Compare commits

...

5 Commits

Author SHA1 Message Date
Devin AI
f53cf838bd chore: address PR feedback for test functionality
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 21:02:22 +00:00
Devin AI
0bb44690e3 chore: add logging for evaluation process
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 20:59:11 +00:00
Devin AI
df6cb60ec7 test: add error handling test cases for crew.test()
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 20:58:40 +00:00
Devin AI
1d7aceb919 chore: add error handling for llm type validation
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 20:57:52 +00:00
Devin AI
a7b050f52f fix: enable any llm to run test functionality
This change enables the Crew.test() method to work with any LLM implementation, not just OpenAI models. It maintains backward compatibility with the openai_model_name parameter while adding support for custom LLMs.

Fixes #2067
Fixes #2071

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 20:51:16 +00:00
4 changed files with 207 additions and 44 deletions

View File

@@ -6,6 +6,7 @@ from concurrent.futures import Future
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from langchain_core.language_models.base import BaseLanguageModel
from pydantic import (
UUID4,
BaseModel,
@@ -1075,19 +1076,39 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
openai_model_name: Optional[str] = None,
llm: Optional[Union[str, InstanceOf[LLM], Any]] = None,
openai_model_name: Optional[str] = None, # Kept for backward compatibility
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
"""Test and evaluate the Crew with the given inputs for n iterations.
Args:
n_iterations (int): Number of test iterations to run
llm (Optional[Union[str, LLM, BaseLanguageModel]]): Language model to use for testing
openai_model_name (Optional[str]): Legacy parameter for OpenAI models (deprecated)
inputs (Optional[Dict[str, Any]]): Test inputs for the crew
Raises:
ValueError: If n_iterations is less than 1 or if llm type is unsupported
Returns:
None
"""
if n_iterations < 1:
raise ValueError("n_iterations must be greater than 0")
if llm is not None and not isinstance(llm, (str, LLM, BaseLanguageModel)):
raise ValueError(f"Unsupported LLM type: {type(llm)}")
test_crew = self.copy()
test_llm = llm if llm is not None else openai_model_name
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
test_llm, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, test_llm) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -1,14 +1,19 @@
import os
from collections import defaultdict
from typing import Any, Dict, List, Optional, Union
from pydantic import BaseModel, Field
from langchain_core.language_models.base import BaseLanguageModel
from pydantic import BaseModel, Field, InstanceOf
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.utilities.logger import Logger
class TaskEvaluationPydanticOutput(BaseModel):
@@ -22,22 +27,62 @@ class CrewEvaluator:
A class to evaluate the performance of the agents in the crew based on the tasks they have performed.
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
crew (Crew): The crew of agents to evaluate
llm (Union[str, LLM, BaseLanguageModel]): Language model to use for evaluation
tasks_scores (defaultdict): Dictionary to store the scores of the agents for each task
iteration (int): Current iteration of the evaluation
run_execution_times (defaultdict): Dictionary to store execution times for each run
"""
tasks_scores: defaultdict = defaultdict(list)
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew, llm: Union[str, InstanceOf[LLM], BaseLanguageModel]):
"""Initialize the CrewEvaluator.
Args:
crew (Crew): The crew to evaluate
llm (Union[str, LLM, BaseLanguageModel]): Language model to use for evaluation
Raises:
ValueError: If llm is of an unsupported type
"""
if not isinstance(llm, (str, LLM, BaseLanguageModel, type(None))):
raise ValueError(f"Unsupported LLM type: {type(llm)}")
self.crew = crew
self.openai_model_name = openai_model_name
self.llm = llm
self._telemetry = Telemetry()
self._logger = Logger()
self._setup_llm()
self._setup_for_evaluating()
def _setup_llm(self):
"""Set up the LLM following the Agent class pattern.
This method initializes the language model based on the provided llm parameter:
- If string: creates new LLM instance with model name
- If LLM instance: uses as-is
- If None: uses default model from environment or "gpt-4"
- Otherwise: attempts to extract model name from object attributes
"""
if isinstance(self.llm, str):
self.llm = LLM(model=self.llm)
elif isinstance(self.llm, LLM):
pass
elif self.llm is None:
model_name = os.environ.get("OPENAI_MODEL_NAME") or "gpt-4"
self.llm = LLM(model=model_name)
else:
llm_params = {
"model": getattr(self.llm, "model_name", None)
or getattr(self.llm, "deployment_name", None)
or str(self.llm),
}
self.llm = LLM(**llm_params)
def _setup_for_evaluating(self) -> None:
"""Sets up the crew for evaluating."""
for task in self.crew.tasks:
@@ -51,7 +96,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self.llm,
)
def _evaluation_task(
@@ -157,35 +202,48 @@ class CrewEvaluator:
console.print(table)
def evaluate(self, task_output: TaskOutput):
"""Evaluates the performance of the agents in the crew based on the tasks they have performed."""
current_task = None
for task in self.crew.tasks:
if task.description == task_output.description:
current_task = task
break
"""Evaluates the performance of the agents in the crew based on the tasks they have performed.
Args:
task_output (TaskOutput): The output from the task to evaluate
if not current_task or not task_output:
raise ValueError(
"Task to evaluate and task output are required for evaluation"
Raises:
ValueError: If task to evaluate or task output is missing, or if evaluation result is invalid
"""
try:
current_task = None
for task in self.crew.tasks:
if task.description == task_output.description:
current_task = task
break
if not current_task or not task_output:
raise ValueError(
"Task to evaluate and task output are required for evaluation"
)
self._logger.log("info", f"Starting evaluation for task: {task_output.description}")
evaluator_agent = self._evaluator_agent()
evaluation_task = self._evaluation_task(
evaluator_agent, current_task, task_output.raw
)
evaluator_agent = self._evaluator_agent()
evaluation_task = self._evaluation_task(
evaluator_agent, current_task, task_output.raw
)
evaluation_result = evaluation_task.execute_sync()
evaluation_result = evaluation_task.execute_sync()
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
self._test_result_span = self._telemetry.individual_test_result_span(
self.crew,
evaluation_result.pydantic.quality,
current_task._execution_time,
self.openai_model_name,
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(
current_task._execution_time
)
else:
raise ValueError("Evaluation result is not in the expected format")
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
self._test_result_span = self._telemetry.individual_test_result_span(
self.crew,
evaluation_result.pydantic.quality,
current_task._execution_time,
self.llm,
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(
current_task._execution_time
)
self._logger.log("info", f"Evaluation completed with score: {evaluation_result.pydantic.quality}")
else:
raise ValueError("Evaluation result is not in the expected format")
except Exception as e:
self._logger.log("error", f"Evaluation failed: {str(e)}")
raise

View File

@@ -24,6 +24,36 @@ from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import Logger
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.llm import LLM
class MockLLM(LLM):
"""Mock LLM for testing."""
def __init__(self):
super().__init__(model="gpt-4") # Use a known model name
def chat_completion(self, messages, tools=None, tool_choice=None, **kwargs):
# Mock a proper response that matches the expected format
if tools and any('output' in tool.get('function', {}).get('name', '') for tool in tools):
return {
"choices": [{
"message": {
"content": None,
"role": "assistant",
"function_call": {
"name": "output",
"arguments": '{"quality": 8.5}'
}
}
}]
}
return {
"choices": [{
"message": {
"content": "Mock LLM Response",
"role": "assistant"
}
}]
}
ceo = Agent(
role="CEO",
@@ -47,6 +77,60 @@ writer = Agent(
)
def test_crew_test_with_custom_llm():
"""Test that Crew.test() works with a custom LLM implementation."""
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
# Test with custom LLM
custom_llm = MockLLM()
crew.test(n_iterations=1, llm=custom_llm)
# No assertion needed as we just verify it runs without errors
def test_crew_test_backward_compatibility():
"""Test that Crew.test() maintains backward compatibility with openai_model_name."""
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
# Test with openai_model_name
crew.test(n_iterations=1, openai_model_name="gpt-4")
# No assertion needed as we just verify it runs without errors
def test_crew_test_with_invalid_llm():
"""Test that Crew.test() properly handles invalid LLM inputs."""
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
# Test with invalid LLM type
with pytest.raises(ValueError, match="Unsupported LLM type"):
crew.test(n_iterations=1, llm=123) # type: ignore
def test_crew_test_with_invalid_iterations():
"""Test that Crew.test() validates n_iterations."""
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
# Test with invalid n_iterations
with pytest.raises(ValueError, match="n_iterations must be greater than 0"):
crew.test(n_iterations=0, llm=MockLLM())
def test_crew_config_conditional_requirement():
with pytest.raises(ValueError):
Crew(process=Process.sequential)
@@ -1123,7 +1207,7 @@ def test_kickoff_for_each_empty_input():
assert results == []
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.vcr(filter_headeruvs=["authorization"])
def test_kickoff_for_each_invalid_input():
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
@@ -3125,4 +3209,4 @@ def test_multimodal_agent_live_image_analysis():
# Verify we got a meaningful response
assert isinstance(result.raw, str)
assert len(result.raw) > 100 # Expecting a detailed analysis
assert "error" not in result.raw.lower() # No error messages in response
assert "error" not in result.raw.lower() # No error messages in response

View File

@@ -23,7 +23,7 @@ class TestCrewEvaluator:
)
crew = Crew(agents=[agent], tasks=[task])
return CrewEvaluator(crew, openai_model_name="gpt-4o-mini")
return CrewEvaluator(crew, llm="openai/gpt-4o-mini")
def test_setup_for_evaluating(self, crew_planner):
crew_planner._setup_for_evaluating()
@@ -45,7 +45,7 @@ class TestCrewEvaluator:
== "Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed"
)
assert agent.verbose is False
assert agent.llm.model == "gpt-4o-mini"
assert agent.llm.model == "openai/gpt-4o-mini"
def test_evaluation_task(self, crew_planner):
evaluator_agent = Agent(