mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-05 22:28:29 +00:00
Compare commits
10 Commits
devin/1744
...
devin/1739
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
18a38ba436 | ||
|
|
369ee46ff3 | ||
|
|
39a290b4d3 | ||
|
|
d2cc61028f | ||
|
|
edcd55d19f | ||
|
|
097fac6c87 | ||
|
|
ae4ca7748c | ||
|
|
8b58feb5e0 | ||
|
|
a4856a9805 | ||
|
|
364a31ca8b |
@@ -1,5 +1,3 @@
|
||||
from typing import Optional
|
||||
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.memory import Memory
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
@@ -40,7 +38,7 @@ class EntityMemory(Memory):
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: EntityMemoryItem, custom_key: Optional[str] = None) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
"""Saves an entity item into the SQLite storage."""
|
||||
if self.memory_provider == "mem0":
|
||||
data = f"""
|
||||
@@ -51,7 +49,7 @@ class EntityMemory(Memory):
|
||||
"""
|
||||
else:
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata, custom_key=custom_key)
|
||||
super().save(data, item.metadata)
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.memory import Memory
|
||||
@@ -19,12 +19,9 @@ class LongTermMemory(Memory):
|
||||
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: LongTermMemoryItem, custom_key: Optional[str] = None) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
metadata = item.metadata
|
||||
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
|
||||
if custom_key:
|
||||
metadata.update({"custom_key": custom_key})
|
||||
|
||||
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
|
||||
task_description=item.task,
|
||||
score=metadata["quality"],
|
||||
@@ -32,8 +29,8 @@ class LongTermMemory(Memory):
|
||||
datetime=item.datetime,
|
||||
)
|
||||
|
||||
def search(self, task: str, latest_n: int = 3, custom_key: Optional[str] = None) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
|
||||
return self.storage.load(task, latest_n, custom_key) # type: ignore # BUG?: "Storage" has no attribute "load"
|
||||
def search(self, task: str, latest_n: int = 3) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
|
||||
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"
|
||||
|
||||
def reset(self) -> None:
|
||||
self.storage.reset()
|
||||
|
||||
@@ -5,10 +5,7 @@ from crewai.memory.storage.rag_storage import RAGStorage
|
||||
|
||||
class Memory:
|
||||
"""
|
||||
Base class for memory, now supporting agent tags, generic metadata, and custom keys.
|
||||
|
||||
Custom keys allow scoping memories to specific entities (users, accounts, sessions),
|
||||
retrieving memories contextually, and preventing data leakage across logical boundaries.
|
||||
Base class for memory, now supporting agent tags and generic metadata.
|
||||
"""
|
||||
|
||||
def __init__(self, storage: RAGStorage):
|
||||
@@ -19,13 +16,10 @@ class Memory:
|
||||
value: Any,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
custom_key: Optional[str] = None,
|
||||
) -> None:
|
||||
metadata = metadata or {}
|
||||
if agent:
|
||||
metadata["agent"] = agent
|
||||
if custom_key:
|
||||
metadata["custom_key"] = custom_key
|
||||
|
||||
self.storage.save(value, metadata)
|
||||
|
||||
@@ -34,12 +28,7 @@ class Memory:
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
custom_key: Optional[str] = None,
|
||||
) -> List[Any]:
|
||||
filter_dict = None
|
||||
if custom_key:
|
||||
filter_dict = {"custom_key": {"$eq": custom_key}}
|
||||
|
||||
return self.storage.search(
|
||||
query=query, limit=limit, score_threshold=score_threshold, filter=filter_dict
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
)
|
||||
|
||||
@@ -46,31 +46,22 @@ class ShortTermMemory(Memory):
|
||||
value: Any,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
custom_key: Optional[str] = None,
|
||||
) -> None:
|
||||
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
|
||||
if self.memory_provider == "mem0":
|
||||
item.data = f"Remember the following insights from Agent run: {item.data}"
|
||||
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent, custom_key=custom_key)
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
custom_key: Optional[str] = None,
|
||||
):
|
||||
filter_dict = None
|
||||
if custom_key:
|
||||
filter_dict = {"custom_key": {"$eq": custom_key}}
|
||||
|
||||
return self.storage.search(
|
||||
query=query,
|
||||
limit=limit,
|
||||
score_threshold=score_threshold,
|
||||
filter=filter_dict
|
||||
)
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
|
||||
@@ -70,31 +70,22 @@ class LTMSQLiteStorage:
|
||||
)
|
||||
|
||||
def load(
|
||||
self, task_description: str, latest_n: int, custom_key: Optional[str] = None
|
||||
self, task_description: str, latest_n: int
|
||||
) -> Optional[List[Dict[str, Any]]]:
|
||||
"""Queries the LTM table by task description with error handling."""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.cursor()
|
||||
|
||||
query = """
|
||||
cursor.execute(
|
||||
f"""
|
||||
SELECT metadata, datetime, score
|
||||
FROM long_term_memories
|
||||
WHERE task_description = ?
|
||||
"""
|
||||
|
||||
params = [task_description]
|
||||
|
||||
if custom_key:
|
||||
query += " AND json_extract(metadata, '$.custom_key') = ?"
|
||||
params.append(custom_key)
|
||||
|
||||
query += f"""
|
||||
ORDER BY datetime DESC, score ASC
|
||||
LIMIT {latest_n}
|
||||
"""
|
||||
|
||||
cursor.execute(query, params)
|
||||
""", # nosec
|
||||
(task_description,),
|
||||
)
|
||||
rows = cursor.fetchall()
|
||||
if rows:
|
||||
return [
|
||||
|
||||
@@ -120,11 +120,7 @@ class RAGStorage(BaseRAGStorage):
|
||||
|
||||
try:
|
||||
with suppress_logging():
|
||||
response = self.collection.query(
|
||||
query_texts=query,
|
||||
n_results=limit,
|
||||
where=filter
|
||||
)
|
||||
response = self.collection.query(query_texts=query, n_results=limit)
|
||||
|
||||
results = []
|
||||
for i in range(len(response["ids"][0])):
|
||||
|
||||
@@ -26,27 +26,20 @@ class UserMemory(Memory):
|
||||
value,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
custom_key: Optional[str] = None,
|
||||
) -> None:
|
||||
# TODO: Change this function since we want to take care of the case where we save memories for the usr
|
||||
data = f"Remember the details about the user: {value}"
|
||||
super().save(data, metadata, custom_key=custom_key)
|
||||
super().save(data, metadata)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
custom_key: Optional[str] = None,
|
||||
):
|
||||
filter_dict = None
|
||||
if custom_key:
|
||||
filter_dict = {"custom_key": {"$eq": custom_key}}
|
||||
|
||||
results = self.storage.search(
|
||||
query=query,
|
||||
limit=limit,
|
||||
score_threshold=score_threshold,
|
||||
filter=filter_dict,
|
||||
)
|
||||
return results
|
||||
|
||||
@@ -1 +1,2 @@
|
||||
from .base_tool import BaseTool, tool
|
||||
from .human_tool import HumanTool
|
||||
|
||||
98
src/crewai/tools/human_tool.py
Normal file
98
src/crewai/tools/human_tool.py
Normal file
@@ -0,0 +1,98 @@
|
||||
"""Tool for handling human input using LangGraph's interrupt mechanism."""
|
||||
|
||||
import logging
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
|
||||
class HumanToolSchema(BaseModel):
|
||||
"""Schema for HumanTool input validation."""
|
||||
query: str = Field(
|
||||
...,
|
||||
description="The question to ask the user. Must be a non-empty string."
|
||||
)
|
||||
timeout: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Optional timeout in seconds for waiting for user response"
|
||||
)
|
||||
|
||||
class HumanTool(BaseTool):
|
||||
"""Tool for getting human input using LangGraph's interrupt mechanism.
|
||||
|
||||
This tool allows agents to request input from users through LangGraph's
|
||||
interrupt mechanism. It supports timeout configuration and input validation.
|
||||
"""
|
||||
|
||||
name: str = "human"
|
||||
description: str = "Useful to ask user to enter input."
|
||||
args_schema: type[BaseModel] = HumanToolSchema
|
||||
result_as_answer: bool = False # Don't use the response as final answer
|
||||
|
||||
def _run(self, query: str, timeout: Optional[float] = None) -> str:
|
||||
"""Execute the human input tool.
|
||||
|
||||
Args:
|
||||
query: The question to ask the user
|
||||
timeout: Optional timeout in seconds
|
||||
|
||||
Returns:
|
||||
The user's response
|
||||
|
||||
Raises:
|
||||
ImportError: If LangGraph is not installed
|
||||
TimeoutError: If response times out
|
||||
ValueError: If query is invalid
|
||||
"""
|
||||
if not query or not isinstance(query, str):
|
||||
raise ValueError("Query must be a non-empty string")
|
||||
|
||||
try:
|
||||
from langgraph.prebuilt.state_graphs import interrupt
|
||||
logging.info(f"Requesting human input: {query}")
|
||||
human_response = interrupt({"query": query, "timeout": timeout})
|
||||
return human_response["data"]
|
||||
except ImportError:
|
||||
logging.error("LangGraph not installed")
|
||||
raise ImportError(
|
||||
"LangGraph is required for HumanTool. "
|
||||
"Install with `pip install langgraph`"
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error during human input: {str(e)}")
|
||||
raise
|
||||
|
||||
async def _arun(self, query: str, timeout: Optional[float] = None) -> str:
|
||||
"""Execute the human input tool asynchronously.
|
||||
|
||||
Args:
|
||||
query: The question to ask the user
|
||||
timeout: Optional timeout in seconds
|
||||
|
||||
Returns:
|
||||
The user's response
|
||||
|
||||
Raises:
|
||||
ImportError: If LangGraph is not installed
|
||||
TimeoutError: If response times out
|
||||
ValueError: If query is invalid
|
||||
"""
|
||||
if not query or not isinstance(query, str):
|
||||
raise ValueError("Query must be a non-empty string")
|
||||
|
||||
try:
|
||||
from langgraph.prebuilt.state_graphs import interrupt
|
||||
logging.info(f"Requesting async human input: {query}")
|
||||
human_response = interrupt({"query": query, "timeout": timeout})
|
||||
return human_response["data"]
|
||||
except ImportError:
|
||||
logging.error("LangGraph not installed")
|
||||
raise ImportError(
|
||||
"LangGraph is required for HumanTool. "
|
||||
"Install with `pip install langgraph`"
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error during async human input: {str(e)}")
|
||||
raise
|
||||
@@ -182,6 +182,10 @@ class ToolUsage:
|
||||
else:
|
||||
result = tool.invoke(input={})
|
||||
except Exception as e:
|
||||
# Check if this is a LangGraph interrupt that should be propagated
|
||||
if hasattr(e, '__class__') and e.__class__.__name__ == 'Interrupt':
|
||||
raise e # Propagate interrupt up
|
||||
|
||||
self.on_tool_error(tool=tool, tool_calling=calling, e=e)
|
||||
self._run_attempts += 1
|
||||
if self._run_attempts > self._max_parsing_attempts:
|
||||
|
||||
@@ -1,57 +0,0 @@
|
||||
import pytest
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def short_term_memory():
|
||||
"""Fixture to create a ShortTermMemory instance"""
|
||||
agent = Agent(
|
||||
role="Researcher",
|
||||
goal="Search relevant data and provide results",
|
||||
backstory="You are a researcher at a leading tech think tank.",
|
||||
tools=[],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Perform a search on specific topics.",
|
||||
expected_output="A list of relevant URLs based on the search query.",
|
||||
agent=agent,
|
||||
)
|
||||
return ShortTermMemory(crew=Crew(agents=[agent], tasks=[task]))
|
||||
|
||||
|
||||
def test_save_with_custom_key(short_term_memory):
|
||||
"""Test that save method correctly passes custom_key to storage"""
|
||||
with patch.object(short_term_memory.storage, 'save') as mock_save:
|
||||
short_term_memory.save(
|
||||
value="Test data",
|
||||
metadata={"task": "test_task"},
|
||||
agent="test_agent",
|
||||
custom_key="user123",
|
||||
)
|
||||
|
||||
called_args = mock_save.call_args[0]
|
||||
called_kwargs = mock_save.call_args[1]
|
||||
|
||||
assert "custom_key" in called_args[1]
|
||||
assert called_args[1]["custom_key"] == "user123"
|
||||
|
||||
|
||||
def test_search_with_custom_key(short_term_memory):
|
||||
"""Test that search method correctly passes custom_key to storage"""
|
||||
expected_results = [{"context": "Test data", "metadata": {"custom_key": "user123"}, "score": 0.95}]
|
||||
|
||||
with patch.object(short_term_memory.storage, 'search', return_value=expected_results) as mock_search:
|
||||
results = short_term_memory.search("test query", custom_key="user123")
|
||||
|
||||
mock_search.assert_called_once()
|
||||
filter_arg = mock_search.call_args[1].get('filter')
|
||||
assert filter_arg == {"custom_key": {"$eq": "user123"}}
|
||||
assert results == expected_results
|
||||
83
tests/tools/test_human_tool.py
Normal file
83
tests/tools/test_human_tool.py
Normal file
@@ -0,0 +1,83 @@
|
||||
"""Test HumanTool functionality."""
|
||||
|
||||
from unittest.mock import patch
|
||||
import pytest
|
||||
|
||||
from crewai.tools import HumanTool
|
||||
|
||||
def test_human_tool_basic():
|
||||
"""Test basic HumanTool creation and attributes."""
|
||||
tool = HumanTool()
|
||||
assert tool.name == "human"
|
||||
assert "ask user to enter input" in tool.description.lower()
|
||||
assert not tool.result_as_answer
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_human_tool_with_langgraph_interrupt():
|
||||
"""Test HumanTool with LangGraph interrupt handling."""
|
||||
tool = HumanTool()
|
||||
|
||||
with patch('langgraph.prebuilt.state_graphs.interrupt') as mock_interrupt:
|
||||
mock_interrupt.return_value = {"data": "test response"}
|
||||
result = tool._run("test query")
|
||||
assert result == "test response"
|
||||
mock_interrupt.assert_called_with({"query": "test query", "timeout": None})
|
||||
|
||||
|
||||
def test_human_tool_timeout():
|
||||
"""Test HumanTool timeout handling."""
|
||||
tool = HumanTool()
|
||||
timeout = 30.0
|
||||
|
||||
with patch('langgraph.prebuilt.state_graphs.interrupt') as mock_interrupt:
|
||||
mock_interrupt.return_value = {"data": "test response"}
|
||||
result = tool._run("test query", timeout=timeout)
|
||||
assert result == "test response"
|
||||
mock_interrupt.assert_called_with({"query": "test query", "timeout": timeout})
|
||||
|
||||
|
||||
def test_human_tool_invalid_input():
|
||||
"""Test HumanTool input validation."""
|
||||
tool = HumanTool()
|
||||
|
||||
with pytest.raises(ValueError, match="Query must be a non-empty string"):
|
||||
tool._run("")
|
||||
|
||||
with pytest.raises(ValueError, match="Query must be a non-empty string"):
|
||||
tool._run(None)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_human_tool_async():
|
||||
"""Test async HumanTool functionality."""
|
||||
tool = HumanTool()
|
||||
|
||||
with patch('langgraph.prebuilt.state_graphs.interrupt') as mock_interrupt:
|
||||
mock_interrupt.return_value = {"data": "test response"}
|
||||
result = await tool._arun("test query")
|
||||
assert result == "test response"
|
||||
mock_interrupt.assert_called_with({"query": "test query", "timeout": None})
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_human_tool_async_timeout():
|
||||
"""Test async HumanTool timeout handling."""
|
||||
tool = HumanTool()
|
||||
timeout = 30.0
|
||||
|
||||
with patch('langgraph.prebuilt.state_graphs.interrupt') as mock_interrupt:
|
||||
mock_interrupt.return_value = {"data": "test response"}
|
||||
result = await tool._arun("test query", timeout=timeout)
|
||||
assert result == "test response"
|
||||
mock_interrupt.assert_called_with({"query": "test query", "timeout": timeout})
|
||||
|
||||
|
||||
def test_human_tool_without_langgraph():
|
||||
"""Test HumanTool behavior when LangGraph is not installed."""
|
||||
tool = HumanTool()
|
||||
|
||||
with patch.dict('sys.modules', {'langgraph': None}):
|
||||
with pytest.raises(ImportError) as exc_info:
|
||||
tool._run("test query")
|
||||
assert "LangGraph is required" in str(exc_info.value)
|
||||
assert "pip install langgraph" in str(exc_info.value)
|
||||
@@ -1,12 +1,13 @@
|
||||
import json
|
||||
import random
|
||||
from unittest.mock import MagicMock
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai import Agent, Task
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.tool_calling import ToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
|
||||
|
||||
@@ -85,6 +86,36 @@ def test_random_number_tool_schema():
|
||||
)
|
||||
|
||||
|
||||
def test_tool_usage_interrupt_handling():
|
||||
"""Test that tool usage properly propagates LangGraph interrupts."""
|
||||
class InterruptingTool(BaseTool):
|
||||
name: str = "interrupt_test"
|
||||
description: str = "A tool that raises LangGraph interrupts"
|
||||
|
||||
def _run(self, query: str) -> str:
|
||||
raise type('Interrupt', (Exception,), {})("test interrupt")
|
||||
|
||||
tool = InterruptingTool()
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[tool],
|
||||
original_tools=[tool],
|
||||
tools_description="Sample tool for testing",
|
||||
tools_names="interrupt_test",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=MagicMock(),
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Test that interrupt is propagated
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
tool_usage.use(
|
||||
ToolCalling(tool_name="interrupt_test", arguments={"query": "test"}, log="test"),
|
||||
"test"
|
||||
)
|
||||
assert "test interrupt" in str(exc_info.value)
|
||||
|
||||
def test_tool_usage_render():
|
||||
tool = RandomNumberTool()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user