Compare commits

...

21 Commits

Author SHA1 Message Date
lucasgomide
da5f60e7f3 fix: properly clone ConditionalTask instances
Previously copying a Task always returned an instance of Task even when we are cloning a subclass, such ConditionalTask.
This commit ensures that the clone preserve the original class type
2025-03-25 16:05:06 -03:00
devin-ai-integration[bot]
807c13e144 Add support for custom LLM implementations (#2277)
* Add support for custom LLM implementations

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import sorting and type annotations

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix linting issues with import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix type errors in crew.py by updating tool-related methods to return List[BaseTool]

Co-Authored-By: Joe Moura <joao@crewai.com>

* Enhance custom LLM implementation with better error handling, documentation, and test coverage

Co-Authored-By: Joe Moura <joao@crewai.com>

* Refactor LLM module by extracting BaseLLM to a separate file

This commit moves the BaseLLM abstract base class from llm.py to a new file llms/base_llm.py to improve code organization. The changes include:

- Creating a new file src/crewai/llms/base_llm.py
- Moving the BaseLLM class to the new file
- Updating imports in __init__.py and llm.py to reflect the new location
- Updating test cases to use the new import path

The refactoring maintains the existing functionality while improving the project's module structure.

* Add AISuite LLM support and update dependencies

- Integrate AISuite as a new third-party LLM option
- Update pyproject.toml and uv.lock to include aisuite package
- Modify BaseLLM to support more flexible initialization
- Remove unnecessary LLM imports across multiple files
- Implement AISuiteLLM with basic chat completion functionality

* Update AISuiteLLM and LLM utility type handling

- Modify AISuiteLLM to support more flexible input types for messages
- Update type hints in AISuiteLLM to allow string or list of message dictionaries
- Enhance LLM utility function to support broader LLM type annotations
- Remove default `self.stop` attribute from BaseLLM initialization

* Update LLM imports and type hints across multiple files

- Modify imports in crew_chat.py to use LLM instead of BaseLLM
- Update type hints in llm_utils.py to use LLM type
- Add optional `stop` parameter to BaseLLM initialization
- Refactor type handling for LLM creation and usage

* Improve stop words handling in CrewAgentExecutor

- Add support for handling existing stop words in LLM configuration
- Ensure stop words are correctly merged and deduplicated
- Update type hints to support both LLM and BaseLLM types

* Remove abstract method set_callbacks from BaseLLM class

* Enhance CustomLLM and JWTAuthLLM initialization with model parameter

- Update CustomLLM to accept a model parameter during initialization
- Modify test cases to include the new model argument
- Ensure JWTAuthLLM and TimeoutHandlingLLM also utilize the model parameter in their constructors
- Update type hints in create_llm function to support both LLM and BaseLLM types

* Enhance create_llm function to support BaseLLM type

- Update the create_llm function to accept both LLM and BaseLLM instances
- Ensure compatibility with existing LLM handling logic

* Update type hint for initialize_chat_llm to support BaseLLM

- Modify the return type of initialize_chat_llm function to allow for both LLM and BaseLLM instances
- Ensure compatibility with recent changes in create_llm function

* Refactor AISuiteLLM to include tools parameter in completion methods

- Update the _prepare_completion_params method to accept an optional tools parameter
- Modify the chat completion method to utilize the new tools parameter for enhanced functionality
- Clean up print statements for better code clarity

* Remove unused tool_calls handling in AISuiteLLM chat completion method for cleaner code.

* Refactor Crew class and LLM hierarchy for improved type handling and code clarity

- Update Crew class methods to enhance readability with consistent formatting and type hints.
- Change LLM class to inherit from BaseLLM for better structure.
- Remove unnecessary type checks and streamline tool handling in CrewAgentExecutor.
- Adjust BaseLLM to provide default implementations for stop words and context window size methods.
- Clean up AISuiteLLM by removing unused methods related to stop words and context window size.

* Remove unused `stream` method from `BaseLLM` class to enhance code clarity and maintainability.

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-25 12:39:08 -04:00
Tony Kipkemboi
3dea3d0183 docs: reorganize observability docs and update titles (#2467) 2025-03-25 08:14:52 -07:00
Tony Kipkemboi
35cb7fcf4d Merge pull request #2463 from ayulockin/main
docs: Add documentation for W&B Weave
2025-03-25 09:48:09 -04:00
ayulockin
d2a9a4a4e4 Revert "remove uv.lock"
This reverts commit e62e9c7401.
2025-03-25 19:05:58 +05:30
ayulockin
e62e9c7401 remove uv.lock 2025-03-25 19:04:51 +05:30
ayulockin
3c5031e711 docs.json 2025-03-25 19:04:14 +05:30
ayulockin
82e84c0f88 features and resources 2025-03-25 16:43:14 +05:30
ayulockin
2c550dc175 add weave docs 2025-03-25 15:46:41 +05:30
Tony Kipkemboi
bdc92deade docs: update changelog dates (#2437)
* docs: update changelog dates

* docs: add aws bedrock tools docs

* docs: fix incorrect respect_context_window parameter in Crew example
2025-03-24 12:06:50 -04:00
Brandon Hancock (bhancock_ai)
ed1f009c64 Feat/improve yaml extraction (#2428)
* Support wildcard handling in `emit()`

Change `emit()` to call handlers registered for parent classes using
`isinstance()`. Ensures that base event handlers receive derived
events.

* Fix failing test

* Remove unused variable

* update interpolation to work with example response types in yaml docs

* make tests

* fix circular deps

* Fixing interpolation imports

* Improve test

---------

Co-authored-by: Vinicius Brasil <vini@hey.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-03-21 18:59:55 -07:00
Matisse
bb3829a9ed docs: Update model reference in LLM configuration (#2267)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 15:12:26 -04:00
Fernando Galves
0a116202f0 Update the context window size for Amazon Bedrock FM- llm.py (#2304)
Update the context window size for Amazon Bedrock Foundation Models.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-03-21 14:48:25 -04:00
Stefano Baccianella
4daa88fa59 As explained in https://github.com/mangiucugna/json_repair?tab=readme-ov-file#performance-considerations we can skip a wasteful json.loads() here and save quite some time (#2397)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-03-21 14:25:19 -04:00
Parth Patel
53067f8b92 add Mem0 OSS support (#2429)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:57:24 -04:00
Saurabh Misra
d3a09c3180 ️ Speed up method CrewAgentParser._clean_action by 427,565% (#2382)
Here is the optimized version of the program.

Co-authored-by: codeflash-ai[bot] <148906541+codeflash-ai[bot]@users.noreply.github.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:51:14 -04:00
Saurabh Misra
4d7aacb5f2 ️ Speed up method Repository.is_git_repo by 72,270% (#2381)
Here is the optimized version of the `Repository` class.

Co-authored-by: codeflash-ai[bot] <148906541+codeflash-ai[bot]@users.noreply.github.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:43:48 -04:00
Julio Peixoto
6b1cf78e41 docs: add detailed docstrings to Telemetry class methods (#2377)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:34:16 -04:00
Patcher
80f1a88b63 Upgrade OTel SDK version to 1.30.0 (#2375)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:26:50 -04:00
Jorge Gonzalez
32da76a2ca Use task in the note about how methods names need to match task names (#2355)
The note is about the task but mentions the agent incorrectly.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:17:43 -04:00
Gustavo Satheler
3aa48dcd58 fix: move agent tools for a variable instead of use format (#2319)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 12:32:54 -04:00
46 changed files with 2888 additions and 302 deletions

View File

@@ -4,7 +4,7 @@ description: View the latest updates and changes to CrewAI
icon: timeline
---
<Update label="2024-03-17" description="v0.108.0">
<Update label="2025-03-17" description="v0.108.0">
**Features**
- Converted tabs to spaces in `crew.py` template
- Enhanced LLM Streaming Response Handling and Event System
@@ -24,7 +24,7 @@ icon: timeline
- Added documentation for `ApifyActorsTool`
</Update>
<Update label="2024-03-10" description="v0.105.0">
<Update label="2025-03-10" description="v0.105.0">
**Core Improvements & Fixes**
- Fixed issues with missing template variables and user memory configuration
- Improved async flow support and addressed agent response formatting
@@ -45,7 +45,7 @@ icon: timeline
- Fixed typos in prompts and updated Amazon Bedrock model listings
</Update>
<Update label="2024-02-12" description="v0.102.0">
<Update label="2025-02-12" description="v0.102.0">
**Core Improvements & Fixes**
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
@@ -65,7 +65,7 @@ icon: timeline
- Fixed Various Typos & Formatting Issues
</Update>
<Update label="2024-01-28" description="v0.100.0">
<Update label="2025-01-28" description="v0.100.0">
**Features**
- Add Composio docs
- Add SageMaker as a LLM provider
@@ -80,7 +80,7 @@ icon: timeline
- Improve formatting and clarity in CLI and Composio Tool docs
</Update>
<Update label="2024-01-20" description="v0.98.0">
<Update label="2025-01-20" description="v0.98.0">
**Features**
- Conversation crew v1
- Add unique ID to flow states
@@ -101,7 +101,7 @@ icon: timeline
- Fixed typos, nested pydantic model issue, and docling issues
</Update>
<Update label="2024-01-04" description="v0.95.0">
<Update label="2025-01-04" description="v0.95.0">
**New Features**
- Adding Multimodal Abilities to Crew
- Programatic Guardrails
@@ -131,7 +131,7 @@ icon: timeline
- Suppressed userWarnings from litellm pydantic issues
</Update>
<Update label="2023-12-05" description="v0.86.0">
<Update label="2024-12-05" description="v0.86.0">
**Changes**
- Remove all references to pipeline and pipeline router
- Add Nvidia NIM as provider in Custom LLM
@@ -141,7 +141,7 @@ icon: timeline
- Simplify template crew
</Update>
<Update label="2023-12-04" description="v0.85.0">
<Update label="2024-12-04" description="v0.85.0">
**Features**
- Added knowledge to agent level
- Feat/remove langchain
@@ -161,7 +161,7 @@ icon: timeline
- Improvements to LLM Configuration and Usage
</Update>
<Update label="2023-11-25" description="v0.83.0">
<Update label="2024-11-25" description="v0.83.0">
**New Features**
- New before_kickoff and after_kickoff crew callbacks
- Support to pre-seed agents with Knowledge
@@ -178,7 +178,7 @@ icon: timeline
- Update Docs
</Update>
<Update label="2023-11-13" description="v0.80.0">
<Update label="2024-11-13" description="v0.80.0">
**Fixes**
- Fixing Tokens callback replacement bug
- Fixing Step callback issue

View File

@@ -1,6 +1,7 @@
---
title: 'Event Listeners'
description: 'Tap into CrewAI events to build custom integrations and monitoring'
icon: spinner
---
# Event Listeners

View File

@@ -59,7 +59,7 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
goal: Conduct comprehensive research and analysis
backstory: A dedicated research professional with years of experience
verbose: true
llm: openai/gpt-4o-mini # your model here
llm: openai/gpt-4o-mini # your model here
# (see provider configuration examples below for more)
```
@@ -111,7 +111,7 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
## Provider Configuration Examples
CrewAI supports a multitude of LLM providers, each offering unique features, authentication methods, and model capabilities.
CrewAI supports a multitude of LLM providers, each offering unique features, authentication methods, and model capabilities.
In this section, you'll find detailed examples that help you select, configure, and optimize the LLM that best fits your project's needs.
<AccordionGroup>
@@ -121,7 +121,7 @@ In this section, you'll find detailed examples that help you select, configure,
```toml Code
# Required
OPENAI_API_KEY=sk-...
# Optional
OPENAI_API_BASE=<custom-base-url>
OPENAI_ORGANIZATION=<your-org-id>
@@ -226,7 +226,7 @@ In this section, you'll find detailed examples that help you select, configure,
AZURE_API_KEY=<your-api-key>
AZURE_API_BASE=<your-resource-url>
AZURE_API_VERSION=<api-version>
# Optional
AZURE_AD_TOKEN=<your-azure-ad-token>
AZURE_API_TYPE=<your-azure-api-type>
@@ -289,7 +289,7 @@ In this section, you'll find detailed examples that help you select, configure,
| Mistral 8x7B Instruct | Up to 32k tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
</Accordion>
<Accordion title="Amazon SageMaker">
```toml Code
AWS_ACCESS_KEY_ID=<your-access-key>
@@ -474,7 +474,7 @@ In this section, you'll find detailed examples that help you select, configure,
WATSONX_URL=<your-url>
WATSONX_APIKEY=<your-apikey>
WATSONX_PROJECT_ID=<your-project-id>
# Optional
WATSONX_TOKEN=<your-token>
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id>
@@ -491,7 +491,7 @@ In this section, you'll find detailed examples that help you select, configure,
<Accordion title="Ollama (Local LLMs)">
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
2. Run a model: `ollama run llama3`
3. Configure:
```python Code
@@ -600,7 +600,7 @@ In this section, you'll find detailed examples that help you select, configure,
```toml Code
OPENROUTER_API_KEY=<your-api-key>
```
Example usage in your CrewAI project:
```python Code
llm = LLM(
@@ -723,7 +723,7 @@ Learn how to get the most out of your LLM configuration:
- Small tasks (up to 4K tokens): Standard models
- Medium tasks (between 4K-32K): Enhanced models
- Large tasks (over 32K): Large context models
```python
# Configure model with appropriate settings
llm = LLM(
@@ -760,11 +760,11 @@ Learn how to get the most out of your LLM configuration:
<Warning>
Most authentication issues can be resolved by checking API key format and environment variable names.
</Warning>
```bash
# OpenAI
OPENAI_API_KEY=sk-...
# Anthropic
ANTHROPIC_API_KEY=sk-ant-...
```
@@ -773,11 +773,11 @@ Learn how to get the most out of your LLM configuration:
<Check>
Always include the provider prefix in model names
</Check>
```python
# Correct
llm = LLM(model="openai/gpt-4")
# Incorrect
llm = LLM(model="gpt-4")
```
@@ -786,5 +786,10 @@ Learn how to get the most out of your LLM configuration:
<Tip>
Use larger context models for extensive tasks
</Tip>
```python
# Large context model
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>

642
docs/custom_llm.md Normal file
View File

@@ -0,0 +1,642 @@
# Custom LLM Implementations
CrewAI now supports custom LLM implementations through the `BaseLLM` abstract base class. This allows you to create your own LLM implementations that don't rely on litellm's authentication mechanism.
## Using Custom LLM Implementations
To create a custom LLM implementation, you need to:
1. Inherit from the `BaseLLM` abstract base class
2. Implement the required methods:
- `call()`: The main method to call the LLM with messages
- `supports_function_calling()`: Whether the LLM supports function calling
- `supports_stop_words()`: Whether the LLM supports stop words
- `get_context_window_size()`: The context window size of the LLM
## Example: Basic Custom LLM
```python
from crewai import BaseLLM
from typing import Any, Dict, List, Optional, Union
class CustomLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__() # Initialize the base class to set default attributes
if not api_key or not isinstance(api_key, str):
raise ValueError("Invalid API key: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.api_key = api_key
self.endpoint = endpoint
self.stop = [] # You can customize stop words if needed
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Call the LLM with the given messages.
Args:
messages: Input messages for the LLM.
tools: Optional list of tool schemas for function calling.
callbacks: Optional list of callback functions.
available_functions: Optional dict mapping function names to callables.
Returns:
Either a text response from the LLM or the result of a tool function call.
Raises:
TimeoutError: If the LLM request times out.
RuntimeError: If the LLM request fails for other reasons.
ValueError: If the response format is invalid.
"""
# Implement your own logic to call the LLM
# For example, using requests:
import requests
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30 # Set a reasonable timeout
)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
def supports_function_calling(self) -> bool:
"""Check if the LLM supports function calling.
Returns:
True if the LLM supports function calling, False otherwise.
"""
# Return True if your LLM supports function calling
return True
def supports_stop_words(self) -> bool:
"""Check if the LLM supports stop words.
Returns:
True if the LLM supports stop words, False otherwise.
"""
# Return True if your LLM supports stop words
return True
def get_context_window_size(self) -> int:
"""Get the context window size of the LLM.
Returns:
The context window size as an integer.
"""
# Return the context window size of your LLM
return 8192
```
## Error Handling Best Practices
When implementing custom LLMs, it's important to handle errors properly to ensure robustness and reliability. Here are some best practices:
### 1. Implement Try-Except Blocks for API Calls
Always wrap API calls in try-except blocks to handle different types of errors:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
try:
# API call implementation
response = requests.post(
self.endpoint,
headers=self.headers,
json=self.prepare_payload(messages),
timeout=30 # Set a reasonable timeout
)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
```
### 2. Implement Retry Logic for Transient Failures
For transient failures like network issues or rate limiting, implement retry logic with exponential backoff:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
import time
max_retries = 3
retry_delay = 1 # seconds
for attempt in range(max_retries):
try:
response = requests.post(
self.endpoint,
headers=self.headers,
json=self.prepare_payload(messages),
timeout=30
)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except (requests.Timeout, requests.ConnectionError) as e:
if attempt < max_retries - 1:
time.sleep(retry_delay * (2 ** attempt)) # Exponential backoff
continue
raise TimeoutError(f"LLM request failed after {max_retries} attempts: {str(e)}")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
```
### 3. Validate Input Parameters
Always validate input parameters to prevent runtime errors:
```python
def __init__(self, api_key: str, endpoint: str):
super().__init__()
if not api_key or not isinstance(api_key, str):
raise ValueError("Invalid API key: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.api_key = api_key
self.endpoint = endpoint
```
### 4. Handle Authentication Errors Gracefully
Provide clear error messages for authentication failures:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
try:
response = requests.post(self.endpoint, headers=self.headers, json=data)
if response.status_code == 401:
raise ValueError("Authentication failed: Invalid API key or token")
elif response.status_code == 403:
raise ValueError("Authorization failed: Insufficient permissions")
response.raise_for_status()
# Process response
except Exception as e:
# Handle error
raise
```
## Example: JWT-based Authentication
For services that use JWT-based authentication instead of API keys, you can implement a custom LLM like this:
```python
from crewai import BaseLLM, Agent, Task
from typing import Any, Dict, List, Optional, Union
class JWTAuthLLM(BaseLLM):
def __init__(self, jwt_token: str, endpoint: str):
super().__init__() # Initialize the base class to set default attributes
if not jwt_token or not isinstance(jwt_token, str):
raise ValueError("Invalid JWT token: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.jwt_token = jwt_token
self.endpoint = endpoint
self.stop = [] # You can customize stop words if needed
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Call the LLM with JWT authentication.
Args:
messages: Input messages for the LLM.
tools: Optional list of tool schemas for function calling.
callbacks: Optional list of callback functions.
available_functions: Optional dict mapping function names to callables.
Returns:
Either a text response from the LLM or the result of a tool function call.
Raises:
TimeoutError: If the LLM request times out.
RuntimeError: If the LLM request fails for other reasons.
ValueError: If the response format is invalid.
"""
# Implement your own logic to call the LLM with JWT authentication
import requests
try:
headers = {
"Authorization": f"Bearer {self.jwt_token}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30 # Set a reasonable timeout
)
if response.status_code == 401:
raise ValueError("Authentication failed: Invalid JWT token")
elif response.status_code == 403:
raise ValueError("Authorization failed: Insufficient permissions")
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
def supports_function_calling(self) -> bool:
"""Check if the LLM supports function calling.
Returns:
True if the LLM supports function calling, False otherwise.
"""
return True
def supports_stop_words(self) -> bool:
"""Check if the LLM supports stop words.
Returns:
True if the LLM supports stop words, False otherwise.
"""
return True
def get_context_window_size(self) -> int:
"""Get the context window size of the LLM.
Returns:
The context window size as an integer.
"""
return 8192
```
## Troubleshooting
Here are some common issues you might encounter when implementing custom LLMs and how to resolve them:
### 1. Authentication Failures
**Symptoms**: 401 Unauthorized or 403 Forbidden errors
**Solutions**:
- Verify that your API key or JWT token is valid and not expired
- Check that you're using the correct authentication header format
- Ensure that your token has the necessary permissions
### 2. Timeout Issues
**Symptoms**: Requests taking too long or timing out
**Solutions**:
- Implement timeout handling as shown in the examples
- Use retry logic with exponential backoff
- Consider using a more reliable network connection
### 3. Response Parsing Errors
**Symptoms**: KeyError, IndexError, or ValueError when processing responses
**Solutions**:
- Validate the response format before accessing nested fields
- Implement proper error handling for malformed responses
- Check the API documentation for the expected response format
### 4. Rate Limiting
**Symptoms**: 429 Too Many Requests errors
**Solutions**:
- Implement rate limiting in your custom LLM
- Add exponential backoff for retries
- Consider using a token bucket algorithm for more precise rate control
## Advanced Features
### Logging
Adding logging to your custom LLM can help with debugging and monitoring:
```python
import logging
from typing import Any, Dict, List, Optional, Union
class LoggingLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.logger = logging.getLogger("crewai.llm.custom")
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
self.logger.info(f"Calling LLM with {len(messages) if isinstance(messages, list) else 1} messages")
try:
# API call implementation
response = self._make_api_call(messages, tools)
self.logger.debug(f"LLM response received: {response[:100]}...")
return response
except Exception as e:
self.logger.error(f"LLM call failed: {str(e)}")
raise
```
### Rate Limiting
Implementing rate limiting can help avoid overwhelming the LLM API:
```python
import time
from typing import Any, Dict, List, Optional, Union
class RateLimitedLLM(BaseLLM):
def __init__(
self,
api_key: str,
endpoint: str,
requests_per_minute: int = 60
):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.requests_per_minute = requests_per_minute
self.request_times: List[float] = []
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
self._enforce_rate_limit()
# Record this request time
self.request_times.append(time.time())
# Make the actual API call
return self._make_api_call(messages, tools)
def _enforce_rate_limit(self) -> None:
"""Enforce the rate limit by waiting if necessary."""
now = time.time()
# Remove request times older than 1 minute
self.request_times = [t for t in self.request_times if now - t < 60]
if len(self.request_times) >= self.requests_per_minute:
# Calculate how long to wait
oldest_request = min(self.request_times)
wait_time = 60 - (now - oldest_request)
if wait_time > 0:
time.sleep(wait_time)
```
### Metrics Collection
Collecting metrics can help you monitor your LLM usage:
```python
import time
from typing import Any, Dict, List, Optional, Union
class MetricsCollectingLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.metrics: Dict[str, Any] = {
"total_calls": 0,
"total_tokens": 0,
"errors": 0,
"latency": []
}
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
start_time = time.time()
self.metrics["total_calls"] += 1
try:
response = self._make_api_call(messages, tools)
# Estimate tokens (simplified)
if isinstance(messages, str):
token_estimate = len(messages) // 4
else:
token_estimate = sum(len(m.get("content", "")) // 4 for m in messages)
self.metrics["total_tokens"] += token_estimate
return response
except Exception as e:
self.metrics["errors"] += 1
raise
finally:
latency = time.time() - start_time
self.metrics["latency"].append(latency)
def get_metrics(self) -> Dict[str, Any]:
"""Return the collected metrics."""
avg_latency = sum(self.metrics["latency"]) / len(self.metrics["latency"]) if self.metrics["latency"] else 0
return {
**self.metrics,
"avg_latency": avg_latency
}
```
## Advanced Usage: Function Calling
If your LLM supports function calling, you can implement the function calling logic in your custom LLM:
```python
import json
from typing import Any, Dict, List, Optional, Union
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
import requests
try:
headers = {
"Authorization": f"Bearer {self.jwt_token}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30
)
response.raise_for_status()
response_data = response.json()
# Check if the LLM wants to call a function
if response_data["choices"][0]["message"].get("tool_calls"):
tool_calls = response_data["choices"][0]["message"]["tool_calls"]
# Process each tool call
for tool_call in tool_calls:
function_name = tool_call["function"]["name"]
function_args = json.loads(tool_call["function"]["arguments"])
if available_functions and function_name in available_functions:
function_to_call = available_functions[function_name]
function_response = function_to_call(**function_args)
# Add the function response to the messages
messages.append({
"role": "tool",
"tool_call_id": tool_call["id"],
"name": function_name,
"content": str(function_response)
})
# Call the LLM again with the updated messages
return self.call(messages, tools, callbacks, available_functions)
# Return the text response if no function call
return response_data["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
```
## Using Your Custom LLM with CrewAI
Once you've implemented your custom LLM, you can use it with CrewAI agents and crews:
```python
from crewai import Agent, Task, Crew
from typing import Dict, Any
# Create your custom LLM instance
jwt_llm = JWTAuthLLM(
jwt_token="your.jwt.token",
endpoint="https://your-llm-endpoint.com/v1/chat/completions"
)
# Use it with an agent
agent = Agent(
role="Research Assistant",
goal="Find information on a topic",
backstory="You are a research assistant tasked with finding information.",
llm=jwt_llm,
)
# Create a task for the agent
task = Task(
description="Research the benefits of exercise",
agent=agent,
expected_output="A summary of the benefits of exercise",
)
# Execute the task
result = agent.execute_task(task)
print(result)
# Or use it with a crew
crew = Crew(
agents=[agent],
tasks=[task],
manager_llm=jwt_llm, # Use your custom LLM for the manager
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Implementing Your Own Authentication Mechanism
The `BaseLLM` class allows you to implement any authentication mechanism you need, not just JWT or API keys. You can use:
- OAuth tokens
- Client certificates
- Custom headers
- Session-based authentication
- Any other authentication method required by your LLM provider
Simply implement the appropriate authentication logic in your custom LLM class.

View File

@@ -97,13 +97,19 @@
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/conditional-tasks"
]
},
{
"group": "Agent Monitoring & Observability",
"pages": [
"how-to/weave-integration",
"how-to/agentops-observability",
"how-to/langfuse-observability",
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/portkey-observability",
"how-to/langfuse-observability"
"how-to/portkey-observability"
]
},
{
@@ -111,6 +117,8 @@
"pages": [
"tools/aimindtool",
"tools/apifyactorstool",
"tools/bedrockinvokeagenttool",
"tools/bedrockkbretriever",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with AgentOps
title: AgentOps Integration
description: Understanding and logging your agent performance with AgentOps.
icon: paperclip
---

View File

@@ -39,8 +39,7 @@ analysis_crew = Crew(
agents=[coding_agent],
tasks=[data_analysis_task],
verbose=True,
memory=False,
respect_context_window=True # enable by default
memory=False
)
datasets = [

View File

@@ -1,7 +1,7 @@
---
title: Agent Monitoring with Langfuse
title: Langfuse Integration
description: Learn how to integrate Langfuse with CrewAI via OpenTelemetry using OpenLit
icon: magnifying-glass-chart
icon: vials
---
# Integrate Langfuse with CrewAI

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with Langtrace
title: Langtrace Integration
description: How to monitor cost, latency, and performance of CrewAI Agents using Langtrace, an external observability tool.
icon: chart-line
---

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with MLflow
title: MLflow Integration
description: Quickly start monitoring your Agents with MLflow.
icon: bars-staggered
---

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with OpenLIT
title: OpenLIT Integration
description: Quickly start monitoring your Agents in just a single line of code with OpenTelemetry.
icon: magnifying-glass-chart
---

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with Portkey
title: Portkey Integration
description: How to use Portkey with CrewAI
icon: key
---

View File

@@ -0,0 +1,124 @@
---
title: Weave Integration
description: Learn how to use Weights & Biases (W&B) Weave to track, experiment with, evaluate, and improve your CrewAI applications.
icon: radar
---
# Weave Overview
[Weights & Biases (W&B) Weave](https://weave-docs.wandb.ai/) is a framework for tracking, experimenting with, evaluating, deploying, and improving LLM-based applications.
![Overview of W&B Weave CrewAI tracing usage](/images/weave-tracing.gif)
Weave provides comprehensive support for every stage of your CrewAI application development:
- **Tracing & Monitoring**: Automatically track LLM calls and application logic to debug and analyze production systems
- **Systematic Iteration**: Refine and iterate on prompts, datasets, and models
- **Evaluation**: Use custom or pre-built scorers to systematically assess and enhance agent performance
- **Guardrails**: Protect your agents with pre- and post-safeguards for content moderation and prompt safety
Weave automatically captures traces for your CrewAI applications, enabling you to monitor and analyze your agents' performance, interactions, and execution flow. This helps you build better evaluation datasets and optimize your agent workflows.
## Setup Instructions
<Steps>
<Step title="Install required packages">
```shell
pip install crewai weave
```
</Step>
<Step title="Set up W&B Account">
Sign up for a [Weights & Biases account](https://wandb.ai) if you haven't already. You'll need this to view your traces and metrics.
</Step>
<Step title="Initialize Weave in Your Application">
Add the following code to your application:
```python
import weave
# Initialize Weave with your project name
weave.init(project_name="crewai_demo")
```
After initialization, Weave will provide a URL where you can view your traces and metrics.
</Step>
<Step title="Create your Crews/Flows">
```python
from crewai import Agent, Task, Crew, LLM, Process
# Create an LLM with a temperature of 0 to ensure deterministic outputs
llm = LLM(model="gpt-4o", temperature=0)
# Create agents
researcher = Agent(
role='Research Analyst',
goal='Find and analyze the best investment opportunities',
backstory='Expert in financial analysis and market research',
llm=llm,
verbose=True,
allow_delegation=False,
)
writer = Agent(
role='Report Writer',
goal='Write clear and concise investment reports',
backstory='Experienced in creating detailed financial reports',
llm=llm,
verbose=True,
allow_delegation=False,
)
# Create tasks
research_task = Task(
description='Deep research on the {topic}',
expected_output='Comprehensive market data including key players, market size, and growth trends.',
agent=researcher
)
writing_task = Task(
description='Write a detailed report based on the research',
expected_output='The report should be easy to read and understand. Use bullet points where applicable.',
agent=writer
)
# Create a crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True,
process=Process.sequential,
)
# Run the crew
result = crew.kickoff(inputs={"topic": "AI in material science"})
print(result)
```
</Step>
<Step title="View Traces in Weave">
After running your CrewAI application, visit the Weave URL provided during initialization to view:
- LLM calls and their metadata
- Agent interactions and task execution flow
- Performance metrics like latency and token usage
- Any errors or issues that occurred during execution
<Frame caption="Weave Tracing Dashboard">
<img src="/images/weave-tracing.png" alt="Weave tracing example with CrewAI" />
</Frame>
</Step>
</Steps>
## Features
- Weave automatically captures all CrewAI operations: agent interactions and task executions; LLM calls with metadata and token usage; tool usage and results.
- The integration supports all CrewAI execution methods: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
- Automatic tracing of all [crewAI-tools](https://github.com/crewAIInc/crewAI-tools).
- Flow feature support with decorator patching (`@start`, `@listen`, `@router`, `@or_`, `@and_`).
- Track custom guardrails passed to CrewAI `Task` with `@weave.op()`.
For detailed information on what's supported, visit the [Weave CrewAI documentation](https://weave-docs.wandb.ai/guides/integrations/crewai/#getting-started-with-flow).
## Resources
- [📘 Weave Documentation](https://weave-docs.wandb.ai)
- [📊 Example Weave x CrewAI dashboard](https://wandb.ai/ayut/crewai_demo/weave/traces?cols=%7B%22wb_run_id%22%3Afalse%2C%22attributes.weave.client_version%22%3Afalse%2C%22attributes.weave.os_name%22%3Afalse%2C%22attributes.weave.os_release%22%3Afalse%2C%22attributes.weave.os_version%22%3Afalse%2C%22attributes.weave.source%22%3Afalse%2C%22attributes.weave.sys_version%22%3Afalse%7D&peekPath=%2Fayut%2Fcrewai_demo%2Fcalls%2F0195c838-38cb-71a2-8a15-651ecddf9d89)
- [🐦 X](https://x.com/weave_wb)

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 693 KiB

View File

@@ -300,7 +300,7 @@ email_summarizer:
```
<Tip>
Note how we use the same name for the agent in the `tasks.yaml` (`email_summarizer_task`) file as the method name in the `crew.py` (`email_summarizer_task`) file.
Note how we use the same name for the task in the `tasks.yaml` (`email_summarizer_task`) file as the method name in the `crew.py` (`email_summarizer_task`) file.
</Tip>
```yaml tasks.yaml

View File

@@ -0,0 +1,187 @@
---
title: Bedrock Invoke Agent Tool
description: Enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows
icon: aws
---
# `BedrockInvokeAgentTool`
The `BedrockInvokeAgentTool` enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Agents
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-8}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize the tool
agent_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id"
)
# Create a CrewAI agent that uses the tool
aws_expert = Agent(
role='AWS Service Expert',
goal='Help users understand AWS services and quotas',
backstory='I am an expert in AWS services and can provide detailed information about them.',
tools=[agent_tool],
verbose=True
)
# Create a task for the agent
quota_task = Task(
description="Find out the current service quotas for EC2 in us-west-2 and explain any recent changes.",
agent=aws_expert
)
# Create a crew with the agent
crew = Crew(
agents=[aws_expert],
tasks=[quota_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:--------|:------------|
| **agent_id** | `str` | Yes | None | The unique identifier of the Bedrock agent |
| **agent_alias_id** | `str` | Yes | None | The unique identifier of the agent alias |
| **session_id** | `str` | No | timestamp | The unique identifier of the session |
| **enable_trace** | `bool` | No | False | Whether to enable trace for debugging |
| **end_session** | `bool` | No | False | Whether to end the session after invocation |
| **description** | `str` | No | None | Custom description for the tool |
## Environment Variables
```bash
BEDROCK_AGENT_ID=your-agent-id # Alternative to passing agent_id
BEDROCK_AGENT_ALIAS_ID=your-agent-alias-id # Alternative to passing agent_alias_id
AWS_REGION=your-aws-region # Defaults to us-west-2
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Advanced Usage
### Multi-Agent Workflow with Session Management
```python {2, 4-22}
from crewai import Agent, Task, Crew, Process
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize tools with session management
initial_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
followup_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
final_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id",
end_session=True
)
# Create agents for different stages
researcher = Agent(
role='AWS Service Researcher',
goal='Gather information about AWS services',
backstory='I am specialized in finding detailed AWS service information.',
tools=[initial_tool]
)
analyst = Agent(
role='Service Compatibility Analyst',
goal='Analyze service compatibility and requirements',
backstory='I analyze AWS services for compatibility and integration possibilities.',
tools=[followup_tool]
)
summarizer = Agent(
role='Technical Documentation Writer',
goal='Create clear technical summaries',
backstory='I specialize in creating clear, concise technical documentation.',
tools=[final_tool]
)
# Create tasks
research_task = Task(
description="Find all available AWS services in us-west-2 region.",
agent=researcher
)
analysis_task = Task(
description="Analyze which services support IPv6 and their implementation requirements.",
agent=analyst
)
summary_task = Task(
description="Create a summary of IPv6-compatible services and their key features.",
agent=summarizer
)
# Create a crew with the agents and tasks
crew = Crew(
agents=[researcher, analyst, summarizer],
tasks=[research_task, analysis_task, summary_task],
process=Process.sequential,
verbose=2
)
# Run the crew
result = crew.kickoff()
```
## Use Cases
### Hybrid Multi-Agent Collaborations
- Create workflows where CrewAI agents collaborate with managed Bedrock agents running as services in AWS
- Enable scenarios where sensitive data processing happens within your AWS environment while other agents operate externally
- Bridge on-premises CrewAI agents with cloud-based Bedrock agents for distributed intelligence workflows
### Data Sovereignty and Compliance
- Keep data-sensitive agentic workflows within your AWS environment while allowing external CrewAI agents to orchestrate tasks
- Maintain compliance with data residency requirements by processing sensitive information only within your AWS account
- Enable secure multi-agent collaborations where some agents cannot access your organization's private data
### Seamless AWS Service Integration
- Access any AWS service through Amazon Bedrock Actions without writing complex integration code
- Enable CrewAI agents to interact with AWS services through natural language requests
- Leverage pre-built Bedrock agent capabilities to interact with AWS services like Bedrock Knowledge Bases, Lambda, and more
### Scalable Hybrid Agent Architectures
- Offload computationally intensive tasks to managed Bedrock agents while lightweight tasks run in CrewAI
- Scale agent processing by distributing workloads between local CrewAI agents and cloud-based Bedrock agents
### Cross-Organizational Agent Collaboration
- Enable secure collaboration between your organization's CrewAI agents and partner organizations' Bedrock agents
- Create workflows where external expertise from Bedrock agents can be incorporated without exposing sensitive data
- Build agent ecosystems that span organizational boundaries while maintaining security and data control

View File

@@ -0,0 +1,165 @@
---
title: 'Bedrock Knowledge Base Retriever'
description: 'Retrieve information from Amazon Bedrock Knowledge Bases using natural language queries'
icon: aws
---
# `BedrockKBRetrieverTool`
The `BedrockKBRetrieverTool` enables CrewAI agents to retrieve information from Amazon Bedrock Knowledge Bases using natural language queries.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Knowledge Base
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-17}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.knowledge_base.retriever_tool import BedrockKBRetrieverTool
# Initialize the tool
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
number_of_results=5
)
# Create a CrewAI agent that uses the tool
researcher = Agent(
role='Knowledge Base Researcher',
goal='Find information about company policies',
backstory='I am a researcher specialized in retrieving and analyzing company documentation.',
tools=[kb_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description="Find our company's remote work policy and summarize the key points.",
agent=researcher
)
# Create a crew with the agent
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:---------|:-------------|
| **knowledge_base_id** | `str` | Yes | None | The unique identifier of the knowledge base (0-10 alphanumeric characters) |
| **number_of_results** | `int` | No | 5 | Maximum number of results to return |
| **retrieval_configuration** | `dict` | No | None | Custom configurations for the knowledge base query |
| **guardrail_configuration** | `dict` | No | None | Content filtering settings |
| **next_token** | `str` | No | None | Token for pagination |
## Environment Variables
```bash
BEDROCK_KB_ID=your-knowledge-base-id # Alternative to passing knowledge_base_id
AWS_REGION=your-aws-region # Defaults to us-east-1
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Response Format
The tool returns results in JSON format:
```json
{
"results": [
{
"content": "Retrieved text content",
"content_type": "text",
"source_type": "S3",
"source_uri": "s3://bucket/document.pdf",
"score": 0.95,
"metadata": {
"additional": "metadata"
}
}
],
"nextToken": "pagination-token",
"guardrailAction": "NONE"
}
```
## Advanced Usage
### Custom Retrieval Configuration
```python
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
retrieval_configuration={
"vectorSearchConfiguration": {
"numberOfResults": 10,
"overrideSearchType": "HYBRID"
}
}
)
policy_expert = Agent(
role='Policy Expert',
goal='Analyze company policies in detail',
backstory='I am an expert in corporate policy analysis with deep knowledge of regulatory requirements.',
tools=[kb_tool]
)
```
## Supported Data Sources
- Amazon S3
- Confluence
- Salesforce
- SharePoint
- Web pages
- Custom document locations
- Amazon Kendra
- SQL databases
## Use Cases
### Enterprise Knowledge Integration
- Enable CrewAI agents to access your organization's proprietary knowledge without exposing sensitive data
- Allow agents to make decisions based on your company's specific policies, procedures, and documentation
- Create agents that can answer questions based on your internal documentation while maintaining data security
### Specialized Domain Knowledge
- Connect CrewAI agents to domain-specific knowledge bases (legal, medical, technical) without retraining models
- Leverage existing knowledge repositories that are already maintained in your AWS environment
- Combine CrewAI's reasoning with domain-specific information from your knowledge bases
### Data-Driven Decision Making
- Ground CrewAI agent responses in your actual company data rather than general knowledge
- Ensure agents provide recommendations based on your specific business context and documentation
- Reduce hallucinations by retrieving factual information from your knowledge bases
### Scalable Information Access
- Access terabytes of organizational knowledge without embedding it all into your models
- Dynamically query only the relevant information needed for specific tasks
- Leverage AWS's scalable infrastructure to handle large knowledge bases efficiently
### Compliance and Governance
- Ensure CrewAI agents provide responses that align with your company's approved documentation
- Create auditable trails of information sources used by your agents
- Maintain control over what information sources your agents can access

View File

@@ -17,9 +17,9 @@ dependencies = [
"pdfplumber>=0.11.4",
"regex>=2024.9.11",
# Telemetry and Monitoring
"opentelemetry-api>=1.22.0",
"opentelemetry-sdk>=1.22.0",
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"opentelemetry-api>=1.30.0",
"opentelemetry-sdk>=1.30.0",
"opentelemetry-exporter-otlp-proto-http>=1.30.0",
# Data Handling
"chromadb>=0.5.23",
"openpyxl>=3.1.5",
@@ -64,6 +64,9 @@ mem0 = ["mem0ai>=0.1.29"]
docling = [
"docling>=2.12.0",
]
aisuite = [
"aisuite>=0.1.10",
]
[tool.uv]
dev-dependencies = [

View File

@@ -5,6 +5,7 @@ from crewai.crew import Crew
from crewai.flow.flow import Flow
from crewai.knowledge.knowledge import Knowledge
from crewai.llm import LLM
from crewai.llms.base_llm import BaseLLM
from crewai.process import Process
from crewai.task import Task
@@ -21,6 +22,7 @@ __all__ = [
"Process",
"Task",
"LLM",
"BaseLLM",
"Flow",
"Knowledge",
]

View File

@@ -11,7 +11,7 @@ from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
from crewai.llm import LLM
from crewai.llm import BaseLLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.security import Fingerprint
from crewai.task import Task
@@ -71,10 +71,10 @@ class Agent(BaseAgent):
default=True,
description="Use system prompt for the agent.",
)
llm: Union[str, InstanceOf[LLM], Any] = Field(
llm: Union[str, InstanceOf[BaseLLM], Any] = Field(
description="Language model that will run the agent.", default=None
)
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
function_calling_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
description="Language model that will run the agent.", default=None
)
system_template: Optional[str] = Field(
@@ -118,7 +118,9 @@ class Agent(BaseAgent):
self.agent_ops_agent_name = self.role
self.llm = create_llm(self.llm)
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
if self.function_calling_llm and not isinstance(
self.function_calling_llm, BaseLLM
):
self.function_calling_llm = create_llm(self.function_calling_llm)
if not self.agent_executor:

View File

@@ -25,6 +25,7 @@ from crewai.tools.base_tool import BaseTool, Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter
from crewai.utilities.string_utils import interpolate_only
T = TypeVar("T", bound="BaseAgent")
@@ -333,9 +334,15 @@ class BaseAgent(ABC, BaseModel):
self._original_backstory = self.backstory
if inputs:
self.role = self._original_role.format(**inputs)
self.goal = self._original_goal.format(**inputs)
self.backstory = self._original_backstory.format(**inputs)
self.role = interpolate_only(
input_string=self._original_role, inputs=inputs
)
self.goal = interpolate_only(
input_string=self._original_goal, inputs=inputs
)
self.backstory = interpolate_only(
input_string=self._original_backstory, inputs=inputs
)
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
"""Set the cache handler for the agent.

View File

@@ -13,7 +13,7 @@ from crewai.agents.parser import (
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.llm import LLM
from crewai.llm import BaseLLM
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
@@ -61,7 +61,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm: LLM = llm
self.llm: BaseLLM = llm
self.task = task
self.agent = agent
self.crew = crew
@@ -87,8 +87,14 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
tool.name: tool for tool in self.tools
}
self.stop = stop_words
self.llm.stop = list(set(self.llm.stop + self.stop))
existing_stop = self.llm.stop or []
self.llm.stop = list(
set(
existing_stop + self.stop
if isinstance(existing_stop, list)
else self.stop
)
)
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:

View File

@@ -136,7 +136,7 @@ class CrewAgentParser:
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()
return text.strip().strip("*").strip()
def _safe_repair_json(self, tool_input: str) -> str:
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]

View File

@@ -14,7 +14,7 @@ from packaging import version
from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.llm import LLM, BaseLLM
from crewai.types.crew_chat import ChatInputField, ChatInputs
from crewai.utilities.llm_utils import create_llm
@@ -116,7 +116,7 @@ def show_loading(event: threading.Event):
print()
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
def initialize_chat_llm(crew: Crew) -> Optional[LLM | BaseLLM]:
"""Initializes the chat LLM and handles exceptions."""
try:
return create_llm(crew.chat_llm)

View File

@@ -1,4 +1,5 @@
import subprocess
from functools import lru_cache
class Repository:
@@ -35,6 +36,7 @@ class Repository:
encoding="utf-8",
).strip()
@lru_cache(maxsize=None)
def is_git_repo(self) -> bool:
"""Check if the current directory is a git repository."""
try:

View File

@@ -6,8 +6,9 @@ import warnings
from concurrent.futures import Future
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TypeVar, Union, cast
from langchain_core.tools import BaseTool as LangchainBaseTool
from pydantic import (
UUID4,
BaseModel,
@@ -26,7 +27,7 @@ from crewai.agents.cache import CacheHandler
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.llm import LLM
from crewai.llm import LLM, BaseLLM
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
@@ -37,7 +38,7 @@ from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.tools.base_tool import BaseTool, Tool
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
@@ -153,7 +154,7 @@ class Crew(BaseModel):
default=None,
description="Metrics for the LLM usage during all tasks execution.",
)
manager_llm: Optional[Any] = Field(
manager_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
description="Language model that will run the agent.", default=None
)
manager_agent: Optional[BaseAgent] = Field(
@@ -187,7 +188,7 @@ class Crew(BaseModel):
default=None,
description="Maximum number of requests per minute for the crew execution to be respected.",
)
prompt_file: str = Field(
prompt_file: Optional[str] = Field(
default=None,
description="Path to the prompt json file to be used for the crew.",
)
@@ -199,7 +200,7 @@ class Crew(BaseModel):
default=False,
description="Plan the crew execution and add the plan to the crew.",
)
planning_llm: Optional[Any] = Field(
planning_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
default=None,
description="Language model that will run the AgentPlanner if planning is True.",
)
@@ -215,7 +216,7 @@ class Crew(BaseModel):
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
chat_llm: Optional[Any] = Field(
chat_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
default=None,
description="LLM used to handle chatting with the crew.",
)
@@ -819,7 +820,12 @@ class Crew(BaseModel):
# Determine which tools to use - task tools take precedence over agent tools
tools_for_task = task.tools or agent_to_use.tools or []
tools_for_task = self._prepare_tools(agent_to_use, task, tools_for_task)
# Prepare tools and ensure they're compatible with task execution
tools_for_task = self._prepare_tools(
agent_to_use,
task,
cast(Union[List[Tool], List[BaseTool]], tools_for_task),
)
self._log_task_start(task, agent_to_use.role)
@@ -838,7 +844,7 @@ class Crew(BaseModel):
future = task.execute_async(
agent=agent_to_use,
context=context,
tools=tools_for_task,
tools=cast(List[BaseTool], tools_for_task),
)
futures.append((task, future, task_index))
else:
@@ -850,7 +856,7 @@ class Crew(BaseModel):
task_output = task.execute_sync(
agent=agent_to_use,
context=context,
tools=tools_for_task,
tools=cast(List[BaseTool], tools_for_task),
)
task_outputs.append(task_output)
self._process_task_result(task, task_output)
@@ -888,10 +894,12 @@ class Crew(BaseModel):
return None
def _prepare_tools(
self, agent: BaseAgent, task: Task, tools: List[Tool]
) -> List[Tool]:
self, agent: BaseAgent, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
# Add delegation tools if agent allows delegation
if agent.allow_delegation:
if hasattr(agent, "allow_delegation") and getattr(
agent, "allow_delegation", False
):
if self.process == Process.hierarchical:
if self.manager_agent:
tools = self._update_manager_tools(task, tools)
@@ -900,17 +908,24 @@ class Crew(BaseModel):
"Manager agent is required for hierarchical process."
)
elif agent and agent.allow_delegation:
elif agent:
tools = self._add_delegation_tools(task, tools)
# Add code execution tools if agent allows code execution
if agent.allow_code_execution:
if hasattr(agent, "allow_code_execution") and getattr(
agent, "allow_code_execution", False
):
tools = self._add_code_execution_tools(agent, tools)
if agent and agent.multimodal:
if (
agent
and hasattr(agent, "multimodal")
and getattr(agent, "multimodal", False)
):
tools = self._add_multimodal_tools(agent, tools)
return tools
# Return a List[BaseTool] which is compatible with both Task.execute_sync and Task.execute_async
return cast(List[BaseTool], tools)
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
if self.process == Process.hierarchical:
@@ -918,11 +933,13 @@ class Crew(BaseModel):
return task.agent
def _merge_tools(
self, existing_tools: List[Tool], new_tools: List[Tool]
) -> List[Tool]:
self,
existing_tools: Union[List[Tool], List[BaseTool]],
new_tools: Union[List[Tool], List[BaseTool]],
) -> List[BaseTool]:
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
if not new_tools:
return existing_tools
return cast(List[BaseTool], existing_tools)
# Create mapping of tool names to new tools
new_tool_map = {tool.name: tool for tool in new_tools}
@@ -933,23 +950,41 @@ class Crew(BaseModel):
# Add all new tools
tools.extend(new_tools)
return tools
return cast(List[BaseTool], tools)
def _inject_delegation_tools(
self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]
):
delegation_tools = task_agent.get_delegation_tools(agents)
return self._merge_tools(tools, delegation_tools)
self,
tools: Union[List[Tool], List[BaseTool]],
task_agent: BaseAgent,
agents: List[BaseAgent],
) -> List[BaseTool]:
if hasattr(task_agent, "get_delegation_tools"):
delegation_tools = task_agent.get_delegation_tools(agents)
# Cast delegation_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(List[BaseTool], delegation_tools))
return cast(List[BaseTool], tools)
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
multimodal_tools = agent.get_multimodal_tools()
return self._merge_tools(tools, multimodal_tools)
def _add_multimodal_tools(
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if hasattr(agent, "get_multimodal_tools"):
multimodal_tools = agent.get_multimodal_tools()
# Cast multimodal_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(List[BaseTool], multimodal_tools))
return cast(List[BaseTool], tools)
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
code_tools = agent.get_code_execution_tools()
return self._merge_tools(tools, code_tools)
def _add_code_execution_tools(
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if hasattr(agent, "get_code_execution_tools"):
code_tools = agent.get_code_execution_tools()
# Cast code_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(List[BaseTool], code_tools))
return cast(List[BaseTool], tools)
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
def _add_delegation_tools(
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
if not tools:
@@ -957,7 +992,7 @@ class Crew(BaseModel):
tools = self._inject_delegation_tools(
tools, task.agent, agents_for_delegation
)
return tools
return cast(List[BaseTool], tools)
def _log_task_start(self, task: Task, role: str = "None"):
if self.output_log_file:
@@ -965,7 +1000,9 @@ class Crew(BaseModel):
task_name=task.name, task=task.description, agent=role, status="started"
)
def _update_manager_tools(self, task: Task, tools: List[Tool]):
def _update_manager_tools(
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if self.manager_agent:
if task.agent:
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
@@ -973,7 +1010,7 @@ class Crew(BaseModel):
tools = self._inject_delegation_tools(
tools, self.manager_agent, self.agents
)
return tools
return cast(List[BaseTool], tools)
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
context = (
@@ -1214,13 +1251,14 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
eval_llm: Union[str, InstanceOf[LLM]],
eval_llm: Union[str, InstanceOf[BaseLLM]],
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
try:
eval_llm = create_llm(eval_llm)
if not eval_llm:
# Create LLM instance and ensure it's of type LLM for CrewEvaluator
llm_instance = create_llm(eval_llm)
if not llm_instance:
raise ValueError("Failed to create LLM instance.")
crewai_event_bus.emit(
@@ -1228,12 +1266,12 @@ class Crew(BaseModel):
CrewTestStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
eval_llm=eval_llm,
eval_llm=llm_instance,
inputs=inputs,
),
)
test_crew = self.copy()
evaluator = CrewEvaluator(test_crew, eval_llm) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, llm_instance)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -40,6 +40,7 @@ with warnings.catch_warnings():
from litellm.utils import supports_response_schema
from crewai.llms.base_llm import BaseLLM
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
@@ -114,6 +115,60 @@ LLM_CONTEXT_WINDOW_SIZES = {
"Llama-3.2-11B-Vision-Instruct": 16384,
"Meta-Llama-3.2-3B-Instruct": 4096,
"Meta-Llama-3.2-1B-Instruct": 16384,
# bedrock
"us.amazon.nova-pro-v1:0": 300000,
"us.amazon.nova-micro-v1:0": 128000,
"us.amazon.nova-lite-v1:0": 300000,
"us.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"us.anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"us.anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
"us.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"us.anthropic.claude-3-opus-20240229-v1:0": 200000,
"us.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"us.meta.llama3-2-11b-instruct-v1:0": 128000,
"us.meta.llama3-2-3b-instruct-v1:0": 131000,
"us.meta.llama3-2-90b-instruct-v1:0": 128000,
"us.meta.llama3-2-1b-instruct-v1:0": 131000,
"us.meta.llama3-1-8b-instruct-v1:0": 128000,
"us.meta.llama3-1-70b-instruct-v1:0": 128000,
"us.meta.llama3-3-70b-instruct-v1:0": 128000,
"us.meta.llama3-1-405b-instruct-v1:0": 128000,
"eu.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"eu.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"eu.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"eu.meta.llama3-2-3b-instruct-v1:0": 131000,
"eu.meta.llama3-2-1b-instruct-v1:0": 131000,
"apac.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"apac.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"apac.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"apac.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"amazon.nova-pro-v1:0": 300000,
"amazon.nova-micro-v1:0": 128000,
"amazon.nova-lite-v1:0": 300000,
"anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
"anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
"anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"anthropic.claude-3-opus-20240229-v1:0": 200000,
"anthropic.claude-3-haiku-20240307-v1:0": 200000,
"anthropic.claude-v2:1": 200000,
"anthropic.claude-v2": 100000,
"anthropic.claude-instant-v1": 100000,
"meta.llama3-1-405b-instruct-v1:0": 128000,
"meta.llama3-1-70b-instruct-v1:0": 128000,
"meta.llama3-1-8b-instruct-v1:0": 128000,
"meta.llama3-70b-instruct-v1:0": 8000,
"meta.llama3-8b-instruct-v1:0": 8000,
"amazon.titan-text-lite-v1": 4000,
"amazon.titan-text-express-v1": 8000,
"cohere.command-text-v14": 4000,
"ai21.j2-mid-v1": 8191,
"ai21.j2-ultra-v1": 8191,
"ai21.jamba-instruct-v1:0": 256000,
"mistral.mistral-7b-instruct-v0:2": 32000,
"mistral.mixtral-8x7b-instruct-v0:1": 32000,
# mistral
"mistral-tiny": 32768,
"mistral-small-latest": 32768,
@@ -164,7 +219,7 @@ class StreamingChoices(TypedDict):
finish_reason: Optional[str]
class LLM:
class LLM(BaseLLM):
def __init__(
self,
model: str,

View File

@@ -0,0 +1,91 @@
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional, Union
class BaseLLM(ABC):
"""Abstract base class for LLM implementations.
This class defines the interface that all LLM implementations must follow.
Users can extend this class to create custom LLM implementations that don't
rely on litellm's authentication mechanism.
Custom LLM implementations should handle error cases gracefully, including
timeouts, authentication failures, and malformed responses. They should also
implement proper validation for input parameters and provide clear error
messages when things go wrong.
Attributes:
stop (list): A list of stop sequences that the LLM should use to stop generation.
This is used by the CrewAgentExecutor and other components.
"""
model: str
temperature: Optional[float] = None
stop: Optional[List[str]] = None
def __init__(
self,
model: str,
temperature: Optional[float] = None,
):
"""Initialize the BaseLLM with default attributes.
This constructor sets default values for attributes that are expected
by the CrewAgentExecutor and other components.
All custom LLM implementations should call super().__init__() to ensure
that these default attributes are properly initialized.
"""
self.model = model
self.temperature = temperature
self.stop = []
@abstractmethod
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Call the LLM with the given messages.
Args:
messages: Input messages for the LLM.
Can be a string or list of message dictionaries.
If string, it will be converted to a single user message.
If list, each dict must have 'role' and 'content' keys.
tools: Optional list of tool schemas for function calling.
Each tool should define its name, description, and parameters.
callbacks: Optional list of callback functions to be executed
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
Returns:
Either a text response from the LLM (str) or
the result of a tool function call (Any).
Raises:
ValueError: If the messages format is invalid.
TimeoutError: If the LLM request times out.
RuntimeError: If the LLM request fails for other reasons.
"""
pass
def supports_stop_words(self) -> bool:
"""Check if the LLM supports stop words.
Returns:
bool: True if the LLM supports stop words, False otherwise.
"""
return True # Default implementation assumes support for stop words
def get_context_window_size(self) -> int:
"""Get the context window size for the LLM.
Returns:
int: The number of tokens/characters the model can handle.
"""
# Default implementation - subclasses should override with model-specific values
return 4096

38
src/crewai/llms/third_party/ai_suite.py vendored Normal file
View File

@@ -0,0 +1,38 @@
from typing import Any, Dict, List, Optional, Union
import aisuite as ai
from crewai.llms.base_llm import BaseLLM
class AISuiteLLM(BaseLLM):
def __init__(self, model: str, temperature: Optional[float] = None, **kwargs):
super().__init__(model, temperature, **kwargs)
self.client = ai.Client()
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
completion_params = self._prepare_completion_params(messages, tools)
response = self.client.chat.completions.create(**completion_params)
return response.choices[0].message.content
def _prepare_completion_params(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
) -> Dict[str, Any]:
return {
"model": self.model,
"messages": messages,
"temperature": self.temperature,
"tools": tools,
}
def supports_function_calling(self) -> bool:
return False

View File

@@ -1,7 +1,7 @@
import os
from typing import Any, Dict, List
from mem0 import MemoryClient
from mem0 import Memory, MemoryClient
from crewai.memory.storage.interface import Storage
@@ -32,13 +32,16 @@ class Mem0Storage(Storage):
mem0_org_id = config.get("org_id")
mem0_project_id = config.get("project_id")
# Initialize MemoryClient with available parameters
if mem0_org_id and mem0_project_id:
self.memory = MemoryClient(
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
)
# Initialize MemoryClient or Memory based on the presence of the mem0_api_key
if mem0_api_key:
if mem0_org_id and mem0_project_id:
self.memory = MemoryClient(
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
)
else:
self.memory = MemoryClient(api_key=mem0_api_key)
else:
self.memory = MemoryClient(api_key=mem0_api_key)
self.memory = Memory() # Fallback to Memory if no Mem0 API key is provided
def _sanitize_role(self, role: str) -> str:
"""

View File

@@ -2,6 +2,7 @@ import datetime
import inspect
import json
import logging
import re
import threading
import uuid
from concurrent.futures import Future
@@ -49,6 +50,7 @@ from crewai.utilities.events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
from crewai.utilities.string_utils import interpolate_only
class Task(BaseModel):
@@ -507,7 +509,9 @@ class Task(BaseModel):
return
try:
self.description = self._original_description.format(**inputs)
self.description = interpolate_only(
input_string=self._original_description, inputs=inputs
)
except KeyError as e:
raise ValueError(
f"Missing required template variable '{e.args[0]}' in description"
@@ -516,7 +520,7 @@ class Task(BaseModel):
raise ValueError(f"Error interpolating description: {str(e)}") from e
try:
self.expected_output = self.interpolate_only(
self.expected_output = interpolate_only(
input_string=self._original_expected_output, inputs=inputs
)
except (KeyError, ValueError) as e:
@@ -524,7 +528,7 @@ class Task(BaseModel):
if self.output_file is not None:
try:
self.output_file = self.interpolate_only(
self.output_file = interpolate_only(
input_string=self._original_output_file, inputs=inputs
)
except (KeyError, ValueError) as e:
@@ -555,72 +559,6 @@ class Task(BaseModel):
f"\n\n{conversation_instruction}\n\n{conversation_history}"
)
def interpolate_only(
self,
input_string: Optional[str],
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]],
) -> str:
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched.
Args:
input_string: The string containing template variables to interpolate.
Can be None or empty, in which case an empty string is returned.
inputs: Dictionary mapping template variables to their values.
Supported value types are strings, integers, floats, and dicts/lists
containing only these types and other nested dicts/lists.
Returns:
The interpolated string with all template variables replaced with their values.
Empty string if input_string is None or empty.
Raises:
ValueError: If a value contains unsupported types
"""
# Validation function for recursive type checking
def validate_type(value: Any) -> None:
if value is None:
return
if isinstance(value, (str, int, float, bool)):
return
if isinstance(value, (dict, list)):
for item in value.values() if isinstance(value, dict) else value:
validate_type(item)
return
raise ValueError(
f"Unsupported type {type(value).__name__} in inputs. "
"Only str, int, float, bool, dict, and list are allowed."
)
# Validate all input values
for key, value in inputs.items():
try:
validate_type(value)
except ValueError as e:
raise ValueError(f"Invalid value for key '{key}': {str(e)}") from e
if input_string is None or not input_string:
return ""
if "{" not in input_string and "}" not in input_string:
return input_string
if not inputs:
raise ValueError(
"Inputs dictionary cannot be empty when interpolating variables"
)
try:
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
for key in inputs.keys():
escaped_string = escaped_string.replace(f"{{{{{key}}}}}", f"{{{key}}}")
return escaped_string.format(**inputs)
except KeyError as e:
raise KeyError(
f"Template variable '{e.args[0]}' not found in inputs dictionary"
) from e
except ValueError as e:
raise ValueError(f"Error during string interpolation: {str(e)}") from e
def increment_tools_errors(self) -> None:
"""Increment the tools errors counter."""
self.tools_errors += 1
@@ -634,7 +572,15 @@ class Task(BaseModel):
def copy(
self, agents: List["BaseAgent"], task_mapping: Dict[str, "Task"]
) -> "Task":
"""Create a deep copy of the Task."""
"""Creates a deep copy of the Task while preserving its original class type.
Args:
agents: List of agents available for the task.
task_mapping: Dictionary mapping task IDs to Task instances.
Returns:
A copy of the task with the same class type as the original.
"""
exclude = {
"id",
"agent",
@@ -657,7 +603,7 @@ class Task(BaseModel):
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
cloned_tools = copy(self.tools) if self.tools else []
copied_task = Task(
copied_task = self.__class__(
**copied_data,
context=cloned_context,
agent=cloned_agent,

View File

@@ -281,8 +281,16 @@ class Telemetry:
return self._safe_telemetry_operation(operation)
def task_ended(self, span: Span, task: Task, crew: Crew):
"""Records task execution in a crew."""
"""Records the completion of a task execution in a crew.
Args:
span (Span): The OpenTelemetry span tracking the task execution
task (Task): The task that was completed
crew (Crew): The crew context in which the task was executed
Note:
If share_crew is enabled, this will also record the task output
"""
def operation():
if crew.share_crew:
self._add_attribute(
@@ -297,8 +305,13 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def tool_repeated_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the repeated usage 'error' of a tool by an agent."""
"""Records when a tool is used repeatedly, which might indicate an issue.
Args:
llm (Any): The language model being used
tool_name (str): Name of the tool being repeatedly used
attempts (int): Number of attempts made with this tool
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Repeated Usage")
@@ -317,8 +330,13 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def tool_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the usage of a tool by an agent."""
"""Records the usage of a tool by an agent.
Args:
llm (Any): The language model being used
tool_name (str): Name of the tool being used
attempts (int): Number of attempts made with this tool
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage")
@@ -337,8 +355,11 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def tool_usage_error(self, llm: Any):
"""Records the usage of a tool by an agent."""
"""Records when a tool usage results in an error.
Args:
llm (Any): The language model being used when the error occurred
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage Error")
@@ -357,6 +378,14 @@ class Telemetry:
def individual_test_result_span(
self, crew: Crew, quality: float, exec_time: int, model_name: str
):
"""Records individual test results for a crew execution.
Args:
crew (Crew): The crew being tested
quality (float): Quality score of the execution
exec_time (int): Execution time in seconds
model_name (str): Name of the model used
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Individual Test Result")
@@ -383,6 +412,14 @@ class Telemetry:
inputs: dict[str, Any] | None,
model_name: str,
):
"""Records the execution of a test suite for a crew.
Args:
crew (Crew): The crew being tested
iterations (int): Number of test iterations
inputs (dict[str, Any] | None): Input parameters for the test
model_name (str): Name of the model used in testing
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Test Execution")
@@ -408,6 +445,7 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def deploy_signup_error_span(self):
"""Records when an error occurs during the deployment signup process."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Deploy Signup Error")
@@ -417,6 +455,11 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def start_deployment_span(self, uuid: Optional[str] = None):
"""Records the start of a deployment process.
Args:
uuid (Optional[str]): Unique identifier for the deployment
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Start Deployment")
@@ -428,6 +471,7 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def create_crew_deployment_span(self):
"""Records the creation of a new crew deployment."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Create Crew Deployment")
@@ -437,6 +481,12 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def get_crew_logs_span(self, uuid: Optional[str], log_type: str = "deployment"):
"""Records the retrieval of crew logs.
Args:
uuid (Optional[str]): Unique identifier for the crew
log_type (str, optional): Type of logs being retrieved. Defaults to "deployment".
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Get Crew Logs")
@@ -449,6 +499,11 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def remove_crew_span(self, uuid: Optional[str] = None):
"""Records the removal of a crew.
Args:
uuid (Optional[str]): Unique identifier for the crew being removed
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Remove Crew")
@@ -574,6 +629,11 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_creation_span(self, flow_name: str):
"""Records the creation of a new flow.
Args:
flow_name (str): Name of the flow being created
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Creation")
@@ -584,6 +644,12 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_plotting_span(self, flow_name: str, node_names: list[str]):
"""Records flow visualization/plotting activity.
Args:
flow_name (str): Name of the flow being plotted
node_names (list[str]): List of node names in the flow
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Plotting")
@@ -595,6 +661,12 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_execution_span(self, flow_name: str, node_names: list[str]):
"""Records the execution of a flow.
Args:
flow_name (str): Name of the flow being executed
node_names (list[str]): List of nodes being executed in the flow
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Execution")

View File

@@ -455,7 +455,7 @@ class ToolUsage:
# Attempt 4: Repair JSON
try:
repaired_input = repair_json(tool_input)
repaired_input = repair_json(tool_input, skip_json_loads=True)
self._printer.print(
content=f"Repaired JSON: {repaired_input}", color="blue"
)

View File

@@ -6,7 +6,7 @@ from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.llm import BaseLLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -24,7 +24,7 @@ class CrewEvaluator:
Attributes:
crew (Crew): The crew of agents to evaluate.
eval_llm (LLM): Language model instance to use for evaluations
eval_llm (BaseLLM): Language model instance to use for evaluations
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
@@ -33,7 +33,7 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, eval_llm: InstanceOf[LLM]):
def __init__(self, crew, eval_llm: InstanceOf[BaseLLM]):
self.crew = crew
self.llm = eval_llm
self._telemetry = Telemetry()

View File

@@ -1,10 +1,12 @@
from typing import List
import re
from typing import TYPE_CHECKING, List
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
if TYPE_CHECKING:
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
def aggregate_raw_outputs_from_task_outputs(task_outputs: List[TaskOutput]) -> str:
def aggregate_raw_outputs_from_task_outputs(task_outputs: List["TaskOutput"]) -> str:
"""Generate string context from the task outputs."""
dividers = "\n\n----------\n\n"
@@ -13,7 +15,7 @@ def aggregate_raw_outputs_from_task_outputs(task_outputs: List[TaskOutput]) -> s
return context
def aggregate_raw_outputs_from_tasks(tasks: List[Task]) -> str:
def aggregate_raw_outputs_from_tasks(tasks: List["Task"]) -> str:
"""Generate string context from the tasks."""
task_outputs = [task.output for task in tasks if task.output is not None]

View File

@@ -2,28 +2,28 @@ import os
from typing import Any, Dict, List, Optional, Union
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
from crewai.llm import LLM
from crewai.llm import LLM, BaseLLM
def create_llm(
llm_value: Union[str, LLM, Any, None] = None,
) -> Optional[LLM]:
) -> Optional[LLM | BaseLLM]:
"""
Creates or returns an LLM instance based on the given llm_value.
Args:
llm_value (str | LLM | Any | None):
llm_value (str | BaseLLM | Any | None):
- str: The model name (e.g., "gpt-4").
- LLM: Already instantiated LLM, returned as-is.
- BaseLLM: Already instantiated BaseLLM (including LLM), returned as-is.
- Any: Attempt to extract known attributes like model_name, temperature, etc.
- None: Use environment-based or fallback default model.
Returns:
An LLM instance if successful, or None if something fails.
A BaseLLM instance if successful, or None if something fails.
"""
# 1) If llm_value is already an LLM object, return it directly
if isinstance(llm_value, LLM):
# 1) If llm_value is already a BaseLLM or LLM object, return it directly
if isinstance(llm_value, LLM) or isinstance(llm_value, BaseLLM):
return llm_value
# 2) If llm_value is a string (model name)

View File

@@ -96,6 +96,10 @@ class CrewPlanner:
tasks_summary = []
for idx, task in enumerate(self.tasks):
knowledge_list = self._get_agent_knowledge(task)
agent_tools = (
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
)
task_summary = f"""
Task Number {idx + 1} - {task.description}
"task_description": {task.description}
@@ -103,10 +107,7 @@ class CrewPlanner:
"agent": {task.agent.role if task.agent else "None"}
"agent_goal": {task.agent.goal if task.agent else "None"}
"task_tools": {task.tools}
"agent_tools": %s%s""" % (
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
)
"agent_tools": {"".join(agent_tools)}"""
tasks_summary.append(task_summary)
return " ".join(tasks_summary)

View File

@@ -0,0 +1,82 @@
import re
from typing import Any, Dict, List, Optional, Union
def interpolate_only(
input_string: Optional[str],
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]],
) -> str:
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched.
Only interpolates placeholders that follow the pattern {variable_name} where
variable_name starts with a letter/underscore and contains only letters, numbers, and underscores.
Args:
input_string: The string containing template variables to interpolate.
Can be None or empty, in which case an empty string is returned.
inputs: Dictionary mapping template variables to their values.
Supported value types are strings, integers, floats, and dicts/lists
containing only these types and other nested dicts/lists.
Returns:
The interpolated string with all template variables replaced with their values.
Empty string if input_string is None or empty.
Raises:
ValueError: If a value contains unsupported types or a template variable is missing
"""
# Validation function for recursive type checking
def validate_type(value: Any) -> None:
if value is None:
return
if isinstance(value, (str, int, float, bool)):
return
if isinstance(value, (dict, list)):
for item in value.values() if isinstance(value, dict) else value:
validate_type(item)
return
raise ValueError(
f"Unsupported type {type(value).__name__} in inputs. "
"Only str, int, float, bool, dict, and list are allowed."
)
# Validate all input values
for key, value in inputs.items():
try:
validate_type(value)
except ValueError as e:
raise ValueError(f"Invalid value for key '{key}': {str(e)}") from e
if input_string is None or not input_string:
return ""
if "{" not in input_string and "}" not in input_string:
return input_string
if not inputs:
raise ValueError(
"Inputs dictionary cannot be empty when interpolating variables"
)
# The regex pattern to find valid variable placeholders
# Matches {variable_name} where variable_name starts with a letter/underscore
# and contains only letters, numbers, and underscores
pattern = r"\{([A-Za-z_][A-Za-z0-9_]*)\}"
# Find all matching variables in the input string
variables = re.findall(pattern, input_string)
result = input_string
# Check if all variables exist in inputs
missing_vars = [var for var in variables if var not in inputs]
if missing_vars:
raise KeyError(
f"Template variable '{missing_vars[0]}' not found in inputs dictionary"
)
# Replace each variable with its value
for var in variables:
if var in inputs:
placeholder = "{" + var + "}"
value = str(inputs[var])
result = result.replace(placeholder, value)
return result

View File

@@ -710,4 +710,117 @@ interactions:
- req_4ceac9bc8ae57f631959b91d2ab63c4d
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test agent
backstory\nYour personal goal is: Test agent goal\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
Task: Test task description\n\nThis is the expected criteria for your final
answer: Test expected output\nyou MUST return the actual complete content as
the final answer, not a summary.\n\nBegin! This is VERY important to you, use
the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '840'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-BExKOliqPgvHyozZaBu5oN50CHtsa\",\n \"object\":
\"chat.completion\",\n \"created\": 1742904348,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Test expected output\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 158,\n \"completion_tokens\":
15,\n \"total_tokens\": 173,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_90d33c15d4\"\n}\n"
headers:
CF-RAY:
- 925e4749af02f227-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 25 Mar 2025 12:05:48 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=VHa7Z7dJYptxXpaMxgldvK6HqIM.m74xpi.80N_EBDc-1742904348-1.0.1.1-VthD2riCSnAprFYhOZxfIrTjT33tybJHpHWB25Q_Hx4vuACCyF00tix6e6eorDReGcW3jb5cUzbGqYi47TrMsS4LYjxBv5eCo7cU9OuFajs;
path=/; expires=Tue, 25-Mar-25 12:35:48 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Is8fSaH3lU8yHyT3fI7cRZiDqIYSI6sPpzfzvEV8HMc-1742904348760-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '377'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '50000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '49999'
x-ratelimit-remaining-tokens:
- '149999822'
x-ratelimit-reset-requests:
- 1ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_fd6b93e3b1a30868482c72306e7f63c2
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,107 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the answer to life, the universe, and everything?"}],
"model": "gpt-4o-mini", "tools": null}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '206'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B7W6FS0wpfndLdg12G3H6ZAXcYhJi\",\n \"object\":
\"chat.completion\",\n \"created\": 1741131387,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"The answer to life, the universe, and
everything, famously found in Douglas Adams' \\\"The Hitchhiker's Guide to the
Galaxy,\\\" is the number 42. However, the question itself is left ambiguous,
leading to much speculation and humor in the story.\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 30,\n \"completion_tokens\":
54,\n \"total_tokens\": 84,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_06737a9306\"\n}\n"
headers:
CF-RAY:
- 91b532234c18cf1f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Mar 2025 23:36:28 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=DgLb6UAE6W4Oeto1Bi2RiKXQVV5TTzkXdXWFdmAEwQQ-1741131388-1.0.1.1-jWQtsT95wOeQbmIxAK7cv8gJWxYi1tQ.IupuJzBDnZr7iEChwVUQBRfnYUBJPDsNly3bakCDArjD_S.FLKwH6xUfvlxgfd4YSBhBPy7bcgw;
path=/; expires=Wed, 05-Mar-25 00:06:28 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Oa59XCmqjKLKwU34la1hkTunN57JW20E.ZHojvRBfow-1741131388236-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '776'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999960'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_97824e8fe7c1aca3fbcba7c925388b39
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,305 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [{"role": "system", "content": "You are Say Hi.
You just say hi to the user\nYour personal goal is: Say hi to the user\nTo give
my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Say hi to the user\n\nThis is the expected criteria
for your final answer: A greeting to the user\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}]}], "model": "gpt-4o-mini", "tools": null}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '931'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Missing required parameter: 'messages[1].content[0].type'.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": \"messages[1].content[0].type\",\n
\ \"code\": \"missing_required_parameter\"\n }\n}"
headers:
CF-RAY:
- 91b54660799a15b4-SJC
Connection:
- keep-alive
Content-Length:
- '219'
Content-Type:
- application/json
Date:
- Tue, 04 Mar 2025 23:50:16 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=OwS.6cyfDpbxxx8vPp4THv5eNoDMQK0qSVN.wSUyOYk-1741132216-1.0.1.1-QBVd08CjfmDBpNnYQM5ILGbTUWKh6SDM9E4ARG4SV2Z9Q4ltFSFLXoo38OGJApUNZmzn4PtRsyAPsHt_dsrHPF6MD17FPcGtrnAHqCjJrfU;
path=/; expires=Wed, 05-Mar-25 00:20:16 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=n_ebDsAOhJm5Mc7OMx8JDiOaZq5qzHCnVxyS3KN0BwA-1741132216951-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '19'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999974'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_042a4e8f9432f6fde7a02037bb6caafa
http_version: HTTP/1.1
status_code: 400
- request:
body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [{"role": "system", "content": "You are Say Hi.
You just say hi to the user\nYour personal goal is: Say hi to the user\nTo give
my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Say hi to the user\n\nThis is the expected criteria
for your final answer: A greeting to the user\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}]}], "model": "gpt-4o-mini", "tools": null}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '931'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Missing required parameter: 'messages[1].content[0].type'.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": \"messages[1].content[0].type\",\n
\ \"code\": \"missing_required_parameter\"\n }\n}"
headers:
CF-RAY:
- 91b54664bb1acef1-SJC
Connection:
- keep-alive
Content-Length:
- '219'
Content-Type:
- application/json
Date:
- Tue, 04 Mar 2025 23:50:17 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=.wGU4pJEajaSzFWjp05TBQwWbCNA2CgpYNu7UYOzbbM-1741132217-1.0.1.1-NoLiAx4qkplllldYYxZCOSQGsX6hsPUJIEyqmt84B3g7hjW1s7.jk9C9PYzXagHWjT0sQ9Ny4LZBA94lDJTfDBZpty8NJQha7ZKW0P_msH8;
path=/; expires=Wed, 05-Mar-25 00:20:17 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=GAjgJjVLtN49bMeWdWZDYLLkEkK51z5kxK4nKqhAzxY-1741132217161-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '25'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999974'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7a1d027da1ef4468e861e570c72e98fb
http_version: HTTP/1.1
status_code: 400
- request:
body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [{"role": "system", "content": "You are Say Hi.
You just say hi to the user\nYour personal goal is: Say hi to the user\nTo give
my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Say hi to the user\n\nThis is the expected criteria
for your final answer: A greeting to the user\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}]}], "model": "gpt-4o-mini", "tools": null}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '931'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Missing required parameter: 'messages[1].content[0].type'.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": \"messages[1].content[0].type\",\n
\ \"code\": \"missing_required_parameter\"\n }\n}"
headers:
CF-RAY:
- 91b54666183beb22-SJC
Connection:
- keep-alive
Content-Length:
- '219'
Content-Type:
- application/json
Date:
- Tue, 04 Mar 2025 23:50:17 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=VwjWHHpkZMJlosI9RbMqxYDBS1t0JK4tWpAy4lST2QM-1741132217-1.0.1.1-u7PU.ZvVBTXNB5R8vaYfWdPXAjWZ3ZcTAy656VaGDZmKIckk5od._eQdn0W0EGVtEMm3TuF60z4GZAPDwMYvb3_3cw1RuEMmQbp4IIrl7VY;
path=/; expires=Wed, 05-Mar-25 00:20:17 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=NglAAsQBoiabMuuHFgilRjflSPFqS38VGKnGyweuCuw-1741132217438-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '56'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999974'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3c335b308b82cc2214783a4bf2fc0fd4
http_version: HTTP/1.1
status_code: 400
version: 1

359
tests/custom_llm_test.py Normal file
View File

@@ -0,0 +1,359 @@
from typing import Any, Dict, List, Optional, Union
from unittest.mock import Mock
import pytest
from crewai import Agent, Crew, Process, Task
from crewai.llms.base_llm import BaseLLM
from crewai.utilities.llm_utils import create_llm
class CustomLLM(BaseLLM):
"""Custom LLM implementation for testing.
This is a simple implementation of the BaseLLM abstract base class
that returns a predefined response for testing purposes.
"""
def __init__(self, response="Default response", model="test-model"):
"""Initialize the CustomLLM with a predefined response.
Args:
response: The predefined response to return from call().
"""
super().__init__(model=model)
self.response = response
self.call_count = 0
def call(
self,
messages,
tools=None,
callbacks=None,
available_functions=None,
):
"""
Mock LLM call that returns a predefined response.
Properly formats messages to match OpenAI's expected structure.
"""
self.call_count += 1
# If input is a string, convert to proper message format
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
# Ensure each message has properly formatted content
for message in messages:
if isinstance(message["content"], str):
message["content"] = [{"type": "text", "text": message["content"]}]
# Return predefined response in expected format
if "Thought:" in str(messages):
return f"Thought: I will say hi\nFinal Answer: {self.response}"
return self.response
def supports_function_calling(self) -> bool:
"""Return False to indicate that function calling is not supported.
Returns:
False, indicating that this LLM does not support function calling.
"""
return False
def supports_stop_words(self) -> bool:
"""Return False to indicate that stop words are not supported.
Returns:
False, indicating that this LLM does not support stop words.
"""
return False
def get_context_window_size(self) -> int:
"""Return a default context window size.
Returns:
4096, a typical context window size for modern LLMs.
"""
return 4096
@pytest.mark.vcr(filter_headers=["authorization"])
def test_custom_llm_implementation():
"""Test that a custom LLM implementation works with create_llm."""
custom_llm = CustomLLM(response="The answer is 42")
# Test that create_llm returns the custom LLM instance directly
result_llm = create_llm(custom_llm)
assert result_llm is custom_llm
# Test calling the custom LLM
response = result_llm.call(
"What is the answer to life, the universe, and everything?"
)
# Verify that the response from the custom LLM was used
assert "42" in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_custom_llm_within_crew():
"""Test that a custom LLM implementation works with create_llm."""
custom_llm = CustomLLM(response="Hello! Nice to meet you!", model="test-model")
agent = Agent(
role="Say Hi",
goal="Say hi to the user",
backstory="""You just say hi to the user""",
llm=custom_llm,
)
task = Task(
description="Say hi to the user",
expected_output="A greeting to the user",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
process=Process.sequential,
)
result = crew.kickoff()
# Assert the LLM was called
assert custom_llm.call_count > 0
# Assert we got a response
assert "Hello!" in result.raw
def test_custom_llm_message_formatting():
"""Test that the custom LLM properly formats messages"""
custom_llm = CustomLLM(response="Test response", model="test-model")
# Test with string input
result = custom_llm.call("Test message")
assert result == "Test response"
# Test with message list
messages = [
{"role": "system", "content": "System message"},
{"role": "user", "content": "User message"},
]
result = custom_llm.call(messages)
assert result == "Test response"
class JWTAuthLLM(BaseLLM):
"""Custom LLM implementation with JWT authentication."""
def __init__(self, jwt_token: str):
super().__init__(model="test-model")
if not jwt_token or not isinstance(jwt_token, str):
raise ValueError("Invalid JWT token")
self.jwt_token = jwt_token
self.calls = []
self.stop = []
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Record the call and return a predefined response."""
self.calls.append(
{
"messages": messages,
"tools": tools,
"callbacks": callbacks,
"available_functions": available_functions,
}
)
# In a real implementation, this would use the JWT token to authenticate
# with an external service
return "Response from JWT-authenticated LLM"
def supports_function_calling(self) -> bool:
"""Return True to indicate that function calling is supported."""
return True
def supports_stop_words(self) -> bool:
"""Return True to indicate that stop words are supported."""
return True
def get_context_window_size(self) -> int:
"""Return a default context window size."""
return 8192
def test_custom_llm_with_jwt_auth():
"""Test a custom LLM implementation with JWT authentication."""
jwt_llm = JWTAuthLLM(jwt_token="example.jwt.token")
# Test that create_llm returns the JWT-authenticated LLM instance directly
result_llm = create_llm(jwt_llm)
assert result_llm is jwt_llm
# Test calling the JWT-authenticated LLM
response = result_llm.call("Test message")
# Verify that the JWT-authenticated LLM was called
assert len(jwt_llm.calls) > 0
# Verify that the response from the JWT-authenticated LLM was used
assert response == "Response from JWT-authenticated LLM"
def test_jwt_auth_llm_validation():
"""Test that JWT token validation works correctly."""
# Test with invalid JWT token (empty string)
with pytest.raises(ValueError, match="Invalid JWT token"):
JWTAuthLLM(jwt_token="")
# Test with invalid JWT token (non-string)
with pytest.raises(ValueError, match="Invalid JWT token"):
JWTAuthLLM(jwt_token=None)
class TimeoutHandlingLLM(BaseLLM):
"""Custom LLM implementation with timeout handling and retry logic."""
def __init__(self, max_retries: int = 3, timeout: int = 30):
"""Initialize the TimeoutHandlingLLM with retry and timeout settings.
Args:
max_retries: Maximum number of retry attempts.
timeout: Timeout in seconds for each API call.
"""
super().__init__(model="test-model")
self.max_retries = max_retries
self.timeout = timeout
self.calls = []
self.stop = []
self.fail_count = 0 # Number of times to simulate failure
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Simulate API calls with timeout handling and retry logic.
Args:
messages: Input messages for the LLM.
tools: Optional list of tool schemas for function calling.
callbacks: Optional list of callback functions.
available_functions: Optional dict mapping function names to callables.
Returns:
A response string based on whether this is the first attempt or a retry.
Raises:
TimeoutError: If all retry attempts fail.
"""
# Record the initial call
self.calls.append(
{
"messages": messages,
"tools": tools,
"callbacks": callbacks,
"available_functions": available_functions,
"attempt": 0,
}
)
# Simulate retry logic
for attempt in range(self.max_retries):
# Skip the first attempt recording since we already did that above
if attempt == 0:
# Simulate a failure if fail_count > 0
if self.fail_count > 0:
self.fail_count -= 1
# If we've used all retries, raise an error
if attempt == self.max_retries - 1:
raise TimeoutError(
f"LLM request failed after {self.max_retries} attempts"
)
# Otherwise, continue to the next attempt (simulating backoff)
continue
else:
# Success on first attempt
return "First attempt response"
else:
# This is a retry attempt (attempt > 0)
# Always record retry attempts
self.calls.append(
{
"retry_attempt": attempt,
"messages": messages,
"tools": tools,
"callbacks": callbacks,
"available_functions": available_functions,
}
)
# Simulate a failure if fail_count > 0
if self.fail_count > 0:
self.fail_count -= 1
# If we've used all retries, raise an error
if attempt == self.max_retries - 1:
raise TimeoutError(
f"LLM request failed after {self.max_retries} attempts"
)
# Otherwise, continue to the next attempt (simulating backoff)
continue
else:
# Success on retry
return "Response after retry"
def supports_function_calling(self) -> bool:
"""Return True to indicate that function calling is supported.
Returns:
True, indicating that this LLM supports function calling.
"""
return True
def supports_stop_words(self) -> bool:
"""Return True to indicate that stop words are supported.
Returns:
True, indicating that this LLM supports stop words.
"""
return True
def get_context_window_size(self) -> int:
"""Return a default context window size.
Returns:
8192, a typical context window size for modern LLMs.
"""
return 8192
def test_timeout_handling_llm():
"""Test a custom LLM implementation with timeout handling and retry logic."""
# Test successful first attempt
llm = TimeoutHandlingLLM()
response = llm.call("Test message")
assert response == "First attempt response"
assert len(llm.calls) == 1
# Test successful retry
llm = TimeoutHandlingLLM()
llm.fail_count = 1 # Fail once, then succeed
response = llm.call("Test message")
assert response == "Response after retry"
assert len(llm.calls) == 2 # Initial call + successful retry call
# Test failure after all retries
llm = TimeoutHandlingLLM(max_retries=2)
llm.fail_count = 2 # Fail twice, which is all retries
with pytest.raises(TimeoutError, match="LLM request failed after 2 attempts"):
llm.call("Test message")
assert len(llm.calls) == 2 # Initial call + failed retry attempt

View File

@@ -15,6 +15,7 @@ from crewai import Agent, Crew, Process, Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.converter import Converter
from crewai.utilities.string_utils import interpolate_only
def test_task_tool_reflect_agent_tools():
@@ -786,6 +787,25 @@ def test_conditional_task_definition_based_on_dict():
assert task.agent is None
def test_conditional_task_copy_preserves_type():
task_config = {
"description": "Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work', check examples to based your evaluation.",
"expected_output": "The score of the title.",
}
original_task = Task(**task_config)
copied_task = original_task.copy(agents=[], task_mapping={})
assert isinstance(copied_task, Task)
original_conditional_config = {
"description": "Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'. Check examples to base your evaluation on.",
"expected_output": "The score of the title.",
"condition": lambda x: True,
}
original_conditional_task = ConditionalTask(**original_conditional_config)
copied_conditional_task = original_conditional_task.copy(agents=[], task_mapping={})
assert isinstance(copied_conditional_task, ConditionalTask)
def test_interpolate_inputs():
task = Task(
description="Give me a list of 5 interesting ideas about {topic} to explore for an article, what makes them unique and interesting.",
@@ -822,7 +842,7 @@ def test_interpolate_only():
# Test JSON structure preservation
json_string = '{"info": "Look at {placeholder}", "nested": {"val": "{nestedVal}"}}'
result = task.interpolate_only(
result = interpolate_only(
input_string=json_string,
inputs={"placeholder": "the data", "nestedVal": "something else"},
)
@@ -833,20 +853,18 @@ def test_interpolate_only():
# Test normal string interpolation
normal_string = "Hello {name}, welcome to {place}!"
result = task.interpolate_only(
result = interpolate_only(
input_string=normal_string, inputs={"name": "John", "place": "CrewAI"}
)
assert result == "Hello John, welcome to CrewAI!"
# Test empty string
result = task.interpolate_only(input_string="", inputs={"unused": "value"})
result = interpolate_only(input_string="", inputs={"unused": "value"})
assert result == ""
# Test string with no placeholders
no_placeholders = "Hello, this is a test"
result = task.interpolate_only(
input_string=no_placeholders, inputs={"unused": "value"}
)
result = interpolate_only(input_string=no_placeholders, inputs={"unused": "value"})
assert result == no_placeholders
@@ -858,7 +876,7 @@ def test_interpolate_only_with_dict_inside_expected_output():
)
json_string = '{"questions": {"main_question": "What is the user\'s name?", "secondary_question": "What is the user\'s age?"}}'
result = task.interpolate_only(
result = interpolate_only(
input_string=json_string,
inputs={
"questions": {
@@ -872,18 +890,16 @@ def test_interpolate_only_with_dict_inside_expected_output():
assert result == json_string
normal_string = "Hello {name}, welcome to {place}!"
result = task.interpolate_only(
result = interpolate_only(
input_string=normal_string, inputs={"name": "John", "place": "CrewAI"}
)
assert result == "Hello John, welcome to CrewAI!"
result = task.interpolate_only(input_string="", inputs={"unused": "value"})
result = interpolate_only(input_string="", inputs={"unused": "value"})
assert result == ""
no_placeholders = "Hello, this is a test"
result = task.interpolate_only(
input_string=no_placeholders, inputs={"unused": "value"}
)
result = interpolate_only(input_string=no_placeholders, inputs={"unused": "value"})
assert result == no_placeholders
@@ -1085,12 +1101,12 @@ def test_interpolate_with_list_of_strings():
# Test simple list of strings
input_str = "Available items: {items}"
inputs = {"items": ["apple", "banana", "cherry"]}
result = task.interpolate_only(input_str, inputs)
result = interpolate_only(input_str, inputs)
assert result == f"Available items: {inputs['items']}"
# Test empty list
empty_list_input = {"items": []}
result = task.interpolate_only(input_str, empty_list_input)
result = interpolate_only(input_str, empty_list_input)
assert result == "Available items: []"
@@ -1106,7 +1122,7 @@ def test_interpolate_with_list_of_dicts():
{"name": "Bob", "age": 25, "skills": ["Java", "Cloud"]},
]
}
result = task.interpolate_only("{people}", input_data)
result = interpolate_only("{people}", input_data)
parsed_result = eval(result)
assert isinstance(parsed_result, list)
@@ -1138,7 +1154,7 @@ def test_interpolate_with_nested_structures():
],
}
}
result = task.interpolate_only("{company}", input_data)
result = interpolate_only("{company}", input_data)
parsed = eval(result)
assert parsed["name"] == "TechCorp"
@@ -1161,7 +1177,7 @@ def test_interpolate_with_special_characters():
"empty": "",
}
}
result = task.interpolate_only("{special_data}", input_data)
result = interpolate_only("{special_data}", input_data)
parsed = eval(result)
assert parsed["quotes"] == """This has "double" and 'single' quotes"""
@@ -1188,7 +1204,7 @@ def test_interpolate_mixed_types():
},
}
}
result = task.interpolate_only("{data}", input_data)
result = interpolate_only("{data}", input_data)
parsed = eval(result)
assert parsed["name"] == "Test Dataset"
@@ -1216,7 +1232,7 @@ def test_interpolate_complex_combination():
},
]
}
result = task.interpolate_only("{report}", input_data)
result = interpolate_only("{report}", input_data)
parsed = eval(result)
assert len(parsed) == 2
@@ -1233,7 +1249,7 @@ def test_interpolate_invalid_type_validation():
# Test with invalid top-level type
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": set()}) # type: ignore we are purposely testing this failure
interpolate_only("{data}", {"data": set()}) # type: ignore we are purposely testing this failure
assert "Unsupported type set" in str(excinfo.value)
@@ -1246,7 +1262,7 @@ def test_interpolate_invalid_type_validation():
}
}
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": invalid_nested})
interpolate_only("{data}", {"data": invalid_nested})
assert "Unsupported type set" in str(excinfo.value)
@@ -1265,24 +1281,22 @@ def test_interpolate_custom_object_validation():
# Test with custom object at top level
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{obj}", {"obj": CustomObject(5)}) # type: ignore we are purposely testing this failure
interpolate_only("{obj}", {"obj": CustomObject(5)}) # type: ignore we are purposely testing this failure
assert "Unsupported type CustomObject" in str(excinfo.value)
# Test with nested custom object in dictionary
with pytest.raises(ValueError) as excinfo:
task.interpolate_only(
"{data}", {"data": {"valid": 1, "invalid": CustomObject(5)}}
)
interpolate_only("{data}", {"data": {"valid": 1, "invalid": CustomObject(5)}})
assert "Unsupported type CustomObject" in str(excinfo.value)
# Test with nested custom object in list
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": [1, "valid", CustomObject(5)]})
interpolate_only("{data}", {"data": [1, "valid", CustomObject(5)]})
assert "Unsupported type CustomObject" in str(excinfo.value)
# Test with deeply nested custom object
with pytest.raises(ValueError) as excinfo:
task.interpolate_only(
interpolate_only(
"{data}", {"data": {"level1": {"level2": [{"level3": CustomObject(5)}]}}}
)
assert "Unsupported type CustomObject" in str(excinfo.value)
@@ -1306,7 +1320,7 @@ def test_interpolate_valid_complex_types():
}
# Should not raise any errors
result = task.interpolate_only("{data}", {"data": valid_data})
result = interpolate_only("{data}", {"data": valid_data})
parsed = eval(result)
assert parsed["name"] == "Valid Dataset"
assert parsed["stats"]["nested"]["deeper"]["b"] == 2.5
@@ -1319,16 +1333,16 @@ def test_interpolate_edge_cases():
)
# Test empty dict and list
assert task.interpolate_only("{}", {"data": {}}) == "{}"
assert task.interpolate_only("[]", {"data": []}) == "[]"
assert interpolate_only("{}", {"data": {}}) == "{}"
assert interpolate_only("[]", {"data": []}) == "[]"
# Test numeric types
assert task.interpolate_only("{num}", {"num": 42}) == "42"
assert task.interpolate_only("{num}", {"num": 3.14}) == "3.14"
assert interpolate_only("{num}", {"num": 42}) == "42"
assert interpolate_only("{num}", {"num": 3.14}) == "3.14"
# Test boolean values (valid JSON types)
assert task.interpolate_only("{flag}", {"flag": True}) == "True"
assert task.interpolate_only("{flag}", {"flag": False}) == "False"
assert interpolate_only("{flag}", {"flag": True}) == "True"
assert interpolate_only("{flag}", {"flag": False}) == "False"
def test_interpolate_valid_types():
@@ -1346,7 +1360,7 @@ def test_interpolate_valid_types():
"nested": {"flag": True, "empty": None},
}
result = task.interpolate_only("{data}", {"data": valid_data})
result = interpolate_only("{data}", {"data": valid_data})
parsed = eval(result)
assert parsed["active"] is True

View File

@@ -0,0 +1,187 @@
from typing import Any, Dict, List, Union
import pytest
from crewai.utilities.string_utils import interpolate_only
class TestInterpolateOnly:
"""Tests for the interpolate_only function in string_utils.py."""
def test_basic_variable_interpolation(self):
"""Test basic variable interpolation works correctly."""
template = "Hello, {name}! Welcome to {company}."
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"name": "Alice",
"company": "CrewAI",
}
result = interpolate_only(template, inputs)
assert result == "Hello, Alice! Welcome to CrewAI."
def test_multiple_occurrences_of_same_variable(self):
"""Test that multiple occurrences of the same variable are replaced."""
template = "{name} is using {name}'s account."
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"name": "Bob"
}
result = interpolate_only(template, inputs)
assert result == "Bob is using Bob's account."
def test_json_structure_preservation(self):
"""Test that JSON structures are preserved and not interpolated incorrectly."""
template = """
Instructions for {agent}:
Please return the following object:
{"name": "person's name", "age": 25, "skills": ["coding", "testing"]}
"""
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"agent": "DevAgent"
}
result = interpolate_only(template, inputs)
assert "Instructions for DevAgent:" in result
assert (
'{"name": "person\'s name", "age": 25, "skills": ["coding", "testing"]}'
in result
)
def test_complex_nested_json(self):
"""Test with complex JSON structures containing curly braces."""
template = """
{agent} needs to process:
{
"config": {
"nested": {
"value": 42
},
"arrays": [1, 2, {"inner": "value"}]
}
}
"""
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"agent": "DataProcessor"
}
result = interpolate_only(template, inputs)
assert "DataProcessor needs to process:" in result
assert '"nested": {' in result
assert '"value": 42' in result
assert '[1, 2, {"inner": "value"}]' in result
def test_missing_variable(self):
"""Test that an error is raised when a required variable is missing."""
template = "Hello, {name}!"
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"not_name": "Alice"
}
with pytest.raises(KeyError) as excinfo:
interpolate_only(template, inputs)
assert "template variable" in str(excinfo.value).lower()
assert "name" in str(excinfo.value)
def test_invalid_input_types(self):
"""Test that an error is raised with invalid input types."""
template = "Hello, {name}!"
# Using Any for this test since we're intentionally testing an invalid type
inputs: Dict[str, Any] = {"name": object()} # Object is not a valid input type
with pytest.raises(ValueError) as excinfo:
interpolate_only(template, inputs)
assert "unsupported type" in str(excinfo.value).lower()
def test_empty_input_string(self):
"""Test handling of empty or None input string."""
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"name": "Alice"
}
assert interpolate_only("", inputs) == ""
assert interpolate_only(None, inputs) == ""
def test_no_variables_in_template(self):
"""Test a template with no variables to replace."""
template = "This is a static string with no variables."
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"name": "Alice"
}
result = interpolate_only(template, inputs)
assert result == template
def test_variable_name_starting_with_underscore(self):
"""Test variables starting with underscore are replaced correctly."""
template = "Variable: {_special_var}"
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"_special_var": "Special Value"
}
result = interpolate_only(template, inputs)
assert result == "Variable: Special Value"
def test_preserves_non_matching_braces(self):
"""Test that non-matching braces patterns are preserved."""
template = (
"This {123} and {!var} should not be replaced but {valid_var} should."
)
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"valid_var": "works"
}
result = interpolate_only(template, inputs)
assert (
result == "This {123} and {!var} should not be replaced but works should."
)
def test_complex_mixed_scenario(self):
"""Test a complex scenario with both valid variables and JSON structures."""
template = """
{agent_name} is working on task {task_id}.
Instructions:
1. Process the data
2. Return results as:
{
"taskId": "{task_id}",
"results": {
"processed_by": "agent_name",
"status": "complete",
"values": [1, 2, 3]
}
}
"""
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]] = {
"agent_name": "AnalyticsAgent",
"task_id": "T-12345",
}
result = interpolate_only(template, inputs)
assert "AnalyticsAgent is working on task T-12345" in result
assert '"taskId": "T-12345"' in result
assert '"processed_by": "agent_name"' in result # This shouldn't be replaced
assert '"values": [1, 2, 3]' in result
def test_empty_inputs_dictionary(self):
"""Test that an error is raised with empty inputs dictionary."""
template = "Hello, {name}!"
inputs: Dict[str, Any] = {}
with pytest.raises(ValueError) as excinfo:
interpolate_only(template, inputs)
assert "inputs dictionary cannot be empty" in str(excinfo.value).lower()

162
uv.lock generated
View File

@@ -139,6 +139,18 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/76/ac/a7305707cb852b7e16ff80eaf5692309bde30e2b1100a1fcacdc8f731d97/aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17", size = 7617 },
]
[[package]]
name = "aisuite"
version = "0.1.10"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "httpx" },
]
sdist = { url = "https://files.pythonhosted.org/packages/6a/9d/c7a8a76abb9011dd2bc9a5cb8ffa8231640e20bbdae177ce9ab6cb67c66c/aisuite-0.1.10.tar.gz", hash = "sha256:170e62d4c91fecb22e82a04e058154a111cef473681171e5df7346272e77f414", size = 29052 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/58/c2/9a34a01516de107e5f9406dbfd319b6004340708101d67fa107373da4058/aisuite-0.1.10-py3-none-any.whl", hash = "sha256:c8510ebe38d6546b6a06819171e201fcaf0bf9ae020ffcfe19b6bd90430781ad", size = 43984 },
]
[[package]]
name = "alembic"
version = "1.13.3"
@@ -651,6 +663,9 @@ dependencies = [
agentops = [
{ name = "agentops" },
]
aisuite = [
{ name = "aisuite" },
]
docling = [
{ name = "docling" },
]
@@ -698,6 +713,7 @@ dev = [
[package.metadata]
requires-dist = [
{ name = "agentops", marker = "extra == 'agentops'", specifier = ">=0.3.0" },
{ name = "aisuite", marker = "extra == 'aisuite'", specifier = ">=0.1.10" },
{ name = "appdirs", specifier = ">=1.4.4" },
{ name = "auth0-python", specifier = ">=4.7.1" },
{ name = "blinker", specifier = ">=1.9.0" },
@@ -715,9 +731,9 @@ requires-dist = [
{ name = "openai", specifier = ">=1.13.3" },
{ name = "openpyxl", specifier = ">=3.1.5" },
{ name = "openpyxl", marker = "extra == 'openpyxl'", specifier = ">=3.1.5" },
{ name = "opentelemetry-api", specifier = ">=1.22.0" },
{ name = "opentelemetry-exporter-otlp-proto-http", specifier = ">=1.22.0" },
{ name = "opentelemetry-sdk", specifier = ">=1.22.0" },
{ name = "opentelemetry-api", specifier = ">=1.30.0" },
{ name = "opentelemetry-exporter-otlp-proto-http", specifier = ">=1.30.0" },
{ name = "opentelemetry-sdk", specifier = ">=1.30.0" },
{ name = "pandas", marker = "extra == 'pandas'", specifier = ">=2.2.3" },
{ name = "pdfplumber", specifier = ">=0.11.4" },
{ name = "pdfplumber", marker = "extra == 'pdfplumber'", specifier = ">=0.11.4" },
@@ -1617,39 +1633,42 @@ wheels = [
[[package]]
name = "grpcio-tools"
version = "1.62.3"
version = "1.67.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "grpcio" },
{ name = "protobuf" },
{ name = "setuptools" },
]
sdist = { url = "https://files.pythonhosted.org/packages/54/fa/b69bd8040eafc09b88bb0ec0fea59e8aacd1a801e688af087cead213b0d0/grpcio-tools-1.62.3.tar.gz", hash = "sha256:7c7136015c3d62c3eef493efabaf9e3380e3e66d24ee8e94c01cb71377f57833", size = 4538520 }
sdist = { url = "https://files.pythonhosted.org/packages/e7/f8/62e15867651b72f6f95313e21d81f5f1c210b69a4cc664aecf52ec4c8a53/grpcio_tools-1.67.0.tar.gz", hash = "sha256:181b3d4e61b83142c182ec366f3079b0023509743986e54c9465ca38cac255f8", size = 5159163 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ff/eb/eb0a3aa9480c3689d31fd2ad536df6a828e97a60f667c8a93d05bdf07150/grpcio_tools-1.62.3-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:2f968b049c2849540751ec2100ab05e8086c24bead769ca734fdab58698408c1", size = 5117556 },
{ url = "https://files.pythonhosted.org/packages/f3/fb/8be3dda485f7fab906bfa02db321c3ecef953a87cdb5f6572ca08b187bcb/grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:0a8c0c4724ae9c2181b7dbc9b186df46e4f62cb18dc184e46d06c0ebeccf569e", size = 2719330 },
{ url = "https://files.pythonhosted.org/packages/63/de/6978f8d10066e240141cd63d1fbfc92818d96bb53427074f47a8eda921e1/grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5782883a27d3fae8c425b29a9d3dcf5f47d992848a1b76970da3b5a28d424b26", size = 3070818 },
{ url = "https://files.pythonhosted.org/packages/74/34/bb8f816893fc73fd6d830e895e8638d65d13642bb7a434f9175c5ca7da11/grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3d812daffd0c2d2794756bd45a353f89e55dc8f91eb2fc840c51b9f6be62667", size = 2804993 },
{ url = "https://files.pythonhosted.org/packages/78/60/b2198d7db83293cdb9760fc083f077c73e4c182da06433b3b157a1567d06/grpcio_tools-1.62.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:b47d0dda1bdb0a0ba7a9a6de88e5a1ed61f07fad613964879954961e36d49193", size = 3684915 },
{ url = "https://files.pythonhosted.org/packages/61/20/56dbdc4ecb14d42a03cd164ff45e6e84572bbe61ee59c50c39f4d556a8d5/grpcio_tools-1.62.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ca246dffeca0498be9b4e1ee169b62e64694b0f92e6d0be2573e65522f39eea9", size = 3297482 },
{ url = "https://files.pythonhosted.org/packages/4a/dc/e417a313c905744ce8cedf1e1edd81c41dc45ff400ae1c45080e18f26712/grpcio_tools-1.62.3-cp310-cp310-win32.whl", hash = "sha256:6a56d344b0bab30bf342a67e33d386b0b3c4e65868ffe93c341c51e1a8853ca5", size = 909793 },
{ url = "https://files.pythonhosted.org/packages/d9/69/75e7ebfd8d755d3e7be5c6d1aa6d13220f5bba3a98965e4b50c329046777/grpcio_tools-1.62.3-cp310-cp310-win_amd64.whl", hash = "sha256:710fecf6a171dcbfa263a0a3e7070e0df65ba73158d4c539cec50978f11dad5d", size = 1052459 },
{ url = "https://files.pythonhosted.org/packages/23/52/2dfe0a46b63f5ebcd976570aa5fc62f793d5a8b169e211c6a5aede72b7ae/grpcio_tools-1.62.3-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:703f46e0012af83a36082b5f30341113474ed0d91e36640da713355cd0ea5d23", size = 5147623 },
{ url = "https://files.pythonhosted.org/packages/f0/2e/29fdc6c034e058482e054b4a3c2432f84ff2e2765c1342d4f0aa8a5c5b9a/grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:7cc83023acd8bc72cf74c2edbe85b52098501d5b74d8377bfa06f3e929803492", size = 2719538 },
{ url = "https://files.pythonhosted.org/packages/f9/60/abe5deba32d9ec2c76cdf1a2f34e404c50787074a2fee6169568986273f1/grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ff7d58a45b75df67d25f8f144936a3e44aabd91afec833ee06826bd02b7fbe7", size = 3070964 },
{ url = "https://files.pythonhosted.org/packages/bc/ad/e2b066684c75f8d9a48508cde080a3a36618064b9cadac16d019ca511444/grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f2483ea232bd72d98a6dc6d7aefd97e5bc80b15cd909b9e356d6f3e326b6e43", size = 2805003 },
{ url = "https://files.pythonhosted.org/packages/9c/3f/59bf7af786eae3f9d24ee05ce75318b87f541d0950190ecb5ffb776a1a58/grpcio_tools-1.62.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:962c84b4da0f3b14b3cdb10bc3837ebc5f136b67d919aea8d7bb3fd3df39528a", size = 3685154 },
{ url = "https://files.pythonhosted.org/packages/f1/79/4dd62478b91e27084c67b35a2316ce8a967bd8b6cb8d6ed6c86c3a0df7cb/grpcio_tools-1.62.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8ad0473af5544f89fc5a1ece8676dd03bdf160fb3230f967e05d0f4bf89620e3", size = 3297942 },
{ url = "https://files.pythonhosted.org/packages/b8/cb/86449ecc58bea056b52c0b891f26977afc8c4464d88c738f9648da941a75/grpcio_tools-1.62.3-cp311-cp311-win32.whl", hash = "sha256:db3bc9fa39afc5e4e2767da4459df82b095ef0cab2f257707be06c44a1c2c3e5", size = 910231 },
{ url = "https://files.pythonhosted.org/packages/45/a4/9736215e3945c30ab6843280b0c6e1bff502910156ea2414cd77fbf1738c/grpcio_tools-1.62.3-cp311-cp311-win_amd64.whl", hash = "sha256:e0898d412a434e768a0c7e365acabe13ff1558b767e400936e26b5b6ed1ee51f", size = 1052496 },
{ url = "https://files.pythonhosted.org/packages/2a/a5/d6887eba415ce318ae5005e8dfac3fa74892400b54b6d37b79e8b4f14f5e/grpcio_tools-1.62.3-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d102b9b21c4e1e40af9a2ab3c6d41afba6bd29c0aa50ca013bf85c99cdc44ac5", size = 5147690 },
{ url = "https://files.pythonhosted.org/packages/8a/7c/3cde447a045e83ceb4b570af8afe67ffc86896a2fe7f59594dc8e5d0a645/grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:0a52cc9444df978438b8d2332c0ca99000521895229934a59f94f37ed896b133", size = 2720538 },
{ url = "https://files.pythonhosted.org/packages/88/07/f83f2750d44ac4f06c07c37395b9c1383ef5c994745f73c6bfaf767f0944/grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141d028bf5762d4a97f981c501da873589df3f7e02f4c1260e1921e565b376fa", size = 3071571 },
{ url = "https://files.pythonhosted.org/packages/37/74/40175897deb61e54aca716bc2e8919155b48f33aafec8043dda9592d8768/grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47a5c093ab256dec5714a7a345f8cc89315cb57c298b276fa244f37a0ba507f0", size = 2806207 },
{ url = "https://files.pythonhosted.org/packages/ec/ee/d8de915105a217cbcb9084d684abdc032030dcd887277f2ef167372287fe/grpcio_tools-1.62.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:f6831fdec2b853c9daa3358535c55eed3694325889aa714070528cf8f92d7d6d", size = 3685815 },
{ url = "https://files.pythonhosted.org/packages/fd/d9/4360a6c12be3d7521b0b8c39e5d3801d622fbb81cc2721dbd3eee31e28c8/grpcio_tools-1.62.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e02d7c1a02e3814c94ba0cfe43d93e872c758bd8fd5c2797f894d0c49b4a1dfc", size = 3298378 },
{ url = "https://files.pythonhosted.org/packages/29/3b/7cdf4a9e5a3e0a35a528b48b111355cd14da601413a4f887aa99b6da468f/grpcio_tools-1.62.3-cp312-cp312-win32.whl", hash = "sha256:b881fd9505a84457e9f7e99362eeedd86497b659030cf57c6f0070df6d9c2b9b", size = 910416 },
{ url = "https://files.pythonhosted.org/packages/6c/66/dd3ec249e44c1cc15e902e783747819ed41ead1336fcba72bf841f72c6e9/grpcio_tools-1.62.3-cp312-cp312-win_amd64.whl", hash = "sha256:11c625eebefd1fd40a228fc8bae385e448c7e32a6ae134e43cf13bbc23f902b7", size = 1052856 },
{ url = "https://files.pythonhosted.org/packages/91/9d/7608eb89b41433a49dbf96f56d9c05b3a5ba08951702d54c368d370ab6aa/grpcio_tools-1.67.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:12aa38af76b5ef00a55808c7c374ed18d5dc7cc8081b717e56da3c50df1776e2", size = 2308120 },
{ url = "https://files.pythonhosted.org/packages/93/f2/d8cbc35e63bba98e4352427d01c64801fef9e9d9cd7fc5eea0538128e0e6/grpcio_tools-1.67.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:b0b03d055127bbc7c629454804b53b5cad2cedfcf904576d159a8a04c22b8e66", size = 5500124 },
{ url = "https://files.pythonhosted.org/packages/eb/b5/131d0eac92205d0ae3d3f7eecf655884ef7746aecac5a93520fb83d907d0/grpcio_tools-1.67.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:02b0b50c59a8f7428326197027a2f586d216c46138c547f861533c46bff78bfe", size = 2282058 },
{ url = "https://files.pythonhosted.org/packages/3f/3f/5e4de8d7fe38e8e42567a49a39f77d67e2905b00c69165e2e88f9d3005ac/grpcio_tools-1.67.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b2afdfe151ed9edbd4a3fd646716f83b58010769c57f9c0aa1cf4c3bfb1240a8", size = 2617363 },
{ url = "https://files.pythonhosted.org/packages/eb/53/3eb4eb7c178a229676d1ff0bcda640ebc0a104d12cdbd884f6796d118c56/grpcio_tools-1.67.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3eeb87575b2b360c5ef5aef22eb76cfdd6a255d2f628a48ab0e5a61a0039fb", size = 2416026 },
{ url = "https://files.pythonhosted.org/packages/a6/9a/9c584d21ed1fb8f7adac6135a569c9b3b1378b6b467fba8d94d14de70606/grpcio_tools-1.67.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ead78089c4771605a1ff8894e47f2267440693f1beeee06fd5a788aede83370f", size = 3224904 },
{ url = "https://files.pythonhosted.org/packages/93/6a/dab92a7aa1bae0d2e0735462fbde778011916e5124d7ee9b52d214f42552/grpcio_tools-1.67.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0671dcdccef09ca4eb415c1d6f470a857c6486733c146676f6810a3ade1d42cb", size = 2870381 },
{ url = "https://files.pythonhosted.org/packages/49/be/3f2c958ef65161f3eeae5a1013358ca3c2eab25174ec4fc8d46b6d6146c8/grpcio_tools-1.67.0-cp310-cp310-win32.whl", hash = "sha256:a7398d90b8c7da479aec8f853d3664d5a93c209f8ac3bd41cb7ae4e8677a45c6", size = 941140 },
{ url = "https://files.pythonhosted.org/packages/17/e9/461db9af08badc647659fa4a382ab546981ebccb413fc625e4b7c0413305/grpcio_tools-1.67.0-cp310-cp310-win_amd64.whl", hash = "sha256:f7e7d70a74df7e07be7cceaa694b7e8e5f3bef8e0299906f60885ecf7a40adb4", size = 1091151 },
{ url = "https://files.pythonhosted.org/packages/cd/0d/88f181eecef84c9c8c009fa4d49ce812a5717539b75aacea4a7be8b9587c/grpcio_tools-1.67.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:655716bf931a22a090134d87953710033640996d31e36f5f9b0106ff5f552d8e", size = 2307990 },
{ url = "https://files.pythonhosted.org/packages/de/22/94855e18588800c96eca95af3be918249f635e4635e3e46895949b0ca27e/grpcio_tools-1.67.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:484ae782f9d3ff58e0bbb2f4cad14d5f5d9132fc701835b1dffd2c2a06f73ba6", size = 5526488 },
{ url = "https://files.pythonhosted.org/packages/c3/c7/086f6c287fed85c2a5e19cb457a42a0eae2df9534666ed252947170daf8e/grpcio_tools-1.67.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:f3e34de876efe1273f91e25ef241e449ed7f9411472dd9ff56d2039618017c30", size = 2282139 },
{ url = "https://files.pythonhosted.org/packages/40/1a/d8e2171ef7b5b1fda54fa2dc82807725c9e31dd6b4878e9d68ab8f3c48b7/grpcio_tools-1.67.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8301719edde2c3d388995703cdd962f558b76e9750405f772dce61402e4c3d0", size = 2617333 },
{ url = "https://files.pythonhosted.org/packages/08/e8/e2b0a3e5890ad650d0cc9d92227f87a407784a9fc110438b85d01cf1ec71/grpcio_tools-1.67.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1629ea246044ccd473d9ac4c9f137a440d830b5e08d35225e1b354dbbb15b75d", size = 2415805 },
{ url = "https://files.pythonhosted.org/packages/6a/43/a1731299e1662c24d89795a8ae4bb725f4a8a0c8e2dc6e12d3276eb96e14/grpcio_tools-1.67.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d77a3c5cec0065267ca1a0b2589ececd1277ce25aa67f13ec50c816ee6f26f7f", size = 3224764 },
{ url = "https://files.pythonhosted.org/packages/5d/03/968dd4b8de9ec4c6d287a8ba8b844f515a2cfcb350acefdb1fcb6f2945d9/grpcio_tools-1.67.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf992bcc7d9e6eaa20705056e1b955593092a38cec1746fef389d873ab2056", size = 2870440 },
{ url = "https://files.pythonhosted.org/packages/9f/ea/e6bb028fec6f37aace620bd0a68e7c369bc975ece940dd3de08a2ef66edc/grpcio_tools-1.67.0-cp311-cp311-win32.whl", hash = "sha256:7e6e3db119c38629e0767cdb2ee18726ecc87e2249117d4c9e7ce06ea8c894ea", size = 940888 },
{ url = "https://files.pythonhosted.org/packages/e5/26/b6f98fc9c1e6b8fa5b676bbb07e2bc70f388d4c513140fa38ffa9a15b934/grpcio_tools-1.67.0-cp311-cp311-win_amd64.whl", hash = "sha256:c6c27aec301a0e6cf231f9ee1c467c64002af51170fa7c0f3bb10bbfcd03fee7", size = 1091094 },
{ url = "https://files.pythonhosted.org/packages/d6/b6/57e67c0244db8d7c0c312041293b806bfb1c9d66c26159e6faf39cc10356/grpcio_tools-1.67.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:dca7f053cbdb26a587d4410ddb893877c585fb60a31f22fdd128e4f7c4dab27c", size = 2307646 },
{ url = "https://files.pythonhosted.org/packages/52/43/837f08b85b04ac225aebe1d7da1a7a79fc313f231306c865b5112cef7dc4/grpcio_tools-1.67.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:de8c4f68ffa690769d84329c17c7fdd5fbe4c61b8f8a0de03f1ad8ef8bb06963", size = 5525447 },
{ url = "https://files.pythonhosted.org/packages/3e/5f/adb8b87f5c403ba53529b6645184beddfa63abf2c524a6dabaa430e6bab3/grpcio_tools-1.67.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:6e4ecb24c27a78f09fead45d4ed873805d6026124ccb6793b6fb93a490b78ddf", size = 2281767 },
{ url = "https://files.pythonhosted.org/packages/6e/cd/3d6a7971e28b96cb618abb281325517443744ecfe48aa03f27a17cd5d4e1/grpcio_tools-1.67.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004d6ef1b5f724480f05c0bdc904bf8c78c43d633c537d99abe51b52ce0cadeb", size = 2617363 },
{ url = "https://files.pythonhosted.org/packages/2d/a9/b8f1eae3db0f1b6f9548bd2032f48cb6f1ec9bc6781436d52dff4b352fab/grpcio_tools-1.67.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9dd257072c86eb9b36791b3674a513a215ba76bbdd38fc228f0e8c6dc5ce3524", size = 2415322 },
{ url = "https://files.pythonhosted.org/packages/9b/fc/0045bf2e5c97a5ffe0ff2c9a4e4a62894402e8d7094162c2084a809c9d1c/grpcio_tools-1.67.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a8cca551317ed26e17d13b6ee27b2bd62f5fe9b3842b4e88389deb984f995848", size = 3225044 },
{ url = "https://files.pythonhosted.org/packages/dc/73/eaf40958dd648dd98a0fbd30df2b51c5beb7ee24127c1f0bb99ea44fd435/grpcio_tools-1.67.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a7ac3b4f837c693142f6688b629d1f6408f6ab250d927159b572555f5339fe25", size = 2870418 },
{ url = "https://files.pythonhosted.org/packages/b4/77/e307e91816123444ff657bbae2269cb912f31a9390118ed371bde9d0c1f3/grpcio_tools-1.67.0-cp312-cp312-win32.whl", hash = "sha256:95feec33388e2a8f72c360a68efe6f0bfed9c771e94d21b7f2359d0010f60219", size = 940540 },
{ url = "https://files.pythonhosted.org/packages/be/2a/0c1a64e88fbc17235b68d3178be6cf4a69aea5bd1deed683c0bbd2f5e9f9/grpcio_tools-1.67.0-cp312-cp312-win_amd64.whl", hash = "sha256:50a31d035193ebe7154181eac84734e25bdcdb36adba849d3b2adf1c3b0c382b", size = 1090427 },
]
[[package]]
@@ -3116,32 +3135,32 @@ wheels = [
[[package]]
name = "opentelemetry-api"
version = "1.27.0"
version = "1.31.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "deprecated" },
{ name = "importlib-metadata" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c9/83/93114b6de85a98963aec218a51509a52ed3f8de918fe91eb0f7299805c3f/opentelemetry_api-1.27.0.tar.gz", hash = "sha256:ed673583eaa5f81b5ce5e86ef7cdaf622f88ef65f0b9aab40b843dcae5bef342", size = 62693 }
sdist = { url = "https://files.pythonhosted.org/packages/8a/cf/db26ab9d748bf50d6edf524fb863aa4da616ba1ce46c57a7dff1112b73fb/opentelemetry_api-1.31.1.tar.gz", hash = "sha256:137ad4b64215f02b3000a0292e077641c8611aab636414632a9b9068593b7e91", size = 64059 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fb/1f/737dcdbc9fea2fa96c1b392ae47275165a7c641663fbb08a8d252968eed2/opentelemetry_api-1.27.0-py3-none-any.whl", hash = "sha256:953d5871815e7c30c81b56d910c707588000fff7a3ca1c73e6531911d53065e7", size = 63970 },
{ url = "https://files.pythonhosted.org/packages/6c/c8/86557ff0da32f3817bc4face57ea35cfdc2f9d3bcefd42311ef860dcefb7/opentelemetry_api-1.31.1-py3-none-any.whl", hash = "sha256:1511a3f470c9c8a32eeea68d4ea37835880c0eed09dd1a0187acc8b1301da0a1", size = 65197 },
]
[[package]]
name = "opentelemetry-exporter-otlp-proto-common"
version = "1.27.0"
version = "1.31.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "opentelemetry-proto" },
]
sdist = { url = "https://files.pythonhosted.org/packages/cd/2e/7eaf4ba595fb5213cf639c9158dfb64aacb2e4c7d74bfa664af89fa111f4/opentelemetry_exporter_otlp_proto_common-1.27.0.tar.gz", hash = "sha256:159d27cf49f359e3798c4c3eb8da6ef4020e292571bd8c5604a2a573231dd5c8", size = 17860 }
sdist = { url = "https://files.pythonhosted.org/packages/53/e5/48662d9821d28f05ab8350a9a986ab99d9c0e8b23f8ff391c8df82742a9c/opentelemetry_exporter_otlp_proto_common-1.31.1.tar.gz", hash = "sha256:c748e224c01f13073a2205397ba0e415dcd3be9a0f95101ba4aace5fc730e0da", size = 20627 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/41/27/4610ab3d9bb3cde4309b6505f98b3aabca04a26aa480aa18cede23149837/opentelemetry_exporter_otlp_proto_common-1.27.0-py3-none-any.whl", hash = "sha256:675db7fffcb60946f3a5c43e17d1168a3307a94a930ecf8d2ea1f286f3d4f79a", size = 17848 },
{ url = "https://files.pythonhosted.org/packages/82/70/134282413000a3fc02e6b4e301b8c5d7127c43b50bd23cddbaf406ab33ff/opentelemetry_exporter_otlp_proto_common-1.31.1-py3-none-any.whl", hash = "sha256:7cadf89dbab12e217a33c5d757e67c76dd20ce173f8203e7370c4996f2e9efd8", size = 18823 },
]
[[package]]
name = "opentelemetry-exporter-otlp-proto-grpc"
version = "1.27.0"
version = "1.31.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "deprecated" },
@@ -3152,14 +3171,14 @@ dependencies = [
{ name = "opentelemetry-proto" },
{ name = "opentelemetry-sdk" },
]
sdist = { url = "https://files.pythonhosted.org/packages/a1/d0/c1e375b292df26e0ffebf194e82cd197e4c26cc298582bda626ce3ce74c5/opentelemetry_exporter_otlp_proto_grpc-1.27.0.tar.gz", hash = "sha256:af6f72f76bcf425dfb5ad11c1a6d6eca2863b91e63575f89bb7b4b55099d968f", size = 26244 }
sdist = { url = "https://files.pythonhosted.org/packages/0f/37/6ce465827ac69c52543afb5534146ccc40f54283a3a8a71ef87c91eb8933/opentelemetry_exporter_otlp_proto_grpc-1.31.1.tar.gz", hash = "sha256:c7f66b4b333c52248dc89a6583506222c896c74824d5d2060b818ae55510939a", size = 26620 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/8d/80/32217460c2c64c0568cea38410124ff680a9b65f6732867bbf857c4d8626/opentelemetry_exporter_otlp_proto_grpc-1.27.0-py3-none-any.whl", hash = "sha256:56b5bbd5d61aab05e300d9d62a6b3c134827bbd28d0b12f2649c2da368006c9e", size = 18541 },
{ url = "https://files.pythonhosted.org/packages/ee/25/9974fa3a431d7499bd9d179fb9bd7daaa3ad9eba3313f72da5226b6d02df/opentelemetry_exporter_otlp_proto_grpc-1.31.1-py3-none-any.whl", hash = "sha256:f4055ad2c9a2ea3ae00cbb927d6253233478b3b87888e197d34d095a62305fae", size = 18588 },
]
[[package]]
name = "opentelemetry-exporter-otlp-proto-http"
version = "1.27.0"
version = "1.31.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "deprecated" },
@@ -3170,28 +3189,29 @@ dependencies = [
{ name = "opentelemetry-sdk" },
{ name = "requests" },
]
sdist = { url = "https://files.pythonhosted.org/packages/31/0a/f05c55e8913bf58a033583f2580a0ec31a5f4cf2beacc9e286dcb74d6979/opentelemetry_exporter_otlp_proto_http-1.27.0.tar.gz", hash = "sha256:2103479092d8eb18f61f3fbff084f67cc7f2d4a7d37e75304b8b56c1d09ebef5", size = 15059 }
sdist = { url = "https://files.pythonhosted.org/packages/6d/9c/d8718fce3d14042beab5a41c8e17be1864c48d2067be3a99a5652d2414a3/opentelemetry_exporter_otlp_proto_http-1.31.1.tar.gz", hash = "sha256:723bd90eb12cfb9ae24598641cb0c92ca5ba9f1762103902f6ffee3341ba048e", size = 15140 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/2d/8d/4755884afc0b1db6000527cac0ca17273063b6142c773ce4ecd307a82e72/opentelemetry_exporter_otlp_proto_http-1.27.0-py3-none-any.whl", hash = "sha256:688027575c9da42e179a69fe17e2d1eba9b14d81de8d13553a21d3114f3b4d75", size = 17203 },
{ url = "https://files.pythonhosted.org/packages/f2/19/5041dbfdd0b2a6ab340596693759bfa7dcfa8f30b9fa7112bb7117358571/opentelemetry_exporter_otlp_proto_http-1.31.1-py3-none-any.whl", hash = "sha256:5dee1f051f096b13d99706a050c39b08e3f395905f29088bfe59e54218bd1cf4", size = 17257 },
]
[[package]]
name = "opentelemetry-instrumentation"
version = "0.48b0"
version = "0.52b1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "opentelemetry-api" },
{ name = "setuptools" },
{ name = "opentelemetry-semantic-conventions" },
{ name = "packaging" },
{ name = "wrapt" },
]
sdist = { url = "https://files.pythonhosted.org/packages/04/0e/d9394839af5d55c8feb3b22cd11138b953b49739b20678ca96289e30f904/opentelemetry_instrumentation-0.48b0.tar.gz", hash = "sha256:94929685d906380743a71c3970f76b5f07476eea1834abd5dd9d17abfe23cc35", size = 24724 }
sdist = { url = "https://files.pythonhosted.org/packages/49/c9/c52d444576b0776dbee71d2a4485be276cf46bec0123a5ba2f43f0cf7cde/opentelemetry_instrumentation-0.52b1.tar.gz", hash = "sha256:739f3bfadbbeec04dd59297479e15660a53df93c131d907bb61052e3d3c1406f", size = 28406 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0a/7f/405c41d4f359121376c9d5117dcf68149b8122d3f6c718996d037bd4d800/opentelemetry_instrumentation-0.48b0-py3-none-any.whl", hash = "sha256:a69750dc4ba6a5c3eb67986a337185a25b739966d80479befe37b546fc870b44", size = 29449 },
{ url = "https://files.pythonhosted.org/packages/61/dd/a2b35078170941990e7a5194b9600fa75868958a9a2196a752da0e7b97a0/opentelemetry_instrumentation-0.52b1-py3-none-any.whl", hash = "sha256:8c0059c4379d77bbd8015c8d8476020efe873c123047ec069bb335e4b8717477", size = 31036 },
]
[[package]]
name = "opentelemetry-instrumentation-asgi"
version = "0.48b0"
version = "0.52b1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "asgiref" },
@@ -3200,14 +3220,14 @@ dependencies = [
{ name = "opentelemetry-semantic-conventions" },
{ name = "opentelemetry-util-http" },
]
sdist = { url = "https://files.pythonhosted.org/packages/44/ac/fd3d40bab3234ec3f5c052a815100676baaae1832fa1067935f11e5c59c6/opentelemetry_instrumentation_asgi-0.48b0.tar.gz", hash = "sha256:04c32174b23c7fa72ddfe192dad874954968a6a924608079af9952964ecdf785", size = 23435 }
sdist = { url = "https://files.pythonhosted.org/packages/bc/db/79bdc2344b38e60fecc7e99159a3f5b4c0e1acec8de305fba0a713cc3692/opentelemetry_instrumentation_asgi-0.52b1.tar.gz", hash = "sha256:a6dbce9cb5b2c2f45ce4817ad21f44c67fd328358ad3ab911eb46f0be67f82ec", size = 24203 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/db/74/a0e0d38622856597dd8e630f2bd793760485eb165708e11b8be1696bbb5a/opentelemetry_instrumentation_asgi-0.48b0-py3-none-any.whl", hash = "sha256:ddb1b5fc800ae66e85a4e2eca4d9ecd66367a8c7b556169d9e7b57e10676e44d", size = 15958 },
{ url = "https://files.pythonhosted.org/packages/19/de/39ec078ae94a365d2f434b7e25886c267864aca5695b48fa5b60f80fbfb3/opentelemetry_instrumentation_asgi-0.52b1-py3-none-any.whl", hash = "sha256:f7179f477ed665ba21871972f979f21e8534edb971232e11920c8a22f4759236", size = 16338 },
]
[[package]]
name = "opentelemetry-instrumentation-fastapi"
version = "0.48b0"
version = "0.52b1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "opentelemetry-api" },
@@ -3216,57 +3236,57 @@ dependencies = [
{ name = "opentelemetry-semantic-conventions" },
{ name = "opentelemetry-util-http" },
]
sdist = { url = "https://files.pythonhosted.org/packages/58/20/43477da5850ef2cd3792715d442aecd051e885e0603b6ee5783b2104ba8f/opentelemetry_instrumentation_fastapi-0.48b0.tar.gz", hash = "sha256:21a72563ea412c0b535815aeed75fc580240f1f02ebc72381cfab672648637a2", size = 18497 }
sdist = { url = "https://files.pythonhosted.org/packages/30/01/d159829077f2795c716445df6f8edfdd33391e82d712ba4613fb62b99dc5/opentelemetry_instrumentation_fastapi-0.52b1.tar.gz", hash = "sha256:d26ab15dc49e041301d5c2571605b8f5c3a6ee4a85b60940338f56c120221e98", size = 19247 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ee/50/745ab075a3041b7a5f29a579d2c28eaad54f64b4589d8f9fd364c62cf0f3/opentelemetry_instrumentation_fastapi-0.48b0-py3-none-any.whl", hash = "sha256:afeb820a59e139d3e5d96619600f11ce0187658b8ae9e3480857dd790bc024f2", size = 11777 },
{ url = "https://files.pythonhosted.org/packages/23/89/acef7f625b218523873e32584dc5243d95ffa4facba737fd8b854c049c58/opentelemetry_instrumentation_fastapi-0.52b1-py3-none-any.whl", hash = "sha256:73c8804f053c5eb2fd2c948218bff9561f1ef65e89db326a6ab0b5bf829969f4", size = 12114 },
]
[[package]]
name = "opentelemetry-proto"
version = "1.27.0"
version = "1.31.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "protobuf" },
]
sdist = { url = "https://files.pythonhosted.org/packages/9a/59/959f0beea798ae0ee9c979b90f220736fbec924eedbefc60ca581232e659/opentelemetry_proto-1.27.0.tar.gz", hash = "sha256:33c9345d91dafd8a74fc3d7576c5a38f18b7fdf8d02983ac67485386132aedd6", size = 34749 }
sdist = { url = "https://files.pythonhosted.org/packages/5b/b0/e763f335b9b63482f1f31f46f9299c4d8388e91fc12737aa14fdb5d124ac/opentelemetry_proto-1.31.1.tar.gz", hash = "sha256:d93e9c2b444e63d1064fb50ae035bcb09e5822274f1683886970d2734208e790", size = 34363 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/94/56/3d2d826834209b19a5141eed717f7922150224d1a982385d19a9444cbf8d/opentelemetry_proto-1.27.0-py3-none-any.whl", hash = "sha256:b133873de5581a50063e1e4b29cdcf0c5e253a8c2d8dc1229add20a4c3830ace", size = 52464 },
{ url = "https://files.pythonhosted.org/packages/b6/f1/3baee86eab4f1b59b755f3c61a9b5028f380c88250bb9b7f89340502dbba/opentelemetry_proto-1.31.1-py3-none-any.whl", hash = "sha256:1398ffc6d850c2f1549ce355744e574c8cd7c1dba3eea900d630d52c41d07178", size = 55854 },
]
[[package]]
name = "opentelemetry-sdk"
version = "1.27.0"
version = "1.31.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "opentelemetry-api" },
{ name = "opentelemetry-semantic-conventions" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0d/9a/82a6ac0f06590f3d72241a587cb8b0b751bd98728e896cc4cbd4847248e6/opentelemetry_sdk-1.27.0.tar.gz", hash = "sha256:d525017dea0ccce9ba4e0245100ec46ecdc043f2d7b8315d56b19aff0904fa6f", size = 145019 }
sdist = { url = "https://files.pythonhosted.org/packages/63/d9/4fe159908a63661e9e635e66edc0d0d816ed20cebcce886132b19ae87761/opentelemetry_sdk-1.31.1.tar.gz", hash = "sha256:c95f61e74b60769f8ff01ec6ffd3d29684743404603df34b20aa16a49dc8d903", size = 159523 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c1/bd/a6602e71e315055d63b2ff07172bd2d012b4cba2d4e00735d74ba42fc4d6/opentelemetry_sdk-1.27.0-py3-none-any.whl", hash = "sha256:365f5e32f920faf0fd9e14fdfd92c086e317eaa5f860edba9cdc17a380d9197d", size = 110505 },
{ url = "https://files.pythonhosted.org/packages/bc/36/758e5d3746bc86a2af20aa5e2236a7c5aa4264b501dc0e9f40efd9078ef0/opentelemetry_sdk-1.31.1-py3-none-any.whl", hash = "sha256:882d021321f223e37afaca7b4e06c1d8bbc013f9e17ff48a7aa017460a8e7dae", size = 118866 },
]
[[package]]
name = "opentelemetry-semantic-conventions"
version = "0.48b0"
version = "0.52b1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "deprecated" },
{ name = "opentelemetry-api" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0a/89/1724ad69f7411772446067cdfa73b598694c8c91f7f8c922e344d96d81f9/opentelemetry_semantic_conventions-0.48b0.tar.gz", hash = "sha256:12d74983783b6878162208be57c9effcb89dc88691c64992d70bb89dc00daa1a", size = 89445 }
sdist = { url = "https://files.pythonhosted.org/packages/06/8c/599f9f27cff097ec4d76fbe9fe6d1a74577ceec52efe1a999511e3c42ef5/opentelemetry_semantic_conventions-0.52b1.tar.gz", hash = "sha256:7b3d226ecf7523c27499758a58b542b48a0ac8d12be03c0488ff8ec60c5bae5d", size = 111275 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/b7/7a/4f0063dbb0b6c971568291a8bc19a4ca70d3c185db2d956230dd67429dfc/opentelemetry_semantic_conventions-0.48b0-py3-none-any.whl", hash = "sha256:a0de9f45c413a8669788a38569c7e0a11ce6ce97861a628cca785deecdc32a1f", size = 149685 },
{ url = "https://files.pythonhosted.org/packages/98/be/d4ba300cfc1d4980886efbc9b48ee75242b9fcf940d9c4ccdc9ef413a7cf/opentelemetry_semantic_conventions-0.52b1-py3-none-any.whl", hash = "sha256:72b42db327e29ca8bb1b91e8082514ddf3bbf33f32ec088feb09526ade4bc77e", size = 183409 },
]
[[package]]
name = "opentelemetry-util-http"
version = "0.48b0"
version = "0.52b1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/d6/d7/185c494754340e0a3928fd39fde2616ee78f2c9d66253affaad62d5b7935/opentelemetry_util_http-0.48b0.tar.gz", hash = "sha256:60312015153580cc20f322e5cdc3d3ecad80a71743235bdb77716e742814623c", size = 7863 }
sdist = { url = "https://files.pythonhosted.org/packages/23/3f/16a4225a953bbaae7d800140ed99813f092ea3071ba7780683299a87049b/opentelemetry_util_http-0.52b1.tar.gz", hash = "sha256:c03c8c23f1b75fadf548faece7ead3aecd50761c5593a2b2831b48730eee5b31", size = 8044 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ad/2e/36097c0a4d0115b8c7e377c90bab7783ac183bc5cb4071308f8959454311/opentelemetry_util_http-0.48b0-py3-none-any.whl", hash = "sha256:76f598af93aab50328d2a69c786beaedc8b6a7770f7a818cc307eb353debfffb", size = 6946 },
{ url = "https://files.pythonhosted.org/packages/2c/00/1591b397c9efc0e4215d223553a1cb9090c8499888a4447f842443077d31/opentelemetry_util_http-0.52b1-py3-none-any.whl", hash = "sha256:6a6ab6bfa23fef96f4995233e874f67602adf9d224895981b4ab9d4dde23de78", size = 7305 },
]
[[package]]
@@ -3628,16 +3648,16 @@ wheels = [
[[package]]
name = "protobuf"
version = "4.25.5"
version = "5.29.4"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/67/dd/48d5fdb68ec74d70fabcc252e434492e56f70944d9f17b6a15e3746d2295/protobuf-4.25.5.tar.gz", hash = "sha256:7f8249476b4a9473645db7f8ab42b02fe1488cbe5fb72fddd445e0665afd8584", size = 380315 }
sdist = { url = "https://files.pythonhosted.org/packages/17/7d/b9dca7365f0e2c4fa7c193ff795427cfa6290147e5185ab11ece280a18e7/protobuf-5.29.4.tar.gz", hash = "sha256:4f1dfcd7997b31ef8f53ec82781ff434a28bf71d9102ddde14d076adcfc78c99", size = 424902 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/00/35/1b3c5a5e6107859c4ca902f4fbb762e48599b78129a05d20684fef4a4d04/protobuf-4.25.5-cp310-abi3-win32.whl", hash = "sha256:5e61fd921603f58d2f5acb2806a929b4675f8874ff5f330b7d6f7e2e784bbcd8", size = 392457 },
{ url = "https://files.pythonhosted.org/packages/a7/ad/bf3f358e90b7e70bf7fb520702cb15307ef268262292d3bdb16ad8ebc815/protobuf-4.25.5-cp310-abi3-win_amd64.whl", hash = "sha256:4be0571adcbe712b282a330c6e89eae24281344429ae95c6d85e79e84780f5ea", size = 413449 },
{ url = "https://files.pythonhosted.org/packages/51/49/d110f0a43beb365758a252203c43eaaad169fe7749da918869a8c991f726/protobuf-4.25.5-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:b2fde3d805354df675ea4c7c6338c1aecd254dfc9925e88c6d31a2bcb97eb173", size = 394248 },
{ url = "https://files.pythonhosted.org/packages/c6/ab/0f384ca0bc6054b1a7b6009000ab75d28a5506e4459378b81280ae7fd358/protobuf-4.25.5-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:919ad92d9b0310070f8356c24b855c98df2b8bd207ebc1c0c6fcc9ab1e007f3d", size = 293717 },
{ url = "https://files.pythonhosted.org/packages/05/a6/094a2640be576d760baa34c902dcb8199d89bce9ed7dd7a6af74dcbbd62d/protobuf-4.25.5-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:fe14e16c22be926d3abfcb500e60cab068baf10b542b8c858fa27e098123e331", size = 294635 },
{ url = "https://files.pythonhosted.org/packages/33/90/f198a61df8381fb43ae0fe81b3d2718e8dcc51ae8502c7657ab9381fbc4f/protobuf-4.25.5-py3-none-any.whl", hash = "sha256:0aebecb809cae990f8129ada5ca273d9d670b76d9bfc9b1809f0a9c02b7dbf41", size = 156467 },
{ url = "https://files.pythonhosted.org/packages/9a/b2/043a1a1a20edd134563699b0e91862726a0dc9146c090743b6c44d798e75/protobuf-5.29.4-cp310-abi3-win32.whl", hash = "sha256:13eb236f8eb9ec34e63fc8b1d6efd2777d062fa6aaa68268fb67cf77f6839ad7", size = 422709 },
{ url = "https://files.pythonhosted.org/packages/79/fc/2474b59570daa818de6124c0a15741ee3e5d6302e9d6ce0bdfd12e98119f/protobuf-5.29.4-cp310-abi3-win_amd64.whl", hash = "sha256:bcefcdf3976233f8a502d265eb65ea740c989bacc6c30a58290ed0e519eb4b8d", size = 434506 },
{ url = "https://files.pythonhosted.org/packages/46/de/7c126bbb06aa0f8a7b38aaf8bd746c514d70e6a2a3f6dd460b3b7aad7aae/protobuf-5.29.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:307ecba1d852ec237e9ba668e087326a67564ef83e45a0189a772ede9e854dd0", size = 417826 },
{ url = "https://files.pythonhosted.org/packages/a2/b5/bade14ae31ba871a139aa45e7a8183d869efe87c34a4850c87b936963261/protobuf-5.29.4-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:aec4962f9ea93c431d5714ed1be1c93f13e1a8618e70035ba2b0564d9e633f2e", size = 319574 },
{ url = "https://files.pythonhosted.org/packages/46/88/b01ed2291aae68b708f7d334288ad5fb3e7aa769a9c309c91a0d55cb91b0/protobuf-5.29.4-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:d7d3f7d1d5a66ed4942d4fefb12ac4b14a29028b209d4bfb25c68ae172059922", size = 319672 },
{ url = "https://files.pythonhosted.org/packages/12/fb/a586e0c973c95502e054ac5f81f88394f24ccc7982dac19c515acd9e2c93/protobuf-5.29.4-py3-none-any.whl", hash = "sha256:3fde11b505e1597f71b875ef2fc52062b6a9740e5f7c8997ce878b6009145862", size = 172551 },
]
[[package]]