Compare commits

...

80 Commits

Author SHA1 Message Date
devin-ai-integration[bot]
4469461b38 fix: Include agent knowledge in planning process (#1818)
* test: Add test demonstrating knowledge not included in planning process

Issue #1703: Add test to verify that agent knowledge sources are not currently
included in the planning process. This test will help validate the fix once
implemented.

- Creates agent with knowledge sources
- Verifies knowledge context missing from planning
- Checks other expected components are present

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Include agent knowledge in planning process

Issue #1703: Integrate agent knowledge sources into planning summaries
- Add agent_knowledge field to task summaries in planning_handler
- Update test to verify knowledge inclusion
- Ensure knowledge context is available during planning phase

The planning agent now has access to agent knowledge when creating
task execution plans, allowing for better informed planning decisions.

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_knowledge_planning.py

- Reorganize imports according to ruff linting rules
- Fix I001 linting error

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Update task summary assertions to include knowledge field

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update ChromaDB mock path and fix knowledge string formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve knowledge integration in planning process with error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update task summary format for empty tools and knowledge

- Change empty tools message to 'agent has no tools'
- Remove agent_knowledge field when empty
- Update test assertions to match new format
- Improve test messages for clarity

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools and knowledge in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update knowledge field formatting in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting order in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Add ChromaDB mocking to test_create_tasks_summary_with_knowledge_and_tools

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-31 01:56:38 -03:00
Marco Vinciguerra
a548463fae feat: add docstring (#1819)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-31 01:51:43 -03:00
devin-ai-integration[bot]
45b802a625 Docstring, Error Handling, and Type Hints Improvements (#1828)
* docs: add comprehensive docstrings to Flow class and methods

- Added NumPy-style docstrings to all decorator functions
- Added detailed documentation to Flow class methods
- Included parameter types, return types, and examples
- Enhanced documentation clarity and completeness

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add secure path handling utilities

- Add path_utils.py with safe path handling functions
- Implement path validation and security checks
- Integrate secure path handling in flow_visualizer.py
- Add path validation in html_template_handler.py
- Add comprehensive error handling for path operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add comprehensive docstrings and type hints to flow utils (#1819)

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations and fix import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations to flow utils and visualization utils

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: resolve import sorting and type annotation issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: properly initialize and update edge_smooth variable

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-31 01:39:19 -03:00
devin-ai-integration[bot]
ba0965ef87 fix: add tiktoken as explicit dependency and document Rust requirement (#1826)
* feat: add tiktoken as explicit dependency and document Rust requirement

- Add tiktoken>=0.8.0 as explicit dependency to ensure pre-built wheels are used
- Document Rust compiler requirement as fallback in README.md
- Addresses issue #1824 tiktoken build failure

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: adjust tiktoken version to ~=0.7.0 for dependency compatibility

- Update tiktoken dependency to ~=0.7.0 to resolve conflict with embedchain
- Maintain compatibility with crewai-tools dependency chain
- Addresses CI build failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add troubleshooting section and make tiktoken optional

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update README.md

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-30 17:10:56 -03:00
devin-ai-integration[bot]
d85898cf29 fix(manager_llm): handle coworker role name case/whitespace properly (#1820)
* fix(manager_llm): handle coworker role name case/whitespace properly

- Add .strip() to agent name and role comparisons in base_agent_tools.py
- Add test case for varied role name cases and whitespace
- Fix issue #1503 with manager LLM delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve error handling and add debug logging

- Add debug logging for better observability
- Add sanitize_agent_name helper method
- Enhance error messages with more context
- Add parameterized tests for edge cases:
  - Embedded quotes
  - Trailing newlines
  - Multiple whitespace
  - Case variations
  - None values
- Improve error handling with specific exceptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve whitespace normalization in role name matching

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): add error message template for agent tool execution errors

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in test_manager_llm_delegation.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-30 16:58:18 -03:00
devin-ai-integration[bot]
73f328860b Fix interpolation for output_file in Task (#1803) (#1814)
* fix: interpolate output_file attribute from YAML

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add security validation for output_file paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add _original_output_file private attribute to fix type-checker error

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: update interpolate_only to handle None inputs and remove duplicate attribute

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: improve output_file validation and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add end-to-end tests for output_file functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-29 01:57:59 -03:00
João Moura
a0c322a535 fixing file paths for knowledge source 2024-12-28 02:05:19 -03:00
devin-ai-integration[bot]
86f58c95de docs: add agent-specific knowledge documentation and examples (#1811)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-28 01:48:51 -03:00
João Moura
99fe91586d Update README.md 2024-12-28 01:03:33 -03:00
devin-ai-integration[bot]
0c2d23dfe0 docs: update README to highlight Flows (#1809)
* docs: highlight Flows feature in README

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance README with LangGraph comparison and flows-crews synergy

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: replace initial Flow example with advanced Flow+Crew example; enhance LangGraph comparison

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: incorporate key terms and enhance feature descriptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: refine technical language, enhance feature descriptions, fix string interpolation

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update README with performance metrics, feature enhancements, and course links

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update LangGraph comparison with paragraph and P.S. section

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-28 01:00:58 -03:00
devin-ai-integration[bot]
2433819c4f fix: handle optional storage with null checks (#1808)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:30:39 -03:00
Erick Amorim
97fc44c930 fix: Change storage initialization to None for KnowledgeStorage (#1804)
* fix: Change storage initialization to None for KnowledgeStorage

* refactor: Change storage field to optional and improve error handling when saving documents

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:18:25 -03:00
siddharth Sambharia
409892d65f Portkey Integration with CrewAI (#1233)
* Create Portkey-Observability-and-Guardrails.md

* crewAI update with new changes

* small change

---------

Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 18:16:47 -03:00
devin-ai-integration[bot]
62f3df7ed5 docs: add guide for multimodal agents (#1807)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-27 18:16:02 -03:00
João Igor
4cf8913d31 chore: removing crewai-tools from dev-dependencies (#1760)
As mentioned in issue #1759, listing crewai-tools as dev-dependencies makes pip install it a required dependency, and not an optional

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 17:45:06 -03:00
João Moura
82647358b2 Adding Multimodal Abilities to Crew (#1805)
* initial fix on delegation tools

* fixing tests for delegations and coding

* Refactor prepare tool and adding initial add images logic

* supporting image tool

* fixing linter

* fix linter

* Making sure multimodal feature support i18n

* fix linter and types

* mixxing translations

* fix types and linter

* Revert "fixing linter"

This reverts commit 2eda5fdeed.

* fix linters

* test

* fix

* fix

* fix linter

* fix

* ignore

* type improvements
2024-12-27 17:03:35 -03:00
Brandon Hancock (bhancock_ai)
6cc2f510bf Feat/joao flow improvement requests (#1795)
* Add in or and and in router

* In the middle of improving plotting

* final plot changes

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-24 18:55:44 -03:00
Lorenze Jay
9a65abf6b8 removed some redundancies (#1796)
* removed some redundancies

* cleanup
2024-12-23 13:54:16 -05:00
Lorenze Jay
b3185ad90c Feat/docling-support (#1763)
* added tool for docling support

* docling support installation

* use file_paths instead of file_path

* fix import

* organized imports

* run_type docs

* needs to be list

* fixed logic

* logged but file_path is backwards compatible

* use file_paths instead of file_path 2

* added test for multiple sources for file_paths

* fix run-types

* enabling local files to work and type cleanup

* linted

* fix test and types

* fixed run types

* fix types

* renamed to CrewDoclingSource

* linted

* added docs

* resolve conflicts

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-12-23 13:19:58 -05:00
devin-ai-integration[bot]
c887ff1f47 feat: Add interpolate_only method and improve error handling (#1791)
* Fixed output_file not respecting system path

* Fixed yaml config is not escaped properly for output requirements

* feat: Add interpolate_only method and improve error handling

- Add interpolate_only method for string interpolation while preserving JSON structure
- Add comprehensive test coverage for interpolate_only
- Add proper type annotation for logger using ClassVar
- Improve error handling and documentation for _save_file method

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports to fix lint issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Reorganize imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Consolidate imports and fix formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Apply ruff automatic import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Frieda (Jingying) Huang <jingyingfhuang@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Frieda Huang <124417784+frieda-huang@users.noreply.github.com>
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-23 13:05:29 -05:00
devin-ai-integration[bot]
22e5d39884 feat: Add task guardrails feature (#1742)
* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in task guardrails files

Co-Authored-By: Joe Moura <joao@crewai.com>

* fixing docs

* Fixing guardarils implementation

* docs: Enhance guardrail validator docstring with runtime validation rationale

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-22 00:52:02 -03:00
PJ
9ee6824ccd Correcting a small grammatical issue that was bugging me: from _satisfy the expect criteria_ to _satisfies the expected criteria_ (#1783)
Signed-off-by: PJ Hagerty <pjhagerty@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-20 10:17:34 -05:00
Vini Brasil
da73865f25 Add tool.crewai.type pyproject attribute in templates (#1789) 2024-12-20 10:36:18 -03:00
Vini Brasil
627b9f1abb Remove relative import in flow main.py template (#1782) 2024-12-18 10:47:44 -03:00
alan blount
1b8001bf98 Gemini 2.0 (#1773)
* Update llms.mdx (Gemini 2.0)

- Add Gemini 2.0 flash to Gemini table.
- Add link to 2 hosting paths for Gemini in Tip.
- Change to lower case model slugs vs names, user convenience.
- Add https://artificialanalysis.ai/ as alternate leaderboard.
- Move Gemma to "other" tab.

* Update llm.py (gemini 2.0)

Add setting for Gemini 2.0 context window to llm.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-17 16:44:10 -05:00
Tony Kipkemboi
e59e07e4f7 Merge pull request #1777 from crewAIInc/fix/python-max-version
Fix/python max version
2024-12-17 16:09:44 -05:00
Brandon Hancock
ee239b1c06 change to <13 instead of <=12 2024-12-17 16:00:15 -05:00
Brandon Hancock
bf459bf983 include 12 but not 13 2024-12-17 15:29:11 -05:00
Karan Vaidya
94eaa6740e Fix bool and null handling (#1771) 2024-12-16 16:23:53 -05:00
Shahar Yair
6d7c1b0743 Fix: CrewJSONEncoder now accepts enums (#1752)
* bugfix: CrewJSONEncoder now accepts enums

* sort imports

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 15:13:10 -05:00
Brandon Hancock (bhancock_ai)
6b864ee21d drop print (#1755) 2024-12-12 15:08:37 -05:00
Brandon Hancock (bhancock_ai)
1ffa8904db apply agent ops changes and resolve merge conflicts (#1748)
* apply agent ops changes and resolve merge conflicts

* Trying to fix tests

* add back in vcr

* update tools

* remove pkg_resources which was causing issues

* Fix tests

* experimenting to see if unique content is an issue with knowledge

* experimenting to see if unique content is an issue with knowledge

* update chromadb which seems to have issues with upsert

* generate new yaml for failing test

* Investigating upsert

* Drop patch

* Update casettes

* Fix duplicate document issue

* more fixes

* add back in vcr

* new cassette for test

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
2024-12-12 15:04:32 -05:00
Brandon Hancock (bhancock_ai)
ad916abd76 remove pkg_resources which was causing issues (#1751) 2024-12-12 12:41:13 -05:00
Rip&Tear
9702711094 Feature/add workflow permissions (#1749)
* fix: Call ChromaDB reset before removing storage directory to fix disk I/O errors

* feat: add workflow permissions to stale.yml

* revert rag_storage.py changes

* revert rag_storage.py changes

---------

Co-authored-by: Matt B <mattb@Matts-MacBook-Pro.local>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 12:31:43 -05:00
André Lago
8094754239 Fix small typo in sample tool (#1747)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 10:11:47 -05:00
Rashmi Pawar
bc5e303d5f NVIDIA Provider : UI changes (#1746)
* docs: add nvidia as provider

* nvidia ui docs changes

* add note for updated list

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 10:01:53 -05:00
Anmol Deep
ec89e003c8 Added is_auto_end flag in agentops.end session in crew.py (#1320)
When using agentops, we have the option to pass the `skip_auto_end_session` parameter, which is supposed to not end the session if the `end_session` function is called by Crew.

Now the way it works is, the `agentops.end_session` accepts `is_auto_end` flag and crewai should have passed it as `True` (its `False` by default). 

I have changed the code to pass is_auto_end=True

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-11 11:34:17 -05:00
Bowen Liang
0b0f2d30ab sort imports with isort rules by ruff linter (#1730)
* sort imports

* update

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-12-11 10:46:53 -05:00
Brandon Hancock (bhancock_ai)
1df61aba4c include event emitter in flows (#1740)
* include event emitter in flows

* Clean up

* Fix linter
2024-12-11 10:16:05 -05:00
Paul Cowgill
da9220fa81 Remove manager_callbacks reference (#1741) 2024-12-11 10:13:57 -05:00
Archkon
da4f356fab fix:typo error (#1738)
* Update base_agent_tools.py

typo error

* Update main.py

typo error

* Update base_file_knowledge_source.py

typo error

* Update test_main.py

typo error

* Update en.json

* Update prompts.json

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-10 11:18:45 -05:00
Brandon Hancock (bhancock_ai)
d932b20c6e copy googles changes. Fix tests. Improve LLM file (#1737)
* copy googles changes. Fix tests. Improve LLM file

* Fix type issue
2024-12-10 11:14:37 -05:00
Brandon Hancock (bhancock_ai)
2f9a2afd9e Update pyproject.toml and uv.lock to drop crewai-tools as a default requirement (#1711) 2024-12-09 14:17:46 -05:00
Brandon Hancock (bhancock_ai)
c1df7c410e Bugfix/restrict python version compatibility (#1736)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* drop pipeline
2024-12-09 14:07:57 -05:00
Brandon Hancock (bhancock_ai)
54ebd6cf90 restrict python version compatibility (#1731)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip
2024-12-09 14:00:18 -05:00
Carlos Souza
6b87d22a70 Fix disk I/O error when resetting short-term memory. (#1724)
* Fix disk I/O error when resetting short-term memory.

Reset chromadb client and nullifies references before
removing directory.

* Nit for clarity

* did the same for knowledge_storage

* cleanup

* cleanup order

* Cleanup after the rm of the directories

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2024-12-09 10:30:51 -08:00
Piotr Mardziel
c4f7eaf259 Add missing @functools.wraps when wrapping functions and preserve wrapped class name in @CrewBase. (#1560)
* Update annotations.py

* Update utils.py

* Update crew_base.py

* Update utils.py

* Update crew_base.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:51:12 -05:00
Tony Kipkemboi
236e42d0bc format bullet points (#1734)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:40:01 -05:00
fuckqqcom
8c90db04b5 _execute_tool_and_check_finality 结果给回调参数,这样就可以提前拿到结果信息,去做数据解析判断做预判 (#1716)
Co-authored-by: xiaohan <fuck@qq.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:37:54 -05:00
lgesuellip
1261ce513f Add doc structured tool (#1713)
* Add doc structured tool

* Fix example

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:34:07 -05:00
Tony Kipkemboi
b07c51532c Merge pull request #1733 from rokbenko/main
[DOCS] Fix Spaceflight News API docs link on Knowledge docs page
2024-12-09 11:27:01 -05:00
Tony Kipkemboi
d763eefc2e Merge branch 'main' into main 2024-12-09 11:23:36 -05:00
Aviral Jain
e01c0a0f4c call storage.search in user context search instead of memory.search (#1692)
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-12-09 08:07:52 -08:00
Rok Benko
5a7a323f3a Fix Knowledge docs Spaceflight News API dead link 2024-12-09 10:58:51 -05:00
Archkon
46be5e8097 fix:typo error (#1732)
* Update crew_agent_executor.py

typo error

* Update en.json

typo error
2024-12-09 10:53:55 -05:00
Frieda Huang
bc2a86d66a Fixed output_file not respecting system path (#1726)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 10:05:54 -05:00
Eduardo Chiarotti
11a3d4b840 docs: Add quotes to agentops installing command (#1729)
* docs: Add quotes to agentops installing command

* feat: Add ContextualMemory to __init__

* feat: remove import due to circular improt

* feat: update tasks config main template typos
2024-12-09 11:42:36 -03:00
Brandon Hancock (bhancock_ai)
6930b68484 add support for langfuse with litellm (#1721) 2024-12-06 13:57:28 -05:00
Brandon Hancock (bhancock_ai)
c7c0647dd2 drop metadata requirement (#1712)
* drop metadata requirement

* fix linting

* Update docs for new knowledge

* more linting

* more linting

* make save_documents private

* update docs to the new way we use knowledge and include clearing memory
2024-12-05 14:59:52 -05:00
Brandon Hancock (bhancock_ai)
7b276e6797 Incorporate Stale PRs that have feedback (#1693)
* incorporate #1683

* add in --version flag to cli. closes #1679.

* Fix env issue

* Add in suggestions from @caike to make sure ragstorage doesnt exceed os file limit. Also, included additional checks to support windows.

* remove poetry.lock as pointed out by @sanders41 in #1574.

* Incorporate feedback from crewai reviewer

* Incorporate @lorenzejay feedback
2024-12-05 12:17:23 -05:00
João Moura
3daba0c79e curting new verson 2024-12-05 13:53:10 -03:00
João Moura
2c85e8e23a updating tools 2024-12-05 13:51:20 -03:00
Brandon Hancock (bhancock_ai)
b0f1d1fcf0 New docs about yaml crew with decorators. Simplify template crew with… (#1701)
* New docs about yaml crew with decorators. Simplify template crew with links

* Fix spelling issues.
2024-12-05 11:23:20 -05:00
Brandon Hancock (bhancock_ai)
611526596a Brandon/cre 509 hitl multiple rounds of followup (#1702)
* v1 of HITL working

* Drop print statements

* HITL code more robust. Still needs to be refactored.

* refactor and more clear messages

* Fix type issue

* fix tests

* Fix test again

* Drop extra print
2024-12-05 10:14:04 -05:00
Tony Kipkemboi
fa373f9660 add knowledge demo + improve knowledge docs (#1706) 2024-12-05 09:49:44 -05:00
Rashmi Pawar
48bb8ef775 docs: add nvidia as provider (#1632)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-04 15:38:46 -05:00
Brandon Hancock (bhancock_ai)
bbea797b0c remove all references to pipeline and pipeline router (#1661)
* remove all references to pipeline and router

* fix linting

* drop poetry.lock
2024-12-04 12:39:34 -05:00
Tony Kipkemboi
066ad73423 Merge pull request #1698 from crewAIInc/brandon/cre-510-update-docs-to-talk-about-pydantic-and-json-outputs
Talk about getting structured consistent outputs with tasks.
2024-12-04 11:07:52 -05:00
Tony Kipkemboi
0695c26703 Merge branch 'main' into brandon/cre-510-update-docs-to-talk-about-pydantic-and-json-outputs 2024-12-04 11:05:47 -05:00
Brandon Hancock
4fb3331c6a Talk about getting structured consistent outputs with tasks. 2024-12-04 10:46:39 -05:00
Stephen
b6c6eea6f5 Update README.md (#1694)
Corrected the statement which says users can not disable telemetry, but now users can disable by setting the environment variable OTEL_SDK_DISABLED to true.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 16:08:19 -05:00
Lorenze Jay
1af95f5146 Knowledge project directory standard (#1691)
* Knowledge project directory standard

* fixed types

* comment fix

* made base file knowledge source an abstract class

* cleaner validator on model_post_init

* fix type checker

* cleaner refactor

* better template
2024-12-03 12:27:48 -08:00
Feynman Liang
ed3487aa22 Fix indentation in llm-connections.mdx code block (#1573)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:52:23 -05:00
Patcher
77af733e44 [Doc]: Add documenation for openlit observability (#1612)
* Create openlit-observability.mdx

* Update doc with images and steps

* Update mkdocs.yml and add OpenLIT guide link

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:38:49 -05:00
Tom Mahler, PhD
aaf80d1d43 [FEATURE] Support for custom path in RAGStorage (#1659)
* added path to RAGStorage

* added path to short term and entity memory

* add path for long_term_storage for completeness

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:22:29 -05:00
Ola Hungerford
9e9b945a46 Update using langchain tools docs (#1664)
* Update example of how to use LangChain tools with correct syntax

* Use .env

* Add  Code back

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 11:13:06 -05:00
Javier Saldaña
308a8dc925 Update reset memories command based on the SDK (#1688)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 10:09:30 -05:00
Tony Kipkemboi
7d9d0ff6f7 fix missing code in flows docs (#1690)
* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* docs: add code snippet to Getting Started section in flows.mdx

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 10:02:06 -05:00
João Moura
f8a8e7b2a5 preparing new version 2024-12-02 18:28:58 -03:00
Brandon Hancock (bhancock_ai)
3285c1b196 Fixes issues with result as answer not properly exiting LLM loop (#1689)
* v1 of fix implemented. Need to confirm with tokens.

* remove print statements
2024-12-02 13:38:17 -05:00
207 changed files with 10272 additions and 23650 deletions

View File

@@ -65,7 +65,6 @@ body:
- '3.10'
- '3.11'
- '3.12'
- '3.13'
validations:
required: true
- type: input
@@ -113,4 +112,4 @@ body:
label: Additional context
description: Add any other context about the problem here.
validations:
required: true
required: true

View File

@@ -13,4 +13,4 @@ jobs:
pip install ruff
- name: Run Ruff Linter
run: ruff check --exclude "templates","__init__.py"
run: ruff check

View File

@@ -1,5 +1,10 @@
name: Mark stale issues and pull requests
permissions:
contents: write
issues: write
pull-requests: write
on:
schedule:
- cron: '10 12 * * *'
@@ -8,9 +13,6 @@ on:
jobs:
stale:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v9
with:

View File

@@ -23,7 +23,7 @@ jobs:
- name: Set up Python
run: uv python install 3.11.9
run: uv python install 3.12.8
- name: Install the project
run: uv sync --dev --all-extras

View File

@@ -1,9 +1,7 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.4.4
rev: v0.8.2
hooks:
- id: ruff
args: ["--fix"]
exclude: "templates"
- id: ruff-format
exclude: "templates"

9
.ruff.toml Normal file
View File

@@ -0,0 +1,9 @@
exclude = [
"templates",
"__init__.py",
]
[lint]
select = [
"I", # isort rules
]

179
README.md
View File

@@ -4,7 +4,7 @@
# **CrewAI**
🤖 **CrewAI**: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
🤖 **CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
<h3>
@@ -22,13 +22,17 @@
- [Why CrewAI?](#why-crewai)
- [Getting Started](#getting-started)
- [Key Features](#key-features)
- [Understanding Flows and Crews](#understanding-flows-and-crews)
- [CrewAI vs LangGraph](#how-crewai-compares)
- [Examples](#examples)
- [Quick Tutorial](#quick-tutorial)
- [Write Job Descriptions](#write-job-descriptions)
- [Trip Planner](#trip-planner)
- [Stock Analysis](#stock-analysis)
- [Using Crews and Flows Together](#using-crews-and-flows-together)
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
- [How CrewAI Compares](#how-crewai-compares)
- [Frequently Asked Questions (FAQ)](#frequently-asked-questions-faq)
- [Contribution](#contribution)
- [Telemetry](#telemetry)
- [License](#license)
@@ -36,22 +40,51 @@
## Why CrewAI?
The power of AI collaboration has too much to offer.
CrewAI is designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
CrewAI is a standalone framework, built from the ground up without dependencies on Langchain or other agent frameworks. It's designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
## Getting Started
### Learning Resources
Learn CrewAI through our comprehensive courses:
- [Multi AI Agent Systems with CrewAI](https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/) - Master the fundamentals of multi-agent systems
- [Practical Multi AI Agents and Advanced Use Cases](https://www.deeplearning.ai/short-courses/practical-multi-ai-agents-and-advanced-use-cases-with-crewai/) - Deep dive into advanced implementations
### Understanding Flows and Crews
CrewAI offers two powerful, complementary approaches that work seamlessly together to build sophisticated AI applications:
1. **Crews**: Teams of AI agents with true autonomy and agency, working together to accomplish complex tasks through role-based collaboration. Crews enable:
- Natural, autonomous decision-making between agents
- Dynamic task delegation and collaboration
- Specialized roles with defined goals and expertise
- Flexible problem-solving approaches
2. **Flows**: Production-ready, event-driven workflows that deliver precise control over complex automations. Flows provide:
- Fine-grained control over execution paths for real-world scenarios
- Secure, consistent state management between tasks
- Clean integration of AI agents with production Python code
- Conditional branching for complex business logic
The true power of CrewAI emerges when combining Crews and Flows. This synergy allows you to:
- Build complex, production-grade applications
- Balance autonomy with precise control
- Handle sophisticated real-world scenarios
- Maintain clean, maintainable code structure
### Getting Started with Installation
To get started with CrewAI, follow these simple steps:
### 1. Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, install CrewAI:
```shell
pip install crewai
```
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command:
```shell
@@ -59,6 +92,22 @@ pip install 'crewai[tools]'
```
The command above installs the basic package and also adds extra components which require more dependencies to function.
### Troubleshooting Dependencies
If you encounter issues during installation or usage, here are some common solutions:
#### Common Issues
1. **ModuleNotFoundError: No module named 'tiktoken'**
- Install tiktoken explicitly: `pip install 'crewai[embeddings]'`
- If using embedchain or other tools: `pip install 'crewai[tools]'`
2. **Failed building wheel for tiktoken**
- Ensure Rust compiler is installed (see installation steps above)
- For Windows: Verify Visual C++ Build Tools are installed
- Try upgrading pip: `pip install --upgrade pip`
- If issues persist, use a pre-built wheel: `pip install tiktoken --prefer-binary`
### 2. Setting Up Your Crew with the YAML Configuration
To create a new CrewAI project, run the following CLI (Command Line Interface) command:
@@ -264,13 +313,16 @@ In addition to the sequential process, you can use the hierarchical process, whi
## Key Features
- **Role-Based Agent Design**: Customize agents with specific roles, goals, and tools.
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enhancing problem-solving efficiency.
- **Flexible Task Management**: Define tasks with customizable tools and assign them to agents dynamically.
- **Processes Driven**: Currently only supports `sequential` task execution and `hierarchical` processes, but more complex processes like consensual and autonomous are being worked on.
- **Save output as file**: Save the output of individual tasks as a file, so you can use it later.
- **Parse output as Pydantic or Json**: Parse the output of individual tasks as a Pydantic model or as a Json if you want to.
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models, even ones running locally!
**Note**: CrewAI is a standalone framework built from the ground up, without dependencies on Langchain or other agent frameworks.
- **Deep Customization**: Build sophisticated agents with full control over the system - from overriding inner prompts to accessing low-level APIs. Customize roles, goals, tools, and behaviors while maintaining clean abstractions.
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enabling complex problem-solving in real-world scenarios.
- **Flexible Task Management**: Define and customize tasks with granular control, from simple operations to complex multi-step processes.
- **Production-Grade Architecture**: Support for both high-level abstractions and low-level customization, with robust error handling and state management.
- **Predictable Results**: Ensure consistent, accurate outputs through programmatic guardrails, agent training capabilities, and flow-based execution control. See our [documentation on guardrails](https://docs.crewai.com/how-to/guardrails/) for implementation details.
- **Model Flexibility**: Run your crew using OpenAI or open source models with production-ready integrations. See [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) for detailed configuration options.
- **Event-Driven Flows**: Build complex, real-world workflows with precise control over execution paths, state management, and conditional logic.
- **Process Orchestration**: Achieve any workflow pattern through flows - from simple sequential and hierarchical processes to complex, custom orchestration patterns with conditional branching and parallel execution.
![CrewAI Mind Map](./docs/crewAI-mindmap.png "CrewAI Mind Map")
@@ -305,6 +357,98 @@ You can test different real life examples of AI crews in the [CrewAI-examples re
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
### Using Crews and Flows Together
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines. Here's how you can orchestrate multiple Crews within a Flow:
```python
from crewai.flow.flow import Flow, listen, start, router
from crewai import Crew, Agent, Task
from pydantic import BaseModel
# Define structured state for precise control
class MarketState(BaseModel):
sentiment: str = "neutral"
confidence: float = 0.0
recommendations: list = []
class AdvancedAnalysisFlow(Flow[MarketState]):
@start()
def fetch_market_data(self):
# Demonstrate low-level control with structured state
self.state.sentiment = "analyzing"
return {"sector": "tech", "timeframe": "1W"} # These parameters match the task description template
@listen(fetch_market_data)
def analyze_with_crew(self, market_data):
# Show crew agency through specialized roles
analyst = Agent(
role="Senior Market Analyst",
goal="Conduct deep market analysis with expert insight",
backstory="You're a veteran analyst known for identifying subtle market patterns"
)
researcher = Agent(
role="Data Researcher",
goal="Gather and validate supporting market data",
backstory="You excel at finding and correlating multiple data sources"
)
analysis_task = Task(
description="Analyze {sector} sector data for the past {timeframe}",
expected_output="Detailed market analysis with confidence score",
agent=analyst
)
research_task = Task(
description="Find supporting data to validate the analysis",
expected_output="Corroborating evidence and potential contradictions",
agent=researcher
)
# Demonstrate crew autonomy
analysis_crew = Crew(
agents=[analyst, researcher],
tasks=[analysis_task, research_task],
process=Process.sequential,
verbose=True
)
return analysis_crew.kickoff(inputs=market_data) # Pass market_data as named inputs
@router(analyze_with_crew)
def determine_next_steps(self):
# Show flow control with conditional routing
if self.state.confidence > 0.8:
return "high_confidence"
elif self.state.confidence > 0.5:
return "medium_confidence"
return "low_confidence"
@listen("high_confidence")
def execute_strategy(self):
# Demonstrate complex decision making
strategy_crew = Crew(
agents=[
Agent(role="Strategy Expert",
goal="Develop optimal market strategy")
],
tasks=[
Task(description="Create detailed strategy based on analysis",
expected_output="Step-by-step action plan")
]
)
return strategy_crew.kickoff()
@listen("medium_confidence", "low_confidence")
def request_additional_analysis(self):
self.state.recommendations.append("Gather more data")
return "Additional analysis required"
```
This example demonstrates how to:
1. Use Python code for basic data operations
2. Create and execute Crews as steps in your workflow
3. Use Flow decorators to manage the sequence of operations
4. Implement conditional branching based on Crew results
## Connecting Your Crew to a Model
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
@@ -313,9 +457,13 @@ Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-
## How CrewAI Compares
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
**CrewAI's Advantage**: CrewAI combines autonomous agent intelligence with precise workflow control through its unique Crews and Flows architecture. The framework excels at both high-level orchestration and low-level customization, enabling complex, production-grade systems with granular control.
- **Autogen**: While Autogen does good in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **LangGraph**: While LangGraph provides a foundation for building agent workflows, its approach requires significant boilerplate code and complex state management patterns. The framework's tight coupling with LangChain can limit flexibility when implementing custom agent behaviors or integrating with external systems.
*P.S. CrewAI demonstrates significant performance advantages over LangGraph, executing 5.76x faster in certain cases like this QA task example ([see comparison](https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/QA%20Agent)) while achieving higher evaluation scores with faster completion times in certain coding tasks, like in this example ([detailed analysis](https://github.com/crewAIInc/crewAI-examples/blob/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/Coding%20Assistant/coding_assistant_eval.ipynb)).*
- **Autogen**: While Autogen excels at creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
@@ -376,7 +524,7 @@ pip install dist/*.tar.gz
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. We don't offer a way to disable it now, but we will in the future.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
Data collected includes:
@@ -440,5 +588,8 @@ A: CrewAI uses anonymous telemetry to collect usage data for improvement purpose
### Q: Where can I find examples of CrewAI in action?
A: You can find various real-life examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), including trip planners, stock analysis tools, and more.
### Q: What is the difference between Crews and Flows?
A: Crews and Flows serve different but complementary purposes in CrewAI. Crews are teams of AI agents working together to accomplish specific tasks through role-based collaboration, delivering accurate and predictable results. Flows, on the other hand, are event-driven workflows that can orchestrate both Crews and regular Python code, allowing you to build complex automation pipelines with secure state management and conditional execution paths.
### Q: How can I contribute to CrewAI?
A: Contributions are welcome! You can fork the repository, create a new branch for your feature, add your improvement, and send a pull request. Check the Contribution section in the README for more details.

View File

@@ -28,20 +28,19 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
### 1. Create
Create a new crew or pipeline.
Create a new crew or flow.
```shell
crewai create [OPTIONS] TYPE NAME
```
- `TYPE`: Choose between "crew" or "pipeline"
- `NAME`: Name of the crew or pipeline
- `--router`: (Optional) Create a pipeline with router functionality
- `TYPE`: Choose between "crew" or "flow"
- `NAME`: Name of the crew or flow
Example:
```shell
crewai create crew my_new_crew
crewai create pipeline my_new_pipeline --router
crewai create flow my_new_flow
```
### 2. Version

View File

@@ -32,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
@@ -41,6 +40,155 @@ A crew in crewAI represents a collaborative group of agents working together to
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
</Tip>
## Creating Crews
There are two ways to create crews in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
### YAML Configuration (Recommended)
Using YAML configuration provides a cleaner, more maintainable way to define crews and is consistent with how agents and tasks are defined in CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
#### Example Crew Class with Decorators
```python code
from crewai import Agent, Crew, Task, Process
from crewai.project import CrewBase, agent, task, crew, before_kickoff, after_kickoff
@CrewBase
class YourCrewName:
"""Description of your crew"""
# Paths to your YAML configuration files
# To see an example agent and task defined in YAML, checkout the following:
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
# - Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@before_kickoff
def prepare_inputs(self, inputs):
# Modify inputs before the crew starts
inputs['additional_data'] = "Some extra information"
return inputs
@after_kickoff
def process_output(self, output):
# Modify output after the crew finishes
output.raw += "\nProcessed after kickoff."
return output
@agent
def agent_one(self) -> Agent:
return Agent(
config=self.agents_config['agent_one'],
verbose=True
)
@agent
def agent_two(self) -> Agent:
return Agent(
config=self.agents_config['agent_two'],
verbose=True
)
@task
def task_one(self) -> Task:
return Task(
config=self.tasks_config['task_one']
)
@task
def task_two(self) -> Task:
return Task(
config=self.tasks_config['task_two']
)
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents, # Automatically collected by the @agent decorator
tasks=self.tasks, # Automatically collected by the @task decorator.
process=Process.sequential,
verbose=True,
)
```
<Note>
Tasks will be executed in the order they are defined.
</Note>
The `CrewBase` class, along with these decorators, automates the collection of agents and tasks, reducing the need for manual management.
#### Decorators overview from `annotations.py`
CrewAI provides several decorators in the `annotations.py` file that are used to mark methods within your crew class for special handling:
- `@CrewBase`: Marks the class as a crew base class.
- `@agent`: Denotes a method that returns an `Agent` object.
- `@task`: Denotes a method that returns a `Task` object.
- `@crew`: Denotes the method that returns the `Crew` object.
- `@before_kickoff`: (Optional) Marks a method to be executed before the crew starts.
- `@after_kickoff`: (Optional) Marks a method to be executed after the crew finishes.
These decorators help in organizing your crew's structure and automatically collecting agents and tasks without manually listing them.
### Direct Code Definition (Alternative)
Alternatively, you can define the crew directly in code without using YAML configuration files.
```python code
from crewai import Agent, Crew, Task, Process
from crewai_tools import YourCustomTool
class YourCrewName:
def agent_one(self) -> Agent:
return Agent(
role="Data Analyst",
goal="Analyze data trends in the market",
backstory="An experienced data analyst with a background in economics",
verbose=True,
tools=[YourCustomTool()]
)
def agent_two(self) -> Agent:
return Agent(
role="Market Researcher",
goal="Gather information on market dynamics",
backstory="A diligent researcher with a keen eye for detail",
verbose=True
)
def task_one(self) -> Task:
return Task(
description="Collect recent market data and identify trends.",
expected_output="A report summarizing key trends in the market.",
agent=self.agent_one()
)
def task_two(self) -> Task:
return Task(
description="Research factors affecting market dynamics.",
expected_output="An analysis of factors influencing the market.",
agent=self.agent_two()
)
def crew(self) -> Crew:
return Crew(
agents=[self.agent_one(), self.agent_two()],
tasks=[self.task_one(), self.task_two()],
process=Process.sequential,
verbose=True
)
```
In this example:
- Agents and tasks are defined directly within the class without decorators.
- We manually create and manage the list of agents and tasks.
- This approach provides more control but can be less maintainable for larger projects.
## Crew Output
@@ -188,4 +336,4 @@ Then, to replay from a specific task, use:
crewai replay -t <task_id>
```
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.

View File

@@ -18,63 +18,60 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
## Getting Started
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
### Passing Inputs to Flows
```python Code
Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
#### Structured State Management
In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
from dotenv import load_dotenv
from litellm import completion
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class StructuredExampleFlow(Flow[ExampleState]):
class ExampleFlow(Flow):
model = "gpt-4o-mini"
@start()
def first_method(self):
# Implementation
def generate_city(self):
print("Starting flow")
flow = StructuredExampleFlow()
flow.kickoff(inputs={"counter": 10})
```
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": "Return the name of a random city in the world.",
},
],
)
In this example, the `counter` is initialized to `10`, while `message` retains its default value.
random_city = response["choices"][0]["message"]["content"]
print(f"Random City: {random_city}")
#### Unstructured State Management
return random_city
In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
@listen(generate_city)
def generate_fun_fact(self, random_city):
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": f"Tell me a fun fact about {random_city}",
},
],
)
```python
from crewai.flow.flow import Flow, listen, start
fun_fact = response["choices"][0]["message"]["content"]
return fun_fact
class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
# Implementation
flow = UnstructuredExampleFlow()
flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
```
Here, both `counter` and `message` are updated based on the provided inputs.
flow = ExampleFlow()
result = flow.kickoff()
**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
### Example Flow
```python
# Existing example code
print(f"Generated fun fact: {result}")
```
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
@@ -97,14 +94,14 @@ The `@listen()` decorator can be used in several ways:
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
```python
```python Code
@listen("generate_city")
def generate_fun_fact(self, random_city):
# Implementation
```
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
```python
```python Code
@listen(generate_city)
def generate_fun_fact(self, random_city):
# Implementation
@@ -121,7 +118,7 @@ When you run a Flow, the final output is determined by the last method that comp
Here's how you can access the final output:
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, start
class OutputExampleFlow(Flow):
@@ -133,17 +130,18 @@ class OutputExampleFlow(Flow):
def second_method(self, first_output):
return f"Second method received: {first_output}"
flow = OutputExampleFlow()
final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
```
````
```text
``` text Output
---- Final Output ----
Second method received: Output from first_method
```
````
</CodeGroup>
@@ -158,7 +156,7 @@ Here's an example of how to update and access the state:
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
@@ -186,7 +184,7 @@ print("Final State:")
print(flow.state)
```
```text
```text Output
Final Output: Hello from first_method - updated by second_method
Final State:
counter=2 message='Hello from first_method - updated by second_method'
@@ -210,10 +208,10 @@ allowing developers to choose the approach that best fits their application's ne
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
```python
```python Code
from crewai.flow.flow import Flow, listen, start
class UnstructuredExampleFlow(Flow):
class UntructuredExampleFlow(Flow):
@start()
def first_method(self):
@@ -232,7 +230,8 @@ class UnstructuredExampleFlow(Flow):
print(f"State after third_method: {self.state}")
flow = UnstructuredExampleFlow()
flow = UntructuredExampleFlow()
flow.kickoff()
```
@@ -246,14 +245,16 @@ flow.kickoff()
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
```python
```python Code
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class StructuredExampleFlow(Flow[ExampleState]):
@start()
@@ -272,6 +273,7 @@ class StructuredExampleFlow(Flow[ExampleState]):
print(f"State after third_method: {self.state}")
flow = StructuredExampleFlow()
flow.kickoff()
```
@@ -305,7 +307,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, listen, or_, start
class OrExampleFlow(Flow):
@@ -322,11 +324,13 @@ class OrExampleFlow(Flow):
def logger(self, result):
print(f"Logger: {result}")
flow = OrExampleFlow()
flow.kickoff()
```
```text
```text Output
Logger: Hello from the start method
Logger: Hello from the second method
```
@@ -342,7 +346,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
<CodeGroup>
```python
```python Code
from crewai.flow.flow import Flow, and_, listen, start
class AndExampleFlow(Flow):
@@ -364,7 +368,7 @@ flow = AndExampleFlow()
flow.kickoff()
```
```text
```text Output
---- Logger ----
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
```
@@ -381,7 +385,7 @@ You can specify different routes based on the output of the method, allowing you
<CodeGroup>
```python
```python Code
import random
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
@@ -412,11 +416,12 @@ class RouterFlow(Flow[ExampleState]):
def fourth_method(self):
print("Fourth method running")
flow = RouterFlow()
flow.kickoff()
```
```text
```text Output
Starting the structured flow
Third method running
Fourth method running
@@ -479,7 +484,7 @@ The `main.py` file is where you create your flow and connect the crews together.
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
```python
```python Code
#!/usr/bin/env python
from random import randint
@@ -555,42 +560,6 @@ uv run kickoff
The flow will execute, and you should see the output in the console.
### Adding Additional Crews Using the CLI
Once you have created your initial flow, you can easily add additional crews to your project using the CLI. This allows you to expand your flow's capabilities by integrating new crews without starting from scratch.
To add a new crew to your existing flow, use the following command:
```bash
crewai flow add-crew <crew_name>
```
This command will create a new directory for your crew within the `crews` folder of your flow project. It will include the necessary configuration files and a crew definition file, similar to the initial setup.
#### Folder Structure
After adding a new crew, your folder structure will look like this:
| Directory/File | Description |
| :--------------------- | :----------------------------------------------------------------- |
| `name_of_flow/` | Root directory for the flow. |
| ├── `crews/` | Contains directories for specific crews. |
| │ ├── `poem_crew/` | Directory for the "poem_crew" with its configurations and scripts. |
| │ │ ├── `config/` | Configuration files directory for the "poem_crew". |
| │ │ │ ├── `agents.yaml` | YAML file defining the agents for "poem_crew". |
| │ │ │ └── `tasks.yaml` | YAML file defining the tasks for "poem_crew". |
| │ │ └── `poem_crew.py` | Script for "poem_crew" functionality. |
| └── `name_of_crew/` | Directory for the new crew. |
| ├── `config/` | Configuration files directory for the new crew. |
| │ ├── `agents.yaml` | YAML file defining the agents for the new crew. |
| │ └── `tasks.yaml` | YAML file defining the tasks for the new crew. |
| └── `name_of_crew.py` | Script for the new crew functionality. |
You can then customize the `agents.yaml` and `tasks.yaml` files to define the agents and tasks for your new crew. The `name_of_crew.py` file will contain the crew's logic, which you can modify to suit your needs.
By using the CLI to add additional crews, you can efficiently build complex AI workflows that leverage multiple crews working together.
## Plot Flows
Visualizing your AI workflows can provide valuable insights into the structure and execution paths of your flows. CrewAI offers a powerful visualization tool that allows you to generate interactive plots of your flows, making it easier to understand and optimize your AI workflows.
@@ -607,7 +576,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
```python
```python Code
# Assuming you have a flow instance
flow.plot("my_flow_plot")
```
@@ -630,114 +599,13 @@ The generated plot will display nodes representing the tasks in your flow, with
By visualizing your flows, you can gain a clearer understanding of the workflow's structure, making it easier to debug, optimize, and communicate your AI processes to others.
### Conclusion
## Advanced
In this section, we explore more complex use cases of CrewAI Flows, starting with a self-evaluation loop. This pattern is crucial for developing AI systems that can iteratively improve their outputs through feedback.
### 1) Self-Evaluation Loop
The self-evaluation loop is a powerful pattern that allows AI workflows to automatically assess and refine their outputs. This example demonstrates how to set up a flow that generates content, evaluates it, and iterates based on feedback until the desired quality is achieved.
#### Overview
The self-evaluation loop involves two main Crews:
1. **ShakespeareanXPostCrew**: Generates a Shakespearean-style post on a given topic.
2. **XPostReviewCrew**: Evaluates the generated post, providing feedback on its validity and quality.
The process iterates until the post meets the criteria or a maximum retry limit is reached. This approach ensures high-quality outputs through iterative refinement.
#### Importance
This pattern is essential for building robust AI systems that can adapt and improve over time. By automating the evaluation and feedback loop, developers can ensure that their AI workflows produce reliable and high-quality results.
#### Main Code Highlights
Below is the `main.py` file for the self-evaluation loop flow:
```python
from typing import Optional
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
from self_evaluation_loop_flow.crews.shakespeare_crew.shakespeare_crew import (
ShakespeareanXPostCrew,
)
from self_evaluation_loop_flow.crews.x_post_review_crew.x_post_review_crew import (
XPostReviewCrew,
)
class ShakespeareXPostFlowState(BaseModel):
x_post: str = ""
feedback: Optional[str] = None
valid: bool = False
retry_count: int = 0
class ShakespeareXPostFlow(Flow[ShakespeareXPostFlowState]):
@start("retry")
def generate_shakespeare_x_post(self):
print("Generating Shakespearean X post")
topic = "Flying cars"
result = (
ShakespeareanXPostCrew()
.crew()
.kickoff(inputs={"topic": topic, "feedback": self.state.feedback})
)
print("X post generated", result.raw)
self.state.x_post = result.raw
@router(generate_shakespeare_x_post)
def evaluate_x_post(self):
if self.state.retry_count > 3:
return "max_retry_exceeded"
result = XPostReviewCrew().crew().kickoff(inputs={"x_post": self.state.x_post})
self.state.valid = result["valid"]
self.state.feedback = result["feedback"]
print("valid", self.state.valid)
print("feedback", self.state.feedback)
self.state.retry_count += 1
if self.state.valid:
return "complete"
return "retry"
@listen("complete")
def save_result(self):
print("X post is valid")
print("X post:", self.state.x_post)
with open("x_post.txt", "w") as file:
file.write(self.state.x_post)
@listen("max_retry_exceeded")
def max_retry_exceeded_exit(self):
print("Max retry count exceeded")
print("X post:", self.state.x_post)
print("Feedback:", self.state.feedback)
def kickoff():
shakespeare_flow = ShakespeareXPostFlow()
shakespeare_flow.kickoff()
def plot():
shakespeare_flow = ShakespeareXPostFlow()
shakespeare_flow.plot()
if __name__ == "__main__":
kickoff()
```
#### Code Highlights
- **Retry Mechanism**: The flow uses a retry mechanism to regenerate the post if it doesn't meet the criteria, up to a maximum of three retries.
- **Feedback Loop**: Feedback from the `XPostReviewCrew` is used to refine the post iteratively.
- **State Management**: The flow maintains state using a Pydantic model, ensuring type safety and clarity.
For a complete example and further details, please refer to the [Self Evaluation Loop Flow repository](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow).
Plotting your flows is a powerful feature of CrewAI that enhances your ability to design and manage complex AI workflows. Whether you choose to use the `plot()` method or the command line, generating plots will provide you with a visual representation of your workflows, aiding in both development and presentation.
## Next Steps
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are five specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are four specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
1. **Email Auto Responder Flow**: This example demonstrates an infinite loop where a background job continually runs to automate email responses. It's a great use case for tasks that need to be performed repeatedly without manual intervention. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/email_auto_responder_flow)
@@ -747,8 +615,6 @@ If you're interested in exploring additional examples of flows, we have a variet
4. **Meeting Assistant Flow**: This flow demonstrates how to broadcast one event to trigger multiple follow-up actions. For instance, after a meeting is completed, the flow can update a Trello board, send a Slack message, and save the results. It's a great example of handling multiple outcomes from a single event, making it ideal for comprehensive task management and notification systems. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/meeting_assistant_flow)
5. **Self Evaluation Loop Flow**: This flow demonstrates a self-evaluation loop where AI workflows automatically assess and refine their outputs through feedback. It involves generating content, evaluating it, and iterating until the desired quality is achieved. This pattern is crucial for developing robust AI systems that can adapt and improve over time. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow)
By exploring these examples, you can gain insights into how to leverage CrewAI Flows for various use cases, from automating repetitive tasks to managing complex, multi-step processes with dynamic decision-making and human feedback.
Also, check out our YouTube video on how to use flows in CrewAI below!
@@ -762,4 +628,4 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
></iframe>

View File

@@ -1,6 +1,6 @@
---
title: Knowledge
description: Understand what knowledge is in CrewAI and how to effectively use it.
description: What is knowledge in CrewAI and how to use it.
icon: book
---
@@ -8,7 +8,8 @@ icon: book
## What is Knowledge?
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks. Think of it as giving your agents a reference library they can consult while working.
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
Think of it as giving your agents a reference library they can consult while working.
<Info>
Key benefits of using Knowledge:
@@ -37,130 +38,368 @@ CrewAI supports various types of knowledge sources out of the box:
## Quick Start
Here's a simple example using string-based knowledge:
Here's an example using string-based knowledge:
```python
from crewai import Agent, Task, Crew
from crewai.knowledge import StringKnowledgeSource
```python Code
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
# 1. Create a knowledge source
product_info = StringKnowledgeSource(
content="""Our product X1000 has the following features:
- 10-hour battery life
- Water-resistant
- Available in black and silver
Price: $299.99""",
metadata={"category": "product"}
# Create a knowledge source
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content,
)
# 2. Create an agent with knowledge
sales_agent = Agent(
role="Sales Representative",
goal="Accurately answer customer questions about products",
backstory="Expert in product features and customer service",
knowledge_sources=[product_info] # Attach knowledge to agent
# Create an LLM with a temperature of 0 to ensure deterministic outputs
llm = LLM(model="gpt-4o-mini", temperature=0)
# Create an agent with the knowledge store
agent = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
verbose=True,
allow_delegation=False,
llm=llm,
)
task = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=agent,
)
# 3. Create a task
answer_task = Task(
description="Answer: What colors is the X1000 available in and how much does it cost?",
agent=sales_agent
)
# 4. Create and run the crew
crew = Crew(
agents=[sales_agent],
tasks=[answer_task]
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge_sources=[string_source], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
)
result = crew.kickoff()
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
Here's another example with the `CrewDoclingSource`
```python Code
from crewai import LLM, Agent, Crew, Process, Task
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
# Create a knowledge source
content_source = CrewDoclingSource(
file_paths=[
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking",
"https://lilianweng.github.io/posts/2024-07-07-hallucination",
],
)
# Create an LLM with a temperature of 0 to ensure deterministic outputs
llm = LLM(model="gpt-4o-mini", temperature=0)
# Create an agent with the knowledge store
agent = Agent(
role="About papers",
goal="You know everything about the papers.",
backstory="""You are a master at understanding papers and their content.""",
verbose=True,
allow_delegation=False,
llm=llm,
)
task = Task(
description="Answer the following questions about the papers: {question}",
expected_output="An answer to the question.",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge_sources=[
content_source
], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
)
result = crew.kickoff(
inputs={
"question": "What is the reward hacking paper about? Be sure to provide sources."
}
)
```
## Knowledge Configuration
### Collection Names
Knowledge sources are organized into collections for better management:
```python
# Create knowledge sources with specific collections
tech_specs = StringKnowledgeSource(
content="Technical specifications...",
collection_name="product_tech_specs"
)
pricing_info = StringKnowledgeSource(
content="Pricing information...",
collection_name="product_pricing"
)
```
### Metadata and Filtering
Add metadata to organize and filter knowledge:
```python
knowledge_source = StringKnowledgeSource(
content="Product details...",
metadata={
"category": "electronics",
"product_line": "premium",
"last_updated": "2024-03"
}
)
```
### Chunking Configuration
Control how your content is split for processing:
Control how content is split for processing by setting the chunk size and overlap.
```python
knowledge_source = PDFKnowledgeSource(
file_path="product_manual.pdf",
chunk_size=2000, # Characters per chunk
chunk_overlap=200 # Overlap between chunks
```python Code
knowledge_source = StringKnowledgeSource(
content="Long content...",
chunk_size=4000, # Characters per chunk (default)
chunk_overlap=200 # Overlap between chunks (default)
)
```
## Advanced Usage
## Embedder Configuration
### Custom Knowledge Sources
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
Create your own knowledge source by extending the base class:
```python
from crewai.knowledge.source import BaseKnowledgeSource
class APIKnowledgeSource(BaseKnowledgeSource):
def __init__(self, api_endpoint: str, **kwargs):
super().__init__(**kwargs)
self.api_endpoint = api_endpoint
def load_content(self):
# Implement API data fetching
response = requests.get(self.api_endpoint)
return response.json()
def add(self):
content = self.load_content()
# Process and store content
self.save_documents({"source": "api"})
```python Code
...
string_source = StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
)
crew = Crew(
...
knowledge_sources=[string_source],
embedder={
"provider": "openai",
"config": {"model": "text-embedding-3-small"},
},
)
```
### Embedder Configuration
## Clearing Knowledge
Customize the embedding process:
If you need to clear the knowledge stored in CrewAI, you can use the `crewai reset-memories` command with the `--knowledge` option.
```bash Command
crewai reset-memories --knowledge
```
This is useful when you've updated your knowledge sources and want to ensure that the agents are using the most recent information.
## Agent-Specific Knowledge
While knowledge can be provided at the crew level using `crew.knowledge_sources`, individual agents can also have their own knowledge sources using the `knowledge_sources` parameter:
```python Code
from crewai import Agent, Task, Crew
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
# Create agent-specific knowledge about a product
product_specs = StringKnowledgeSource(
content="""The XPS 13 laptop features:
- 13.4-inch 4K display
- Intel Core i7 processor
- 16GB RAM
- 512GB SSD storage
- 12-hour battery life""",
metadata={"category": "product_specs"}
)
# Create a support agent with product knowledge
support_agent = Agent(
role="Technical Support Specialist",
goal="Provide accurate product information and support.",
backstory="You are an expert on our laptop products and specifications.",
knowledge_sources=[product_specs] # Agent-specific knowledge
)
# Create a task that requires product knowledge
support_task = Task(
description="Answer this customer question: {question}",
agent=support_agent
)
# Create and run the crew
crew = Crew(
agents=[support_agent],
tasks=[support_task]
)
# Get answer about the laptop's specifications
result = crew.kickoff(
inputs={"question": "What is the storage capacity of the XPS 13?"}
)
```
<Info>
Benefits of agent-specific knowledge:
- Give agents specialized information for their roles
- Maintain separation of concerns between agents
- Combine with crew-level knowledge for layered information access
</Info>
## Custom Knowledge Sources
CrewAI allows you to create custom knowledge sources for any type of data by extending the `BaseKnowledgeSource` class. Let's create a practical example that fetches and processes space news articles.
#### Space News Knowledge Source Example
<CodeGroup>
```python Code
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
import requests
from datetime import datetime
from typing import Dict, Any
from pydantic import BaseModel, Field
class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
"""Knowledge source that fetches data from Space News API."""
api_endpoint: str = Field(description="API endpoint URL")
limit: int = Field(default=10, description="Number of articles to fetch")
def load_content(self) -> Dict[Any, str]:
"""Fetch and format space news articles."""
try:
response = requests.get(
f"{self.api_endpoint}?limit={self.limit}"
)
response.raise_for_status()
data = response.json()
articles = data.get('results', [])
formatted_data = self._format_articles(articles)
return {self.api_endpoint: formatted_data}
except Exception as e:
raise ValueError(f"Failed to fetch space news: {str(e)}")
def _format_articles(self, articles: list) -> str:
"""Format articles into readable text."""
formatted = "Space News Articles:\n\n"
for article in articles:
formatted += f"""
Title: {article['title']}
Published: {article['published_at']}
Summary: {article['summary']}
News Site: {article['news_site']}
URL: {article['url']}
-------------------"""
return formatted
def add(self) -> None:
"""Process and store the articles."""
content = self.load_content()
for _, text in content.items():
chunks = self._chunk_text(text)
self.chunks.extend(chunks)
self._save_documents()
# Create knowledge source
recent_news = SpaceNewsKnowledgeSource(
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles",
limit=10,
)
# Create specialized agent
space_analyst = Agent(
role="Space News Analyst",
goal="Answer questions about space news accurately and comprehensively",
backstory="""You are a space industry analyst with expertise in space exploration,
satellite technology, and space industry trends. You excel at answering questions
about space news and providing detailed, accurate information.""",
knowledge_sources=[recent_news],
llm=LLM(model="gpt-4", temperature=0.0)
)
# Create task that handles user questions
analysis_task = Task(
description="Answer this question about space news: {user_question}",
expected_output="A detailed answer based on the recent space news articles",
agent=space_analyst
)
# Create and run the crew
crew = Crew(
agents=[space_analyst],
tasks=[analysis_task],
verbose=True,
process=Process.sequential
)
# Example usage
result = crew.kickoff(
inputs={"user_question": "What are the latest developments in space exploration?"}
)
```
```output Output
# Agent: Space News Analyst
## Task: Answer this question about space news: What are the latest developments in space exploration?
# Agent: Space News Analyst
## Final Answer:
The latest developments in space exploration, based on recent space news articles, include the following:
1. SpaceX has received the final regulatory approvals to proceed with the second integrated Starship/Super Heavy launch, scheduled for as soon as the morning of Nov. 17, 2023. This is a significant step in SpaceX's ambitious plans for space exploration and colonization. [Source: SpaceNews](https://spacenews.com/starship-cleared-for-nov-17-launch/)
2. SpaceX has also informed the US Federal Communications Commission (FCC) that it plans to begin launching its first next-generation Starlink Gen2 satellites. This represents a major upgrade to the Starlink satellite internet service, which aims to provide high-speed internet access worldwide. [Source: Teslarati](https://www.teslarati.com/spacex-first-starlink-gen2-satellite-launch-2022/)
3. AI startup Synthetaic has raised $15 million in Series B funding. The company uses artificial intelligence to analyze data from space and air sensors, which could have significant applications in space exploration and satellite technology. [Source: SpaceNews](https://spacenews.com/ai-startup-synthetaic-raises-15-million-in-series-b-funding/)
4. The Space Force has formally established a unit within the U.S. Indo-Pacific Command, marking a permanent presence in the Indo-Pacific region. This could have significant implications for space security and geopolitics. [Source: SpaceNews](https://spacenews.com/space-force-establishes-permanent-presence-in-indo-pacific-region/)
5. Slingshot Aerospace, a space tracking and data analytics company, is expanding its network of ground-based optical telescopes to increase coverage of low Earth orbit. This could improve our ability to track and analyze objects in low Earth orbit, including satellites and space debris. [Source: SpaceNews](https://spacenews.com/slingshots-space-tracking-network-to-extend-coverage-of-low-earth-orbit/)
6. The National Natural Science Foundation of China has outlined a five-year project for researchers to study the assembly of ultra-large spacecraft. This could lead to significant advancements in spacecraft technology and space exploration capabilities. [Source: SpaceNews](https://spacenews.com/china-researching-challenges-of-kilometer-scale-ultra-large-spacecraft/)
7. The Center for AEroSpace Autonomy Research (CAESAR) at Stanford University is focusing on spacecraft autonomy. The center held a kickoff event on May 22, 2024, to highlight the industry, academia, and government collaboration it seeks to foster. This could lead to significant advancements in autonomous spacecraft technology. [Source: SpaceNews](https://spacenews.com/stanford-center-focuses-on-spacecraft-autonomy/)
```
</CodeGroup>
#### Key Components Explained
1. **Custom Knowledge Source (`SpaceNewsKnowledgeSource`)**:
- Extends `BaseKnowledgeSource` for integration with CrewAI
- Configurable API endpoint and article limit
- Implements three key methods:
- `load_content()`: Fetches articles from the API
- `_format_articles()`: Structures the articles into readable text
- `add()`: Processes and stores the content
2. **Agent Configuration**:
- Specialized role as a Space News Analyst
- Uses the knowledge source to access space news
3. **Task Setup**:
- Takes a user question as input through `{user_question}`
- Designed to provide detailed answers based on the knowledge source
4. **Crew Orchestration**:
- Manages the workflow between agent and task
- Handles input/output through the kickoff method
This example demonstrates how to:
- Create a custom knowledge source that fetches real-time data
- Process and format external data for AI consumption
- Use the knowledge source to answer specific user questions
- Integrate everything seamlessly with CrewAI's agent system
#### About the Spaceflight News API
The example uses the [Spaceflight News API](https://api.spaceflightnewsapi.net/v4/docs/), which:
- Provides free access to space-related news articles
- Requires no authentication
- Returns structured data about space news
- Supports pagination and filtering
You can customize the API query by modifying the endpoint URL:
```python
crew = Crew(
agents=[agent],
tasks=[task],
knowledge_sources=[source],
embedder_config={
"model": "BAAI/bge-small-en-v1.5",
"normalize": True,
"max_length": 512
}
# Fetch more articles
recent_news = SpaceNewsKnowledgeSource(
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles",
limit=20, # Increase the number of articles
)
# Add search parameters
recent_news = SpaceNewsKnowledgeSource(
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles?search=NASA", # Search for NASA news
limit=10,
)
```
@@ -168,43 +407,14 @@ crew = Crew(
<AccordionGroup>
<Accordion title="Content Organization">
- Use meaningful collection names
- Add detailed metadata for filtering
- Keep chunk sizes appropriate for your content
- Keep chunk sizes appropriate for your content type
- Consider content overlap for context preservation
- Organize related information into separate knowledge sources
</Accordion>
<Accordion title="Performance Tips">
- Use smaller chunk sizes for precise retrieval
- Implement metadata filtering for faster searches
- Choose appropriate embedding models for your use case
- Cache frequently accessed knowledge
</Accordion>
<Accordion title="Error Handling">
- Validate knowledge source content
- Handle missing or corrupted files
- Monitor embedding generation
- Implement fallback options
</Accordion>
</AccordionGroup>
## Common Issues and Solutions
<AccordionGroup>
<Accordion title="Content Not Found">
If agents can't find relevant information:
- Check chunk sizes
- Verify knowledge source loading
- Review metadata filters
- Test with simpler queries first
</Accordion>
<Accordion title="Performance Issues">
If knowledge retrieval is slow:
- Reduce chunk sizes
- Optimize metadata filtering
- Consider using a lighter embedding model
- Cache frequently accessed content
- Adjust chunk sizes based on content complexity
- Configure appropriate embedding models
- Consider using local embedding providers for faster processing
</Accordion>
</AccordionGroup>

View File

@@ -7,32 +7,45 @@ icon: link
## Using LangChain Tools
<Info>
CrewAI seamlessly integrates with LangChains comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
CrewAI seamlessly integrates with LangChain's comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
</Info>
```python Code
import os
from crewai import Agent
from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper
from dotenv import load_dotenv
from crewai import Agent, Task, Crew
from crewai.tools import BaseTool
from pydantic import Field
from langchain_community.utilities import GoogleSerperAPIWrapper
# Setup API keys
os.environ["SERPER_API_KEY"] = "Your Key"
# Set up your SERPER_API_KEY key in an .env file, eg:
# SERPER_API_KEY=<your api key>
load_dotenv()
search = GoogleSerperAPIWrapper()
# Create and assign the search tool to an agent
serper_tool = Tool(
name="Intermediate Answer",
func=search.run,
description="Useful for search-based queries",
)
class SearchTool(BaseTool):
name: str = "Search"
description: str = "Useful for search-based queries. Use this to find current information about markets, companies, and trends."
search: GoogleSerperAPIWrapper = Field(default_factory=GoogleSerperAPIWrapper)
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[serper_tool]
def _run(self, query: str) -> str:
"""Execute the search query and return results"""
try:
return self.search.run(query)
except Exception as e:
return f"Error performing search: {str(e)}"
# Create Agents
researcher = Agent(
role='Research Analyst',
goal='Gather current market data and trends',
backstory="""You are an expert research analyst with years of experience in
gathering market intelligence. You're known for your ability to find
relevant and up-to-date market information and present it in a clear,
actionable format.""",
tools=[SearchTool()],
verbose=True
)
# rest of the code ...
@@ -40,6 +53,6 @@ agent = Agent(
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms,
and the flexibility of tool arguments to optimize your agents' performance and capabilities.
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms,
and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -29,7 +29,7 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
## Available Models and Their Capabilities
Here's a detailed breakdown of supported models and their capabilities:
Here's a detailed breakdown of supported models and their capabilities, you can compare performance at [lmarena.ai](https://lmarena.ai/?leaderboard) and [artificialanalysis.ai](https://artificialanalysis.ai/):
<Tabs>
<Tab title="OpenAI">
@@ -43,13 +43,104 @@ Here's a detailed breakdown of supported models and their capabilities:
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
</Note>
</Tab>
<Tab title="Nvidia NIM">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| nvidia/mistral-nemo-minitron-8b-8k-instruct | 8,192 tokens | State-of-the-art small language model delivering superior accuracy for chatbot, virtual assistants, and content generation. |
| nvidia/nemotron-4-mini-hindi-4b-instruct| 4,096 tokens | A bilingual Hindi-English SLM for on-device inference, tailored specifically for Hindi Language. |
| "nvidia/llama-3.1-nemotron-70b-instruct | 128k tokens | Llama-3.1-Nemotron-70B-Instruct is a large language model customized by NVIDIA in order to improve the helpfulness of LLM generated responses. |
| nvidia/llama3-chatqa-1.5-8b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
| nvidia/llama3-chatqa-1.5-70b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
| nvidia/vila | 128k tokens | Multi-modal vision-language model that understands text/img/video and creates informative responses |
| nvidia/neva-22| 4,096 tokens | Multi-modal vision-language model that understands text/images and generates informative responses |
| nvidia/nemotron-mini-4b-instruct | 8,192 tokens | General-purpose tasks |
| nvidia/usdcode-llama3-70b-instruct | 128k tokens | State-of-the-art LLM that answers OpenUSD knowledge queries and generates USD-Python code. |
| nvidia/nemotron-4-340b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
| meta/codellama-70b | 100k tokens | LLM capable of generating code from natural language and vice versa. |
| meta/llama2-70b | 4,096 tokens | Cutting-edge large language AI model capable of generating text and code in response to prompts. |
| meta/llama3-8b-instruct | 8,192 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
| meta/llama3-70b-instruct | 8,192 tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| meta/llama-3.1-8b-instruct | 128k tokens | Advanced state-of-the-art model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| meta/llama-3.1-405b-instruct | 128k tokens | Advanced LLM for synthetic data generation, distillation, and inference for chatbots, coding, and domain-specific tasks. |
| meta/llama-3.2-1b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.2-3b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.2-11b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.2-90b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| google/gemma-7b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/gemma-2b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/codegemma-7b | 8,192 tokens | Cutting-edge model built on Google's Gemma-7B specialized for code generation and code completion. |
| google/codegemma-1.1-7b | 8,192 tokens | Advanced programming model for code generation, completion, reasoning, and instruction following. |
| google/recurrentgemma-2b | 8,192 tokens | Novel recurrent architecture based language model for faster inference when generating long sequences. |
| google/gemma-2-9b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/gemma-2-27b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/gemma-2-2b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
| google/deplot | 512 tokens | One-shot visual language understanding model that translates images of plots into tables. |
| google/paligemma | 8,192 tokens | Vision language model adept at comprehending text and visual inputs to produce informative responses. |
| mistralai/mistral-7b-instruct-v0.2 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| mistralai/mixtral-8x7b-instruct-v0.1 | 8,192 tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
| mistralai/mistral-large | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
| mistralai/mixtral-8x22b-instruct-v0.1 | 8,192 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
| mistralai/mistral-7b-instruct-v0.3 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| nv-mistralai/mistral-nemo-12b-instruct | 128k tokens | Most advanced language model for reasoning, code, multilingual tasks; runs on a single GPU. |
| mistralai/mamba-codestral-7b-v0.1 | 256k tokens | Model for writing and interacting with code across a wide range of programming languages and tasks. |
| microsoft/phi-3-mini-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-mini-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-small-8k-instruct | 8,192 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-small-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-medium-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-medium-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3.5-mini-instruct | 128K tokens | Lightweight multilingual LLM powering AI applications in latency bound, memory/compute constrained environments |
| microsoft/phi-3.5-moe-instruct | 128K tokens | Advanced LLM based on Mixture of Experts architecure to deliver compute efficient content generation |
| microsoft/kosmos-2 | 1,024 tokens | Groundbreaking multimodal model designed to understand and reason about visual elements in images. |
| microsoft/phi-3-vision-128k-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
| microsoft/phi-3.5-vision-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
| databricks/dbrx-instruct | 12k tokens | A general-purpose LLM with state-of-the-art performance in language understanding, coding, and RAG. |
| snowflake/arctic | 1,024 tokens | Delivers high efficiency inference for enterprise applications focused on SQL generation and coding. |
| aisingapore/sea-lion-7b-instruct | 4,096 tokens | LLM to represent and serve the linguistic and cultural diversity of Southeast Asia |
| ibm/granite-8b-code-instruct | 4,096 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
| ibm/granite-34b-code-instruct | 8,192 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
| ibm/granite-3.0-8b-instruct | 4,096 tokens | Advanced Small Language Model supporting RAG, summarization, classification, code, and agentic AI |
| ibm/granite-3.0-3b-a800m-instruct | 4,096 tokens | Highly efficient Mixture of Experts model for RAG, summarization, entity extraction, and classification |
| mediatek/breeze-7b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
| upstage/solar-10.7b-instruct | 4,096 tokens | Excels in NLP tasks, particularly in instruction-following, reasoning, and mathematics. |
| writer/palmyra-med-70b-32k | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
| writer/palmyra-med-70b | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
| writer/palmyra-fin-70b-32k | 32k tokens | Specialized LLM for financial analysis, reporting, and data processing |
| 01-ai/yi-large | 32k tokens | Powerful model trained on English and Chinese for diverse tasks including chatbot and creative writing. |
| deepseek-ai/deepseek-coder-6.7b-instruct | 2k tokens | Powerful coding model offering advanced capabilities in code generation, completion, and infilling |
| rakuten/rakutenai-7b-instruct | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
| rakuten/rakutenai-7b-chat | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
| baichuan-inc/baichuan2-13b-chat | 4,096 tokens | Support Chinese and English chat, coding, math, instruction following, solving quizzes |
<Note>
NVIDIA's NIM support for models is expanding continuously! For the most up-to-date list of available models, please visit build.nvidia.com.
</Note>
</Tab>
<Tab title="Gemini">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
<Tip>
Google's Gemini models are all multimodal, supporting audio, images, video and text, supporting context caching, json schema, function calling, etc.
These models are available via API_KEY from
[The Gemini API](https://ai.google.dev/gemini-api/docs) and also from
[Google Cloud Vertex](https://cloud.google.com/vertex-ai/generative-ai/docs/migrate/migrate-google-ai) as part of the
[Model Garden](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/explore-models).
</Tip>
</Tab>
<Tab title="Groq">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| Llama 3.1 70B/8B | 131,072 tokens | High-performance, large context tasks |
| Llama 3.2 Series | 8,192 tokens | General-purpose tasks |
| Mixtral 8x7B | 32,768 tokens | Balanced performance and context |
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
<Tip>
Groq is known for its fast inference speeds, making it suitable for real-time applications.
@@ -60,7 +151,7 @@ Here's a detailed breakdown of supported models and their capabilities:
|----------|---------------|--------------|
| Deepseek Chat | 128,000 tokens | Specialized in technical discussions |
| Claude 3 | Up to 200K tokens | Strong reasoning, code understanding |
| Gemini | Varies by model | Multimodal capabilities |
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
<Info>
Provider selection should consider factors like:
@@ -128,10 +219,10 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
# llm: anthropic/claude-2.1
# llm: anthropic/claude-2.0
# Google Models - Good for general tasks
# llm: gemini/gemini-pro
# Google Models - Strong reasoning, large cachable context window, multimodal
# llm: gemini/gemini-1.5-pro-latest
# llm: gemini/gemini-1.0-pro-latest
# llm: gemini/gemini-1.5-flash-latest
# llm: gemini/gemini-1.5-flash-8b-latest
# AWS Bedrock Models - Enterprise-grade
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
@@ -350,13 +441,18 @@ Learn how to get the most out of your LLM configuration:
<Accordion title="Google">
```python Code
# Option 1. Gemini accessed with an API key.
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
```
Example usage:
```python Code
llm = LLM(
model="gemini/gemini-pro",
model="gemini/gemini-1.5-pro-latest",
temperature=0.7
)
```
@@ -412,6 +508,20 @@ Learn how to get the most out of your LLM configuration:
```
</Accordion>
<Accordion title="Nvidia NIM">
```python Code
NVIDIA_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="nvidia_nim/meta/llama3-70b-instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="Groq">
```python Code
GROQ_API_KEY=<your-api-key>
@@ -502,20 +612,6 @@ Learn how to get the most out of your LLM configuration:
```
</Accordion>
<Accordion title="Nvidia NIM">
```python Code
NVIDIA_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="nvidia_nim/meta/llama3-70b-instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="SambaNova">
```python Code
SAMBANOVA_API_KEY=<your-api-key>

View File

@@ -6,7 +6,7 @@ icon: list-check
## Overview of a Task
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
Tasks provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
@@ -263,6 +263,307 @@ analysis_task = Task(
)
```
## Task Guardrails
Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
efeedback to agents when their output doesn't meet specific criteria.
### Using Task Guardrails
To add a guardrail to a task, provide a validation function through the `guardrail` parameter:
```python Code
from typing import Tuple, Union, Dict, Any
def validate_blog_content(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
"""Validate blog content meets requirements."""
try:
# Check word count
word_count = len(result.split())
if word_count > 200:
return (False, {
"error": "Blog content exceeds 200 words",
"code": "WORD_COUNT_ERROR",
"context": {"word_count": word_count}
})
# Additional validation logic here
return (True, result.strip())
except Exception as e:
return (False, {
"error": "Unexpected error during validation",
"code": "SYSTEM_ERROR"
})
blog_task = Task(
description="Write a blog post about AI",
expected_output="A blog post under 200 words",
agent=blog_agent,
guardrail=validate_blog_content # Add the guardrail function
)
```
### Guardrail Function Requirements
1. **Function Signature**:
- Must accept exactly one parameter (the task output)
- Should return a tuple of `(bool, Any)`
- Type hints are recommended but optional
2. **Return Values**:
- Success: Return `(True, validated_result)`
- Failure: Return `(False, error_details)`
### Error Handling Best Practices
1. **Structured Error Responses**:
```python Code
def validate_with_context(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
try:
# Main validation logic
validated_data = perform_validation(result)
return (True, validated_data)
except ValidationError as e:
return (False, {
"error": str(e),
"code": "VALIDATION_ERROR",
"context": {"input": result}
})
except Exception as e:
return (False, {
"error": "Unexpected error",
"code": "SYSTEM_ERROR"
})
```
2. **Error Categories**:
- Use specific error codes
- Include relevant context
- Provide actionable feedback
3. **Validation Chain**:
```python Code
from typing import Any, Dict, List, Tuple, Union
def complex_validation(result: str) -> Tuple[bool, Union[str, Dict[str, Any]]]:
"""Chain multiple validation steps."""
# Step 1: Basic validation
if not result:
return (False, {"error": "Empty result", "code": "EMPTY_INPUT"})
# Step 2: Content validation
try:
validated = validate_content(result)
if not validated:
return (False, {"error": "Invalid content", "code": "CONTENT_ERROR"})
# Step 3: Format validation
formatted = format_output(validated)
return (True, formatted)
except Exception as e:
return (False, {
"error": str(e),
"code": "VALIDATION_ERROR",
"context": {"step": "content_validation"}
})
```
### Handling Guardrail Results
When a guardrail returns `(False, error)`:
1. The error is sent back to the agent
2. The agent attempts to fix the issue
3. The process repeats until:
- The guardrail returns `(True, result)`
- Maximum retries are reached
Example with retry handling:
```python Code
from typing import Optional, Tuple, Union
def validate_json_output(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
"""Validate and parse JSON output."""
try:
# Try to parse as JSON
data = json.loads(result)
return (True, data)
except json.JSONDecodeError as e:
return (False, {
"error": "Invalid JSON format",
"code": "JSON_ERROR",
"context": {"line": e.lineno, "column": e.colno}
})
task = Task(
description="Generate a JSON report",
expected_output="A valid JSON object",
agent=analyst,
guardrail=validate_json_output,
max_retries=3 # Limit retry attempts
)
```
## Getting Structured Consistent Outputs from Tasks
<Note>
It's also important to note that the output of the final task of a crew becomes the final output of the actual crew itself.
</Note>
### Using `output_pydantic`
The `output_pydantic` property allows you to define a Pydantic model that the task output should conform to. This ensures that the output is not only structured but also validated according to the Pydantic model.
Heres an example demonstrating how to use output_pydantic:
```python Code
import json
from crewai import Agent, Crew, Process, Task
from pydantic import BaseModel
class Blog(BaseModel):
title: str
content: str
blog_agent = Agent(
role="Blog Content Generator Agent",
goal="Generate a blog title and content",
backstory="""You are an expert content creator, skilled in crafting engaging and informative blog posts.""",
verbose=False,
allow_delegation=False,
llm="gpt-4o",
)
task1 = Task(
description="""Create a blog title and content on a given topic. Make sure the content is under 200 words.""",
expected_output="A compelling blog title and well-written content.",
agent=blog_agent,
output_pydantic=Blog,
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[blog_agent],
tasks=[task1],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
# Option 1: Accessing Properties Using Dictionary-Style Indexing
print("Accessing Properties - Option 1")
title = result["title"]
content = result["content"]
print("Title:", title)
print("Content:", content)
# Option 2: Accessing Properties Directly from the Pydantic Model
print("Accessing Properties - Option 2")
title = result.pydantic.title
content = result.pydantic.content
print("Title:", title)
print("Content:", content)
# Option 3: Accessing Properties Using the to_dict() Method
print("Accessing Properties - Option 3")
output_dict = result.to_dict()
title = output_dict["title"]
content = output_dict["content"]
print("Title:", title)
print("Content:", content)
# Option 4: Printing the Entire Blog Object
print("Accessing Properties - Option 5")
print("Blog:", result)
```
In this example:
* A Pydantic model Blog is defined with title and content fields.
* The task task1 uses the output_pydantic property to specify that its output should conform to the Blog model.
* After executing the crew, you can access the structured output in multiple ways as shown.
#### Explanation of Accessing the Output
1. Dictionary-Style Indexing: You can directly access the fields using result["field_name"]. This works because the CrewOutput class implements the __getitem__ method.
2. Directly from Pydantic Model: Access the attributes directly from the result.pydantic object.
3. Using to_dict() Method: Convert the output to a dictionary and access the fields.
4. Printing the Entire Object: Simply print the result object to see the structured output.
### Using `output_json`
The `output_json` property allows you to define the expected output in JSON format. This ensures that the task's output is a valid JSON structure that can be easily parsed and used in your application.
Heres an example demonstrating how to use `output_json`:
```python Code
import json
from crewai import Agent, Crew, Process, Task
from pydantic import BaseModel
# Define the Pydantic model for the blog
class Blog(BaseModel):
title: str
content: str
# Define the agent
blog_agent = Agent(
role="Blog Content Generator Agent",
goal="Generate a blog title and content",
backstory="""You are an expert content creator, skilled in crafting engaging and informative blog posts.""",
verbose=False,
allow_delegation=False,
llm="gpt-4o",
)
# Define the task with output_json set to the Blog model
task1 = Task(
description="""Create a blog title and content on a given topic. Make sure the content is under 200 words.""",
expected_output="A JSON object with 'title' and 'content' fields.",
agent=blog_agent,
output_json=Blog,
)
# Instantiate the crew with a sequential process
crew = Crew(
agents=[blog_agent],
tasks=[task1],
verbose=True,
process=Process.sequential,
)
# Kickoff the crew to execute the task
result = crew.kickoff()
# Option 1: Accessing Properties Using Dictionary-Style Indexing
print("Accessing Properties - Option 1")
title = result["title"]
content = result["content"]
print("Title:", title)
print("Content:", content)
# Option 2: Printing the Entire Blog Object
print("Accessing Properties - Option 2")
print("Blog:", result)
```
In this example:
* A Pydantic model Blog is defined with title and content fields, which is used to specify the structure of the JSON output.
* The task task1 uses the output_json property to indicate that it expects a JSON output conforming to the Blog model.
* After executing the crew, you can access the structured JSON output in two ways as shown.
#### Explanation of Accessing the Output
1. Accessing Properties Using Dictionary-Style Indexing: You can access the fields directly using result["field_name"]. This is possible because the CrewOutput class implements the __getitem__ method, allowing you to treat the output like a dictionary. In this option, we're retrieving the title and content from the result.
2. Printing the Entire Blog Object: By printing result, you get the string representation of the CrewOutput object. Since the __str__ method is implemented to return the JSON output, this will display the entire output as a formatted string representing the Blog object.
---
By using output_pydantic or output_json, you ensure that your tasks produce outputs in a consistent and structured format, making it easier to process and utilize the data within your application or across multiple tasks.
## Integrating Tools with Tasks
Leverage tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools) for enhanced task performance and agent interaction.
@@ -447,6 +748,114 @@ While creating and executing tasks, certain validation mechanisms are in place t
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
## Task Guardrails
Task guardrails provide a powerful way to validate, transform, or filter task outputs before they are passed to the next task. Guardrails are optional functions that execute before the next task starts, allowing you to ensure that task outputs meet specific requirements or formats.
### Basic Usage
```python Code
from typing import Tuple, Union
from crewai import Task
def validate_json_output(result: str) -> Tuple[bool, Union[dict, str]]:
"""Validate that the output is valid JSON."""
try:
json_data = json.loads(result)
return (True, json_data)
except json.JSONDecodeError:
return (False, "Output must be valid JSON")
task = Task(
description="Generate JSON data",
expected_output="Valid JSON object",
guardrail=validate_json_output
)
```
### How Guardrails Work
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.
2. **Execution Timing**: The guardrail function is executed before the next task starts, ensuring valid data flow between tasks.
3. **Return Format**: Guardrails must return a tuple of `(success, data)`:
- If `success` is `True`, `data` is the validated/transformed result
- If `success` is `False`, `data` is the error message
4. **Result Routing**:
- On success (`True`), the result is automatically passed to the next task
- On failure (`False`), the error is sent back to the agent to generate a new answer
### Common Use Cases
#### Data Format Validation
```python Code
def validate_email_format(result: str) -> Tuple[bool, Union[str, str]]:
"""Ensure the output contains a valid email address."""
import re
email_pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
if re.match(email_pattern, result.strip()):
return (True, result.strip())
return (False, "Output must be a valid email address")
```
#### Content Filtering
```python Code
def filter_sensitive_info(result: str) -> Tuple[bool, Union[str, str]]:
"""Remove or validate sensitive information."""
sensitive_patterns = ['SSN:', 'password:', 'secret:']
for pattern in sensitive_patterns:
if pattern.lower() in result.lower():
return (False, f"Output contains sensitive information ({pattern})")
return (True, result)
```
#### Data Transformation
```python Code
def normalize_phone_number(result: str) -> Tuple[bool, Union[str, str]]:
"""Ensure phone numbers are in a consistent format."""
import re
digits = re.sub(r'\D', '', result)
if len(digits) == 10:
formatted = f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
return (True, formatted)
return (False, "Output must be a 10-digit phone number")
```
### Advanced Features
#### Chaining Multiple Validations
```python Code
def chain_validations(*validators):
"""Chain multiple validators together."""
def combined_validator(result):
for validator in validators:
success, data = validator(result)
if not success:
return (False, data)
result = data
return (True, result)
return combined_validator
# Usage
task = Task(
description="Get user contact info",
expected_output="Email and phone",
guardrail=chain_validations(
validate_email_format,
filter_sensitive_info
)
)
```
#### Custom Retry Logic
```python Code
task = Task(
description="Generate data",
expected_output="Valid data",
guardrail=validate_data,
max_retries=5 # Override default retry limit
)
```
## Creating Directories when Saving Files
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
@@ -468,7 +877,7 @@ save_output_task = Task(
## Conclusion
Tasks are the driving force behind the actions of agents in CrewAI.
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
Tasks are the driving force behind the actions of agents in CrewAI.
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.

View File

@@ -172,6 +172,48 @@ def my_tool(question: str) -> str:
return "Result from your custom tool"
```
### Structured Tools
The `StructuredTool` class wraps functions as tools, providing flexibility and validation while reducing boilerplate. It supports custom schemas and dynamic logic for seamless integration of complex functionalities.
#### Example:
Using `StructuredTool.from_function`, you can wrap a function that interacts with an external API or system, providing a structured interface. This enables robust validation and consistent execution, making it easier to integrate complex functionalities into your applications as demonstrated in the following example:
```python
from crewai.tools.structured_tool import CrewStructuredTool
from pydantic import BaseModel
# Define the schema for the tool's input using Pydantic
class APICallInput(BaseModel):
endpoint: str
parameters: dict
# Wrapper function to execute the API call
def tool_wrapper(*args, **kwargs):
# Here, you would typically call the API using the parameters
# For demonstration, we'll return a placeholder string
return f"Call the API at {kwargs['endpoint']} with parameters {kwargs['parameters']}"
# Create and return the structured tool
def create_structured_tool():
return CrewStructuredTool.from_function(
name='Wrapper API',
description="A tool to wrap API calls with structured input.",
args_schema=APICallInput,
func=tool_wrapper,
)
# Example usage
structured_tool = create_structured_tool()
# Execute the tool with structured input
result = structured_tool._run(**{
"endpoint": "https://example.com/api",
"parameters": {"key1": "value1", "key2": "value2"}
})
print(result) # Output: Call the API at https://example.com/api with parameters {'key1': 'value1', 'key2': 'value2'}
```
### Custom Caching Mechanism
<Tip>

View File

@@ -0,0 +1,211 @@
# Portkey Integration with CrewAI
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
Portkey adds 4 core production capabilities to any CrewAI agent:
1. Routing to **200+ LLMs**
2. Making each LLM call more robust
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
1. **Install Required Packages:**
```bash
pip install -qU crewai portkey-ai
```
2. **Configure the LLM Client:**
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
```
3. **Create and Run Your First Agent:**
```python
from crewai import Agent, Task, Crew
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
## Key Features
| Feature | Description |
|---------|-------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
| 🚧 Security Controls | Set budget limits and implement role-based access control |
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
## Production Features with Portkey Configs
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
<Frame>
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
</Frame>
### 1. Use 250+ LLMs
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
Easily switch between different LLM providers:
```python
# Anthropic Configuration
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="anthropic_agent"
)
)
# Azure OpenAI Configuration
azure_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="azure_agent"
)
)
```
### 2. Caching
Improve response times and reduce costs with two powerful caching modes:
- **Simple Cache**: Perfect for exact matches
- **Semantic Cache**: Matches responses for requests that are semantically similar
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
```py
config = {
"cache": {
"mode": "semantic", # or "simple" for exact matching
}
}
```
### 3. Production Reliability
Portkey provides comprehensive reliability features:
- **Automatic Retries**: Handle temporary failures gracefully
- **Request Timeouts**: Prevent hanging operations
- **Conditional Routing**: Route requests based on specific conditions
- **Fallbacks**: Set up automatic provider failovers
- **Load Balancing**: Distribute requests efficiently
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
### 4. Metrics
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
- Cost per agent interaction
- Response times and latency
- Token usage and efficiency
- Success/failure rates
- Cache hit rates
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
### 5. Detailed Logging
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
<details>
<summary><b>Traces</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
</details>
<details>
<summary><b>Logs</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
</details>
### 6. Enterprise Security Features
- Set budget limit and rate limts per Virtual Key (disposable API keys)
- Implement role-based access control
- Track system changes with audit logs
- Configure data retention policies
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
## Resources
- [📘 Portkey Documentation](https://docs.portkey.ai)
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

@@ -57,7 +57,7 @@ This feature is useful for debugging and understanding how agents interact with
<Step title="Install AgentOps">
Install AgentOps with:
```bash
pip install crewai[agentops]
pip install 'crewai[agentops]'
```
or
```bash

View File

@@ -32,6 +32,7 @@ LiteLLM supports a wide range of providers, including but not limited to:
- Cloudflare Workers AI
- DeepInfra
- Groq
- [NVIDIA NIMs](https://docs.api.nvidia.com/nim/reference/models-1)
- And many more!
For a complete and up-to-date list of supported providers, please refer to the [LiteLLM Providers documentation](https://docs.litellm.ai/docs/providers).
@@ -125,10 +126,10 @@ You can connect to OpenAI-compatible LLMs using either environment variables or
</Tab>
<Tab title="Using LLM Class Attributes">
<CodeGroup>
```python Code
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
```python Code
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
@@ -179,4 +180,4 @@ This is particularly useful when working with OpenAI-compatible APIs or when you
## Conclusion
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.

View File

@@ -0,0 +1,138 @@
---
title: Using Multimodal Agents
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
icon: image
---
# Using Multimodal Agents
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
## Enabling Multimodal Capabilities
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
```python
from crewai import Agent
agent = Agent(
role="Image Analyst",
goal="Analyze and extract insights from images",
backstory="An expert in visual content interpretation with years of experience in image analysis",
multimodal=True # This enables multimodal capabilities
)
```
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
## Working with Images
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
Here's a complete example showing how to use a multimodal agent to analyze an image:
```python
from crewai import Agent, Task, Crew
# Create a multimodal agent
image_analyst = Agent(
role="Product Analyst",
goal="Analyze product images and provide detailed descriptions",
backstory="Expert in visual product analysis with deep knowledge of design and features",
multimodal=True
)
# Create a task for image analysis
task = Task(
description="Analyze the product image at https://example.com/product.jpg and provide a detailed description",
agent=image_analyst
)
# Create and run the crew
crew = Crew(
agents=[image_analyst],
tasks=[task]
)
result = crew.kickoff()
```
### Advanced Usage with Context
You can provide additional context or specific questions about the image when creating tasks for multimodal agents. The task description can include specific aspects you want the agent to focus on:
```python
from crewai import Agent, Task, Crew
# Create a multimodal agent for detailed analysis
expert_analyst = Agent(
role="Visual Quality Inspector",
goal="Perform detailed quality analysis of product images",
backstory="Senior quality control expert with expertise in visual inspection",
multimodal=True # AddImageTool is automatically included
)
# Create a task with specific analysis requirements
inspection_task = Task(
description="""
Analyze the product image at https://example.com/product.jpg with focus on:
1. Quality of materials
2. Manufacturing defects
3. Compliance with standards
Provide a detailed report highlighting any issues found.
""",
agent=expert_analyst
)
# Create and run the crew
crew = Crew(
agents=[expert_analyst],
tasks=[inspection_task]
)
result = crew.kickoff()
```
### Tool Details
When working with multimodal agents, the `AddImageTool` is automatically configured with the following schema:
```python
class AddImageToolSchema:
image_url: str # Required: The URL or path of the image to process
action: Optional[str] = None # Optional: Additional context or specific questions about the image
```
The multimodal agent will automatically handle the image processing through its built-in tools, allowing it to:
- Access images via URLs or local file paths
- Process image content with optional context or specific questions
- Provide analysis and insights based on the visual information and task requirements
## Best Practices
When working with multimodal agents, keep these best practices in mind:
1. **Image Access**
- Ensure your images are accessible via URLs that the agent can reach
- For local images, consider hosting them temporarily or using absolute file paths
- Verify that image URLs are valid and accessible before running tasks
2. **Task Description**
- Be specific about what aspects of the image you want the agent to analyze
- Include clear questions or requirements in the task description
- Consider using the optional `action` parameter for focused analysis
3. **Resource Management**
- Image processing may require more computational resources than text-only tasks
- Some language models may require base64 encoding for image data
- Consider batch processing for multiple images to optimize performance
4. **Environment Setup**
- Verify that your environment has the necessary dependencies for image processing
- Ensure your language model supports multimodal capabilities
- Test with small images first to validate your setup
5. **Error Handling**
- Implement proper error handling for image loading failures
- Have fallback strategies for when image processing fails
- Monitor and log image processing operations for debugging

View File

@@ -0,0 +1,181 @@
---
title: Agent Monitoring with OpenLIT
description: Quickly start monitoring your Agents in just a single line of code with OpenTelemetry.
icon: magnifying-glass-chart
---
# OpenLIT Overview
[OpenLIT](https://github.com/openlit/openlit?src=crewai-docs) is an open-source tool that makes it simple to monitor the performance of AI agents, LLMs, VectorDBs, and GPUs with just **one** line of code.
It provides OpenTelemetry-native tracing and metrics to track important parameters like cost, latency, interactions and task sequences.
This setup enables you to track hyperparameters and monitor for performance issues, helping you find ways to enhance and fine-tune your agents over time.
<Frame caption="OpenLIT Dashboard">
<img src="/images/openlit1.png" alt="Overview Agent usage including cost and tokens" />
<img src="/images/openlit2.png" alt="Overview of agent otel traces and metrics" />
<img src="/images/openlit3.png" alt="Overview of agent traces in details" />
</Frame>
### Features
- **Analytics Dashboard**: Monitor your Agents health and performance with detailed dashboards that track metrics, costs, and user interactions.
- **OpenTelemetry-native Observability SDK**: Vendor-neutral SDKs to send traces and metrics to your existing observability tools like Grafana, DataDog and more.
- **Cost Tracking for Custom and Fine-Tuned Models**: Tailor cost estimations for specific models using custom pricing files for precise budgeting.
- **Exceptions Monitoring Dashboard**: Quickly spot and resolve issues by tracking common exceptions and errors with a monitoring dashboard.
- **Compliance and Security**: Detect potential threats such as profanity and PII leaks.
- **Prompt Injection Detection**: Identify potential code injection and secret leaks.
- **API Keys and Secrets Management**: Securely handle your LLM API keys and secrets centrally, avoiding insecure practices.
- **Prompt Management**: Manage and version Agent prompts using PromptHub for consistent and easy access across Agents.
- **Model Playground** Test and compare different models for your CrewAI agents before deployment.
## Setup Instructions
<Steps>
<Step title="Deploy OpenLIT">
<Steps>
<Step title="Git Clone OpenLIT Repository">
```shell
git clone git@github.com:openlit/openlit.git
```
</Step>
<Step title="Start Docker Compose">
From the root directory of the [OpenLIT Repo](https://github.com/openlit/openlit), Run the below command:
```shell
docker compose up -d
```
</Step>
</Steps>
</Step>
<Step title="Install OpenLIT SDK">
```shell
pip install openlit
```
</Step>
<Step title="Initialize OpenLIT in Your Application">
Add the following two lines to your application code:
<Tabs>
<Tab title="Setup using function arguments">
```python
import openlit
openlit.init(otlp_endpoint="http://127.0.0.1:4318")
```
Example Usage for monitoring a CrewAI Agent:
```python
from crewai import Agent, Task, Crew, Process
import openlit
openlit.init(disable_metrics=True)
# Define your agents
researcher = Agent(
role="Researcher",
goal="Conduct thorough research and analysis on AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI, and startups. You work as a freelancer and are currently researching for a new client.",
allow_delegation=False,
llm='command-r'
)
# Define your task
task = Task(
description="Generate a list of 5 interesting ideas for an article, then write one captivating paragraph for each idea that showcases the potential of a full article on this topic. Return the list of ideas with their paragraphs and your notes.",
expected_output="5 bullet points, each with a paragraph and accompanying notes.",
)
# Define the manager agent
manager = Agent(
role="Project Manager",
goal="Efficiently manage the crew and ensure high-quality task completion",
backstory="You're an experienced project manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=True,
llm='command-r'
)
# Instantiate your crew with a custom manager
crew = Crew(
agents=[researcher],
tasks=[task],
manager_agent=manager,
process=Process.hierarchical,
)
# Start the crew's work
result = crew.kickoff()
print(result)
```
</Tab>
<Tab title="Setup using Environment Variables">
Add the following two lines to your application code:
```python
import openlit
openlit.init()
```
Run the following command to configure the OTEL export endpoint:
```shell
export OTEL_EXPORTER_OTLP_ENDPOINT = "http://127.0.0.1:4318"
```
Example Usage for monitoring a CrewAI Async Agent:
```python
import asyncio
from crewai import Crew, Agent, Task
import openlit
openlit.init(otlp_endpoint="http://127.0.0.1:4318")
# Create an agent with code execution enabled
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True,
llm="command-r"
)
# Create a task that requires code execution
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="5 bullet points, each with a paragraph and accompanying notes.",
)
# Create a crew and add the task
analysis_crew = Crew(
agents=[coding_agent],
tasks=[data_analysis_task]
)
# Async function to kickoff the crew asynchronously
async def async_crew_execution():
result = await analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
print("Crew Result:", result)
# Run the async function
asyncio.run(async_crew_execution())
```
</Tab>
</Tabs>
Refer to OpenLIT [Python SDK repository](https://github.com/openlit/openlit/tree/main/sdk/python) for more advanced configurations and use cases.
</Step>
<Step title="Visualize and Analyze">
With the Agent Observability data now being collected and sent to OpenLIT, the next step is to visualize and analyze this data to get insights into your Agent's performance, behavior, and identify areas of improvement.
Just head over to OpenLIT at `127.0.0.1:3000` on your browser to start exploring. You can login using the default credentials
- **Email**: `user@openlit.io`
- **Password**: `openlituser`
<Frame caption="OpenLIT Dashboard">
<img src="/images/openlit1.png" alt="Overview Agent usage including cost and tokens" />
<img src="/images/openlit2.png" alt="Overview of agent otel traces and metrics" />
</Frame>
</Step>
</Steps>

BIN
docs/images/openlit1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 390 KiB

BIN
docs/images/openlit2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 422 KiB

BIN
docs/images/openlit3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 799 KiB

View File

@@ -7,7 +7,7 @@ icon: wrench
<Note>
**Python Version Requirements**
CrewAI requires `Python >=3.10 and <=3.13`. Here's how to check your version:
CrewAI requires `Python >=3.10 and <3.13`. Here's how to check your version:
```bash
python3 --version
```

View File

@@ -99,7 +99,8 @@
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability"
"how-to/langtrace-observability",
"how-to/openlit-observability"
]
},
{

View File

@@ -349,7 +349,7 @@ Replace `<task_id>` with the ID of the task you want to replay.
If you need to reset the memory of your crew before running it again, you can do so by calling the reset memory feature:
```shell
crewai reset-memory
crewai reset-memories --all
```
This will clear the crew's memory, allowing for a fresh start.

View File

@@ -129,7 +129,6 @@ nav:
- Processes: 'core-concepts/Processes.md'
- Crews: 'core-concepts/Crews.md'
- Collaboration: 'core-concepts/Collaboration.md'
- Pipeline: 'core-concepts/Pipeline.md'
- Training: 'core-concepts/Training-Crew.md'
- Memory: 'core-concepts/Memory.md'
- Planning: 'core-concepts/Planning.md'
@@ -152,6 +151,7 @@ nav:
- Conditional Tasks: 'how-to/Conditional-Tasks.md'
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Agent Monitoring with OpenLIT: 'how-to/openlit-Observability.md'
- Tools Docs:
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'

7507
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,35 +1,46 @@
[project]
name = "crewai"
version = "0.83.0"
version = "0.86.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<3.13"
authors = [
{ name = "Joao Moura", email = "joao@crewai.com" }
]
dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"litellm>=1.44.22",
"instructor>=1.3.3",
# Text Processing
"pdfplumber>=0.11.4",
"regex>=2024.9.11",
# Telemetry and Monitoring
"opentelemetry-api>=1.22.0",
"opentelemetry-sdk>=1.22.0",
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3",
"regex>=2024.9.11",
"crewai-tools>=0.14.0",
"click>=8.1.7",
# Data Handling
"chromadb>=0.5.23",
"openpyxl>=3.1.5",
"pyvis>=0.3.2",
# Authentication and Security
"auth0-python>=4.7.1",
"python-dotenv>=1.0.0",
# Configuration and Utils
"click>=8.1.7",
"appdirs>=1.4.4",
"jsonref>=1.1.0",
"json-repair>=0.25.2",
"auth0-python>=4.7.1",
"litellm>=1.44.22",
"pyvis>=0.3.2",
"uv>=0.4.25",
"tomli-w>=1.1.0",
"tomli>=2.0.2",
"chromadb>=0.5.18",
"pdfplumber>=0.11.4",
"openpyxl>=3.1.5",
"blinker>=1.9.0",
]
[project.urls]
@@ -38,7 +49,10 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.14.0"]
tools = ["crewai-tools>=0.17.0"]
embeddings = [
"tiktoken~=0.7.0"
]
agentops = ["agentops>=0.3.0"]
fastembed = ["fastembed>=0.4.1"]
pdfplumber = [
@@ -51,10 +65,13 @@ openpyxl = [
"openpyxl>=3.1.5",
]
mem0 = ["mem0ai>=0.1.29"]
docling = [
"docling>=2.12.0",
]
[tool.uv]
dev-dependencies = [
"ruff>=0.4.10",
"ruff>=0.8.2",
"mypy>=1.10.0",
"pre-commit>=3.6.0",
"mkdocs>=1.4.3",
@@ -64,7 +81,6 @@ dev-dependencies = [
"mkdocs-material-extensions>=1.3.1",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"crewai-tools>=0.14.0",
"pytest>=8.0.0",
"pytest-vcr>=1.0.2",
"python-dotenv>=1.0.0",

View File

@@ -5,9 +5,7 @@ from crewai.crew import Crew
from crewai.flow.flow import Flow
from crewai.knowledge.knowledge import Knowledge
from crewai.llm import LLM
from crewai.pipeline import Pipeline
from crewai.process import Process
from crewai.routers import Router
from crewai.task import Task
warnings.filterwarnings(
@@ -16,14 +14,12 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.83.0"
__version__ = "0.86.0"
__all__ = [
"Agent",
"Crew",
"Process",
"Task",
"Pipeline",
"Router",
"LLM",
"Flow",
"Knowledge",

View File

@@ -1,49 +1,42 @@
import os
import shutil
import subprocess
from typing import Any, List, Literal, Optional, Union, Dict
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS
from crewai.llm import LLM
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
agentops = None
def mock_agent_ops_provider():
def track_agent(*args, **kwargs):
try:
import agentops # type: ignore # Name "agentops" is already defined
from agentops import track_agent # type: ignore
except ImportError:
def track_agent():
def noop(f):
return f
return noop
return track_agent
agentops = None
if os.environ.get("AGENTOPS_API_KEY"):
try:
from agentops import track_agent
except ImportError:
track_agent = mock_agent_ops_provider()
else:
track_agent = mock_agent_ops_provider()
@track_agent()
class Agent(BaseAgent):
@@ -122,6 +115,10 @@ class Agent(BaseAgent):
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
multimodal: bool = Field(
default=False,
description="Whether the agent is multimodal.",
)
code_execution_mode: Literal["safe", "unsafe"] = Field(
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
@@ -181,20 +178,11 @@ class Agent(BaseAgent):
if key_name and key_name not in unaccepted_attributes:
env_value = os.environ.get(key_name)
if env_value:
# Map key names containing "API_KEY" to "api_key"
key_name = (
"api_key" if "API_KEY" in key_name else key_name
)
# Map key names containing "API_BASE" to "api_base"
key_name = (
"api_base" if "API_BASE" in key_name else key_name
)
# Map key names containing "API_VERSION" to "api_version"
key_name = (
"api_version"
if "API_VERSION" in key_name
else key_name
)
key_name = key_name.lower()
for pattern in LITELLM_PARAMS:
if pattern in key_name:
key_name = pattern
break
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
@@ -423,6 +411,10 @@ class Agent(BaseAgent):
tools = agent_tools.tools()
return tools
def get_multimodal_tools(self) -> List[Tool]:
from crewai.tools.agent_tools.add_image_tool import AddImageTool
return [AddImageTool()]
def get_code_execution_tools(self):
try:
from crewai_tools import CodeInterpreterTool

View File

@@ -3,16 +3,15 @@ from typing import TYPE_CHECKING, Optional
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.utilities import I18N
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities import I18N
from crewai.utilities.printer import Printer
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.crew import Crew
from crewai.task import Task
from crewai.agents.agent_builder.base_agent import BaseAgent
class CrewAgentExecutorMixin:
@@ -100,14 +99,19 @@ class CrewAgentExecutorMixin:
print(f"Failed to add to long term memory: {e}")
pass
def _ask_human_input(self, final_answer: dict) -> str:
def _ask_human_input(self, final_answer: str) -> str:
"""Prompt human input for final decision making."""
self._printer.print(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
)
self._printer.print(
content="\n\n=====\n## Please provide feedback on the Final Result and the Agent's actions:",
content=(
"\n\n=====\n"
"## Please provide feedback on the Final Result and the Agent's actions. "
"Respond with 'looks good' or a similar phrase when you're satisfied.\n"
"=====\n"
),
color="bold_yellow",
)
return input()

View File

@@ -1,5 +1,6 @@
import json
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -12,9 +13,10 @@ from crewai.agents.parser import (
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -22,6 +24,12 @@ from crewai.utilities.logger import Logger
from crewai.utilities.training_handler import CrewTrainingHandler
@dataclass
class ToolResult:
result: Any
result_as_answer: bool
class CrewAgentExecutor(CrewAgentExecutorMixin):
_logger: Logger = Logger()
@@ -33,7 +41,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent: BaseAgent,
prompt: dict[str, str],
max_iter: int,
tools: List[Any],
tools: List[BaseTool],
tools_names: str,
stop_words: List[str],
tools_description: str,
@@ -70,7 +78,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.iterations = 0
self.log_error_after = 3
self.have_forced_answer = False
self.name_to_tool_map = {tool.name: tool for tool in self.tools}
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
tool.name: tool for tool in self.tools
}
if self.llm.stop:
self.llm.stop = list(set(self.llm.stop + self.stop))
else:
@@ -80,7 +90,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if "system" in self.prompt:
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
self.messages.append(self._format_msg(system_prompt, role="system"))
self.messages.append(self._format_msg(user_prompt))
else:
@@ -93,17 +102,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer = self._invoke_loop()
if self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)
formatted_answer = self._handle_human_feedback(formatted_answer)
# Making sure we only ask for it once, so disabling for the next thought loop
self.ask_for_human_input = False
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
formatted_answer = self._invoke_loop()
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
return {"output": formatted_answer.output}
@@ -140,9 +140,30 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer = self._format_answer(answer)
if isinstance(formatted_answer, AgentAction):
action_result = self._use_tool(formatted_answer)
formatted_answer.text += f"\nObservation: {action_result}"
formatted_answer.result = action_result
tool_result = self._execute_tool_and_check_finality(
formatted_answer
)
# Directly append the result to the messages if the
# tool is "Add image to content" in case of multimodal
# agents
if formatted_answer.tool == self._i18n.tools("add_image")["name"]:
self.messages.append(tool_result.result)
continue
else:
if self.step_callback:
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
self._show_logs(formatted_answer)
if self.step_callback:
@@ -239,7 +260,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
)
def _use_tool(self, agent_action: AgentAction) -> Any:
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
@@ -255,19 +276,25 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.name_to_tool_map
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.name_to_tool_map
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return tool_result
return ToolResult(result=tool_result, result_as_answer=False)
def _summarize_messages(self) -> None:
messages_groups = []
@@ -285,7 +312,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._i18n.slice("summarizer_system_message"), role="system"
),
self._format_msg(
self._i18n.slice("sumamrize_instruction").format(group=group),
self._i18n.slice("summarize_instruction").format(group=group),
),
],
callbacks=self.callbacks,
@@ -302,16 +329,14 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
def _handle_context_length(self) -> None:
if self.respect_context_window:
self._logger.log(
"debug",
"Context length exceeded. Summarizing content to fit the model context window.",
self._printer.print(
content="Context length exceeded. Summarizing content to fit the model context window.",
color="yellow",
)
self._summarize_messages()
else:
self._logger.log(
"debug",
"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
self._printer.print(
content="Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
color="red",
)
raise SystemExit(
@@ -333,20 +358,18 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration]["improved_output"] = (
result.output
)
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_handler.save(training_data)
else:
self._logger.log(
"error",
"Invalid train iteration type or agent_id not in training data.",
self._printer.print(
content="Invalid train iteration type or agent_id not in training data.",
color="red",
)
else:
self._logger.log(
"error",
"Crew is None or does not have _train_iteration attribute.",
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
@@ -364,15 +387,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
train_iteration, agent_id, training_data
)
else:
self._logger.log(
"error",
"Invalid train iteration type. Expected int.",
self._printer.print(
content="Invalid train iteration type. Expected int.",
color="red",
)
else:
self._logger.log(
"error",
"Crew is None or does not have _train_iteration attribute.",
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
@@ -388,3 +409,81 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
prompt = prompt.rstrip()
return {"role": role, "content": prompt}
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
"""
Handles the human feedback loop, allowing the user to provide feedback
on the agent's output and determining if additional iterations are needed.
Parameters:
formatted_answer (AgentFinish): The initial output from the agent.
Returns:
AgentFinish: The final output after incorporating human feedback.
"""
while self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)
# Make an LLM call to verify if additional changes are requested based on human feedback
additional_changes_prompt = self._i18n.slice(
"human_feedback_classification"
).format(feedback=human_feedback)
retry_count = 0
llm_call_successful = False
additional_changes_response = None
while retry_count < MAX_LLM_RETRY and not llm_call_successful:
try:
additional_changes_response = (
self.llm.call(
[
self._format_msg(
additional_changes_prompt, role="system"
)
],
callbacks=self.callbacks,
)
.strip()
.lower()
)
llm_call_successful = True
except Exception as e:
retry_count += 1
self._printer.print(
content=f"Error during LLM call to classify human feedback: {e}. Retrying... ({retry_count}/{MAX_LLM_RETRY})",
color="red",
)
if not llm_call_successful:
self._printer.print(
content="Error processing feedback after multiple attempts.",
color="red",
)
self.ask_for_human_input = False
break
if additional_changes_response == "false":
self.ask_for_human_input = False
elif additional_changes_response == "true":
self.ask_for_human_input = True
# Add human feedback to messages
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
# Invoke the loop again with updated messages
formatted_answer = self._invoke_loop()
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer)
else:
# Unexpected response
self._printer.print(
content=f"Unexpected response from LLM: '{additional_changes_response}'. Assuming no additional changes requested.",
color="red",
)
self.ask_for_human_input = False
return formatted_answer

View File

@@ -1,5 +1,6 @@
import re
from typing import Any, Union
from json_repair import repair_json
from crewai.utilities import I18N

View File

@@ -5,9 +5,10 @@ from typing import Any, Dict
import requests
from rich.console import Console
from crewai.cli.tools.main import ToolCommand
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
from .utils import TokenManager, validate_token
from crewai.cli.tools.main import ToolCommand
console = Console()
@@ -79,7 +80,9 @@ class AuthenticationCommand:
style="yellow",
)
console.print("\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n")
console.print(
"\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n"
)
return
if token_data["error"] not in ("authorization_pending", "slow_down"):

View File

@@ -1,10 +1,9 @@
from .utils import TokenManager
def get_auth_token() -> str:
"""Get the authentication token."""
access_token = TokenManager().get_token()
if not access_token:
raise Exception()
return access_token

View File

@@ -1,12 +1,11 @@
from importlib.metadata import version as get_version
from typing import Optional
import click
import pkg_resources
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
from crewai.cli.create_pipeline import create_pipeline
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
@@ -26,27 +25,24 @@ from .update_crew import update_crew
@click.group()
@click.version_option(get_version("crewai"))
def crewai():
"""Top-level command group for crewai."""
@crewai.command()
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
@click.argument("type", type=click.Choice(["crew", "flow"]))
@click.argument("name")
@click.option("--provider", type=str, help="The provider to use for the crew")
@click.option("--skip_provider", is_flag=True, help="Skip provider validation")
def create(type, name, provider, skip_provider=False):
"""Create a new crew, pipeline, or flow."""
"""Create a new crew, or flow."""
if type == "crew":
create_crew(name, provider, skip_provider)
elif type == "pipeline":
create_pipeline(name)
elif type == "flow":
create_flow(name)
else:
click.secho(
"Error: Invalid type. Must be 'crew', 'pipeline', or 'flow'.", fg="red"
)
click.secho("Error: Invalid type. Must be 'crew' or 'flow'.", fg="red")
@crewai.command()
@@ -55,14 +51,17 @@ def create(type, name, provider, skip_provider=False):
)
def version(tools):
"""Show the installed version of crewai."""
crewai_version = pkg_resources.get_distribution("crewai").version
try:
crewai_version = get_version("crewai")
except Exception:
crewai_version = "unknown version"
click.echo(f"crewai version: {crewai_version}")
if tools:
try:
tools_version = pkg_resources.get_distribution("crewai-tools").version
tools_version = get_version("crewai")
click.echo(f"crewai tools version: {tools_version}")
except pkg_resources.DistributionNotFound:
except Exception:
click.echo("crewai tools not installed")

View File

@@ -1,8 +1,9 @@
import requests
from requests.exceptions import JSONDecodeError
from rich.console import Console
from crewai.cli.plus_api import PlusAPI
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.plus_api import PlusAPI
from crewai.telemetry.telemetry import Telemetry
console = Console()

View File

@@ -1,13 +1,19 @@
import json
from pathlib import Path
from pydantic import BaseModel, Field
from typing import Optional
from pydantic import BaseModel, Field
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
class Settings(BaseModel):
tool_repository_username: Optional[str] = Field(None, description="Username for interacting with the Tool Repository")
tool_repository_password: Optional[str] = Field(None, description="Password for interacting with the Tool Repository")
tool_repository_username: Optional[str] = Field(
None, description="Username for interacting with the Tool Repository"
)
tool_repository_password: Optional[str] = Field(
None, description="Password for interacting with the Tool Repository"
)
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):

View File

@@ -159,3 +159,6 @@ MODELS = {
}
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
LITELLM_PARAMS = ["api_key", "api_base", "api_version"]

View File

@@ -39,6 +39,7 @@ def create_folder_structure(name, parent_folder=None):
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
(folder_path / "knowledge").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
@@ -52,7 +53,14 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
templates_dir = package_dir / "templates" / "crew"
root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
[
".gitignore",
"pyproject.toml",
"README.md",
"knowledge/user_preference.txt",
]
if not parent_folder
else []
)
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
@@ -168,7 +176,9 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
templates_dir = package_dir / "templates" / "crew"
root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
[".gitignore", "pyproject.toml", "README.md", "knowledge/user_preference.txt"]
if not parent_folder
else []
)
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]

View File

@@ -1,107 +0,0 @@
import shutil
from pathlib import Path
import click
def create_pipeline(name, router=False):
"""Create a new pipeline project."""
folder_name = name.replace(" ", "_").replace("-", "_").lower()
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
click.secho(f"Creating pipeline {folder_name}...", fg="green", bold=True)
project_root = Path(folder_name)
if project_root.exists():
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
return
# Create directory structure
(project_root / "src" / folder_name).mkdir(parents=True)
(project_root / "src" / folder_name / "pipelines").mkdir(parents=True)
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
(project_root / "tests").mkdir(exist_ok=True)
# Create .env file
with open(project_root / ".env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
package_dir = Path(__file__).parent
template_folder = "pipeline_router" if router else "pipeline"
templates_dir = package_dir / "templates" / template_folder
# List of template files to copy
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
src_template_files = ["__init__.py", "main.py"]
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
if router:
crew_folders = [
"classifier_crew",
"normal_crew",
"urgent_crew",
]
pipelines_folders = [
"pipelines/__init__.py",
"pipelines/pipeline_classifier.py",
"pipelines/pipeline_normal.py",
"pipelines/pipeline_urgent.py",
]
else:
crew_folders = [
"research_crew",
"write_linkedin_crew",
"write_x_crew",
]
pipelines_folders = ["pipelines/__init__.py", "pipelines/pipeline.py"]
def process_file(src_file, dst_file):
with open(src_file, "r") as file:
content = file.read()
content = content.replace("{{name}}", name)
content = content.replace("{{crew_name}}", class_name)
content = content.replace("{{folder_name}}", folder_name)
content = content.replace("{{pipeline_name}}", class_name)
with open(dst_file, "w") as file:
file.write(content)
# Copy and process root template files
for file_name in root_template_files:
src_file = templates_dir / file_name
dst_file = project_root / file_name
process_file(src_file, dst_file)
# Copy and process src template files
for file_name in src_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy tools files
for file_name in tools_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
shutil.copy(src_file, dst_file)
# Copy pipelines folders
for file_name in pipelines_folders:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy crew folders
for crew_folder in crew_folders:
src_crew_folder = templates_dir / "crews" / crew_folder
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
if src_crew_folder.exists():
shutil.copytree(src_crew_folder, dst_crew_folder)
else:
click.secho(
f"Warning: Crew folder {crew_folder} not found in template.",
fg="yellow",
)
click.secho(f"Pipeline {name} created successfully!", fg="green", bold=True)

View File

@@ -1,9 +1,11 @@
from typing import Optional
import requests
from os import getenv
from crewai.cli.version import get_crewai_version
from typing import Optional
from urllib.parse import urljoin
import requests
from crewai.cli.version import get_crewai_version
class PlusAPI:
"""

View File

@@ -1,11 +1,12 @@
import subprocess
import click
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
def reset_memories_command(

View File

@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install uv:

View File

@@ -12,6 +12,6 @@ reporting_task:
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
A fully fledged report with the main topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst

View File

@@ -1,36 +1,26 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task, before_kickoff, after_kickoff
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from {{folder_name}}.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
@CrewBase
class {{crew_name}}():
"""{{crew_name}} crew"""
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@before_kickoff # Optional hook to be executed before the crew starts
def pull_data_example(self, inputs):
# Example of pulling data from an external API, dynamically changing the inputs
inputs['extra_data'] = "This is extra data"
return inputs
@after_kickoff # Optional hook to be executed after the crew has finished
def log_results(self, output):
# Example of logging results, dynamically changing the output
print(f"Results: {output}")
return output
# If you would like to add tools to your agents, you can learn more about it here:
# https://docs.crewai.com/concepts/agents#agent-tools
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
# tools=[MyCustomTool()], # Example of custom tool, loaded on the beginning of file
verbose=True
)
@@ -41,6 +31,9 @@ class {{crew_name}}():
verbose=True
)
# To learn more about structured task outputs,
# task dependencies, and task callbacks, check out the documentation:
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
@task
def research_task(self) -> Task:
return Task(
@@ -57,6 +50,9 @@ class {{crew_name}}():
@crew
def crew(self) -> Crew:
"""Creates the {{crew_name}} crew"""
# To learn how to add knowledge sources to your crew, check out the documentation:
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator

View File

@@ -0,0 +1,4 @@
User name is John Doe.
User is an AI Engineer.
User is interested in AI Agents.
User is based in San Francisco, California.

View File

@@ -3,9 +3,9 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.83.0,<1.0.0"
"crewai[tools]>=0.86.0,<1.0.0"
]
[project.scripts]
@@ -18,3 +18,6 @@ test = "{{folder_name}}.main:test"
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.crewai]
type = "crew"

View File

@@ -10,7 +10,7 @@ class MyCustomToolInput(BaseModel):
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
"Clear description for what this tool is useful for, your agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput

View File

@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install uv:

View File

@@ -1,31 +1,47 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
@CrewBase
class PoemCrew():
"""Poem Crew"""
class PoemCrew:
"""Poem Crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def poem_writer(self) -> Agent:
return Agent(
config=self.agents_config['poem_writer'],
)
# If you would lik to add tools to your crew, you can learn more about it here:
# https://docs.crewai.com/concepts/agents#agent-tools
@agent
def poem_writer(self) -> Agent:
return Agent(
config=self.agents_config["poem_writer"],
)
@task
def write_poem(self) -> Task:
return Task(
config=self.tasks_config['write_poem'],
)
# To learn more about structured task outputs,
# task dependencies, and task callbacks, check out the documentation:
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
@task
def write_poem(self) -> Task:
return Task(
config=self.tasks_config["write_poem"],
)
@crew
def crew(self) -> Crew:
"""Creates the Research Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)
@crew
def crew(self) -> Crew:
"""Creates the Research Crew"""
# To learn how to add knowledge sources to your crew, check out the documentation:
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -5,7 +5,7 @@ from pydantic import BaseModel
from crewai.flow.flow import Flow, listen, start
from .crews.poem_crew.poem_crew import PoemCrew
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew
class PoemState(BaseModel):

View File

@@ -3,9 +3,9 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.83.0,<1.0.0",
"crewai[tools]>=0.86.0,<1.0.0",
]
[project.scripts]
@@ -15,3 +15,6 @@ plot = "{{folder_name}}.main:plot"
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.crewai]
type = "flow"

View File

@@ -13,7 +13,7 @@ class MyCustomToolInput(BaseModel):
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
"Clear description for what this tool is useful for, your agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput

View File

@@ -1,2 +0,0 @@
.env
__pycache__/

View File

@@ -1,57 +0,0 @@
# {{crew_name}} Crew
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install Poetry:
```bash
pip install poetry
```
Next, navigate to your project directory and install the dependencies:
1. First lock the dependencies and then install them:
```bash
crewai install
```
### Customizing
**Add your `OPENAI_API_KEY` into the `.env` file**
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
## Running the Project
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
## Understanding Your Crew
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
## Support
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
- Visit our [documentation](https://docs.crewai.com)
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
- [Chat with our docs](https://chatg.pt/DWjSBZn)
Let's create wonders together with the power and simplicity of crewAI.

View File

@@ -1,19 +0,0 @@
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.

View File

@@ -1,16 +0,0 @@
research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with a title, mains topics, each with a full section of information.
agent: reporting_analyst

View File

@@ -1,58 +0,0 @@
from pydantic import BaseModel
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
class ResearchReport(BaseModel):
"""Research Report"""
title: str
body: str
@CrewBase
class ResearchCrew():
"""Research Crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_pydantic=ResearchReport
)
@crew
def crew(self) -> Crew:
"""Creates the Research Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,51 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from {{folder_name}}.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class WriteLinkedInCrew():
"""Research Crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_file='report.md'
)
@crew
def crew(self) -> Crew:
"""Creates the {{crew_name}} crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,14 +0,0 @@
x_writer_agent:
role: >
Expert Social Media Content Creator specializing in short form written content
goal: >
Create viral-worthy, engaging short form posts that distill complex {topic} information
into compelling 280-character messages
backstory: >
You're a social media virtuoso with a particular talent for short form content. Your posts
consistently go viral due to your ability to craft hooks that stop users mid-scroll.
You've studied the techniques of social media masters like Justin Welsh, Dickie Bush,
Nicolas Cole, and Shaan Puri, incorporating their best practices into your own unique style.
Your superpower is taking intricate {topic} concepts and transforming them into
bite-sized, shareable content that resonates with a wide audience. You know exactly
how to structure a post for maximum impact and engagement.

View File

@@ -1,22 +0,0 @@
write_x_task:
description: >
Using the research report provided, create an engaging short form post about {topic}.
Your post should have a great hook, summarize key points, and be structured for easy
consumption on a digital platform. The post must be under 280 characters.
Follow these guidelines:
1. Start with an attention-grabbing hook
2. Condense the main insights from the research
3. Use clear, concise language
4. Include a call-to-action or thought-provoking question if space allows
5. Ensure the post flows well and is easy to read quickly
Here is the title of the research report you will be using
Title: {title}
Research:
{body}
expected_output: >
A compelling X post under 280 characters that effectively summarizes the key findings
about {topic}, starts with a strong hook, and is optimized for engagement on the platform.
agent: x_writer_agent

View File

@@ -1,36 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class WriteXCrew:
"""Research Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def x_writer_agent(self) -> Agent:
return Agent(config=self.agents_config["x_writer_agent"], verbose=True)
@task
def write_x_task(self) -> Task:
return Task(
config=self.tasks_config["write_x_task"],
)
@crew
def crew(self) -> Crew:
"""Creates the Write X Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,26 +0,0 @@
#!/usr/bin/env python
import asyncio
from {{folder_name}}.pipelines.pipeline import {{pipeline_name}}Pipeline
async def run():
"""
Run the pipeline.
"""
inputs = [
{"topic": "AI wearables"},
]
pipeline = {{pipeline_name}}Pipeline()
results = await pipeline.kickoff(inputs)
# Process and print results
for result in results:
print(f"Raw output: {result.raw}")
if result.json_dict:
print(f"JSON output: {result.json_dict}")
print("\n")
def main():
asyncio.run(run())
if __name__ == "__main__":
main()

View File

@@ -1,87 +0,0 @@
"""
This pipeline file includes two different examples to demonstrate the flexibility of crewAI pipelines.
Example 1: Two-Stage Pipeline
-----------------------------
This pipeline consists of two crews:
1. ResearchCrew: Performs research on a given topic.
2. WriteXCrew: Generates an X (Twitter) post based on the research findings.
Key features:
- The ResearchCrew's final task uses output_json to store all research findings in a JSON object.
- This JSON object is then passed to the WriteXCrew, where tasks can access the research findings.
Example 2: Two-Stage Pipeline with Parallel Execution
-------------------------------------------------------
This pipeline consists of three crews:
1. ResearchCrew: Performs research on a given topic.
2. WriteXCrew and WriteLinkedInCrew: Run in parallel, using the research findings to generate posts for X and LinkedIn, respectively.
Key features:
- Demonstrates the ability to run multiple crews in parallel.
- Shows how to structure a pipeline with both sequential and parallel stages.
Usage:
- To switch between examples, comment/uncomment the respective code blocks below.
- Ensure that you have implemented all necessary crew classes (ResearchCrew, WriteXCrew, WriteLinkedInCrew) before running.
"""
# Common imports for both examples
from crewai import Pipeline
# Uncomment the crews you need for your chosen example
from ..crews.research_crew.research_crew import ResearchCrew
from ..crews.write_x_crew.write_x_crew import WriteXCrew
# from .crews.write_linkedin_crew.write_linkedin_crew import WriteLinkedInCrew # Uncomment for Example 2
# EXAMPLE 1: Two-Stage Pipeline
# -----------------------------
# Uncomment the following code block to use Example 1
class {{pipeline_name}}Pipeline:
def __init__(self):
# Initialize crews
self.research_crew = ResearchCrew().crew()
self.write_x_crew = WriteXCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.research_crew,
self.write_x_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results
# EXAMPLE 2: Two-Stage Pipeline with Parallel Execution
# -------------------------------------------------------
# Uncomment the following code block to use Example 2
# @PipelineBase
# class {{pipeline_name}}Pipeline:
# def __init__(self):
# # Initialize crews
# self.research_crew = ResearchCrew().crew()
# self.write_x_crew = WriteXCrew().crew()
# self.write_linkedin_crew = WriteLinkedInCrew().crew()
# @pipeline
# def create_pipeline(self):
# return Pipeline(
# stages=[
# self.research_crew,
# [self.write_x_crew, self.write_linkedin_crew] # Parallel execution
# ]
# )
# async def run(self, inputs):
# pipeline = self.create_pipeline()
# results = await pipeline.kickoff(inputs)
# return results

View File

@@ -1,17 +0,0 @@
[tool.poetry]
name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.83.0,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:main"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -1,19 +0,0 @@
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput
def _run(self, argument: str) -> str:
# Implementation goes here
return "this is an example of a tool output, ignore it and move along."

View File

@@ -1,2 +0,0 @@
.env
__pycache__/

View File

@@ -1,54 +0,0 @@
# {{crew_name}} Crew
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install Poetry:
```bash
pip install poetry
```
Next, navigate to your project directory and install the dependencies:
1. First lock the dependencies and then install them:
```bash
crewai install
```
### Customizing
**Add your `OPENAI_API_KEY` into the `.env` file**
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
## Running the Project
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
## Understanding Your Crew
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
## Support
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
- Visit our [documentation](https://docs.crewai.com)
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
- [Chat with our docs](https://chatg.pt/DWjSBZn)
Let's create wonders together with the power and simplicity of crewAI.

View File

@@ -1,19 +0,0 @@
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.

View File

@@ -1,17 +0,0 @@
research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst

View File

@@ -1,40 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from pydantic import BaseModel
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
class UrgencyScore(BaseModel):
urgency_score: int
@CrewBase
class ClassifierCrew:
"""Email Classifier Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def classifier(self) -> Agent:
return Agent(config=self.agents_config["classifier"], verbose=True)
@task
def urgent_task(self) -> Task:
return Task(
config=self.tasks_config["classify_email"],
output_pydantic=UrgencyScore,
)
@crew
def crew(self) -> Crew:
"""Creates the Email Classifier Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,7 +0,0 @@
classifier:
role: >
Email Classifier
goal: >
Classify the email: {email} as urgent or normal from a score of 1 to 10, where 1 is not urgent and 10 is urgent. Return the urgency score only.`
backstory: >
You are a highly efficient and experienced email classifier, trained to quickly assess and classify emails. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing normal situations and maintaining smooth operations.

View File

@@ -1,7 +0,0 @@
classify_email:
description: >
Classify the email: {email}
as urgent or normal.
expected_output: >
Classify the email from a scale of 1 to 10, where 1 is not urgent and 10 is urgent. Return the urgency score only.
agent: classifier

View File

@@ -1,7 +0,0 @@
normal_handler:
role: >
Normal Email Processor
goal: >
Process normal emails and create an email to respond to the sender.
backstory: >
You are a highly efficient and experienced normal email handler, trained to quickly assess and respond to normal communications. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing normal situations and maintaining smooth operations.

View File

@@ -1,6 +0,0 @@
normal_task:
description: >
Process and respond to normal email quickly.
expected_output: >
An email response to the normal email.
agent: normal_handler

View File

@@ -1,36 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class NormalCrew:
"""Normal Email Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def normal_handler(self) -> Agent:
return Agent(config=self.agents_config["normal_handler"], verbose=True)
@task
def urgent_task(self) -> Task:
return Task(
config=self.tasks_config["normal_task"],
)
@crew
def crew(self) -> Crew:
"""Creates the Normal Email Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,7 +0,0 @@
urgent_handler:
role: >
Urgent Email Processor
goal: >
Process urgent emails and create an email to respond to the sender.
backstory: >
You are a highly efficient and experienced urgent email handler, trained to quickly assess and respond to time-sensitive communications. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing critical situations and maintaining smooth operations.

View File

@@ -1,6 +0,0 @@
urgent_task:
description: >
Process and respond to urgent email quickly.
expected_output: >
An email response to the urgent email.
agent: urgent_handler

View File

@@ -1,36 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class UrgentCrew:
"""Urgent Email Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def urgent_handler(self) -> Agent:
return Agent(config=self.agents_config["urgent_handler"], verbose=True)
@task
def urgent_task(self) -> Task:
return Task(
config=self.tasks_config["urgent_task"],
)
@crew
def crew(self) -> Crew:
"""Creates the Urgent Email Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,75 +0,0 @@
#!/usr/bin/env python
import asyncio
from crewai.routers.router import Route
from crewai.routers.router import Router
from {{folder_name}}.pipelines.pipeline_classifier import EmailClassifierPipeline
from {{folder_name}}.pipelines.pipeline_normal import NormalPipeline
from {{folder_name}}.pipelines.pipeline_urgent import UrgentPipeline
async def run():
"""
Run the pipeline.
"""
inputs = [
{
"email": """
Subject: URGENT: Marketing Campaign Launch - Immediate Action Required
Dear Team,
I'm reaching out regarding our upcoming marketing campaign that requires your immediate attention and swift action. We're facing a critical deadline, and our success hinges on our ability to mobilize quickly.
Key points:
Campaign launch: 48 hours from now
Target audience: 250,000 potential customers
Expected ROI: 35% increase in Q3 sales
What we need from you NOW:
Final approval on creative assets (due in 3 hours)
Confirmation of media placements (due by end of day)
Last-minute budget allocation for paid social media push
Our competitors are poised to launch similar campaigns, and we must act fast to maintain our market advantage. Delays could result in significant lost opportunities and potential revenue.
Please prioritize this campaign above all other tasks. I'll be available for the next 24 hours to address any concerns or roadblocks.
Let's make this happen!
[Your Name]
Marketing Director
P.S. I'll be scheduling an emergency team meeting in 1 hour to discuss our action plan. Attendance is mandatory.
"""
}
]
pipeline_classifier = EmailClassifierPipeline().create_pipeline()
pipeline_urgent = UrgentPipeline().create_pipeline()
pipeline_normal = NormalPipeline().create_pipeline()
router = Router(
routes={
"high_urgency": Route(
condition=lambda x: x.get("urgency_score", 0) > 7,
pipeline=pipeline_urgent
),
"low_urgency": Route(
condition=lambda x: x.get("urgency_score", 0) <= 7,
pipeline=pipeline_normal
)
},
default=pipeline_normal
)
pipeline = pipeline_classifier >> router
results = await pipeline.kickoff(inputs)
# Process and print results
for result in results:
print(f"Raw output: {result.raw}")
if result.json_dict:
print(f"JSON output: {result.json_dict}")
print("\n")
def main():
asyncio.run(run())
if __name__ == "__main__":
main()

View File

@@ -1,24 +0,0 @@
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.classifier_crew.classifier_crew import ClassifierCrew
@PipelineBase
class EmailClassifierPipeline:
def __init__(self):
# Initialize crews
self.classifier_crew = ClassifierCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.classifier_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results

View File

@@ -1,24 +0,0 @@
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.normal_crew.normal_crew import NormalCrew
@PipelineBase
class NormalPipeline:
def __init__(self):
# Initialize crews
self.normal_crew = NormalCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.normal_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results

View File

@@ -1,23 +0,0 @@
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.urgent_crew.urgent_crew import UrgentCrew
@PipelineBase
class UrgentPipeline:
def __init__(self):
# Initialize crews
self.urgent_crew = UrgentCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.urgent_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results

View File

@@ -1,21 +0,0 @@
[project]
name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.83.0,<1.0.0"
]
[project.scripts]
{{folder_name}} = "{{folder_name}}.main:main"
run_crew = "{{folder_name}}.main:main"
train = "{{folder_name}}.main:train"
replay = "{{folder_name}}.main:replay"
test = "{{folder_name}}.main:test"
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

View File

@@ -1,19 +0,0 @@
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput
def _run(self, argument: str) -> str:
# Implementation goes here
return "this is an example of a tool output, ignore it and move along."

View File

@@ -5,7 +5,7 @@ custom tools to power up your crews.
## Installing
Ensure you have Python >=3.10 <=3.13 installed on your system. This project
Ensure you have Python >=3.10 <3.13 installed on your system. This project
uses [UV](https://docs.astral.sh/uv/) for dependency management and package
handling, offering a seamless setup and execution experience.

View File

@@ -3,8 +3,10 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.83.0"
"crewai[tools]>=0.86.0"
]
[tool.crewai]
type = "tool"

View File

@@ -117,7 +117,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
published_handle = publish_response.json()["handle"]
console.print(
f"Succesfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
f"Successfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
style="bold green",
)
@@ -138,7 +138,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
self._add_package(get_response.json())
console.print(f"Succesfully installed {handle}", style="bold green")
console.print(f"Successfully installed {handle}", style="bold green")
def login(self):
login_response = self.plus_api_client.login_to_tool_repository()

View File

@@ -33,26 +33,6 @@ def copy_template(src, dst, name, class_name, folder_name):
click.secho(f" - Created {dst}", fg="green")
# Drop the simple_toml_parser when we move to python3.11
def simple_toml_parser(content):
result = {}
current_section = result
for line in content.split("\n"):
line = line.strip()
if line.startswith("[") and line.endswith("]"):
# New section
section = line[1:-1].split(".")
current_section = result
for key in section:
current_section = current_section.setdefault(key, {})
elif "=" in line:
key, value = line.split("=", 1)
key = key.strip()
value = value.strip().strip('"')
current_section[key] = value
return result
def read_toml(file_path: str = "pyproject.toml"):
"""Read the content of a TOML file and return it as a dictionary."""
with open(file_path, "rb") as f:
@@ -63,7 +43,7 @@ def read_toml(file_path: str = "pyproject.toml"):
def parse_toml(content):
if sys.version_info >= (3, 11):
return tomllib.loads(content)
return simple_toml_parser(content)
return tomli.loads(content)
def get_project_name(

View File

@@ -1,6 +1,6 @@
import importlib.metadata
def get_crewai_version() -> str:
"""Get the version number of CrewAI running the CLI"""
return importlib.metadata.version("crewai")

Some files were not shown because too many files have changed in this diff Show More