Compare commits

..

12 Commits

Author SHA1 Message Date
Lorenze Jay
6068fe941f chore: update crewAI version to 0.165.0 and tools dependency to 0.62.1 (#3357) 2025-08-18 18:25:59 -07:00
Lucas Gomide
2a0cefc98b feat: pin openai<1.100.0 due ResponseTextConfigParam import issue (#3355)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-18 18:31:18 -04:00
Lucas Gomide
a4f65e4870 chore: renaming inject_trigger_input to allow_crewai_trigger_context (#3353)
* chore: renaming inject_trigger_input to allow_crewai_trigger_context

* test: add missing cassetes
2025-08-18 17:57:21 -04:00
Lorenze Jay
a1b3edd79c Refactor tracing logic to consolidate conditions for enabling tracing… (#3347)
* Refactor tracing logic to consolidate conditions for enabling tracing in Crew class and update TraceBatchManager to handle ephemeral batches more effectively. Added tests for trace listener handling of both ephemeral and authenticated user batches.

* drop print

* linted

* refactor: streamline ephemeral handling in TraceBatchManager

This commit removes the ephemeral parameter from the _send_events_to_backend and _finalize_backend_batch methods, replacing it with internal logic that checks the current batch's ephemeral status. This change simplifies the method signatures and enhances the clarity of the code by directly using the is_current_batch_ephemeral attribute for conditional logic.
2025-08-18 14:16:51 -07:00
Lucas Gomide
80b3d9689a Auto inject crewai_trigger_payload (#3351)
* feat: add props to inject trigger payload

* feat: auto-inject trigger_input in the first crew task
2025-08-18 16:36:08 -04:00
Vini Brasil
ec03a53121 Add example to Tool Repository docs (#3352) 2025-08-18 13:19:35 -07:00
Vini Brasil
2fdf3f3a6a Move Chroma lockfile to db/ (#3342)
This commit fixes an issue where using Chroma would spam lockfiles over
the root path of the crew.
2025-08-18 11:00:50 -07:00
Greyson LaLonde
1d3d7ebf5e fix: convert XMLSearchTool config values to strings for configparser compatibility (#3344) 2025-08-18 13:23:58 -04:00
Gabe Milani
2c2196f415 fix: flaky test with PytestUnraisableExceptionWarning (#3346) 2025-08-18 14:07:51 -03:00
Gabe Milani
c9f30b175c chore: ignore deprecation warning from chromadb (#3328)
* chore: ignore deprecation warning from chromadb

* adding TODO: in the comment
2025-08-18 13:24:11 -03:00
Greyson LaLonde
a17b93a7f8 Mock telemetry in pytest tests (#3340)
* Add telemetry mocking for pytest tests

- Mock telemetry by default for all tests except telemetry-specific tests
- Add @pytest.mark.telemetry marker for real telemetry tests
- Reduce test overhead and improve isolation

* Fix telemetry test isolation

- Properly isolate telemetry tests from mocking environment
- Preserve API keys and other necessary environment variables
- Ensure telemetry tests can run with real telemetry instances
2025-08-18 11:55:30 -04:00
namho kim
0d3e462791 fix: Revised Korean translation and sentence structure improvement (#3337)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-18 10:46:13 -04:00
41 changed files with 6204 additions and 3671 deletions

View File

@@ -709,7 +709,7 @@
"icon": "globe"
},
{
"anchor": "법정",
"anchor": "포럼",
"href": "https://community.crewai.com",
"icon": "discourse"
},
@@ -719,7 +719,7 @@
"icon": "robot"
},
{
"anchor": "출시",
"anchor": "릴리스",
"href": "https://github.com/crewAIInc/crewAI/releases",
"icon": "tag"
}
@@ -734,22 +734,22 @@
"pages": ["ko/introduction", "ko/installation", "ko/quickstart"]
},
{
"group": "안내서",
"group": "가이드",
"pages": [
{
"group": "전략",
"pages": ["ko/guides/concepts/evaluating-use-cases"]
},
{
"group": "Agents",
"group": "에이전트 (Agents)",
"pages": ["ko/guides/agents/crafting-effective-agents"]
},
{
"group": "Crews",
"group": "크루 (Crews)",
"pages": ["ko/guides/crews/first-crew"]
},
{
"group": "Flows",
"group": "플로우 (Flows)",
"pages": [
"ko/guides/flows/first-flow",
"ko/guides/flows/mastering-flow-state"
@@ -797,7 +797,7 @@
]
},
{
"group": "도구",
"group": "도구 (Tools)",
"pages": [
"ko/tools/overview",
{
@@ -887,7 +887,7 @@
]
},
{
"group": "클라우드 & 저장",
"group": "클라우드 & 스토리지",
"pages": [
"ko/tools/cloud-storage/overview",
"ko/tools/cloud-storage/s3readertool",
@@ -909,7 +909,7 @@
]
},
{
"group": "오브저버빌리티",
"group": "Observability",
"pages": [
"ko/observability/overview",
"ko/observability/arize-phoenix",
@@ -927,7 +927,7 @@
]
},
{
"group": "익히다",
"group": "학습",
"pages": [
"ko/learn/overview",
"ko/learn/llm-selection-guide",
@@ -951,13 +951,13 @@
]
},
{
"group": "원격측정",
"group": "Telemetry",
"pages": ["ko/telemetry"]
}
]
},
{
"tab": "기업",
"tab": "엔터프라이즈",
"groups": [
{
"group": "시작 안내",
@@ -997,7 +997,7 @@
]
},
{
"group": "사용 안내서",
"group": "How-To Guides",
"pages": [
"ko/enterprise/guides/build-crew",
"ko/enterprise/guides/deploy-crew",

View File

@@ -35,6 +35,22 @@ crewai tool install <tool-name>
This installs the tool and adds it to `pyproject.toml`.
You can use the tool by importing it and adding it to your agents:
```python
from your_tool.tool import YourTool
custom_tool = YourTool()
researcher = Agent(
role='Market Research Analyst',
goal='Provide up-to-date market analysis of the AI industry',
backstory='An expert analyst with a keen eye for market trends.',
tools=[custom_tool],
verbose=True
)
```
## Creating and Publishing Tools
To create a new tool project:

View File

@@ -1,65 +1,65 @@
---
title: 소개
description: 함께 협력하여 복잡한 작업을 해결하는 AI 에이전트 팀 구축
description: 함께 협력하여 복잡한 작업을 해결하는 AI agent 팀 구축
icon: handshake
---
# CrewAI란 무엇인가?
**CrewAI는 완전히 독립적으로, LangChain이나 기타 agent 프레임워크에 의존하지 않고 처음부터 스크래치로 개발된 가볍고 매우 빠른 Python 프레임워크입니다.**
**CrewAI는 LangChain이나 기타 agent 프레임워크에 의존하지 않고, 완전히 독립적으로 처음부터 스크래치로 개발된 가볍고 매우 빠른 Python 프레임워크입니다.**
CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공하여, 어떤 시나리오에도 맞춤화된 자율 AI agent를 만드는 데 이상적입니다:
- **[CrewAI Crews](/ko/guides/crews/first-crew)**: 자율성과 협업 지능을 극대화하여, 각 agent가 특정 역할, 도구, 목표를 가진 AI 팀을 만들 수 있습니다.
- **[CrewAI Flows](/ko/guides/flows/first-flow)**: 세밀한 이벤트 기반 제어와 단일 LLM 호출을 통한 정확한 작업 오케스트레이션을 가능하게 하며 Crews 네이티브로 지원합니다.
- **[CrewAI Flows](/ko/guides/flows/first-flow)**: 이벤트 기반의 세밀한 제어와 단일 LLM 호출을 통한 정확한 작업 orchestration을 지원하며, Crews 네이티브로 통합됩니다.
10만 명이 넘는 개발자가 커뮤니티 과정을 통해 인증을 받았으며, CrewAI는 기업용 AI 자동화의 표준으로 빠르게 자리잡고 있습니다.
## 크루 작동 방식
## Crew의 작동 방식
<Note>
회사가 비즈니스 목표를 달성하기 위해 여러 부서(영업, 엔지니어링, 마케팅 등)가 리더십 아래에서 함께 일하는 것처럼, CrewAI는 복잡한 작업을 달성하기 위해 전문화된 역할의 AI 에이전트들이 협력하는 조직을 만들 수 있도록 도와줍니다.
회사가 비즈니스 목표를 달성하기 위해 여러 부서(영업, 엔지니어링, 마케팅 등)가 리더십 아래에서 함께 일하는 것처럼, CrewAI는 복잡한 작업을 달성하기 위해 전문화된 역할의 AI agent들이 협력하는 조직을 만들 수 있도록 도와줍니다.
</Note>
<Frame caption="CrewAI 프레임워크 개요">
<Frame caption="CrewAI Framework Overview">
<img src="/images/crews.png" alt="CrewAI Framework Overview" />
</Frame>
| 구성 요소 | 설명 | 주요 특징 |
|:--------------|:---------------------:|:----------|
| **크루** | 최상위 조직 | • AI 에이전트 팀 관리<br/>• 워크플로우 감독<br/>• 협업 보장<br/>• 결과 전달 |
| **AI 에이전트** | 전문 팀원 | • 특정 역할 보유(연구원, 작가 등)<br/>• 지정된 도구 사용<br/>• 작업 위임 가능<br/>• 자율적 의사결정 가능 |
| **프로세스** | 워크플로우 관리 시스템 | • 협업 패턴 정의<br/>• 작업 할당 제어<br/>• 상호작용 관리<br/>• 효율적 실행 보장 |
| **작업** | 개별 할당 | • 명확한 목표 보유<br/>• 특정 도구 사용<br/>• 더 큰 프로세스에 기여<br/>• 실행 가능한 결과 도출 |
| 구성 요소 | 설명 | 주요 특징 |
|:----------|:----:|:----------|
| **Crew** | 최상위 조직 | • AI agent 팀 관리<br/>• workflow 감독<br/>• 협업 보장<br/>• 결과 전달 |
| **AI agents** | 전문 팀원 | • 특정 역할 보유(Researcher, Writer 등)<br/>• 지정된 도구 사용<br/>• 작업 위임 가능<br/>• 자율적 의사결정 가능 |
| **Process** | workflow 관리 시스템 | • 협업 패턴 정의<br/>• 작업 할당 제어<br/>• 상호작용 관리<br/>• 효율적 실행 보장 |
| **Task** | 개별 할당 | • 명확한 목표 보유<br/>• 특정 도구 사용<br/>• 더 큰 프로세스에 기여<br/>• 실행 가능한 결과 도출 |
### 어떻게 모두 함께 작동하는가
### 전체 구조의 동작 방식
1. **Crew**가 전체 운영을 조직합니다
2. **AI Agents**가 자신들의 전문 작업을 수행합니다
2. **AI agents**가 자신들의 전문 작업을 수행합니다
3. **Process**가 원활한 협업을 보장합니다
4. **Tasks**가 완료되어 목표를 달성합니다
## 주요 기능
<CardGroup cols={2}>
<Card title="역할 기반 에이전트" icon="users">
연구원, 분석가, 작가 등 다양한 역할, 전문성, 목표를 가진 전문 에이전트를 생성할 수 있습니다
<Card title="역할 기반 agent" icon="users">
Researcher, Analyst, Writer 등 다양한 역할 전문성, 목표를 가진 agent를 생성할 수 있습니다
</Card>
<Card title="유연한 도구" icon="screwdriver-wrench">
에이전트에게 외부 서비스 및 데이터 소스와 상호작용할 수 있는 맞춤형 도구와 API를 제공합니다
agent에게 외부 서비스 및 데이터 소스와 상호작용할 수 있는 맞춤형 도구와 API를 제공합니다
</Card>
<Card title="지능형 협업" icon="people-arrows">
에이전트가 함께 작업하며, 인사이트를 공유하고 작업을 조율하여 복잡한 목표를 달성합니다
agent들이 함께 작업하며, 인사이트를 공유하고 작업을 조율하여 복잡한 목표를 달성합니다
</Card>
<Card title="작업 관리" icon="list-check">
순차적 또는 병렬 워크플로우를 정의할 수 있으며, 에이전트가 작업 의존성을 자동으로 처리합니다
순차적 또는 병렬 workflow를 정의할 수 있으며, agent가 작업 의존성을 자동으로 처리합니다
</Card>
</CardGroup>
## 플로우의 작동 원리
## Flow의 작동 원리
<Note>
crew 자율 협업에 탁월한 반면, 플로우는 구조화된 자동화를 제공하여 워크플로우 실행에 대한 세밀한 제어를 제공합니다. 플로우는 조건부 로직, 반복문, 동적 상태 관리를 정확하게 처리하면서 작업이 신뢰성 있게, 안전하게, 효율적으로 실행되도록 보장합니다. 플로우crew와 원활하게 통합되어 높은 자율성과 엄격한 제어의 균형을 이룰 수 있게 해줍니다.
Crew 자율 협업에 탁월하다면, Flow는 구조화된 자동화를 제공하여 workflow 실행에 대한 세밀한 제어를 제공합니다. Flow는 조건부 로직, 반복문, 동적 상태 관리를 정확하게 처리하면서 작업이 신뢰성 있게, 안전하게, 효율적으로 실행되도록 보장합니다. FlowCrew와 원활하게 통합되어 높은 자율성과 엄격한 제어의 균형을 이룰 수 있게 해줍니다.
</Note>
<Frame caption="CrewAI Framework Overview">
@@ -68,41 +68,41 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
| 구성 요소 | 설명 | 주요 기능 |
|:----------|:-----------:|:------------|
| **Flow** | 구조화된 워크플로우 오케스트레이션 | • 실행 경로 관리<br/>• 상태 전환 처리<br/>• 작업 순서 제어<br/>• 신뢰성 있는 실행 보장 |
| **Events** | 워크플로우 액션 트리거 | • 특정 프로세스 시작<br/>• 동적 응답 가능<br/>• 조건부 분기 지원<br/>• 실시간 적응 허용 |
| **States** | 워크플로우 실행 컨텍스트 | • 실행 데이터 유지<br/>• 데이터 영속성 지원<br/>• 재개 가능성 보장<br/>• 실행 무결성 확보 |
| **Crew Support** | 워크플로우 자동화 강화 | • 필요할 때 agency 삽입<br/>• 구조화된 워크플로우 보완<br/>• 자동화와 인텔리전스의 균형<br/>• 적응적 의사결정 지원 |
| **Flow** | 구조화된 workflow orchestration | • 실행 경로 관리<br/>• 상태 전환 처리<br/>• 작업 순서 제어<br/>• 신뢰성 있는 실행 보장 |
| **Events** | workflow 액션 트리거 | • 특정 프로세스 시작<br/>• 동적 응답 가능<br/>• 조건부 분기 지원<br/>• 실시간 적응 허용 |
| **States** | workflow 실행 컨텍스트 | • 실행 데이터 유지<br/>• 데이터 영속성 지원<br/>• 재개 가능성 보장<br/>• 실행 무결성 확보 |
| **Crew Support** | workflow 자동화 강화 | • 필요할 때 agency 삽입<br/>• 구조화된 workflow 보완<br/>• 자동화와 인텔리전스의 균형<br/>• 적응적 의사결정 지원 |
### 주요 기능
<CardGroup cols={2}>
<Card title="이벤트 기반 오케스트레이션" icon="bolt">
이벤트에 동적으로 반응하여 정밀한 실행 경로 정의
<Card title="이벤트 기반 orchestration" icon="bolt">
이벤트에 동적으로 반응하여 정밀한 실행 경로 정의합니다
</Card>
<Card title="세밀한 제어" icon="sliders">
워크플로우 상태와 조건부 실행을 안전하고 효율적으로 관리
workflow 상태와 조건부 실행을 안전하고 효율적으로 관리합니다
</Card>
<Card title="네이티브 Crew 통합" icon="puzzle-piece">
Crews와 손쉽게 결합하여 자율성과 지능 강화
Crews와 손쉽게 결합하여 자율성과 지능 강화합니다
</Card>
<Card title="결정론적 실행" icon="route">
명시적 제어 흐름과 오류 처리로 예측 가능한 결과 보장
명시적 제어 흐름과 오류 처리로 예측 가능한 결과 보장합니다
</Card>
</CardGroup>
## 크루(Crews)와 플로우(Flows)를 언제 사용할까
## CrewFlow를 언제 사용할까
<Note>
[크루](/ko/guides/crews/first-crew)와 [플로우](/ko/guides/flows/first-flow)를 언제 사용할지 이해하는 것은 CrewAI의 잠재력을 애플리케이션에서 극대화하는 데 핵심적입니다.
[Crew](/ko/guides/crews/first-crew)와 [Flow](/ko/guides/flows/first-flow)를 언제 사용할지 이해하는 것은 CrewAI의 잠재력을 애플리케이션에서 극대화하는 데 핵심적입니다.
</Note>
| 사용 사례 | 권장 접근 방식 | 이유 |
|:---------|:---------------------|:-----|
| **개방형 연구** | [크루](/ko/guides/crews/first-crew) | 과제가 창의적 사고, 탐색, 적응이 필요할 때 |
| **콘텐츠 생성** | [크루](/ko/guides/crews/first-crew) | 기사, 보고서, 마케팅 자료 등 협업형 생성 |
| **의사결정 워크플로우** | [플로우](/ko/guides/flows/first-flow) | 예측 가능하고 감사 가능한 의사결정 경로 및 정밀 제어가 필요할 때 |
| **API 오케스트레이션** | [플로우](/ko/guides/flows/first-flow) | 특정 순서로 여러 외부 서비스에 신뢰성 있게 통합할 때 |
| **하이브리드 애플리케이션** | 혼합 접근 방식 | [플로우](/ko/guides/flows/first-flow)로 전체 프로세스를 오케스트레이션하고, [크루](/ko/guides/crews/first-crew)로 복잡한 하위 작업을 처리 |
| **개방형 연구** | [Crew](/ko/guides/crews/first-crew) | 창의적 사고, 탐색, 적응이 필요한 작업에 적합 |
| **콘텐츠 생성** | [Crew](/ko/guides/crews/first-crew) | 기사, 보고서, 마케팅 자료 등 협업형 생성에 적합 |
| **의사결정 workflow** | [Flow](/ko/guides/flows/first-flow) | 예측 가능하고 감사 가능한 의사결정 경로 및 정밀 제어가 필요할 때 |
| **API orchestration** | [Flow](/ko/guides/flows/first-flow) | 특정 순서로 여러 외부 서비스에 신뢰성 있게 통합할 때 |
| **하이브리드 애플리케이션** | 혼합 접근 방식 | [Flow](/ko/guides/flows/first-flow)로 전체 프로세스를 orchestration하고, [Crew](/ko/guides/crews/first-crew)로 복잡한 하위 작업을 처리 |
### 의사결정 프레임워크
@@ -112,8 +112,8 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
## CrewAI를 선택해야 하는 이유?
- 🧠 **자율적 운영**: 에이전트가 자신의 역할과 사용 가능한 도구를 바탕으로 지능적인 결정을 내립니다
- 📝 **자연스러운 상호작용**: 에이전트가 인간 팀원처럼 소통하고 협업합니다
- 🧠 **자율적 운영**: agent가 자신의 역할과 사용 가능한 도구를 바탕으로 지능적인 결정을 내립니다
- 📝 **자연스러운 상호작용**: agent가 인간 팀원처럼 소통하고 협업합니다
- 🛠️ **확장 가능한 설계**: 새로운 도구, 역할, 기능을 쉽게 추가할 수 있습니다
- 🚀 **프로덕션 준비 완료**: 실제 환경에서의 신뢰성과 확장성을 고려하여 구축되었습니다
- 🔒 **보안 중심**: 엔터프라이즈 보안 요구 사항을 고려하여 설계되었습니다
@@ -134,7 +134,7 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
icon="diagram-project"
href="/ko/guides/flows/first-flow"
>
실행을 정밀하게 제어할 수 있는 구조화된, 이벤트 기반 워크플로우를 만드는 방법을 배워보세요.
실행을 정밀하게 제어할 수 있는 구조화된, 이벤트 기반 workflow를 만드는 방법을 배워보세요.
</Card>
</CardGroup>
@@ -151,7 +151,7 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
icon="bolt"
href="ko/quickstart"
>
빠른 시작 가이드를 따라 첫 번째 CrewAI 에이전트를 만들고 직접 경험해 보세요.
빠른 시작 가이드를 따라 첫 번째 CrewAI agent를 만들고 직접 경험해 보세요.
</Card>
<Card
title="커뮤니티 가입하기"

View File

@@ -10,7 +10,7 @@ authors = [
dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"openai<1.100.0", # TODO: Temporarily pin due to https://github.com/openai/openai-python/issues/2564. Can revert once the issue is fixed.
"litellm==1.74.9",
"instructor>=1.3.3",
# Text Processing
@@ -48,7 +48,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.62.0"]
tools = ["crewai-tools~=0.62.1"]
embeddings = [
"tiktoken~=0.8.0"
]
@@ -98,6 +98,11 @@ exclude = ["cli/templates"]
[tool.bandit]
exclude_dirs = ["src/crewai/cli/templates"]
[tool.pytest.ini_options]
markers = [
"telemetry: mark test as a telemetry test (don't mock telemetry)",
]
# PyTorch index configuration, since torch 2.5.0 is not compatible with python 3.13
[[tool.uv.index]]
name = "pytorch-nightly"

View File

@@ -54,7 +54,7 @@ def _track_install_async():
_track_install_async()
__version__ = "0.159.0"
__version__ = "0.165.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,7 +1,7 @@
import shutil
import subprocess
import time
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union, cast
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -399,13 +399,8 @@ class Agent(BaseAgent):
),
)
if tools is not None:
agent_tools: List[Union[BaseTool, dict]] = cast(List[Union[BaseTool, dict]], tools)
elif self.tools is not None:
agent_tools = cast(List[Union[BaseTool, dict]], self.tools)
else:
agent_tools = []
self.create_agent_executor(tools=agent_tools, task=task)
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)
if self.crew and self.crew._train:
task_prompt = self._training_handler(task_prompt=task_prompt)
@@ -542,14 +537,14 @@ class Agent(BaseAgent):
)["output"]
def create_agent_executor(
self, tools: Optional[List[Union[BaseTool, dict]]] = None, task=None
self, tools: Optional[List[BaseTool]] = None, task=None
) -> None:
"""Create an agent executor for the agent.
Returns:
An instance of the CrewAgentExecutor class.
"""
raw_tools: List[Union[BaseTool, dict]] = tools or self.tools or []
raw_tools: List[BaseTool] = tools or self.tools or []
parsed_tools = parse_tools(raw_tools)
prompt = Prompts(
@@ -808,7 +803,7 @@ class Agent(BaseAgent):
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=[tool for tool in (self.tools or []) if isinstance(tool, BaseTool)],
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
@@ -846,7 +841,7 @@ class Agent(BaseAgent):
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=[tool for tool in (self.tools or []) if isinstance(tool, BaseTool)],
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional
from pydantic import PrivateAttr
@@ -25,11 +25,11 @@ class BaseAgentAdapter(BaseAgent, ABC):
self._agent_config = agent_config
@abstractmethod
def configure_tools(self, tools: Optional[List[Union[BaseTool, dict]]] = None) -> None:
def configure_tools(self, tools: Optional[List[BaseTool]] = None) -> None:
"""Configure and adapt tools for the specific agent implementation.
Args:
tools: Optional list of BaseTool instances and raw tool definitions to be configured
tools: Optional list of BaseTool instances to be configured
"""
pass

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict, List, Optional, Union
from typing import Any, AsyncIterable, Dict, List, Optional
from pydantic import Field, PrivateAttr
@@ -22,6 +22,7 @@ from crewai.utilities.events.agent_events import (
)
try:
from langchain_core.messages import ToolMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
@@ -127,8 +128,7 @@ class LangGraphAgentAdapter(BaseAgentAdapter):
tools: Optional[List[BaseTool]] = None,
) -> str:
"""Execute a task using the LangGraph workflow."""
mixed_tools: Optional[List[Union[BaseTool, dict]]] = tools # type: ignore[assignment]
self.create_agent_executor(mixed_tools)
self.create_agent_executor(tools)
self.configure_structured_output(task)
@@ -198,20 +198,17 @@ class LangGraphAgentAdapter(BaseAgentAdapter):
)
raise
def create_agent_executor(self, tools: Optional[List[Union[BaseTool, dict]]] = None) -> None:
def create_agent_executor(self, tools: Optional[List[BaseTool]] = None) -> None:
"""Configure the LangGraph agent for execution."""
self.configure_tools(tools)
def configure_tools(self, tools: Optional[List[Union[BaseTool, dict]]] = None) -> None:
def configure_tools(self, tools: Optional[List[BaseTool]] = None) -> None:
"""Configure tools for the LangGraph agent."""
if tools:
base_tools = [tool for tool in tools if isinstance(tool, BaseTool)]
existing_base_tools = [tool for tool in (self.tools or []) if isinstance(tool, BaseTool)]
all_tools = existing_base_tools + base_tools
if all_tools:
self._tool_adapter.configure_tools(all_tools)
available_tools = self._tool_adapter.tools()
self._graph.tools = available_tools
all_tools = list(self.tools or []) + list(tools or [])
self._tool_adapter.configure_tools(all_tools)
available_tools = self._tool_adapter.tools()
self._graph.tools = available_tools
def get_delegation_tools(self, agents: List[BaseAgent]) -> List[BaseTool]:
"""Implement delegation tools support for LangGraph."""

View File

@@ -1,4 +1,4 @@
from typing import Any, List, Optional, Union
from typing import Any, List, Optional
from pydantic import Field, PrivateAttr
@@ -152,12 +152,10 @@ class OpenAIAgentAdapter(BaseAgentAdapter):
self.agent_executor = Runner
def configure_tools(self, tools: Optional[List[Union[BaseTool, dict]]] = None) -> None:
def configure_tools(self, tools: Optional[List[BaseTool]] = None) -> None:
"""Configure tools for the OpenAI Assistant"""
if tools:
base_tools = [tool for tool in tools if isinstance(tool, BaseTool)]
if base_tools:
self._tool_adapter.configure_tools(base_tools)
self._tool_adapter.configure_tools(tools)
if self._tool_adapter.converted_tools:
self._openai_agent.tools = self._tool_adapter.converted_tools

View File

@@ -2,7 +2,7 @@ import uuid
from abc import ABC, abstractmethod
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, TypeVar, Union
from typing import Any, Callable, Dict, List, Optional, TypeVar
from pydantic import (
UUID4,
@@ -25,6 +25,7 @@ from crewai.security.security_config import SecurityConfig
from crewai.tools.base_tool import BaseTool, Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter
from crewai.utilities.string_utils import interpolate_only
T = TypeVar("T", bound="BaseAgent")
@@ -107,7 +108,7 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[Union[BaseTool, dict]]] = Field(
tools: Optional[List[BaseTool]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: int = Field(
@@ -167,34 +168,29 @@ class BaseAgent(ABC, BaseModel):
@field_validator("tools")
@classmethod
def validate_tools(cls, tools: List[Any]) -> List[Union[BaseTool, dict]]:
def validate_tools(cls, tools: List[Any]) -> List[BaseTool]:
"""Validate and process the tools provided to the agent.
This method ensures that each tool is either an instance of BaseTool,
an object with 'name', 'func', and 'description' attributes, or a
raw tool definition (dict) for hosted/server-side tools.
This method ensures that each tool is either an instance of BaseTool
or an object with 'name', 'func', and 'description' attributes. If the
tool meets these criteria, it is processed and added to the list of
tools. Otherwise, a ValueError is raised.
"""
if not tools:
return []
processed_tools: List[Union[BaseTool, dict]] = []
processed_tools = []
required_attrs = ["name", "func", "description"]
for tool in tools:
if isinstance(tool, BaseTool):
processed_tools.append(tool)
elif isinstance(tool, dict):
if "name" not in tool:
raise ValueError(
f"Raw tool definition must have a 'name' field: {tool}"
)
processed_tools.append(tool)
elif all(hasattr(tool, attr) for attr in required_attrs):
# Tool has the required attributes, create a Tool instance
processed_tools.append(Tool.from_langchain(tool))
else:
raise ValueError(
f"Invalid tool type: {type(tool)}. "
"Tool must be an instance of BaseTool, a dict for hosted tools, or "
"Tool must be an instance of BaseTool or "
"an object with 'name', 'func', and 'description' attributes."
)
return processed_tools

View File

@@ -48,7 +48,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent: BaseAgent,
prompt: dict[str, str],
max_iter: int,
tools: List[Union[CrewStructuredTool, dict]],
tools: List[CrewStructuredTool],
tools_names: str,
stop_words: List[str],
tools_description: str,
@@ -84,8 +84,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.messages: List[Dict[str, str]] = []
self.iterations = 0
self.log_error_after = 3
self.tool_name_to_tool_map: Dict[str, Union[CrewStructuredTool, BaseTool, dict]] = {
tool.name if hasattr(tool, 'name') else tool.get('name', 'unknown'): tool for tool in self.tools
self.tool_name_to_tool_map: Dict[str, Union[CrewStructuredTool, BaseTool]] = {
tool.name: tool for tool in self.tools
}
existing_stop = self.llm.stop or []
self.llm.stop = list(

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.159.0,<1.0.0"
"crewai[tools]>=0.165.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.159.0,<1.0.0",
"crewai[tools]>=0.165.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.159.0"
"crewai[tools]>=0.165.0"
]
[tool.crewai]

View File

@@ -286,10 +286,12 @@ class Crew(FlowTrackable, BaseModel):
self._cache_handler = CacheHandler()
event_listener = EventListener()
if on_first_execution_tracing_confirmation():
self.tracing = True
if is_tracing_enabled() or self.tracing:
if (
on_first_execution_tracing_confirmation()
or is_tracing_enabled()
or self.tracing
):
trace_listener = TraceCollectionListener()
trace_listener.setup_listeners(crewai_event_bus)
event_listener.verbose = self.verbose
@@ -503,6 +505,7 @@ class Crew(FlowTrackable, BaseModel):
)
return self
@property
def key(self) -> str:
source: List[str] = [agent.key for agent in self.agents] + [
@@ -639,6 +642,7 @@ class Crew(FlowTrackable, BaseModel):
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
self._set_allow_crewai_trigger_context_for_first_task()
i18n = I18N(prompt_file=self.prompt_file)
@@ -1508,3 +1512,10 @@ class Crew(FlowTrackable, BaseModel):
"""Reset crew and agent knowledge storage."""
for ks in knowledges:
ks.reset()
def _set_allow_crewai_trigger_context_for_first_task(self):
crewai_trigger_payload = self._inputs and self._inputs.get("crewai_trigger_payload")
able_to_inject = self.tasks and self.tasks[0].allow_crewai_trigger_context is None
if self.process == Process.sequential and crewai_trigger_payload and able_to_inject:
self.tasks[0].allow_crewai_trigger_context = True

View File

@@ -43,9 +43,7 @@ class ToolSelectionEvaluator(BaseEvaluator):
available_tools_info = ""
if agent.tools:
for tool in agent.tools:
tool_name = tool.name if hasattr(tool, 'name') else tool.get('name', 'unknown')
tool_desc = tool.description if hasattr(tool, 'description') else tool.get('description', 'No description')
available_tools_info += f"- {tool_name}: {tool_desc}\n"
available_tools_info += f"- {tool.name}: {tool.description}\n"
else:
available_tools_info = "No tools available"

View File

@@ -11,6 +11,8 @@ import chromadb.errors
from chromadb.api import ClientAPI
from chromadb.api.types import OneOrMany
from chromadb.config import Settings
from pydantic.warnings import PydanticDeprecatedSince211
import warnings
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
@@ -85,6 +87,15 @@ class KnowledgeStorage(BaseKnowledgeStorage):
raise Exception("Collection not initialized")
def initialize_knowledge_storage(self):
# Suppress deprecation warnings from chromadb, which are not relevant to us
# TODO: Remove this once we upgrade chromadb to at least 1.0.8.
warnings.filterwarnings(
"ignore",
category=PydanticDeprecatedSince211,
message=r".*'model_fields'.*is deprecated.*",
module=r"^chromadb(\.|$)",
)
self.app = create_persistent_client(
path=os.path.join(db_storage_path(), "knowledge"),
settings=Settings(allow_reset=True),

View File

@@ -564,10 +564,9 @@ class LiteAgent(FlowTrackable, BaseModel):
if isinstance(formatted_answer, AgentAction):
try:
from typing import cast
tool_result = execute_tool_and_check_finality(
agent_action=formatted_answer,
tools=cast(List[Union[CrewStructuredTool, dict]], self._parsed_tools),
tools=self._parsed_tools,
i18n=self.i18n,
agent_key=self.key,
agent_role=self.role,

View File

@@ -12,6 +12,8 @@ from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities.chromadb import create_persistent_client
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.paths import db_storage_path
import warnings
from pydantic.warnings import PydanticDeprecatedSince211
@contextlib.contextmanager
@@ -62,6 +64,15 @@ class RAGStorage(BaseRAGStorage):
def _initialize_app(self):
from chromadb.config import Settings
# Suppress deprecation warnings from chromadb, which are not relevant to us
# TODO: Remove this once we upgrade chromadb to at least 1.0.8.
warnings.filterwarnings(
"ignore",
category=PydanticDeprecatedSince211,
message=r".*'model_fields'.*is deprecated.*",
module=r"^chromadb(\.|$)",
)
self._set_embedder_config()
self.app = create_persistent_client(

View File

@@ -72,6 +72,10 @@ class Task(BaseModel):
output_pydantic: Pydantic model for task output.
security_config: Security configuration including fingerprinting.
tools: List of tools/resources limited for task execution.
allow_crewai_trigger_context: Optional flag to control crewai_trigger_payload injection.
None (default): Auto-inject for first task only.
True: Always inject trigger payload for this task.
False: Never inject trigger payload, even for first task.
"""
__hash__ = object.__hash__ # type: ignore
@@ -163,6 +167,10 @@ class Task(BaseModel):
end_time: Optional[datetime.datetime] = Field(
default=None, description="End time of the task execution"
)
allow_crewai_trigger_context: Optional[bool] = Field(
default=None,
description="Whether this task should append 'Trigger Payload: {crewai_trigger_payload}' to the task description when crewai_trigger_payload exists in crew inputs.",
)
model_config = {"arbitrary_types_allowed": True}
@field_validator("guardrail")
@@ -548,12 +556,23 @@ class Task(BaseModel):
str: The formatted prompt string containing the task description,
expected output, and optional markdown formatting instructions.
"""
tasks_slices = [self.description]
description = self.description
should_inject = self.allow_crewai_trigger_context
if should_inject and self.agent:
crew = getattr(self.agent, 'crew', None)
if crew and hasattr(crew, '_inputs') and crew._inputs:
trigger_payload = crew._inputs.get("crewai_trigger_payload")
if trigger_payload is not None:
description += f"\n\nTrigger Payload: {trigger_payload}"
tasks_slices = [description]
output = self.i18n.slice("expected_output").format(
expected_output=self.expected_output
)
tasks_slices = [self.description, output]
tasks_slices = [description, output]
if self.markdown:
markdown_instruction = """Your final answer MUST be formatted in Markdown syntax.

View File

@@ -11,6 +11,7 @@ from crewai.agents.parser import (
)
from crewai.llm import LLM
from crewai.llms.base_llm import BaseLLM
from crewai.tools import BaseTool as CrewAITool
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_types import ToolResult
@@ -24,28 +25,26 @@ from crewai.cli.config import Settings
console = Console()
def parse_tools(tools: List[Union[BaseTool, dict]]) -> List[Union[CrewStructuredTool, dict]]:
def parse_tools(tools: List[BaseTool]) -> List[CrewStructuredTool]:
"""Parse tools to be used for the task."""
tools_list: List[Union[CrewStructuredTool, dict]] = []
tools_list = []
for tool in tools:
if isinstance(tool, dict):
tools_list.append(tool)
elif isinstance(tool, BaseTool):
if isinstance(tool, CrewAITool):
tools_list.append(tool.to_structured_tool())
else:
raise ValueError(f"Tool is not a CrewStructuredTool, BaseTool, or raw tool definition (dict): {type(tool)}")
raise ValueError("Tool is not a CrewStructuredTool or BaseTool")
return tools_list
def get_tool_names(tools: Sequence[Union[CrewStructuredTool, BaseTool, dict]]) -> str:
def get_tool_names(tools: Sequence[Union[CrewStructuredTool, BaseTool]]) -> str:
"""Get the names of the tools."""
return ", ".join([t.name if hasattr(t, 'name') else t.get('name', 'unknown') for t in tools])
return ", ".join([t.name for t in tools])
def render_text_description_and_args(
tools: Sequence[Union[CrewStructuredTool, BaseTool, dict]],
tools: Sequence[Union[CrewStructuredTool, BaseTool]],
) -> str:
"""Render the tool name, description, and args in plain text.
@@ -55,12 +54,7 @@ def render_text_description_and_args(
"""
tool_strings = []
for tool in tools:
if hasattr(tool, 'description'):
tool_strings.append(tool.description)
elif isinstance(tool, dict) and 'description' in tool:
tool_strings.append(f"Tool name: {tool.get('name', 'unknown')}\nTool description:\n{tool['description']}")
else:
tool_strings.append(f"Tool name: {tool.get('name', 'unknown') if isinstance(tool, dict) else 'unknown'}")
tool_strings.append(tool.description)
return "\n".join(tool_strings)

View File

@@ -1,9 +1,10 @@
import os
import re
import portalocker
from chromadb import PersistentClient
from hashlib import md5
from typing import Optional
from crewai.utilities.paths import db_storage_path
MIN_COLLECTION_LENGTH = 3
MAX_COLLECTION_LENGTH = 63
@@ -27,7 +28,9 @@ def is_ipv4_pattern(name: str) -> bool:
return bool(IPV4_PATTERN.match(name))
def sanitize_collection_name(name: Optional[str], max_collection_length: int = MAX_COLLECTION_LENGTH) -> str:
def sanitize_collection_name(
name: Optional[str], max_collection_length: int = MAX_COLLECTION_LENGTH
) -> str:
"""
Sanitize a collection name to meet ChromaDB requirements:
1. 3-63 characters long
@@ -72,7 +75,8 @@ def create_persistent_client(path: str, **kwargs):
concurrent creations. Works for both multi-threads and multi-processes
environments.
"""
lockfile = f"chromadb-{md5(path.encode(), usedforsecurity=False).hexdigest()}.lock"
lock_id = md5(path.encode(), usedforsecurity=False).hexdigest()
lockfile = os.path.join(db_storage_path(), f"chromadb-{lock_id}.lock")
with portalocker.Lock(lockfile):
client = PersistentClient(path=path, **kwargs)

View File

@@ -40,6 +40,8 @@ class TraceBatch:
class TraceBatchManager:
"""Single responsibility: Manage batches and event buffering"""
is_current_batch_ephemeral: bool = False
def __init__(self):
try:
self.plus_api = PlusAPI(api_key=get_auth_token())
@@ -62,6 +64,7 @@ class TraceBatchManager:
user_context=user_context, execution_metadata=execution_metadata
)
self.event_buffer.clear()
self.is_current_batch_ephemeral = use_ephemeral
self.record_start_time("execution")
self._initialize_backend_batch(user_context, execution_metadata, use_ephemeral)
@@ -136,7 +139,7 @@ class TraceBatchManager:
"""Add event to buffer"""
self.event_buffer.append(trace_event)
def _send_events_to_backend(self, ephemeral: bool = True):
def _send_events_to_backend(self):
"""Send buffered events to backend"""
if not self.plus_api or not self.trace_batch_id or not self.event_buffer:
return
@@ -156,7 +159,7 @@ class TraceBatchManager:
response = (
self.plus_api.send_ephemeral_trace_events(self.trace_batch_id, payload)
if ephemeral
if self.is_current_batch_ephemeral
else self.plus_api.send_trace_events(self.trace_batch_id, payload)
)
@@ -170,15 +173,14 @@ class TraceBatchManager:
except Exception as e:
logger.error(f"❌ Error sending events to backend: {str(e)}")
def finalize_batch(self, ephemeral: bool = True) -> Optional[TraceBatch]:
def finalize_batch(self) -> Optional[TraceBatch]:
"""Finalize batch and return it for sending"""
if not self.current_batch:
return None
if self.event_buffer:
self._send_events_to_backend(ephemeral)
self._finalize_backend_batch(ephemeral)
self._send_events_to_backend()
self._finalize_backend_batch()
self.current_batch.events = self.event_buffer.copy()
@@ -187,12 +189,13 @@ class TraceBatchManager:
self.current_batch = None
self.event_buffer.clear()
self.trace_batch_id = None
self.is_current_batch_ephemeral = False
self._cleanup_batch_data()
return finalized_batch
def _finalize_backend_batch(self, ephemeral: bool = True):
def _finalize_backend_batch(self):
"""Send batch finalization to backend"""
if not self.plus_api or not self.trace_batch_id:
return
@@ -210,7 +213,7 @@ class TraceBatchManager:
self.plus_api.finalize_ephemeral_trace_batch(
self.trace_batch_id, payload
)
if ephemeral
if self.is_current_batch_ephemeral
else self.plus_api.finalize_trace_batch(self.trace_batch_id, payload)
)
@@ -219,7 +222,7 @@ class TraceBatchManager:
console = Console()
return_link = (
f"{CREWAI_BASE_URL}/crewai_plus/trace_batches/{self.trace_batch_id}"
if not ephemeral and access_code
if not self.is_current_batch_ephemeral and access_code is None
else f"{CREWAI_BASE_URL}/crewai_plus/ephemeral_trace_batches/{self.trace_batch_id}?access_code={access_code}"
)
panel = Panel(

View File

@@ -166,7 +166,7 @@ class TraceCollectionListener(BaseEventListener):
@event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event):
self._handle_trace_event("crew_kickoff_completed", source, event)
self.batch_manager.finalize_batch(ephemeral=True)
self.batch_manager.finalize_batch()
@event_bus.on(CrewKickoffFailedEvent)
def on_crew_failed(source, event):

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional
from crewai.agents.parser import AgentAction
from crewai.security import Fingerprint
@@ -10,7 +10,7 @@ from crewai.utilities.i18n import I18N
def execute_tool_and_check_finality(
agent_action: AgentAction,
tools: List[Union[CrewStructuredTool, dict]],
tools: List[CrewStructuredTool],
i18n: I18N,
agent_key: Optional[str] = None,
agent_role: Optional[str] = None,
@@ -37,8 +37,7 @@ def execute_tool_and_check_finality(
ToolResult containing the execution result and whether it should be treated as a final answer
"""
try:
executable_tools = [tool for tool in tools if hasattr(tool, 'name') and hasattr(tool, 'result_as_answer')]
tool_name_to_tool_map = {tool.name: tool for tool in executable_tools}
tool_name_to_tool_map = {tool.name: tool for tool in tools}
if agent_key and agent_role and agent:
fingerprint_context = fingerprint_context or {}
@@ -53,12 +52,10 @@ def execute_tool_and_check_finality(
except Exception as e:
raise ValueError(f"Failed to set fingerprint: {e}")
# Create tool usage instance - filter to only CrewStructuredTool instances for ToolUsage
from typing import cast
crew_structured_tools = [tool for tool in tools if hasattr(tool, 'name') and hasattr(tool, 'result_as_answer') and not isinstance(tool, dict)]
# Create tool usage instance
tool_usage = ToolUsage(
tools_handler=tools_handler,
tools=cast(List[CrewStructuredTool], crew_structured_tools),
tools=tools,
function_calling_llm=function_calling_llm,
task=task,
agent=agent,
@@ -85,7 +82,7 @@ def execute_tool_and_check_finality(
# Handle invalid tool name
tool_result = i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in executable_tools]),
tools=", ".join([tool.name.casefold() for tool in tools]),
)
return ToolResult(tool_result, False)

View File

@@ -21,7 +21,7 @@ from crewai.utilities import RPMController
from crewai.utilities.errors import AgentRepositoryError
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
from crewai.process import Process
def test_agent_llm_creation_with_env_vars():
# Store original environment variables
@@ -1209,6 +1209,181 @@ Thought:<|eot_id|>
assert mock_format_prompt.return_value == expected_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_allow_crewai_trigger_context():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=True
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"crewai_trigger_payload": "Important context data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload: Important context data" in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_without_allow_crewai_trigger_context():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=False
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"crewai_trigger_payload": "Important context data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload:" not in prompt
assert "Important context data" not in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_allow_crewai_trigger_context_no_payload():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=True
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"other_input": "other data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload:" not in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_do_not_allow_crewai_trigger_context_for_first_task_hierarchical():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task],
process=Process.hierarchical,
manager_llm="gpt-4o"
)
crew.kickoff({"crewai_trigger_payload": "Initial context data"})
first_prompt = first_task.prompt()
assert "Process initial data" in first_prompt
assert "Trigger Payload: Initial context data" not in first_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_first_task_auto_inject_trigger():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
)
second_task = Task(
description="Process secondary data",
expected_output="Secondary analysis",
agent=agent2,
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task, second_task]
)
crew.kickoff({"crewai_trigger_payload": "Initial context data"})
first_prompt = first_task.prompt()
assert "Process initial data" in first_prompt
assert "Trigger Payload: Initial context data" in first_prompt
second_prompt = second_task.prompt()
assert "Process secondary data" in second_prompt
assert "Trigger Payload:" not in second_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ensure_first_task_allow_crewai_trigger_context_is_false_does_not_inject():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
allow_crewai_trigger_context=False
)
second_task = Task(
description="Process secondary data",
expected_output="Secondary analysis",
agent=agent2,
allow_crewai_trigger_context=True
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task, second_task]
)
crew.kickoff({"crewai_trigger_payload": "Context data"})
first_prompt = first_task.prompt()
assert "Trigger Payload: Context data" not in first_prompt
second_prompt = second_task.prompt()
assert "Trigger Payload: Context data" in second_prompt
@patch("crewai.agent.CrewTrainingHandler")
def test_agent_training_handler(crew_training_handler):
task_prompt = "What is 1 + 1?"
@@ -1896,7 +2071,7 @@ def test_agent_with_knowledge_sources_generate_search_query():
assert "red" in result.raw.lower()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_with_knowledge_with_no_crewai_knowledge():
mock_knowledge = MagicMock(spec=Knowledge)
@@ -1904,8 +2079,11 @@ def test_agent_with_knowledge_with_no_crewai_knowledge():
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY')),
knowledge=mock_knowledge
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
knowledge=mock_knowledge,
)
# Create a task that requires the agent to use the knowledge
@@ -1920,7 +2098,7 @@ def test_agent_with_knowledge_with_no_crewai_knowledge():
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_with_only_crewai_knowledge():
mock_knowledge = MagicMock(spec=Knowledge)
@@ -1928,33 +2106,10 @@ def test_agent_with_only_crewai_knowledge():
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY'))
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Vidit's favorite color?",
expected_output="Vidit's favorclearite color.",
agent=agent
)
crew = Crew(agents=[agent], tasks=[task],knowledge=mock_knowledge)
crew.kickoff()
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
def test_agent_knowledege_with_crewai_knowledge():
crew_knowledge = MagicMock(spec=Knowledge)
agent_knowledge = MagicMock(spec=Knowledge)
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY')),
knowledge=agent_knowledge
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
)
# Create a task that requires the agent to use the knowledge
@@ -1964,7 +2119,35 @@ def test_agent_knowledege_with_crewai_knowledge():
agent=agent,
)
crew = Crew(agents=[agent],tasks=[task],knowledge=crew_knowledge)
crew = Crew(agents=[agent], tasks=[task], knowledge=mock_knowledge)
crew.kickoff()
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_knowledege_with_crewai_knowledge():
crew_knowledge = MagicMock(spec=Knowledge)
agent_knowledge = MagicMock(spec=Knowledge)
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
knowledge=agent_knowledge,
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Vidit's favorite color?",
expected_output="Vidit's favorclearite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], knowledge=crew_knowledge)
crew.kickoff()
agent_knowledge.query.assert_called_once()
crew_knowledge.query.assert_called_once()
@@ -2164,7 +2347,12 @@ def mock_get_auth_token():
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
from crewai_tools import SerperDevTool, XMLSearchTool, CSVSearchTool, EnterpriseActionTool
from crewai_tools import (
SerperDevTool,
XMLSearchTool,
CSVSearchTool,
EnterpriseActionTool,
)
mock_get_response = MagicMock()
mock_get_response.status_code = 200
@@ -2173,12 +2361,23 @@ def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
"goal": "test goal",
"backstory": "test backstory",
"tools": [
{"module": "crewai_tools", "name": "SerperDevTool", "init_params": {"n_results": 30}},
{"module": "crewai_tools", "name": "XMLSearchTool", "init_params": {"summarize": True}},
{
"module": "crewai_tools",
"name": "SerperDevTool",
"init_params": {"n_results": "30"},
},
{
"module": "crewai_tools",
"name": "XMLSearchTool",
"init_params": {"summarize": "true"},
},
{"module": "crewai_tools", "name": "CSVSearchTool", "init_params": {}},
# using a tools that returns a list of BaseTools
{"module": "crewai_tools", "name": "CrewaiEnterpriseTools", "init_params": {"actions_list": [], "enterprise_token": "test_key"}},
{
"module": "crewai_tools",
"name": "CrewaiEnterpriseTools",
"init_params": {"actions_list": [], "enterprise_token": "test_key"},
},
],
}
mock_get_agent.return_value = mock_get_response
@@ -2221,7 +2420,9 @@ def test_agent_from_repository_override_attributes(mock_get_agent, mock_get_auth
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": [{"name": "SerperDevTool", "module": "crewai_tools", "init_params": {}}],
"tools": [
{"name": "SerperDevTool", "module": "crewai_tools", "init_params": {}}
],
}
mock_get_agent.return_value = mock_get_response
agent = Agent(from_repository="test_agent", role="Custom Role")

View File

@@ -0,0 +1,126 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJdi9swEHz3r1j0HBc7ZydXvx1HC0evhT6UUtrDKNLa1lXWqpJ8aTjy
34vsXOz0A/pi8M7OaGZ3nxMApiSrgImOB9Fbnd4Why/v79HeePeD37/Zfdx8evf5+rY4fNjdPbJV
ZNDuEUV4Yb0S1FuNQZGZYOGQB4yq+bYsr7J1nhcj0JNEHWmtDWlBaa+MStfZukizbZpfn9gdKYGe
VfA1AQB4Hr/Rp5H4k1WQrV4qPXrPW2TVuQmAOdKxwrj3ygduAlvNoCAT0IzW78DQHgQ30KonBA5t
tA3c+D06gG/mrTJcw834X0GHWhPsyWm5FHTYDJ7HUGbQegFwYyjwOJQxysMJOZ7Na2qto53/jcoa
ZZTvaofck4lGfSDLRvSYADyMQxoucjPrqLehDvQdx+fycjvpsXk3C/TqBAYKXC/q29NoL/VqiYEr
7RdjZoKLDuVMnXfCB6loASSL1H+6+Zv2lFyZ9n/kZ0AItAFlbR1KJS4Tz20O4+n+q+085dEw8+ie
lMA6KHRxExIbPujpoJg/+IB93SjTorNOTVfV2LrcZLzZYFm+Zskx+QUAAP//AwB1vYZ+YwMAAA==
headers:
CF-RAY:
- 96fc9f29dea3cf1f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 15 Aug 2025 23:55:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=oA9oTa3cE0ZaEUDRf0hCpnarSAQKzrVUhl6qDS4j09w-1755302115-1.0.1.1-gUUDl4ZqvBQkg7244DTwOmSiDUT2z_AiQu0P1xUaABjaufSpZuIlI5G0H7OSnW.ldypvpxjj45NGWesJ62M_2U7r20tHz_gMmDFw6D5ZiNc;
path=/; expires=Sat, 16-Aug-25 00:25:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=ICenEGMmOE5jaOjwD30bAOwrF8.XRbSIKTBl1EyWs0o-1755302115700-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '735'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '753'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999830'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_212fde9d945a462ba0d89ea856131dce
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,123 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
cookie:
- __cf_bm=oA9oTa3cE0ZaEUDRf0hCpnarSAQKzrVUhl6qDS4j09w-1755302115-1.0.1.1-gUUDl4ZqvBQkg7244DTwOmSiDUT2z_AiQu0P1xUaABjaufSpZuIlI5G0H7OSnW.ldypvpxjj45NGWesJ62M_2U7r20tHz_gMmDFw6D5ZiNc;
_cfuvid=ICenEGMmOE5jaOjwD30bAOwrF8.XRbSIKTBl1EyWs0o-1755302115700-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLLbtswELzrKxY8W4VkW3ajW1GgQA7JJUGLog0EmlxJrCkuQ1J2g8D/
XlByLLkPoBcB2tkZzuzuawLAlGQlMNHyIDqr04/rl6/3z+6hu8vq/cOX5936cRPE3i8Px88rtogM
2v1AEd5Y7wR1VmNQZEZYOOQBo2q+LYpVtszzYgA6kqgjrbEhXVPaKaPSZbZcp9k2zd+f2S0pgZ6V
8C0BAHgdvtGnkfiTlZAt3iodes8bZOWlCYA50rHCuPfKB24CW0ygIBPQDNZvwdARBDfQqAMChyba
Bm78ER3Ad/NJGa7hw/BfQotaExzJaTkXdFj3nsdQptd6BnBjKPA4lCHK0xk5Xcxraqyjnf+Nympl
lG8rh9yTiUZ9IMsG9JQAPA1D6q9yM+uos6EKtMfhubzYjnps2s0MXZ3BQIHrWX17Hu21XiUxcKX9
bMxMcNGinKjTTngvFc2AZJb6Tzd/0x6TK9P8j/wECIE2oKysQ6nEdeKpzWE83X+1XaY8GGYe3UEJ
rIJCFzchsea9Hg+K+RcfsKtqZRp01qnxqmpbFZuM1xssihuWnJJfAAAA//8DAFSowWRjAwAA
headers:
CF-RAY:
- 96fc9f301bf7cf1f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 15 Aug 2025 23:55:16 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '685'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '711'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3f0ec42447374a76a22a4cdb9f336279
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,501 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: First Agent\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolutely everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: First Agent\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolutely
everything you know, don''t reference things but instead explain them.\n\nIMPORTANT:
Use the following format in your response:\n\n```\nThought: you should always
think about what to do\nAction: the action to take, only one name of [Delegate
work to coworker, Ask question to coworker], just the name, exactly as it''s
written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"}, {"role": "user", "content":
"\nCurrent Task: Process initial data\n\nThis is the expected criteria for your
final answer: Initial analysis\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '2921'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFTJbtswEL37KwY824aT2E7qWxcUSE9Fa6CHujDG5EiahhoK5MiOG+Tf
C0re0qZAL4LAN2+WN8vTAMCwMwswtkK1deNH7+dXd5+0lTl/mZYPzd1mOvHNuzhffvt6szTDzAib
n2T1yBrbUDeelIP0sI2EStnr1e1sNptNbmZvOqAOjnymlY2OpmF0PbmejiZ3o8n8QKwCW0pmAd8H
AABP3TenKI4ezQImw+NLTSlhSWZxMgIwMfj8YjAlToqiZngGbRAl6bJeVqEtK13APQiRAw3gyFOJ
SqAVgWJ6gFBAE4OllFjK7pmFldGDQ8XMyW8fOSaFtyWJ5ieS1EaCHUGFWwIErULMwQDFAVrbxhwE
Bf0+cRrDPezY+xxpy66LXsOOtQL0vgsglFPAuAdHiuxTDnNQPNtz6tOloiCrvCW/H69kJW9tbsgC
PhwL24X40HPzH8WjCdxL0+oCnlYmO1qZBazM577yFyWvzBBWvYyP2pstj2KxbIPfUuor+/WqYon0
JEwkS7wlN4ZlroDF+tZRAusJ5cjOrCFYVCpD5M4pKxQhnvQbAjsS5WKfQZQ9aCRxCUKEBlUpShp2
0qe2rvHgJPsuWBxLmXICBGVAD9xJe+hbTiRCK45inqRsmydiV6GecoPsI6eX+u7K/lQwS+Ky0gSa
CRYFNgQu4k6giKEG1vFRzkM3Oj0vpmllni+nN1LRJszLI633FwCKBMXcyG5vfhyQ59Om+FA2MWzS
H1RTsHCq1pEwBclbkTQ0pkOfBwA/uo1sXyyZaWKoG11reKAu3PzquvdnzjfgjF7dTA+oBkV/Bm6n
8+ErDteHCb9YamPRVuTO1PMFwNZxuAAGF2X/nc5rvvvSWcr/cX8GrKVGya2bSI7ty5LPZpHyjfyX
2UnmLmGTKG7Z0lqZYm6FowJb358vk/ZJqV4XLCXFJnJ/w4pmPZ1vimJCE3tnBs+D3wAAAP//AwBY
9uEVzAUAAA==
headers:
CF-RAY:
- 97144bd22eb41abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
path=/; expires=Mon, 18-Aug-25 21:22:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3236'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '3253'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29999308'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999308'
x-ratelimit-reset-project-tokens:
- 1ms
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_08aa9de2797d4fee93003bdc7fc19156
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are First Agent. First
backstory\nYour personal goal is: First goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process initial data\n\nThis is the expected criteria for your final answer:
Your best answer to your coworker asking you this, accounting for the context
shared.\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nThis is the context you''re working with:\nThe task involves analyzing
the initial data set we have received. This includes cleaning the data, categorizing
it for analysis, identifying any trends or patterns, and summarizing the findings.
The goal is to have a clear understanding of what the data indicates and any
initial insights that can be drawn from it.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1262'
content-type:
- application/json
cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
_cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFbfbxRHDH7PX+HuE6DLKSEkQN6AChUhoUpFULVBkTPj3XUzO96MZ+9y
RfzvlWfubi+USn3Jj/HaY3+f/Y2/HgE07JtLaFyP2Q1jOH5zcfriwx+v36RP3affN+9buetUT27o
4uMvp5+bhXnIzV/k8s5r6WQYA2WWWM0uEWayqKfPz8/Pz0/OLs6KYRBPwdy6MR8/k+OBIx8/PXn6
7Pjk+fHpi613L+xIm0v48wgA4Gv5aXlGT/fNJZwsdicDqWJHzeX+I4AmSbCTBlVZM8bcLGajk5gp
ltTfQZQ1OIzQ8YoAobO0AaOuKQFcxbccMcCr8v8lfBQYkzhShdwTcOTMGMBjRlDKQG1LLvOKwmYB
a4I1hwCthCBrUFpRwgC3tAHNNCpkAYo6JbJPXSCMC3CYqZPEf9MCMGLY1D886DQMaOcgU4KWo+fY
KRjsiXqKWm5dXsWreLqEJ09+tpzeWFCO3ZMnl3AVAeAY3nLSPCeXaMW0LtVYFVZEKwkGVuXYLYCj
k2gYUswLkASUkkSSSYFiTky63EX+vA3ZY/SBdiFghWEihZsNEOeeEvAwTtksuacBblDJg0TQKSWZ
SlkVUEmQaJCVHSRykrzCuqdEEMkowGTllqtfec/WehgOgTfiPSZvoO1wdRhghYnxJtAhA/sq3QYe
0bJbLqrFLscQIIhDuwEiDqSAiUBHCoF8wU5xIFjj5nEh4OlMwI7O4nxAwwe6P2BhZn3PBHDMAokC
rTBmUOoGitn6DnN1QvalF0qbKM9EfOxZgeNKwooUuiTTuAd1FLYoe9SdDIP96jGhy5RYMztdgE6u
B1TwNEiXcOzLaeaBYKTE4rV0A8ZNaeiRUitpwOhsKjw7zJIUHr3/9Z0+tjINsFbcVFpCYoHpzGD6
mCj60uG/Ys6UIrzzFDO37L7H7DPnvuBTZoWq1wydLxXOoG5zAgRPGTkUhwqVEc/1mg1ky0BLsLGm
oMtDJEuwLZxQC9CMuSCFAbJIqN4r1gnDlutyxxSdrMj6ONTDnkcLmHuOe6aX+8kJIreAucKsZNO1
T3kBTtIuDjihtmXH1hJVH4wJ5S4W4GIGmXJgStuGGXADie4mNhqmVOcwrkgzdyViIeSZEfLbVmis
zrdbmXmgH99NmSkQB9POKlEbkPahRq17dv0ORhcmT3AjuYc7Q8uQXFnTKHd9rkDeTRjzzjJQTuwe
UrK7SXuZggeKDkedAuY6P9aRW1a3LDP5RYEoSrbR3zNdweNhDNt+U0s/96S0L2D5ncBhUAEvbrKJ
LFEDDyXd2b1OWxXuriPNNgGoRVx3BCRSwuR64PaBpF3F1xvYvadVJ5XqmzHDHiWDxLCBHsvDZTOR
YIqeUtG9MmctrI39A00po2lyPOVax5hkxZ4AXRFQw2bPRWmd8jhO9omRGuk+11SWlYoHD9A8YFWA
KdmZWm9IYA+tCXzt4HarHriXbqD7MUiqZkngybGyxOMBb62a+tpaT2gdKNNeKVmNSWwZMQW8iu9a
2Mi0xSVu4G6yNi/UWP7k9wS4gGkvNKaG9vmIKVcSWXev/QLGQKgEgTIMBLdR1j8drhSJ2knR1po4
hXBgwGgdV663ZebL1vJtv74E6cYkN/qda9NyZO2vrWkk2qqiWcamWL8dAXwpa9L0YPNpxiTDmK+z
3FK57unZ8xqvmbez2Xr2cmfNkjHMhouzZ4sfBLyuMqoHm1bj0PXkZ9d5LcPJsxwYjg7K/nc6P4pd
S+fY/Z/ws8E5GjP56zGRZ/ew5PmzRNYw//XZHuaScGN9zI6uM1MyKjy1OIW6Uza60UzDdcuxozQm
rotlO16fX5xge0Hn5y+bo29H/wAAAP//AwCE+a2iZgsAAA==
headers:
CF-RAY:
- 97144be7eaa81abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:47 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '4424'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '4473'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999717'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999717'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5bf23819c1214732aa87a90207bc0d31
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: First Agent\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolutely everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: First Agent\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolutely
everything you know, don''t reference things but instead explain them.\n\nIMPORTANT:
Use the following format in your response:\n\n```\nThought: you should always
think about what to do\nAction: the action to take, only one name of [Delegate
work to coworker, Ask question to coworker], just the name, exactly as it''s
written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"}, {"role": "user", "content":
"\nCurrent Task: Process initial data\n\nThis is the expected criteria for your
final answer: Initial analysis\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}, {"role": "assistant", "content": "Thought: I need to delegate
the task of processing the initial data to the First Agent to ensure we have
a thorough and accurate analysis. I will provide them with all the necessary
details to complete this task effectively.\n\nAction: Delegate work to coworker\nAction
Input: {\"task\": \"Process initial data\", \"context\": \"The task involves
analyzing the initial data set we have received. This includes cleaning the
data, categorizing it for analysis, identifying any trends or patterns, and
summarizing the findings. The goal is to have a clear understanding of what
the data indicates and any initial insights that can be drawn from it.\", \"coworker\":
\"First Agent\"}\nObservation: To process the initial data set effectively,
we will follow several key steps to ensure we clean, categorize, analyze, and
summarize our findings comprehensively.\n\n1. **Data Cleaning**: \n - First,
we will review the dataset for missing, inconsistent, or erroneous entries.
\n - We will handle missing values by either imputing them based on surrounding
data or removing records where necessary.\n - Additionally, we will standardize
categorical variables to ensure consistency (e.g., ensuring all location names
are spelled the same way).\n\n2. **Data Categorization**: \n - Next, we will
categorize the data into relevant segments that will aid our analysis. \n -
This involves grouping data points based on common characteristics, such as
demographics, time periods, or any key performance indicators (KPIs) we are
focusing on.\n\n3. **Trend and Pattern Identification**: \n - With the cleaned
and categorized data, we will perform a detailed analysis to identify trends
and patterns.\n - This will involve using statistical tools and visualizations
to uncover relationships within the data. We will look at time series analysis,
correlation coefficients, and any significant outliers that may require further
investigation.\n\n4. **Summarizing Findings**: \n - Finally, we will compile
a summary of our findings which will include both qualitative insights and quantitative
metrics.\n - This summary should encapsulate the key trends identified, any
notable patterns, and implications of these findings.\n - We will also document
any limitations of the data and suggest areas for further research if necessary.\n\nBy
completing these steps, we will not only have a clear understanding of what
the data indicates but also provide actionable insights that can guide our next
steps. This comprehensive analysis will serve as a solid foundation for any
additional exploration or decision-making initiatives related to our project.
\n\nIf you have any questions or need further clarification on any part of this
process, please let me know!"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '5714'
content-type:
- application/json
cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
_cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFbbbhw3DH33VxDzlATrxTq+pX5LUwQJChRBayRA68ChJc4Ma404ETW7
3gT594LS3pymQF/2IooUeQ55pK9HAA375goa12N2wxiOX12cvPj9t/dv4sOf79z1m8vFKvbdl+fy
YfXlvTQz85C7v8nlrdfcyTAGyiyxml0izGRRTy7Pz8/PF6cXl8UwiKdgbt2Yj8/k+Pni+dnx4sXx
4mLj2As70uYK/joCAPhaPi3F6OmhuYLFbLsykCp21FztNgE0SYKtNKjKmjHmZrY3OomZYsn606dP
N/G6l6nr8xW8hSgruLeP3BO0HDEARl1Ruomvy7+X5d8VXAuMSRyplq0cOTMG8JgRlDJQ25LLvKSw
nsGKYMUhQCshyAqUlpQwwD2tQTONClmAok6JbKsLhHEGDjN1kvgLzQAjhnX94UGnYUBbB5mSJek5
dgqGfaKeopZT5zfxJp7M4dmzXyynVxaUY/fs2RXcRAA4htecNO+TS7RkqoVbFVZEKwkGVuXYzYCj
k2hoUswzkASUkkSSSYFiTkw630b+sAnZY/SBtiFgiWEihbs1EOeeEvAwTtksuacB7lDJg0TQKSWZ
SlkVUEmQaJClLSRykrzCqqdEEMkowGTllqNfes/WfxgOgbcW8Ji8gbbF1WGAJSbGu0CHDOyqdGt4
QvNuPqsWOxxDgCAO7QSIOJACJgIdKQTyBTvFgWCF66eFgOd7ArZ0FucDGn6jhwMW9qzvmACOWSBR
oCXGDErdQDFb32GuTsi+9EJpE+U9Edc9K3BcSliSQpdkGnegjsIWZYe6k2Gwrx4TukyJNbPTGejk
ekAFT4N0Cce+rGYeCEZKLF5LN2Bcl4YeKbWSBozOpsKzwyxJ4cmv797qUyvTAGvFTaUlJBaYTg2m
60TRlw5/hzlTivDWU8zcsvsesw+c+4JPmRWqXnvofKlwD+omJ0DwlJFDcahQGfFcj1lDtgy0BBtr
Cjo/RLIE28AJtQDNmAtSGCCLhOq9ZJ0wbLguZ0zRyZKsj0Nd7Hm0gLnnuGN6vpucIHIPmCvMSjZd
u5Rn4CRt44ATalt2bC2x0QfuYgEtZpApB6a0aZYB15Do88RGwZTqDMYlaeauRCtknBkZf2xExmp8
vZGYR9rx3YSZ+nAgwI08rUHaR/pUBCRMZajvJPfw2RAy9JbWKMpdnyt4nyeMeWsZKCd2j2nYnqC9
TMEDRYejTgFznRnrwg2TG2aZ/Kw0aJRs475jtwLGwxg2PaaWdu5JaZf4/DtRw6ACXtxkU1iiBh5K
unv3OmFVrLuONFvXoxZB3QKfSAmT64HbRzJ2E39ew/YirdqoVO+JPdxRMkgMa+hxaaDbHCSYoqdU
tK7MVgsrY/1AR8o4mgRPudYxJlmyJ0BXRNOw2XFRWsZhhG6yLUZmpIdcU5lXKh5dOvuhqqJLydbU
ekICe2hN1GvXthvFwJ1cAz2MQVI1SwJPjpUlHg94b9XUG9Z6QusQmd5KyWpMYq8QU71ynx/e9Yna
SdGeGnEK4cCA0ZqhkGavjI8by7fduyJINya50+9cm5Yja39rfEq0N4RmGZti/XYE8LG8X6ZHT5Jm
TDKM+TbLPZXjTk5OX9SAzf7JtDefXv60sWbJGA78zk8uZz8IeVt1TQ8eQY1D15Pf++5fTDh5lgPD
0UHh/87nR7Fr8Ry7/xN+b3COxkz+dkzk2T2ueb8tkbH5X9t2QJeEG2sydnSbmZKR4anFKdTnXqNr
zTTcthw7SmPi+uZrx9uzi7u2XdDCvWiOvh39AwAA//8DAIF0yI38CgAA
headers:
CF-RAY:
- 97144c04e89a1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:50 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2974'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '2999'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29998628'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29998627'
x-ratelimit-reset-project-tokens:
- 2ms
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 2ms
x-request-id:
- req_c0cd67fc9b9342a7bd649b1458724745
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,296 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are First Agent. First
backstory\nYour personal goal is: First goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process initial data\n\nThis is the expected criteria for your final answer:
Initial analysis\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '831'
content-type:
- application/json
cookie:
- _cfuvid=PslIVDqXn7jd_NXBGdSU5kVFvzwCchKPRVe9LpQVdQA-1736351415895-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFVNbxw3DL37VxBzyWV3YTtZ2/EtLerCQNH2kCAFmmDBlTgzjDXURKR2
vQny3wtpNp7Nx6EXr0eUqPceH6nPZwAN++YWGtejuWEMy1+vLm6Gi93rF9f4x+/h7V26/zi8fPv3
xT/34c1vzaKciNsP5OzrqZWLwxjIOMoUdonQqGS9uF6v1+vz5zc3NTBET6Ec60ZbvojLgYWXl+eX
L5bn18uLm+PpPrIjbW7h3zMAgM/1b8Epnh6bWzhffF0ZSBU7am6fNgE0KYay0qAqq6FYs5iDLoqR
VOj3IHEPDgU63hEgdAU2oOieEsA7uWPBAK/q9y287glY2BgDoGA4KCvEFqwn8GgILLsYdqSgtKOE
AVxiY4cB1GjUFdxxUlvAnmDIasCexLg91Awac3L0TcIFkGhOLB1Yj1bWD4CJIFFg3AYCFF8+aIdi
YLGenErDuznXmGJZWsFf4ugEroKLIZAz8hXUSKmNaQCEsdwwsGA6AD1i+a8Ut1zhenIP0MYE6FxO
6A4VxdEBJKS6gBDjQ4Fdt8kBBlYt3zsMueBK4FldohHFMenqnbyTP+lx0sahURcTfzrFKhZhIBSW
rs0BlLqBxHQBOI7hUHJvUdmBGhrrpPpA1kevBbXmYcCa8oEO0BJaTqVQ2fWAWjMvYCDP5bfwKUZd
weuetci3Y08KLMpdbzqhqdhYLfE2V3GqDCRWKm8kniq304JWnq+857IfQzgsYMeaMfCnqu8MqGe1
2CUcdAHb+AhjiIVsTKAOzShNK9UNx2YrNLdUY1k8peL86o4pdc+jVohjPS8Ke7aeZQZXDK50RATI
XqGnMALLk1OrFROJL1iyBaakk15jLF1VWyMRVtYuiqMklfRdTtZTGmKiWmNUJdW5vsUobApZccuB
7VBuRe8TTcapHTKS45YdfMykk1xo0KP47xuFDTBwd+R42gPPFLqIQVfwy9R2JH6qEOsPzV2R7jkE
6LHOBxcIE8QdpR3T/rSyzxS0CNNZP6m8J3wovUC6gC6zL9hyseIek1coQgDL0tNofRkchVF3NEFp
Gv8hq1WLgxB58lWiNhffTpIde5ejrOBNMB7QqDiqUmljFo+TzeZhpWST5mrY0WnGumXqmjFFV4FX
Hp4cK0dZDlg7etKojpfV6VhN1GbFMtolh3ASQJFoE7Ey0N8fI1+eRniI3ZjiVr872rQsrP2muClK
GddqcWxq9MsZwPv6VORvpn8zpjiMtrH4QPW6i/V6ytfML9QcvXx+fYxaNAxz4PnLy8VPEm48GXLQ
k9emceh68vPR+WnC7DmeBM5OaP8I52e5J+os3f9JPweco9HIb8ZEnt23lOdtiT7Uyf/zbU8yV8CN
Fsc72hhTKqXw1GIO07va6EGNhk3L0lEaE0+Paztu1lfn2F7Rev2yOfty9h8AAAD//wMAaw+BEmoI
AAA=
headers:
CF-RAY:
- 97144c8758cd1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:12 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM;
path=/; expires=Mon, 18-Aug-25 21:23:12 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '4008'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '4027'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999825'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999825'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f287350aa2ac4662b9a5e01e85cc221f
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Second Agent. Second
backstory\nYour personal goal is: Second goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process secondary data\n\nTrigger Payload: Context data\n\nThis is the expected
criteria for your final answer: Secondary analysis\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\nThe initial analysis of the data involves several critical
steps. First, we must identify the sources of the data, ensuring that they are
reliable and relevant to the objectives of the project. Once the data is collected,
we perform a preliminary examination to check for accuracy and completeness,
looking for any missing values or discrepancies.\n\nNext, we categorize the
data into meaningful segments, applying basic statistical methods to summarize
key features such as mean, median, and mode. This provides insights into the
distribution and central tendencies of the data.\n\nAdditionally, visualizations
such as histograms, box plots, or scatter plots are created to better understand
relationships and patterns within the data. These visual aids help in identifying
trends, outliers, and potential areas of concern.\n\nFurthermore, we assess
the data for its usability in addressing the specific questions at hand, ensuring
that it aligns with the project''s goals. By the end of this initial analysis,
we will have a clear overview of the data''s strengths and weaknesses, guiding
us towards more in-depth investigations or adjustments needed for future data
collection. Ultimately, this foundational analysis sets the stage for future
analytical processes and decision-making initiatives.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '2214'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFZNbxw5Dr37VxB9yaVt2JlpO/EtM0Awe5hd7GIWGGAzMGiJVcVYJSmk
1O3OIP99QKn6w94c5lLoFiWKfHx84p8XACv2q3tYuQmLm3O4/Pn25t2XX/9T7z7+evP77vdNdP++
peH6brz95W1ere1EevxMrhxOXbk050CFU+xmJ4SFzOvN3Waz2Vz/8P5tM8zJU7BjYy6XP6bLmSNf
vr1+++Pl9d3lzbvl9JTYka7u4X8XAAB/tq/FGT09r+7hen1YmUkVR1rdHzcBrCQFW1mhKmvBWFbr
k9GlWCi20P8BMe3AYYSRtwQIo4UNGHVHAvApfuSIAT60//fw20TAkQtjAIwY9soKaYAyEXgsCBy3
KWxJQWlLggGccGGHAbRQ1iv4yKJlDTuCuWoB9hQLD/vmQVMVRy8croGiVuE4Qpmw2PoeUAiEAuNj
IMDo7Q9tMRYoqZ3speHtyVeWZEtX8NvEehalk1o48td+AYET8vzIgcvejhK6aQlrDahKqoedM5Up
+RTSyKRQlTwMSToKLoVgAaS4bvG5FAeW+VUWgccIOy5T8yekhOImQJ716lP8FP8VHZ0hqwe35Bt+
mWRIMgNCNjBmjih7oGe0X3a3oeEmck8tMHSuCrr9ElAjK0VSXTCZCaN9C7saUtWwh5DSk8Xcjsc9
zNzT32KopGvwNQd2WAgoFmFbMgRYnVDG6AyYlq9LNXjQJ9pZmjUUvYKfA2E8gNkybMCwghYcqeUr
1RnT7P4jDTgWGsXqwxFSlYWH1DH7Jz13dllYYxL+eg5hLKnlyXEcagClcaZY1KLeojQ+LREbxTJJ
4UidVnbTsURfKqkhfMBucdRRxxDSTlvQdjPmDpKZ0gCPqOwsxcLaG6MTSe0SrfOMLeYn2sNAWKqQ
XsFPe3AYXA1YTvTDuIaZPONCMtOVlvqIHFuNWn9wVB6noj37hgVrEX6sPVpjg5UPAxSKnnrZXrTg
bmJrAxJrGVRAGFKNvudkec5JaOHU88t6fPCebRuGsO91abIIW9aKgb82HwpajfgKE2tJo+Csa3hM
z5BDKtrTU4elkPQlA4tCdezNWW+f0H1NnLUdyG1/1NZiHI/5WM1IDyEAslfIAfeAsOWCAUw7jVwH
bWqQC0Vv/K4lMMkSU06mo00MhbCh5lJ0JFYSo4EdrS1ao61koXKiY0ONY6lsUhX2DbCPVcpEYraG
Vxed46E3JjW4CBRHQO/lTJQ0k+OB3Ymh1lUTRv9a+ZowHJvbpMgYfJKjRTDfKIwJQ0f0TFYNf+tI
ajEKQeoAi3HNoJ+u4EOXjJPzuRmFvlQWWnARokbVctanx3dAIPM2lRed3psGc5aEbmqY/dSfD7IQ
h64hrx+phuWOQ4AJ2ztnbBWaKKq9e2lLsmXanfP+jSmRUBzL1NPfET6ZYNKh7Wv0JPa6egOyeR8r
+yW1HYrXQ5EvPeUyGfxWl3GhvUHvP1ctXYYikV+ekaFa679+TYCGIYmp539D4RkLWVe1hE8def40
K5XOna6pZ57PsMySXEurZenJsXKKlzM+db01JFvV10BzTjuShdaNLFauwB4GwZl2SZ6sqo+Vg4ea
TWDUoPcUtvalTNKVyApKzzkkOWrjsUPPhxWhoSrawBRrCGcGjDF1yW1j0h+L5dtxMAppzJIe9dXR
1cCRdXqwjk3RhiAtKa+a9dsFwB9tAKsvZqpVljTn8lDSE7Xrfni/6f5Wp7nvzPrudrGWVDCcDHfv
btbfcfjgqSAHPZvhVg7dRP509DTwYfWczgwXZ2n/fzjf891T5zj+Hfcng3OUC/mHbEOSe5nyaZvQ
5zakfH/bEeYW8MoeFXb0UJjESuFpwBr6tLrSvRaaHwaOo2kn95F1yA+b22scbmmzeb+6+HbxFwAA
AP//AwAAHGphwAsAAA==
headers:
CF-RAY:
- 97144ca1b97b1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:21 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '8604'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '8628'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999482'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999485'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_545a8ffcdf954433b9059a5b35dddf20
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,228 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nTrigger
Payload: Important context data\n\nThis is the expected criteria for your final
answer: Analysis report\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '865'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'upstream connect error or disconnect/reset before headers. reset reason:
connection termination'
headers:
CF-RAY:
- 97144cd97d521abc-GRU
Connection:
- keep-alive
Content-Length:
- '95'
Content-Type:
- text/plain
Date:
- Mon, 18 Aug 2025 20:53:22 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
status:
code: 503
message: Service Unavailable
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nTrigger
Payload: Important context data\n\nThis is the expected criteria for your final
answer: Analysis report\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '865'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '1'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xXTW8cNxK961cUBtBFmBEkRfKHbrLiAI6xcBLvYRe7gVFDVneXxSZbLPaMx0H+
e1Bkf42kLPZiWM1hseq9V6/IP04AVmxXt7AyDSbTdm5z/+ry7cW/Ht99vfmIPz/uPt73b0MMP3/6
d/fxx3erte4I269k0rjr3IS2c5Q4+LJsImEijXr5+ubm5ubi+uIqL7TBktNtdZc212HTsufN1cXV
9ebi9ebyzbC7CWxIVrfwnxMAgD/yv5qnt/RtdQsX6/FLSyJY0+p2+hHAKganX1YowpLQp9V6XjTB
J/I59Q/gwx4Meqh5R4BQa9qAXvYUAf7rf2KPDu7y37f64ezszqM7CAv8Rl2I6exMP+vCB59isL1R
EMrXfzYEXR+7IAShgtSwQMy7gAVSgC6GHVs9WPGL1JCXnMh4Ri/sa0gNQc76WwKLCcd9FtjnxRS5
rilChwcX0J7DuwPQN1Rsh+0dxcSefIIdRsatIwH0FtiST1wd8u8ieSvrozyR25ypJcc7irBD1+tu
YC9cN0kgNZgyhOyrEFuwZFg4+E2LDxq1i8GQCMl5gelHLeDTjuKOaT/jpHUJJa1TORMFTFMNvUBL
KbIRMME5MoksBM0FQToyXLHR8jjYNZBXIJV2XwPqchKQ3jSAAoJadcV1H0nWYHpJoaUI5GusqSWf
1hmT0FFEZREdUFWxYfLmcA4f6bBAj71xvaVbreryHM7OPufwWt7t2Rn8I/jUuMPxoSBU6zlkYXtQ
ZFQuYDBRHSJniK401P2Y2vsptRxzwCGS0+ZSXqYi2CeKmMUn6yE5BWFPW+FEsGPhJGuQYBgdtGQZ
QQOXDVp3RWS3aB5AedRcftBcPi3QeD+hoelMnRCqI8xGuuYkcEcRa4JI0gUvBIlbWkPVu4qd0ywg
YqIhj0gS+mgI0LlgctSldsZji3YW0P9CUTNHb6isAcAGVFyFhNw67C0r4AIIXRBO2m9Z+UVU2iwO
JUEV+giPPcZEUdaw59QA+vwjdE6Li4SlsS9vTrUTI+3I93Sej2y4bkjSpitJDZ2gfAtgpLHxmKxK
85dBCncZgPGvd+vc9pG3fcoNGuDVxWm2kpDQlbLOhzo/E0qGP0s00wp7igRhKxR3ZMcaQLj22jXo
04CMdPxAYPuop/x6vQZM5dQisiY4tpgF24YcOfPxd1JdgH//vMcmeUgT9oDgQxoMZQCU/TPR9p32
y9XNafZJjCWt7GuRdtkjigMU7BeHqawg+GPZdw5T1jg0KIBOAkQW8nrIDxen61Ekiob0Ru2r6h20
GB8ofzTYdsi1n8Cf6jzuoSwJdIo5Jpaq9OeQVAVvbk4HUkxo2+Chi8iidhHi5A6PPTpOhyyMqduV
UTaUafgfXbpg4s7PU+VJv84elznRwQDc6owpGLJ/qVP3DZsGGtzN1GVW3mpRkSp16nH6UFXpXzvy
JPl49jvyKcQDtOgHrkYs714yi4LJwu0ee1bHLAlYGhOoYmjh+g00oY95cF1dl/+vc0c6nVmaFflG
fULPVaNaINt3efA9HVtq/j+pLnw9OE+xFhPaLfsMZSlszKR01hFrC11KX9ck4/iclSVJ4a21MnWJ
CbjJGL1qZ0/OFeHk6Y+xpgTYWyVRRbGBpR4WXJao6qt7PU0xrVCSDlNvoQ3lyKyGNIpsnP2H526U
TW5ByzOVS05msqaF28jkxNlVM+i9V6HrVMOOEzr+nnt3sh2NMOMz2FVH+DB0/8jVfdDJI4t7GMvi
TuUtRTFB57HC50l1o+oKPrHv87VqR5JG8c/sUFWFOJJmo/LyErmKpUbmVqtSnak0WmSfsFzJFLij
HtRbqsVos2ZHDb6I6zl8njHIiTgaOmYYcMPFbM/OAflsrprNVi+T2n/PAJ7R56HR6hj2ed7Zp06g
kao+9ZEGsH8jNS/ytsycsTfelwYbxEn2Jfc8orBoYyAyJxG6xC1/JztOVk17OHkD9wNb0AbPKeRA
5pkNpzBdcVX6WCKPyl7UlmN+yLznMsk0PrhQH/KGLaWUbee5bekRI7WF12dmmZHKIvyba/5w2R4a
TaAw/eSeHaDu9bFQ0J/pHC/cOidHaU/X/vGGw22HJqkMxw4ywEo46rJkFQw3m26+Rp0v302Rql5Q
326+d26xgF5neGZfX2y/Dyt/Tm80F+ouhq082bqq2LM0X2K2B32PSQrdKq/+eQLwe34L9kfPu5Wa
QZe+pPBA+bjLV1cl3mp+gs6rN9NqvjHNC6+vrtcvBPxiKSE7WTwnVwZNQ3beOr891XHDYuFkUfbz
dF6KXUpnX/8/4ecFY6hLZL90kSyb45Lnn0X6ml9LL//sBP4CAAD//4IGM9jBStAsEV+SmVoEioqU
1LTE0hxIx1mpuLK4JDU3Pi0zLz21qKAoE9J7TiuINzVMSbIwSUxLTFLiquUCAAAA//8DANr6751L
EAAA
headers:
CF-RAY:
- 97144ce12be51abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:29 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '6350'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '6385'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999820'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999820'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_633dd1e17cb44249af3d9408f3d3c21b
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,156 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nThis
is the expected criteria for your final answer: Analysis report\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '822'
content-type:
- application/json
cookie:
- _cfuvid=wu1mwFBixM_Cn8wLLh.nRacWi8OMVBrEyBNuF_Htz6I-1743463498282-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//fFfbjhtHDn33VxAC5mXQEmY8lh3Mm9e3DHa9NpzZC3YdBFQ31V2Z6mKn
WCVZCfLvC7JKLY2d7IsAdXfxcnh4yPrtCcDCdYtbWLQDpnac/PLV8+vv/n1P7+7yx+f/eeOHXQ7/
/P6uf0fxYfqwaPQEb36mNh1PrVoeJ0/JcSiv20iYSK1ev1iv1+urmxc39mLkjrwe66e0fMbL0QW3
fHr19Nny6sXy+rt6emDXkixu4b9PAAB+s1+NM3T0ZXELV83xyUgi2NPidv4IYBHZ65MFijhJGNKi
Ob1sOSQKFvodBN5DiwF6tyNA6DVswCB7igCfw1sX0MNL+38Ln8PncHn5MqA/iBP4RBPHdHlZHl+v
4C6kyF1uFYbLSz1/PziBaN/BFEkoJAEERSvSQEHM7dEgbyENBB0m/cR7ahN1wDuK9tyjJPglY0wU
V3A/EPSMvpxycjLjBBJDR9GMWzS48QQuiOuHJA24jkJy2wOkSKGTBjB04MKW4wgdtU4ch+WIDy70
MEVuSYQEthxhm1OOBJIiJuodyapk/3QFrzXsDzuKO0f7Y/o1G6FUknZqaMw+uckTTBhxpERRwIXW
504dCnp15vocSRposyQeKUJHI/cRp8G10mhYijS0GgdHRzWLno4foYfOSYpukxWCFfyVDrDD6BSM
Ctev1FXPdKuJLOHy8gfz/7b4v7y8hXtO6GtYkXYUMjWAO4rYE6SIQQrIsEOvr3JwSUDYd6ti8dUx
hddnKajllz010FPoKDbguUU1U/KYcmwHFAVkQwPuHMdq7WPN/NWcuZr6SFHLh6HVmkcWgc5ttxQp
PAbpBPTIksyXJ2XWxFP2GI/ISnX37hzQ12eAqteC1fStb8WZs+LVOw5HltyUIrx1QQOQQpIT5vfG
RrX7OQAsq3UXVEyEOtgc4Hp9YUTCSJ2yXPtiirQzZ7U3Gti7NABC4GTEl8k9EHQ5atZ6YmDvOjyA
EAqHVfGmZP3TqgJ6YYgsZFFcXTSAqUBRAhlcP1A8sRX3GCmQiCGcMPakX44YHyhpHC2OE7q+YvP/
aHIKb4puxHg4edmgELQcVOZMPxTZnesyegHsqYOn6+XNswawbTkHc6xt/OzqwnTDmF2pZr2snt7S
iJ5mJwKc04StRf/o+eYAT68uwAXTKPQeZCIrbbX0IXgXCGTgabLWzrGnrtG+T65VtvkD4Mihhxw3
GE62G8tEGyL0gCCD2yZIvMfYKbF7p4FT6LGnkUKaMfyqOQ7nfTFD+UaVNXJwrQCNpDEBStFYwq5U
p56vVLq5uqi1AxkwqphW9EwXar7f80hFhTB2FOZWAsE9oEqr4eFCVZPNAdYXpmXjVDNVLtNei3Oi
ykltLRx1rYIv1NfcrVmMy1rOo9NvCS8grg9u61oMyR9gwyzKykeSa2VdX8yQPhKAuzpDZizf488c
j9WjkKx2JBO1Dr0/GE4Dwd85psFkRuH5F0mCV4ySGiXHXltIo9QeknQUWVVGiqaJNcdPOaIHVDlo
YD847W1r8cbOoKcOckg4TdTBxDrmHfrGRkcwFBUQDso6WF/M0jJX5CvaBaLO+mXuX84pErZDFbRn
K/hELY8jhc4CPdO093P9fij1O6iyvQmD6eSRw6cq03bLMUn1pU8OnEP/1eQrhJwoWrGdDrC60JSx
EXlkC2QF/0hOPwBhrQWM1DmEyWPShijj/NRBj4pmiqILRKXPWQDzFgE9poFUhreRx3lx+aYT33Kb
TdM/EeoaIZWQf9gpwDqydDaopmoTxqPK0479riwkZGOtJVM8jTWrZKzgVQ0bNjl0vi4vpRc4gq2k
1k5nnVLBUieRtDeSkiFRJEl/3AFvvkwYpM6/17Qjz5MqVO3RVhEOsNWsC9kgzqyFiQKlSmm4Cy45
THQaBZDQea6jTfcB/yhbK/CR1bqv+awvooVPlVibWHigy2ZLp+HCqv5Zx6Qtau85uMQKteZxp9v7
aCTSkW17gC1uVY7qEqh+HogmnY/tg6E/YOhNMOeRVLeVEm7VzLJnruBvVAesbV9J+ZyYvRnGnHjE
RGcMm/u/NKEbyR++XlBrJ66t/K3PMi/fH8pQaow+p+247L4qpmdiCH3kvTbWDK9Gb0oDkX7JznrB
jdZEiXT463daxr8cADsu+q2e4lEQVFhn5S5RcOwxuF9LTnrvOFbtOEDPVqnmJE8zuILJybYsJmVP
1FVaUVNgbOEfWffzs8xmNbUMK1zPV/BysmH95ahYRot0XI47La3KkfM+z9JZBkWx9KeredWh8/X8
cJ7Yqvh7T2ngjj33B8hShfb87qMYWRVq6Sz08xuVUNxpsHql2nKuEozeOGXmsq7WegPsjtVpc7SV
2GPopMWpqlB29kW93hSACyvbwdGOSvVy0vndwUZ7W/uh3ILdjmR1fsWMtM2Ces0N2fuzFxh0JzXj
ern9sb75fb7Oeu6nyBv56uhi64KT4ado0qVXV0k8Lezt708AfrRrc350E16UteKnxA9k7q7X62Jv
UW7r/wMAAP//jFi9DoIhDNx5DGaHbxDi9zSEtEVr/CHANzj47gYwFiOD85XLHSXAtcoQ1Jr9G23/
GgEOy7qbEDqkelvlIXlr8HAilKUS0/2GfB8ANdj+lTPj7tb5dvyHXgAAioXQxUTI8G1ZyhKdW9ie
l322uQnW9dgxkCtMqbYCKfjt0mcMOj9yoasLXF/umLgPGkJ0xi4+WDJm1eqpXgAAAP//AwCGkEKG
dhEAAA==
headers:
CF-RAY:
- 97144c27cad01abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:07 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=gumItH7ZRtD4GgE2NL8KJd5b0g0ukzMySphsV0ru1LE-1755550387-1.0.1.1-iwCn2q9kDpJVTaZu1Swtv1kYCiM39NBeviV1R9awG4XHHMKnojkbu6T7jh_Z3UxfNbluVCsI6RMKj.2rEPp1IcH63gHUQdJfHF71CdCZ3Uc;
path=/; expires=Mon, 18-Aug-25 21:23:07 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=d7iU8FXLKWOoICtn52jYIApBpBp20kALP6yQjOvXHvQ-1755550387858-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '14516'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '14596'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999830'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3c1af5f5590a4b76b33f3fbf7d3a3288
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,154 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nThis
is the expected criteria for your final answer: Analysis report\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '822'
content-type:
- application/json
cookie:
- _cfuvid=aoRHJvKio8gVXmGaYpzTzdGuWwkBsDAyAKAVwm6QUbE-1743465392324-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFddcxu3Dn3Pr8BoJi8eSWM5luP6zbFbN7d1m0n81nQyEAntIuaSe0lQ
itLpf++A+6G1rztzX+zVcgEeAAeH4F+vAGZsZ1cwMzWKaVq3uLlY/XD5n7uffzvLFw+r28tV+nT3
7vdV/hDuf8bZXC3C5isZGayWJjStI+Hgu2UTCYXU6+rter1en56vTstCEyw5NataWZyHRcOeF2en
Z+eL07eL1WVvXQc2lGZX8McrAIC/yl/F6S19m11B8VXeNJQSVjS7Gj8CmMXg9M0MU+Ik6GU2Py6a
4IV8gf4efNiDQQ8V7wgQKoUN6NOeIsBn/xN7dHBdfl/BZ//Zn5xce3SHxAk+UhuinJx0r1dLeO8l
BpuNpuHk5EodPNScIJYPAblJIAFQHXwnkJqgjWHHlixYFIREAuwhREtRv6RvEtEINISefbXNDtgn
rmpJIDVKgc5+G2IDSSIKVWzAkuHEwadlh+xsCbfq/ZaSidw+QUfdxiZ4zVSCsIUmO+HWEewwMm4c
pTmwNy5b9hVssoAPAo4bFrKKMqGjBFuuctRvTU4SGopgqQlVxLZmk+ZQ0fADXY8ZFcoc0FsQbigJ
Nm2BIBF9wpLHtIQf0dRAXuJBkyM9Zs1VpDZSIi8JELLn/2aa2s4BnQt7hb0NETTMpo1Uk0+l3EMh
wxbaHE2NqURINe44RAg7UqPUkuEtk4WWIgfbZ/XNEu5J6mCDC9VhktDRLSe10EDJQi6+k6BwkpKD
plgnSNnUgAnsUJ4dHb/TfIYYyZVcjb67pEWqIiUtNZS20h2UX8lQFGQPg12quU2wIdkT+WNde17s
OGV0/L3bQkJwCTASoEsBsrDj712h2bnc0Qwe6QASydtUkLQoQnFk3PkSfmKvfEl9Yj77BZycfCpM
eSh2/QKA5uwJhSDVYa+J58rzlg16gdzuMdpuy64wMk11V5k57FlqaAkfe4/BmByj5sXm8q8Oji0e
IBGmQq774KVeBL9o9AGqGPZSg8aYAHcUsSILq/Xr3rfuWnNVU5J+i0hG+9UqN2/JULOhuBwCvhl6
4XbSC2Pk17CJhI827L1y8MXGgUg7Qtf3u27f4NcQWQ4T2lKCPUVdsgQbbRPLO7ZZ7UoAZ+vFm/M5
oDEhexka4vz0dem2IOie9dy1tayP6Nzh2NJJg8xxg14Jgkl1QyJvcq8EF1OHJT3zgsVg2RNVpIKv
oI20pUjeUMHRdqqp8JTOG3YshzGHd1PhGMR3zOFHqkaYgzRAylVFSSZJ+y1EqfdaNQUOIcuxNYPU
FLWZNPS+zthXd8IHjcwTRneAs/VrOBD2EqFPSyhKb0J2FjYEKNO8CMaK9LnB+EglFwabFrnyCRxm
b+qOQAWvIhyjf6CmDREdvO+F/8ge/0TBJvVTNS1qU4d9n4PSExORq0OOCdBx5buA9Zi02mIbVSpK
qftkPsif0RSPErI6gw/3pfPfwIf7+ZBw9Rxa4Ub5pIo+lLcJhVcQ4pHl5CusqCGvZx4LoyrfoCDr
JdxMdO9Z2adLJtB2y4bLKdCTjUaihcRFUF9WwhEZOtDU7ViYOkXryr8LLjc0cmKyl6b8dHm57guv
muCGg5mAtWiCSnA9Uceq03YbYsEJNvKuFEk36qO+WMJHMqFpyNsO7hP5fBhodD86vBloNNLiHSbl
tJ+qyDg1zEGQXYhPqDhMDqVcpjuoQnfQFt1QCdFGyO3z9m/wAAcmZyHlTRm0GB1EkjycBQr7d2UE
fyf4JME8wq+0I3fEe8c76jZjS166k7bLvpI2/YtylyKx1zlT431O7Tlg28bQRu7YoBs73RjQfs1J
mkKXVA/9WpRTAjREAm3QAVFDsdQUMuRYUXpZkX781qJPx5kK4EaHKUsFtcYVe4nSk14FbphiRk2a
A0vJ5YZgQ56UYtpBAdjvtK2qEgQ37DC+XDgtjLcUe1UraltKpPOZcJOduujUrCfbW20xnevS04Hw
eKh2s2mCTlV0ZHhh/NyiUb1W991Up8NsP4EuGnwsULwtfCfYZsmRjiLT49VOKXCEfQ45QRM8S4iD
MVpspev3sJ3GvRnZjoKLsoc/gtyzc5pUE3PJKHtokL3ORkWDQ9OSdAKBdodesBp78XIJ121LKig0
sHUxvPoG11dwS9pMZKEba8os9VAGq2ffvruCO+VLR9qbGlUC3g/DlCL5hQ7jxPTM+OZqOmfCu3Fi
UGn9NJknx3tJ0Yv+OPqXeXerZzlCDJucBLYh93pTnB5vEq1D74cahJYi9mLJjZKDui5ScewpHWKF
vp8kl9NLV6RtTqgXP5+dmyyg96GrbLnu/dmv/D1e8Fyo2hg26ZnpbMueU/0lFjnQy1yS0M7K6t+v
AP4sF8n85G44U71v5YuERyrbrdbrzt/seH89rl6s3vSrZaA5Lry9uJy/4PCLLYRIk7vozKAe7UfT
48UVs+UwWXg1Cft/4bzkuwudffX/uD8uGEOtkP3S/gMAAP//KkpNyUxG9TJCWVEqqH+PSxk8mMEO
VipOLSrLTE6NL8lMLQJFRUpqWmJpDqTXrVRcWVySmhuflpmXnlpUUJQJ6XqnFcSbmhkkppmlmppa
KnHVcgEAAAD//wMABbo03YgQAAA=
headers:
CF-RAY:
- 97144d0daeb11abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:43 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=UW4fV15_S2h9VQ58d_nhU200TOxc3Tjdd_QFUBY6B80-1755550423-1.0.1.1-.oSX43E.zjFk61gbEHMacZh5c8ndmynl75bstCvKcohtwVY6oLpdBWnO2lTUFXpzvGaGsbuYt55OUo_Hmi228z97Nm4cDdOT84lhfStAcms;
path=/; expires=Mon, 18-Aug-25 21:23:43 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=dg9d3YnyfwVQNRGWo64PZ6mtqIOlYEozligD5ggvZFc-1755550423708-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '13654'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '13673'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_169cd22058fb418f90f12e041c0880a9
status:
code: 200
message: OK
version: 1

View File

@@ -2,6 +2,7 @@
import os
import tempfile
from pathlib import Path
from unittest.mock import Mock, patch
import pytest
from dotenv import load_dotenv
@@ -42,6 +43,122 @@ def setup_test_environment():
# Cleanup is handled automatically when tempfile context exits
def pytest_configure(config):
config.addinivalue_line(
"markers", "telemetry: mark test as a telemetry test (don't mock telemetry)"
)
@pytest.fixture(autouse=True)
def auto_mock_telemetry(request):
if request.node.get_closest_marker("telemetry"):
telemetry_env = {
key: value
for key, value in os.environ.items()
if key not in ["CREWAI_DISABLE_TELEMETRY", "OTEL_SDK_DISABLED"]
}
with patch.dict(os.environ, telemetry_env, clear=True):
yield
return
if "telemetry" in str(request.fspath):
telemetry_env = {
key: value
for key, value in os.environ.items()
if key not in ["CREWAI_DISABLE_TELEMETRY", "OTEL_SDK_DISABLED"]
}
with patch.dict(os.environ, telemetry_env, clear=True):
yield
return
with patch.dict(
os.environ, {"CREWAI_DISABLE_TELEMETRY": "true", "OTEL_SDK_DISABLED": "true"}
):
with patch("crewai.telemetry.Telemetry") as mock_telemetry_class:
mock_instance = create_mock_telemetry_instance()
mock_telemetry_class.return_value = mock_instance
with (
patch(
"crewai.utilities.events.event_listener.Telemetry",
mock_telemetry_class,
),
patch("crewai.tools.tool_usage.Telemetry", mock_telemetry_class),
patch("crewai.cli.command.Telemetry", mock_telemetry_class),
patch("crewai.cli.create_flow.Telemetry", mock_telemetry_class),
):
yield mock_instance
def create_mock_telemetry_instance():
mock_instance = Mock()
mock_instance.ready = False
mock_instance.trace_set = False
mock_instance._initialized = True
mock_instance._is_telemetry_disabled.return_value = True
mock_instance._should_execute_telemetry.return_value = False
telemetry_methods = [
"set_tracer",
"crew_creation",
"task_started",
"task_ended",
"tool_usage",
"tool_repeated_usage",
"tool_usage_error",
"crew_execution_span",
"end_crew",
"flow_creation_span",
"flow_execution_span",
"individual_test_result_span",
"test_execution_span",
"deploy_signup_error_span",
"start_deployment_span",
"create_crew_deployment_span",
"get_crew_logs_span",
"remove_crew_span",
"flow_plotting_span",
"_add_attribute",
"_safe_telemetry_operation",
]
for method in telemetry_methods:
setattr(mock_instance, method, Mock(return_value=None))
mock_instance.task_started.return_value = None
return mock_instance
@pytest.fixture
def mock_opentelemetry_components():
with (
patch("opentelemetry.trace.get_tracer") as mock_get_tracer,
patch("opentelemetry.trace.set_tracer_provider") as mock_set_provider,
patch("opentelemetry.baggage.set_baggage") as mock_set_baggage,
patch("opentelemetry.baggage.get_baggage") as mock_get_baggage,
patch("opentelemetry.context.attach") as mock_attach,
patch("opentelemetry.context.detach") as mock_detach,
):
mock_tracer = Mock()
mock_span = Mock()
mock_tracer.start_span.return_value = mock_span
mock_get_tracer.return_value = mock_tracer
yield {
"get_tracer": mock_get_tracer,
"set_tracer_provider": mock_set_provider,
"tracer": mock_tracer,
"span": mock_span,
"set_baggage": mock_set_baggage,
"get_baggage": mock_get_baggage,
"attach": mock_attach,
"detach": mock_detach,
}
@pytest.fixture(scope="module")
def vcr_config(request) -> dict:
return {

View File

@@ -39,6 +39,7 @@ def test_short_term_memory_search_events(short_term_memory):
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemoryQueryStartedEvent)
def on_search_started(source, event):
events["MemoryQueryStartedEvent"].append(event)
@@ -59,33 +60,34 @@ def test_short_term_memory_search_events(short_term_memory):
assert len(events["MemoryQueryFailedEvent"]) == 0
assert dict(events["MemoryQueryStartedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_query_started',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'query': 'test value',
'limit': 3,
'score_threshold': 0.35
"timestamp": ANY,
"type": "memory_query_started",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"query": "test value",
"limit": 3,
"score_threshold": 0.35,
}
assert dict(events["MemoryQueryCompletedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_query_completed',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'query': 'test value',
'results': [],
'limit': 3,
'score_threshold': 0.35,
'query_time_ms': ANY
"timestamp": ANY,
"type": "memory_query_completed",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"query": "test value",
"results": [],
"limit": 3,
"score_threshold": 0.35,
"query_time_ms": ANY,
}
def test_short_term_memory_save_events(short_term_memory):
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemorySaveStartedEvent)
def on_save_started(source, event):
events["MemorySaveStartedEvent"].append(event)
@@ -105,28 +107,29 @@ def test_short_term_memory_save_events(short_term_memory):
assert len(events["MemorySaveFailedEvent"]) == 0
assert dict(events["MemorySaveStartedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_save_started',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'value': 'test value',
'metadata': {'task': 'test_task'},
'agent_role': "test_agent"
"timestamp": ANY,
"type": "memory_save_started",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"value": "test value",
"metadata": {"task": "test_task"},
"agent_role": "test_agent",
}
assert dict(events["MemorySaveCompletedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_save_completed',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'value': 'test value',
'metadata': {'task': 'test_task', 'agent': 'test_agent'},
'agent_role': "test_agent",
'save_time_ms': ANY
"timestamp": ANY,
"type": "memory_save_completed",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"value": "test value",
"metadata": {"task": "test_task", "agent": "test_agent"},
"agent_role": "test_agent",
"save_time_ms": ANY,
}
def test_save_and_search(short_term_memory):
memory = ShortTermMemoryItem(
data="""test value test value test value test value test value test value

View File

@@ -1,4 +1,5 @@
import os
import threading
from unittest.mock import patch
import pytest
@@ -11,12 +12,16 @@ from opentelemetry import trace
@pytest.fixture(autouse=True)
def cleanup_telemetry():
"""Automatically clean up Telemetry singleton between tests."""
Telemetry._instance = None
if hasattr(Telemetry, "_lock"):
Telemetry._lock = threading.Lock()
yield
Telemetry._instance = None
if hasattr(Telemetry, "_lock"):
Telemetry._lock = threading.Lock()
@pytest.mark.telemetry
@pytest.mark.parametrize(
"env_var,value,expected_ready",
[
@@ -36,6 +41,7 @@ def test_telemetry_environment_variables(env_var, value, expected_ready):
assert telemetry.ready is expected_ready
@pytest.mark.telemetry
def test_telemetry_enabled_by_default():
"""Test that telemetry is enabled by default."""
with patch.dict(os.environ, {}, clear=True):
@@ -44,6 +50,7 @@ def test_telemetry_enabled_by_default():
assert telemetry.ready is True
@pytest.mark.telemetry
@patch("crewai.telemetry.telemetry.logger.error")
@patch(
"opentelemetry.exporter.otlp.proto.http.trace_exporter.OTLPSpanExporter.export",
@@ -76,6 +83,7 @@ def test_telemetry_fails_due_connect_timeout(export_mock, logger_mock):
logger_mock.assert_called_once_with(error)
@pytest.mark.telemetry
def test_telemetry_singleton_pattern():
"""Test that Telemetry uses the singleton pattern correctly."""
Telemetry._instance = None

View File

@@ -14,14 +14,18 @@ def cleanup_telemetry():
Telemetry._instance = None
@pytest.mark.parametrize("env_var,value,expected_ready", [
("OTEL_SDK_DISABLED", "true", False),
("OTEL_SDK_DISABLED", "TRUE", False),
("CREWAI_DISABLE_TELEMETRY", "true", False),
("CREWAI_DISABLE_TELEMETRY", "TRUE", False),
("OTEL_SDK_DISABLED", "false", True),
("CREWAI_DISABLE_TELEMETRY", "false", True),
])
@pytest.mark.telemetry
@pytest.mark.parametrize(
"env_var,value,expected_ready",
[
("OTEL_SDK_DISABLED", "true", False),
("OTEL_SDK_DISABLED", "TRUE", False),
("CREWAI_DISABLE_TELEMETRY", "true", False),
("CREWAI_DISABLE_TELEMETRY", "TRUE", False),
("OTEL_SDK_DISABLED", "false", True),
("CREWAI_DISABLE_TELEMETRY", "false", True),
],
)
def test_telemetry_environment_variables(env_var, value, expected_ready):
"""Test telemetry state with different environment variable configurations."""
with patch.dict(os.environ, {env_var: value}):
@@ -30,6 +34,7 @@ def test_telemetry_environment_variables(env_var, value, expected_ready):
assert telemetry.ready is expected_ready
@pytest.mark.telemetry
def test_telemetry_enabled_by_default():
"""Test that telemetry is enabled by default."""
with patch.dict(os.environ, {}, clear=True):
@@ -38,57 +43,60 @@ def test_telemetry_enabled_by_default():
assert telemetry.ready is True
@pytest.mark.telemetry
def test_telemetry_disable_after_singleton_creation():
"""Test that telemetry operations are disabled when env var is set after singleton creation."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
mock_operation = MagicMock()
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_called_once()
mock_operation.reset_mock()
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
os.environ["CREWAI_DISABLE_TELEMETRY"] = "true"
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()
@pytest.mark.telemetry
def test_telemetry_disable_with_multiple_instances():
"""Test that multiple telemetry instances respect dynamically changed env vars."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry1 = Telemetry()
assert telemetry1.ready is True
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
os.environ["CREWAI_DISABLE_TELEMETRY"] = "true"
telemetry2 = Telemetry()
assert telemetry2 is telemetry1
assert telemetry2.ready is True
mock_operation = MagicMock()
telemetry2._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()
@pytest.mark.telemetry
def test_telemetry_otel_sdk_disabled_after_creation():
"""Test that OTEL_SDK_DISABLED also works when set after singleton creation."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
mock_operation = MagicMock()
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_called_once()
mock_operation.reset_mock()
os.environ['OTEL_SDK_DISABLED'] = 'true'
os.environ["OTEL_SDK_DISABLED"] = "true"
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()

View File

@@ -1,237 +0,0 @@
import pytest
from crewai import Agent
from crewai.tools import BaseTool
class MockTool(BaseTool):
name: str = "mock_tool"
description: str = "A mock tool for testing"
def _run(self, query: str) -> str:
return f"Mock result for: {query}"
def test_agent_with_crewai_tools_only():
"""Test backward compatibility with CrewAI tools only."""
mock_tool = MockTool()
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[mock_tool]
)
assert len(agent.tools) == 1
assert isinstance(agent.tools[0], BaseTool)
def test_agent_with_raw_tools_only():
"""Test agent with raw tool definitions only."""
raw_tool = {
"name": "hosted_search",
"description": "Search the web using hosted search",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"}
},
"required": ["query"]
}
}
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[raw_tool]
)
assert len(agent.tools) == 1
assert isinstance(agent.tools[0], dict)
assert agent.tools[0]["name"] == "hosted_search"
def test_agent_with_mixed_tools():
"""Test agent with both CrewAI tools and raw tool definitions."""
mock_tool = MockTool()
raw_tool = {
"name": "hosted_calculator",
"description": "Hosted calculator tool",
"parameters": {
"type": "object",
"properties": {
"expression": {"type": "string"}
}
}
}
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[mock_tool, raw_tool]
)
assert len(agent.tools) == 2
assert isinstance(agent.tools[0], BaseTool)
assert isinstance(agent.tools[1], dict)
def test_invalid_raw_tool_definition():
"""Test error handling for invalid raw tool definitions."""
invalid_tool = {"description": "Missing name field"}
with pytest.raises(ValueError, match="Raw tool definition must have a 'name' field"):
Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[invalid_tool]
)
def test_parse_tools_with_mixed_types():
"""Test parse_tools function with mixed tool types."""
from crewai.utilities.agent_utils import parse_tools
mock_tool = MockTool()
raw_tool = {
"name": "hosted_tool",
"description": "A hosted tool",
"parameters": {"type": "object"}
}
parsed = parse_tools([mock_tool, raw_tool])
assert len(parsed) == 2
assert hasattr(parsed[0], 'name')
assert parsed[0].name == "mock_tool"
assert isinstance(parsed[1], dict)
assert parsed[1]["name"] == "hosted_tool"
def test_get_tool_names_with_mixed_types():
"""Test get_tool_names function with mixed tool types."""
from crewai.utilities.agent_utils import get_tool_names
mock_tool = MockTool()
raw_tool = {"name": "hosted_tool", "description": "A hosted tool"}
names = get_tool_names([mock_tool, raw_tool])
assert "mock_tool" in names
assert "hosted_tool" in names
def test_render_text_description_with_mixed_types():
"""Test render_text_description_and_args function with mixed tool types."""
from crewai.utilities.agent_utils import render_text_description_and_args
mock_tool = MockTool()
raw_tool = {"name": "hosted_tool", "description": "A hosted tool"}
description = render_text_description_and_args([mock_tool, raw_tool])
assert "A mock tool for testing" in description
assert "A hosted tool" in description
def test_agent_executor_with_mixed_tools():
"""Test CrewAgentExecutor initialization with mixed tool types."""
mock_tool = MockTool()
raw_tool = {"name": "hosted_tool", "description": "A hosted tool"}
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[mock_tool, raw_tool]
)
agent.create_agent_executor()
assert len(agent.agent_executor.tool_name_to_tool_map) == 2
assert "mock_tool" in agent.agent_executor.tool_name_to_tool_map
assert "hosted_tool" in agent.agent_executor.tool_name_to_tool_map
def test_empty_tools_list():
"""Test agent with empty tools list."""
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[]
)
assert len(agent.tools) == 0
def test_none_tools():
"""Test agent with None tools."""
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=None
)
assert agent.tools == []
def test_raw_tool_without_description():
"""Test raw tool definition without description field."""
raw_tool = {"name": "minimal_tool"}
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[raw_tool]
)
assert len(agent.tools) == 1
assert isinstance(agent.tools[0], dict)
assert agent.tools[0]["name"] == "minimal_tool"
def test_complex_raw_tool_definition():
"""Test complex raw tool definition with nested parameters."""
raw_tool = {
"name": "complex_search",
"description": "Advanced search with multiple parameters",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search query"
},
"filters": {
"type": "object",
"properties": {
"date_range": {"type": "string"},
"category": {"type": "string"}
}
},
"limit": {
"type": "integer",
"minimum": 1,
"maximum": 100,
"default": 10
}
},
"required": ["query"]
}
}
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[raw_tool]
)
assert len(agent.tools) == 1
assert isinstance(agent.tools[0], dict)
assert agent.tools[0]["name"] == "complex_search"
assert "parameters" in agent.tools[0]
assert agent.tools[0]["parameters"]["type"] == "object"

View File

@@ -2,6 +2,7 @@ import os
import pytest
from unittest.mock import patch, MagicMock
from crewai import Agent, Task, Crew
from crewai.flow.flow import Flow, start
from crewai.utilities.events.listeners.tracing.trace_listener import (
@@ -321,6 +322,74 @@ class TestTraceListenerSetup:
FlowExample()
assert mock_listener_setup.call_count >= 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_trace_listener_ephemeral_batch(self):
"""Test that trace listener properly handles ephemeral batches"""
with (
patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}),
patch(
"crewai.utilities.events.listeners.tracing.trace_listener.TraceCollectionListener._check_authenticated",
return_value=False,
),
):
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], tracing=True)
with patch.object(TraceBatchManager, "initialize_batch") as mock_initialize:
crew.kickoff()
assert mock_initialize.call_count >= 1
assert mock_initialize.call_args_list[0][1]["use_ephemeral"] is True
@pytest.mark.vcr(filter_headers=["authorization"])
def test_trace_listener_with_authenticated_user(self):
"""Test that trace listener properly handles authenticated batches"""
with (
patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}),
patch(
"crewai.utilities.events.listeners.tracing.trace_batch_manager.PlusAPI"
) as mock_plus_api_class,
):
mock_plus_api_instance = MagicMock()
mock_plus_api_class.return_value = mock_plus_api_instance
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
with (
patch.object(TraceBatchManager, "initialize_batch") as mock_initialize,
patch.object(
TraceBatchManager, "finalize_batch"
) as mock_finalize_backend_batch,
):
crew = Crew(agents=[agent], tasks=[task], tracing=True)
crew.kickoff()
mock_plus_api_class.assert_called_with(api_key="mock_token_12345")
assert mock_initialize.call_count >= 1
mock_finalize_backend_batch.assert_called_with()
assert mock_finalize_backend_batch.call_count >= 1
# Helper method to ensure cleanup
def teardown_method(self):
"""Cleanup after each test method"""

6651
uv.lock generated

File diff suppressed because it is too large Load Diff