Compare commits

..

1 Commits

Author SHA1 Message Date
Devin AI
c216b310e3 Fix response_format validation for OpenAI-compatible models
- Allow OpenAI provider models to use response_format without validation errors
- Add comprehensive tests for OpenAI-compatible models like qwen-plus
- Ensure non-OpenAI providers still use original validation logic
- Fixes issue #3174 where structured output failed for third-party OpenAI-compatible models

Co-Authored-By: Jo\u00E3o <joao@crewai.com>
2025-07-17 01:56:56 +00:00
61 changed files with 3689 additions and 5107 deletions

View File

@@ -37,9 +37,25 @@ jobs:
- name: Install the project
run: uv sync --dev --all-extras
- name: Install SQLite with FTS5 support
run: |
# WORKAROUND: GitHub Actions' Ubuntu runner uses SQLite without FTS5 support compiled in.
# This is a temporary fix until the runner includes SQLite with FTS5 or Python's sqlite3
# module is compiled with FTS5 support by default.
# TODO: Remove this workaround once GitHub Actions runners include SQLite FTS5 support
# Install pysqlite3-binary which has FTS5 support
uv pip install pysqlite3-binary
# Create a sitecustomize.py to override sqlite3 with pysqlite3
mkdir -p .pytest_sqlite_override
echo "import sys; import pysqlite3; sys.modules['sqlite3'] = pysqlite3" > .pytest_sqlite_override/sitecustomize.py
# Test FTS5 availability
PYTHONPATH=.pytest_sqlite_override uv run python -c "import sqlite3; print(f'SQLite version: {sqlite3.sqlite_version}')"
PYTHONPATH=.pytest_sqlite_override uv run python -c "import sqlite3; conn = sqlite3.connect(':memory:'); conn.execute('CREATE VIRTUAL TABLE test USING fts5(content)'); print('FTS5 module available')"
- name: Run tests (group ${{ matrix.group }} of 8)
run: |
uv run pytest \
PYTHONPATH=.pytest_sqlite_override uv run pytest \
--block-network \
--timeout=30 \
-vv \

3
.gitignore vendored
View File

@@ -26,5 +26,4 @@ test_flow.html
crewairules.mdc
plan.md
conceptual_plan.md
build_image
chromadb-*.lock
build_image

View File

@@ -32,6 +32,11 @@
"href": "https://chatgpt.com/g/g-qqTuUWsBY-crewai-assistant",
"icon": "robot"
},
{
"anchor": "Get Help",
"href": "mailto:support@crewai.com",
"icon": "headset"
},
{
"anchor": "Releases",
"href": "https://github.com/crewAIInc/crewAI/releases",
@@ -161,9 +166,7 @@
"en/tools/search-research/websitesearchtool",
"en/tools/search-research/codedocssearchtool",
"en/tools/search-research/youtubechannelsearchtool",
"en/tools/search-research/youtubevideosearchtool",
"en/tools/search-research/tavilysearchtool",
"en/tools/search-research/tavilyextractortool"
"en/tools/search-research/youtubevideosearchtool"
]
},
{
@@ -367,6 +370,11 @@
"href": "https://chatgpt.com/g/g-qqTuUWsBY-crewai-assistant",
"icon": "robot"
},
{
"anchor": "Obter Ajuda",
"href": "mailto:support@crewai.com",
"icon": "headset"
},
{
"anchor": "Lançamentos",
"href": "https://github.com/crewAIInc/crewAI/releases",

View File

@@ -270,7 +270,7 @@ In this section, you'll find detailed examples that help you select, configure,
from crewai import LLM
llm = LLM(
model="gemini-1.5-pro-latest", # or vertex_ai/gemini-1.5-pro-latest
model="gemini/gemini-1.5-pro-latest",
temperature=0.7,
vertex_credentials=vertex_credentials_json
)

View File

@@ -623,7 +623,7 @@ for provider in providers_to_test:
**Model not found errors:**
```python
# Verify model availability
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
configurator = EmbeddingConfigurator()
try:
@@ -712,7 +712,7 @@ crew = Crew(
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
"user_memory": {} # DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, use external_memory instead
"user_memory": {} # Required - triggers user memory initialization
},
process=Process.sequential,
verbose=True
@@ -720,16 +720,7 @@ crew = Crew(
```
### Advanced Mem0 Configuration
When using Mem0 Client, you can customize the memory configuration further, by using parameters like 'includes', 'excludes', 'custom_categories', 'infer' and 'run_id' (this is only for short-term memory).
You can find more details in the [Mem0 documentation](https://docs.mem0.ai/).
```python
new_categories = [
{"lifestyle_management_concerns": "Tracks daily routines, habits, hobbies and interests including cooking, time management and work-life balance"},
{"seeking_structure": "Documents goals around creating routines, schedules, and organized systems in various life areas"},
{"personal_information": "Basic information about the user including name, preferences, and personality traits"}
]
crew = Crew(
agents=[...],
tasks=[...],
@@ -741,11 +732,6 @@ crew = Crew(
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
"run_id": "my_run_id", # Optional - for short-term memory
"includes": "include1", # Optional
"excludes": "exclude1", # Optional
"infer": True # Optional defaults to True
"custom_categories": new_categories # Optional - custom categories for user memory
},
"user_memory": {}
}
@@ -775,8 +761,7 @@ crew = Crew(
"provider": "openai",
"config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}
}
},
"infer": True # Optional defaults to True
}
},
"user_memory": {}
}

View File

@@ -54,11 +54,10 @@ crew = Crew(
| **Markdown** _(optional)_ | `markdown` | `Optional[bool]` | Whether the task should instruct the agent to return the final answer formatted in Markdown. Defaults to False. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
| **Create Directory** _(optional)_ | `create_directory` | `Optional[bool]` | Whether to create the directory for output_file if it doesn't exist. Defaults to True. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Union[Callable, str]]` | Function or string description to validate task output before proceeding to next task. |
## Creating Tasks
@@ -88,6 +87,7 @@ research_task:
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
guardrail: ensure each bullet contains a minimum of 100 words
reporting_task:
description: >
@@ -334,7 +334,9 @@ Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
feedback to agents when their output doesn't meet specific criteria.
Guardrails are implemented as Python functions that contain custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
**Guardrails can be defined in two ways:**
1. **Function-based guardrails**: Python functions that implement custom validation logic
2. **String-based guardrails**: Natural language descriptions that are automatically converted to LLM-powered validation
### Function-Based Guardrails
@@ -376,7 +378,82 @@ blog_task = Task(
- On success: it returns a tuple of `(bool, Any)`. For example: `(True, validated_result)`
- On Failure: it returns a tuple of `(bool, str)`. For example: `(False, "Error message explain the failure")`
### String-Based Guardrails
String-based guardrails allow you to describe validation criteria in natural language. When you provide a string instead of a function, CrewAI automatically converts it to an `LLMGuardrail` that uses an AI agent to validate the task output.
#### Using String Guardrails in Python
```python Code
from crewai import Task
# Simple string-based guardrail
blog_task = Task(
description="Write a blog post about AI",
expected_output="A blog post under 200 words",
agent=blog_agent,
guardrail="Ensure the blog post is under 200 words and includes practical examples"
)
# More complex validation criteria
research_task = Task(
description="Research AI trends for 2025",
expected_output="A comprehensive research report",
agent=research_agent,
guardrail="Ensure each finding includes a credible source and is backed by recent data from 2024-2025"
)
```
#### Using String Guardrails in YAML
```yaml
research_task:
description: Research the latest AI developments
expected_output: A list of 10 bullet points about AI
agent: researcher
guardrail: ensure each bullet contains a minimum of 100 words
validation_task:
description: Validate the research findings
expected_output: A validation report
agent: validator
guardrail: confirm all sources are from reputable publications and published within the last 2 years
```
#### How String Guardrails Work
When you provide a string guardrail, CrewAI automatically:
1. Creates an `LLMGuardrail` instance using the string as validation criteria
2. Uses the task's agent LLM to power the validation
3. Creates a temporary validation agent that checks the output against your criteria
4. Returns detailed feedback if validation fails
This approach is ideal when you want to use natural language to describe validation rules without writing custom validation functions.
### LLMGuardrail Class
The `LLMGuardrail` class is the underlying mechanism that powers string-based guardrails. You can also use it directly for more advanced control:
```python Code
from crewai import Task
from crewai.tasks.llm_guardrail import LLMGuardrail
from crewai.llm import LLM
# Create a custom LLMGuardrail with specific LLM
custom_guardrail = LLMGuardrail(
description="Ensure the response contains exactly 5 bullet points with proper citations",
llm=LLM(model="gpt-4o-mini")
)
task = Task(
description="Research AI safety measures",
expected_output="A detailed analysis with bullet points",
agent=research_agent,
guardrail=custom_guardrail
)
```
**Note**: When you use a string guardrail, CrewAI automatically creates an `LLMGuardrail` instance using your task's agent LLM. Using `LLMGuardrail` directly gives you more control over the validation process and LLM selection.
### Error Handling Best Practices
@@ -804,87 +881,21 @@ These validations help in maintaining the consistency and reliability of task ex
## Creating Directories when Saving Files
The `create_directory` parameter controls whether CrewAI should automatically create directories when saving task outputs to files. This feature is particularly useful for organizing outputs and ensuring that file paths are correctly structured, especially when working with complex project hierarchies.
### Default Behavior
By default, `create_directory=True`, which means CrewAI will automatically create any missing directories in the output file path:
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
```python Code
# Default behavior - directories are created automatically
report_task = Task(
description='Generate a comprehensive market analysis report',
expected_output='A detailed market analysis with charts and insights',
agent=analyst_agent,
output_file='reports/2025/market_analysis.md', # Creates 'reports/2025/' if it doesn't exist
markdown=True
# ...
save_output_task = Task(
description='Save the summarized AI news to a file',
expected_output='File saved successfully',
agent=research_agent,
tools=[file_save_tool],
output_file='outputs/ai_news_summary.txt',
create_directory=True
)
```
### Disabling Directory Creation
If you want to prevent automatic directory creation and ensure that the directory already exists, set `create_directory=False`:
```python Code
# Strict mode - directory must already exist
strict_output_task = Task(
description='Save critical data that requires existing infrastructure',
expected_output='Data saved to pre-configured location',
agent=data_agent,
output_file='secure/vault/critical_data.json',
create_directory=False # Will raise RuntimeError if 'secure/vault/' doesn't exist
)
```
### YAML Configuration
You can also configure this behavior in your YAML task definitions:
```yaml tasks.yaml
analysis_task:
description: >
Generate quarterly financial analysis
expected_output: >
A comprehensive financial report with quarterly insights
agent: financial_analyst
output_file: reports/quarterly/q4_2024_analysis.pdf
create_directory: true # Automatically create 'reports/quarterly/' directory
audit_task:
description: >
Perform compliance audit and save to existing audit directory
expected_output: >
A compliance audit report
agent: auditor
output_file: audit/compliance_report.md
create_directory: false # Directory must already exist
```
### Use Cases
**Automatic Directory Creation (`create_directory=True`):**
- Development and prototyping environments
- Dynamic report generation with date-based folders
- Automated workflows where directory structure may vary
- Multi-tenant applications with user-specific folders
**Manual Directory Management (`create_directory=False`):**
- Production environments with strict file system controls
- Security-sensitive applications where directories must be pre-configured
- Systems with specific permission requirements
- Compliance environments where directory creation is audited
### Error Handling
When `create_directory=False` and the directory doesn't exist, CrewAI will raise a `RuntimeError`:
```python Code
try:
result = crew.kickoff()
except RuntimeError as e:
# Handle missing directory error
print(f"Directory creation failed: {e}")
# Create directory manually or use fallback location
#...
```
Check out the video below to see how to use structured outputs in CrewAI:

View File

@@ -44,14 +44,6 @@ These tools enable your agents to search the web, research topics, and find info
<Card title="YouTube Video Search" icon="play" href="/en/tools/search-research/youtubevideosearchtool">
Find and analyze YouTube videos by topic, keyword, or criteria.
</Card>
<Card title="Tavily Search Tool" icon="magnifying-glass" href="/en/tools/search-research/tavilysearchtool">
Comprehensive web search using Tavily's AI-powered search API.
</Card>
<Card title="Tavily Extractor Tool" icon="file-text" href="/en/tools/search-research/tavilyextractortool">
Extract structured content from web pages using the Tavily API.
</Card>
</CardGroup>
## **Common Use Cases**
@@ -63,19 +55,17 @@ These tools enable your agents to search the web, research topics, and find info
- **Academic Research**: Find scholarly articles and technical papers
```python
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool, TavilySearchTool, TavilyExtractorTool
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool
# Create research tools
web_search = SerperDevTool()
code_search = GitHubSearchTool()
video_research = YoutubeVideoSearchTool()
tavily_search = TavilySearchTool()
content_extractor = TavilyExtractorTool()
# Add to your agent
agent = Agent(
role="Research Analyst",
tools=[web_search, code_search, video_research, tavily_search, content_extractor],
tools=[web_search, code_search, video_research],
goal="Gather comprehensive information on any topic"
)
```

View File

@@ -6,6 +6,10 @@ icon: google
# `SerperDevTool`
<Note>
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
</Note>
## Description
This tool is designed to perform a semantic search for a specified query from a text's content across the internet. It utilizes the [serper.dev](https://serper.dev) API
@@ -13,12 +17,6 @@ to fetch and display the most relevant search results based on the query provide
## Installation
To effectively use the `SerperDevTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
To incorporate this tool into your project, follow the installation instructions below:
```shell
@@ -36,6 +34,14 @@ from crewai_tools import SerperDevTool
tool = SerperDevTool()
```
## Steps to Get Started
To effectively use the `SerperDevTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
## Parameters
The `SerperDevTool` comes with several parameters that will be passed to the API :

View File

@@ -1,139 +0,0 @@
---
title: "Tavily Extractor Tool"
description: "Extract structured content from web pages using the Tavily API"
icon: "file-text"
---
The `TavilyExtractorTool` allows CrewAI agents to extract structured content from web pages using the Tavily API. It can process single URLs or lists of URLs and provides options for controlling the extraction depth and including images.
## Installation
To use the `TavilyExtractorTool`, you need to install the `tavily-python` library:
```shell
pip install 'crewai[tools]' tavily-python
```
You also need to set your Tavily API key as an environment variable:
```bash
export TAVILY_API_KEY='your-tavily-api-key'
```
## Example Usage
Here's how to initialize and use the `TavilyExtractorTool` within a CrewAI agent:
```python
import os
from crewai import Agent, Task, Crew
from crewai_tools import TavilyExtractorTool
# Ensure TAVILY_API_KEY is set in your environment
# os.environ["TAVILY_API_KEY"] = "YOUR_API_KEY"
# Initialize the tool
tavily_tool = TavilyExtractorTool()
# Create an agent that uses the tool
extractor_agent = Agent(
role='Web Content Extractor',
goal='Extract key information from specified web pages',
backstory='You are an expert at extracting relevant content from websites using the Tavily API.',
tools=[tavily_tool],
verbose=True
)
# Define a task for the agent
extract_task = Task(
description='Extract the main content from the URL https://example.com using basic extraction depth.',
expected_output='A JSON string containing the extracted content from the URL.',
agent=extractor_agent
)
# Create and run the crew
crew = Crew(
agents=[extractor_agent],
tasks=[extract_task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## Configuration Options
The `TavilyExtractorTool` accepts the following arguments:
- `urls` (Union[List[str], str]): **Required**. A single URL string or a list of URL strings to extract data from.
- `include_images` (Optional[bool]): Whether to include images in the extraction results. Defaults to `False`.
- `extract_depth` (Literal["basic", "advanced"]): The depth of extraction. Use `"basic"` for faster, surface-level extraction or `"advanced"` for more comprehensive extraction. Defaults to `"basic"`.
- `timeout` (int): The maximum time in seconds to wait for the extraction request to complete. Defaults to `60`.
## Advanced Usage
### Multiple URLs with Advanced Extraction
```python
# Example with multiple URLs and advanced extraction
multi_extract_task = Task(
description='Extract content from https://example.com and https://anotherexample.org using advanced extraction.',
expected_output='A JSON string containing the extracted content from both URLs.',
agent=extractor_agent
)
# Configure the tool with custom parameters
custom_extractor = TavilyExtractorTool(
extract_depth='advanced',
include_images=True,
timeout=120
)
agent_with_custom_tool = Agent(
role="Advanced Content Extractor",
goal="Extract comprehensive content with images",
tools=[custom_extractor]
)
```
### Tool Parameters
You can customize the tool's behavior by setting parameters during initialization:
```python
# Initialize with custom configuration
extractor_tool = TavilyExtractorTool(
extract_depth='advanced', # More comprehensive extraction
include_images=True, # Include image results
timeout=90 # Custom timeout
)
```
## Features
- **Single or Multiple URLs**: Extract content from one URL or process multiple URLs in a single request
- **Configurable Depth**: Choose between basic (fast) and advanced (comprehensive) extraction modes
- **Image Support**: Optionally include images in the extraction results
- **Structured Output**: Returns well-formatted JSON containing the extracted content
- **Error Handling**: Robust handling of network timeouts and extraction errors
## Response Format
The tool returns a JSON string representing the structured data extracted from the provided URL(s). The exact structure depends on the content of the pages and the `extract_depth` used.
Common response elements include:
- **Title**: The page title
- **Content**: Main text content of the page
- **Images**: Image URLs and metadata (when `include_images=True`)
- **Metadata**: Additional page information like author, description, etc.
## Use Cases
- **Content Analysis**: Extract and analyze content from competitor websites
- **Research**: Gather structured data from multiple sources for analysis
- **Content Migration**: Extract content from existing websites for migration
- **Monitoring**: Regular extraction of content for change detection
- **Data Collection**: Systematic extraction of information from web sources
Refer to the [Tavily API documentation](https://docs.tavily.com/docs/tavily-api/python-sdk#extract) for detailed information about the response structure and available options.

View File

@@ -1,122 +0,0 @@
---
title: "Tavily Search Tool"
description: "Perform comprehensive web searches using the Tavily Search API"
icon: "magnifying-glass"
---
The `TavilySearchTool` provides an interface to the Tavily Search API, enabling CrewAI agents to perform comprehensive web searches. It allows for specifying search depth, topics, time ranges, included/excluded domains, and whether to include direct answers, raw content, or images in the results.
## Installation
To use the `TavilySearchTool`, you need to install the `tavily-python` library:
```shell
pip install 'crewai[tools]' tavily-python
```
## Environment Variables
Ensure your Tavily API key is set as an environment variable:
```bash
export TAVILY_API_KEY='your_tavily_api_key'
```
## Example Usage
Here's how to initialize and use the `TavilySearchTool` within a CrewAI agent:
```python
import os
from crewai import Agent, Task, Crew
from crewai_tools import TavilySearchTool
# Ensure the TAVILY_API_KEY environment variable is set
# os.environ["TAVILY_API_KEY"] = "YOUR_TAVILY_API_KEY"
# Initialize the tool
tavily_tool = TavilySearchTool()
# Create an agent that uses the tool
researcher = Agent(
role='Market Researcher',
goal='Find information about the latest AI trends',
backstory='An expert market researcher specializing in technology.',
tools=[tavily_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description='Search for the top 3 AI trends in 2024.',
expected_output='A JSON report summarizing the top 3 AI trends found.',
agent=researcher
)
# Form the crew and kick it off
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## Configuration Options
The `TavilySearchTool` accepts the following arguments during initialization or when calling the `run` method:
- `query` (str): **Required**. The search query string.
- `search_depth` (Literal["basic", "advanced"], optional): The depth of the search. Defaults to `"basic"`.
- `topic` (Literal["general", "news", "finance"], optional): The topic to focus the search on. Defaults to `"general"`.
- `time_range` (Literal["day", "week", "month", "year"], optional): The time range for the search. Defaults to `None`.
- `days` (int, optional): The number of days to search back. Relevant if `time_range` is not set. Defaults to `7`.
- `max_results` (int, optional): The maximum number of search results to return. Defaults to `5`.
- `include_domains` (Sequence[str], optional): A list of domains to prioritize in the search. Defaults to `None`.
- `exclude_domains` (Sequence[str], optional): A list of domains to exclude from the search. Defaults to `None`.
- `include_answer` (Union[bool, Literal["basic", "advanced"]], optional): Whether to include a direct answer synthesized from the search results. Defaults to `False`.
- `include_raw_content` (bool, optional): Whether to include the raw HTML content of the searched pages. Defaults to `False`.
- `include_images` (bool, optional): Whether to include image results. Defaults to `False`.
- `timeout` (int, optional): The request timeout in seconds. Defaults to `60`.
## Advanced Usage
You can configure the tool with custom parameters:
```python
# Example: Initialize with specific parameters
custom_tavily_tool = TavilySearchTool(
search_depth='advanced',
max_results=10,
include_answer=True
)
# The agent will use these defaults
agent_with_custom_tool = Agent(
role="Advanced Researcher",
goal="Conduct detailed research with comprehensive results",
tools=[custom_tavily_tool]
)
```
## Features
- **Comprehensive Search**: Access to Tavily's powerful search index
- **Configurable Depth**: Choose between basic and advanced search modes
- **Topic Filtering**: Focus searches on general, news, or finance topics
- **Time Range Control**: Limit results to specific time periods
- **Domain Control**: Include or exclude specific domains
- **Direct Answers**: Get synthesized answers from search results
- **Content Filtering**: Prevent context window issues with automatic content truncation
## Response Format
The tool returns search results as a JSON string containing:
- Search results with titles, URLs, and content snippets
- Optional direct answers to queries
- Optional image results
- Optional raw HTML content (when enabled)
Content for each result is automatically truncated to prevent context window issues while maintaining the most relevant information.

View File

@@ -1,100 +0,0 @@
---
title: Serper Scrape Website
description: The `SerperScrapeWebsiteTool` is designed to scrape websites and extract clean, readable content using Serper's scraping API.
icon: globe
---
# `SerperScrapeWebsiteTool`
## Description
This tool is designed to scrape website content and extract clean, readable text from any website URL. It utilizes the [serper.dev](https://serper.dev) scraping API to fetch and process web pages, optionally including markdown formatting for better structure and readability.
## Installation
To effectively use the `SerperScrapeWebsiteTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for an account at `serper.dev`.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
To incorporate this tool into your project, follow the installation instructions below:
```shell
pip install 'crewai[tools]'
```
## Example
The following example demonstrates how to initialize the tool and scrape a website:
```python Code
from crewai_tools import SerperScrapeWebsiteTool
# Initialize the tool for website scraping capabilities
tool = SerperScrapeWebsiteTool()
# Scrape a website with markdown formatting
result = tool.run(url="https://example.com", include_markdown=True)
```
## Arguments
The `SerperScrapeWebsiteTool` accepts the following arguments:
- **url**: Required. The URL of the website to scrape.
- **include_markdown**: Optional. Whether to include markdown formatting in the scraped content. Defaults to `True`.
## Example with Parameters
Here is an example demonstrating how to use the tool with different parameters:
```python Code
from crewai_tools import SerperScrapeWebsiteTool
tool = SerperScrapeWebsiteTool()
# Scrape with markdown formatting (default)
markdown_result = tool.run(
url="https://docs.crewai.com",
include_markdown=True
)
# Scrape without markdown formatting for plain text
plain_result = tool.run(
url="https://docs.crewai.com",
include_markdown=False
)
print("Markdown formatted content:")
print(markdown_result)
print("\nPlain text content:")
print(plain_result)
```
## Use Cases
The `SerperScrapeWebsiteTool` is particularly useful for:
- **Content Analysis**: Extract and analyze website content for research purposes
- **Data Collection**: Gather structured information from web pages
- **Documentation Processing**: Convert web-based documentation into readable formats
- **Competitive Analysis**: Scrape competitor websites for market research
- **Content Migration**: Extract content from existing websites for migration purposes
## Error Handling
The tool includes comprehensive error handling for:
- **Network Issues**: Handles connection timeouts and network errors gracefully
- **API Errors**: Provides detailed error messages for API-related issues
- **Invalid URLs**: Validates and reports issues with malformed URLs
- **Authentication**: Clear error messages for missing or invalid API keys
## Security Considerations
- Always store your `SERPER_API_KEY` in environment variables, never hardcode it in your source code
- Be mindful of rate limits imposed by the Serper API
- Respect robots.txt and website terms of service when scraping content
- Consider implementing delays between requests for large-scale scraping operations

View File

@@ -84,8 +84,8 @@ filename = "seu_modelo.pkl"
try:
SuaCrew().crew().train(
n_iterations=n_iterations,
inputs=inputs,
n_iterations=n_iterations,
inputs=inputs,
filename=filename
)
except Exception as e:
@@ -103,7 +103,7 @@ crewai replay [OPTIONS]
- `-t, --task_id TEXT`: Reexecuta o crew a partir deste task ID, incluindo todas as tarefas subsequentes
Exemplo:
```shell Terminal
```shell Terminal
crewai replay -t task_123456
```
@@ -149,7 +149,7 @@ crewai test [OPTIONS]
- `-m, --model TEXT`: Modelo LLM para executar os testes no Crew (padrão: "gpt-4o-mini")
Exemplo:
```shell Terminal
```shell Terminal
crewai test -n 5 -m gpt-3.5-turbo
```
@@ -203,7 +203,10 @@ def crew(self) -> Crew:
Implemente o crew ou flow no [CrewAI Enterprise](https://app.crewai.com).
- **Autenticação**: Você precisa estar autenticado para implementar no CrewAI Enterprise.
Você pode fazer login ou criar uma conta com:
```shell Terminal
crewai signup
```
Caso já tenha uma conta, você pode fazer login com:
```shell Terminal
crewai login
```
@@ -250,7 +253,7 @@ Você deve estar autenticado no CrewAI Enterprise para usar estes comandos de ge
- **Implantar o Crew**: Depois de autenticado, você pode implantar seu crew ou flow no CrewAI Enterprise.
```shell Terminal
crewai deploy push
```
```
- Inicia o processo de deployment na plataforma CrewAI Enterprise.
- Após a iniciação bem-sucedida, será exibida a mensagem Deployment created successfully! juntamente com o Nome do Deployment e um Deployment ID (UUID) único.
@@ -323,4 +326,4 @@ Ao escolher um provedor, o CLI solicitará que você informe o nome da chave e a
Veja o seguinte link para o nome de chave de cada provedor:
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)

View File

@@ -268,7 +268,7 @@ Nesta seção, você encontrará exemplos detalhados que ajudam a selecionar, co
from crewai import LLM
llm = LLM(
model="gemini-1.5-pro-latest", # or vertex_ai/gemini-1.5-pro-latest
model="gemini/gemini-1.5-pro-latest",
temperature=0.7,
vertex_credentials=vertex_credentials_json
)

View File

@@ -623,7 +623,7 @@ for provider in providers_to_test:
**Erros de modelo não encontrado:**
```python
# Verifique disponibilidade do modelo
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
configurator = EmbeddingConfigurator()
try:

View File

@@ -54,11 +54,10 @@ crew = Crew(
| **Markdown** _(opcional)_ | `markdown` | `Optional[bool]` | Se a tarefa deve instruir o agente a retornar a resposta final formatada em Markdown. O padrão é False. |
| **Config** _(opcional)_ | `config` | `Optional[Dict[str, Any]]` | Parâmetros de configuração específicos da tarefa. |
| **Arquivo de Saída** _(opcional)_| `output_file` | `Optional[str]` | Caminho do arquivo para armazenar a saída da tarefa. |
| **Criar Diretório** _(opcional)_ | `create_directory` | `Optional[bool]` | Se deve criar o diretório para output_file caso não exista. O padrão é True. |
| **Saída JSON** _(opcional)_ | `output_json` | `Optional[Type[BaseModel]]` | Um modelo Pydantic para estruturar a saída em JSON. |
| **Output Pydantic** _(opcional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | Um modelo Pydantic para a saída da tarefa. |
| **Callback** _(opcional)_ | `callback` | `Optional[Any]` | Função/objeto a ser executado após a conclusão da tarefa. |
| **Guardrail** _(opcional)_ | `guardrail` | `Optional[Callable]` | Função para validar a saída da tarefa antes de prosseguir para a próxima tarefa. |
| **Guardrail** _(opcional)_ | `guardrail` | `Optional[Union[Callable, str]]` | Função ou descrição em string para validar a saída da tarefa antes de prosseguir para a próxima tarefa. |
## Criando Tarefas
@@ -88,6 +87,7 @@ research_task:
expected_output: >
Uma lista com 10 tópicos em bullet points das informações mais relevantes sobre {topic}
agent: researcher
guardrail: garanta que cada bullet point contenha no mínimo 100 palavras
reporting_task:
description: >
@@ -332,7 +332,9 @@ analysis_task = Task(
Guardrails (trilhas de proteção) de tarefas fornecem uma maneira de validar e transformar as saídas das tarefas antes que elas sejam passadas para a próxima tarefa. Esse recurso assegura a qualidade dos dados e oferece feedback aos agentes quando sua saída não atende a critérios específicos.
Guardrails são implementados como funções Python que contêm lógica de validação customizada, proporcionando controle total sobre o processo de validação e garantindo resultados confiáveis e determinísticos.
**Guardrails podem ser definidos de duas maneiras:**
1. **Guardrails baseados em função**: Funções Python que implementam lógica de validação customizada
2. **Guardrails baseados em string**: Descrições em linguagem natural que são automaticamente convertidas em validação baseada em LLM
### Guardrails Baseados em Função
@@ -374,7 +376,82 @@ blog_task = Task(
- Em caso de sucesso: retorna uma tupla `(True, resultado_validado)`
- Em caso de falha: retorna uma tupla `(False, "mensagem de erro explicando a falha")`
### Guardrails Baseados em String
Guardrails baseados em string permitem que você descreva critérios de validação em linguagem natural. Quando você fornece uma string em vez de uma função, o CrewAI automaticamente a converte em um `LLMGuardrail` que usa um agente de IA para validar a saída da tarefa.
#### Usando Guardrails de String em Python
```python Code
from crewai import Task
# Guardrail simples baseado em string
blog_task = Task(
description="Escreva um post de blog sobre IA",
expected_output="Um post de blog com menos de 200 palavras",
agent=blog_agent,
guardrail="Garanta que o post do blog tenha menos de 200 palavras e inclua exemplos práticos"
)
# Critérios de validação mais complexos
research_task = Task(
description="Pesquise tendências de IA para 2025",
expected_output="Um relatório abrangente de pesquisa",
agent=research_agent,
guardrail="Garanta que cada descoberta inclua uma fonte confiável e seja respaldada por dados recentes de 2024-2025"
)
```
#### Usando Guardrails de String em YAML
```yaml
research_task:
description: Pesquise os últimos desenvolvimentos em IA
expected_output: Uma lista de 10 bullet points sobre IA
agent: researcher
guardrail: garanta que cada bullet point contenha no mínimo 100 palavras
validation_task:
description: Valide os achados da pesquisa
expected_output: Um relatório de validação
agent: validator
guardrail: confirme que todas as fontes são de publicações respeitáveis e publicadas nos últimos 2 anos
```
#### Como Funcionam os Guardrails de String
Quando você fornece um guardrail de string, o CrewAI automaticamente:
1. Cria uma instância `LLMGuardrail` usando a string como critério de validação
2. Usa o LLM do agente da tarefa para alimentar a validação
3. Cria um agente temporário de validação que verifica a saída contra seus critérios
4. Retorna feedback detalhado se a validação falhar
Esta abordagem é ideal quando você quer usar linguagem natural para descrever regras de validação sem escrever funções de validação customizadas.
### Classe LLMGuardrail
A classe `LLMGuardrail` é o mecanismo subjacente que alimenta os guardrails baseados em string. Você também pode usá-la diretamente para maior controle avançado:
```python Code
from crewai import Task
from crewai.tasks.llm_guardrail import LLMGuardrail
from crewai.llm import LLM
# Crie um LLMGuardrail customizado com LLM específico
custom_guardrail = LLMGuardrail(
description="Garanta que a resposta contenha exatamente 5 bullet points com citações adequadas",
llm=LLM(model="gpt-4o-mini")
)
task = Task(
description="Pesquise medidas de segurança em IA",
expected_output="Uma análise detalhada com bullet points",
agent=research_agent,
guardrail=custom_guardrail
)
```
**Nota**: Quando você usa um guardrail de string, o CrewAI automaticamente cria uma instância `LLMGuardrail` usando o LLM do agente da sua tarefa. Usar `LLMGuardrail` diretamente lhe dá mais controle sobre o processo de validação e seleção de LLM.
### Melhores Práticas de Tratamento de Erros
@@ -825,7 +902,26 @@ task = Task(
)
```
#### Use uma abordagem no-code para validação
```python Code
from crewai import Task
task = Task(
description="Gerar dados em JSON",
expected_output="Objeto JSON válido",
guardrail="Garanta que a resposta é um objeto JSON válido"
)
```
#### Usando YAML
```yaml
research_task:
...
guardrail: garanta que cada bullet tenha no mínimo 100 palavras
...
```
```python Code
@CrewBase
@@ -941,87 +1037,21 @@ task = Task(
## Criando Diretórios ao Salvar Arquivos
O parâmetro `create_directory` controla se o CrewAI deve criar automaticamente diretórios ao salvar saídas de tarefas em arquivos. Este recurso é particularmente útil para organizar outputs e garantir que os caminhos de arquivos estejam estruturados corretamente, especialmente ao trabalhar com hierarquias de projetos complexas.
### Comportamento Padrão
Por padrão, `create_directory=True`, o que significa que o CrewAI criará automaticamente qualquer diretório ausente no caminho do arquivo de saída:
Agora é possível especificar se uma tarefa deve criar diretórios ao salvar sua saída em arquivo. Isso é útil para organizar outputs e garantir que os caminhos estejam corretos.
```python Code
# Comportamento padrão - diretórios são criados automaticamente
report_task = Task(
description='Gerar um relatório abrangente de análise de mercado',
expected_output='Uma análise detalhada de mercado com gráficos e insights',
agent=analyst_agent,
output_file='reports/2025/market_analysis.md', # Cria 'reports/2025/' se não existir
markdown=True
# ...
save_output_task = Task(
description='Salve o resumo das notícias de IA em um arquivo',
expected_output='Arquivo salvo com sucesso',
agent=research_agent,
tools=[file_save_tool],
output_file='outputs/ai_news_summary.txt',
create_directory=True
)
```
### Desabilitando a Criação de Diretórios
Se você quiser evitar a criação automática de diretórios e garantir que o diretório já exista, defina `create_directory=False`:
```python Code
# Modo estrito - o diretório já deve existir
strict_output_task = Task(
description='Salvar dados críticos que requerem infraestrutura existente',
expected_output='Dados salvos em localização pré-configurada',
agent=data_agent,
output_file='secure/vault/critical_data.json',
create_directory=False # Gerará RuntimeError se 'secure/vault/' não existir
)
```
### Configuração YAML
Você também pode configurar este comportamento em suas definições de tarefas YAML:
```yaml tasks.yaml
analysis_task:
description: >
Gerar análise financeira trimestral
expected_output: >
Um relatório financeiro abrangente com insights trimestrais
agent: financial_analyst
output_file: reports/quarterly/q4_2024_analysis.pdf
create_directory: true # Criar automaticamente o diretório 'reports/quarterly/'
audit_task:
description: >
Realizar auditoria de conformidade e salvar no diretório de auditoria existente
expected_output: >
Um relatório de auditoria de conformidade
agent: auditor
output_file: audit/compliance_report.md
create_directory: false # O diretório já deve existir
```
### Casos de Uso
**Criação Automática de Diretórios (`create_directory=True`):**
- Ambientes de desenvolvimento e prototipagem
- Geração dinâmica de relatórios com pastas baseadas em datas
- Fluxos de trabalho automatizados onde a estrutura de diretórios pode variar
- Aplicações multi-tenant com pastas específicas do usuário
**Gerenciamento Manual de Diretórios (`create_directory=False`):**
- Ambientes de produção com controles rígidos do sistema de arquivos
- Aplicações sensíveis à segurança onde diretórios devem ser pré-configurados
- Sistemas com requisitos específicos de permissão
- Ambientes de conformidade onde a criação de diretórios é auditada
### Tratamento de Erros
Quando `create_directory=False` e o diretório não existe, o CrewAI gerará um `RuntimeError`:
```python Code
try:
result = crew.kickoff()
except RuntimeError as e:
# Tratar erro de diretório ausente
print(f"Falha na criação do diretório: {e}")
# Criar diretório manualmente ou usar local alternativo
#...
```
Veja o vídeo abaixo para aprender como utilizar saídas estruturadas no CrewAI:

View File

@@ -11,7 +11,7 @@ dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"litellm==1.74.3",
"litellm==1.72.6",
"instructor>=1.3.3",
# Text Processing
"pdfplumber>=0.11.4",
@@ -39,7 +39,6 @@ dependencies = [
"tomli>=2.0.2",
"blinker>=1.9.0",
"json5>=0.10.0",
"portalocker==2.7.0",
]
[project.urls]
@@ -48,7 +47,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.59.0"]
tools = ["crewai-tools~=0.55.0"]
embeddings = [
"tiktoken~=0.8.0"
]

View File

@@ -54,7 +54,7 @@ def _track_install_async():
_track_install_async()
__version__ = "0.152.0"
__version__ = "0.148.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -120,8 +120,11 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
raise
except Exception as e:
handle_unknown_error(self._printer, e)
raise
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
else:
raise e
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)

View File

@@ -3,7 +3,6 @@ from typing import Optional
import click
from crewai.cli.config import Settings
from crewai.cli.settings.main import SettingsCommand
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
@@ -228,7 +227,7 @@ def update():
@crewai.command()
def login():
"""Sign Up/Login to CrewAI Enterprise."""
Settings().clear_user_settings()
Settings().clear()
AuthenticationCommand().login()
@@ -370,8 +369,8 @@ def org():
pass
@org.command("list")
def org_list():
@org.command()
def list():
"""List available organizations."""
org_command = OrganizationCommand()
org_command.list()
@@ -392,34 +391,5 @@ def current():
org_command.current()
@crewai.group()
def config():
"""CLI Configuration commands."""
pass
@config.command("list")
def config_list():
"""List all CLI configuration parameters."""
config_command = SettingsCommand()
config_command.list()
@config.command("set")
@click.argument("key")
@click.argument("value")
def config_set(key: str, value: str):
"""Set a CLI configuration parameter."""
config_command = SettingsCommand()
config_command.set(key, value)
@config.command("reset")
def config_reset():
"""Reset all CLI configuration parameters to default values."""
config_command = SettingsCommand()
config_command.reset_all_settings()
if __name__ == "__main__":
crewai()

View File

@@ -26,7 +26,7 @@ class PlusAPIMixin:
"Please sign up/login to CrewAI+ before using the CLI.",
style="bold red",
)
console.print("Run 'crewai login' to sign up/login.", style="bold green")
console.print("Run 'crewai signup' to sign up/login.", style="bold green")
raise SystemExit
def _validate_response(self, response: requests.Response) -> None:

View File

@@ -4,47 +4,10 @@ from typing import Optional
from pydantic import BaseModel, Field
from crewai.cli.constants import DEFAULT_CREWAI_ENTERPRISE_URL
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
# Settings that are related to the user's account
USER_SETTINGS_KEYS = [
"tool_repository_username",
"tool_repository_password",
"org_name",
"org_uuid",
]
# Settings that are related to the CLI
CLI_SETTINGS_KEYS = [
"enterprise_base_url",
]
# Default values for CLI settings
DEFAULT_CLI_SETTINGS = {
"enterprise_base_url": DEFAULT_CREWAI_ENTERPRISE_URL,
}
# Readonly settings - cannot be set by the user
READONLY_SETTINGS_KEYS = [
"org_name",
"org_uuid",
]
# Hidden settings - not displayed by the 'list' command and cannot be set by the user
HIDDEN_SETTINGS_KEYS = [
"config_path",
"tool_repository_username",
"tool_repository_password",
]
class Settings(BaseModel):
enterprise_base_url: Optional[str] = Field(
default=DEFAULT_CREWAI_ENTERPRISE_URL,
description="Base URL of the CrewAI Enterprise instance",
)
tool_repository_username: Optional[str] = Field(
None, description="Username for interacting with the Tool Repository"
)
@@ -57,7 +20,7 @@ class Settings(BaseModel):
org_uuid: Optional[str] = Field(
None, description="UUID of the currently active organization"
)
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, frozen=True, exclude=True)
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
"""Load Settings from config path"""
@@ -74,16 +37,9 @@ class Settings(BaseModel):
merged_data = {**file_data, **data}
super().__init__(config_path=config_path, **merged_data)
def clear_user_settings(self) -> None:
"""Clear all user settings"""
self._reset_user_settings()
self.dump()
def reset(self) -> None:
"""Reset all settings to default values"""
self._reset_user_settings()
self._reset_cli_settings()
self.dump()
def clear(self) -> None:
"""Clear all settings"""
self.config_path.unlink(missing_ok=True)
def dump(self) -> None:
"""Save current settings to settings.json"""
@@ -96,13 +52,3 @@ class Settings(BaseModel):
updated_data = {**existing_data, **self.model_dump(exclude_unset=True)}
with self.config_path.open("w") as f:
json.dump(updated_data, f, indent=4)
def _reset_user_settings(self) -> None:
"""Reset all user settings to default values"""
for key in USER_SETTINGS_KEYS:
setattr(self, key, None)
def _reset_cli_settings(self) -> None:
"""Reset all CLI settings to default values"""
for key in CLI_SETTINGS_KEYS:
setattr(self, key, DEFAULT_CLI_SETTINGS[key])

View File

@@ -1,5 +1,3 @@
DEFAULT_CREWAI_ENTERPRISE_URL = "https://app.crewai.com"
ENV_VARS = {
"openai": [
{
@@ -322,4 +320,5 @@ DEFAULT_LLM_MODEL = "gpt-4o-mini"
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
LITELLM_PARAMS = ["api_key", "api_base", "api_version"]

View File

@@ -1,3 +1,4 @@
from os import getenv
from typing import List, Optional
from urllib.parse import urljoin
@@ -5,7 +6,6 @@ import requests
from crewai.cli.config import Settings
from crewai.cli.version import get_crewai_version
from crewai.cli.constants import DEFAULT_CREWAI_ENTERPRISE_URL
class PlusAPI:
@@ -29,10 +29,7 @@ class PlusAPI:
settings = Settings()
if settings.org_uuid:
self.headers["X-Crewai-Organization-Id"] = settings.org_uuid
self.base_url = (
str(settings.enterprise_base_url) or DEFAULT_CREWAI_ENTERPRISE_URL
)
self.base_url = getenv("CREWAI_BASE_URL", "https://app.crewai.com")
def _make_request(self, method: str, endpoint: str, **kwargs) -> requests.Response:
url = urljoin(self.base_url, endpoint)
@@ -111,6 +108,7 @@ class PlusAPI:
def create_crew(self, payload) -> requests.Response:
return self._make_request("POST", self.CREWS_RESOURCE, json=payload)
def get_organizations(self) -> requests.Response:
return self._make_request("GET", self.ORGANIZATIONS_RESOURCE)

View File

@@ -1,67 +0,0 @@
from rich.console import Console
from rich.table import Table
from crewai.cli.command import BaseCommand
from crewai.cli.config import Settings, READONLY_SETTINGS_KEYS, HIDDEN_SETTINGS_KEYS
from typing import Any
console = Console()
class SettingsCommand(BaseCommand):
"""A class to handle CLI configuration commands."""
def __init__(self, settings_kwargs: dict[str, Any] = {}):
super().__init__()
self.settings = Settings(**settings_kwargs)
def list(self) -> None:
"""List all CLI configuration parameters."""
table = Table(title="CrewAI CLI Configuration")
table.add_column("Setting", style="cyan", no_wrap=True)
table.add_column("Value", style="green")
table.add_column("Description", style="yellow")
# Add all settings to the table
for field_name, field_info in Settings.model_fields.items():
if field_name in HIDDEN_SETTINGS_KEYS:
# Do not display hidden settings
continue
current_value = getattr(self.settings, field_name)
description = field_info.description or "No description available"
display_value = (
str(current_value) if current_value is not None else "Not set"
)
table.add_row(field_name, display_value, description)
console.print(table)
def set(self, key: str, value: str) -> None:
"""Set a CLI configuration parameter."""
readonly_settings = READONLY_SETTINGS_KEYS + HIDDEN_SETTINGS_KEYS
if not hasattr(self.settings, key) or key in readonly_settings:
console.print(
f"Error: Unknown or readonly configuration key '{key}'",
style="bold red",
)
console.print("Available keys:", style="yellow")
for field_name in Settings.model_fields.keys():
if field_name not in readonly_settings:
console.print(f" - {field_name}", style="yellow")
raise SystemExit(1)
setattr(self.settings, key, value)
self.settings.dump()
console.print(f"Successfully set '{key}' to '{value}'", style="bold green")
def reset_all_settings(self) -> None:
"""Reset all CLI configuration parameters to default values."""
self.settings.reset()
console.print(
"Successfully reset all configuration parameters to default values. It is recommended to run [bold yellow]'crewai login'[/bold yellow] to re-authenticate.",
style="bold green",
)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.152.0,<1.0.0"
"crewai[tools]>=0.148.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.152.0,<1.0.0",
"crewai[tools]>=0.148.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.152.0"
"crewai[tools]>=0.148.0"
]
[tool.crewai]

View File

@@ -161,7 +161,7 @@ class Crew(FlowTrackable, BaseModel):
)
user_memory: Optional[InstanceOf[UserMemory]] = Field(
default=None,
description="DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, whichever comes first. Use external_memory instead.",
description="An instance of the UserMemory to be used by the Crew to store/fetch memories of a specific user.",
)
external_memory: Optional[InstanceOf[ExternalMemory]] = Field(
default=None,
@@ -327,7 +327,7 @@ class Crew(FlowTrackable, BaseModel):
self._short_term_memory = self.short_term_memory
self._entity_memory = self.entity_memory
# UserMemory will be removed in version 0.156.0 or on 2025-08-04, whichever comes first
# UserMemory is gonna to be deprecated in the future, but we have to initialize a default value for now
self._user_memory = None
if self.memory:
@@ -1255,7 +1255,6 @@ class Crew(FlowTrackable, BaseModel):
if self.external_memory:
copied_data["external_memory"] = self.external_memory.model_copy(deep=True)
if self.user_memory:
# DEPRECATED: UserMemory will be removed in version 0.156.0 or on 2025-08-04
copied_data["user_memory"] = self.user_memory.model_copy(deep=True)
copied_data.pop("agents", None)

View File

@@ -436,7 +436,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
_routers: Set[str] = set()
_router_paths: Dict[str, List[str]] = {}
initial_state: Union[Type[T], T, None] = None
name: Optional[str] = None
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
class _FlowGeneric(cls): # type: ignore
@@ -474,7 +473,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
self,
FlowCreatedEvent(
type="flow_created",
flow_name=self.name or self.__class__.__name__,
flow_name=self.__class__.__name__,
),
)
@@ -770,7 +769,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
self,
FlowStartedEvent(
type="flow_started",
flow_name=self.name or self.__class__.__name__,
flow_name=self.__class__.__name__,
inputs=inputs,
),
)
@@ -793,7 +792,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
self,
FlowFinishedEvent(
type="flow_finished",
flow_name=self.name or self.__class__.__name__,
flow_name=self.__class__.__name__,
result=final_output,
),
)
@@ -835,7 +834,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
MethodExecutionStartedEvent(
type="method_execution_started",
method_name=method_name,
flow_name=self.name or self.__class__.__name__,
flow_name=self.__class__.__name__,
params=dumped_params,
state=self._copy_state(),
),
@@ -857,7 +856,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=method_name,
flow_name=self.name or self.__class__.__name__,
flow_name=self.__class__.__name__,
state=self._copy_state(),
result=result,
),
@@ -870,7 +869,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
MethodExecutionFailedEvent(
type="method_execution_failed",
method_name=method_name,
flow_name=self.name or self.__class__.__name__,
flow_name=self.__class__.__name__,
error=e,
),
)
@@ -1077,7 +1076,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
self,
FlowPlotEvent(
type="flow_plot",
flow_name=self.name or self.__class__.__name__,
flow_name=self.__class__.__name__,
),
)
plot_flow(self, filename)

View File

@@ -0,0 +1,55 @@
from abc import ABC, abstractmethod
from typing import List
import numpy as np
class BaseEmbedder(ABC):
"""
Abstract base class for text embedding models
"""
@abstractmethod
def embed_chunks(self, chunks: List[str]) -> np.ndarray:
"""
Generate embeddings for a list of text chunks
Args:
chunks: List of text chunks to embed
Returns:
Array of embeddings
"""
pass
@abstractmethod
def embed_texts(self, texts: List[str]) -> np.ndarray:
"""
Generate embeddings for a list of texts
Args:
texts: List of texts to embed
Returns:
Array of embeddings
"""
pass
@abstractmethod
def embed_text(self, text: str) -> np.ndarray:
"""
Generate embedding for a single text
Args:
text: Text to embed
Returns:
Embedding array
"""
pass
@property
@abstractmethod
def dimension(self) -> int:
"""Get the dimension of the embeddings"""
pass

View File

@@ -13,12 +13,11 @@ from chromadb.api.types import OneOrMany
from chromadb.config import Settings
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.chromadb import sanitize_collection_name
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
from crewai.utilities.paths import db_storage_path
from crewai.utilities.chromadb import create_persistent_client
@contextlib.contextmanager
@@ -85,11 +84,14 @@ class KnowledgeStorage(BaseKnowledgeStorage):
raise Exception("Collection not initialized")
def initialize_knowledge_storage(self):
self.app = create_persistent_client(
path=os.path.join(db_storage_path(), "knowledge"),
base_path = os.path.join(db_storage_path(), "knowledge")
chroma_client = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
collection_name = (
f"knowledge_{self.collection_name}"
@@ -109,8 +111,9 @@ class KnowledgeStorage(BaseKnowledgeStorage):
def reset(self):
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
if not self.app:
self.app = create_persistent_client(
path=base_path, settings=Settings(allow_reset=True)
self.app = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()

View File

@@ -59,7 +59,6 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
load_dotenv()
litellm.suppress_debug_info = True
class FilteredStream(io.TextIOBase):
_lock = None
@@ -77,7 +76,9 @@ class FilteredStream(io.TextIOBase):
# Skip common noisy LiteLLM banners and any other lines that contain "litellm"
if (
"litellm.info:" in lower_s
"give feedback / get help" in lower_s
or "litellm.info:" in lower_s
or "litellm" in lower_s
or "Consider using a smaller input or implementing a text splitting strategy" in lower_s
):
return 0
@@ -759,7 +760,7 @@ class LLM(BaseLLM):
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> str | Any:
) -> str:
"""Handle a non-streaming response from the LLM.
Args:
@@ -783,11 +784,13 @@ class LLM(BaseLLM):
# Convert litellm's context window error to our own exception type
# for consistent handling in the rest of the codebase
raise LLMContextLengthExceededException(str(e))
# --- 2) Extract response message and content
response_message = cast(Choices, cast(ModelResponse, response).choices)[
0
].message
text_response = response_message.content or ""
# --- 3) Handle callbacks with usage info
if callbacks and len(callbacks) > 0:
for callback in callbacks:
@@ -800,22 +803,21 @@ class LLM(BaseLLM):
start_time=0,
end_time=0,
)
# --- 4) Check for tool calls
tool_calls = getattr(response_message, "tool_calls", [])
# --- 5) If no tool calls or no available functions, return the text response directly as long as there is a text response
if (not tool_calls or not available_functions) and text_response:
# --- 5) If no tool calls or no available functions, return the text response directly
if not tool_calls or not available_functions:
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
return text_response
# --- 6) If there is no text response, no available functions, but there are tool calls, return the tool calls
elif tool_calls and not available_functions and not text_response:
return tool_calls
# --- 7) Handle tool calls if present
# --- 6) Handle tool calls if present
tool_result = self._handle_tool_call(tool_calls, available_functions)
if tool_result is not None:
return tool_result
# --- 8) If tool call handling didn't return a result, emit completion event and return text response
# --- 7) If tool call handling didn't return a result, emit completion event and return text response
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
return text_response
@@ -950,18 +952,22 @@ class LLM(BaseLLM):
# --- 3) Convert string messages to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
# --- 4) Handle O1 model special case (system messages not supported)
if "o1" in self.model.lower():
for message in messages:
if message.get("role") == "system":
message["role"] = "assistant"
# --- 5) Set up callbacks if provided
with suppress_warnings():
if callbacks and len(callbacks) > 0:
self.set_callbacks(callbacks)
try:
# --- 6) Prepare parameters for the completion call
params = self._prepare_completion_params(messages, tools)
# --- 7) Make the completion call and handle response
if self.stream:
return self._handle_streaming_response(
@@ -978,32 +984,12 @@ class LLM(BaseLLM):
# whether to summarize the content or abort based on the respect_context_window flag
raise
except Exception as e:
unsupported_stop = "Unsupported parameter" in str(e) and "'stop'" in str(e)
if unsupported_stop:
if "additional_drop_params" in self.additional_params and isinstance(self.additional_params["additional_drop_params"], list):
self.additional_params["additional_drop_params"].append("stop")
else:
self.additional_params = {"additional_drop_params": ["stop"]}
logging.info(
"Retrying LLM call without the unsupported 'stop'"
)
return self.call(
messages,
tools=tools,
callbacks=callbacks,
available_functions=available_functions,
from_task=from_task,
from_agent=from_agent,
)
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e), from_task=from_task, from_agent=from_agent),
)
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType, from_task: Optional[Any] = None, from_agent: Optional[Any] = None, messages: str | list[dict[str, Any]] | None = None):
@@ -1072,15 +1058,6 @@ class LLM(BaseLLM):
messages.append({"role": "user", "content": "Please continue."})
return messages
# TODO: Remove this code after merging PR https://github.com/BerriAI/litellm/pull/10917
# Ollama doesn't supports last message to be 'assistant'
if "ollama" in self.model.lower() and messages and messages[-1]["role"] == "assistant":
messages = messages.copy()
messages.append(
{"role": "user", "content": ""}
)
return messages
# Handle Anthropic models
if not self.is_anthropic:
return messages
@@ -1113,14 +1090,18 @@ class LLM(BaseLLM):
- If no slash is present, "openai" is assumed.
"""
provider = self._get_custom_llm_provider()
if self.response_format is not None and not supports_response_schema(
model=self.model,
custom_llm_provider=provider,
):
raise ValueError(
f"The model {self.model} does not support response_format for provider '{provider}'. "
"Please remove response_format or use a supported model."
)
if self.response_format is not None:
if provider == "openai":
return
if not supports_response_schema(
model=self.model,
custom_llm_provider=provider,
):
raise ValueError(
f"The model {self.model} does not support response_format for provider '{provider}'. "
"Please remove response_format or use a supported model."
)
def supports_function_calling(self) -> bool:
try:

View File

@@ -108,7 +108,6 @@ class ContextualMemory:
def _fetch_user_context(self, query: str) -> str:
"""
DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, whichever comes first.
Fetches and formats relevant user information from User Memory.
Args:
query (str): The search query to find relevant user memories.

View File

@@ -1,10 +1,10 @@
import os
from typing import Any, Dict, List
from collections import defaultdict
from mem0 import Memory, MemoryClient
from crewai.utilities.chromadb import sanitize_collection_name
from crewai.memory.storage.interface import Storage
from crewai.utilities.chromadb import sanitize_collection_name
MAX_AGENT_ID_LENGTH_MEM0 = 255
@@ -13,163 +13,47 @@ class Mem0Storage(Storage):
"""
Extends Storage to handle embedding and searching across entities using Mem0.
"""
def __init__(self, type, crew=None, config=None):
super().__init__()
self._validate_type(type)
self.memory_type = type
self.crew = crew
# TODO: Memory config will be removed in the future the config will be passed as a parameter
self.config = config or getattr(crew, "memory_config", {}).get("config", {}) or {}
self._validate_user_id()
self._extract_config_values()
self._initialize_memory()
def _validate_type(self, type):
supported_types = {"user", "short_term", "long_term", "entities", "external"}
supported_types = ["user", "short_term", "long_term", "entities", "external"]
if type not in supported_types:
raise ValueError(
f"Invalid type '{type}' for Mem0Storage. Must be one of: {', '.join(supported_types)}"
f"Invalid type '{type}' for Mem0Storage. Must be one of: "
+ ", ".join(supported_types)
)
def _validate_user_id(self):
if self.memory_type == "user" and not self.config.get("user_id", ""):
self.memory_type = type
self.crew = crew
self.config = config or {}
# TODO: Memory config will be removed in the future the config will be passed as a parameter
self.memory_config = self.config or getattr(crew, "memory_config", {}) or {}
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
user_id = self._get_user_id()
if type == "user" and not user_id:
raise ValueError("User ID is required for user memory type")
def _extract_config_values(self):
cfg = self.config
self.mem0_run_id = cfg.get("run_id")
self.includes = cfg.get("includes")
self.excludes = cfg.get("excludes")
self.custom_categories = cfg.get("custom_categories")
self.infer = cfg.get("infer", True)
# API key in memory config overrides the environment variable
config = self._get_config()
mem0_api_key = config.get("api_key") or os.getenv("MEM0_API_KEY")
mem0_org_id = config.get("org_id")
mem0_project_id = config.get("project_id")
mem0_local_config = config.get("local_mem0_config")
def _initialize_memory(self):
api_key = self.config.get("api_key") or os.getenv("MEM0_API_KEY")
org_id = self.config.get("org_id")
project_id = self.config.get("project_id")
local_config = self.config.get("local_mem0_config")
if api_key:
self.memory = (
MemoryClient(api_key=api_key, org_id=org_id, project_id=project_id)
if org_id and project_id
else MemoryClient(api_key=api_key)
)
if self.custom_categories:
self.memory.update_project(custom_categories=self.custom_categories)
# Initialize MemoryClient or Memory based on the presence of the mem0_api_key
if mem0_api_key:
if mem0_org_id and mem0_project_id:
self.memory = MemoryClient(
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
)
else:
self.memory = MemoryClient(api_key=mem0_api_key)
else:
self.memory = (
Memory.from_config(local_config)
if local_config and len(local_config)
else Memory()
)
def _create_filter_for_search(self):
"""
Returns:
dict: A filter dictionary containing AND conditions for querying data.
- Includes user_id and agent_id if both are present.
- Includes user_id if only user_id is present.
- Includes agent_id if only agent_id is present.
- Includes run_id if memory_type is 'short_term' and mem0_run_id is present.
"""
filter = defaultdict(list)
if self.memory_type == "short_term" and self.mem0_run_id:
filter["AND"].append({"run_id": self.mem0_run_id})
else:
user_id = self.config.get("user_id", "")
agent_id = self.config.get("agent_id", "")
if user_id and agent_id:
filter["OR"].append({"user_id": user_id})
filter["OR"].append({"agent_id": agent_id})
elif user_id:
filter["AND"].append({"user_id": user_id})
elif agent_id:
filter["AND"].append({"agent_id": agent_id})
return filter
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
user_id = self.config.get("user_id", "")
assistant_message = [{"role" : "assistant","content" : value}]
base_metadata = {
"short_term": "short_term",
"long_term": "long_term",
"entities": "entity",
"external": "external"
}
# Shared base params
params: dict[str, Any] = {
"metadata": {"type": base_metadata[self.memory_type], **metadata},
"infer": self.infer
}
# MemoryClient-specific overrides
if isinstance(self.memory, MemoryClient):
params["includes"] = self.includes
params["excludes"] = self.excludes
params["output_format"] = "v1.1"
params["version"] = "v2"
if self.memory_type == "short_term" and self.mem0_run_id:
params["run_id"] = self.mem0_run_id
if user_id:
params["user_id"] = user_id
if agent_id := self.config.get("agent_id", self._get_agent_name()):
params["agent_id"] = agent_id
self.memory.add(assistant_message, **params)
def search(self,query: str,limit: int = 3,score_threshold: float = 0.35) -> List[Any]:
params = {
"query": query,
"limit": limit,
"version": "v2",
"output_format": "v1.1"
}
if user_id := self.config.get("user_id", ""):
params["user_id"] = user_id
memory_type_map = {
"short_term": {"type": "short_term"},
"long_term": {"type": "long_term"},
"entities": {"type": "entity"},
"external": {"type": "external"},
}
if self.memory_type in memory_type_map:
params["metadata"] = memory_type_map[self.memory_type]
if self.memory_type == "short_term":
params["run_id"] = self.mem0_run_id
# Discard the filters for now since we create the filters
# automatically when the crew is created.
params["filters"] = self._create_filter_for_search()
params['threshold'] = score_threshold
if isinstance(self.memory, Memory):
params.pop("metadata", None)
params.pop("version", None)
params.pop("output_format", None)
params.pop("run_id", None)
results = self.memory.search(**params)
return [r for r in results["results"]]
def reset(self):
if self.memory:
self.memory.reset()
if mem0_local_config and len(mem0_local_config):
self.memory = Memory.from_config(mem0_local_config)
else:
self.memory = Memory()
def _sanitize_role(self, role: str) -> str:
"""
@@ -177,6 +61,75 @@ class Mem0Storage(Storage):
"""
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
user_id = self._get_user_id()
agent_name = self._get_agent_name()
params = None
if self.memory_type == "short_term":
params = {
"agent_id": agent_name,
"infer": False,
"metadata": {"type": "short_term", **metadata},
}
elif self.memory_type == "long_term":
params = {
"agent_id": agent_name,
"infer": False,
"metadata": {"type": "long_term", **metadata},
}
elif self.memory_type == "entities":
params = {
"agent_id": agent_name,
"infer": False,
"metadata": {"type": "entity", **metadata},
}
elif self.memory_type == "external":
params = {
"user_id": user_id,
"agent_id": agent_name,
"metadata": {"type": "external", **metadata},
}
if params:
if isinstance(self.memory, MemoryClient):
params["output_format"] = "v1.1"
self.memory.add(value, **params)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
params = {"query": query, "limit": limit, "output_format": "v1.1"}
if user_id := self._get_user_id():
params["user_id"] = user_id
agent_name = self._get_agent_name()
if self.memory_type == "short_term":
params["agent_id"] = agent_name
params["metadata"] = {"type": "short_term"}
elif self.memory_type == "long_term":
params["agent_id"] = agent_name
params["metadata"] = {"type": "long_term"}
elif self.memory_type == "entities":
params["agent_id"] = agent_name
params["metadata"] = {"type": "entity"}
elif self.memory_type == "external":
params["agent_id"] = agent_name
params["metadata"] = {"type": "external"}
# Discard the filters for now since we create the filters
# automatically when the crew is created.
if isinstance(self.memory, Memory):
del params["metadata"], params["output_format"]
results = self.memory.search(**params)
return [r for r in results["results"] if r["score"] >= score_threshold]
def _get_user_id(self) -> str:
return self._get_config().get("user_id", "")
def _get_agent_name(self) -> str:
if not self.crew:
return ""
@@ -184,4 +137,11 @@ class Mem0Storage(Storage):
agents = self.crew.agents
agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents)
return sanitize_collection_name(name=agents, max_collection_length=MAX_AGENT_ID_LENGTH_MEM0)
return sanitize_collection_name(name=agents,max_collection_length=MAX_AGENT_ID_LENGTH_MEM0)
def _get_config(self) -> Dict[str, Any]:
return self.config or getattr(self, "memory_config", {}).get("config", {}) or {}
def reset(self):
if self.memory:
self.memory.reset()

View File

@@ -4,12 +4,12 @@ import logging
import os
import shutil
import uuid
from typing import Any, Dict, List, Optional
from chromadb.api import ClientAPI
from crewai.rag.storage.base_rag_storage import BaseRAGStorage
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities.chromadb import create_persistent_client
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.paths import db_storage_path
@@ -60,15 +60,17 @@ class RAGStorage(BaseRAGStorage):
self.embedder_config = configurator.configure_embedder(self.embedder_config)
def _initialize_app(self):
import chromadb
from chromadb.config import Settings
self._set_embedder_config()
self.app = create_persistent_client(
chroma_client = chromadb.PersistentClient(
path=self.path if self.path else self.storage_file_name,
settings=Settings(allow_reset=self.allow_reset),
)
self.app = chroma_client
self.collection = self.app.get_or_create_collection(
name=self.type, embedding_function=self.embedder_config
)

View File

@@ -14,8 +14,7 @@ class UserMemory(Memory):
def __init__(self, crew=None):
warnings.warn(
"UserMemory is deprecated and will be removed in version 0.156.0 "
"or on 2025-08-04, whichever comes first. "
"UserMemory is deprecated and will be removed in a future version. "
"Please use ExternalMemory instead.",
DeprecationWarning,
stacklevel=2,

View File

@@ -1,16 +1,8 @@
import warnings
from typing import Any, Dict, Optional
class UserMemoryItem:
def __init__(self, data: Any, user: str, metadata: Optional[Dict[str, Any]] = None):
warnings.warn(
"UserMemoryItem is deprecated and will be removed in version 0.156.0 "
"or on 2025-08-04, whichever comes first. "
"Please use ExternalMemory instead.",
DeprecationWarning,
stacklevel=2,
)
self.data = data
self.user = user
self.metadata = metadata if metadata is not None else {}

View File

@@ -1 +0,0 @@
"""RAG (Retrieval-Augmented Generation) infrastructure for CrewAI."""

View File

@@ -1 +0,0 @@
"""Embedding components for RAG infrastructure."""

View File

@@ -1 +0,0 @@
"""Storage components for RAG infrastructure."""

View File

@@ -10,6 +10,7 @@ from .rpm_controller import RPMController
from .exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from .embedding_configurator import EmbeddingConfigurator
__all__ = [
"Converter",
@@ -23,4 +24,5 @@ __all__ = [
"RPMController",
"YamlParser",
"LLMContextLengthExceededException",
"EmbeddingConfigurator",
]

View File

@@ -157,6 +157,10 @@ def get_llm_response(
from_agent=from_agent,
)
except Exception as e:
printer.print(
content=f"Error during LLM call: {e}",
color="red",
)
raise e
if not answer:
printer.print(
@@ -228,17 +232,12 @@ def handle_unknown_error(printer: Any, exception: Exception) -> None:
printer: Printer instance for output
exception: The exception that occurred
"""
error_message = str(exception)
if "litellm" in error_message:
return
printer.print(
content="An unknown error occurred. Please check the details below.",
color="red",
)
printer.print(
content=f"Error details: {error_message}",
content=f"Error details: {exception}",
color="red",
)

View File

@@ -1,10 +1,6 @@
import re
import portalocker
from chromadb import PersistentClient
from hashlib import md5
from typing import Optional
MIN_COLLECTION_LENGTH = 3
MAX_COLLECTION_LENGTH = 63
DEFAULT_COLLECTION = "default_collection"
@@ -64,16 +60,3 @@ def sanitize_collection_name(name: Optional[str], max_collection_length: int = M
sanitized = sanitized[:-1] + "z"
return sanitized
def create_persistent_client(path: str, **kwargs):
"""
Creates a persistent client for ChromaDB with a lock file to prevent
concurrent creations. Works for both multi-threads and multi-processes
environments.
"""
lockfile = f"chromadb-{md5(path.encode(), usedforsecurity=False).hexdigest()}.lock"
with portalocker.Lock(lockfile):
client = PersistentClient(path=path, **kwargs)
return client

View File

@@ -38,14 +38,7 @@ class EmbeddingConfigurator:
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
try:
embedding_function = self.embedding_functions[provider]
except ImportError as e:
missing_package = str(e).split()[-1]
raise ImportError(
f"{missing_package} is not installed. Please install it with: pip install {missing_package}"
)
embedding_function = self.embedding_functions[provider]
return (
embedding_function(config)
if provider == "custom"

View File

@@ -1,5 +1,6 @@
from datetime import datetime, timezone
from datetime import datetime
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
from crewai.utilities.serialization import to_serializable
@@ -8,7 +9,7 @@ from crewai.utilities.serialization import to_serializable
class BaseEvent(BaseModel):
"""Base class for all events"""
timestamp: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
timestamp: datetime = Field(default_factory=datetime.now)
type: str
source_fingerprint: Optional[str] = None # UUID string of the source entity
source_type: Optional[str] = None # "agent", "task", "crew", "memory", "entity_memory", "short_term_memory", "long_term_memory", "external_memory"

View File

@@ -2010,6 +2010,7 @@ def test_crew_agent_executor_litellm_auth_error():
from litellm.exceptions import AuthenticationError
from crewai.agents.tools_handler import ToolsHandler
from crewai.utilities import Printer
# Create an agent and executor
agent = Agent(
@@ -2042,6 +2043,7 @@ def test_crew_agent_executor_litellm_auth_error():
# Mock the LLM call to raise AuthenticationError
with (
patch.object(LLM, "call") as mock_llm_call,
patch.object(Printer, "print") as mock_printer,
pytest.raises(AuthenticationError) as exc_info,
):
mock_llm_call.side_effect = AuthenticationError(
@@ -2055,6 +2057,13 @@ def test_crew_agent_executor_litellm_auth_error():
}
)
# Verify error handling messages
error_message = f"Error during LLM call: {str(mock_llm_call.side_effect)}"
mock_printer.assert_any_call(
content=error_message,
color="red",
)
# Verify the call was only made once (no retries)
mock_llm_call.assert_called_once()

View File

@@ -1,209 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
"model": "o1-mini", "stop": ["stop"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '115'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.75.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.75.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"error\": {\n \"message\": \"Unsupported parameter: 'stop'
is not supported with this model.\",\n \"type\": \"invalid_request_error\",\n
\ \"param\": \"stop\",\n \"code\": \"unsupported_parameter\"\n }\n}"
headers:
CF-RAY:
- 961215744c94cb45-GIG
Connection:
- keep-alive
Content-Length:
- '196'
Content-Type:
- application/json
Date:
- Fri, 18 Jul 2025 12:46:46 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
path=/; expires=Fri, 18-Jul-25 13:16:46 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '20'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '32'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999990'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7be4715c3ee32aa406eacb68c7cc966e
status:
code: 400
message: Bad Request
- request:
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
"model": "o1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '97'
content-type:
- application/json
cookie:
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.75.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.75.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA3RSwU7jMBC95ytGPlYNakJhQ2/sgSsg7QUhFA32pJni2JHtwFao/76yC3XQwsWH
efOe35uZ9wJAsBIbELLHIIdRl78nGvaqOt/dPDxf71/fdg/9bXO3e5ETXt+LZWTY5x3J8Mk6k3YY
NQW25ghLRxgoqla/LupmXTeXqwQMVpGONFuVAxsu61W9LldXZVV/MHvLkrzYwGMBAPCe3ujRKPor
NpB0UmUg73FLYnNqAhDO6lgR6D37gCaIZQalNYFMsv2nJ5A4ckANtoMbh0YSsIfF4g4d+8XibM50
1E0eo3MzaT0D0BgbMCZPnp8+kMPJZceGfd86Qm9N/NkHO4qEHgqAp5R6+hJEjM4OY2iDfaEkW62P
ciLPOYPNJxhsQJ3rV83yG7VWUUDWfjY1IVH2pDIzjxgnxXYGFLNs/5v5TvuYm802q1yuf9TPgJQ0
BlLt6Eix/Jo4tzmKZ/hT22nIybHw5F5ZUhuYXFyEog4nfTwQ4fc+0NB2bLbkRsfpSuKui0PxDwAA
//8DAN7IUy8kAwAA
headers:
CF-RAY:
- 961216c3f9837e07-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 18 Jul 2025 12:47:41 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1027'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '1029'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999990'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_19a0763b09f0410b9d09598078a04cd6
status:
code: 200
message: OK
version: 1

View File

@@ -1,206 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
"model": "o1-mini", "stop": ["stop"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '115'
content-type:
- application/json
cookie:
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.75.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.75.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"error\": {\n \"message\": \"Unsupported parameter: 'stop'
is not supported with this model.\",\n \"type\": \"invalid_request_error\",\n
\ \"param\": \"stop\",\n \"code\": \"unsupported_parameter\"\n }\n}"
headers:
CF-RAY:
- 961220323a627e05-GRU
Connection:
- keep-alive
Content-Length:
- '196'
Content-Type:
- application/json
Date:
- Fri, 18 Jul 2025 12:54:06 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '9'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '11'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999990'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_e8d7880c5977029062d8487d215e5282
status:
code: 400
message: Bad Request
- request:
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
"model": "o1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '97'
content-type:
- application/json
cookie:
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.75.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.75.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA3SSQW/bMAyF7/4Vgo5BXCSeV6c5bkAPPTVbMaAYCoOT6JitLAkSPbQo8t8HKWns
Yu1FB3181HsUXwshJGm5FVL1wGrwpvw2In/fXY3Pcd/sftzf9ENvnurm569dc9/IZVK4P4+o+E11
odzgDTI5e8QqIDCmruvma7Wpv1T1ZQaD02iSzK3LgSyV1aqqy9VVua5Oyt6Rwii34nchhBCv+Uwe
rcZnuRWr5dvNgDHCHuX2XCSEDM6kGwkxUmSwLJcTVM4y2mz7rkehwBODEa4T1wGsQkFRLBa3ECgu
FhdzZcBujJCc29GYGQBrHUNKnj0/nMjh7LIjS7FvA0J0Nr0c2XmZ6aEQ4iGnHt8FkT64wXPL7glz
23V9bCenOc/h5kTZMZgZuKyWH/RrNTKQibO5SQWqRz1JpyHDqMnNQDFL97+dj3ofk5Pdz5xVm08f
mIBS6Bl16wNqUu9DT2UB0yZ+Vnaec7YsI4a/pLBlwpD+QmMHoznuiIwvkXFoO7J7DD5QXpT03cWh
+AcAAP//AwAo/zsSJwMAAA==
headers:
CF-RAY:
- 961220338bd47e05-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 18 Jul 2025 12:54:08 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1280'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '1286'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999990'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_b7390d46fa4e14380d42162cb22045df
status:
code: 200
message: OK
version: 1

View File

@@ -4,12 +4,7 @@ import tempfile
import unittest
from pathlib import Path
from crewai.cli.config import (
Settings,
USER_SETTINGS_KEYS,
CLI_SETTINGS_KEYS,
DEFAULT_CLI_SETTINGS,
)
from crewai.cli.config import Settings
class TestSettings(unittest.TestCase):
@@ -57,30 +52,6 @@ class TestSettings(unittest.TestCase):
self.assertEqual(settings.tool_repository_username, "new_user")
self.assertEqual(settings.tool_repository_password, "file_pass")
def test_clear_user_settings(self):
user_settings = {key: f"value_for_{key}" for key in USER_SETTINGS_KEYS}
settings = Settings(config_path=self.config_path, **user_settings)
settings.clear_user_settings()
for key in user_settings.keys():
self.assertEqual(getattr(settings, key), None)
def test_reset_settings(self):
user_settings = {key: f"value_for_{key}" for key in USER_SETTINGS_KEYS}
cli_settings = {key: f"value_for_{key}" for key in CLI_SETTINGS_KEYS}
settings = Settings(
config_path=self.config_path, **user_settings, **cli_settings
)
settings.reset()
for key in user_settings.keys():
self.assertEqual(getattr(settings, key), None)
for key in cli_settings.keys():
self.assertEqual(getattr(settings, key), DEFAULT_CLI_SETTINGS[key])
def test_dump_new_settings(self):
settings = Settings(
config_path=self.config_path, tool_repository_username="user1"

View File

@@ -6,7 +6,7 @@ from click.testing import CliRunner
import requests
from crewai.cli.organization.main import OrganizationCommand
from crewai.cli.cli import org_list, switch, current
from crewai.cli.cli import list, switch, current
@pytest.fixture
@@ -16,44 +16,44 @@ def runner():
@pytest.fixture
def org_command():
with patch.object(OrganizationCommand, "__init__", return_value=None):
with patch.object(OrganizationCommand, '__init__', return_value=None):
command = OrganizationCommand()
yield command
@pytest.fixture
def mock_settings():
with patch("crewai.cli.organization.main.Settings") as mock_settings_class:
with patch('crewai.cli.organization.main.Settings') as mock_settings_class:
mock_settings_instance = MagicMock()
mock_settings_class.return_value = mock_settings_instance
yield mock_settings_instance
@patch("crewai.cli.cli.OrganizationCommand")
@patch('crewai.cli.cli.OrganizationCommand')
def test_org_list_command(mock_org_command_class, runner):
mock_org_instance = MagicMock()
mock_org_command_class.return_value = mock_org_instance
result = runner.invoke(org_list)
result = runner.invoke(list)
assert result.exit_code == 0
mock_org_command_class.assert_called_once()
mock_org_instance.list.assert_called_once()
@patch("crewai.cli.cli.OrganizationCommand")
@patch('crewai.cli.cli.OrganizationCommand')
def test_org_switch_command(mock_org_command_class, runner):
mock_org_instance = MagicMock()
mock_org_command_class.return_value = mock_org_instance
result = runner.invoke(switch, ["test-id"])
result = runner.invoke(switch, ['test-id'])
assert result.exit_code == 0
mock_org_command_class.assert_called_once()
mock_org_instance.switch.assert_called_once_with("test-id")
mock_org_instance.switch.assert_called_once_with('test-id')
@patch("crewai.cli.cli.OrganizationCommand")
@patch('crewai.cli.cli.OrganizationCommand')
def test_org_current_command(mock_org_command_class, runner):
mock_org_instance = MagicMock()
mock_org_command_class.return_value = mock_org_instance
@@ -67,18 +67,18 @@ def test_org_current_command(mock_org_command_class, runner):
class TestOrganizationCommand(unittest.TestCase):
def setUp(self):
with patch.object(OrganizationCommand, "__init__", return_value=None):
with patch.object(OrganizationCommand, '__init__', return_value=None):
self.org_command = OrganizationCommand()
self.org_command.plus_api_client = MagicMock()
@patch("crewai.cli.organization.main.console")
@patch("crewai.cli.organization.main.Table")
@patch('crewai.cli.organization.main.console')
@patch('crewai.cli.organization.main.Table')
def test_list_organizations_success(self, mock_table, mock_console):
mock_response = MagicMock()
mock_response.raise_for_status = MagicMock()
mock_response.json.return_value = [
{"name": "Org 1", "uuid": "org-123"},
{"name": "Org 2", "uuid": "org-456"},
{"name": "Org 2", "uuid": "org-456"}
]
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.return_value = mock_response
@@ -89,14 +89,16 @@ class TestOrganizationCommand(unittest.TestCase):
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_table.assert_called_once_with(title="Your Organizations")
mock_table.return_value.add_column.assert_has_calls(
[call("Name", style="cyan"), call("ID", style="green")]
)
mock_table.return_value.add_row.assert_has_calls(
[call("Org 1", "org-123"), call("Org 2", "org-456")]
)
mock_table.return_value.add_column.assert_has_calls([
call("Name", style="cyan"),
call("ID", style="green")
])
mock_table.return_value.add_row.assert_has_calls([
call("Org 1", "org-123"),
call("Org 2", "org-456")
])
@patch("crewai.cli.organization.main.console")
@patch('crewai.cli.organization.main.console')
def test_list_organizations_empty(self, mock_console):
mock_response = MagicMock()
mock_response.raise_for_status = MagicMock()
@@ -108,32 +110,33 @@ class TestOrganizationCommand(unittest.TestCase):
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"You don't belong to any organizations yet.", style="yellow"
"You don't belong to any organizations yet.",
style="yellow"
)
@patch("crewai.cli.organization.main.console")
@patch('crewai.cli.organization.main.console')
def test_list_organizations_api_error(self, mock_console):
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.side_effect = (
requests.exceptions.RequestException("API Error")
)
self.org_command.plus_api_client.get_organizations.side_effect = requests.exceptions.RequestException("API Error")
with pytest.raises(SystemExit):
self.org_command.list()
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"Failed to retrieve organization list: API Error", style="bold red"
"Failed to retrieve organization list: API Error",
style="bold red"
)
@patch("crewai.cli.organization.main.console")
@patch("crewai.cli.organization.main.Settings")
@patch('crewai.cli.organization.main.console')
@patch('crewai.cli.organization.main.Settings')
def test_switch_organization_success(self, mock_settings_class, mock_console):
mock_response = MagicMock()
mock_response.raise_for_status = MagicMock()
mock_response.json.return_value = [
{"name": "Org 1", "uuid": "org-123"},
{"name": "Test Org", "uuid": "test-id"},
{"name": "Test Org", "uuid": "test-id"}
]
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.return_value = mock_response
@@ -148,16 +151,17 @@ class TestOrganizationCommand(unittest.TestCase):
assert mock_settings_instance.org_name == "Test Org"
assert mock_settings_instance.org_uuid == "test-id"
mock_console.print.assert_called_once_with(
"Successfully switched to Test Org (test-id)", style="bold green"
"Successfully switched to Test Org (test-id)",
style="bold green"
)
@patch("crewai.cli.organization.main.console")
@patch('crewai.cli.organization.main.console')
def test_switch_organization_not_found(self, mock_console):
mock_response = MagicMock()
mock_response.raise_for_status = MagicMock()
mock_response.json.return_value = [
{"name": "Org 1", "uuid": "org-123"},
{"name": "Org 2", "uuid": "org-456"},
{"name": "Org 2", "uuid": "org-456"}
]
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.return_value = mock_response
@@ -166,11 +170,12 @@ class TestOrganizationCommand(unittest.TestCase):
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"Organization with id 'non-existent-id' not found.", style="bold red"
"Organization with id 'non-existent-id' not found.",
style="bold red"
)
@patch("crewai.cli.organization.main.console")
@patch("crewai.cli.organization.main.Settings")
@patch('crewai.cli.organization.main.console')
@patch('crewai.cli.organization.main.Settings')
def test_current_organization_with_org(self, mock_settings_class, mock_console):
mock_settings_instance = MagicMock()
mock_settings_instance.org_name = "Test Org"
@@ -181,11 +186,12 @@ class TestOrganizationCommand(unittest.TestCase):
self.org_command.plus_api_client.get_organizations.assert_not_called()
mock_console.print.assert_called_once_with(
"Currently logged in to organization Test Org (test-id)", style="bold green"
"Currently logged in to organization Test Org (test-id)",
style="bold green"
)
@patch("crewai.cli.organization.main.console")
@patch("crewai.cli.organization.main.Settings")
@patch('crewai.cli.organization.main.console')
@patch('crewai.cli.organization.main.Settings')
def test_current_organization_without_org(self, mock_settings_class, mock_console):
mock_settings_instance = MagicMock()
mock_settings_instance.org_uuid = None
@@ -195,14 +201,16 @@ class TestOrganizationCommand(unittest.TestCase):
assert mock_console.print.call_count == 3
mock_console.print.assert_any_call(
"You're not currently logged in to any organization.", style="yellow"
"You're not currently logged in to any organization.",
style="yellow"
)
@patch("crewai.cli.organization.main.console")
@patch('crewai.cli.organization.main.console')
def test_list_organizations_unauthorized(self, mock_console):
mock_response = MagicMock()
mock_http_error = requests.exceptions.HTTPError(
"401 Client Error: Unauthorized", response=MagicMock(status_code=401)
"401 Client Error: Unauthorized",
response=MagicMock(status_code=401)
)
mock_response.raise_for_status.side_effect = mock_http_error
@@ -213,14 +221,15 @@ class TestOrganizationCommand(unittest.TestCase):
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"You are not logged in to any organization. Use 'crewai login' to login.",
style="bold red",
style="bold red"
)
@patch("crewai.cli.organization.main.console")
@patch('crewai.cli.organization.main.console')
def test_switch_organization_unauthorized(self, mock_console):
mock_response = MagicMock()
mock_http_error = requests.exceptions.HTTPError(
"401 Client Error: Unauthorized", response=MagicMock(status_code=401)
"401 Client Error: Unauthorized",
response=MagicMock(status_code=401)
)
mock_response.raise_for_status.side_effect = mock_http_error
@@ -231,5 +240,5 @@ class TestOrganizationCommand(unittest.TestCase):
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"You are not logged in to any organization. Use 'crewai login' to login.",
style="bold red",
style="bold red"
)

View File

@@ -1,8 +1,8 @@
import os
import unittest
from unittest.mock import MagicMock, patch, ANY
from crewai.cli.plus_api import PlusAPI
from crewai.cli.constants import DEFAULT_CREWAI_ENTERPRISE_URL
class TestPlusAPI(unittest.TestCase):
@@ -30,41 +30,29 @@ class TestPlusAPI(unittest.TestCase):
)
self.assertEqual(response, mock_response)
def assert_request_with_org_id(
self, mock_make_request, method: str, endpoint: str, **kwargs
):
def assert_request_with_org_id(self, mock_make_request, method: str, endpoint: str, **kwargs):
mock_make_request.assert_called_once_with(
method,
f"{DEFAULT_CREWAI_ENTERPRISE_URL}{endpoint}",
headers={
"Authorization": ANY,
"Content-Type": ANY,
"User-Agent": ANY,
"X-Crewai-Version": ANY,
"X-Crewai-Organization-Id": self.org_uuid,
},
**kwargs,
method, f"https://app.crewai.com{endpoint}", headers={'Authorization': ANY, 'Content-Type': ANY, 'User-Agent': ANY, 'X-Crewai-Version': ANY, 'X-Crewai-Organization-Id': self.org_uuid}, **kwargs
)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_login_to_tool_repository_with_org_uuid(
self, mock_make_request, mock_settings_class
):
def test_login_to_tool_repository_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings.enterprise_base_url = DEFAULT_CREWAI_ENTERPRISE_URL
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.login_to_tool_repository()
self.assert_request_with_org_id(
mock_make_request, "POST", "/crewai_plus/api/v1/tools/login"
mock_make_request,
'POST',
'/crewai_plus/api/v1/tools/login'
)
self.assertEqual(response, mock_response)
@@ -78,27 +66,28 @@ class TestPlusAPI(unittest.TestCase):
"GET", "/crewai_plus/api/v1/agents/test_agent_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_get_agent_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings.enterprise_base_url = DEFAULT_CREWAI_ENTERPRISE_URL
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.get_agent("test_agent_handle")
self.assert_request_with_org_id(
mock_make_request, "GET", "/crewai_plus/api/v1/agents/test_agent_handle"
mock_make_request,
"GET",
"/crewai_plus/api/v1/agents/test_agent_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.PlusAPI._make_request")
def test_get_tool(self, mock_make_request):
mock_response = MagicMock()
@@ -109,13 +98,12 @@ class TestPlusAPI(unittest.TestCase):
"GET", "/crewai_plus/api/v1/tools/test_tool_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_get_tool_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings.enterprise_base_url = DEFAULT_CREWAI_ENTERPRISE_URL
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
@@ -127,7 +115,9 @@ class TestPlusAPI(unittest.TestCase):
response = self.api.get_tool("test_tool_handle")
self.assert_request_with_org_id(
mock_make_request, "GET", "/crewai_plus/api/v1/tools/test_tool_handle"
mock_make_request,
"GET",
"/crewai_plus/api/v1/tools/test_tool_handle"
)
self.assertEqual(response, mock_response)
@@ -157,13 +147,12 @@ class TestPlusAPI(unittest.TestCase):
"POST", "/crewai_plus/api/v1/tools", json=params
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_publish_tool_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings.enterprise_base_url = DEFAULT_CREWAI_ENTERPRISE_URL
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
@@ -171,7 +160,7 @@ class TestPlusAPI(unittest.TestCase):
# Set up mock response
mock_response = MagicMock()
mock_make_request.return_value = mock_response
handle = "test_tool_handle"
public = True
version = "1.0.0"
@@ -191,9 +180,12 @@ class TestPlusAPI(unittest.TestCase):
"description": description,
"available_exports": None,
}
self.assert_request_with_org_id(
mock_make_request, "POST", "/crewai_plus/api/v1/tools", json=expected_params
mock_make_request,
"POST",
"/crewai_plus/api/v1/tools",
json=expected_params
)
self.assertEqual(response, mock_response)
@@ -319,11 +311,8 @@ class TestPlusAPI(unittest.TestCase):
"POST", "/crewai_plus/api/v1/crews", json=payload
)
@patch("crewai.cli.plus_api.Settings")
def test_custom_base_url(self, mock_settings_class):
mock_settings = MagicMock()
mock_settings.enterprise_base_url = "https://custom-url.com/api"
mock_settings_class.return_value = mock_settings
@patch.dict(os.environ, {"CREWAI_BASE_URL": "https://custom-url.com/api"})
def test_custom_base_url(self):
custom_api = PlusAPI("test_key")
self.assertEqual(
custom_api.base_url,

View File

@@ -1,91 +0,0 @@
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch, MagicMock, call
from crewai.cli.settings.main import SettingsCommand
from crewai.cli.config import (
Settings,
USER_SETTINGS_KEYS,
CLI_SETTINGS_KEYS,
DEFAULT_CLI_SETTINGS,
HIDDEN_SETTINGS_KEYS,
READONLY_SETTINGS_KEYS,
)
import shutil
class TestSettingsCommand(unittest.TestCase):
def setUp(self):
self.test_dir = Path(tempfile.mkdtemp())
self.config_path = self.test_dir / "settings.json"
self.settings = Settings(config_path=self.config_path)
self.settings_command = SettingsCommand(
settings_kwargs={"config_path": self.config_path}
)
def tearDown(self):
shutil.rmtree(self.test_dir)
@patch("crewai.cli.settings.main.console")
@patch("crewai.cli.settings.main.Table")
def test_list_settings(self, mock_table_class, mock_console):
mock_table_instance = MagicMock()
mock_table_class.return_value = mock_table_instance
self.settings_command.list()
# Tests that the table is created skipping hidden settings
mock_table_instance.add_row.assert_has_calls(
[
call(
field_name,
getattr(self.settings, field_name) or "Not set",
field_info.description,
)
for field_name, field_info in Settings.model_fields.items()
if field_name not in HIDDEN_SETTINGS_KEYS
]
)
# Tests that the table is printed
mock_console.print.assert_called_once_with(mock_table_instance)
def test_set_valid_keys(self):
valid_keys = Settings.model_fields.keys() - (
READONLY_SETTINGS_KEYS + HIDDEN_SETTINGS_KEYS
)
for key in valid_keys:
test_value = f"some_value_for_{key}"
self.settings_command.set(key, test_value)
self.assertEqual(getattr(self.settings_command.settings, key), test_value)
def test_set_invalid_key(self):
with self.assertRaises(SystemExit):
self.settings_command.set("invalid_key", "value")
def test_set_readonly_keys(self):
for key in READONLY_SETTINGS_KEYS:
with self.assertRaises(SystemExit):
self.settings_command.set(key, "some_readonly_key_value")
def test_set_hidden_keys(self):
for key in HIDDEN_SETTINGS_KEYS:
with self.assertRaises(SystemExit):
self.settings_command.set(key, "some_hidden_key_value")
def test_reset_all_settings(self):
for key in USER_SETTINGS_KEYS + CLI_SETTINGS_KEYS:
setattr(self.settings_command.settings, key, f"custom_value_for_{key}")
self.settings_command.settings.dump()
self.settings_command.reset_all_settings()
print(USER_SETTINGS_KEYS)
for key in USER_SETTINGS_KEYS:
self.assertEqual(getattr(self.settings_command.settings, key), None)
for key in CLI_SETTINGS_KEYS:
self.assertEqual(
getattr(self.settings_command.settings, key), DEFAULT_CLI_SETTINGS[key]
)

View File

@@ -755,15 +755,3 @@ def test_multiple_routers_from_same_trigger():
assert execution_order.index("anemia_analysis") > execution_order.index(
"anemia_router"
)
def test_flow_name():
class MyFlow(Flow):
name = "MyFlow"
@start()
def start(self):
return "Hello, world!"
flow = MyFlow()
assert flow.name == "MyFlow"

View File

@@ -1,4 +1,3 @@
import logging
import os
from time import sleep
from unittest.mock import MagicMock, patch
@@ -260,6 +259,41 @@ def test_validate_call_params_no_response_format():
llm._validate_call_params()
def test_openai_compatible_models_response_format():
"""Test that OpenAI-compatible models support response_format without validation errors."""
from pydantic import BaseModel
class TestResponse(BaseModel):
content: str
llm = LLM(model="openai/qwen-plus", response_format=TestResponse)
llm._validate_call_params()
llm = LLM(model="openai/custom-model", response_format=TestResponse)
llm._validate_call_params()
llm = LLM(model="openai/gpt-4", response_format=TestResponse)
llm._validate_call_params()
def test_non_openai_providers_still_use_validation():
"""Test that non-OpenAI providers still use the original validation logic."""
from pydantic import BaseModel
class TestResponse(BaseModel):
content: str
with patch("crewai.llm.supports_response_schema", return_value=False):
llm = LLM(model="gemini/gemini-1.5-pro", response_format=TestResponse)
with pytest.raises(ValueError) as excinfo:
llm._validate_call_params()
assert "does not support response_format" in str(excinfo.value)
with patch("crewai.llm.supports_response_schema", return_value=True):
llm = LLM(model="anthropic/claude-3", response_format=TestResponse)
llm._validate_call_params()
@pytest.mark.vcr(filter_headers=["authorization"], filter_query_parameters=["key"])
@pytest.mark.parametrize(
"model",
@@ -665,49 +699,3 @@ def test_handle_streaming_tool_calls_no_tools(mock_emit):
expected_completed_llm_call=1,
expected_final_chunk_result=response,
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_when_stop_is_unsupported(caplog):
llm = LLM(model="o1-mini", stop=["stop"])
with caplog.at_level(logging.INFO):
result = llm.call("What is the capital of France?")
assert "Retrying LLM call without the unsupported 'stop'" in caplog.text
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_when_stop_is_unsupported_when_additional_drop_params_is_provided(caplog):
llm = LLM(model="o1-mini", stop=["stop"], additional_drop_params=["another_param"])
with caplog.at_level(logging.INFO):
result = llm.call("What is the capital of France?")
assert "Retrying LLM call without the unsupported 'stop'" in caplog.text
assert isinstance(result, str)
assert "Paris" in result
@pytest.fixture
def ollama_llm():
return LLM(model="ollama/llama3.2:3b")
def test_ollama_appends_dummy_user_message_when_last_is_assistant(ollama_llm):
original_messages = [
{"role": "user", "content": "Hi there"},
{"role": "assistant", "content": "Hello!"},
]
formatted = ollama_llm._format_messages_for_provider(original_messages)
assert len(formatted) == len(original_messages) + 1
assert formatted[-1]["role"] == "user"
assert formatted[-1]["content"] == ""
def test_ollama_does_not_modify_when_last_is_user(ollama_llm):
original_messages = [
{"role": "user", "content": "Tell me a joke."},
]
formatted = ollama_llm._format_messages_for_provider(original_messages)
assert formatted == original_messages

View File

@@ -1,10 +1,14 @@
import os
from unittest.mock import MagicMock, patch
import pytest
from mem0.client.main import MemoryClient
from mem0.memory.main import Memory
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.memory.storage.mem0_storage import Mem0Storage
from crewai.task import Task
# Define the class (if not already defined)
@@ -55,11 +59,10 @@ def mem0_storage_with_mocked_config(mock_mem0_memory):
}
# Instantiate the class with memory_config
# Parameters like run_id, includes, and excludes doesn't matter in Memory OSS
crew = MockCrew(
memory_config={
"provider": "mem0",
"config": {"user_id": "test_user", "local_mem0_config": config, "run_id": "my_run_id", "includes": "include1","excludes": "exclude1", "infer" : True},
"config": {"user_id": "test_user", "local_mem0_config": config},
}
)
@@ -96,10 +99,6 @@ def mem0_storage_with_memory_client_using_config_from_crew(mock_mem0_memory_clie
"api_key": "ABCDEFGH",
"org_id": "my_org_id",
"project_id": "my_project_id",
"run_id": "my_run_id",
"includes": "include1",
"excludes": "exclude1",
"infer": True
},
}
)
@@ -155,75 +154,28 @@ def test_mem0_storage_with_explict_config(
assert (
mem0_storage_with_memory_client_using_explictly_config.config == expected_config
)
def test_mem0_storage_updates_project_with_custom_categories(mock_mem0_memory_client):
mock_mem0_memory_client.update_project = MagicMock()
new_categories = [
{"lifestyle_management_concerns": "Tracks daily routines, habits, hobbies and interests including cooking, time management and work-life balance"},
]
crew = MockCrew(
memory_config={
"provider": "mem0",
"config": {
"user_id": "test_user",
"api_key": "ABCDEFGH",
"org_id": "my_org_id",
"project_id": "my_project_id",
"custom_categories": new_categories,
},
}
assert (
mem0_storage_with_memory_client_using_explictly_config.memory_config
== expected_config
)
with patch.object(MemoryClient, "__new__", return_value=mock_mem0_memory_client):
_ = Mem0Storage(type="short_term", crew=crew)
mock_mem0_memory_client.update_project.assert_called_once_with(
custom_categories=new_categories
)
def test_save_method_with_memory_oss(mem0_storage_with_mocked_config):
"""Test save method for different memory types"""
mem0_storage, _, _ = mem0_storage_with_mocked_config
mem0_storage.memory.add = MagicMock()
# Test short_term memory type (already set in fixture)
test_value = "This is a test memory"
test_metadata = {"key": "value"}
mem0_storage.save(test_value, test_metadata)
mem0_storage.memory.add.assert_called_once_with(
[{"role": "assistant" , "content": test_value}],
infer=True,
test_value,
agent_id="Test_Agent",
infer=False,
metadata={"type": "short_term", "key": "value"},
run_id="my_run_id",
user_id="test_user",
agent_id='Test_Agent'
)
def test_save_method_with_multiple_agents(mem0_storage_with_mocked_config):
mem0_storage, _, _ = mem0_storage_with_mocked_config
mem0_storage.crew.agents = [MagicMock(role="Test Agent"), MagicMock(role="Test Agent 2"), MagicMock(role="Test Agent 3")]
mem0_storage.memory.add = MagicMock()
test_value = "This is a test memory"
test_metadata = {"key": "value"}
mem0_storage.save(test_value, test_metadata)
mem0_storage.memory.add.assert_called_once_with(
[{"role": "assistant" , "content": test_value}],
infer=True,
metadata={"type": "short_term", "key": "value"},
run_id="my_run_id",
user_id="test_user",
agent_id='Test_Agent_Test_Agent_2_Test_Agent_3'
)
@@ -231,24 +183,19 @@ def test_save_method_with_memory_client(mem0_storage_with_memory_client_using_co
"""Test save method for different memory types"""
mem0_storage = mem0_storage_with_memory_client_using_config_from_crew
mem0_storage.memory.add = MagicMock()
# Test short_term memory type (already set in fixture)
test_value = "This is a test memory"
test_metadata = {"key": "value"}
mem0_storage.save(test_value, test_metadata)
mem0_storage.memory.add.assert_called_once_with(
[{'role': 'assistant' , 'content': test_value}],
infer=True,
test_value,
agent_id="Test_Agent",
infer=False,
metadata={"type": "short_term", "key": "value"},
version="v2",
run_id="my_run_id",
includes="include1",
excludes="exclude1",
output_format='v1.1',
user_id='test_user',
agent_id='Test_Agent'
output_format="v1.1"
)
@@ -261,14 +208,13 @@ def test_search_method_with_memory_oss(mem0_storage_with_mocked_config):
results = mem0_storage.search("test query", limit=5, score_threshold=0.5)
mem0_storage.memory.search.assert_called_once_with(
query="test query",
limit=5,
user_id="test_user",
filters={'AND': [{'run_id': 'my_run_id'}]},
threshold=0.5
query="test query",
limit=5,
agent_id="Test_Agent",
user_id="test_user"
)
assert len(results) == 2
assert len(results) == 1
assert results[0]["content"] == "Result 1"
@@ -281,137 +227,13 @@ def test_search_method_with_memory_client(mem0_storage_with_memory_client_using_
results = mem0_storage.search("test query", limit=5, score_threshold=0.5)
mem0_storage.memory.search.assert_called_once_with(
query="test query",
limit=5,
query="test query",
limit=5,
agent_id="Test_Agent",
metadata={"type": "short_term"},
user_id="test_user",
version='v2',
run_id="my_run_id",
output_format='v1.1',
filters={'AND': [{'run_id': 'my_run_id'}]},
threshold=0.5
output_format='v1.1'
)
assert len(results) == 2
assert len(results) == 1
assert results[0]["content"] == "Result 1"
def test_mem0_storage_default_infer_value(mock_mem0_memory_client):
"""Test that Mem0Storage sets infer=True by default for short_term memory."""
with patch.object(MemoryClient, "__new__", return_value=mock_mem0_memory_client):
crew = MockCrew(
memory_config={
"provider": "mem0",
"config": {
"user_id": "test_user",
"api_key": "ABCDEFGH"
},
}
)
mem0_storage = Mem0Storage(type="short_term", crew=crew)
assert mem0_storage.infer is True
def test_save_memory_using_agent_entity(mock_mem0_memory_client):
config = {
"agent_id": "agent-123",
}
mock_memory = MagicMock(spec=Memory)
with patch.object(Memory, "__new__", return_value=mock_memory):
mem0_storage = Mem0Storage(type="external", config=config)
mem0_storage.save("test memory", {"key": "value"})
mem0_storage.memory.add.assert_called_once_with(
[{'role': 'assistant' , 'content': 'test memory'}],
infer=True,
metadata={"type": "external", "key": "value"},
agent_id="agent-123",
)
def test_search_method_with_agent_entity():
mem0_storage = Mem0Storage(type="external", config={"agent_id": "agent-123"})
mock_results = {"results": [{"score": 0.9, "content": "Result 1"}, {"score": 0.4, "content": "Result 2"}]}
mem0_storage.memory.search = MagicMock(return_value=mock_results)
results = mem0_storage.search("test query", limit=5, score_threshold=0.5)
mem0_storage.memory.search.assert_called_once_with(
query="test query",
limit=5,
filters={"AND": [{"agent_id": "agent-123"}]},
threshold=0.5,
)
assert len(results) == 2
assert results[0]["content"] == "Result 1"
def test_search_method_with_agent_id_and_user_id():
mem0_storage = Mem0Storage(type="external", config={"agent_id": "agent-123", "user_id": "user-123"})
mock_results = {"results": [{"score": 0.9, "content": "Result 1"}, {"score": 0.4, "content": "Result 2"}]}
mem0_storage.memory.search = MagicMock(return_value=mock_results)
results = mem0_storage.search("test query", limit=5, score_threshold=0.5)
mem0_storage.memory.search.assert_called_once_with(
query="test query",
limit=5,
user_id='user-123',
filters={"OR": [{"user_id": "user-123"}, {"agent_id": "agent-123"}]},
threshold=0.5,
)
assert len(results) == 2
assert results[0]["content"] == "Result 1"
def test_search_method_with_memory_oss_missing_params():
"""Test search method handles missing parameters gracefully when using Memory (OSS)"""
config = {
"user_id": "test_user",
"local_mem0_config": {
"vector_store": {"provider": "mock_vector_store"},
"llm": {"provider": "mock_llm"},
}
}
mock_memory = MagicMock(spec=Memory)
mock_results = {"results": [{"score": 0.9, "content": "Result 1"}]}
mock_memory.search = MagicMock(return_value=mock_results)
with patch("mem0.memory.main.Memory.from_config", return_value=mock_memory):
mem0_storage = Mem0Storage(type="external", config=config)
results = mem0_storage.search("test query", limit=5, score_threshold=0.5)
mock_memory.search.assert_called_once_with(
query="test query",
limit=5,
user_id="test_user",
filters={"AND": [{"user_id": "test_user"}]},
threshold=0.5
)
assert len(results) == 1
assert results[0]["content"] == "Result 1"
def test_search_method_with_memory_oss_no_optional_params():
"""Test search method works when no optional parameters are present"""
mock_memory = MagicMock(spec=Memory)
mock_results = {"results": []}
mock_memory.search = MagicMock(return_value=mock_results)
with patch("mem0.memory.main.Memory", return_value=mock_memory):
mem0_storage = Mem0Storage(type="external", config={})
results = mem0_storage.search("test query")
mock_memory.search.assert_called_once_with(
query="test query",
limit=3,
filters={},
threshold=0.35
)
assert len(results) == 0

View File

@@ -1,27 +1,16 @@
import multiprocessing
import tempfile
import unittest
from typing import Any, Dict, List, Union
from chromadb.config import Settings
from unittest.mock import patch, MagicMock
import pytest
from crewai.utilities.chromadb import (
MAX_COLLECTION_LENGTH,
MIN_COLLECTION_LENGTH,
is_ipv4_pattern,
sanitize_collection_name,
create_persistent_client,
)
def persistent_client_worker(path, queue):
try:
create_persistent_client(path=path)
queue.put(None)
except Exception as e:
queue.put(e)
class TestChromadbUtils(unittest.TestCase):
def test_sanitize_collection_name_long_name(self):
"""Test sanitizing a very long collection name."""
@@ -90,34 +79,3 @@ class TestChromadbUtils(unittest.TestCase):
self.assertLessEqual(len(sanitized), MAX_COLLECTION_LENGTH)
self.assertTrue(sanitized[0].isalnum())
self.assertTrue(sanitized[-1].isalnum())
def test_create_persistent_client_passes_args(self):
with patch(
"crewai.utilities.chromadb.PersistentClient"
) as mock_persistent_client, tempfile.TemporaryDirectory() as tmpdir:
mock_instance = MagicMock()
mock_persistent_client.return_value = mock_instance
settings = Settings(allow_reset=True)
client = create_persistent_client(path=tmpdir, settings=settings)
mock_persistent_client.assert_called_once_with(
path=tmpdir, settings=settings
)
self.assertIs(client, mock_instance)
def test_create_persistent_client_process_safe(self):
with tempfile.TemporaryDirectory() as tmpdir:
queue = multiprocessing.Queue()
processes = [
multiprocessing.Process(
target=persistent_client_worker, args=(tmpdir, queue)
)
for _ in range(5)
]
[p.start() for p in processes]
[p.join() for p in processes]
errors = [queue.get(timeout=5) for _ in processes]
self.assertTrue(all(err is None for err in errors))

View File

@@ -1,25 +0,0 @@
from unittest.mock import patch
import pytest
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
def test_configure_embedder_importerror():
configurator = EmbeddingConfigurator()
embedder_config = {
'provider': 'openai',
'config': {
'model': 'text-embedding-ada-002',
}
}
with patch('chromadb.utils.embedding_functions.openai_embedding_function.OpenAIEmbeddingFunction') as mock_openai:
mock_openai.side_effect = ImportError("Module not found.")
with pytest.raises(ImportError) as exc_info:
configurator.configure_embedder(embedder_config)
assert str(exc_info.value) == "Module not found."
mock_openai.assert_called_once()

View File

@@ -64,8 +64,7 @@ def base_agent():
llm="gpt-4o-mini",
goal="Just say hi",
backstory="You are a helpful assistant that just says hi",
)
)
@pytest.fixture(scope="module")
def base_task(base_agent):
@@ -75,7 +74,6 @@ def base_task(base_agent):
agent=base_agent,
)
event_listener = EventListener()
@@ -450,27 +448,6 @@ def test_flow_emits_start_event():
assert received_events[0].type == "flow_started"
def test_flow_name_emitted_to_event_bus():
received_events = []
class MyFlowClass(Flow):
name = "PRODUCTION_FLOW"
@start()
def start(self):
return "Hello, world!"
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
flow = MyFlowClass()
flow.kickoff()
assert len(received_events) == 1
assert received_events[0].flow_name == "PRODUCTION_FLOW"
def test_flow_emits_finish_event():
received_events = []
@@ -779,7 +756,6 @@ def test_streaming_empty_response_handling():
received_chunks = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_stream_chunk(source, event):
received_chunks.append(event.chunk)
@@ -817,7 +793,6 @@ def test_streaming_empty_response_handling():
# Restore the original method
llm.call = original_call
@pytest.mark.vcr(filter_headers=["authorization"])
def test_stream_llm_emits_event_with_task_and_agent_info():
completed_event = []
@@ -826,7 +801,6 @@ def test_stream_llm_emits_event_with_task_and_agent_info():
stream_event = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMCallFailedEvent)
def handle_llm_failed(source, event):
failed_event.append(event)
@@ -853,7 +827,7 @@ def test_stream_llm_emits_event_with_task_and_agent_info():
description="Just say hi",
expected_output="hi",
llm=LLM(model="gpt-4o-mini", stream=True),
agent=agent,
agent=agent
)
crew = Crew(agents=[agent], tasks=[task])
@@ -881,7 +855,6 @@ def test_stream_llm_emits_event_with_task_and_agent_info():
assert set(all_task_id) == {task.id}
assert set(all_task_name) == {task.name}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_emits_event_with_task_and_agent_info(base_agent, base_task):
completed_event = []
@@ -890,7 +863,6 @@ def test_llm_emits_event_with_task_and_agent_info(base_agent, base_task):
stream_event = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMCallFailedEvent)
def handle_llm_failed(source, event):
failed_event.append(event)
@@ -932,7 +904,6 @@ def test_llm_emits_event_with_task_and_agent_info(base_agent, base_task):
assert set(all_task_id) == {base_task.id}
assert set(all_task_name) == {base_task.name}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_emits_event_with_lite_agent():
completed_event = []
@@ -941,7 +912,6 @@ def test_llm_emits_event_with_lite_agent():
stream_event = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMCallFailedEvent)
def handle_llm_failed(source, event):
failed_event.append(event)
@@ -966,6 +936,7 @@ def test_llm_emits_event_with_lite_agent():
)
agent.kickoff(messages=[{"role": "user", "content": "say hi!"}])
assert len(completed_event) == 2
assert len(failed_event) == 0
assert len(started_event) == 2

6113
uv.lock generated

File diff suppressed because it is too large Load Diff