mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 07:38:29 +00:00
Compare commits
6 Commits
devin/1745
...
devin/1745
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
74c1f7492a | ||
|
|
559442853e | ||
|
|
65dd3c1bdc | ||
|
|
5ebd3ce269 | ||
|
|
7ff66aaf71 | ||
|
|
f7ecc0bc47 |
@@ -4,36 +4,6 @@ description: View the latest updates and changes to CrewAI
|
||||
icon: timeline
|
||||
---
|
||||
|
||||
<Update label="2025-04-07" description="v0.114.0">
|
||||
## Release Highlights
|
||||
<Frame>
|
||||
<img src="/images/v01140.png" />
|
||||
</Frame>
|
||||
|
||||
**New Features & Enhancements**
|
||||
- Agents as an atomic unit. (`Agent(...).kickoff()`)
|
||||
- Support for [Custom LLM implementations](https://docs.crewai.com/guides/advanced/custom-llm).
|
||||
- Integrated External Memory and [Opik observability](https://docs.crewai.com/how-to/opik-observability).
|
||||
- Enhanced YAML extraction.
|
||||
- Multimodal agent validation.
|
||||
- Added Secure fingerprints for agents and crews.
|
||||
|
||||
**Core Improvements & Fixes**
|
||||
- Improved serialization, agent copying, and Python compatibility.
|
||||
- Added wildcard support to `emit()`
|
||||
- Added support for additional router calls and context window adjustments.
|
||||
- Fixed typing issues, validation, and import statements.
|
||||
- Improved method performance.
|
||||
- Enhanced agent task handling, event emissions, and memory management.
|
||||
- Fixed CLI issues, conditional tasks, cloning behavior, and tool outputs.
|
||||
|
||||
**Documentation & Guides**
|
||||
- Improved documentation structure, theme, and organization.
|
||||
- Added guides for Local NVIDIA NIM with WSL2, W&B Weave, and Arize Phoenix.
|
||||
- Updated tool configuration examples, prompts, and observability docs.
|
||||
- Guide on using singular agents within Flows.
|
||||
</Update>
|
||||
|
||||
<Update label="2025-03-17" description="v0.108.0">
|
||||
**Features**
|
||||
- Converted tabs to spaces in `crew.py` template
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
---
|
||||
title: LangChain Tool
|
||||
description: The `LangChainTool` is a wrapper for LangChain tools and query engines.
|
||||
title: Using LangChain Tools
|
||||
description: Learn how to integrate LangChain tools with CrewAI agents to enhance search-based queries and more.
|
||||
icon: link
|
||||
---
|
||||
|
||||
## `LangChainTool`
|
||||
## Using LangChain Tools
|
||||
|
||||
<Info>
|
||||
CrewAI seamlessly integrates with LangChain's comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
|
||||
71
docs/concepts/llamaindex-tools.mdx
Normal file
71
docs/concepts/llamaindex-tools.mdx
Normal file
@@ -0,0 +1,71 @@
|
||||
---
|
||||
title: Using LlamaIndex Tools
|
||||
description: Learn how to integrate LlamaIndex tools with CrewAI agents to enhance search-based queries and more.
|
||||
icon: toolbox
|
||||
---
|
||||
|
||||
## Using LlamaIndex Tools
|
||||
|
||||
<Info>
|
||||
CrewAI seamlessly integrates with LlamaIndex’s comprehensive toolkit for RAG (Retrieval-Augmented Generation) and agentic pipelines, enabling advanced search-based queries and more.
|
||||
</Info>
|
||||
|
||||
Here are the available built-in tools offered by LlamaIndex.
|
||||
|
||||
```python Code
|
||||
from crewai import Agent
|
||||
from crewai_tools import LlamaIndexTool
|
||||
|
||||
# Example 1: Initialize from FunctionTool
|
||||
from llama_index.core.tools import FunctionTool
|
||||
|
||||
your_python_function = lambda ...: ...
|
||||
og_tool = FunctionTool.from_defaults(
|
||||
your_python_function,
|
||||
name="<name>",
|
||||
description='<description>'
|
||||
)
|
||||
tool = LlamaIndexTool.from_tool(og_tool)
|
||||
|
||||
# Example 2: Initialize from LlamaHub Tools
|
||||
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
|
||||
wolfram_spec = WolframAlphaToolSpec(app_id="<app_id>")
|
||||
wolfram_tools = wolfram_spec.to_tool_list()
|
||||
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
|
||||
|
||||
# Example 3: Initialize Tool from a LlamaIndex Query Engine
|
||||
query_engine = index.as_query_engine()
|
||||
query_tool = LlamaIndexTool.from_query_engine(
|
||||
query_engine,
|
||||
name="Uber 2019 10K Query Tool",
|
||||
description="Use this tool to lookup the 2019 Uber 10K Annual Report"
|
||||
)
|
||||
|
||||
# Create and assign the tools to an agent
|
||||
agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[tool, *tools, query_tool]
|
||||
)
|
||||
|
||||
# rest of the code ...
|
||||
```
|
||||
|
||||
## Steps to Get Started
|
||||
|
||||
To effectively use the LlamaIndexTool, follow these steps:
|
||||
|
||||
<Steps>
|
||||
<Step title="Package Installation">
|
||||
Make sure that `crewai[tools]` package is installed in your Python environment:
|
||||
<CodeGroup>
|
||||
```shell Terminal
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
</CodeGroup>
|
||||
</Step>
|
||||
<Step title="Install and Use LlamaIndex">
|
||||
Follow the LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
|
||||
</Step>
|
||||
</Steps>
|
||||
@@ -1,13 +1,9 @@
|
||||
---
|
||||
title: Custom LLM Implementation
|
||||
description: Learn how to create custom LLM implementations in CrewAI.
|
||||
icon: code
|
||||
---
|
||||
|
||||
## Custom LLM Implementations
|
||||
# Custom LLM Implementations
|
||||
|
||||
CrewAI now supports custom LLM implementations through the `BaseLLM` abstract base class. This allows you to create your own LLM implementations that don't rely on litellm's authentication mechanism.
|
||||
|
||||
## Using Custom LLM Implementations
|
||||
|
||||
To create a custom LLM implementation, you need to:
|
||||
|
||||
1. Inherit from the `BaseLLM` abstract base class
|
||||
107
docs/docs.json
107
docs/docs.json
@@ -11,21 +11,22 @@
|
||||
"navigation": {
|
||||
"tabs": [
|
||||
{
|
||||
"tab": "Documentation",
|
||||
"tab": "Get Started",
|
||||
"groups": [
|
||||
{
|
||||
"group": "Get Started",
|
||||
"pages": [
|
||||
"introduction",
|
||||
"installation",
|
||||
"quickstart"
|
||||
"quickstart",
|
||||
"changelog"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Guides",
|
||||
"pages": [
|
||||
{
|
||||
"group": "Strategy",
|
||||
"group": "Concepts",
|
||||
"pages": [
|
||||
"guides/concepts/evaluating-use-cases"
|
||||
]
|
||||
@@ -78,6 +79,41 @@
|
||||
"concepts/event-listener"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "How to Guides",
|
||||
"pages": [
|
||||
"how-to/create-custom-tools",
|
||||
"how-to/sequential-process",
|
||||
"how-to/hierarchical-process",
|
||||
"how-to/custom-manager-agent",
|
||||
"how-to/llm-connections",
|
||||
"how-to/customizing-agents",
|
||||
"how-to/multimodal-agents",
|
||||
"how-to/coding-agents",
|
||||
"how-to/force-tool-output-as-result",
|
||||
"how-to/human-input-on-execution",
|
||||
"how-to/kickoff-async",
|
||||
"how-to/kickoff-for-each",
|
||||
"how-to/replay-tasks-from-latest-crew-kickoff",
|
||||
"how-to/conditional-tasks",
|
||||
"how-to/langchain-tools",
|
||||
"how-to/llamaindex-tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Agent Monitoring & Observability",
|
||||
"pages": [
|
||||
"how-to/agentops-observability",
|
||||
"how-to/arize-phoenix-observability",
|
||||
"how-to/langfuse-observability",
|
||||
"how-to/langtrace-observability",
|
||||
"how-to/mlflow-observability",
|
||||
"how-to/openlit-observability",
|
||||
"how-to/opik-observability",
|
||||
"how-to/portkey-observability",
|
||||
"how-to/weave-integration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Tools",
|
||||
"pages": [
|
||||
@@ -105,7 +141,6 @@
|
||||
"tools/hyperbrowserloadtool",
|
||||
"tools/linkupsearchtool",
|
||||
"tools/llamaindextool",
|
||||
"tools/langchaintool",
|
||||
"tools/serperdevtool",
|
||||
"tools/s3readertool",
|
||||
"tools/s3writertool",
|
||||
@@ -135,40 +170,6 @@
|
||||
"tools/youtubevideosearchtool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Agent Monitoring & Observability",
|
||||
"pages": [
|
||||
"how-to/agentops-observability",
|
||||
"how-to/arize-phoenix-observability",
|
||||
"how-to/langfuse-observability",
|
||||
"how-to/langtrace-observability",
|
||||
"how-to/mlflow-observability",
|
||||
"how-to/openlit-observability",
|
||||
"how-to/opik-observability",
|
||||
"how-to/portkey-observability",
|
||||
"how-to/weave-integration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Learn",
|
||||
"pages": [
|
||||
"how-to/conditional-tasks",
|
||||
"how-to/coding-agents",
|
||||
"how-to/create-custom-tools",
|
||||
"how-to/custom-llm",
|
||||
"how-to/custom-manager-agent",
|
||||
"how-to/customizing-agents",
|
||||
"how-to/force-tool-output-as-result",
|
||||
"how-to/hierarchical-process",
|
||||
"how-to/human-input-on-execution",
|
||||
"how-to/kickoff-async",
|
||||
"how-to/kickoff-for-each",
|
||||
"how-to/llm-connections",
|
||||
"how-to/multimodal-agents",
|
||||
"how-to/replay-tasks-from-latest-crew-kickoff",
|
||||
"how-to/sequential-process"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Telemetry",
|
||||
"pages": [
|
||||
@@ -187,35 +188,19 @@
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"tab": "Releases",
|
||||
"groups": [
|
||||
{
|
||||
"group": "Releases",
|
||||
"pages": [
|
||||
"changelog"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"global": {
|
||||
"anchors": [
|
||||
{
|
||||
"anchor": "Website",
|
||||
"href": "https://crewai.com",
|
||||
"icon": "globe"
|
||||
},
|
||||
{
|
||||
"anchor": "Forum",
|
||||
"anchor": "Community",
|
||||
"href": "https://community.crewai.com",
|
||||
"icon": "discourse"
|
||||
},
|
||||
{
|
||||
"anchor": "Get Help",
|
||||
"href": "mailto:support@crewai.com",
|
||||
"icon": "headset"
|
||||
"anchor": "Tutorials",
|
||||
"href": "https://www.youtube.com/@crewAIInc",
|
||||
"icon": "youtube"
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -229,12 +214,6 @@
|
||||
"strict": false
|
||||
},
|
||||
"navbar": {
|
||||
"links": [
|
||||
{
|
||||
"label": "Start Free Trial",
|
||||
"href": "https://app.crewai.com"
|
||||
}
|
||||
],
|
||||
"primary": {
|
||||
"type": "github",
|
||||
"href": "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Custom Manager Agent
|
||||
title: Create Your Own Manager Agent
|
||||
description: Learn how to set a custom agent as the manager in CrewAI, providing more control over task management and coordination.
|
||||
icon: user-shield
|
||||
---
|
||||
|
||||
@@ -20,8 +20,10 @@ Here's an example of how to replay from a task:
|
||||
To use the replay feature, follow these steps:
|
||||
|
||||
<Steps>
|
||||
<Step title="Open your terminal or command prompt."></Step>
|
||||
<Step title="Navigate to the directory where your CrewAI project is located."></Step>
|
||||
<Step title="Open your terminal or command prompt.">
|
||||
</Step>
|
||||
<Step title="Navigate to the directory where your CrewAI project is located.">
|
||||
</Step>
|
||||
<Step title="Run the following commands:">
|
||||
To view the latest kickoff task_ids use:
|
||||
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 2.4 MiB |
@@ -336,22 +336,9 @@ email_summarizer_task:
|
||||
- research_task
|
||||
```
|
||||
|
||||
## Deploying Your Crew
|
||||
## Deploying Your Project
|
||||
|
||||
The easiest way to deploy your crew to production is through [CrewAI Enterprise](http://app.crewai.com).
|
||||
|
||||
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI Enterprise](http://app.crewai.com) using the CLI.
|
||||
|
||||
<iframe
|
||||
width="100%"
|
||||
height="400"
|
||||
src="https://www.youtube.com/embed/3EqSV-CYDZA"
|
||||
title="CrewAI Deployment Guide"
|
||||
frameborder="0"
|
||||
style={{ borderRadius: '10px' }}
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
||||
allowfullscreen
|
||||
></iframe>
|
||||
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com), where you can deploy your crew in a few clicks.
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card
|
||||
|
||||
@@ -720,8 +720,13 @@ class Crew(BaseModel):
|
||||
def _handle_crew_planning(self):
|
||||
"""Handles the Crew planning."""
|
||||
self._logger.log("info", "Planning the crew execution")
|
||||
|
||||
agent_llm = self.agents[0].llm if self.agents and hasattr(self.agents[0], 'llm') else None
|
||||
|
||||
result = CrewPlanner(
|
||||
tasks=self.tasks, planning_agent_llm=self.planning_llm
|
||||
tasks=self.tasks,
|
||||
planning_agent_llm=self.planning_llm,
|
||||
agent_llm=agent_llm
|
||||
)._handle_crew_planning()
|
||||
|
||||
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
|
||||
|
||||
@@ -358,12 +358,7 @@ class LLM(BaseLLM):
|
||||
}
|
||||
|
||||
# Remove None values from params
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
if "o4-mini" in self.model:
|
||||
params.pop("stop", None)
|
||||
|
||||
return params
|
||||
return {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
def _handle_streaming_response(
|
||||
self,
|
||||
|
||||
@@ -28,11 +28,23 @@ class PlannerTaskPydanticOutput(BaseModel):
|
||||
|
||||
class CrewPlanner:
|
||||
"""Plans and coordinates the execution of crew tasks."""
|
||||
def __init__(self, tasks: List[Task], planning_agent_llm: Optional[Any] = None):
|
||||
def __init__(self, tasks: List[Task], planning_agent_llm: Optional[Any] = None, agent_llm: Optional[Any] = None):
|
||||
self.tasks = tasks
|
||||
|
||||
if planning_agent_llm is None:
|
||||
self.planning_agent_llm = "gpt-4o-mini"
|
||||
if agent_llm is not None and hasattr(agent_llm, "base_url") and agent_llm.base_url is not None:
|
||||
from crewai.llm import LLM
|
||||
self.planning_agent_llm = LLM(
|
||||
model="gpt-4o-mini",
|
||||
base_url=agent_llm.base_url,
|
||||
api_key=getattr(agent_llm, "api_key", None),
|
||||
organization=getattr(agent_llm, "organization", None),
|
||||
api_version=getattr(agent_llm, "api_version", None),
|
||||
extra_headers=getattr(agent_llm, "extra_headers", None)
|
||||
)
|
||||
else:
|
||||
from crewai.llm import LLM
|
||||
self.planning_agent_llm = LLM(model="gpt-4o-mini")
|
||||
else:
|
||||
self.planning_agent_llm = planning_agent_llm
|
||||
|
||||
|
||||
@@ -533,39 +533,3 @@ def test_handle_streaming_tool_calls_no_tools(mock_emit):
|
||||
expected_completed_llm_call=1,
|
||||
expected_final_chunk_result=response,
|
||||
)
|
||||
|
||||
|
||||
def test_llm_o4_mini_stop_parameter():
|
||||
"""Test that o4-mini model works correctly without stop parameter."""
|
||||
llm = LLM(model="o4-mini", stop=["STOP", "END"])
|
||||
|
||||
# Check that stop parameter is set
|
||||
assert llm.stop == ["STOP", "END"]
|
||||
|
||||
params = llm._prepare_completion_params(messages=[{"role": "user", "content": "Hello"}])
|
||||
|
||||
assert "stop" not in params
|
||||
|
||||
with patch("litellm.completion") as mock_completion:
|
||||
# Create a mock response
|
||||
mock_message = MagicMock()
|
||||
mock_message.content = "Test response"
|
||||
mock_choice = MagicMock()
|
||||
mock_choice.message = mock_message
|
||||
mock_response = MagicMock()
|
||||
mock_response.choices = [mock_choice]
|
||||
mock_response.usage = {
|
||||
"prompt_tokens": 5,
|
||||
"completion_tokens": 5,
|
||||
"total_tokens": 10,
|
||||
}
|
||||
|
||||
# Set up the mock to return our response
|
||||
mock_completion.return_value = mock_response
|
||||
|
||||
response = llm.call(messages=[{"role": "user", "content": "Hello, world!"}])
|
||||
|
||||
assert response == "Test response"
|
||||
|
||||
call_args = mock_completion.call_args[1]
|
||||
assert "stop" not in call_args
|
||||
|
||||
0
tests/utilities/test_planning_auth/__init__.py
Normal file
0
tests/utilities/test_planning_auth/__init__.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import unittest
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from crewai import Task
|
||||
from crewai.utilities.planning_handler import CrewPlanner
|
||||
|
||||
|
||||
def test_planning_llm_inherits_auth_params():
|
||||
"""Test that planning LLM inherits authentication parameters from agent LLM."""
|
||||
mock_llm = MagicMock()
|
||||
mock_llm.base_url = "https://api.custom-provider.com/v1"
|
||||
mock_llm.api_version = "2023-05-15"
|
||||
|
||||
task = Task(
|
||||
description="Test Task",
|
||||
expected_output="Test Output"
|
||||
)
|
||||
|
||||
planner = CrewPlanner(
|
||||
tasks=[task],
|
||||
planning_agent_llm=None, # This should trigger the inheritance logic
|
||||
agent_llm=mock_llm
|
||||
)
|
||||
|
||||
assert hasattr(planner, 'planning_agent_llm')
|
||||
assert hasattr(planner.planning_agent_llm, 'base_url')
|
||||
assert planner.planning_agent_llm.base_url == "https://api.custom-provider.com/v1"
|
||||
assert planner.planning_agent_llm.api_version == "2023-05-15"
|
||||
Reference in New Issue
Block a user