", mode="before")
@classmethod
def check_config_type(
cls, v: Union[Json, dict[str, Any]]
) -> Union[Json, dict[str, Any]]:
cls, v: Union[Json, Dict[str, Any]]
) -> Union[Json, Dict[str, Any]]:
"""Validates that the config is a valid type.
Args:
v: The config to be validated.
@@ -284,6 +286,8 @@ class Crew(FlowTrackable, BaseModel):
self._cache_handler = CacheHandler()
event_listener = EventListener()
if on_first_execution_tracing_confirmation():
self.tracing = True
if is_tracing_enabled() or self.tracing:
trace_listener = TraceCollectionListener()
@@ -501,7 +505,7 @@ class Crew(FlowTrackable, BaseModel):
@property
def key(self) -> str:
source: list[str] = [agent.key for agent in self.agents] + [
source: List[str] = [agent.key for agent in self.agents] + [
task.key for task in self.tasks
]
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
@@ -529,7 +533,7 @@ class Crew(FlowTrackable, BaseModel):
self.agents = [Agent(**agent) for agent in self.config["agents"]]
self.tasks = [self._create_task(task) for task in self.config["tasks"]]
def _create_task(self, task_config: dict[str, Any]) -> Task:
def _create_task(self, task_config: Dict[str, Any]) -> Task:
"""Creates a task instance from its configuration.
Args:
@@ -558,10 +562,9 @@ class Crew(FlowTrackable, BaseModel):
CrewTrainingHandler(filename).initialize_file()
def train(
self, n_iterations: int, filename: str, inputs: Optional[dict[str, Any]] = None
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None:
"""Trains the crew for a given number of iterations."""
inputs = inputs or {}
try:
crewai_event_bus.emit(
self,
@@ -610,10 +613,8 @@ class Crew(FlowTrackable, BaseModel):
def kickoff(
self,
inputs: Optional[dict[str, Any]] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> CrewOutput:
self._reset_cancellation()
ctx = baggage.set_baggage(
"crew_context", CrewContext(id=str(self.id), key=self.key)
)
@@ -638,7 +639,6 @@ class Crew(FlowTrackable, BaseModel):
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
self._set_allow_crewai_trigger_context_for_first_task()
i18n = I18N(prompt_file=self.prompt_file)
@@ -683,9 +683,9 @@ class Crew(FlowTrackable, BaseModel):
finally:
detach(token)
def kickoff_for_each(self, inputs: list[dict[str, Any]]) -> list[CrewOutput]:
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List[CrewOutput]:
"""Executes the Crew's workflow for each input in the list and aggregates results."""
results: list[CrewOutput] = []
results: List[CrewOutput] = []
# Initialize the parent crew's usage metrics
total_usage_metrics = UsageMetrics()
@@ -704,14 +704,11 @@ class Crew(FlowTrackable, BaseModel):
self._task_output_handler.reset()
return results
async def kickoff_async(
self, inputs: Optional[dict[str, Any]] = None
) -> CrewOutput:
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = {}) -> CrewOutput:
"""Asynchronous kickoff method to start the crew execution."""
inputs = inputs or {}
return await asyncio.to_thread(self.kickoff, inputs)
async def kickoff_for_each_async(self, inputs: list[dict]) -> list[CrewOutput]:
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[CrewOutput]:
crew_copies = [self.copy() for _ in inputs]
async def run_crew(crew, input_data):
@@ -808,37 +805,25 @@ class Crew(FlowTrackable, BaseModel):
def _execute_tasks(
self,
tasks: list[Task],
tasks: List[Task],
start_index: Optional[int] = 0,
was_replayed: bool = False,
) -> CrewOutput:
"""Executes tasks sequentially and returns the final output.
Args:
tasks (list[Task]): List of tasks to execute
tasks (List[Task]): List of tasks to execute
manager (Optional[BaseAgent], optional): Manager agent to use for delegation. Defaults to None.
Returns:
CrewOutput: Final output of the crew
"""
task_outputs: list[TaskOutput] = []
futures: list[tuple[Task, Future[TaskOutput], int]] = []
task_outputs: List[TaskOutput] = []
futures: List[Tuple[Task, Future[TaskOutput], int]] = []
last_sync_output: Optional[TaskOutput] = None
for task_index, task in enumerate(tasks):
if self.is_cancelled():
self._logger.log("info", f"Crew execution cancelled after {task_index} tasks", color="yellow")
crewai_event_bus.emit(
self,
CrewKickoffCancelledEvent(
crew_name=self.name,
completed_tasks=task_index,
total_tasks=len(tasks),
),
)
return self._create_crew_output(task_outputs)
if start_index is not None and task_index < start_index:
if task.output:
if task.async_execution:
@@ -860,7 +845,7 @@ class Crew(FlowTrackable, BaseModel):
tools_for_task = self._prepare_tools(
agent_to_use,
task,
cast(Union[list[Tool], list[BaseTool]], tools_for_task),
cast(Union[List[Tool], List[BaseTool]], tools_for_task),
)
self._log_task_start(task, agent_to_use.role)
@@ -880,7 +865,7 @@ class Crew(FlowTrackable, BaseModel):
future = task.execute_async(
agent=agent_to_use,
context=context,
tools=cast(list[BaseTool], tools_for_task),
tools=cast(List[BaseTool], tools_for_task),
)
futures.append((task, future, task_index))
else:
@@ -892,7 +877,7 @@ class Crew(FlowTrackable, BaseModel):
task_output = task.execute_sync(
agent=agent_to_use,
context=context,
tools=cast(list[BaseTool], tools_for_task),
tools=cast(List[BaseTool], tools_for_task),
)
task_outputs.append(task_output)
self._process_task_result(task, task_output)
@@ -906,8 +891,8 @@ class Crew(FlowTrackable, BaseModel):
def _handle_conditional_task(
self,
task: ConditionalTask,
task_outputs: list[TaskOutput],
futures: list[tuple[Task, Future[TaskOutput], int]],
task_outputs: List[TaskOutput],
futures: List[Tuple[Task, Future[TaskOutput], int]],
task_index: int,
was_replayed: bool,
) -> Optional[TaskOutput]:
@@ -930,8 +915,8 @@ class Crew(FlowTrackable, BaseModel):
return None
def _prepare_tools(
self, agent: BaseAgent, task: Task, tools: Union[list[Tool], list[BaseTool]]
) -> list[BaseTool]:
self, agent: BaseAgent, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
# Add delegation tools if agent allows delegation
if hasattr(agent, "allow_delegation") and getattr(
agent, "allow_delegation", False
@@ -960,8 +945,8 @@ class Crew(FlowTrackable, BaseModel):
):
tools = self._add_multimodal_tools(agent, tools)
# Return a list[BaseTool] which is compatible with both Task.execute_sync and Task.execute_async
return cast(list[BaseTool], tools)
# Return a List[BaseTool] which is compatible with both Task.execute_sync and Task.execute_async
return cast(List[BaseTool], tools)
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
if self.process == Process.hierarchical:
@@ -970,12 +955,12 @@ class Crew(FlowTrackable, BaseModel):
def _merge_tools(
self,
existing_tools: Union[list[Tool], list[BaseTool]],
new_tools: Union[list[Tool], list[BaseTool]],
) -> list[BaseTool]:
existing_tools: Union[List[Tool], List[BaseTool]],
new_tools: Union[List[Tool], List[BaseTool]],
) -> List[BaseTool]:
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
if not new_tools:
return cast(list[BaseTool], existing_tools)
return cast(List[BaseTool], existing_tools)
# Create mapping of tool names to new tools
new_tool_map = {tool.name: tool for tool in new_tools}
@@ -986,41 +971,41 @@ class Crew(FlowTrackable, BaseModel):
# Add all new tools
tools.extend(new_tools)
return cast(list[BaseTool], tools)
return cast(List[BaseTool], tools)
def _inject_delegation_tools(
self,
tools: Union[list[Tool], list[BaseTool]],
tools: Union[List[Tool], List[BaseTool]],
task_agent: BaseAgent,
agents: list[BaseAgent],
) -> list[BaseTool]:
agents: List[BaseAgent],
) -> List[BaseTool]:
if hasattr(task_agent, "get_delegation_tools"):
delegation_tools = task_agent.get_delegation_tools(agents)
# Cast delegation_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(list[BaseTool], delegation_tools))
return cast(list[BaseTool], tools)
return self._merge_tools(tools, cast(List[BaseTool], delegation_tools))
return cast(List[BaseTool], tools)
def _add_multimodal_tools(
self, agent: BaseAgent, tools: Union[list[Tool], list[BaseTool]]
) -> list[BaseTool]:
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if hasattr(agent, "get_multimodal_tools"):
multimodal_tools = agent.get_multimodal_tools()
# Cast multimodal_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(list[BaseTool], multimodal_tools))
return cast(list[BaseTool], tools)
return self._merge_tools(tools, cast(List[BaseTool], multimodal_tools))
return cast(List[BaseTool], tools)
def _add_code_execution_tools(
self, agent: BaseAgent, tools: Union[list[Tool], list[BaseTool]]
) -> list[BaseTool]:
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if hasattr(agent, "get_code_execution_tools"):
code_tools = agent.get_code_execution_tools()
# Cast code_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(list[BaseTool], code_tools))
return cast(list[BaseTool], tools)
return self._merge_tools(tools, cast(List[BaseTool], code_tools))
return cast(List[BaseTool], tools)
def _add_delegation_tools(
self, task: Task, tools: Union[list[Tool], list[BaseTool]]
) -> list[BaseTool]:
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
if not tools:
@@ -1028,7 +1013,7 @@ class Crew(FlowTrackable, BaseModel):
tools = self._inject_delegation_tools(
tools, task.agent, agents_for_delegation
)
return cast(list[BaseTool], tools)
return cast(List[BaseTool], tools)
def _log_task_start(self, task: Task, role: str = "None"):
if self.output_log_file:
@@ -1037,8 +1022,8 @@ class Crew(FlowTrackable, BaseModel):
)
def _update_manager_tools(
self, task: Task, tools: Union[list[Tool], list[BaseTool]]
) -> list[BaseTool]:
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if self.manager_agent:
if task.agent:
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
@@ -1046,9 +1031,9 @@ class Crew(FlowTrackable, BaseModel):
tools = self._inject_delegation_tools(
tools, self.manager_agent, self.agents
)
return cast(list[BaseTool], tools)
return cast(List[BaseTool], tools)
def _get_context(self, task: Task, task_outputs: list[TaskOutput]) -> str:
def _get_context(self, task: Task, task_outputs: List[TaskOutput]) -> str:
if not task.context:
return ""
@@ -1070,7 +1055,7 @@ class Crew(FlowTrackable, BaseModel):
output=output.raw,
)
def _create_crew_output(self, task_outputs: list[TaskOutput]) -> CrewOutput:
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if not task_outputs:
raise ValueError("No task outputs available to create crew output.")
@@ -1101,15 +1086,11 @@ class Crew(FlowTrackable, BaseModel):
def _process_async_tasks(
self,
futures: list[tuple[Task, Future[TaskOutput], int]],
futures: List[Tuple[Task, Future[TaskOutput], int]],
was_replayed: bool = False,
) -> list[TaskOutput]:
task_outputs: list[TaskOutput] = []
) -> List[TaskOutput]:
task_outputs: List[TaskOutput] = []
for future_task, future, task_index in futures:
if self.is_cancelled():
future.cancel()
continue
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
@@ -1119,7 +1100,7 @@ class Crew(FlowTrackable, BaseModel):
return task_outputs
def _find_task_index(
self, task_id: str, stored_outputs: list[Any]
self, task_id: str, stored_outputs: List[Any]
) -> Optional[int]:
return next(
(
@@ -1131,7 +1112,7 @@ class Crew(FlowTrackable, BaseModel):
)
def replay(
self, task_id: str, inputs: Optional[dict[str, Any]] = None
self, task_id: str, inputs: Optional[Dict[str, Any]] = None
) -> CrewOutput:
stored_outputs = self._task_output_handler.load()
if not stored_outputs:
@@ -1172,15 +1153,15 @@ class Crew(FlowTrackable, BaseModel):
return result
def query_knowledge(
self, query: list[str], results_limit: int = 3, score_threshold: float = 0.35
) -> Union[list[dict[str, Any]], None]:
self, query: List[str], results_limit: int = 3, score_threshold: float = 0.35
) -> Union[List[Dict[str, Any]], None]:
if self.knowledge:
return self.knowledge.query(
query, results_limit=results_limit, score_threshold=score_threshold
)
return None
def fetch_inputs(self) -> set[str]:
def fetch_inputs(self) -> Set[str]:
"""
Gathers placeholders (e.g., {something}) referenced in tasks or agents.
Scans each task's 'description' + 'expected_output', and each agent's
@@ -1189,7 +1170,7 @@ class Crew(FlowTrackable, BaseModel):
Returns a set of all discovered placeholder names.
"""
placeholder_pattern = re.compile(r"\{(.+?)\}")
required_inputs: set[str] = set()
required_inputs: Set[str] = set()
# Scan tasks for inputs
for task in self.tasks:
@@ -1291,7 +1272,7 @@ class Crew(FlowTrackable, BaseModel):
if not task.callback:
task.callback = self.task_callback
def _interpolate_inputs(self, inputs: dict[str, Any]) -> None:
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolates the inputs in the tasks and agents."""
[
task.interpolate_inputs_and_add_conversation_history(
@@ -1325,7 +1306,7 @@ class Crew(FlowTrackable, BaseModel):
self,
n_iterations: int,
eval_llm: Union[str, InstanceOf[BaseLLM]],
inputs: Optional[dict[str, Any]] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
try:
@@ -1523,35 +1504,7 @@ class Crew(FlowTrackable, BaseModel):
},
}
def reset_knowledge(self, knowledges: list[Knowledge]) -> None:
def reset_knowledge(self, knowledges: List[Knowledge]) -> None:
"""Reset crew and agent knowledge storage."""
for ks in knowledges:
ks.reset()
def _set_allow_crewai_trigger_context_for_first_task(self):
crewai_trigger_payload = self._inputs and self._inputs.get(
"crewai_trigger_payload"
)
able_to_inject = (
self.tasks and self.tasks[0].allow_crewai_trigger_context is None
)
if (
self.process == Process.sequential
and crewai_trigger_payload
and able_to_inject
):
self.tasks[0].allow_crewai_trigger_context = True
def cancel(self) -> None:
"""Cancel the crew execution. This will stop the crew after the current task completes."""
self._cancellation_event.set()
self._logger.log("info", "Crew cancellation requested", color="yellow")
def is_cancelled(self) -> bool:
"""Check if the crew execution has been cancelled."""
return self._cancellation_event.is_set()
def _reset_cancellation(self) -> None:
"""Reset the cancellation state for reuse of the crew instance."""
self._cancellation_event.clear()

View File

@@ -1,5 +1,5 @@
import json
from typing import Any, Optional
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
@@ -15,7 +15,7 @@ class CrewOutput(BaseModel):
pydantic: Optional[BaseModel] = Field(
description="Pydantic output of Crew", default=None
)
json_dict: Optional[dict[str, Any]] = Field(
json_dict: Optional[Dict[str, Any]] = Field(
description="JSON dict output of Crew", default=None
)
tasks_output: list[TaskOutput] = Field(
@@ -32,7 +32,7 @@ class CrewOutput(BaseModel):
return json.dumps(self.json_dict)
def to_dict(self) -> dict[str, Any]:
def to_dict(self) -> Dict[str, Any]:
"""Convert json_output and pydantic_output to a dictionary."""
output_dict = {}
if self.json_dict:

View File

@@ -1,56 +0,0 @@
"""CrewAI events system for monitoring and extending agent behavior.
This module provides the event infrastructure that allows users to:
- Monitor agent, task, and crew execution
- Track memory operations and performance
- Build custom logging and analytics
- Extend CrewAI with custom event handlers
"""
from crewai.events.base_event_listener import BaseEventListener
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.memory_events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent,
MemorySaveStartedEvent,
MemoryQueryStartedEvent,
MemoryRetrievalCompletedEvent,
MemorySaveFailedEvent,
MemoryQueryFailedEvent,
)
from crewai.events.types.knowledge_events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
)
from crewai.events.types.crew_events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
)
from crewai.events.types.agent_events import (
AgentExecutionCompletedEvent,
)
from crewai.events.types.llm_events import (
LLMStreamChunkEvent,
)
__all__ = [
"BaseEventListener",
"crewai_event_bus",
"MemoryQueryCompletedEvent",
"MemorySaveCompletedEvent",
"MemorySaveStartedEvent",
"MemoryQueryStartedEvent",
"MemoryRetrievalCompletedEvent",
"MemorySaveFailedEvent",
"MemoryQueryFailedEvent",
"KnowledgeRetrievalStartedEvent",
"KnowledgeRetrievalCompletedEvent",
"CrewKickoffStartedEvent",
"CrewKickoffCompletedEvent",
"AgentExecutionCompletedEvent",
"LLMStreamChunkEvent",
]

View File

@@ -1,15 +0,0 @@
from abc import ABC, abstractmethod
from crewai.events.event_bus import CrewAIEventsBus, crewai_event_bus
class BaseEventListener(ABC):
verbose: bool = False
def __init__(self):
super().__init__()
self.setup_listeners(crewai_event_bus)
@abstractmethod
def setup_listeners(self, crewai_event_bus: CrewAIEventsBus):
pass

View File

@@ -1,46 +0,0 @@
from datetime import datetime, timezone
from typing import Any, Optional
from pydantic import BaseModel, Field
from crewai.utilities.serialization import to_serializable
class BaseEvent(BaseModel):
"""Base class for all events"""
timestamp: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
type: str
source_fingerprint: Optional[str] = None # UUID string of the source entity
source_type: Optional[str] = (
None # "agent", "task", "crew", "memory", "entity_memory", "short_term_memory", "long_term_memory", "external_memory"
)
fingerprint_metadata: Optional[dict[str, Any]] = None # Any relevant metadata
def to_json(self, exclude: set[str] | None = None):
"""
Converts the event to a JSON-serializable dictionary.
Args:
exclude (set[str], optional): Set of keys to exclude from the result. Defaults to None.
Returns:
dict: A JSON-serializable dictionary.
"""
return to_serializable(self, exclude=exclude)
def _set_task_params(self, data: dict[str, Any]):
if "from_task" in data and (task := data["from_task"]):
self.task_id = task.id
self.task_name = task.name or task.description
self.from_task = None
def _set_agent_params(self, data: dict[str, Any]):
task = data.get("from_task", None)
agent = task.agent if task else data.get("from_agent", None)
if not agent:
return
self.agent_id = agent.id
self.agent_role = agent.role
self.from_agent = None

View File

@@ -1,117 +0,0 @@
from __future__ import annotations
import threading
from contextlib import contextmanager
from typing import Any, Callable, TypeVar, cast
from blinker import Signal
from crewai.events.base_events import BaseEvent
from crewai.events.event_types import EventTypes
EventT = TypeVar("EventT", bound=BaseEvent)
class CrewAIEventsBus:
"""
A singleton event bus that uses blinker signals for event handling.
Allows both internal (Flow/Crew) and external event handling.
"""
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None: # prevent race condition
cls._instance = super(CrewAIEventsBus, cls).__new__(cls)
cls._instance._initialize()
return cls._instance
def _initialize(self) -> None:
"""Initialize the event bus internal state"""
self._signal = Signal("crewai_event_bus")
self._handlers: dict[type[BaseEvent], list[Callable]] = {}
def on(
self, event_type: type[EventT]
) -> Callable[[Callable[[Any, EventT], None]], Callable[[Any, EventT], None]]:
"""
Decorator to register an event handler for a specific event type.
Usage:
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(
source: Any, event: AgentExecutionCompletedEvent
):
print(f"👍 Agent '{event.agent}' completed task")
print(f" Output: {event.output}")
"""
def decorator(
handler: Callable[[Any, EventT], None],
) -> Callable[[Any, EventT], None]:
if event_type not in self._handlers:
self._handlers[event_type] = []
self._handlers[event_type].append(
cast(Callable[[Any, EventT], None], handler)
)
return handler
return decorator
def emit(self, source: Any, event: BaseEvent) -> None:
"""
Emit an event to all registered handlers
Args:
source: The object emitting the event
event: The event instance to emit
"""
for event_type, handlers in self._handlers.items():
if isinstance(event, event_type):
for handler in handlers:
try:
handler(source, event)
except Exception as e:
print(
f"[EventBus Error] Handler '{handler.__name__}' failed for event '{event_type.__name__}': {e}"
)
self._signal.send(source, event=event)
def register_handler(
self, event_type: type[EventTypes], handler: Callable[[Any, EventTypes], None]
) -> None:
"""Register an event handler for a specific event type"""
if event_type not in self._handlers:
self._handlers[event_type] = []
self._handlers[event_type].append(
cast(Callable[[Any, EventTypes], None], handler)
)
@contextmanager
def scoped_handlers(self):
"""
Context manager for temporary event handling scope.
Useful for testing or temporary event handling.
Usage:
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStarted)
def temp_handler(source, event):
print("Temporary handler")
# Do stuff...
# Handlers are cleared after the context
"""
previous_handlers = self._handlers.copy()
self._handlers.clear()
try:
yield
finally:
self._handlers = previous_handlers
# Global instance
crewai_event_bus = CrewAIEventsBus()

View File

@@ -1,5 +0,0 @@
"""Event listener implementations for CrewAI.
This module contains various event listener implementations
for handling memory, tracing, and other event-driven functionality.
"""

View File

@@ -1,5 +0,0 @@
"""Event type definitions for CrewAI.
This module contains all event types used throughout the CrewAI system
for monitoring and extending agent, crew, task, and tool execution.
"""

View File

@@ -1,25 +0,0 @@
"""Agent logging events that don't reference BaseAgent to avoid circular imports."""
from typing import Any, Optional
from crewai.events.base_events import BaseEvent
class AgentLogsStartedEvent(BaseEvent):
"""Event emitted when agent logs should be shown at start"""
agent_role: str
task_description: Optional[str] = None
verbose: bool = False
type: str = "agent_logs_started"
class AgentLogsExecutionEvent(BaseEvent):
"""Event emitted when agent logs should be shown during execution"""
agent_role: str
formatted_answer: Any
verbose: bool = False
type: str = "agent_logs_execution"
model_config = {"arbitrary_types_allowed": True}

View File

@@ -1,47 +0,0 @@
from crewai.events.base_events import BaseEvent
from typing import Any, Optional
class ReasoningEvent(BaseEvent):
"""Base event for reasoning events."""
type: str
attempt: int = 1
agent_role: str
task_id: str
task_name: Optional[str] = None
from_task: Optional[Any] = None
agent_id: Optional[str] = None
from_agent: Optional[Any] = None
def __init__(self, **data):
super().__init__(**data)
self._set_task_params(data)
self._set_agent_params(data)
class AgentReasoningStartedEvent(ReasoningEvent):
"""Event emitted when an agent starts reasoning about a task."""
type: str = "agent_reasoning_started"
agent_role: str
task_id: str
class AgentReasoningCompletedEvent(ReasoningEvent):
"""Event emitted when an agent finishes its reasoning process."""
type: str = "agent_reasoning_completed"
agent_role: str
task_id: str
plan: str
ready: bool
class AgentReasoningFailedEvent(ReasoningEvent):
"""Event emitted when the reasoning process fails."""
type: str = "agent_reasoning_failed"
agent_role: str
task_id: str
error: str

View File

@@ -1,42 +1,28 @@
import threading
from typing import Any, Optional
from typing import Any
from crewai.experimental.evaluation.base_evaluator import (
AgentEvaluationResult,
AggregationStrategy,
)
from crewai.experimental.evaluation.base_evaluator import AgentEvaluationResult, AggregationStrategy
from crewai.agent import Agent
from crewai.task import Task
from crewai.experimental.evaluation.evaluation_display import EvaluationDisplayFormatter
from crewai.events.types.agent_events import (
AgentEvaluationStartedEvent,
AgentEvaluationCompletedEvent,
AgentEvaluationFailedEvent,
)
from crewai.utilities.events.agent_events import AgentEvaluationStartedEvent, AgentEvaluationCompletedEvent, AgentEvaluationFailedEvent
from crewai.experimental.evaluation import BaseEvaluator, create_evaluation_callbacks
from collections.abc import Sequence
from crewai.events.event_bus import crewai_event_bus
from crewai.events.utils.console_formatter import ConsoleFormatter
from crewai.events.types.task_events import TaskCompletedEvent
from crewai.events.types.agent_events import LiteAgentExecutionCompletedEvent
from crewai.experimental.evaluation.base_evaluator import (
AgentAggregatedEvaluationResult,
EvaluationScore,
MetricCategory,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
from crewai.utilities.events.task_events import TaskCompletedEvent
from crewai.utilities.events.agent_events import LiteAgentExecutionCompletedEvent
from crewai.experimental.evaluation.base_evaluator import AgentAggregatedEvaluationResult, EvaluationScore, MetricCategory
class ExecutionState:
current_agent_id: Optional[str] = None
current_task_id: Optional[str] = None
def __init__(self):
self.traces = {}
self.current_agent_id: str | None = None
self.current_task_id: str | None = None
self.iteration = 1
self.iterations_results = {}
self.agent_evaluators = {}
class AgentEvaluator:
def __init__(
self,
@@ -59,45 +45,27 @@ class AgentEvaluator:
@property
def _execution_state(self) -> ExecutionState:
if not hasattr(self._thread_local, "execution_state"):
if not hasattr(self._thread_local, 'execution_state'):
self._thread_local.execution_state = ExecutionState()
return self._thread_local.execution_state
def _subscribe_to_events(self) -> None:
from typing import cast
crewai_event_bus.register_handler(
TaskCompletedEvent, cast(Any, self._handle_task_completed)
)
crewai_event_bus.register_handler(
LiteAgentExecutionCompletedEvent,
cast(Any, self._handle_lite_agent_completed),
)
crewai_event_bus.register_handler(TaskCompletedEvent, cast(Any, self._handle_task_completed))
crewai_event_bus.register_handler(LiteAgentExecutionCompletedEvent, cast(Any, self._handle_lite_agent_completed))
def _handle_task_completed(self, source: Any, event: TaskCompletedEvent) -> None:
assert event.task is not None
agent = event.task.agent
if (
agent
and str(getattr(agent, "id", "unknown"))
in self._execution_state.agent_evaluators
):
self.emit_evaluation_started_event(
agent_role=agent.role,
agent_id=str(agent.id),
task_id=str(event.task.id),
)
if agent and str(getattr(agent, 'id', 'unknown')) in self._execution_state.agent_evaluators:
self.emit_evaluation_started_event(agent_role=agent.role, agent_id=str(agent.id), task_id=str(event.task.id))
state = ExecutionState()
state.current_agent_id = str(agent.id)
state.current_task_id = str(event.task.id)
assert (
state.current_agent_id is not None and state.current_task_id is not None
)
trace = self.callback.get_trace(
state.current_agent_id, state.current_task_id
)
assert state.current_agent_id is not None and state.current_task_id is not None
trace = self.callback.get_trace(state.current_agent_id, state.current_task_id)
if not trace:
return
@@ -107,28 +75,19 @@ class AgentEvaluator:
task=event.task,
execution_trace=trace,
final_output=event.output,
state=state,
state=state
)
current_iteration = self._execution_state.iteration
if current_iteration not in self._execution_state.iterations_results:
self._execution_state.iterations_results[current_iteration] = {}
if (
agent.role
not in self._execution_state.iterations_results[current_iteration]
):
self._execution_state.iterations_results[current_iteration][
agent.role
] = []
if agent.role not in self._execution_state.iterations_results[current_iteration]:
self._execution_state.iterations_results[current_iteration][agent.role] = []
self._execution_state.iterations_results[current_iteration][
agent.role
].append(result)
self._execution_state.iterations_results[current_iteration][agent.role].append(result)
def _handle_lite_agent_completed(
self, source: object, event: LiteAgentExecutionCompletedEvent
) -> None:
def _handle_lite_agent_completed(self, source: object, event: LiteAgentExecutionCompletedEvent) -> None:
agent_info = event.agent_info
agent_id = str(agent_info["id"])
@@ -146,12 +105,8 @@ class AgentEvaluator:
if not target_agent:
return
assert (
state.current_agent_id is not None and state.current_task_id is not None
)
trace = self.callback.get_trace(
state.current_agent_id, state.current_task_id
)
assert state.current_agent_id is not None and state.current_task_id is not None
trace = self.callback.get_trace(state.current_agent_id, state.current_task_id)
if not trace:
return
@@ -160,7 +115,7 @@ class AgentEvaluator:
agent=target_agent,
execution_trace=trace,
final_output=event.output,
state=state,
state=state
)
current_iteration = self._execution_state.iteration
@@ -168,17 +123,10 @@ class AgentEvaluator:
self._execution_state.iterations_results[current_iteration] = {}
agent_role = target_agent.role
if (
agent_role
not in self._execution_state.iterations_results[current_iteration]
):
self._execution_state.iterations_results[current_iteration][
agent_role
] = []
if agent_role not in self._execution_state.iterations_results[current_iteration]:
self._execution_state.iterations_results[current_iteration][agent_role] = []
self._execution_state.iterations_results[current_iteration][
agent_role
].append(result)
self._execution_state.iterations_results[current_iteration][agent_role].append(result)
def set_iteration(self, iteration: int) -> None:
self._execution_state.iteration = iteration
@@ -187,26 +135,14 @@ class AgentEvaluator:
self._execution_state.iterations_results = {}
def get_evaluation_results(self) -> dict[str, list[AgentEvaluationResult]]:
if (
self._execution_state.iterations_results
and self._execution_state.iteration
in self._execution_state.iterations_results
):
return self._execution_state.iterations_results[
self._execution_state.iteration
]
if self._execution_state.iterations_results and self._execution_state.iteration in self._execution_state.iterations_results:
return self._execution_state.iterations_results[self._execution_state.iteration]
return {}
def display_results_with_iterations(self) -> None:
self.display_formatter.display_summary_results(
self._execution_state.iterations_results
)
self.display_formatter.display_summary_results(self._execution_state.iterations_results)
def get_agent_evaluation(
self,
strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE,
include_evaluation_feedback: bool = True,
) -> dict[str, AgentAggregatedEvaluationResult]:
def get_agent_evaluation(self, strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE, include_evaluation_feedback: bool = True) -> dict[str, AgentAggregatedEvaluationResult]:
agent_results = {}
with crewai_event_bus.scoped_handlers():
task_results = self.get_evaluation_results()
@@ -220,16 +156,13 @@ class AgentEvaluator:
agent_id=agent_id,
agent_role=agent_role,
results=results,
strategy=strategy,
strategy=strategy
)
agent_results[agent_role] = aggregated_result
if (
self._execution_state.iterations_results
and self._execution_state.iteration
== max(self._execution_state.iterations_results.keys(), default=0)
):
if self._execution_state.iterations_results and self._execution_state.iteration == max(self._execution_state.iterations_results.keys(), default=0):
self.display_results_with_iterations()
if include_evaluation_feedback:
@@ -238,9 +171,7 @@ class AgentEvaluator:
return agent_results
def display_evaluation_with_feedback(self) -> None:
self.display_formatter.display_evaluation_with_feedback(
self._execution_state.iterations_results
)
self.display_formatter.display_evaluation_with_feedback(self._execution_state.iterations_results)
def evaluate(
self,
@@ -252,91 +183,46 @@ class AgentEvaluator:
) -> AgentEvaluationResult:
result = AgentEvaluationResult(
agent_id=state.current_agent_id or str(agent.id),
task_id=state.current_task_id or (str(task.id) if task else "unknown_task"),
task_id=state.current_task_id or (str(task.id) if task else "unknown_task")
)
assert self.evaluators is not None
task_id = str(task.id) if task else None
for evaluator in self.evaluators:
try:
self.emit_evaluation_started_event(
agent_role=agent.role, agent_id=str(agent.id), task_id=task_id
)
self.emit_evaluation_started_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id)
score = evaluator.evaluate(
agent=agent,
task=task,
execution_trace=execution_trace,
final_output=final_output,
final_output=final_output
)
result.metrics[evaluator.metric_category] = score
self.emit_evaluation_completed_event(
agent_role=agent.role,
agent_id=str(agent.id),
task_id=task_id,
metric_category=evaluator.metric_category,
score=score,
)
self.emit_evaluation_completed_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id, metric_category=evaluator.metric_category, score=score)
except Exception as e:
self.emit_evaluation_failed_event(
agent_role=agent.role,
agent_id=str(agent.id),
task_id=task_id,
error=str(e),
)
self.console_formatter.print(
f"Error in {evaluator.metric_category.value} evaluator: {str(e)}"
)
self.emit_evaluation_failed_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id, error=str(e))
self.console_formatter.print(f"Error in {evaluator.metric_category.value} evaluator: {str(e)}")
return result
def emit_evaluation_started_event(
self, agent_role: str, agent_id: str, task_id: str | None = None
):
def emit_evaluation_started_event(self, agent_role: str, agent_id: str, task_id: str | None = None):
crewai_event_bus.emit(
self,
AgentEvaluationStartedEvent(
agent_role=agent_role,
agent_id=agent_id,
task_id=task_id,
iteration=self._execution_state.iteration,
),
AgentEvaluationStartedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration)
)
def emit_evaluation_completed_event(
self,
agent_role: str,
agent_id: str,
task_id: str | None = None,
metric_category: MetricCategory | None = None,
score: EvaluationScore | None = None,
):
def emit_evaluation_completed_event(self, agent_role: str, agent_id: str, task_id: str | None = None, metric_category: MetricCategory | None = None, score: EvaluationScore | None = None):
crewai_event_bus.emit(
self,
AgentEvaluationCompletedEvent(
agent_role=agent_role,
agent_id=agent_id,
task_id=task_id,
iteration=self._execution_state.iteration,
metric_category=metric_category,
score=score,
),
AgentEvaluationCompletedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration, metric_category=metric_category, score=score)
)
def emit_evaluation_failed_event(
self, agent_role: str, agent_id: str, error: str, task_id: str | None = None
):
def emit_evaluation_failed_event(self, agent_role: str, agent_id: str, error: str, task_id: str | None = None):
crewai_event_bus.emit(
self,
AgentEvaluationFailedEvent(
agent_role=agent_role,
agent_id=agent_id,
task_id=task_id,
iteration=self._execution_state.iteration,
error=error,
),
AgentEvaluationFailedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration, error=error)
)
def create_default_evaluator(agents: list[Agent], llm: None = None):
from crewai.experimental.evaluation import (
GoalAlignmentEvaluator,
@@ -344,7 +230,7 @@ def create_default_evaluator(agents: list[Agent], llm: None = None):
ToolSelectionEvaluator,
ParameterExtractionEvaluator,
ToolInvocationEvaluator,
ReasoningEfficiencyEvaluator,
ReasoningEfficiencyEvaluator
)
evaluators = [

View File

@@ -1,7 +1,7 @@
import abc
import enum
from enum import Enum
from typing import Any, Optional
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
@@ -57,7 +57,7 @@ class BaseEvaluator(abc.ABC):
def evaluate(
self,
agent: Agent,
execution_trace: dict[str, Any],
execution_trace: Dict[str, Any],
final_output: Any,
task: Task | None = None,
) -> EvaluationScore:
@@ -67,7 +67,7 @@ class BaseEvaluator(abc.ABC):
class AgentEvaluationResult(BaseModel):
agent_id: str = Field(description="ID of the evaluated agent")
task_id: str = Field(description="ID of the task that was executed")
metrics: dict[MetricCategory, EvaluationScore] = Field(
metrics: Dict[MetricCategory, EvaluationScore] = Field(
default_factory=dict,
description="Evaluation scores for each metric category"
)
@@ -97,11 +97,11 @@ class AgentAggregatedEvaluationResult(BaseModel):
default=AggregationStrategy.SIMPLE_AVERAGE,
description="Strategy used for aggregation"
)
metrics: dict[MetricCategory, EvaluationScore] = Field(
metrics: Dict[MetricCategory, EvaluationScore] = Field(
default_factory=dict,
description="Aggregated metrics across all tasks"
)
task_results: list[str] = Field(
task_results: List[str] = Field(
default_factory=list,
description="IDs of tasks included in this aggregation"
)
@@ -122,4 +122,4 @@ class AgentAggregatedEvaluationResult(BaseModel):
detailed_feedback = "\n ".join(score.feedback.split('\n'))
result += f" {detailed_feedback}\n"
return result
return result

View File

@@ -1,30 +1,20 @@
from collections import defaultdict
from typing import Any
from typing import Dict, Any, List
from rich.table import Table
from rich.box import HEAVY_EDGE, ROUNDED
from collections.abc import Sequence
from crewai.experimental.evaluation.base_evaluator import (
AgentAggregatedEvaluationResult,
AggregationStrategy,
AgentEvaluationResult,
MetricCategory,
)
from crewai.experimental.evaluation.base_evaluator import AgentAggregatedEvaluationResult, AggregationStrategy, AgentEvaluationResult, MetricCategory
from crewai.experimental.evaluation import EvaluationScore
from crewai.events.utils.console_formatter import ConsoleFormatter
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
from crewai.utilities.llm_utils import create_llm
class EvaluationDisplayFormatter:
def __init__(self):
self.console_formatter = ConsoleFormatter()
def display_evaluation_with_feedback(
self, iterations_results: dict[int, dict[str, list[Any]]]
):
def display_evaluation_with_feedback(self, iterations_results: Dict[int, Dict[str, List[Any]]]):
if not iterations_results:
self.console_formatter.print(
"[yellow]No evaluation results to display[/yellow]"
)
self.console_formatter.print("[yellow]No evaluation results to display[/yellow]")
return
all_agent_roles: set[str] = set()
@@ -32,9 +22,7 @@ class EvaluationDisplayFormatter:
all_agent_roles.update(iter_results.keys())
for agent_role in sorted(all_agent_roles):
self.console_formatter.print(
f"\n[bold cyan]Agent: {agent_role}[/bold cyan]"
)
self.console_formatter.print(f"\n[bold cyan]Agent: {agent_role}[/bold cyan]")
for iter_num, results in sorted(iterations_results.items()):
if agent_role not in results or not results[agent_role]:
@@ -74,7 +62,9 @@ class EvaluationDisplayFormatter:
table.add_section()
table.add_row(
metric.title(), score_text, evaluation_score.feedback or ""
metric.title(),
score_text,
evaluation_score.feedback or ""
)
if aggregated_result.overall_score is not None:
@@ -92,26 +82,19 @@ class EvaluationDisplayFormatter:
table.add_row(
"Overall Score",
f"[{overall_color}]{overall_score:.1f}[/]",
"Overall agent evaluation score",
"Overall agent evaluation score"
)
self.console_formatter.print(table)
def display_summary_results(
self,
iterations_results: dict[int, dict[str, list[AgentAggregatedEvaluationResult]]],
):
def display_summary_results(self, iterations_results: Dict[int, Dict[str, List[AgentAggregatedEvaluationResult]]]):
if not iterations_results:
self.console_formatter.print(
"[yellow]No evaluation results to display[/yellow]"
)
self.console_formatter.print("[yellow]No evaluation results to display[/yellow]")
return
self.console_formatter.print("\n")
table = Table(
title="Agent Performance Scores \n (1-10 Higher is better)", box=HEAVY_EDGE
)
table = Table(title="Agent Performance Scores \n (1-10 Higher is better)", box=HEAVY_EDGE)
table.add_column("Agent/Metric", style="cyan")
@@ -140,14 +123,11 @@ class EvaluationDisplayFormatter:
agent_id=agent_id,
agent_role=agent_role,
results=agent_results,
strategy=AggregationStrategy.SIMPLE_AVERAGE,
strategy=AggregationStrategy.SIMPLE_AVERAGE
)
valid_scores = [
score.score
for score in aggregated_result.metrics.values()
if score.score is not None
]
valid_scores = [score.score for score in aggregated_result.metrics.values()
if score.score is not None]
if valid_scores:
avg_score = sum(valid_scores) / len(valid_scores)
agent_scores_by_iteration[iter_num] = avg_score
@@ -157,9 +137,7 @@ class EvaluationDisplayFormatter:
if not agent_scores_by_iteration:
continue
avg_across_iterations = sum(agent_scores_by_iteration.values()) / len(
agent_scores_by_iteration
)
avg_across_iterations = sum(agent_scores_by_iteration.values()) / len(agent_scores_by_iteration)
row = [f"[bold]{agent_role}[/bold]"]
@@ -200,13 +178,9 @@ class EvaluationDisplayFormatter:
row = [f" - {metric.title()}"]
for iter_num in sorted(iterations_results.keys()):
if (
iter_num in agent_metrics_by_iteration
and metric in agent_metrics_by_iteration[iter_num]
):
metric_score = agent_metrics_by_iteration[iter_num][
metric
].score
if (iter_num in agent_metrics_by_iteration and
metric in agent_metrics_by_iteration[iter_num]):
metric_score = agent_metrics_by_iteration[iter_num][metric].score
if metric_score is not None:
metric_scores.append(metric_score)
if metric_score >= 8.0:
@@ -251,9 +225,7 @@ class EvaluationDisplayFormatter:
results: Sequence[AgentEvaluationResult],
strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE,
) -> AgentAggregatedEvaluationResult:
metrics_by_category: dict[MetricCategory, list[EvaluationScore]] = defaultdict(
list
)
metrics_by_category: dict[MetricCategory, list[EvaluationScore]] = defaultdict(list)
for result in results:
for metric_name, evaluation_score in result.metrics.items():
@@ -274,20 +246,19 @@ class EvaluationDisplayFormatter:
metric=category.title(),
feedbacks=feedbacks,
scores=[s.score for s in scores],
strategy=strategy,
strategy=strategy
)
else:
feedback_summary = feedbacks[0]
aggregated_metrics[category] = EvaluationScore(
score=avg_score, feedback=feedback_summary
score=avg_score,
feedback=feedback_summary
)
overall_score = None
if aggregated_metrics:
valid_scores = [
m.score for m in aggregated_metrics.values() if m.score is not None
]
valid_scores = [m.score for m in aggregated_metrics.values() if m.score is not None]
if valid_scores:
overall_score = sum(valid_scores) / len(valid_scores)
@@ -297,21 +268,19 @@ class EvaluationDisplayFormatter:
metrics=aggregated_metrics,
overall_score=overall_score,
task_count=len(results),
aggregation_strategy=strategy,
aggregation_strategy=strategy
)
def _summarize_feedbacks(
self,
agent_role: str,
metric: str,
feedbacks: list[str],
scores: list[float | None],
strategy: AggregationStrategy,
feedbacks: List[str],
scores: List[float | None],
strategy: AggregationStrategy
) -> str:
if len(feedbacks) <= 2 and all(len(fb) < 200 for fb in feedbacks):
return "\n\n".join(
[f"Feedback {i+1}: {fb}" for i, fb in enumerate(feedbacks)]
)
return "\n\n".join([f"Feedback {i+1}: {fb}" for i, fb in enumerate(feedbacks)])
try:
llm = create_llm()
@@ -321,26 +290,20 @@ class EvaluationDisplayFormatter:
if len(feedback) > 500:
feedback = feedback[:500] + "..."
score_text = f"{score:.1f}" if score is not None else "N/A"
formatted_feedbacks.append(
f"Feedback #{i+1} (Score: {score_text}):\n{feedback}"
)
formatted_feedbacks.append(f"Feedback #{i+1} (Score: {score_text}):\n{feedback}")
all_feedbacks = "\n\n" + "\n\n---\n\n".join(formatted_feedbacks)
strategy_guidance = ""
if strategy == AggregationStrategy.BEST_PERFORMANCE:
strategy_guidance = (
"Focus on the highest-scoring aspects and strengths demonstrated."
)
strategy_guidance = "Focus on the highest-scoring aspects and strengths demonstrated."
elif strategy == AggregationStrategy.WORST_PERFORMANCE:
strategy_guidance = "Focus on areas that need improvement and common issues across tasks."
else:
strategy_guidance = "Provide a balanced analysis of strengths and weaknesses across all tasks."
prompt = [
{
"role": "system",
"content": f"""You are an expert evaluator creating a comprehensive summary of agent performance feedback.
{"role": "system", "content": f"""You are an expert evaluator creating a comprehensive summary of agent performance feedback.
Your job is to synthesize multiple feedback points about the same metric across different tasks.
Create a concise, insightful summary that captures the key patterns and themes from all feedback.
@@ -352,18 +315,14 @@ class EvaluationDisplayFormatter:
3. Highlighting patterns across tasks
4. 150-250 words in length
The summary should be directly usable as final feedback for the agent's performance on this metric.""",
},
{
"role": "user",
"content": f"""I need a synthesized summary of the following feedback for:
The summary should be directly usable as final feedback for the agent's performance on this metric."""},
{"role": "user", "content": f"""I need a synthesized summary of the following feedback for:
Agent Role: {agent_role}
Metric: {metric.title()}
{all_feedbacks}
""",
},
"""}
]
assert llm is not None
response = llm.call(prompt)
@@ -371,6 +330,4 @@ class EvaluationDisplayFormatter:
return response
except Exception:
return "Synthesized from multiple tasks: " + "\n\n".join(
[f"- {fb[:500]}..." for fb in feedbacks]
)
return "Synthesized from multiple tasks: " + "\n\n".join([f"- {fb[:500]}..." for fb in feedbacks])

Some files were not shown because too many files have changed in this diff Show More