Compare commits

..

4 Commits

Author SHA1 Message Date
Devin AI
d58a24950c Fix import sorting in test_kickoff_for_each_parallel.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-19 17:12:18 +00:00
Devin AI
15d59cfc34 Improve kickoff_for_each_parallel based on PR feedback
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-19 17:12:09 +00:00
Devin AI
fd18bdfabb Add test cassettes for kickoff_for_each_parallel tests
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-19 17:05:25 +00:00
Devin AI
c77ac31db6 Add kickoff_for_each_parallel method using ThreadPoolExecutor to fix issue #2406
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-19 17:05:14 +00:00
32 changed files with 1108 additions and 1163 deletions

View File

@@ -1,187 +0,0 @@
---
title: Changelog
description: View the latest updates and changes to CrewAI
icon: timeline
---
<Update label="2024-03-17" description="v0.108.0">
**Features**
- Converted tabs to spaces in `crew.py` template
- Enhanced LLM Streaming Response Handling and Event System
- Included `model_name`
- Enhanced Event Listener with rich visualization and improved logging
- Added fingerprints
**Bug Fixes**
- Fixed Mistral issues
- Fixed a bug in documentation
- Fixed type check error in fingerprint property
**Documentation Updates**
- Improved tool documentation
- Updated installation guide for the `uv` tool package
- Added instructions for upgrading crewAI with the `uv` tool
- Added documentation for `ApifyActorsTool`
</Update>
<Update label="2024-03-10" description="v0.105.0">
**Core Improvements & Fixes**
- Fixed issues with missing template variables and user memory configuration
- Improved async flow support and addressed agent response formatting
- Enhanced memory reset functionality and fixed CLI memory commands
- Fixed type issues, tool calling properties, and telemetry decoupling
**New Features & Enhancements**
- Added Flow state export and improved state utilities
- Enhanced agent knowledge setup with optional crew embedder
- Introduced event emitter for better observability and LLM call tracking
- Added support for Python 3.10 and ChatOllama from langchain_ollama
- Integrated context window size support for the o3-mini model
- Added support for multiple router calls
**Documentation & Guides**
- Improved documentation layout and hierarchical structure
- Added QdrantVectorSearchTool guide and clarified event listener usage
- Fixed typos in prompts and updated Amazon Bedrock model listings
</Update>
<Update label="2024-02-12" description="v0.102.0">
**Core Improvements & Fixes**
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
- Memory & Storage Fixes: Fixed short-term memory handling with Bedrock, ensured correct embedder initialization, and added a reset memories function in the crew class
- Training & Execution Reliability: Fixed broken training and interpolation issues with dict and list input types
**New Features & Enhancements**
- Advanced Knowledge Management: Improved naming conventions and enhanced embedding configuration with custom embedder support
- Expanded Logging & Observability: Added JSON format support for logging and integrated MLflow tracing documentation
- Data Handling Improvements: Updated excel_knowledge_source.py to process multi-tab files
- General Performance & Codebase Clean-Up: Streamlined enterprise code alignment and resolved linting issues
- Adding new tool: `QdrantVectorSearchTool`
**Documentation & Guides**
- Updated AI & Memory Docs: Improved Bedrock, Google AI, and long-term memory documentation
- Task & Workflow Clarity: Added "Human Input" row to Task Attributes, Langfuse guide, and FileWriterTool documentation
- Fixed Various Typos & Formatting Issues
</Update>
<Update label="2024-01-28" description="v0.100.0">
**Features**
- Add Composio docs
- Add SageMaker as a LLM provider
**Fixes**
- Overall LLM connection issues
- Using safe accessors on training
- Add version check to crew_chat.py
**Documentation**
- New docs for crewai chat
- Improve formatting and clarity in CLI and Composio Tool docs
</Update>
<Update label="2024-01-20" description="v0.98.0">
**Features**
- Conversation crew v1
- Add unique ID to flow states
- Add @persist decorator with FlowPersistence interface
**Integrations**
- Add SambaNova integration
- Add NVIDIA NIM provider in cli
- Introducing VoyageAI
**Fixes**
- Fix API Key Behavior and Entity Handling in Mem0 Integration
- Fixed core invoke loop logic and relevant tests
- Make tool inputs actual objects and not strings
- Add important missing parts to creating tools
- Drop litellm version to prevent windows issue
- Before kickoff if inputs are none
- Fixed typos, nested pydantic model issue, and docling issues
</Update>
<Update label="2024-01-04" description="v0.95.0">
**New Features**
- Adding Multimodal Abilities to Crew
- Programatic Guardrails
- HITL multiple rounds
- Gemini 2.0 Support
- CrewAI Flows Improvements
- Add Workflow Permissions
- Add support for langfuse with litellm
- Portkey Integration with CrewAI
- Add interpolate_only method and improve error handling
- Docling Support
- Weviate Support
**Fixes**
- output_file not respecting system path
- disk I/O error when resetting short-term memory
- CrewJSONEncoder now accepts enums
- Python max version
- Interpolation for output_file in Task
- Handle coworker role name case/whitespace properly
- Add tiktoken as explicit dependency and document Rust requirement
- Include agent knowledge in planning process
- Change storage initialization to None for KnowledgeStorage
- Fix optional storage checks
- include event emitter in flows
- Docstring, Error Handling, and Type Hints Improvements
- Suppressed userWarnings from litellm pydantic issues
</Update>
<Update label="2023-12-05" description="v0.86.0">
**Changes**
- Remove all references to pipeline and pipeline router
- Add Nvidia NIM as provider in Custom LLM
- Add knowledge demo + improve knowledge docs
- Add HITL multiple rounds of followup
- New docs about yaml crew with decorators
- Simplify template crew
</Update>
<Update label="2023-12-04" description="v0.85.0">
**Features**
- Added knowledge to agent level
- Feat/remove langchain
- Improve typed task outputs
- Log in to Tool Repository on crewai login
**Fixes**
- Fixes issues with result as answer not properly exiting LLM loop
- Fix missing key name when running with ollama provider
- Fix spelling issue found
**Documentation**
- Update readme for running mypy
- Add knowledge to mint.json
- Update Github actions
- Update Agents docs to include two approaches for creating an agent
- Improvements to LLM Configuration and Usage
</Update>
<Update label="2023-11-25" description="v0.83.0">
**New Features**
- New before_kickoff and after_kickoff crew callbacks
- Support to pre-seed agents with Knowledge
- Add support for retrieving user preferences and memories using Mem0
**Fixes**
- Fix Async Execution
- Upgrade chroma and adjust embedder function generator
- Update CLI Watson supported models + docs
- Reduce level for Bandit
- Fixing all tests
**Documentation**
- Update Docs
</Update>
<Update label="2023-11-13" description="v0.80.0">
**Fixes**
- Fixing Tokens callback replacement bug
- Fixing Step callback issue
- Add cached prompt tokens info on usage metrics
- Fix crew_train_success test
</Update>

View File

@@ -150,8 +150,6 @@ result = crew.kickoff(
Here are examples of how to use different types of knowledge sources:
Note: Please ensure that you create the ./knowldge folder. All source files (e.g., .txt, .pdf, .xlsx, .json) should be placed in this folder for centralized management.
### Text File Knowledge Source
```python
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
@@ -462,12 +460,12 @@ class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
data = response.json()
articles = data.get('results', [])
formatted_data = self.validate_content(articles)
formatted_data = self._format_articles(articles)
return {self.api_endpoint: formatted_data}
except Exception as e:
raise ValueError(f"Failed to fetch space news: {str(e)}")
def validate_content(self, articles: list) -> str:
def _format_articles(self, articles: list) -> str:
"""Format articles into readable text."""
formatted = "Space News Articles:\n\n"
for article in articles:

View File

@@ -59,7 +59,7 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
goal: Conduct comprehensive research and analysis
backstory: A dedicated research professional with years of experience
verbose: true
llm: openai/gpt-4o-mini # your model here
llm: openai/gpt-4o-mini # your model here
# (see provider configuration examples below for more)
```
@@ -111,7 +111,7 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
## Provider Configuration Examples
CrewAI supports a multitude of LLM providers, each offering unique features, authentication methods, and model capabilities.
CrewAI supports a multitude of LLM providers, each offering unique features, authentication methods, and model capabilities.
In this section, you'll find detailed examples that help you select, configure, and optimize the LLM that best fits your project's needs.
<AccordionGroup>
@@ -121,7 +121,7 @@ In this section, you'll find detailed examples that help you select, configure,
```toml Code
# Required
OPENAI_API_KEY=sk-...
# Optional
OPENAI_API_BASE=<custom-base-url>
OPENAI_ORGANIZATION=<your-org-id>
@@ -158,11 +158,7 @@ In this section, you'll find detailed examples that help you select, configure,
<Accordion title="Anthropic">
```toml Code
# Required
ANTHROPIC_API_KEY=sk-ant-...
# Optional
ANTHROPIC_API_BASE=<custom-base-url>
```
Example usage in your CrewAI project:
@@ -226,7 +222,7 @@ In this section, you'll find detailed examples that help you select, configure,
AZURE_API_KEY=<your-api-key>
AZURE_API_BASE=<your-resource-url>
AZURE_API_VERSION=<api-version>
# Optional
AZURE_AD_TOKEN=<your-azure-ad-token>
AZURE_API_TYPE=<your-azure-api-type>
@@ -254,42 +250,8 @@ In this section, you'll find detailed examples that help you select, configure,
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
```
Before using Amazon Bedrock, make sure you have boto3 installed in your environment
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API, enabling secure and responsible AI application development.
| Model | Context Window | Best For |
|-------------------------|----------------------|-------------------------------------------------------------------|
| Amazon Nova Pro | Up to 300k tokens | High-performance, model balancing accuracy, speed, and cost-effectiveness across diverse tasks. |
| Amazon Nova Micro | Up to 128k tokens | High-performance, cost-effective text-only model optimized for lowest latency responses. |
| Amazon Nova Lite | Up to 300k tokens | High-performance, affordable multimodal processing for images, video, and text with real-time capabilities. |
| Claude 3.7 Sonnet | Up to 128k tokens | High-performance, best for complex reasoning, coding & AI agents |
| Claude 3.5 Sonnet v2 | Up to 200k tokens | State-of-the-art model specialized in software engineering, agentic capabilities, and computer interaction at optimized cost. |
| Claude 3.5 Sonnet | Up to 200k tokens | High-performance model delivering superior intelligence and reasoning across diverse tasks with optimal speed-cost balance. |
| Claude 3.5 Haiku | Up to 200k tokens | Fast, compact multimodal model optimized for quick responses and seamless human-like interactions |
| Claude 3 Sonnet | Up to 200k tokens | Multimodal model balancing intelligence and speed for high-volume deployments. |
| Claude 3 Haiku | Up to 200k tokens | Compact, high-speed multimodal model optimized for quick responses and natural conversational interactions |
| Claude 3 Opus | Up to 200k tokens | Most advanced multimodal model exceling at complex tasks with human-like reasoning and superior contextual understanding. |
| Claude 2.1 | Up to 200k tokens | Enhanced version with expanded context window, improved reliability, and reduced hallucinations for long-form and RAG applications |
| Claude | Up to 100k tokens | Versatile model excelling in sophisticated dialogue, creative content, and precise instruction following. |
| Claude Instant | Up to 100k tokens | Fast, cost-effective model for everyday tasks like dialogue, analysis, summarization, and document Q&A |
| Llama 3.1 405B Instruct | Up to 128k tokens | Advanced LLM for synthetic data generation, distillation, and inference for chatbots, coding, and domain-specific tasks. |
| Llama 3.1 70B Instruct | Up to 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| Llama 3.1 8B Instruct | Up to 128k tokens | Advanced state-of-the-art model with language understanding, superior reasoning, and text generation. |
| Llama 3 70B Instruct | Up to 8k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| Llama 3 8B Instruct | Up to 8k tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
| Titan Text G1 - Lite | Up to 4k tokens | Lightweight, cost-effective model optimized for English tasks and fine-tuning with focus on summarization and content generation. |
| Titan Text G1 - Express | Up to 8k tokens | Versatile model for general language tasks, chat, and RAG applications with support for English and 100+ languages. |
| Cohere Command | Up to 4k tokens | Model specialized in following user commands and delivering practical enterprise solutions. |
| Jurassic-2 Mid | Up to 8,191 tokens | Cost-effective model balancing quality and affordability for diverse language tasks like Q&A, summarization, and content generation. |
| Jurassic-2 Ultra | Up to 8,191 tokens | Model for advanced text generation and comprehension, excelling in complex tasks like analysis and content creation. |
| Jamba-Instruct | Up to 256k tokens | Model with extended context window optimized for cost-effective text generation, summarization, and Q&A. |
| Mistral 7B Instruct | Up to 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| Mistral 8x7B Instruct | Up to 32k tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
</Accordion>
<Accordion title="Amazon SageMaker">
```toml Code
AWS_ACCESS_KEY_ID=<your-access-key>
@@ -406,46 +368,6 @@ In this section, you'll find detailed examples that help you select, configure,
| baichuan-inc/baichuan2-13b-chat | 4,096 tokens | Support Chinese and English chat, coding, math, instruction following, solving quizzes |
</Accordion>
<Accordion title="Local NVIDIA NIM Deployed using WSL2">
NVIDIA NIM enables you to run powerful LLMs locally on your Windows machine using WSL2 (Windows Subsystem for Linux).
This approach allows you to leverage your NVIDIA GPU for private, secure, and cost-effective AI inference without relying on cloud services.
Perfect for development, testing, or production scenarios where data privacy or offline capabilities are required.
Here is a step-by-step guide to setting up a local NVIDIA NIM model:
1. Follow installation instructions from [NVIDIA Website](https://docs.nvidia.com/nim/wsl2/latest/getting-started.html)
2. Install the local model. For Llama 3.1-8b follow [instructions](https://build.nvidia.com/meta/llama-3_1-8b-instruct/deploy)
3. Configure your crewai local models:
```python Code
from crewai.llm import LLM
local_nvidia_nim_llm = LLM(
model="openai/meta/llama-3.1-8b-instruct", # it's an openai-api compatible model
base_url="http://localhost:8000/v1",
api_key="<your_api_key|any text if you have not configured it>", # api_key is required, but you can use any text
)
# Then you can use it in your crew:
@CrewBase
class MyCrew():
# ...
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
llm=local_nvidia_nim_llm
)
# ...
```
</Accordion>
<Accordion title="Groq">
Set the following environment variables in your `.env` file:
@@ -474,7 +396,7 @@ In this section, you'll find detailed examples that help you select, configure,
WATSONX_URL=<your-url>
WATSONX_APIKEY=<your-apikey>
WATSONX_PROJECT_ID=<your-project-id>
# Optional
WATSONX_TOKEN=<your-token>
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id>
@@ -491,7 +413,7 @@ In this section, you'll find detailed examples that help you select, configure,
<Accordion title="Ollama (Local LLMs)">
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama3`
2. Run a model: `ollama run llama2`
3. Configure:
```python Code
@@ -600,7 +522,7 @@ In this section, you'll find detailed examples that help you select, configure,
```toml Code
OPENROUTER_API_KEY=<your-api-key>
```
Example usage in your CrewAI project:
```python Code
llm = LLM(
@@ -723,7 +645,7 @@ Learn how to get the most out of your LLM configuration:
- Small tasks (up to 4K tokens): Standard models
- Medium tasks (between 4K-32K): Enhanced models
- Large tasks (over 32K): Large context models
```python
# Configure model with appropriate settings
llm = LLM(
@@ -760,11 +682,11 @@ Learn how to get the most out of your LLM configuration:
<Warning>
Most authentication issues can be resolved by checking API key format and environment variable names.
</Warning>
```bash
# OpenAI
OPENAI_API_KEY=sk-...
# Anthropic
ANTHROPIC_API_KEY=sk-ant-...
```
@@ -773,11 +695,11 @@ Learn how to get the most out of your LLM configuration:
<Check>
Always include the provider prefix in model names
</Check>
```python
# Correct
llm = LLM(model="openai/gpt-4")
# Incorrect
llm = LLM(model="gpt-4")
```
@@ -787,9 +709,4 @@ Learn how to get the most out of your LLM configuration:
Use larger context models for extensive tasks
</Tip>
```python
# Large context model
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>

View File

@@ -60,8 +60,7 @@ my_crew = Crew(
```python Code
from crewai import Crew, Process
from crewai.memory import LongTermMemory, ShortTermMemory, EntityMemory
from crewai.memory.storage.rag_storage import RAGStorage
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from crewai.memory.storage import LTMSQLiteStorage, RAGStorage
from typing import List, Optional
# Assemble your crew with memory capabilities
@@ -120,7 +119,7 @@ Example using environment variables:
import os
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from crewai.memory.storage import LTMSQLiteStorage
# Configure storage path using environment variable
storage_path = os.getenv("CREWAI_STORAGE_DIR", "./storage")
@@ -149,7 +148,7 @@ crew = Crew(memory=True) # Uses default storage locations
```python
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from crewai.memory.storage import LTMSQLiteStorage
# Configure custom storage paths
crew = Crew(

View File

@@ -1,223 +0,0 @@
{
"$schema": "https://mintlify.com/docs.json",
"theme": "palm",
"name": "CrewAI",
"colors": {
"primary": "#EB6658",
"light": "#F3A78B",
"dark": "#C94C3C"
},
"favicon": "favicon.svg",
"navigation": {
"tabs": [
{
"tab": "Get Started",
"groups": [
{
"group": "Get Started",
"pages": [
"introduction",
"installation",
"quickstart",
"changelog"
]
},
{
"group": "Guides",
"pages": [
{
"group": "Concepts",
"pages": [
"guides/concepts/evaluating-use-cases"
]
},
{
"group": "Agents",
"pages": [
"guides/agents/crafting-effective-agents"
]
},
{
"group": "Crews",
"pages": [
"guides/crews/first-crew"
]
},
{
"group": "Flows",
"pages": [
"guides/flows/first-flow",
"guides/flows/mastering-flow-state"
]
},
{
"group": "Advanced",
"pages": [
"guides/advanced/customizing-prompts",
"guides/advanced/fingerprinting"
]
}
]
},
{
"group": "Core Concepts",
"pages": [
"concepts/agents",
"concepts/tasks",
"concepts/crews",
"concepts/flows",
"concepts/knowledge",
"concepts/llms",
"concepts/processes",
"concepts/collaboration",
"concepts/training",
"concepts/memory",
"concepts/planning",
"concepts/testing",
"concepts/cli",
"concepts/tools",
"concepts/event-listener",
"concepts/langchain-tools",
"concepts/llamaindex-tools"
]
},
{
"group": "How to Guides",
"pages": [
"how-to/create-custom-tools",
"how-to/sequential-process",
"how-to/hierarchical-process",
"how-to/custom-manager-agent",
"how-to/llm-connections",
"how-to/customizing-agents",
"how-to/multimodal-agents",
"how-to/coding-agents",
"how-to/force-tool-output-as-result",
"how-to/human-input-on-execution",
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/portkey-observability",
"how-to/langfuse-observability"
]
},
{
"group": "Tools",
"pages": [
"tools/aimindtool",
"tools/apifyactorstool",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
"tools/composiotool",
"tools/csvsearchtool",
"tools/dalletool",
"tools/directorysearchtool",
"tools/directoryreadtool",
"tools/docxsearchtool",
"tools/exasearchtool",
"tools/filereadtool",
"tools/filewritetool",
"tools/firecrawlcrawlwebsitetool",
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/hyperbrowserloadtool",
"tools/linkupsearchtool",
"tools/llamaindextool",
"tools/serperdevtool",
"tools/s3readertool",
"tools/s3writertool",
"tools/scrapegraphscrapetool",
"tools/scrapeelementfromwebsitetool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/multiontool",
"tools/nl2sqltool",
"tools/patronustools",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/ragtool",
"tools/scrapewebsitetool",
"tools/scrapflyscrapetool",
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",
"tools/youtubevideosearchtool"
]
},
{
"group": "Telemetry",
"pages": [
"telemetry"
]
}
]
},
{
"tab": "Examples",
"groups": [
{
"group": "Examples",
"pages": [
"examples/example"
]
}
]
}
],
"global": {
"anchors": [
{
"anchor": "Community",
"href": "https://community.crewai.com",
"icon": "discourse"
}
]
}
},
"logo": {
"light": "crew_only_logo.png",
"dark": "crew_only_logo.png"
},
"appearance": {
"default": "dark",
"strict": false
},
"navbar": {
"primary": {
"type": "github",
"href": "https://github.com/crewAIInc/crewAI"
}
},
"search": {
"prompt": "Search CrewAI docs"
},
"seo": {
"indexing": "navigable"
},
"footer": {
"socials": {
"website": "https://crewai.com",
"x": "https://x.com/crewAIInc",
"github": "https://github.com/crewAIInc/crewAI",
"linkedin": "https://www.linkedin.com/company/crewai-inc",
"youtube": "https://youtube.com/@crewAIInc",
"reddit": "https://www.reddit.com/r/crewAIInc/"
}
}
}

View File

@@ -1,5 +1,4 @@
---
title: Customizing Prompts
---title: Customizing Prompts
description: Dive deeper into low-level prompt customization for CrewAI, enabling super custom and complex use cases for different models and languages.
icon: message-pen
---

225
docs/mint.json Normal file
View File

@@ -0,0 +1,225 @@
{
"name": "CrewAI",
"theme": "venus",
"logo": {
"dark": "crew_only_logo.png",
"light": "crew_only_logo.png"
},
"favicon": "favicon.svg",
"colors": {
"primary": "#EB6658",
"light": "#F3A78B",
"dark": "#C94C3C",
"anchors": {
"from": "#737373",
"to": "#EB6658"
}
},
"seo": {
"indexHiddenPages": false
},
"modeToggle": {
"default": "dark",
"isHidden": false
},
"feedback": {
"suggestEdit": true,
"raiseIssue": true,
"thumbsRating": true
},
"topbarCtaButton": {
"type": "github",
"url": "https://github.com/crewAIInc/crewAI"
},
"primaryTab": {
"name": "Get Started"
},
"tabs": [
{
"name": "Examples",
"url": "examples"
}
],
"anchors": [
{
"name": "Community",
"icon": "discourse",
"url": "https://community.crewai.com"
},
{
"name": "Changelog",
"icon": "timeline",
"url": "https://github.com/crewAIInc/crewAI/releases"
}
],
"navigation": [
{
"group": "Get Started",
"pages": [
"introduction",
"installation",
"quickstart"
]
},
{
"group": "Guides",
"pages": [
{
"group": "Concepts",
"pages": [
"guides/concepts/evaluating-use-cases"
]
},
{
"group": "Agents",
"pages": [
"guides/agents/crafting-effective-agents"
]
},
{
"group": "Crews",
"pages": [
"guides/crews/first-crew"
]
},
{
"group": "Flows",
"pages": [
"guides/flows/first-flow",
"guides/flows/mastering-flow-state"
]
},
{
"group": "Advanced",
"pages": [
"guides/advanced/customizing-prompts",
"guides/advanced/fingerprinting"
]
}
]
},
{
"group": "Core Concepts",
"pages": [
"concepts/agents",
"concepts/tasks",
"concepts/crews",
"concepts/flows",
"concepts/knowledge",
"concepts/llms",
"concepts/processes",
"concepts/collaboration",
"concepts/training",
"concepts/memory",
"concepts/planning",
"concepts/testing",
"concepts/cli",
"concepts/tools",
"concepts/event-listener",
"concepts/langchain-tools",
"concepts/llamaindex-tools"
]
},
{
"group": "How to Guides",
"pages": [
"how-to/create-custom-tools",
"how-to/sequential-process",
"how-to/hierarchical-process",
"how-to/custom-manager-agent",
"how-to/llm-connections",
"how-to/customizing-agents",
"how-to/multimodal-agents",
"how-to/coding-agents",
"how-to/force-tool-output-as-result",
"how-to/human-input-on-execution",
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/portkey-observability",
"how-to/langfuse-observability"
]
},
{
"group": "Examples",
"pages": [
"examples/example"
]
},
{
"group": "Tools",
"pages": [
"tools/aimindtool",
"tools/apifyactorstool",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
"tools/composiotool",
"tools/csvsearchtool",
"tools/dalletool",
"tools/directorysearchtool",
"tools/directoryreadtool",
"tools/docxsearchtool",
"tools/exasearchtool",
"tools/filereadtool",
"tools/filewritetool",
"tools/firecrawlcrawlwebsitetool",
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/hyperbrowserloadtool",
"tools/linkupsearchtool",
"tools/llamaindextool",
"tools/serperdevtool",
"tools/s3readertool",
"tools/s3writertool",
"tools/scrapegraphscrapetool",
"tools/scrapeelementfromwebsitetool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/multiontool",
"tools/nl2sqltool",
"tools/patronustools",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/ragtool",
"tools/scrapewebsitetool",
"tools/scrapflyscrapetool",
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",
"tools/youtubevideosearchtool"
]
},
{
"group": "Telemetry",
"pages": [
"telemetry"
]
}
],
"search": {
"prompt": "Search CrewAI docs"
},
"footerSocials": {
"website": "https://crewai.com",
"x": "https://x.com/crewAIInc",
"github": "https://github.com/crewAIInc/crewAI",
"linkedin": "https://www.linkedin.com/company/crewai-inc",
"youtube": "https://youtube.com/@crewAIInc"
}
}

View File

@@ -300,7 +300,7 @@ email_summarizer:
```
<Tip>
Note how we use the same name for the task in the `tasks.yaml` (`email_summarizer_task`) file as the method name in the `crew.py` (`email_summarizer_task`) file.
Note how we use the same name for the agent in the `tasks.yaml` (`email_summarizer_task`) file as the method name in the `crew.py` (`email_summarizer_task`) file.
</Tip>
```yaml tasks.yaml

View File

@@ -7,10 +7,8 @@ icon: file-code
# `JSONSearchTool`
<Note>
The JSONSearchTool is currently in an experimental phase. This means the tool
is under active development, and users might encounter unexpected behavior or
changes. We highly encourage feedback on any issues or suggestions for
improvements.
The JSONSearchTool is currently in an experimental phase. This means the tool is under active development, and users might encounter unexpected behavior or changes.
We highly encourage feedback on any issues or suggestions for improvements.
</Note>
## Description
@@ -62,7 +60,7 @@ tool = JSONSearchTool(
# stream=true,
},
},
"embedding_model": {
"embedder": {
"provider": "google", # or openai, ollama, ...
"config": {
"model": "models/embedding-001",
@@ -72,4 +70,4 @@ tool = JSONSearchTool(
},
}
)
```
```

View File

@@ -8,8 +8,8 @@ icon: vector-square
## Description
The `RagTool` is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain.
It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources.
The `RagTool` is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain.
It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources.
This tool is particularly useful for applications that require access to a vast array of information and need to provide contextually relevant answers.
## Example
@@ -138,7 +138,7 @@ config = {
"model": "gpt-4",
}
},
"embedding_model": {
"embedder": {
"provider": "openai",
"config": {
"model": "text-embedding-ada-002"
@@ -151,4 +151,4 @@ rag_tool = RagTool(config=config, summarize=True)
## Conclusion
The `RagTool` provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.
The `RagTool` provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.

View File

@@ -17,9 +17,9 @@ dependencies = [
"pdfplumber>=0.11.4",
"regex>=2024.9.11",
# Telemetry and Monitoring
"opentelemetry-api>=1.30.0",
"opentelemetry-sdk>=1.30.0",
"opentelemetry-exporter-otlp-proto-http>=1.30.0",
"opentelemetry-api>=1.22.0",
"opentelemetry-sdk>=1.22.0",
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
# Data Handling
"chromadb>=0.5.23",
"openpyxl>=3.1.5",

View File

@@ -124,9 +124,9 @@ class CrewAgentParser:
)
def _extract_thought(self, text: str) -> str:
thought_index = text.find("\nAction")
thought_index = text.find("\n\nAction")
if thought_index == -1:
thought_index = text.find("\nFinal Answer")
thought_index = text.find("\n\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
@@ -136,7 +136,7 @@ class CrewAgentParser:
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""
return text.strip().strip("*").strip()
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()
def _safe_repair_json(self, tool_input: str) -> str:
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]

View File

@@ -1,5 +1,4 @@
import subprocess
from functools import lru_cache
class Repository:
@@ -36,7 +35,6 @@ class Repository:
encoding="utf-8",
).strip()
@lru_cache(maxsize=None)
def is_git_repo(self) -> bool:
"""Check if the current directory is a git repository."""
try:

View File

@@ -10,7 +10,6 @@ dependencies = [
[project.scripts]
kickoff = "{{folder_name}}.main:kickoff"
run_crew = "{{folder_name}}.main:kickoff"
plot = "{{folder_name}}.main:plot"
[build-system]

View File

@@ -1,4 +1,5 @@
import asyncio
import concurrent.futures
import json
import re
import uuid
@@ -6,7 +7,7 @@ import warnings
from concurrent.futures import Future
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Sequence, Set, Tuple, Union
from pydantic import (
UUID4,
@@ -707,6 +708,65 @@ class Crew(BaseModel):
self.usage_metrics = total_usage_metrics
self._task_output_handler.reset()
return results
def kickoff_for_each_parallel(self, inputs: Sequence[Dict[str, Any]], max_workers: Optional[int] = None) -> List[CrewOutput]:
"""Executes the Crew's workflow for each input in the list in parallel using ThreadPoolExecutor.
Args:
inputs: Sequence of input dictionaries to be passed to each crew execution.
max_workers: Maximum number of worker threads to use. If None, uses the default
ThreadPoolExecutor behavior (typically min(32, os.cpu_count() + 4)).
Returns:
List of CrewOutput objects, one for each input.
"""
from concurrent.futures import ThreadPoolExecutor, as_completed
if not isinstance(inputs, (list, tuple)):
raise TypeError(f"Inputs must be a list of dictionaries. Received {type(inputs).__name__} instead.")
if not inputs:
return []
results: List[CrewOutput] = []
# Initialize the parent crew's usage metrics
total_usage_metrics = UsageMetrics()
# Create a copy of the crew for each input to avoid state conflicts
crew_copies = [self.copy() for _ in inputs]
# Execute each crew in parallel
try:
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all tasks to the executor
future_to_crew = {
executor.submit(crew_copies[i].kickoff, inputs[i]): i
for i in range(len(inputs))
}
# Process results as they complete
for future in as_completed(future_to_crew):
crew_index = future_to_crew[future]
try:
output = future.result()
results.append(output)
# Aggregate usage metrics
if crew_copies[crew_index].usage_metrics:
total_usage_metrics.add_usage_metrics(crew_copies[crew_index].usage_metrics)
except Exception as exc:
# Re-raise the exception to maintain consistent behavior with kickoff_for_each
raise exc
finally:
# Clean up to assist garbage collection
crew_copies.clear()
# Set the aggregated metrics on the parent crew
self.usage_metrics = total_usage_metrics
self._task_output_handler.reset()
return results
def _handle_crew_planning(self):
"""Handles the Crew planning."""

View File

@@ -114,60 +114,6 @@ LLM_CONTEXT_WINDOW_SIZES = {
"Llama-3.2-11B-Vision-Instruct": 16384,
"Meta-Llama-3.2-3B-Instruct": 4096,
"Meta-Llama-3.2-1B-Instruct": 16384,
# bedrock
"us.amazon.nova-pro-v1:0": 300000,
"us.amazon.nova-micro-v1:0": 128000,
"us.amazon.nova-lite-v1:0": 300000,
"us.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"us.anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"us.anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
"us.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"us.anthropic.claude-3-opus-20240229-v1:0": 200000,
"us.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"us.meta.llama3-2-11b-instruct-v1:0": 128000,
"us.meta.llama3-2-3b-instruct-v1:0": 131000,
"us.meta.llama3-2-90b-instruct-v1:0": 128000,
"us.meta.llama3-2-1b-instruct-v1:0": 131000,
"us.meta.llama3-1-8b-instruct-v1:0": 128000,
"us.meta.llama3-1-70b-instruct-v1:0": 128000,
"us.meta.llama3-3-70b-instruct-v1:0": 128000,
"us.meta.llama3-1-405b-instruct-v1:0": 128000,
"eu.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"eu.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"eu.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"eu.meta.llama3-2-3b-instruct-v1:0": 131000,
"eu.meta.llama3-2-1b-instruct-v1:0": 131000,
"apac.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"apac.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"apac.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"apac.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"amazon.nova-pro-v1:0": 300000,
"amazon.nova-micro-v1:0": 128000,
"amazon.nova-lite-v1:0": 300000,
"anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
"anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
"anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"anthropic.claude-3-opus-20240229-v1:0": 200000,
"anthropic.claude-3-haiku-20240307-v1:0": 200000,
"anthropic.claude-v2:1": 200000,
"anthropic.claude-v2": 100000,
"anthropic.claude-instant-v1": 100000,
"meta.llama3-1-405b-instruct-v1:0": 128000,
"meta.llama3-1-70b-instruct-v1:0": 128000,
"meta.llama3-1-8b-instruct-v1:0": 128000,
"meta.llama3-70b-instruct-v1:0": 8000,
"meta.llama3-8b-instruct-v1:0": 8000,
"amazon.titan-text-lite-v1": 4000,
"amazon.titan-text-express-v1": 8000,
"cohere.command-text-v14": 4000,
"ai21.j2-mid-v1": 8191,
"ai21.j2-ultra-v1": 8191,
"ai21.jamba-instruct-v1:0": 256000,
"mistral.mistral-7b-instruct-v0:2": 32000,
"mistral.mixtral-8x7b-instruct-v0:1": 32000,
# mistral
"mistral-tiny": 32768,
"mistral-small-latest": 32768,

View File

@@ -1,7 +1,7 @@
import os
from typing import Any, Dict, List
from mem0 import Memory, MemoryClient
from mem0 import MemoryClient
from crewai.memory.storage.interface import Storage
@@ -32,16 +32,13 @@ class Mem0Storage(Storage):
mem0_org_id = config.get("org_id")
mem0_project_id = config.get("project_id")
# Initialize MemoryClient or Memory based on the presence of the mem0_api_key
if mem0_api_key:
if mem0_org_id and mem0_project_id:
self.memory = MemoryClient(
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
)
else:
self.memory = MemoryClient(api_key=mem0_api_key)
# Initialize MemoryClient with available parameters
if mem0_org_id and mem0_project_id:
self.memory = MemoryClient(
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
)
else:
self.memory = Memory() # Fallback to Memory if no Mem0 API key is provided
self.memory = MemoryClient(api_key=mem0_api_key)
def _sanitize_role(self, role: str) -> str:
"""

View File

@@ -19,8 +19,6 @@ from typing import (
Tuple,
Type,
Union,
get_args,
get_origin,
)
from pydantic import (
@@ -180,29 +178,15 @@ class Task(BaseModel):
"""
if v is not None:
sig = inspect.signature(v)
positional_args = [
param
for param in sig.parameters.values()
if param.default is inspect.Parameter.empty
]
if len(positional_args) != 1:
if len(sig.parameters) != 1:
raise ValueError("Guardrail function must accept exactly one parameter")
# Check return annotation if present, but don't require it
return_annotation = sig.return_annotation
if return_annotation != inspect.Signature.empty:
return_annotation_args = get_args(return_annotation)
if not (
get_origin(return_annotation) is tuple
and len(return_annotation_args) == 2
and return_annotation_args[0] is bool
and (
return_annotation_args[1] is Any
or return_annotation_args[1] is str
or return_annotation_args[1] is TaskOutput
or return_annotation_args[1] == Union[str, TaskOutput]
)
return_annotation == Tuple[bool, Any]
or str(return_annotation) == "Tuple[bool, Any]"
):
raise ValueError(
"If return type is annotated, it must be Tuple[bool, Any]"

View File

@@ -281,16 +281,8 @@ class Telemetry:
return self._safe_telemetry_operation(operation)
def task_ended(self, span: Span, task: Task, crew: Crew):
"""Records the completion of a task execution in a crew.
"""Records task execution in a crew."""
Args:
span (Span): The OpenTelemetry span tracking the task execution
task (Task): The task that was completed
crew (Crew): The crew context in which the task was executed
Note:
If share_crew is enabled, this will also record the task output
"""
def operation():
if crew.share_crew:
self._add_attribute(
@@ -305,13 +297,8 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def tool_repeated_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records when a tool is used repeatedly, which might indicate an issue.
"""Records the repeated usage 'error' of a tool by an agent."""
Args:
llm (Any): The language model being used
tool_name (str): Name of the tool being repeatedly used
attempts (int): Number of attempts made with this tool
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Repeated Usage")
@@ -330,13 +317,8 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def tool_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the usage of a tool by an agent.
"""Records the usage of a tool by an agent."""
Args:
llm (Any): The language model being used
tool_name (str): Name of the tool being used
attempts (int): Number of attempts made with this tool
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage")
@@ -355,11 +337,8 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def tool_usage_error(self, llm: Any):
"""Records when a tool usage results in an error.
"""Records the usage of a tool by an agent."""
Args:
llm (Any): The language model being used when the error occurred
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage Error")
@@ -378,14 +357,6 @@ class Telemetry:
def individual_test_result_span(
self, crew: Crew, quality: float, exec_time: int, model_name: str
):
"""Records individual test results for a crew execution.
Args:
crew (Crew): The crew being tested
quality (float): Quality score of the execution
exec_time (int): Execution time in seconds
model_name (str): Name of the model used
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Individual Test Result")
@@ -412,14 +383,6 @@ class Telemetry:
inputs: dict[str, Any] | None,
model_name: str,
):
"""Records the execution of a test suite for a crew.
Args:
crew (Crew): The crew being tested
iterations (int): Number of test iterations
inputs (dict[str, Any] | None): Input parameters for the test
model_name (str): Name of the model used in testing
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Test Execution")
@@ -445,7 +408,6 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def deploy_signup_error_span(self):
"""Records when an error occurs during the deployment signup process."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Deploy Signup Error")
@@ -455,11 +417,6 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def start_deployment_span(self, uuid: Optional[str] = None):
"""Records the start of a deployment process.
Args:
uuid (Optional[str]): Unique identifier for the deployment
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Start Deployment")
@@ -471,7 +428,6 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def create_crew_deployment_span(self):
"""Records the creation of a new crew deployment."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Create Crew Deployment")
@@ -481,12 +437,6 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def get_crew_logs_span(self, uuid: Optional[str], log_type: str = "deployment"):
"""Records the retrieval of crew logs.
Args:
uuid (Optional[str]): Unique identifier for the crew
log_type (str, optional): Type of logs being retrieved. Defaults to "deployment".
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Get Crew Logs")
@@ -499,11 +449,6 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def remove_crew_span(self, uuid: Optional[str] = None):
"""Records the removal of a crew.
Args:
uuid (Optional[str]): Unique identifier for the crew being removed
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Remove Crew")
@@ -629,11 +574,6 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_creation_span(self, flow_name: str):
"""Records the creation of a new flow.
Args:
flow_name (str): Name of the flow being created
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Creation")
@@ -644,12 +584,6 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_plotting_span(self, flow_name: str, node_names: list[str]):
"""Records flow visualization/plotting activity.
Args:
flow_name (str): Name of the flow being plotted
node_names (list[str]): List of node names in the flow
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Plotting")
@@ -661,12 +595,6 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_execution_span(self, flow_name: str, node_names: list[str]):
"""Records the execution of a flow.
Args:
flow_name (str): Name of the flow being executed
node_names (list[str]): List of nodes being executed in the flow
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Execution")

View File

@@ -244,7 +244,6 @@ class ToolUsage:
tool_calling=calling,
from_cache=from_cache,
started_at=started_at,
result=result, # Pass the result
)
if (
@@ -456,7 +455,7 @@ class ToolUsage:
# Attempt 4: Repair JSON
try:
repaired_input = repair_json(tool_input, skip_json_loads=True)
repaired_input = repair_json(tool_input)
self._printer.print(
content=f"Repaired JSON: {repaired_input}", color="blue"
)
@@ -493,18 +492,8 @@ class ToolUsage:
crewai_event_bus.emit(self, ToolUsageErrorEvent(**{**event_data, "error": e}))
def on_tool_use_finished(
self, tool: Any, tool_calling: ToolCalling, from_cache: bool, started_at: float,
result: Any = None
self, tool: Any, tool_calling: ToolCalling, from_cache: bool, started_at: float
) -> None:
"""Handle tool usage completion event.
Args:
tool: The tool that was used
tool_calling: The tool calling information
from_cache: Whether the result was retrieved from cache
started_at: Timestamp when the tool execution started
result: The execution result of the tool
"""
finished_at = time.time()
event_data = self._prepare_event_data(tool, tool_calling)
event_data.update(
@@ -512,7 +501,6 @@ class ToolUsage:
"started_at": datetime.datetime.fromtimestamp(started_at),
"finished_at": datetime.datetime.fromtimestamp(finished_at),
"from_cache": from_cache,
"result": result, # Tool execution result
}
)
crewai_event_bus.emit(self, ToolUsageFinishedEvent(**event_data))

View File

@@ -67,13 +67,16 @@ class CrewAIEventsBus:
source: The object emitting the event
event: The event instance to emit
"""
for event_type, handlers in self._handlers.items():
if isinstance(event, event_type):
for handler in handlers:
handler(source, event)
event_type = type(event)
if event_type in self._handlers:
for handler in self._handlers[event_type]:
handler(source, event)
self._signal.send(source, event=event)
def clear_handlers(self) -> None:
"""Clear all registered event handlers - useful for testing"""
self._handlers.clear()
def register_handler(
self, event_type: Type[EventTypes], handler: Callable[[Any, EventTypes], None]
) -> None:

View File

@@ -1,5 +1,5 @@
from datetime import datetime
from typing import Any, Callable, Dict, Optional, Union
from typing import Any, Callable, Dict
from .base_events import CrewEvent
@@ -25,16 +25,11 @@ class ToolUsageStartedEvent(ToolUsageEvent):
class ToolUsageFinishedEvent(ToolUsageEvent):
"""Event emitted when a tool execution is completed
This event contains the result of the tool execution, allowing listeners
to access the output directly without implementing workarounds.
"""
"""Event emitted when a tool execution is completed"""
started_at: datetime
finished_at: datetime
from_cache: bool = False
result: Any = None # Tool execution result
type: str = "tool_usage_finished"

View File

@@ -96,10 +96,6 @@ class CrewPlanner:
tasks_summary = []
for idx, task in enumerate(self.tasks):
knowledge_list = self._get_agent_knowledge(task)
agent_tools = (
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
)
task_summary = f"""
Task Number {idx + 1} - {task.description}
"task_description": {task.description}
@@ -107,7 +103,10 @@ class CrewPlanner:
"agent": {task.agent.role if task.agent else "None"}
"agent_goal": {task.agent.goal if task.agent else "None"}
"task_tools": {task.tools}
"agent_tools": {"".join(agent_tools)}"""
"agent_tools": %s%s""" % (
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
)
tasks_summary.append(task_summary)
return " ".join(tasks_summary)

View File

@@ -0,0 +1,254 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are dog Researcher. You
have a lot of experience with dog.\nYour personal goal is: Express hot takes
on dog.\nTo give my best complete final answer to the task respond using the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Give me an analysis around dog.\n\nThis
is the expected criteria for your final answer: 1 bullet point about dog that''s
under 15 words.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '914'
content-type:
- application/json
cookie:
- __cf_bm=xOCSjxqrC.2f2I2kISNioXWWErqIIGNKPkTsoEzcVRY-1742403707-1.0.1.1-bG9XNEXc7EBBNdNl9ff975bzPeeXgfmzAyYN1AesFIuQ2gEcmP67jHmnN6ABv.JJVDhw9oF5SREuZ3PUkYA8Xu6UQeWnIQxKi10X_40KN38;
_cfuvid=RypiiyRYeZ0ZoVTLFkoT3v1Yzk.qiNfGEnh9gk4.bYg-1742403707485-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-proj-********************************************************************************************************************************************************sLcA.
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 922e88ad5d8d2805-SEA
Connection:
- keep-alive
Content-Length:
- '414'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 19 Mar 2025 17:01:49 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_9f1aa8c42b31f8139e80f67a71b11af3
http_version: HTTP/1.1
status_code: 401
- request:
body: '{"messages": [{"role": "system", "content": "You are apple Researcher.
You have a lot of experience with apple.\nYour personal goal is: Express hot
takes on apple.\nTo give my best complete final answer to the task respond using
the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Give me an analysis around
apple.\n\nThis is the expected criteria for your final answer: 1 bullet point
about apple that''s under 15 words.\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '924'
content-type:
- application/json
cookie:
- __cf_bm=xOCSjxqrC.2f2I2kISNioXWWErqIIGNKPkTsoEzcVRY-1742403707-1.0.1.1-bG9XNEXc7EBBNdNl9ff975bzPeeXgfmzAyYN1AesFIuQ2gEcmP67jHmnN6ABv.JJVDhw9oF5SREuZ3PUkYA8Xu6UQeWnIQxKi10X_40KN38;
_cfuvid=RypiiyRYeZ0ZoVTLFkoT3v1Yzk.qiNfGEnh9gk4.bYg-1742403707485-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-proj-********************************************************************************************************************************************************sLcA.
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 922e88adcdfe2805-SEA
Connection:
- keep-alive
Content-Length:
- '414'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 19 Mar 2025 17:01:49 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_2a94d77754a61f5f38f74f0648bf38af
http_version: HTTP/1.1
status_code: 401
- request:
body: '{"messages": [{"role": "system", "content": "You are cat Researcher. You
have a lot of experience with cat.\nYour personal goal is: Express hot takes
on cat.\nTo give my best complete final answer to the task respond using the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Give me an analysis around cat.\n\nThis
is the expected criteria for your final answer: 1 bullet point about cat that''s
under 15 words.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '914'
content-type:
- application/json
cookie:
- __cf_bm=xOCSjxqrC.2f2I2kISNioXWWErqIIGNKPkTsoEzcVRY-1742403707-1.0.1.1-bG9XNEXc7EBBNdNl9ff975bzPeeXgfmzAyYN1AesFIuQ2gEcmP67jHmnN6ABv.JJVDhw9oF5SREuZ3PUkYA8Xu6UQeWnIQxKi10X_40KN38;
_cfuvid=RypiiyRYeZ0ZoVTLFkoT3v1Yzk.qiNfGEnh9gk4.bYg-1742403707485-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-proj-********************************************************************************************************************************************************sLcA.
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 922e88adabe3f8d9-SEA
Connection:
- keep-alive
Content-Length:
- '414'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 19 Mar 2025 17:01:49 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_e06cdb71cffc47ee28b267ed083c3a6b
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -0,0 +1,254 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are dog Researcher. You
have a lot of experience with dog.\nYour personal goal is: Express hot takes
on dog.\nTo give my best complete final answer to the task respond using the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Give me an analysis around dog.\n\nThis
is the expected criteria for your final answer: 1 bullet point about dog that''s
under 15 words.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '914'
content-type:
- application/json
cookie:
- __cf_bm=xOCSjxqrC.2f2I2kISNioXWWErqIIGNKPkTsoEzcVRY-1742403707-1.0.1.1-bG9XNEXc7EBBNdNl9ff975bzPeeXgfmzAyYN1AesFIuQ2gEcmP67jHmnN6ABv.JJVDhw9oF5SREuZ3PUkYA8Xu6UQeWnIQxKi10X_40KN38;
_cfuvid=RypiiyRYeZ0ZoVTLFkoT3v1Yzk.qiNfGEnh9gk4.bYg-1742403707485-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-proj-********************************************************************************************************************************************************sLcA.
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 922e88a8e9432805-SEA
Connection:
- keep-alive
Content-Length:
- '414'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 19 Mar 2025 17:01:48 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_d00f966d049ee99fde6e9e7bf652afa2
http_version: HTTP/1.1
status_code: 401
- request:
body: '{"messages": [{"role": "system", "content": "You are apple Researcher.
You have a lot of experience with apple.\nYour personal goal is: Express hot
takes on apple.\nTo give my best complete final answer to the task respond using
the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Give me an analysis around
apple.\n\nThis is the expected criteria for your final answer: 1 bullet point
about apple that''s under 15 words.\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '924'
content-type:
- application/json
cookie:
- __cf_bm=xOCSjxqrC.2f2I2kISNioXWWErqIIGNKPkTsoEzcVRY-1742403707-1.0.1.1-bG9XNEXc7EBBNdNl9ff975bzPeeXgfmzAyYN1AesFIuQ2gEcmP67jHmnN6ABv.JJVDhw9oF5SREuZ3PUkYA8Xu6UQeWnIQxKi10X_40KN38;
_cfuvid=RypiiyRYeZ0ZoVTLFkoT3v1Yzk.qiNfGEnh9gk4.bYg-1742403707485-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-proj-********************************************************************************************************************************************************sLcA.
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 922e88a91a59c4c8-SEA
Connection:
- keep-alive
Content-Length:
- '414'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 19 Mar 2025 17:01:48 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_6e9a5fd1d83c6eac8070b4e9b9b94f10
http_version: HTTP/1.1
status_code: 401
- request:
body: '{"messages": [{"role": "system", "content": "You are cat Researcher. You
have a lot of experience with cat.\nYour personal goal is: Express hot takes
on cat.\nTo give my best complete final answer to the task respond using the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Give me an analysis around cat.\n\nThis
is the expected criteria for your final answer: 1 bullet point about cat that''s
under 15 words.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '914'
content-type:
- application/json
cookie:
- __cf_bm=xOCSjxqrC.2f2I2kISNioXWWErqIIGNKPkTsoEzcVRY-1742403707-1.0.1.1-bG9XNEXc7EBBNdNl9ff975bzPeeXgfmzAyYN1AesFIuQ2gEcmP67jHmnN6ABv.JJVDhw9oF5SREuZ3PUkYA8Xu6UQeWnIQxKi10X_40KN38;
_cfuvid=RypiiyRYeZ0ZoVTLFkoT3v1Yzk.qiNfGEnh9gk4.bYg-1742403707485-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-proj-********************************************************************************************************************************************************sLcA.
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 922e88a91f2ef8d9-SEA
Connection:
- keep-alive
Content-Length:
- '414'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 19 Mar 2025 17:01:48 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_d0ddaee2449c771a230de2b6362c8d99
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -1,21 +1,17 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: say_hi\nTool Arguments: {}\nTool Description:
Say hi\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [say_hi], just the name, exactly as it''s written.\nAction Input: the
input to the action, just a simple JSON object, enclosed in curly braces, using
\" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Just say
hi\n\nThis is the expected criteria for your final answer: hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
body: '{"messages": [{"role": "system", "content": "You are dog Researcher. You
have a lot of experience with dog.\nYour personal goal is: Express hot takes
on dog.\nTo give my best complete final answer to the task respond using the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Give me an analysis around dog.\n\nThis
is the expected criteria for your final answer: 1 bullet point about dog that''s
under 15 words.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
@@ -24,7 +20,7 @@ interactions:
connection:
- keep-alive
content-length:
- '1277'
- '914'
content-type:
- application/json
host:
@@ -59,7 +55,7 @@ interactions:
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 9241c014df27b9d9-SEA
- 922e88a1b9ef2805-SEA
Connection:
- keep-alive
Content-Length:
@@ -67,14 +63,14 @@ interactions:
Content-Type:
- application/json; charset=utf-8
Date:
- Sat, 22 Mar 2025 01:00:07 GMT
- Wed, 19 Mar 2025 17:01:47 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=KV5GuGyEdKrxlT_rqmqKhQ9TUxeMz_ccZ5K3Xu.mfLc-1742605207-1.0.1.1-1aSRm5P8hBtB3zVmHWH3LcYPoXvhsezGomR1uazQeGCEWL_uUIGP1x3dMkviSWrjf88WKm1snQNn.Eyy8_qewmd7NT7lqUt0MgRWVgfCOAY;
path=/; expires=Sat, 22-Mar-25 01:30:07 GMT; domain=.api.openai.com; HttpOnly;
- __cf_bm=xOCSjxqrC.2f2I2kISNioXWWErqIIGNKPkTsoEzcVRY-1742403707-1.0.1.1-bG9XNEXc7EBBNdNl9ff975bzPeeXgfmzAyYN1AesFIuQ2gEcmP67jHmnN6ABv.JJVDhw9oF5SREuZ3PUkYA8Xu6UQeWnIQxKi10X_40KN38;
path=/; expires=Wed, 19-Mar-25 17:31:47 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=1KExsJlCZ0R2Kp3gV2Y71_SiQ0R2D9rAbONnmJq7tjk-1742605207873-0.0.1.1-604800000;
- _cfuvid=RypiiyRYeZ0ZoVTLFkoT3v1Yzk.qiNfGEnh9gk4.bYg-1742403707485-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
X-Content-Type-Options:
- nosniff
@@ -87,7 +83,7 @@ interactions:
vary:
- Origin
x-request-id:
- req_b2233dbbb60c3ebb5717c05ec5150588
- req_5980db57b01be333b0f977bb03a15bca
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -3,8 +3,6 @@
import hashlib
import json
import os
from functools import partial
from typing import Tuple, Union
from unittest.mock import MagicMock, patch
import pytest
@@ -217,75 +215,6 @@ def test_multiple_output_type_error():
)
def test_guardrail_type_error():
desc = "Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting."
expected_output = "Bullet point list of 5 interesting ideas."
# Lambda function
Task(
description=desc,
expected_output=expected_output,
guardrail=lambda x: (True, x),
)
# Function
def guardrail_fn(x: TaskOutput) -> tuple[bool, TaskOutput]:
return (True, x)
Task(
description=desc,
expected_output=expected_output,
guardrail=guardrail_fn,
)
class Object:
def guardrail_fn(self, x: TaskOutput) -> tuple[bool, TaskOutput]:
return (True, x)
@classmethod
def guardrail_class_fn(cls, x: TaskOutput) -> tuple[bool, str]:
return (True, x)
@staticmethod
def guardrail_static_fn(x: TaskOutput) -> tuple[bool, Union[str, TaskOutput]]:
return (True, x)
obj = Object()
# Method
Task(
description=desc,
expected_output=expected_output,
guardrail=obj.guardrail_fn,
)
# Class method
Task(
description=desc,
expected_output=expected_output,
guardrail=Object.guardrail_class_fn,
)
# Static method
Task(
description=desc,
expected_output=expected_output,
guardrail=Object.guardrail_static_fn,
)
def error_fn(x: TaskOutput, y: bool) -> Tuple[bool, TaskOutput]:
return (y, x)
Task(
description=desc,
expected_output=expected_output,
guardrail=partial(error_fn, y=True),
)
with pytest.raises(ValidationError):
Task(
description=desc,
expected_output=expected_output,
guardrail=error_fn,
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_pydantic_sequential():
class ScoreOutput(BaseModel):

View File

@@ -0,0 +1,209 @@
"""Test for the kickoff_for_each_parallel method in Crew class."""
import concurrent.futures
from unittest.mock import MagicMock, patch
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.task import Task
def test_kickoff_for_each_parallel_single_input():
"""Tests if kickoff_for_each_parallel works with a single input."""
inputs = [{"topic": "dog"}]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
# Mock the kickoff method to avoid API calls
expected_output = CrewOutput(raw="Dogs are loyal companions.")
with patch.object(Crew, "kickoff", return_value=expected_output):
results = crew.kickoff_for_each_parallel(inputs=inputs)
assert len(results) == 1
assert results[0].raw == "Dogs are loyal companions."
def test_kickoff_for_each_parallel_multiple_inputs():
"""Tests if kickoff_for_each_parallel works with multiple inputs."""
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
# Mock the kickoff method to avoid API calls
expected_outputs = [
CrewOutput(raw="Dogs are loyal companions."),
CrewOutput(raw="Cats are independent pets."),
CrewOutput(raw="Apples are nutritious fruits."),
]
with patch.object(Crew, "copy") as mock_copy:
# Setup mock crew copies
crew_copies = []
for i in range(len(inputs)):
crew_copy = MagicMock()
crew_copy.kickoff.return_value = expected_outputs[i]
crew_copies.append(crew_copy)
mock_copy.side_effect = crew_copies
results = crew.kickoff_for_each_parallel(inputs=inputs)
assert len(results) == len(inputs)
# Since ThreadPoolExecutor returns results in completion order, not input order,
# we just check that all expected outputs are in the results
result_texts = [result.raw for result in results]
expected_texts = [output.raw for output in expected_outputs]
for expected_text in expected_texts:
assert expected_text in result_texts
def test_kickoff_for_each_parallel_empty_input():
"""Tests if kickoff_for_each_parallel handles an empty input list."""
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each_parallel(inputs=[])
assert results == []
def test_kickoff_for_each_parallel_invalid_input():
"""Tests if kickoff_for_each_parallel raises TypeError for invalid input types."""
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
# No need to mock here since we're testing input validation which happens before any API calls
with pytest.raises(TypeError):
# Pass a string instead of a list
crew.kickoff_for_each_parallel("invalid input")
def test_kickoff_for_each_parallel_error_handling():
"""Tests error handling in kickoff_for_each_parallel when kickoff raises an error."""
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
with patch.object(Crew, "copy") as mock_copy:
# Setup mock crew copies
crew_copies = []
for i in range(len(inputs)):
crew_copy = MagicMock()
# Make the third crew copy raise an exception
if i == 2:
crew_copy.kickoff.side_effect = Exception("Simulated kickoff error")
else:
crew_copy.kickoff.return_value = f"Output for {inputs[i]['topic']}"
crew_copies.append(crew_copy)
mock_copy.side_effect = crew_copies
with pytest.raises(Exception, match="Simulated kickoff error"):
crew.kickoff_for_each_parallel(inputs=inputs)
def test_kickoff_for_each_parallel_max_workers():
"""Tests if kickoff_for_each_parallel respects the max_workers parameter."""
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
# Mock both ThreadPoolExecutor and crew.copy to avoid API calls
with patch.object(concurrent.futures, "ThreadPoolExecutor", wraps=concurrent.futures.ThreadPoolExecutor) as mock_executor:
with patch.object(Crew, "copy") as mock_copy:
# Setup mock crew copies
crew_copies = []
for _ in range(len(inputs)):
crew_copy = MagicMock()
crew_copy.kickoff.return_value = CrewOutput(raw="Test output")
crew_copies.append(crew_copy)
mock_copy.side_effect = crew_copies
crew.kickoff_for_each_parallel(inputs=inputs, max_workers=2)
mock_executor.assert_called_once_with(max_workers=2)

View File

@@ -1,92 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that returns structured data\nYour personal goal is: Return
a dictionary result\nYou ONLY have access to the following tools, and should
NEVER make up tools that are not listed here:\n\nTool Name: dict_result\nTool
Arguments: {}\nTool Description: Return a dictionary result\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [dict_result],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple JSON object, enclosed in curly braces, using \" to wrap keys and
values.\nObservation: the result of the action\n```\n\nOnce all necessary information
is gathered, return the following format:\n\n```\nThought: I now know the final
answer\nFinal Answer: the final answer to the original input question\n```"},
{"role": "user", "content": "\nCurrent Task: Return a dictionary result\n\nThis
is the expected criteria for your final answer: Dictionary with message and
data\nyou MUST return the actual complete content as the final answer, not a
summary.\n\nBegin! This is VERY important to you, use the tools available and
give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1378'
content-type:
- application/json
cookie:
- __cf_bm=KV5GuGyEdKrxlT_rqmqKhQ9TUxeMz_ccZ5K3Xu.mfLc-1742605207-1.0.1.1-1aSRm5P8hBtB3zVmHWH3LcYPoXvhsezGomR1uazQeGCEWL_uUIGP1x3dMkviSWrjf88WKm1snQNn.Eyy8_qewmd7NT7lqUt0MgRWVgfCOAY;
_cfuvid=1KExsJlCZ0R2Kp3gV2Y71_SiQ0R2D9rAbONnmJq7tjk-1742605207873-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-proj-********************************************************************************************************************************************************sLcA.
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 9241c01b0df3b9d9-SEA
Connection:
- keep-alive
Content-Length:
- '414'
Content-Type:
- application/json; charset=utf-8
Date:
- Sat, 22 Mar 2025 01:00:08 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_d0eae92c72f0f64514d32384a7f27a9a
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -1,91 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that returns None\nYour personal goal is: Return None as
result\nYou ONLY have access to the following tools, and should NEVER make up
tools that are not listed here:\n\nTool Name: none_result\nTool Arguments: {}\nTool
Description: Return None as result\n\nIMPORTANT: Use the following format in
your response:\n\n```\nThought: you should always think about what to do\nAction:
the action to take, only one name of [none_result], just the name, exactly as
it''s written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"}, {"role": "user", "content":
"\nCurrent Task: Return None as result\n\nThis is the expected criteria for
your final answer: None\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1324'
content-type:
- application/json
cookie:
- __cf_bm=KV5GuGyEdKrxlT_rqmqKhQ9TUxeMz_ccZ5K3Xu.mfLc-1742605207-1.0.1.1-1aSRm5P8hBtB3zVmHWH3LcYPoXvhsezGomR1uazQeGCEWL_uUIGP1x3dMkviSWrjf88WKm1snQNn.Eyy8_qewmd7NT7lqUt0MgRWVgfCOAY;
_cfuvid=1KExsJlCZ0R2Kp3gV2Y71_SiQ0R2D9rAbONnmJq7tjk-1742605207873-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-proj-********************************************************************************************************************************************************sLcA.
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 9241c01eea3db9d9-SEA
Connection:
- keep-alive
Content-Length:
- '414'
Content-Type:
- application/json; charset=utf-8
Date:
- Sat, 22 Mar 2025 01:00:09 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_00b89378d512de492b7c90876d0e3c8a
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -1,34 +0,0 @@
from unittest.mock import Mock
from crewai.utilities.events.base_events import CrewEvent
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
class TestEvent(CrewEvent):
pass
def test_specific_event_handler():
mock_handler = Mock()
@crewai_event_bus.on(TestEvent)
def handler(source, event):
mock_handler(source, event)
event = TestEvent(type="test_event")
crewai_event_bus.emit("source_object", event)
mock_handler.assert_called_once_with("source_object", event)
def test_wildcard_event_handler():
mock_handler = Mock()
@crewai_event_bus.on(CrewEvent)
def handler(source, event):
mock_handler(source, event)
event = TestEvent(type="test_event")
crewai_event_bus.emit("source_object", event)
mock_handler.assert_called_once_with("source_object", event)

View File

@@ -12,7 +12,6 @@ from crewai.flow.flow import Flow, listen, start
from crewai.llm import LLM
from crewai.task import Task
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_calling import ToolCalling
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
@@ -330,137 +329,35 @@ class SayHiTool(BaseTool):
return "hi"
class DictResultTool(BaseTool):
name: str = Field(default="dict_result", description="The name of the tool")
description: str = Field(
default="Return a dictionary result",
description="The description of the tool"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tools_emits_finished_events():
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def handle_tool_end(source, event):
received_events.append(event)
agent = Agent(
role="base_agent",
goal="Just say hi",
backstory="You are a helpful assistant that just says hi",
tools=[SayHiTool()],
)
def _run(self) -> dict:
return {"message": "success", "data": {"value": 42}}
class NoneResultTool(BaseTool):
name: str = Field(default="none_result", description="The name of the tool")
description: str = Field(
default="Return None as result",
description="The description of the tool"
task = Task(
description="Just say hi",
expected_output="hi",
agent=agent,
)
def _run(self) -> None:
return None
def test_tools_emits_finished_events_with_string_result():
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def handle_tool_end(source, event):
received_events.append(event)
# Create a mock event with string result
tool = SayHiTool()
tool_calling = ToolCalling(tool_name=tool.name, arguments={}, log="")
event_data = {
"agent_key": "test_agent_key",
"agent_role": "test_agent_role",
"tool_name": tool.name,
"tool_args": {},
"tool_class": tool.__class__.__name__,
"started_at": datetime.now(),
"finished_at": datetime.now(),
"from_cache": False,
"result": "hi"
}
# Emit the event
crewai_event_bus.emit(None, ToolUsageFinishedEvent(**event_data))
# Verify the event was received with the correct result
crew = Crew(agents=[agent], tasks=[task], name="TestCrew")
crew.kickoff()
assert len(received_events) == 1
assert received_events[0].agent_key == "test_agent_key"
assert received_events[0].agent_role == "test_agent_role"
assert received_events[0].tool_name == tool.name
assert received_events[0].agent_key == agent.key
assert received_events[0].agent_role == agent.role
assert received_events[0].tool_name == SayHiTool().name
assert received_events[0].tool_args == {}
assert received_events[0].type == "tool_usage_finished"
assert isinstance(received_events[0].timestamp, datetime)
assert received_events[0].result == "hi"
def test_tools_emits_finished_events_with_dict_result():
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def handle_tool_end(source, event):
received_events.append(event)
# Create a mock event with dictionary result
tool = DictResultTool()
tool_calling = ToolCalling(tool_name=tool.name, arguments={}, log="")
dict_result = {"message": "success", "data": {"value": 42}}
event_data = {
"agent_key": "test_agent_key",
"agent_role": "test_agent_role",
"tool_name": tool.name,
"tool_args": {},
"tool_class": tool.__class__.__name__,
"started_at": datetime.now(),
"finished_at": datetime.now(),
"from_cache": False,
"result": dict_result
}
# Emit the event
crewai_event_bus.emit(None, ToolUsageFinishedEvent(**event_data))
# Verify the event was received with the correct result
assert len(received_events) == 1
assert received_events[0].agent_key == "test_agent_key"
assert received_events[0].agent_role == "test_agent_role"
assert received_events[0].tool_name == tool.name
assert received_events[0].tool_args == {}
assert received_events[0].type == "tool_usage_finished"
assert isinstance(received_events[0].timestamp, datetime)
assert isinstance(received_events[0].result, dict)
assert received_events[0].result["message"] == "success"
assert received_events[0].result["data"]["value"] == 42
def test_tools_emits_finished_events_with_none_result():
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def handle_tool_end(source, event):
received_events.append(event)
# Create a mock event with None result
tool = NoneResultTool()
tool_calling = ToolCalling(tool_name=tool.name, arguments={}, log="")
event_data = {
"agent_key": "test_agent_key",
"agent_role": "test_agent_role",
"tool_name": tool.name,
"tool_args": {},
"tool_class": tool.__class__.__name__,
"started_at": datetime.now(),
"finished_at": datetime.now(),
"from_cache": False,
"result": None
}
# Emit the event
crewai_event_bus.emit(None, ToolUsageFinishedEvent(**event_data))
# Verify the event was received with the correct result
assert len(received_events) == 1
assert received_events[0].agent_key == "test_agent_key"
assert received_events[0].agent_role == "test_agent_role"
assert received_events[0].tool_name == tool.name
assert received_events[0].tool_args == {}
assert received_events[0].type == "tool_usage_finished"
assert isinstance(received_events[0].timestamp, datetime)
assert received_events[0].result is None
@pytest.mark.vcr(filter_headers=["authorization"])