Compare commits

...

21 Commits

Author SHA1 Message Date
Brandon Hancock
5472f1cd45 Updated docs and telemetry to use raw instead of raw_output 2024-07-25 13:27:50 -04:00
Brandon Hancock
2119ba7c32 Starting to work on router 2024-07-25 09:33:05 -04:00
Brandon Hancock
b00bc44921 Add back in commentary at top of pipeline file 2024-07-24 11:27:47 -04:00
Brandon Hancock
6b4ebe16d0 Update Pipeline docs 2024-07-23 11:24:57 -04:00
Brandon Hancock
602ade4cc4 Update pipeline to properly process input and ouput dictionary 2024-07-23 11:12:55 -04:00
Brandon Hancock
471c5b970c Update docs for pipeline 2024-07-22 19:28:32 -04:00
Brandon Hancock
33d9828edc Implemented additional tests for pipeline. One test is failing. Need team support 2024-07-22 16:35:16 -04:00
Brandon Hancock
e95ef6fca9 Merge branch 'main' into feature/procedure_v2 2024-07-22 09:55:03 -04:00
Brandon Hancock
afd6bff159 Fix pipelineoutput to look more like crewoutput and taskoutput 2024-07-19 15:18:19 -04:00
Brandon Hancock
392490c48b new pipeline flow with traces and usage metrics working. need to add more tests and make sure PipelineOutput behaves likew CrewOutput 2024-07-19 14:39:31 -04:00
Brandon Hancock
d094e178f1 Update terminology 2024-07-18 14:59:38 -04:00
Brandon Hancock
834c62feca Going to start refactoring for pipeline_output 2024-07-18 11:20:26 -04:00
Brandon Hancock
c0c329b6e0 Merge branch 'main' into feature/procedure_v2 2024-07-17 13:37:27 -04:00
Brandon Hancock
f737b3b379 WIP 2024-07-16 11:35:24 -04:00
Brandon Hancock
467536b96a Merge branch 'main' into feature/procedure_v2 2024-07-16 10:34:55 -04:00
Brandon Hancock
1988a00c60 Merge branch 'bugfix/langchain-tool-config-change' into feature/procedure_v2 2024-07-15 11:47:16 -04:00
Brandon Hancock
e2f4405291 Merge branch 'main' into feature/procedure_v2 2024-07-15 09:44:41 -04:00
Brandon Hancock
040e5a78d2 Add back in Gui's tool_usage fix 2024-07-15 09:21:21 -04:00
Brandon Hancock
c5002eedd9 rshift working 2024-07-12 16:48:19 -04:00
Brandon Hancock
f7680d6157 All tests are passing now 2024-07-12 11:00:29 -04:00
Brandon Hancock
adf93c91f7 WIP. Procedure appears to be working well. Working on mocking properly for tests 2024-07-11 15:26:46 -04:00
15 changed files with 1126 additions and 29 deletions

View File

@@ -0,0 +1,202 @@
---
title: crewAI Pipelines
description: Understanding and utilizing pipelines in the crewAI framework for efficient multi-stage task processing.
---
## What is a Pipeline?
A pipeline in crewAI represents a structured workflow that allows for the sequential or parallel execution of multiple crews. It provides a way to organize complex processes involving multiple stages, where the output of one stage can serve as input for subsequent stages.
## Key Terminology
Understanding the following terms is crucial for working effectively with pipelines:
- **Stage**: A distinct part of the pipeline, which can be either sequential (a single crew) or parallel (multiple crews executing concurrently).
- **Run**: A specific execution of the pipeline for a given set of inputs, representing a single instance of processing through the pipeline.
- **Branch**: Parallel executions within a stage (e.g., concurrent crew operations).
- **Trace**: The journey of an individual input through the entire pipeline, capturing the path and transformations it undergoes.
Example pipeline structure:
```
crew1 >> [crew2, crew3] >> crew4
```
This represents a pipeline with three stages:
1. A sequential stage (crew1)
2. A parallel stage with two branches (crew2 and crew3 executing concurrently)
3. Another sequential stage (crew4)
Each input creates its own run, flowing through all stages of the pipeline. Multiple runs can be processed concurrently, each following the defined pipeline structure.
## Pipeline Attributes
| Attribute | Parameters | Description |
| :--------- | :--------- | :------------------------------------------------------------------------------------ |
| **Stages** | `stages` | A list of crews or lists of crews representing the stages to be executed in sequence. |
## Creating a Pipeline
When creating a pipeline, you define a series of stages, each consisting of either a single crew or a list of crews for parallel execution. The pipeline ensures that each stage is executed in order, with the output of one stage feeding into the next.
### Example: Assembling a Pipeline
```python
from crewai import Crew, Agent, Task, Pipeline
# Define your crews
research_crew = Crew(
agents=[researcher],
tasks=[research_task],
process=Process.sequential
)
analysis_crew = Crew(
agents=[analyst],
tasks=[analysis_task],
process=Process.sequential
)
writing_crew = Crew(
agents=[writer],
tasks=[writing_task],
process=Process.sequential
)
# Assemble the pipeline
my_pipeline = Pipeline(
stages=[research_crew, analysis_crew, writing_crew]
)
```
## Pipeline Methods
| Method | Description |
| :--------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **process_runs** | Executes the pipeline, processing all stages and returning the results. This method initiates one or more runs through the pipeline, handling the flow of data between stages. |
## Pipeline Output
!!! note "Understanding Pipeline Outputs"
The output of a pipeline in the crewAI framework is encapsulated within two main classes: `PipelineOutput` and `PipelineRunResult`. These classes provide a structured way to access the results of the pipeline's execution, including various formats such as raw strings, JSON, and Pydantic models.
### Pipeline Output Attributes
| Attribute | Parameters | Type | Description |
| :-------------- | :------------ | :------------------------ | :-------------------------------------------------------------------------------------------------------- |
| **ID** | `id` | `UUID4` | A unique identifier for the pipeline output. |
| **Run Results** | `run_results` | `List[PipelineRunResult]` | A list of `PipelineRunResult` objects, each representing the output of a single run through the pipeline. |
### Pipeline Output Methods
| Method/Property | Description |
| :----------------- | :----------------------------------------------------- |
| **add_run_result** | Adds a `PipelineRunResult` to the list of run results. |
### Pipeline Run Result Attributes
| Attribute | Parameters | Type | Description |
| :---------------- | :-------------- | :------------------------- | :-------------------------------------------------------------------------------------------- |
| **ID** | `id` | `UUID4` | A unique identifier for the run result. |
| **Raw** | `raw` | `str` | The raw output of the final stage in the pipeline run. |
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the final stage, if applicable. |
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the final stage, if applicable. |
| **Token Usage** | `token_usage` | `Dict[str, Any]` | A summary of token usage across all stages of the pipeline run. |
| **Trace** | `trace` | `List[Any]` | A trace of the journey of inputs through the pipeline run. |
| **Crews Outputs** | `crews_outputs` | `List[CrewOutput]` | A list of `CrewOutput` objects, representing the outputs from each crew in the pipeline run. |
### Pipeline Run Result Methods and Properties
| Method/Property | Description |
| :-------------- | :------------------------------------------------------------------------------------------------------- |
| **json** | Returns the JSON string representation of the run result if the output format of the final task is JSON. |
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
| \***\*str\*\*** | Returns the string representation of the run result, prioritizing Pydantic, then JSON, then raw. |
### Accessing Pipeline Outputs
Once a pipeline has been executed, its output can be accessed through the `PipelineOutput` object returned by the `process_runs` method. The `PipelineOutput` class provides access to individual `PipelineRunResult` objects, each representing a single run through the pipeline.
#### Example
```python
# Define input data for the pipeline
input_data = [{"initial_query": "Latest advancements in AI"}, {"initial_query": "Future of robotics"}]
# Execute the pipeline
pipeline_output = await my_pipeline.process_runs(input_data)
# Access the results
for run_result in pipeline_output.run_results:
print(f"Run ID: {run_result.id}")
print(f"Final Raw Output: {run_result.raw}")
if run_result.json_dict:
print(f"JSON Output: {json.dumps(run_result.json_dict, indent=2)}")
if run_result.pydantic:
print(f"Pydantic Output: {run_result.pydantic}")
print(f"Token Usage: {run_result.token_usage}")
print(f"Trace: {run_result.trace}")
print("Crew Outputs:")
for crew_output in run_result.crews_outputs:
print(f" Crew: {crew_output.raw}")
print("\n")
```
This example demonstrates how to access and work with the pipeline output, including individual run results and their associated data.
## Using Pipelines
Pipelines are particularly useful for complex workflows that involve multiple stages of processing, analysis, or content generation. They allow you to:
1. **Sequence Operations**: Execute crews in a specific order, ensuring that the output of one crew is available as input to the next.
2. **Parallel Processing**: Run multiple crews concurrently within a stage for increased efficiency.
3. **Manage Complex Workflows**: Break down large tasks into smaller, manageable steps executed by specialized crews.
### Example: Running a Pipeline
```python
# Define input data for the pipeline
input_data = [{"initial_query": "Latest advancements in AI"}]
# Execute the pipeline, initiating a run for each input
results = await my_pipeline.process_runs(input_data)
# Access the results
for result in results:
print(f"Final Output: {result.raw}")
print(f"Token Usage: {result.token_usage}")
print(f"Trace: {result.trace}") # Shows the path of the input through all stages
```
## Advanced Features
### Parallel Execution within Stages
You can define parallel execution within a stage by providing a list of crews, creating multiple branches:
```python
parallel_analysis_crew = Crew(agents=[financial_analyst], tasks=[financial_analysis_task])
market_analysis_crew = Crew(agents=[market_analyst], tasks=[market_analysis_task])
my_pipeline = Pipeline(
stages=[
research_crew,
[parallel_analysis_crew, market_analysis_crew], # Parallel execution (branching)
writing_crew
]
)
```
### Error Handling and Validation
The Pipeline class includes validation mechanisms to ensure the robustness of the pipeline structure:
- Validates that stages contain only Crew instances or lists of Crew instances.
- Prevents double nesting of stages to maintain a clear structure.
## Best Practices for Pipelines
1. **Clear Stage Definition**: Define each stage with a clear purpose and expected output.
2. **Effective Data Flow**: Ensure that the output of each stage is in a format suitable for the input of the next stage.
3. \*\*Parallel Proce

View File

@@ -232,7 +232,7 @@ def callback_function(output: TaskOutput):
print(f"""
Task completed!
Task: {output.description}
Output: {output.raw_output}
Output: {output.raw}
""")
research_task = Task(

View File

@@ -33,6 +33,11 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Crews
</a>
</li>
<li>
<a href="./core-concepts/Pipeline">
Pipeline
</a>
</li>
<li>
<a href="./core-concepts/Training-Crew">
Training

67
poetry.lock generated
View File

@@ -2,13 +2,13 @@
[[package]]
name = "agentops"
version = "0.3.0"
version = "0.3.2"
description = "Python SDK for developing AI agent evals and observability"
optional = true
python-versions = ">=3.7"
files = [
{file = "agentops-0.3.0-py3-none-any.whl", hash = "sha256:22aeb3355e66b32a2b2a9f676048b81979b2488feddb088f9266034b3ed50539"},
{file = "agentops-0.3.0.tar.gz", hash = "sha256:6c0c08a57410fa5e826a7bafa1deeba9f7b3524709427d9e1abbd0964caaf76b"},
{file = "agentops-0.3.2-py3-none-any.whl", hash = "sha256:b35988e04378624204572bb3d7a454094f879ea573f05b57d4e75ab0bfbb82af"},
{file = "agentops-0.3.2.tar.gz", hash = "sha256:55559ac4a43634831dfa8937c2597c28e332809dc7c6bb3bc3c8b233442e224c"},
]
[package.dependencies]
@@ -3337,13 +3337,13 @@ sympy = "*"
[[package]]
name = "openai"
version = "1.36.0"
version = "1.36.1"
description = "The official Python library for the openai API"
optional = false
python-versions = ">=3.7.1"
files = [
{file = "openai-1.36.0-py3-none-any.whl", hash = "sha256:82b74ded1fe2ea94abb19a007178bc143675f1b6903cebd63e2968d654bb0a6f"},
{file = "openai-1.36.0.tar.gz", hash = "sha256:a124baf0e1657d6156e12248642f88489cd030be8655b69bc1c13eb50e71a93d"},
{file = "openai-1.36.1-py3-none-any.whl", hash = "sha256:d399b9d476dbbc167aceaac6bc6ed0b2e2bb6c9e189c7f7047f822743ae62e64"},
{file = "openai-1.36.1.tar.gz", hash = "sha256:41be9e0302e95dba8a9374b885c5cb1cec2202816a70b98736fee25a2cadd1f2"},
]
[package.dependencies]
@@ -4085,6 +4085,19 @@ files = [
{file = "pyarrow-17.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:392bc9feabc647338e6c89267635e111d71edad5fcffba204425a7c8d13610d7"},
{file = "pyarrow-17.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:af5ff82a04b2171415f1410cff7ebb79861afc5dae50be73ce06d6e870615204"},
{file = "pyarrow-17.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:edca18eaca89cd6382dfbcff3dd2d87633433043650c07375d095cd3517561d8"},
{file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c7916bff914ac5d4a8fe25b7a25e432ff921e72f6f2b7547d1e325c1ad9d155"},
{file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f553ca691b9e94b202ff741bdd40f6ccb70cdd5fbf65c187af132f1317de6145"},
{file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:0cdb0e627c86c373205a2f94a510ac4376fdc523f8bb36beab2e7f204416163c"},
{file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d7d192305d9d8bc9082d10f361fc70a73590a4c65cf31c3e6926cd72b76bc35c"},
{file = "pyarrow-17.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:02dae06ce212d8b3244dd3e7d12d9c4d3046945a5933d28026598e9dbbda1fca"},
{file = "pyarrow-17.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:13d7a460b412f31e4c0efa1148e1d29bdf18ad1411eb6757d38f8fbdcc8645fb"},
{file = "pyarrow-17.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9b564a51fbccfab5a04a80453e5ac6c9954a9c5ef2890d1bcf63741909c3f8df"},
{file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32503827abbc5aadedfa235f5ece8c4f8f8b0a3cf01066bc8d29de7539532687"},
{file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a155acc7f154b9ffcc85497509bcd0d43efb80d6f733b0dc3bb14e281f131c8b"},
{file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:dec8d129254d0188a49f8a1fc99e0560dc1b85f60af729f47de4046015f9b0a5"},
{file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:a48ddf5c3c6a6c505904545c25a4ae13646ae1f8ba703c4df4a1bfe4f4006bda"},
{file = "pyarrow-17.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:42bf93249a083aca230ba7e2786c5f673507fa97bbd9725a1e2754715151a204"},
{file = "pyarrow-17.0.0.tar.gz", hash = "sha256:4beca9521ed2c0921c1023e68d097d0299b62c362639ea315572a58f3f50fd28"},
]
[package.dependencies]
@@ -4321,13 +4334,13 @@ extra = ["pygments (>=2.12)"]
[[package]]
name = "pypdf"
version = "4.3.0"
version = "4.3.1"
description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files"
optional = false
python-versions = ">=3.6"
files = [
{file = "pypdf-4.3.0-py3-none-any.whl", hash = "sha256:eeea4d019b57c099d02a0e1692eaaab23341ae3f255c1dafa3c8566b4636496d"},
{file = "pypdf-4.3.0.tar.gz", hash = "sha256:0d7a4c67fd03782f5a09d3f48c11c7a31e0bb9af78861a25229bb49259ed0504"},
{file = "pypdf-4.3.1-py3-none-any.whl", hash = "sha256:64b31da97eda0771ef22edb1bfecd5deee4b72c3d1736b7df2689805076d6418"},
{file = "pypdf-4.3.1.tar.gz", hash = "sha256:b2f37fe9a3030aa97ca86067a56ba3f9d3565f9a791b305c7355d8392c30d91b"},
]
[package.dependencies]
@@ -4414,13 +4427,13 @@ files = [
[[package]]
name = "pytest"
version = "8.2.2"
version = "8.3.1"
description = "pytest: simple powerful testing with Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "pytest-8.2.2-py3-none-any.whl", hash = "sha256:c434598117762e2bd304e526244f67bf66bbd7b5d6cf22138be51ff661980343"},
{file = "pytest-8.2.2.tar.gz", hash = "sha256:de4bb8104e201939ccdc688b27a89a7be2079b22e2bd2b07f806b6ba71117977"},
{file = "pytest-8.3.1-py3-none-any.whl", hash = "sha256:e9600ccf4f563976e2c99fa02c7624ab938296551f280835ee6516df8bc4ae8c"},
{file = "pytest-8.3.1.tar.gz", hash = "sha256:7e8e5c5abd6e93cb1cc151f23e57adc31fcf8cfd2a3ff2da63e23f732de35db6"},
]
[package.dependencies]
@@ -4428,12 +4441,30 @@ colorama = {version = "*", markers = "sys_platform == \"win32\""}
exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""}
iniconfig = "*"
packaging = "*"
pluggy = ">=1.5,<2.0"
pluggy = ">=1.5,<2"
tomli = {version = ">=1", markers = "python_version < \"3.11\""}
[package.extras]
dev = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"]
[[package]]
name = "pytest-asyncio"
version = "0.23.8"
description = "Pytest support for asyncio"
optional = false
python-versions = ">=3.8"
files = [
{file = "pytest_asyncio-0.23.8-py3-none-any.whl", hash = "sha256:50265d892689a5faefb84df80819d1ecef566eb3549cf915dfb33569359d1ce2"},
{file = "pytest_asyncio-0.23.8.tar.gz", hash = "sha256:759b10b33a6dc61cce40a8bd5205e302978bbbcc00e279a8b61d9a6a3c82e4d3"},
]
[package.dependencies]
pytest = ">=7.0.0,<9"
[package.extras]
docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"]
testing = ["coverage (>=6.2)", "hypothesis (>=5.7.1)"]
[[package]]
name = "pytest-vcr"
version = "1.0.2"
@@ -4899,19 +4930,19 @@ files = [
[[package]]
name = "setuptools"
version = "71.0.4"
version = "71.1.0"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "setuptools-71.0.4-py3-none-any.whl", hash = "sha256:ed2feca703be3bdbd94e6bb17365d91c6935c6b2a8d0bb09b66a2c435ba0b1a5"},
{file = "setuptools-71.0.4.tar.gz", hash = "sha256:48297e5d393a62b7cb2a10b8f76c63a73af933bd809c9e0d0d6352a1a0135dd8"},
{file = "setuptools-71.1.0-py3-none-any.whl", hash = "sha256:33874fdc59b3188304b2e7c80d9029097ea31627180896fb549c578ceb8a0855"},
{file = "setuptools-71.1.0.tar.gz", hash = "sha256:032d42ee9fb536e33087fb66cac5f840eb9391ed05637b3f2a76a7c8fb477936"},
]
[package.extras]
core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"]
doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.10.0)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
[[package]]
name = "shapely"
@@ -6130,4 +6161,4 @@ tools = ["crewai-tools"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<=3.13"
content-hash = "f5ad9babb3c57c405e39232020e8cbfaaeb5c315c2e7c5bb8fdf66792f260343"
content-hash = "8df022f5ec0997c0a0f5710476139d9117c1057889c158e958f2c8efd22a4756"

View File

@@ -52,6 +52,7 @@ crewai-tools = "^0.4.26"
pytest = "^8.0.0"
pytest-vcr = "^1.0.2"
python-dotenv = "1.0.0"
pytest-asyncio = "^0.23.7"
[tool.poetry.scripts]
crewai = "crewai.cli.cli:crewai"

View File

@@ -199,7 +199,9 @@ class Agent(BaseAgent):
"tools": self.agent_executor.tools_description,
}
)["output"]
print("Result when things went well:", result)
except Exception as e:
print("FAILED TO EXECUTE TASK", e)
self._times_executed += 1
if self._times_executed > self.max_retry_limit:
raise e
@@ -215,6 +217,7 @@ class Agent(BaseAgent):
if tool_result.get("result_as_answer", False):
result = tool_result["result"]
print("RESULT TO RETURN", result)
return result
def format_log_to_str(

View File

@@ -56,7 +56,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Allowing human input given task setting
if self.task.human_input:
if self.task and self.task.human_input:
self.should_ask_for_human_input = True
# Let's start tracking the number of iterations and time elapsed

View File

@@ -3,7 +3,7 @@ import json
import uuid
from concurrent.futures import Future
from hashlib import md5
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from langchain_core.callbacks import BaseCallbackHandler
from pydantic import (
@@ -33,10 +33,7 @@ from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools import AgentTools
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import (
TRAINED_AGENTS_DATA_FILE,
TRAINING_DATA_FILE,
)
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
@@ -51,6 +48,9 @@ try:
except ImportError:
agentops = None
if TYPE_CHECKING:
from crewai.pipeline.pipeline import Pipeline
class Crew(BaseModel):
"""
@@ -96,12 +96,13 @@ class Crew(BaseModel):
default_factory=TaskOutputStorageHandler
)
name: Optional[str] = Field(default="")
cache: bool = Field(default=True)
model_config = ConfigDict(arbitrary_types_allowed=True)
tasks: List[Task] = Field(default_factory=list)
agents: List[BaseAgent] = Field(default_factory=list)
process: Process = Field(default=Process.sequential)
verbose: Union[int, bool] = Field(default=0)
verbose: int = Field(default=0)
memory: bool = Field(
default=False,
description="Whether the crew should use memory to store memories of it's execution",
@@ -146,8 +147,8 @@ class Crew(BaseModel):
default=None,
description="Path to the prompt json file to be used for the crew.",
)
output_log_file: Optional[Union[bool, str]] = Field(
default=False,
output_log_file: Optional[str] = Field(
default="",
description="output_log_file",
)
planning: Optional[bool] = Field(
@@ -966,5 +967,17 @@ class Crew(BaseModel):
return total_usage_metrics
def __rshift__(self, other: "Crew") -> "Pipeline":
"""
Implements the >> operator to add another Crew to an existing Pipeline.
"""
from crewai.pipeline.pipeline import Pipeline
if not isinstance(other, Crew):
raise TypeError(
f"Unsupported operand type for >>: '{type(self).__name__}' and '{type(other).__name__}'"
)
return Pipeline(stages=[self, other])
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"

View File

@@ -0,0 +1,3 @@
from crewai.pipeline.pipeline import Pipeline
__all__ = ["Pipeline"]

View File

@@ -0,0 +1,218 @@
import asyncio
import copy
from typing import Any, Dict, List, Tuple, Union
from pydantic import BaseModel, Field, model_validator
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.pipeline.pipeline_run_result import PipelineRunResult
Trace = Union[Union[str, Dict[str, Any]], List[Union[str, Dict[str, Any]]]]
"""
Pipeline Terminology:
Pipeline: The overall structure that defines a sequence of operations.
Stage: A distinct part of the pipeline, which can be either sequential or parallel.
Run: A specific execution of the pipeline for a given set of inputs, representing a single instance of processing through the pipeline.
Branch: Parallel executions within a stage (e.g., concurrent crew operations).
Trace: The journey of an individual input through the entire pipeline.
Example pipeline structure:
crew1 >> crew2 >> crew3
This represents a pipeline with three sequential stages:
1. crew1 is the first stage, which processes the input and passes its output to crew2.
2. crew2 is the second stage, which takes the output from crew1 as its input, processes it, and passes its output to crew3.
3. crew3 is the final stage, which takes the output from crew2 as its input and produces the final output of the pipeline.
Each input creates its own run, flowing through all stages of the pipeline.
Multiple runs can be processed concurrently, each following the defined pipeline structure.
Another example pipeline structure:
crew1 >> [crew2, crew3] >> crew4
This represents a pipeline with three stages:
1. A sequential stage (crew1)
2. A parallel stage with two branches (crew2 and crew3 executing concurrently)
3. Another sequential stage (crew4)
Each input creates its own run, flowing through all stages of the pipeline.
Multiple runs can be processed concurrently, each following the defined pipeline structure.
"""
class Pipeline(BaseModel):
stages: List[Union[Crew, List[Crew]]] = Field(
..., description="List of crews representing stages to be executed in sequence"
)
@model_validator(mode="before")
@classmethod
def validate_stages(cls, values):
stages = values.get("stages", [])
def check_nesting_and_type(item, depth=0):
if depth > 1:
raise ValueError("Double nesting is not allowed in pipeline stages")
if isinstance(item, list):
for sub_item in item:
check_nesting_and_type(sub_item, depth + 1)
elif not isinstance(item, Crew):
raise ValueError(
f"Expected Crew instance or list of Crews, got {type(item)}"
)
for stage in stages:
check_nesting_and_type(stage)
return values
async def process_runs(
self, run_inputs: List[Dict[str, Any]]
) -> List[PipelineRunResult]:
"""
Process multiple runs in parallel, with each run going through all stages.
"""
pipeline_results = []
# Process all runs in parallel
all_run_results = await asyncio.gather(
*(self.process_single_run(input_data) for input_data in run_inputs)
)
# Flatten the list of lists into a single list of results
pipeline_results.extend(
result for run_result in all_run_results for result in run_result
)
return pipeline_results
async def process_single_run(
self, run_input: Dict[str, Any]
) -> List[PipelineRunResult]:
initial_input = copy.deepcopy(run_input)
current_input = copy.deepcopy(run_input)
usage_metrics = {}
all_stage_outputs: List[List[CrewOutput]] = []
traces: List[List[Union[str, Dict[str, Any]]]] = [[initial_input]]
for stage in self.stages:
stage_input = copy.deepcopy(current_input)
stage_outputs, stage_trace = await self._process_stage(stage, stage_input)
self._update_metrics_and_input(
usage_metrics, current_input, stage, stage_outputs
)
traces.append(stage_trace)
all_stage_outputs.append(stage_outputs)
return self._build_pipeline_run_results(
all_stage_outputs, traces, usage_metrics
)
async def _process_stage(
self, stage: Union[Crew, List[Crew]], current_input: Dict[str, Any]
) -> Tuple[List[CrewOutput], List[Union[str, Dict[str, Any]]]]:
if isinstance(stage, Crew):
return await self._process_single_crew(stage, current_input)
else:
return await self._process_parallel_crews(stage, current_input)
async def _process_single_crew(
self, crew: Crew, current_input: Dict[str, Any]
) -> Tuple[List[CrewOutput], List[Union[str, Dict[str, Any]]]]:
output = await crew.kickoff_async(inputs=current_input)
return [output], [crew.name or str(crew.id)]
async def _process_parallel_crews(
self, crews: List[Crew], current_input: Dict[str, Any]
) -> Tuple[List[CrewOutput], List[Union[str, Dict[str, Any]]]]:
parallel_outputs = await asyncio.gather(
*[crew.kickoff_async(inputs=current_input) for crew in crews]
)
return parallel_outputs, [crew.name or str(crew.id) for crew in crews]
def _update_metrics_and_input(
self,
usage_metrics: Dict[str, Any],
current_input: Dict[str, Any],
stage: Union[Crew, List[Crew]],
outputs: List[CrewOutput],
) -> None:
for crew, output in zip([stage] if isinstance(stage, Crew) else stage, outputs):
usage_metrics[crew.name or str(crew.id)] = output.token_usage
current_input.update(output.to_dict())
def _build_pipeline_run_results(
self,
all_stage_outputs: List[List[CrewOutput]],
traces: List[List[Union[str, Dict[str, Any]]]],
token_usage: Dict[str, Any],
) -> List[PipelineRunResult]:
formatted_traces = self._format_traces(traces)
formatted_crew_outputs = self._format_crew_outputs(all_stage_outputs)
return [
PipelineRunResult(
token_usage=token_usage,
trace=formatted_trace,
raw=crews_outputs[-1].raw,
pydantic=crews_outputs[-1].pydantic,
json_dict=crews_outputs[-1].json_dict,
crews_outputs=crews_outputs,
)
for crews_outputs, formatted_trace in zip(
formatted_crew_outputs, formatted_traces
)
]
def _format_traces(
self, traces: List[List[Union[str, Dict[str, Any]]]]
) -> List[List[Trace]]:
formatted_traces: List[Trace] = []
for trace in traces[:-1]:
formatted_traces.append(trace[0] if len(trace) == 1 else trace)
traces_to_return: List[List[Trace]] = []
final_trace = traces[-1]
if len(final_trace) == 1:
formatted_traces.append(final_trace[0])
traces_to_return.append(formatted_traces)
else:
for trace in final_trace:
copied_traces = formatted_traces.copy()
copied_traces.append(trace)
traces_to_return.append(copied_traces)
return traces_to_return
def _format_crew_outputs(
self, all_stage_outputs: List[List[CrewOutput]]
) -> List[List[CrewOutput]]:
crew_outputs: List[CrewOutput] = [
output
for stage_outputs in all_stage_outputs[:-1]
for output in stage_outputs
]
return [crew_outputs + [output] for output in all_stage_outputs[-1]]
def __rshift__(self, other: Any) -> "Pipeline":
"""
Implements the >> operator to add another Stage (Crew or List[Crew]) to an existing Pipeline.
"""
if isinstance(other, Crew):
return type(self)(stages=self.stages + [other])
elif isinstance(other, list) and all(isinstance(crew, Crew) for crew in other):
return type(self)(stages=self.stages + [other])
else:
raise TypeError(
f"Unsupported operand type for >>: '{type(self).__name__}' and '{type(other).__name__}'"
)
# Helper function to run the pipeline
async def run_pipeline(
pipeline: Pipeline, inputs: List[Dict[str, Any]]
) -> List[PipelineRunResult]:
return await pipeline.process_runs(inputs)

View File

@@ -0,0 +1,20 @@
import uuid
from typing import List
from pydantic import UUID4, BaseModel, Field
from crewai.pipeline.pipeline_run_result import PipelineRunResult
class PipelineOutput(BaseModel):
id: UUID4 = Field(
default_factory=uuid.uuid4,
frozen=True,
description="Unique identifier for the object, not set by user.",
)
run_results: List[PipelineRunResult] = Field(
description="List of results for each run through the pipeline", default=[]
)
def add_run_result(self, result: PipelineRunResult):
self.run_results.append(result)

View File

@@ -0,0 +1,60 @@
import json
import uuid
from typing import Any, Dict, List, Optional, Union
from pydantic import UUID4, BaseModel, Field
from crewai.crews.crew_output import CrewOutput
class PipelineRunResult(BaseModel):
"""Class that represents the result of a pipeline run."""
id: UUID4 = Field(
default_factory=uuid.uuid4,
frozen=True,
description="Unique identifier for the object, not set by user.",
)
raw: str = Field(description="Raw output of the pipeline run", default="")
pydantic: Any = Field(
description="Pydantic output of the pipeline run", default=None
)
json_dict: Union[Dict[str, Any], None] = Field(
description="JSON dict output of the pipeline run", default={}
)
token_usage: Dict[str, Any] = Field(
description="Token usage for each crew in the run"
)
trace: List[Any] = Field(
description="Trace of the journey of inputs through the run"
)
crews_outputs: List[CrewOutput] = Field(
description="Output from each crew in the run",
default=[],
)
@property
def json(self) -> Optional[str]:
if self.crews_outputs[-1].tasks_output[-1].output_format != "json":
raise ValueError(
"No JSON output found in the final task of the final crew. Please make sure to set the output_json property in the final task in your crew."
)
return json.dumps(self.json_dict)
def to_dict(self) -> Dict[str, Any]:
"""Convert json_output and pydantic_output to a dictionary."""
output_dict = {}
if self.json_dict:
output_dict.update(self.json_dict)
elif self.pydantic:
output_dict.update(self.pydantic.model_dump())
return output_dict
def __str__(self):
if self.pydantic:
return str(self.pydantic)
if self.json_dict:
return str(self.json_dict)
return self.raw

View File

@@ -0,0 +1,67 @@
from typing import Any, Callable, Dict, List, Tuple, Union
from crewai.crew import Crew
from crewai.pipeline.pipeline import Pipeline
class Router:
def __init__(self):
self.conditions: List[
Tuple[Callable[[Dict[str, Any]], bool], Union[Crew, Pipeline]]
] = []
self.default: Union[Crew, Pipeline, None] = None
def add_condition(
self,
condition: Callable[[Dict[str, Any]], bool],
next_stage: Union[Crew, Pipeline],
):
"""
Add a condition and its corresponding next stage to the router.
Args:
condition: A function that takes the input dictionary and returns a boolean.
next_stage: The Crew or Pipeline to execute if the condition is met.
"""
self.conditions.append((condition, next_stage))
def set_default(self, default_stage: Union[Crew, Pipeline]):
"""Set the default stage to be executed if no conditions are met."""
self.default = default_stage
def route(self, input_dict: Dict[str, Any]) -> Union[Crew, Pipeline]:
"""
Evaluate the input against the conditions and return the appropriate next stage.
Args:
input_dict: The input dictionary to be evaluated.
Returns:
The next Crew or Pipeline to be executed.
Raises:
ValueError: If no conditions are met and no default is set.
"""
for condition, next_stage in self.conditions:
if condition(input_dict):
self._update_trace(input_dict, next_stage)
return next_stage
if self.default is not None:
self._update_trace(input_dict, self.default)
return self.default
raise ValueError("No conditions were met and no default stage was set.")
def _update_trace(
self, input_dict: Dict[str, Any], next_stage: Union[Crew, Pipeline]
):
"""Update the trace to show that the input went through the router."""
if "trace" not in input_dict:
input_dict["trace"] = []
input_dict["trace"].append(
{
"router": self.__class__.__name__,
"next_stage": next_stage.__class__.__name__,
}
)

View File

@@ -383,7 +383,7 @@ class Telemetry:
{
"id": str(task.id),
"description": task.description,
"output": task.output.raw_output,
"output": task.output.raw,
}
for task in crew.tasks
]

View File

@@ -0,0 +1,474 @@
import json
from unittest.mock import MagicMock
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.pipeline.pipeline import Pipeline
from crewai.pipeline.pipeline_run_result import PipelineRunResult
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from pydantic import BaseModel, ValidationError
DEFAULT_TOKEN_USAGE = {
"total_tokens": 100,
"prompt_tokens": 50,
"completion_tokens": 50,
}
@pytest.fixture
def mock_crew_factory():
def _create_mock_crew(name: str, output_json_dict=None, pydantic_output=None):
crew = MagicMock(spec=Crew)
task_output = TaskOutput(
description="Test task", raw="Task output", agent="Test Agent"
)
crew_output = CrewOutput(
raw="Test output",
tasks_output=[task_output],
token_usage=DEFAULT_TOKEN_USAGE,
json_dict=output_json_dict if output_json_dict else None,
pydantic=pydantic_output,
)
async def async_kickoff(inputs=None):
print("inputs in async_kickoff", inputs)
return crew_output
crew.kickoff_async.side_effect = async_kickoff
# Add more attributes that Procedure might be expecting
crew.verbose = False
crew.output_log_file = None
crew.max_rpm = None
crew.memory = False
crew.process = Process.sequential
crew.config = None
crew.cache = True
crew.name = name
# Add non-empty agents and tasks
mock_agent = MagicMock(spec=Agent)
mock_task = MagicMock(spec=Task)
mock_task.agent = mock_agent
mock_task.async_execution = False
mock_task.context = None
crew.agents = [mock_agent]
crew.tasks = [mock_task]
return crew
return _create_mock_crew
def test_pipeline_initialization(mock_crew_factory):
"""
Test that a Pipeline is correctly initialized with the given stages.
"""
crew1 = mock_crew_factory(name="Crew 1")
crew2 = mock_crew_factory(name="Crew 2")
pipeline = Pipeline(stages=[crew1, crew2])
assert len(pipeline.stages) == 2
assert pipeline.stages[0] == crew1
assert pipeline.stages[1] == crew2
@pytest.mark.asyncio
async def test_pipeline_with_empty_input(mock_crew_factory):
"""
Ensure the pipeline handles an empty input list correctly.
"""
crew = mock_crew_factory(name="Test Crew")
pipeline = Pipeline(stages=[crew])
input_data = []
pipeline_results = await pipeline.process_runs(input_data)
assert (
len(pipeline_results) == 0
), "Pipeline should return empty results for empty input"
@pytest.mark.asyncio
async def test_pipeline_process_streams_single_input(mock_crew_factory):
"""
Test that Pipeline.process_streams() correctly processes a single input
and returns the expected CrewOutput.
"""
crew_name = "Test Crew"
mock_crew = mock_crew_factory(name="Test Crew")
pipeline = Pipeline(stages=[mock_crew])
input_data = [{"key": "value"}]
pipeline_results = await pipeline.process_runs(input_data)
mock_crew.kickoff_async.assert_called_once_with(inputs={"key": "value"})
for pipeline_result in pipeline_results:
assert isinstance(pipeline_result, PipelineRunResult)
assert pipeline_result.raw == "Test output"
assert len(pipeline_result.crews_outputs) == 1
print("pipeline_result.token_usage", pipeline_result.token_usage)
assert pipeline_result.token_usage == {crew_name: DEFAULT_TOKEN_USAGE}
assert pipeline_result.trace == [input_data[0], "Test Crew"]
@pytest.mark.asyncio
async def test_pipeline_result_ordering(mock_crew_factory):
"""
Ensure that results are returned in the same order as the inputs, especially with parallel processing.
"""
crew1 = mock_crew_factory(name="Crew 1", output_json_dict={"output": "crew1"})
crew2 = mock_crew_factory(name="Crew 2", output_json_dict={"output": "crew2"})
crew3 = mock_crew_factory(name="Crew 3", output_json_dict={"output": "crew3"})
pipeline = Pipeline(
stages=[crew1, [crew2, crew3]]
) # Parallel stage to test ordering
input_data = [{"id": 1}, {"id": 2}, {"id": 3}]
pipeline_results = await pipeline.process_runs(input_data)
assert (
len(pipeline_results) == 6
), "Should have 2 results for each input due to the parallel final stage"
# Group results by their original input id
grouped_results = {}
for result in pipeline_results:
input_id = result.trace[0]["id"]
if input_id not in grouped_results:
grouped_results[input_id] = []
grouped_results[input_id].append(result)
# Check that we have the correct number of groups and results per group
assert len(grouped_results) == 3, "Should have results for each of the 3 inputs"
for input_id, results in grouped_results.items():
assert (
len(results) == 2
), f"Each input should have 2 results, but input {input_id} has {len(results)}"
# Check the ordering and content of the results
for input_id in range(1, 4):
group = grouped_results[input_id]
assert group[0].trace == [
{"id": input_id},
"Crew 1",
"Crew 2",
], f"Unexpected trace for first result of input {input_id}"
assert group[1].trace == [
{"id": input_id},
"Crew 1",
"Crew 3",
], f"Unexpected trace for second result of input {input_id}"
assert (
group[0].json_dict["output"] == "crew2"
), f"Unexpected output for first result of input {input_id}"
assert (
group[1].json_dict["output"] == "crew3"
), f"Unexpected output for second result of input {input_id}"
class TestPydanticOutput(BaseModel):
key: str
value: int
@pytest.mark.asyncio
async def test_pipeline_process_streams_single_input_pydantic_output(mock_crew_factory):
crew_name = "Test Crew"
mock_crew = mock_crew_factory(
name=crew_name,
output_json_dict=None,
pydantic_output=TestPydanticOutput(key="test", value=42),
)
pipeline = Pipeline(stages=[mock_crew])
input_data = [{"key": "value"}]
pipeline_results = await pipeline.process_runs(input_data)
assert len(pipeline_results) == 1
pipeline_result = pipeline_results[0]
print("pipeline_result.trace", pipeline_result.trace)
assert isinstance(pipeline_result, PipelineRunResult)
assert pipeline_result.raw == "Test output"
assert len(pipeline_result.crews_outputs) == 1
assert pipeline_result.token_usage == {crew_name: DEFAULT_TOKEN_USAGE}
print("INPUT DATA POST PROCESS", input_data)
assert pipeline_result.trace == [input_data[0], "Test Crew"]
assert isinstance(pipeline_result.pydantic, TestPydanticOutput)
assert pipeline_result.pydantic.key == "test"
assert pipeline_result.pydantic.value == 42
assert pipeline_result.json_dict is None
@pytest.mark.asyncio
async def test_pipeline_preserves_original_input(mock_crew_factory):
crew_name = "Test Crew"
mock_crew = mock_crew_factory(
name=crew_name,
output_json_dict={"new_key": "new_value"},
)
pipeline = Pipeline(stages=[mock_crew])
# Create a deep copy of the input data to ensure we're not comparing references
original_input_data = [{"key": "value", "nested": {"a": 1}}]
input_data = json.loads(json.dumps(original_input_data))
await pipeline.process_runs(input_data)
# Assert that the original input hasn't been modified
assert (
input_data == original_input_data
), "The original input data should not be modified"
# Ensure that even nested structures haven't been modified
assert (
input_data[0]["nested"] == original_input_data[0]["nested"]
), "Nested structures should not be modified"
# Verify that adding new keys to the crew output doesn't affect the original input
assert (
"new_key" not in input_data[0]
), "New keys from crew output should not be added to the original input"
@pytest.mark.asyncio
async def test_pipeline_process_streams_multiple_inputs(mock_crew_factory):
"""
Test that Pipeline.process_streams() correctly processes multiple inputs
and returns the expected CrewOutputs.
"""
mock_crew = mock_crew_factory(name="Test Crew")
pipeline = Pipeline(stages=[mock_crew])
input_data = [{"key1": "value1"}, {"key2": "value2"}]
pipeline_results = await pipeline.process_runs(input_data)
assert mock_crew.kickoff_async.call_count == 2
assert len(pipeline_results) == 2
for pipeline_result in pipeline_results:
print("pipeline_result,", pipeline_result)
assert all(
isinstance(crew_output, CrewOutput)
for crew_output in pipeline_result.crews_outputs
)
@pytest.mark.asyncio
async def test_pipeline_with_parallel_stages(mock_crew_factory):
"""
Test that Pipeline correctly handles parallel stages.
"""
crew1 = mock_crew_factory(name="Crew 1")
crew2 = mock_crew_factory(name="Crew 2")
crew3 = mock_crew_factory(name="Crew 3")
pipeline = Pipeline(stages=[crew1, [crew2, crew3]])
input_data = [{"initial": "data"}]
pipeline_result = await pipeline.process_runs(input_data)
crew1.kickoff_async.assert_called_once_with(inputs={"initial": "data"})
assert len(pipeline_result) == 2
pipeline_result_1, pipeline_result_2 = pipeline_result
pipeline_result_1.trace = [
"Crew 1",
"Crew 2",
]
pipeline_result_2.trace = [
"Crew 1",
"Crew 3",
]
expected_token_usage = {
"Crew 1": DEFAULT_TOKEN_USAGE,
"Crew 2": DEFAULT_TOKEN_USAGE,
"Crew 3": DEFAULT_TOKEN_USAGE,
}
assert pipeline_result_1.token_usage == expected_token_usage
assert pipeline_result_2.token_usage == expected_token_usage
@pytest.mark.asyncio
async def test_pipeline_with_parallel_stages_end_in_single_stage(mock_crew_factory):
"""
Test that Pipeline correctly handles parallel stages.
"""
crew1 = mock_crew_factory(name="Crew 1")
crew2 = mock_crew_factory(name="Crew 2")
crew3 = mock_crew_factory(name="Crew 3")
crew4 = mock_crew_factory(name="Crew 4")
pipeline = Pipeline(stages=[crew1, [crew2, crew3], crew4])
input_data = [{"initial": "data"}]
pipeline_result = await pipeline.process_runs(input_data)
crew1.kickoff_async.assert_called_once_with(inputs={"initial": "data"})
assert len(pipeline_result) == 1
pipeline_result_1 = pipeline_result[0]
pipeline_result_1.trace = [
input_data[0],
"Crew 1",
["Crew 2", "Crew 3"],
"Crew 4",
]
expected_token_usage = {
"Crew 1": DEFAULT_TOKEN_USAGE,
"Crew 2": DEFAULT_TOKEN_USAGE,
"Crew 3": DEFAULT_TOKEN_USAGE,
"Crew 4": DEFAULT_TOKEN_USAGE,
}
assert pipeline_result_1.token_usage == expected_token_usage
@pytest.mark.asyncio
async def test_pipeline_with_parallel_stages_multiple_inputs(mock_crew_factory):
# TODO: implement
pass
def test_pipeline_rshift_operator(mock_crew_factory):
"""
Test that the >> operator correctly creates a Pipeline from Crews and lists of Crews.
"""
crew1 = mock_crew_factory(name="Crew 1")
crew2 = mock_crew_factory(name="Crew 2")
crew3 = mock_crew_factory(name="Crew 3")
# Test single crew addition
pipeline = Pipeline(stages=[]) >> crew1
assert len(pipeline.stages) == 1
assert pipeline.stages[0] == crew1
# Test adding a list of crews
pipeline = Pipeline(stages=[crew1])
pipeline = pipeline >> [crew2, crew3]
print("pipeline.stages:", pipeline.stages)
assert len(pipeline.stages) == 2
assert pipeline.stages[1] == [crew2, crew3]
# Test error case: trying to shift with non-Crew object
with pytest.raises(TypeError):
pipeline >> "not a crew"
@pytest.mark.asyncio
async def test_pipeline_parallel_crews_to_parallel_crews(mock_crew_factory):
"""
Test that feeding parallel crews to parallel crews works correctly.
"""
crew1 = mock_crew_factory(name="Crew 1", output_json_dict={"output1": "crew1"})
crew2 = mock_crew_factory(name="Crew 2", output_json_dict={"output2": "crew2"})
crew3 = mock_crew_factory(name="Crew 3", output_json_dict={"output3": "crew3"})
crew4 = mock_crew_factory(name="Crew 4", output_json_dict={"output4": "crew4"})
pipeline = Pipeline(stages=[[crew1, crew2], [crew3, crew4]])
input_data = [{"input": "test"}]
pipeline_results = await pipeline.process_runs(input_data)
assert len(pipeline_results) == 2, "Should have 2 results for final parallel stage"
pipeline_result_1, pipeline_result_2 = pipeline_results
# Check the outputs
assert pipeline_result_1.json_dict == {"output3": "crew3"}
assert pipeline_result_2.json_dict == {"output4": "crew4"}
# Check the traces
expected_traces = [
[{"input": "test"}, ["Crew 1", "Crew 2"], "Crew 3"],
[{"input": "test"}, ["Crew 1", "Crew 2"], "Crew 4"],
]
for result, expected_trace in zip(pipeline_results, expected_traces):
assert result.trace == expected_trace, f"Unexpected trace: {result.trace}"
def test_pipeline_double_nesting_not_allowed(mock_crew_factory):
"""
Test that double nesting in pipeline stages is not allowed.
"""
crew1 = mock_crew_factory(name="Crew 1")
crew2 = mock_crew_factory(name="Crew 2")
crew3 = mock_crew_factory(name="Crew 3")
crew4 = mock_crew_factory(name="Crew 4")
with pytest.raises(ValidationError) as exc_info:
Pipeline(stages=[crew1, [[crew2, crew3], crew4]])
error_msg = str(exc_info.value)
print(f"Full error message: {error_msg}") # For debugging
assert (
"Double nesting is not allowed in pipeline stages" in error_msg
), f"Unexpected error message: {error_msg}"
def test_pipeline_invalid_crew(mock_crew_factory):
"""
Test that non-Crew objects are not allowed in pipeline stages.
"""
crew1 = mock_crew_factory(name="Crew 1")
not_a_crew = "This is not a crew"
with pytest.raises(ValidationError) as exc_info:
Pipeline(stages=[crew1, not_a_crew])
error_msg = str(exc_info.value)
print(f"Full error message: {error_msg}") # For debugging
assert (
"Expected Crew instance or list of Crews, got <class 'str'>" in error_msg
), f"Unexpected error message: {error_msg}"
"""
TODO: Figure out what is the proper output for a pipeline with multiple stages
Options:
- Should the final output only include the last stage's output?
- Should the final output include the accumulation of previous stages' outputs?
"""
@pytest.mark.asyncio
async def test_pipeline_data_accumulation(mock_crew_factory):
crew1 = mock_crew_factory(name="Crew 1", output_json_dict={"key1": "value1"})
crew2 = mock_crew_factory(name="Crew 2", output_json_dict={"key2": "value2"})
pipeline = Pipeline(stages=[crew1, crew2])
input_data = [{"initial": "data"}]
results = await pipeline.process_runs(input_data)
# Check that crew1 was called with only the initial input
crew1.kickoff_async.assert_called_once_with(inputs={"initial": "data"})
# Check that crew2 was called with the combined input from the initial data and crew1's output
crew2.kickoff_async.assert_called_once_with(
inputs={"initial": "data", "key1": "value1"}
)
# Check the final output
assert len(results) == 1
final_result = results[0]
assert final_result.json_dict == {"key2": "value2"}
# Check that the trace includes all stages
assert final_result.trace == [{"initial": "data"}, "Crew 1", "Crew 2"]
# Check that crews_outputs contain the correct information
assert len(final_result.crews_outputs) == 2
assert final_result.crews_outputs[0].json_dict == {"key1": "value1"}
assert final_result.crews_outputs[1].json_dict == {"key2": "value2"}