mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
Compare commits
1 Commits
devin/1750
...
devin/1744
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5afe6914eb |
@@ -4,6 +4,7 @@ from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.flow.flow import Flow
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.lite_agent import LiteAgent
|
||||
from crewai.llm import LLM
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
@@ -23,4 +24,5 @@ __all__ = [
|
||||
"LLM",
|
||||
"Flow",
|
||||
"Knowledge",
|
||||
"LiteAgent",
|
||||
]
|
||||
|
||||
258
src/crewai/lite_agent.py
Normal file
258
src/crewai/lite_agent.py
Normal file
@@ -0,0 +1,258 @@
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.llm import LLM
|
||||
from crewai.task import Task
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
|
||||
|
||||
class LiteAgent(BaseAgent):
|
||||
"""Represents a lightweight agent in a system.
|
||||
|
||||
Each agent has a role, a goal, a backstory, and an optional language model (llm).
|
||||
The agent can execute tasks but with fewer features compared to the full Agent class.
|
||||
|
||||
This is a simplified version of the Agent class with less dependencies and overhead.
|
||||
|
||||
Attributes:
|
||||
agent_executor: An instance of the CrewAgentExecutor class.
|
||||
role: The role of the agent.
|
||||
goal: The objective of the agent.
|
||||
backstory: The backstory of the agent.
|
||||
llm: The language model that will run the agent.
|
||||
max_iter: Maximum number of iterations for an agent to execute a task.
|
||||
verbose: Whether the agent execution should be in verbose mode.
|
||||
tools: Tools at agent's disposal
|
||||
"""
|
||||
|
||||
_times_executed: int = PrivateAttr(default=0)
|
||||
max_execution_time: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Maximum execution time for an agent to execute a task",
|
||||
)
|
||||
cache_handler: InstanceOf[CacheHandler] = Field(
|
||||
default=None, description="An instance of the CacheHandler class."
|
||||
)
|
||||
llm: Union[str, InstanceOf[LLM], Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
max_iter: int = Field(
|
||||
default=20,
|
||||
description="Maximum number of iterations for an agent to execute a task before giving it's best answer",
|
||||
)
|
||||
max_retry_limit: int = Field(
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
)
|
||||
tools_results: Optional[List[Any]] = Field(
|
||||
default=[], description="Results of the tools used by the agent."
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
if isinstance(self.llm, str):
|
||||
self.llm = LLM(model=self.llm)
|
||||
elif isinstance(self.llm, LLM):
|
||||
pass
|
||||
elif self.llm is None:
|
||||
model_name = (
|
||||
os.environ.get("OPENAI_MODEL_NAME")
|
||||
or os.environ.get("MODEL")
|
||||
or "gpt-4o-mini"
|
||||
)
|
||||
llm_params = {"model": model_name}
|
||||
|
||||
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
|
||||
"OPENAI_BASE_URL"
|
||||
)
|
||||
if api_base:
|
||||
llm_params["base_url"] = api_base
|
||||
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
if api_key:
|
||||
llm_params["api_key"] = api_key
|
||||
|
||||
self.llm = LLM(**llm_params)
|
||||
else:
|
||||
llm_params = {
|
||||
"model": getattr(self.llm, "model_name", None)
|
||||
or getattr(self.llm, "deployment_name", None)
|
||||
or str(self.llm),
|
||||
"temperature": getattr(self.llm, "temperature", None),
|
||||
"max_tokens": getattr(self.llm, "max_tokens", None),
|
||||
"api_key": getattr(self.llm, "api_key", None),
|
||||
"base_url": getattr(self.llm, "base_url", None),
|
||||
"organization": getattr(self.llm, "organization", None),
|
||||
}
|
||||
llm_params = {k: v for k, v in llm_params.items() if v is not None}
|
||||
self.llm = LLM(**llm_params)
|
||||
|
||||
if not self.agent_executor:
|
||||
self._setup_agent_executor()
|
||||
|
||||
return self
|
||||
|
||||
def _setup_agent_executor(self):
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
|
||||
def execute_task(
|
||||
self,
|
||||
task: Task,
|
||||
context: Optional[str] = None,
|
||||
tools: Optional[List[BaseTool]] = None,
|
||||
) -> str:
|
||||
"""Execute a task with the agent.
|
||||
|
||||
Args:
|
||||
task: Task to execute.
|
||||
context: Context to execute the task in.
|
||||
tools: Tools to use for the task.
|
||||
|
||||
Returns:
|
||||
Output of the agent
|
||||
"""
|
||||
if self.tools_handler:
|
||||
self.tools_handler.last_used_tool = {}
|
||||
|
||||
task_prompt = task.prompt()
|
||||
|
||||
if task.output_json or task.output_pydantic:
|
||||
if task.output_json:
|
||||
schema = Converter.generate_model_description(task.output_json)
|
||||
elif task.output_pydantic:
|
||||
schema = Converter.generate_model_description(task.output_pydantic)
|
||||
|
||||
task_prompt += "\n" + self.i18n.slice("formatted_task_instructions").format(
|
||||
output_format=schema
|
||||
)
|
||||
|
||||
if context:
|
||||
task_prompt = self.i18n.slice("task_with_context").format(
|
||||
task=task_prompt, context=context
|
||||
)
|
||||
|
||||
tools = tools or self.tools or []
|
||||
self.create_agent_executor(tools=tools, task=task)
|
||||
|
||||
try:
|
||||
result = self.agent_executor.invoke(
|
||||
{
|
||||
"input": task_prompt,
|
||||
"tool_names": self.agent_executor.tools_names,
|
||||
"tools": self.agent_executor.tools_description,
|
||||
"ask_for_human_input": task.human_input,
|
||||
}
|
||||
)["output"]
|
||||
except Exception as e:
|
||||
self._times_executed += 1
|
||||
if self._times_executed > self.max_retry_limit:
|
||||
raise e
|
||||
result = self.execute_task(task, context, tools)
|
||||
|
||||
if self.max_rpm and self._rpm_controller:
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
|
||||
for tool_result in self.tools_results:
|
||||
if tool_result.get("result_as_answer", False):
|
||||
result = tool_result["result"]
|
||||
|
||||
return result
|
||||
|
||||
def create_agent_executor(
|
||||
self, tools: Optional[List[BaseTool]] = None, task=None
|
||||
) -> None:
|
||||
"""Create an agent executor for the agent.
|
||||
|
||||
Returns:
|
||||
An instance of the CrewAgentExecutor class.
|
||||
"""
|
||||
tools = tools or self.tools or []
|
||||
parsed_tools = self._parse_tools(tools)
|
||||
|
||||
prompt = Prompts(
|
||||
agent=self,
|
||||
tools=tools,
|
||||
i18n=self.i18n,
|
||||
).task_execution()
|
||||
|
||||
stop_words = [self.i18n.slice("observation")]
|
||||
|
||||
self.agent_executor = CrewAgentExecutor(
|
||||
llm=self.llm,
|
||||
task=task,
|
||||
agent=self,
|
||||
crew=self.crew,
|
||||
tools=parsed_tools,
|
||||
prompt=prompt,
|
||||
original_tools=tools,
|
||||
stop_words=stop_words,
|
||||
max_iter=self.max_iter,
|
||||
tools_handler=self.tools_handler,
|
||||
tools_names=self.__tools_names(parsed_tools),
|
||||
tools_description=self._render_text_description_and_args(parsed_tools),
|
||||
respect_context_window=True,
|
||||
request_within_rpm_limit=(
|
||||
self._rpm_controller.check_or_wait if self._rpm_controller else None
|
||||
),
|
||||
callbacks=[TokenCalcHandler(self._token_process)],
|
||||
)
|
||||
|
||||
def get_delegation_tools(self, agents: List[BaseAgent]):
|
||||
"""Stub implementation - LiteAgent doesn't support delegation."""
|
||||
return []
|
||||
|
||||
def get_multimodal_tools(self) -> List[Tool]:
|
||||
"""Stub implementation - LiteAgent doesn't support multimodal tools."""
|
||||
return []
|
||||
|
||||
def get_code_execution_tools(self):
|
||||
"""Stub implementation - LiteAgent doesn't support code execution."""
|
||||
return []
|
||||
|
||||
def get_output_converter(self, llm, text, model, instructions):
|
||||
"""Get the output converter for the agent."""
|
||||
return Converter(llm=llm, text=text, model=model, instructions=instructions)
|
||||
|
||||
def _parse_tools(self, tools: List[Any]) -> List[Any]:
|
||||
"""Parse tools to be used for the task."""
|
||||
tools_list = []
|
||||
try:
|
||||
from crewai.tools import BaseTool as CrewAITool
|
||||
|
||||
for tool in tools:
|
||||
if isinstance(tool, CrewAITool):
|
||||
tools_list.append(tool.to_structured_tool())
|
||||
else:
|
||||
tools_list.append(tool)
|
||||
except ModuleNotFoundError:
|
||||
tools_list = []
|
||||
for tool in tools:
|
||||
tools_list.append(tool)
|
||||
|
||||
return tools_list
|
||||
|
||||
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
|
||||
"""Render the tool name, description, and args in plain text."""
|
||||
tool_strings = []
|
||||
for tool in tools:
|
||||
tool_strings.append(tool.description)
|
||||
|
||||
return "\n".join(tool_strings)
|
||||
|
||||
@staticmethod
|
||||
def __tools_names(tools) -> str:
|
||||
"""Get the names of the tools as a comma-separated string."""
|
||||
return ", ".join([t.name for t in tools])
|
||||
|
||||
def __repr__(self):
|
||||
return f"LiteAgent(role={self.role}, goal={self.goal}, backstory={self.backstory})"
|
||||
125
tests/lite_agent_test.py
Normal file
125
tests/lite_agent_test.py
Normal file
@@ -0,0 +1,125 @@
|
||||
"""Test LiteAgent creation and execution basic functionality."""
|
||||
|
||||
import os
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai import LiteAgent, Task
|
||||
from crewai.llm import LLM
|
||||
from crewai.tools import tool
|
||||
|
||||
|
||||
def test_lite_agent_creation():
|
||||
"""Test creating a LiteAgent with basic properties."""
|
||||
agent = LiteAgent(role="test role", goal="test goal", backstory="test backstory")
|
||||
|
||||
assert agent.role == "test role"
|
||||
assert agent.goal == "test goal"
|
||||
assert agent.backstory == "test backstory"
|
||||
assert agent.tools == []
|
||||
|
||||
|
||||
def test_lite_agent_default_values():
|
||||
"""Test default values for LiteAgent."""
|
||||
agent = LiteAgent(role="test role", goal="test goal", backstory="test backstory")
|
||||
assert agent.llm.model == "gpt-4o-mini"
|
||||
assert agent.max_iter == 20
|
||||
assert agent.max_retry_limit == 2
|
||||
|
||||
|
||||
def test_custom_llm():
|
||||
"""Test creating a LiteAgent with a custom LLM string."""
|
||||
agent = LiteAgent(
|
||||
role="test role", goal="test goal", backstory="test backstory", llm="gpt-4"
|
||||
)
|
||||
assert agent.llm.model == "gpt-4"
|
||||
|
||||
|
||||
def test_custom_llm_with_langchain():
|
||||
"""Test creating a LiteAgent with a langchain LLM."""
|
||||
mock_langchain_llm = MagicMock()
|
||||
mock_langchain_llm.model_name = "gpt-4"
|
||||
|
||||
agent = LiteAgent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=mock_langchain_llm,
|
||||
)
|
||||
|
||||
assert agent.llm.model == "gpt-4"
|
||||
|
||||
|
||||
@patch("crewai.agents.crew_agent_executor.CrewAgentExecutor.invoke")
|
||||
def test_lite_agent_execute_task(mock_invoke):
|
||||
"""Test executing a task with a LiteAgent."""
|
||||
mock_invoke.return_value = {"output": "The area of a circle with radius 5 cm is 78.54 square centimeters."}
|
||||
|
||||
agent = LiteAgent(
|
||||
role="Math Tutor",
|
||||
goal="Solve math problems accurately",
|
||||
backstory="You are an experienced math tutor with a knack for explaining complex concepts simply.",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Calculate the area of a circle with radius 5 cm.",
|
||||
expected_output="The calculated area of the circle in square centimeters.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert result is not None
|
||||
assert "square centimeters" in result.lower()
|
||||
mock_invoke.assert_called_once()
|
||||
|
||||
|
||||
@patch("crewai.agents.crew_agent_executor.CrewAgentExecutor.invoke")
|
||||
def test_lite_agent_execution(mock_invoke):
|
||||
"""Test executing a simple task."""
|
||||
mock_invoke.return_value = {"output": "1 + 1 = 2"}
|
||||
|
||||
agent = LiteAgent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="How much is 1 + 1?",
|
||||
agent=agent,
|
||||
expected_output="the result of the math operation.",
|
||||
)
|
||||
|
||||
output = agent.execute_task(task)
|
||||
assert "2" in output
|
||||
mock_invoke.assert_called_once()
|
||||
|
||||
|
||||
@patch("crewai.agents.crew_agent_executor.CrewAgentExecutor.invoke")
|
||||
def test_lite_agent_execution_with_tools(mock_invoke):
|
||||
"""Test executing a task with tools."""
|
||||
mock_invoke.return_value = {"output": "3 times 4 is 12"}
|
||||
|
||||
@tool
|
||||
def multiplier(first_number: int, second_number: int) -> float:
|
||||
"""Useful for when you need to multiply two numbers together."""
|
||||
return first_number * second_number
|
||||
|
||||
agent = LiteAgent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
tools=[multiplier],
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="What is 3 times 4?",
|
||||
agent=agent,
|
||||
expected_output="The result of the multiplication.",
|
||||
)
|
||||
|
||||
output = agent.execute_task(task)
|
||||
assert "12" in output
|
||||
mock_invoke.assert_called_once()
|
||||
Reference in New Issue
Block a user