Compare commits

..

1 Commits

Author SHA1 Message Date
Devin AI
59044b6512 Fix issue #2545: Pass inputs from Flow to Tasks for template interpolation
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-04-09 07:57:09 +00:00
5 changed files with 54 additions and 119 deletions

View File

@@ -219,7 +219,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
"""Returns the list of all outputs from executed methods."""
return self._method_outputs
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
def _initialize_state(self, inputs: Optional[Dict[str, Any]] = None) -> None:
"""Initialize the state of the flow."""
if inputs is None:
return
if isinstance(self._state, BaseModel):
# Structured state
try:
@@ -245,6 +249,8 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._state.update(inputs)
else:
raise TypeError("State must be a BaseModel instance or a dictionary.")
self._interpolate_inputs_in_crew(inputs)
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
self.event_emitter.send(
@@ -406,6 +412,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
traceback.print_exc()
def _interpolate_inputs_in_crew(self, inputs: Dict[str, Any]) -> None:
"""Interpolate inputs in the crew's tasks and agents if a crew is present."""
if hasattr(self, 'crew') and self.crew:
self.crew._interpolate_inputs(inputs)
def plot(self, filename: str = "crewai_flow") -> None:
self._telemetry.flow_plotting_span(
self.__class__.__name__, list(self._methods.keys())

View File

@@ -135,42 +135,13 @@ class EmbeddingConfigurator:
)
@staticmethod
def _normalize_api_url(api_url: str) -> str:
"""
Normalize API URL by ensuring it has a protocol.
Args:
api_url: The API URL to normalize
Returns:
Normalized URL with protocol (defaults to http:// if missing)
"""
if not (api_url.startswith("http://") or api_url.startswith("https://")):
return f"http://{api_url}"
return api_url
@staticmethod
def _configure_huggingface(config: dict, model_name: str):
"""
Configure Huggingface embedding function with the provided config.
Args:
config: Configuration dictionary for the Huggingface embedder
model_name: Name of the model to use
Returns:
Configured HuggingFaceEmbeddingServer instance
"""
def _configure_huggingface(config, model_name):
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
HuggingFaceEmbeddingServer,
)
api_url = config.get("api_url")
if api_url:
api_url = EmbeddingConfigurator._normalize_api_url(api_url)
return HuggingFaceEmbeddingServer(
url=api_url,
url=config.get("api_url"),
)
@staticmethod

View File

@@ -322,3 +322,43 @@ def test_router_with_multiple_conditions():
# final_step should run after router_and
assert execution_order.index("log_final_step") > execution_order.index("router_and")
def test_flow_inputs_passed_to_tasks():
"""Test that inputs passed to Flow's kickoff method are correctly interpolated in task descriptions."""
from crewai import Agent, Crew, Task
from crewai.llm import LLM
agent = Agent(
role="Test Agent",
goal="Test Goal",
backstory="Test Backstory",
llm=LLM(model="gpt-4o-mini")
)
task = Task(
description="Process data about {topic}",
expected_output="Information about {topic}",
agent=agent
)
crew = Crew(
agents=[agent],
tasks=[task]
)
class TestFlow(Flow):
def __init__(self):
super().__init__()
self.crew = crew
@start()
def start_process(self):
pass
flow = TestFlow()
inputs = {"topic": "artificial intelligence"}
flow.kickoff(inputs=inputs)
assert task.description == "Process data about artificial intelligence"
assert task.expected_output == "Information about artificial intelligence"

View File

@@ -584,84 +584,3 @@ def test_docling_source_with_local_file():
docling_source = CrewDoclingSource(file_paths=[pdf_path])
assert docling_source.file_paths == [pdf_path]
assert docling_source.content is not None
def test_huggingface_url_validation():
"""Test that Huggingface embedder properly handles URLs without protocol."""
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
config_missing_protocol = {
"api_url": "localhost:8080/embed"
}
embedding_function = EmbeddingConfigurator()._configure_huggingface(
config_missing_protocol, "test-model"
)
# Verify that the URL now has a protocol
assert embedding_function._api_url.startswith("http://")
config_with_protocol = {
"api_url": "https://localhost:8080/embed"
}
embedding_function = EmbeddingConfigurator()._configure_huggingface(
config_with_protocol, "test-model"
)
# Verify that the URL remains unchanged
assert embedding_function._api_url == "https://localhost:8080/embed"
config_with_other_protocol = {
"api_url": "http://localhost:8080/embed"
}
embedding_function = EmbeddingConfigurator()._configure_huggingface(
config_with_other_protocol, "test-model"
)
# Verify that the URL remains unchanged
assert embedding_function._api_url == "http://localhost:8080/embed"
config_no_url = {}
embedding_function = EmbeddingConfigurator()._configure_huggingface(
config_no_url, "test-model"
)
# Verify that no exception is raised when URL is None
assert embedding_function._api_url == 'None'
def test_huggingface_missing_protocol_with_json_source():
"""Test that JSONKnowledgeSource works with Huggingface embedder without URL protocol."""
import os
import json
import tempfile
from crewai.knowledge.source.json_knowledge_source import JSONKnowledgeSource
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
# Create a temporary JSON file
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as temp:
json.dump({"test": "data", "nested": {"value": 123}}, temp)
json_path = temp.name
# Test that the URL validation works in the embedder configurator
config = {
"api_url": "localhost:8080/embed" # Missing protocol
}
embedding_function = EmbeddingConfigurator()._configure_huggingface(
config, "test-model"
)
# Verify that the URL now has a protocol
assert embedding_function._api_url.startswith("http://")
os.unlink(json_path)
def test_huggingface_missing_protocol_with_string_source():
"""Test that StringKnowledgeSource works with Huggingface embedder without URL protocol."""
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
# Test that the URL validation works in the embedder configurator
config = {
"api_url": "localhost:8080/embed" # Missing protocol
}
embedding_function = EmbeddingConfigurator()._configure_huggingface(
config, "test-model"
)
# Verify that the URL now has a protocol
assert embedding_function._api_url.startswith("http://")

View File

@@ -1,6 +0,0 @@
{
"test": "data",
"nested": {
"value": 123
}
}