Compare commits

...

89 Commits

Author SHA1 Message Date
Eduardo Chiarotti
54208c340b docs: change docs to address crewai run 2024-08-07 20:30:34 -03:00
Eduardo Chiarotti
5761d1a8ae feat: change pyprojet to run_Crew 2024-08-06 21:13:34 -03:00
Eduardo Chiarotti
3a3b19c792 feat: change command to run_crew 2024-08-06 21:11:49 -03:00
Eduardo Chiarotti
27874bac14 feat: add cli to run the crew 2024-08-06 20:22:35 -03:00
Thiago Moretto
c0c59dc932 Merge pull request #1064 from crewAIInc/thiago/pipeline-fix
Fix flaky test due to suppressed error on `on_llm_start` callback
2024-08-05 16:13:19 -03:00
Thiago Moretto
f3b3d321e5 Fix lint issue 2024-08-05 13:34:03 -03:00
Thiago Moretto
67e4433dc2 Fix flaky test due to suppressed error on on_llm_start callback 2024-08-05 13:29:39 -03:00
Rip&Tear
4a7ae8df71 Update LLM-Connections.md (#1039)
* Minor fixes and updates

* minor fixes across docs

* Updated LLM-Connections.md

---------

Co-authored-by: theCyberTech <mattrapidb@gmail.com>
2024-08-02 15:04:52 -03:00
Rip&Tear
09f92122d5 Docs minor fixes (#1035)
* Minor fixes and updates

* minor fixes across docs

---------

Co-authored-by: theCyberTech <mattrapidb@gmail.com>
2024-08-02 15:01:16 -03:00
Lorenze Jay
8118b7b7d6 Feat/sliding context window (#1042)
* patching for non-gpt model

* removal of json_object tool name assignment

* fixed issue for smaller models due to instructions prompt

* fixing for ollama llama3 models

* WIP: generated summary from documents split, could also create memgpt approach

* WIP: need tests but user inputted summarization strategy implemented - handling context window exceeding errors

* rm extra line

* removed type ignores

* added tests

* handling n to summarize prompt

* code cleanup, using click for cli asker

* rm not used class

* better refactor

* reverted poetry lock

* reverted poetry.locl

* improved context window exceeding exception class
2024-08-01 13:15:50 -07:00
João Moura
c93b85ac53 Preparing for new version 2024-07-30 19:21:18 -04:00
Lorenze Jay
6378f6caec WIP fixed mypy src types (#1036) 2024-07-30 10:59:50 -07:00
Eduardo Chiarotti
d824db82a3 feat: Add execution time to both task and testing feature (#1031)
* feat: Add execution time to both task and testing feature

* feat: Remove unused functions

* feat: change test_crew to evalaute_crew to avoid issues with testing libs

* feat: fix tests
2024-07-29 23:17:07 -03:00
Matt Young
de6b597eff telemetry.py - fix typo in comment. (#1020) 2024-07-29 23:03:51 -03:00
Deepak Tammali
6111d05219 docs: Fix crewai-tools package name typo in getting-started docs (#1026) 2024-07-29 23:03:32 -03:00
Monarch Wadia
f83c91d612 Fixed package name typo in pip install command (#1029)
Changed `pip install crewai-tools` to `pip install crewai-tools`
2024-07-29 23:02:48 -03:00
Mackensie Alvarez
c8f360414e Update Start-a-New-CrewAI-Project-Template-Method.md (#1030) 2024-07-29 23:02:18 -03:00
Brandon Hancock (bhancock_ai)
fa4393d77e Add in missing triple quote and execution time to resume agent functionality. (#1025)
* Add in missing triple quote and execution time to resume agent functionality

* Fixing broken kwargs and other issues causing our tests to fail
2024-07-29 14:39:02 -03:00
Rip&Tear
25c314befc Minor fixes and updates (#1019)
Co-authored-by: theCyberTech <mattrapidb@gmail.com>
2024-07-29 03:24:23 -03:00
Rip&Tear
2fe79e68cd Small 404 error fixes (#1018)
* Updated Docs:  New Getting started section + content update / addition

* fixed indentation issue

* Minor updates to fix typos

* Fixed up 404 error on latest commit

---------

Co-authored-by: theCyberTech <the_t3ch@pm.me>
Co-authored-by: theCyberTech <mattrapidb@gmail.com>
2024-07-28 22:01:04 -03:00
Nuraly
37d05a2365 Update Force-Tool-Ouput-as-Result.md (#964)
I think there is some mistake, because there is no such parameter as force_output_result, and as the code shows, the correct parameter result_as_answer is set during agent creation, not task.
2024-07-28 15:41:56 -03:00
Carine Bruyndoncx
0111d261a4 Update Crews.md - correct result variable to crew_output (#972) 2024-07-28 15:40:36 -03:00
Taleb
0a23e1dc13 Performed spell check across the rest of code base, and enahnced the yaml paraser code a little (#895)
* Performed spell check across the entire documentation

Thank you once again!

* Performed spell check across the most of code base
Folders been checked:
- agents
- cli
- memory
- project
- tasks
- telemetry
- tools
- translations

* Trying to add a max_token for the agents, so they limited by number of tokens.

* Performed spell check across the rest of code base, and enahnced the yaml paraser code a little

* Small change in the main agent doc

* Improve _save_file method to handle both dict and str inputs

- Add check for dict type input
- Use json.dump for dict serialization
- Convert non-dict inputs to string
- Remove type ignore comments

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-28 15:39:54 -03:00
Henri Wenlin
ef5ff71346 feat: add verbose option for printing in ToolUsage (#990) 2024-07-28 15:12:10 -03:00
Samuel Mallet
1697b4cacb Add docs for new parameters to SerperDevTool (#993) 2024-07-28 15:09:55 -03:00
Taleb
6b4710a8d1 Improve _save_file method to handle both dict and str inputs (#1011)
- Add check for dict type input
- Use json.dump for dict serialization
- Convert non-dict inputs to string
- Remove type ignore comments
2024-07-28 15:03:18 -03:00
Lennex Zinyando
6f2a8f08ba Fixes getting started section links (#1016) 2024-07-28 15:02:41 -03:00
João Moura
4e6abf596d updating test 2024-07-28 13:23:03 -04:00
Rip&Tear
9018e2ab6a Docs update (#1008)
* Updated Docs:  New Getting started section + content update / addition

* fixed indentation issue

* Minor updates to fix typos

---------

Co-authored-by: theCyberTech <the_t3ch@pm.me>
2024-07-28 11:55:09 -03:00
ResearchAI
99d023c5f3 Update reset_memories_command.py (#974) 2024-07-26 14:40:47 -07:00
Brandon Hancock (bhancock_ai)
da7d8256eb Json Task Output Truncation with Escape Characters (#1009)
* Fixed special character issue when converting json to models. Added numerous tests to ensure thigns work properly.

* Fix linting error and cleaned up tests

* Fix customer_converter_cls test failure

* Fixed tests. Thank you lorenze for pointing that out. added a few more to ensure converter creation works properly

* Address lorenze feedback

* Fix linting issues
2024-07-26 17:27:01 -04:00
Brandon Hancock (bhancock_ai)
88bffaa0d0 Merge pull request #1012 from crewAIInc/fix/breaking-test-task-eval
fix test due to asserting instructions model_schema change
2024-07-26 16:55:26 -04:00
Lorenze Jay
1159140d9f fix test due to asserting instructions model_schema change 2024-07-26 13:37:44 -07:00
Lorenze Jay
5ac7050f7a Patch/non gpt model pydantic output (#1003)
* patching for non-gpt model

* removal of json_object tool name assignment

* fixed issue for smaller models due to instructions prompt

* fixing for ollama llama3 models

* closing brackets

* removed not used and fixes
2024-07-26 10:57:56 -07:00
Lorenze Jay
8b513de64c hierarchical process unblocked for async tasks (#995)
* WIP: hierarchical unblock for async tasks

* added better test

* update name change

* added more test and crew manager cleanup

* remove prints

* code cleanup, no need to pass manager
2024-07-26 10:55:51 -07:00
Eduardo Chiarotti
144e6d203f feat: add ability to set LLM for AgentPLanner on Crew (#1001)
* feat: add ability to set LLM for AgentPLanner on Crew

* feat: fixes issue on instantiating the ChatOpenAI on the crew

* docs: add docs for the planning_llm new parameter

* docs: change message to ChatOpenAI llm

* feat: add tests
2024-07-26 14:24:29 -03:00
Eduardo Chiarotti
2d2154ed65 feat: add crew Testing/Evaluating feature (#998)
* feat: add crew Testing/evalauting feature

* feat: add docs and add unit test

* feat: improve testing output table

* feat: add tests

* feat: fix type checking issue

* feat: add raise ValueError when testing if output is not the expected

* docs: add docs for Testing

* feat: improve tests and fix some issue

* feat: back to sync

* feat: change opdeai model

* feat: fix test
2024-07-26 14:23:51 -03:00
Brandon Hancock (bhancock_ai)
2d086ab596 Merge pull request #994 from crewAIInc/fix/getting-started-docs
fixed bullet points for crew yaml annoations
2024-07-23 14:36:45 -04:00
Lorenze Jay
776c67cc0f clearer usage for crewai create command 2024-07-23 11:32:25 -07:00
Lorenze Jay
78ef490646 fixed bullet points for crew yaml annoations 2024-07-23 11:31:09 -07:00
Lorenze Jay
4da5cc9778 Feat yaml config all attributes (#985)
* WIP: yaml proper mapping for agents and agent

* WIP: added output_json and output_pydantic setup

* WIP: core logic added, need cleanup

* code cleanup

* updated docs and example template to use yaml to reference agents within tasks

* cleanup type errors

* Update Start-a-New-CrewAI-Project.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-23 00:21:01 -03:00
Eduardo Chiarotti
6930656897 feat: add crewai test feature (#984)
* feat: add crewai test feature

* fix: remove unused import

* feat: update docstirng

* fix: tests
2024-07-22 17:21:05 -03:00
João Moura
349753a013 prepping new version 2024-07-20 12:26:32 -04:00
Eduardo Chiarotti
f53a3a00e1 fix: planning feature output (#969)
* fix: planning feature output

* fix: add validation for planning result
2024-07-20 11:56:53 -03:00
João Moura
e2113fe417 preparing new verions 2024-07-19 13:22:28 -04:00
Eduardo Chiarotti
f9288295e6 fix: agent missing fix (#966) 2024-07-19 13:15:33 -03:00
João Moura
fcc57f2fc0 rmeoving extra logging 2024-07-19 01:16:15 -04:00
Dev Khant
5cb6ee9eeb Docs: Update info about tools (#896) 2024-07-19 01:38:42 -03:00
ariel
b38f0825e7 Fix broken link to the installation guide (#912)
Updated the installation guide link to use the absolute URL instead of a relative path, ensuring it correctly points to 'https://docs.crewai.com/how-to/Installing-CrewAI/'.
2024-07-19 01:37:54 -03:00
Salman Faroz
f51e94dede Update Crews.md (#889)
To solve :
I encountered an error while trying to use the tool. This was the error: DuckDuckGoSearchRun._run() got an unexpected keyword argument 'q'.
 Tool duckduckgo_search accepts these inputs: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.

refer : https://github.com/joaomdmoura/crewAI/issues/316
2024-07-19 01:37:24 -03:00
robbyriverside
47bf93d291 Update Memory.md (#728)
The memory documentation left me with a lot of questions.  After I went through the code to find an answer.  I added this paragraph to explain what I found.  Hope this is helpful.
2024-07-19 01:36:54 -03:00
Braelyn Boynton
41fd1c6124 upgrade agentops to 0.3 (#957)
* upgrade agentops to 0.3

* lockfile
2024-07-18 13:30:04 -03:00
Lorenze Jay
be1b9a3994 Reset memory (#958)
* reseting memory on cli

* using storage.reset

* deleting memories on command

* added tests

* handle when no flags are used

* added docs
2024-07-18 13:29:42 -03:00
Eduardo Chiarotti
61a196394b feat: Add planning feature to crew (#919)
* feat: add planning feature to crew

* feat: add test to planning handler and change to execute_async method

* docs: add planning parameter to the Core documentation

* docs: add planning docs

* fix: fix type checking issue

* fix: test and logic
2024-07-18 13:15:08 -03:00
Lorenze Jay
5b442e4350 Merge pull request #951 from crewAIInc/test-hierarchical-tools-proper-setup
Test hierarchical tools proper setup
2024-07-17 08:53:23 -07:00
Lorenze Jay
c9920b9823 better spacing 2024-07-17 08:40:52 -07:00
Lorenze Jay
2faa2dbddb code cleanup 2024-07-17 08:39:57 -07:00
Lorenze Jay
76607062f0 using gpt4o 2024-07-17 08:27:43 -07:00
Lorenze Jay
a8cac9b7e9 Merge branch 'main' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-17 08:21:13 -07:00
Brandon Hancock (bhancock_ai)
dfacc8832f Merge pull request #954 from crewAIInc/hotfix/improve-async-logging
Fix logging for async and sync tasks
2024-07-17 11:20:13 -04:00
Lorenze Jay
93f643f851 fixed test 2024-07-17 08:20:05 -07:00
Brandon Hancock
cbf5d548be Merge branch 'main' into hotfix/improve-async-logging 2024-07-17 11:17:23 -04:00
Lorenze Jay
6946b89e17 Merge branch 'main' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-17 08:16:44 -07:00
Brandon Hancock (bhancock_ai)
dc4911b1ca Merge pull request #950 from crewAIInc/conditional-task-f
conditional task feat
2024-07-17 11:08:06 -04:00
Brandon Hancock
6ad218f9a0 Fix issues found by linter 2024-07-17 11:05:31 -04:00
Brandon Hancock
36efa172ee Add more tests. Clean up docs. Improve conditional task 2024-07-17 11:03:11 -04:00
Brandon Hancock
a7a2dfd296 Fix logging 2024-07-17 10:10:34 -04:00
João Moura
7baaeacac3 Adding better support for open source tool calling models (#952)
* Adding better support for open source tool calling models

* making sure the right tool is called

* fixing tests

* better support opensource models
2024-07-17 05:54:13 -03:00
Lorenze Jay
021f2eb8a1 Merge branch 'conditional-task-f' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 20:35:27 -07:00
Lorenze Jay
cb720143c7 Merge branch 'main' of github.com:joaomdmoura/crewAI into conditional-task-f 2024-07-16 20:34:35 -07:00
Lorenze Jay
731de2ff31 Merge branch 'test-hierarchical-tools-proper-setup' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 20:31:42 -07:00
Lorenze Jay
24e28da203 Merge branch 'conditional-task-f' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 20:28:50 -07:00
Lorenze Jay
bde0a3e99c code cleanup 2024-07-16 20:11:52 -07:00
Lorenze Jay
0415b9982b code cleanup 2024-07-16 20:07:05 -07:00
Brandon Hancock (bhancock_ai)
99ada42d97 Merge pull request #941 from crewAIInc/bugfix/minor-max-retry-recursion-fix
Properly capture result from max retry recursive call
2024-07-16 22:05:58 -04:00
Lorenze Jay
ee32d36312 Merge branch 'conditional-task-f' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 16:05:09 -07:00
Lorenze Jay
ef928ee3cb added docs and tests 2024-07-16 16:04:41 -07:00
Lorenze Jay
c66559345f Merge branch 'conditional-task-f' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 15:20:46 -07:00
Lorenze Jay
3ad95d50d4 ensures _update_manager_tools has a manager otherwise throw error 2024-07-16 15:15:50 -07:00
Lorenze Jay
bc7f601f84 updated fixes for conditional tasks 2024-07-16 15:10:13 -07:00
Lorenze Jay
e8cbdb7881 fixed hierarchial manager tools when assigned an agent 2024-07-16 14:00:25 -07:00
Lorenze Jay
b0c2b15a3e better code spacing 2024-07-16 13:07:31 -07:00
Lorenze Jay
c0f04bbb37 removing unused code 2024-07-16 13:06:50 -07:00
Lorenze Jay
c320fc655e conditional task feat 2024-07-16 12:04:34 -07:00
Brandon Hancock (bhancock_ai)
ac2815c781 Add docs for crewoutput and taskoutput (#943)
* Add docs for crewoutput and taskoutput

* Add reference to change log
2024-07-15 21:39:15 -03:00
Gui Vieira
dd8a199e99 Introduce structure keys (#902)
* Introduce structure keys

* Add agent key to tasks

* Rebasing is hard

* Rename task output telemetry

* Feedback
2024-07-15 19:37:07 -03:00
Gui Vieira
161c4a6856 Fix crew creation telemetry (#939)
* Fix crew creation telemetry

* Remove task index
2024-07-15 17:43:57 -03:00
Lorenze Jay
67b04b30bf Replay feat using db (#930)
* Cleaned up task execution to now have separate paths for async and sync execution. Updating all kickoff functions to return CrewOutput. WIP. Waiting for Joao feedback on async task execution with task_output

* Consistently storing async and sync output for context

* outline tests I need to create going forward

* Major rehaul of TaskOutput and CrewOutput. Updated all tests to work with new change. Need to add in a few final tricky async tests and add a few more to verify output types on TaskOutput and CrewOutput.

* Encountering issues with callback. Need to test on main. WIP

* working on tests. WIP

* WIP. Figuring out disconnect issue.

* Cleaned up logs now that I've isolated the issue to the LLM

* more wip.

* WIP. It looks like usage metrics has always been broken for async

* Update parent crew who is managing for_each loop

* Merge in main to bugfix/kickoff-for-each-usage-metrics

* Clean up code for review

* Add new tests

* Final cleanup. Ready for review.

* Moving copy functionality from Agent to BaseAgent

* Fix renaming issue

* Fix linting errors

* use BaseAgent instead of Agent where applicable

* Fixing missing function. Working on tests.

* WIP. Needing team to review change

* Fixing issues brought about by merge

* WIP: need to fix json encoder

* WIP need to fix encoder

* WIP

* WIP: replay working with async. need to add tests

* Implement major fixes from yesterdays group conversation. Now working on tests.

* The majority of tasks are working now. Need to fix converter class

* Fix final failing test

* Fix linting and type-checker issues

* Add more tests to fully test CrewOutput and TaskOutput changes

* Add in validation for async cannot depend on other async tasks.

* WIP: working replay feat fixing inputs, need tests

* WIP: core logic of seq and heir for executing tasks added into one

* Update validators and tests

* better logic for seq and hier

* replay working for both seq and hier just need tests

* fixed context

* added cli command + code cleanup TODO: need better refactoring

* refactoring for cleaner code

* added better tests

* removed todo comments and fixed some tests

* fix logging now all tests should pass

* cleaner code

* ensure replay is delcared when replaying specific tasks

* ensure hierarchical works

* better typing for stored_outputs and separated task_output_handler

* added better tests

* added replay feature to crew docs

* easier cli command name

* fixing changes

* using sqllite instead of .json file for logging previous task_outputs

* tools fix

* added to docs and fixed tests

* fixed .db

* fixed docs and removed unneeded comments

* separating ltm and replay db

* fixed printing colors

* added how to doc

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-07-15 17:14:10 -03:00
Gui Vieira
7696b45fc3 Fix tool usage (#925)
* Fix tool usage

* new tests

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-15 17:13:35 -03:00
109 changed files with 480427 additions and 10492 deletions

3
.gitignore vendored
View File

@@ -14,4 +14,5 @@ test.py
rc-tests/*
*.pkl
temp/*
.vscode/*
.vscode/*
crew_tasks_output.json

View File

@@ -254,7 +254,7 @@ pip install dist/*.tar.gz
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
There is NO data being collected on the prompts, tasks descriptions agents backstories or goals nor tools usage, no API calls, nor responses nor any data that is being processed by the agents, nor any secrets and env vars.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. We don't offer a way to disable it now, but we will in the future.
Data collected includes:
@@ -279,7 +279,7 @@ Data collected includes:
- Tools names available
- Understand out of the publically available tools, which ones are being used the most so we can improve them
Users can opt-in sharing the complete telemetry data by setting the `share_crew` attribute to `True` on their Crews.
Users can opt-in to Further Telemetry, sharing the complete telemetry data by setting the `share_crew` attribute to `True` on their Crews. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
## License

View File

@@ -114,7 +114,7 @@ from langchain.agents import load_tools
langchain_tools = load_tools(["google-serper"], llm=llm)
agent1 = CustomAgent(
role="backstory agent",
role="agent role",
goal="who is {input}?",
backstory="agent backstory",
verbose=True,
@@ -127,7 +127,7 @@ task1 = Task(
)
agent2 = Agent(
role="bio agent",
role="agent role",
goal="summarize the short bio for {input} and if needed do more research",
backstory="agent backstory",
verbose=True,

View File

@@ -4,36 +4,39 @@ description: Understanding and utilizing crews in the crewAI framework with comp
---
## What is a Crew?
A crew in crewAI represents a collaborative group of agents working together to achieve a set of tasks. Each crew defines the strategy for task execution, agent collaboration, and the overall workflow.
## Crew Attributes
| Attribute | Parameters | Description |
| :-------------------------- | :------------------ | :------------------------------------------------------------------------------------------------------- |
| **Tasks** | `tasks` | A list of tasks assigned to the crew. |
| **Agents** | `agents` | A list of agents that are part of the crew. |
| **Process** *(optional)* | `process` | The process flow (e.g., sequential, hierarchical) the crew follows. |
| **Verbose** *(optional)* | `verbose` | The verbosity level for logging during execution. |
| **Manager LLM** *(optional)*| `manager_llm` | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
| **Function Calling LLM** *(optional)* | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
| **Config** *(optional)* | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
| **Max RPM** *(optional)* | `max_rpm` | Maximum requests per minute the crew adheres to during execution. |
| **Language** *(optional)* | `language` | Language used for the crew, defaults to English. |
| **Language File** *(optional)* | `language_file` | Path to the language file to be used for the crew. |
| **Memory** *(optional)* | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Cache** *(optional)* | `cache` | Specifies whether to use a cache for storing the results of tools' execution. |
| **Embedder** *(optional)* | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. |
| **Full Output** *(optional)*| `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. |
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
| **Task Callback** *(optional)* | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
| **Share Crew** *(optional)* | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** *(optional)* | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Manager Agent** *(optional)* | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Manager Callbacks** *(optional)* | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** *(optional)* | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| Attribute | Parameters | Description |
| :------------------------------------ | :--------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Tasks** | `tasks` | A list of tasks assigned to the crew. |
| **Agents** | `agents` | A list of agents that are part of the crew. |
| **Process** _(optional)_ | `process` | The process flow (e.g., sequential, hierarchical) the crew follows. |
| **Verbose** _(optional)_ | `verbose` | The verbosity level for logging during execution. |
| **Manager LLM** _(optional)_ | `manager_llm` | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. |
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. |
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. |
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description.
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
!!! note "Crew Max RPM"
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
## Creating a Crew
@@ -44,6 +47,12 @@ When assembling a crew, you combine agents with complementary roles and tools, a
```python
from crewai import Crew, Agent, Task, Process
from langchain_community.tools import DuckDuckGoSearchRun
from crewai_tools import tool
@tool('DuckDuckGoSearch')
def search(search_query: str):
"""Search the web for information on a given topic"""
return DuckDuckGoSearchRun().run(search_query)
# Define agents with specific roles and tools
researcher = Agent(
@@ -54,7 +63,7 @@ researcher = Agent(
to the business.
You're currently working on a project to analyze the
trends and innovations in the space of artificial intelligence.""",
tools=[DuckDuckGoSearchRun()]
tools=[search]
)
writer = Agent(
@@ -89,6 +98,57 @@ my_crew = Crew(
)
```
## Crew Output
!!! note "Understanding Crew Outputs"
The output of a crew in the crewAI framework is encapsulated within the `CrewOutput` class.
This class provides a structured way to access results of the crew's execution, including various formats such as raw strings, JSON, and Pydantic models.
The `CrewOutput` includes the results from the final task output, token usage, and individual task outputs.
### Crew Output Attributes
| Attribute | Parameters | Type | Description |
| :--------------- | :------------- | :------------------------- | :--------------------------------------------------------------------------------------------------- |
| **Raw** | `raw` | `str` | The raw output of the crew. This is the default format for the output. |
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the crew. |
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the crew. |
| **Tasks Output** | `tasks_output` | `List[TaskOutput]` | A list of `TaskOutput` objects, each representing the output of a task in the crew. |
| **Token Usage** | `token_usage` | `Dict[str, Any]` | A summary of token usage, providing insights into the language model's performance during execution. |
### Crew Output Methods and Properties
| Method/Property | Description |
| :-------------- | :------------------------------------------------------------------------------------------------ |
| **json** | Returns the JSON string representation of the crew output if the output format is JSON. |
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
| \***\*str\*\*** | Returns the string representation of the crew output, prioritizing Pydantic, then JSON, then raw. |
### Accessing Crew Outputs
Once a crew has been executed, its output can be accessed through the `output` attribute of the `Crew` object. The `CrewOutput` class provides various ways to interact with and present this output.
#### Example
```python
# Example crew execution
crew = Crew(
agents=[research_agent, writer_agent],
tasks=[research_task, write_article_task],
verbose=2
)
crew_output = crew.kickoff()
# Accessing the crew output
print(f"Raw Output: {crew_output.raw}")
if crew_output.json_dict:
print(f"JSON Output: {json.dumps(crew_output.json_dict, indent=2)}")
if crew_output.pydantic:
print(f"Pydantic Output: {crew_output.pydantic}")
print(f"Tasks Output: {crew_output.tasks_output}")
print(f"Token Usage: {crew_output.token_usage}")
```
## Memory Utilization
Crews can utilize memory (short-term, long-term, and entity memory) to enhance their execution and learning over time. This feature allows crews to store and recall execution memories, aiding in decision-making and task execution strategies.
@@ -156,3 +216,32 @@ for async_result in async_results:
```
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs
### Replaying from specific task:
You can now replay from a specific task using our cli command replay.
The replay feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process.
Kickoffs will now save the latest kickoffs returned task outputs locally for you to be able to replay from.
### Replaying from specific task Using the CLI
To use the replay feature, follow these steps:
1. Open your terminal or command prompt.
2. Navigate to the directory where your CrewAI project is located.
3. Run the following command:
To view latest kickoff task_ids use:
```shell
crewai log-tasks-outputs
```
```shell
crewai replay -t <task_id>
```
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.

View File

@@ -29,6 +29,11 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform.
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using EmbedChain package.
The **Long-Term Memory** uses SQLLite3 to store task results. Currently, there is no way to override these storage implementations.
The data storage files are saved into a platform specific location found using the appdirs package
and the name of the project which can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
### Example: Configuring Memory for a Crew
```python
@@ -161,10 +166,43 @@ my_crew = Crew(
)
```
### Resetting Memory
```sh
crewai reset_memories [OPTIONS]
```
#### Resetting Memory Options
- **`-l, --long`**
- **Description:** Reset LONG TERM memory.
- **Type:** Flag (boolean)
- **Default:** False
- **`-s, --short`**
- **Description:** Reset SHORT TERM memory.
- **Type:** Flag (boolean)
- **Default:** False
- **`-e, --entities`**
- **Description:** Reset ENTITIES memory.
- **Type:** Flag (boolean)
- **Default:** False
- **`-k, --kickoff-outputs`**
- **Description:** Reset LATEST KICKOFF TASK OUTPUTS.
- **Type:** Flag (boolean)
- **Default:** False
- **`-a, --all`**
- **Description:** Reset ALL memories.
- **Type:** Flag (boolean)
- **Default:** False
## Benefits of Using crewAI's Memory System
- **Adaptive Learning:** Crews become more efficient over time, adapting to new information and refining their approach to tasks.
- **Enhanced Personalization:** Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences.
- **Improved Problem Solving:** Access to a rich memory store aids agents in making more informed decisions, drawing on past learnings and contextual insights.
## Getting Started
Integrating crewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations, you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.
Integrating crewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations, you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.

View File

@@ -0,0 +1,138 @@
---
title: crewAI Planning
description: Learn how to add planning to your crewAI Crew and improve their performance.
---
## Introduction
The planning feature in CrewAI allows you to add planning capability to your crew. When enabled, before each Crew iteration, all Crew information is sent to an AgentPlanner that will plan the tasks step by step, and this plan will be added to each task description.
### Using the Planning Feature
Getting started with the planning feature is very easy, the only step required is to add `planning=True` to your Crew:
```python
from crewai import Crew, Agent, Task, Process
# Assemble your crew with planning capabilities
my_crew = Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
planning=True,
)
```
From this point on, your crew will have planning enabled, and the tasks will be planned before each iteration.
#### Planning LLM
Now you can define the LLM that will be used to plan the tasks. You can use any ChatOpenAI LLM model available.
```python
from crewai import Crew, Agent, Task, Process
from langchain_openai import ChatOpenAI
# Assemble your crew with planning capabilities and custom LLM
my_crew = Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
planning=True,
planning_llm=ChatOpenAI(model="gpt-4o")
)
```
### Example
When running the base case example, you will see something like the following output, which represents the output of the AgentPlanner responsible for creating the step-by-step logic to add to the Agents tasks.
```bash
[2024-07-15 16:49:11][INFO]: Planning the crew execution
**Step-by-Step Plan for Task Execution**
**Task Number 1: Conduct a thorough research about AI LLMs**
**Agent:** AI LLMs Senior Data Researcher
**Agent Goal:** Uncover cutting-edge developments in AI LLMs
**Task Expected Output:** A list with 10 bullet points of the most relevant information about AI LLMs
**Task Tools:** None specified
**Agent Tools:** None specified
**Step-by-Step Plan:**
1. **Define Research Scope:**
- Determine the specific areas of AI LLMs to focus on, such as advancements in architecture, use cases, ethical considerations, and performance metrics.
2. **Identify Reliable Sources:**
- List reputable sources for AI research, including academic journals, industry reports, conferences (e.g., NeurIPS, ACL), AI research labs (e.g., OpenAI, Google AI), and online databases (e.g., IEEE Xplore, arXiv).
3. **Collect Data:**
- Search for the latest papers, articles, and reports published in 2023 and early 2024.
- Use keywords like "Large Language Models 2024", "AI LLM advancements", "AI ethics 2024", etc.
4. **Analyze Findings:**
- Read and summarize the key points from each source.
- Highlight new techniques, models, and applications introduced in the past year.
5. **Organize Information:**
- Categorize the information into relevant topics (e.g., new architectures, ethical implications, real-world applications).
- Ensure each bullet point is concise but informative.
6. **Create the List:**
- Compile the 10 most relevant pieces of information into a bullet point list.
- Review the list to ensure clarity and relevance.
**Expected Output:**
A list with 10 bullet points of the most relevant information about AI LLMs.
---
**Task Number 2: Review the context you got and expand each topic into a full section for a report**
**Agent:** AI LLMs Reporting Analyst
**Agent Goal:** Create detailed reports based on AI LLMs data analysis and research findings
**Task Expected Output:** A fully fledge report with the main topics, each with a full section of information. Formatted as markdown without '```'
**Task Tools:** None specified
**Agent Tools:** None specified
**Step-by-Step Plan:**
1. **Review the Bullet Points:**
- Carefully read through the list of 10 bullet points provided by the AI LLMs Senior Data Researcher.
2. **Outline the Report:**
- Create an outline with each bullet point as a main section heading.
- Plan sub-sections under each main heading to cover different aspects of the topic.
3. **Research Further Details:**
- For each bullet point, conduct additional research if necessary to gather more detailed information.
- Look for case studies, examples, and statistical data to support each section.
4. **Write Detailed Sections:**
- Expand each bullet point into a comprehensive section.
- Ensure each section includes an introduction, detailed explanation, examples, and a conclusion.
- Use markdown formatting for headings, subheadings, lists, and emphasis.
5. **Review and Edit:**
- Proofread the report for clarity, coherence, and correctness.
- Make sure the report flows logically from one section to the next.
- Format the report according to markdown standards.
6. **Finalize the Report:**
- Ensure the report is complete with all sections expanded and detailed.
- Double-check formatting and make any necessary adjustments.
**Expected Output:**
A fully-fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'.
---
```

View File

@@ -4,27 +4,29 @@ description: Detailed guide on managing and creating tasks within the crewAI fra
---
## Overview of a Task
!!! note "What is a Task?"
In the crewAI framework, tasks are specific assignments completed by agents. They provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
In the crewAI framework, tasks are specific assignments completed by agents. They provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
Tasks within crewAI can be collaborative, requiring multiple agents to work together. This is managed through the task properties and orchestrated by the Crew's process, enhancing teamwork and efficiency.
## Task Attributes
| Attribute | Parameters | Description |
| :----------------------| :------------------- | :-------------------------------------------------------------------------------------------- |
| **Description** | `description` | A clear, concise statement of what the task entails. |
| **Agent** | `agent` | The agent responsible for the task, assigned either directly or by the crew's process. |
| **Expected Output** | `expected_output` | A detailed description of what the task's completion looks like. |
| **Tools** *(optional)* | `tools` | The functions or capabilities the agent can utilize to perform the task. |
| **Async Execution** *(optional)* | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion.|
| **Context** *(optional)* | `context` | Specifies tasks whose outputs are used as context for this task. |
| **Config** *(optional)* | `config` | Additional configuration details for the agent executing the task, allowing further customization. |
| **Output JSON** *(optional)* | `output_json` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
| **Output Pydantic** *(optional)* | `output_pydantic` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
| **Output File** *(optional)* | `output_file` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
| **Callback** *(optional)* | `callback` | A Python callable that is executed with the task's output upon completion. |
| **Human Input** *(optional)* | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. |
| Attribute | Parameters | Description |
| :------------------------------- | :---------------- | :------------------------------------------------------------------------------------------------------------------- |
| **Description** | `description` | A clear, concise statement of what the task entails. |
| **Agent** | `agent` | The agent responsible for the task, assigned either directly or by the crew's process. |
| **Expected Output** | `expected_output` | A detailed description of what the task's completion looks like. |
| **Tools** _(optional)_ | `tools` | The functions or capabilities the agent can utilize to perform the task. |
| **Async Execution** _(optional)_ | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion. |
| **Context** _(optional)_ | `context` | Specifies tasks whose outputs are used as context for this task. |
| **Config** _(optional)_ | `config` | Additional configuration details for the agent executing the task, allowing further customization. |
| **Output JSON** _(optional)_ | `output_json` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
| **Output File** _(optional)_ | `output_file` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
| **Output** _(optional)_ | `output` | The output of the task, containing the raw, JSON, and Pydantic output plus additional details. |
| **Callback** _(optional)_ | `callback` | A Python callable that is executed with the task's output upon completion. |
| **Human Input** _(optional)_ | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. |
## Creating a Task
@@ -35,12 +37,75 @@ from crewai import Task
task = Task(
description='Find and summarize the latest and most relevant news on AI',
agent=sales_agent
agent=sales_agent,
expected_output='A bullet list summary of the top 5 most important AI news',
)
```
!!! note "Task Assignment"
Directly specify an `agent` for assignment or let the `hierarchical` CrewAI's process decide based on roles, availability, etc.
Directly specify an `agent` for assignment or let the `hierarchical` CrewAI's process decide based on roles, availability, etc.
## Task Output
!!! note "Understanding Task Outputs"
The output of a task in the crewAI framework is encapsulated within the `TaskOutput` class. This class provides a structured way to access results of a task, including various formats such as raw strings, JSON, and Pydantic models.
By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput` will only include the `pydantic` or `json_dict` output if the original `Task` object was configured with `output_pydantic` or `output_json`, respectively.
### Task Output Attributes
| Attribute | Parameters | Type | Description |
| :---------------- | :-------------- | :------------------------- | :------------------------------------------------------------------------------------------------- |
| **Description** | `description` | `str` | A brief description of the task. |
| **Summary** | `summary` | `Optional[str]` | A short summary of the task, auto-generated from the description. |
| **Raw** | `raw` | `str` | The raw output of the task. This is the default format for the output. |
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the task. |
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
| **Agent** | `agent` | `str` | The agent that executed the task. |
| **Output Format** | `output_format` | `OutputFormat` | The format of the task output, with options including RAW, JSON, and Pydantic. The default is RAW. |
### Task Output Methods and Properties
| Method/Property | Description |
| :-------------- | :------------------------------------------------------------------------------------------------ |
| **json** | Returns the JSON string representation of the task output if the output format is JSON. |
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
| \***\*str\*\*** | Returns the string representation of the task output, prioritizing Pydantic, then JSON, then raw. |
### Accessing Task Outputs
Once a task has been executed, its output can be accessed through the `output` attribute of the `Task` object. The `TaskOutput` class provides various ways to interact with and present this output.
#### Example
```python
# Example task
task = Task(
description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news',
agent=research_agent,
tools=[search_tool]
)
# Execute the crew
crew = Crew(
agents=[research_agent],
tasks=[task],
verbose=2
)
result = crew.kickoff()
# Accessing the task output
task_output = task.output
print(f"Task Description: {task_output.description}")
print(f"Task Summary: {task_output.summary}")
print(f"Raw Output: {task_output.raw}")
if task_output.json_dict:
print(f"JSON Output: {json.dumps(task_output.json_dict, indent=2)}")
if task_output.pydantic:
print(f"Pydantic Output: {task_output.pydantic}")
```
## Integrating Tools with Tasks

View File

@@ -0,0 +1,41 @@
---
title: crewAI Testing
description: Learn how to test your crewAI Crew and evaluate their performance.
---
## Introduction
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. And with crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
### Using the Testing Feature
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics.
The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now the only provider available is OpenAI.
```bash
crewai test
```
If you want to run more iterations or use a different model, you can specify the parameters like this:
```bash
crewai test --n_iterations 5 --model gpt-4o
```
What happens when you run the `crewai test` command is that the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
A table of scores at the end will show the performance of the crew in terms of the following metrics:
```
Task Scores
(1-10 Higher is better)
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
│ Crew │ 9.5 │ 9.0 │ 9.2 │
└────────────┴───────┴───────┴────────────┘
```
The example above shows the test results for two runs of the crew with two tasks, with the average total score for each task and the crew as a whole.

View File

@@ -100,16 +100,24 @@ Here is a list of the available tools and their descriptions:
| Tool | Description |
| :-------------------------- | :-------------------------------------------------------------------------------------------- |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages url using Firecrawl and returning its contents. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
@@ -120,8 +128,6 @@ Here is a list of the available tools and their descriptions:
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
| **BrowserbaseTool** | A tool for interacting with and extracting data from web browsers. |
| **ExaSearchTool** | A tool designed for performing exhaustive searches across various data sources. |
## Creating your own Tools

View File

@@ -18,4 +18,7 @@ pip install crewai
# Install the main crewAI package and the tools package
# that includes a series of helpful tools for your agents
pip install 'crewai[tools]'
# Alternatively, you can also use:
pip install crewai crewai-tools
```

View File

@@ -0,0 +1,259 @@
---
title: Starting a New CrewAI Project - Using Template
description: A comprehensive guide to starting a new CrewAI project, including the latest updates and project setup methods.
---
# Starting Your CrewAI Project
Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started.
Beforre we start there are a couple of things to note:
1. CrewAI is a Python package and requires Python >=3.10 and <=3.13 to run.
2. The preferred way of setting up CrewAI is using the `crewai create` command.This will create a new project folder and install a skeleton template for you to work on.
## Prerequisites
Before getting started with CrewAI, make sure that you have installed it via pip:
```shell
$ pip install crewai crewai-tools
```
### Virtual Environments
It is highly recommended that you use virtual environments to ensure that your CrewAI project is isolated from other projects and dependencies. Virtual environments provide a clean, separate workspace for each project, preventing conflicts between different versions of packages and libraries. This isolation is crucial for maintaining consistency and reproducibility in your development process. You have multiple options for setting up virtual environments depending on your operating system and Python version:
1. Use venv (Python's built-in virtual environment tool):
venv is included with Python 3.3 and later, making it a convenient choice for many developers. It's lightweight and easy to use, perfect for simple project setups.
To set up virtual environments with venv, refer to the official [Python documentation](https://docs.python.org/3/tutorial/venv.html).
2. Use Conda (A Python virtual environment manager):
Conda is an open-source package manager and environment management system for Python. It's widely used by data scientists, developers, and researchers to manage dependencies and environments in a reproducible way.
To set up virtual environments with Conda, refer to the official [Conda documentation](https://docs.conda.io/projects/conda/en/stable/user-guide/getting-started.html).
3. Use Poetry (A Python package manager and dependency management tool):
Poetry is an open-source Python package manager that simplifies the installation of packages and their dependencies. Poetry offers a convenient way to manage virtual environments and dependencies.
Poetry is CrewAI's prefered tool for package / dependancy management in CrewAI.
### Code IDEs
Most users of CrewAI a Code Editor / Integrated Development Environment (IDE) for building there Crews. You can use any code IDE of your choice. Seee below for some popular options for Code Editors / Integrated Development Environments (IDE):
- [Visual Studio Code](https://code.visualstudio.com/) - Most popular
- [PyCharm](https://www.jetbrains.com/pycharm/)
- [Cursor AI](https://cursor.com)
Pick one that suits your style and needs.
## Creating a New Project
In this example we will be using Venv as our virtual environment manager.
To setup a virtual environment, run the following CLI command:
```shell
$ python3 -m venv <venv-name>
```
Activate your virtual environment by running the following CLI command:
```shell
$ source <venv-name>/bin/activate
```
Now, to create a new CrewAI project, run the following CLI command:
```shell
$ crewai create <project_name>
```
This command will create a new project folder with the following structure:
```shell
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
You can now start developing your project by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of your project, and the `crew.py` file is where you define your agents and tasks.
## Customizing Your Project
To customize your project, you can:
- Modify `src/my_project/config/agents.yaml` to define your agents.
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
- Add your environment variables into the `.env` file.
### Example: Defining Agents and Tasks
#### agents.yaml
```yaml
researcher:
role: >
Job Candidate Researcher
goal: >
Find potential candidates for the job
backstory: >
You are adept at finding the right candidates by exploring various online
resources. Your skill in identifying suitable candidates ensures the best
match for job positions.
```
#### tasks.yaml
```yaml
research_candidates_task:
description: >
Conduct thorough research to find potential candidates for the specified job.
Utilize various online resources and databases to gather a comprehensive list of potential candidates.
Ensure that the candidates meet the job requirements provided.
Job Requirements:
{job_requirements}
expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE Crew.PY FILE
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE Crew.PY FILE
- researcher
```
### Referencing Variables:
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task wont recognize the reference properly.
#### Example References
agent.yaml
```yaml
email_summarizer:
role: >
Email Summarizer
goal: >
Summarize emails into a concise and clear summary
backstory: >
You will create a 5 bullet point summary of the report
llm: mixtal_llm
```
task.yaml
```yaml
email_summarizer_task:
description: >
Summarize the email into a 5 bullet point summary
expected_output: >
A 5 bullet point summary of the email
agent: email_summarizer
context:
- reporting_task
- research_task
```
Use the annotations are used to properly reference the agent and task in the crew.py file.
### Annotations include:
* @agent
* @task
* @crew
* @llm
* @tool
* @callback
* @output_json
* @output_pydantic
* @cache_handler
crew.py
```py
...
@llm
def mixtal_llm(self):
return ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
@agent
def email_summarizer(self) -> Agent:
return Agent(
config=self.agents_config["email_summarizer"],
)
## ...other tasks defined
@task
def email_summarizer_task(self) -> Task:
return Task(
config=self.tasks_config["email_summarizer_task"],
)
...
```
## Installing Dependencies
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:
```shell
$ cd my_project
$ poetry lock
$ poetry install
```
This will install the dependencies specified in the `pyproject.toml` file.
## Interpolating Variables
Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{variable}` will be replaced by the value of the variable in the `main.py` file.
#### agents.yaml
```yaml
research_task:
description: >
Conduct a thorough research about the customer and competitors in the context
of {customer_domain}.
Make sure you find any interesting and relevant information given the
current year is 2024.
expected_output: >
A complete report on the customer and their customers and competitors,
including their demographics, preferences, market positioning and audience engagement.
```
#### main.py
```python
# main.py
def run():
inputs = {
"customer_domain": "crewai.com"
}
MyProjectCrew(inputs).crew().kickoff(inputs=inputs)
```
## Running Your Project
To run your project, use the following command:
```shell
$ crewai run
```
or
```shell
$ poetry run my_project
```
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.

View File

@@ -0,0 +1,87 @@
---
title: Conditional Tasks
description: Learn how to use conditional tasks in a crewAI kickoff
---
## Introduction
Conditional Tasks in crewAI allow for dynamic workflow adaptation based on the outcomes of previous tasks. This powerful feature enables crews to make decisions and execute tasks selectively, enhancing the flexibility and efficiency of your AI-driven processes.
```python
from typing import List
from pydantic import BaseModel
from crewai import Agent, Crew
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.task import Task
from crewai_tools import SerperDevTool
# Define a condition function for the conditional task
# if false task will be skipped, true, then execute task
def is_data_missing(output: TaskOutput) -> bool:
return len(output.pydantic.events) < 10: # this will skip this task
# Define the agents
data_fetcher_agent = Agent(
role="Data Fetcher",
goal="Fetch data online using Serper tool",
backstory="Backstory 1",
verbose=True,
tools=[SerperDevTool()],
)
data_processor_agent = Agent(
role="Data Processor",
goal="Process fetched data",
backstory="Backstory 2",
verbose=True,
)
summary_generator_agent = Agent(
role="Summary Generator",
goal="Generate summary from fetched data",
backstory="Backstory 3",
verbose=True,
)
class EventOutput(BaseModel):
events: List[str]
task1 = Task(
description="Fetch data about events in San Francisco using Serper tool",
expected_output="List of 10 things to do in SF this week",
agent=data_fetcher_agent,
output_pydantic=EventOutput,
)
conditional_task = ConditionalTask(
description="""
Check if data is missing. If we have less than 10 events,
fetch more events using Serper tool so that
we have a total of 10 events in SF this week..
""",
expected_output="List of 10 Things to do in SF this week ",
condition=is_data_missing,
agent=data_processor_agent,
)
task3 = Task(
description="Generate summary of events in San Francisco from fetched data",
expected_output="summary_generated",
agent=summary_generator_agent,
)
# Create a crew with the tasks
crew = Crew(
agents=[data_fetcher_agent, data_processor_agent, summary_generator_agent],
tasks=[task1, conditional_task, task3],
verbose=2,
)
result = crew.kickoff()
print("results", result)
```

View File

@@ -7,6 +7,7 @@ description: Comprehensive guide on crafting, using, and managing custom tools w
This guide provides detailed instructions on creating custom tools for the crewAI framework and how to efficiently manage and utilize these tools, incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools, enabling agents to perform a wide range of actions.
### Prerequisites
Before creating your own tools, ensure you have the crewAI extra tools package installed:
```bash
@@ -31,7 +32,7 @@ class MyCustomTool(BaseTool):
### Using the `tool` Decorator
Alternatively, use the `tool` decorator for a direct approach to create tools. This requires specifying attributes and the tool's logic within a function.
Alternatively, you can use the tool decorator `@tool`. This approach allows you to define the tool's attributes and functionality directly within a function, offering a concise and efficient way to create specialized tools tailored to your needs.
```python
from crewai_tools import tool

View File

@@ -1,82 +0,0 @@
---
title: Assembling and Activating Your CrewAI Team
description: A comprehensive guide to creating a dynamic CrewAI team for your projects, with updated functionalities including verbose mode, memory capabilities, asynchronous execution, output customization, language model configuration, code execution, integration with third-party agents, and improved task management.
---
## Introduction
Embark on your CrewAI journey by setting up your environment and initiating your AI crew with the latest features. This guide ensures a smooth start, incorporating all recent updates for an enhanced experience, including code execution capabilities, integration with third-party agents, and advanced task management.
## Step 0: Installation
Install CrewAI and any necessary packages for your project. CrewAI is compatible with Python >=3.10,<=3.13.
```shell
pip install crewai
pip install 'crewai[tools]'
```
## Step 1: Assemble Your Agents
Define your agents with distinct roles, backstories, and enhanced capabilities. The Agent class now supports a wide range of attributes for fine-tuned control over agent behavior and interactions, including code execution and integration with third-party agents.
```python
import os
from langchain.llms import OpenAI
from crewai import Agent
from crewai_tools import SerperDevTool, BrowserbaseTool, ExaSearchTool
os.environ["OPENAI_API_KEY"] = "Your OpenAI Key"
os.environ["SERPER_API_KEY"] = "Your Serper Key"
search_tool = SerperDevTool()
browser_tool = BrowserbaseTool()
exa_search_tool = ExaSearchTool()
# Creating a senior researcher agent with advanced configurations
researcher = Agent(
role='Senior Researcher',
goal='Uncover groundbreaking technologies in {topic}',
backstory=("Driven by curiosity, you're at the forefront of innovation, "
"eager to explore and share knowledge that could change the world."),
memory=True,
verbose=True,
allow_delegation=False,
tools=[search_tool, browser_tool],
allow_code_execution=False, # New attribute for enabling code execution
max_iter=15, # Maximum number of iterations for task execution
max_rpm=100, # Maximum requests per minute
max_execution_time=3600, # Maximum execution time in seconds
system_template="Your custom system template here", # Custom system template
prompt_template="Your custom prompt template here", # Custom prompt template
response_template="Your custom response template here", # Custom response template
)
# Creating a writer agent with custom tools and specific configurations
writer = Agent(
role='Writer',
goal='Narrate compelling tech stories about {topic}',
backstory=("With a flair for simplifying complex topics, you craft engaging "
"narratives that captivate and educate, bringing new discoveries to light."),
verbose=True,
allow_delegation=False,
memory=True,
tools=[exa_search_tool],
function_calling_llm=OpenAI(model_name="gpt-3.5-turbo"), # Separate LLM for function calling
)
# Setting a specific manager agent
manager = Agent(
role='Manager',
goal='Ensure the smooth operation and coordination of the team',
verbose=True,
backstory=(
"As a seasoned project manager, you excel in organizing "
"tasks, managing timelines, and ensuring the team stays on track."
),
allow_code_execution=True, # Enable code execution for the manager
)
```
### New Agent Attributes and Features
1. `allow_code_execution`: Enable or disable code execution capabilities for the agent (default is False).
2. `max_execution_time`: Set a maximum execution time (in seconds) for the agent to complete a task.
3. `function_calling_llm`: Specify a separate language model for function calling.

View File

@@ -7,7 +7,7 @@ description: Learn how to force tool output as the result in of an Agent's task
In CrewAI, you can force the output of a tool as the result of an agent's task. This feature is useful when you want to ensure that the tool output is captured and returned as the task result, and avoid the agent modifying the output during the task execution.
## Forcing Tool Output as Result
To force the tool output as the result of an agent's task, you can set the `force_tool_output` parameter to `True` when creating the task. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent.
To force the tool output as the result of an agent's task, you can set the `result_as_answer` parameter to `True` when creating the agent. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent.
Here's an example of how to force the tool output as the result of an agent's task:
@@ -16,7 +16,7 @@ Here's an example of how to force the tool output as the result of an agent's ta
# Define a custom tool that returns the result as the answer
coding_agent =Agent(
role="Data Scientist",
goal="Product amazing resports on AI",
goal="Product amazing reports on AI",
backstory="You work with data and AI",
tools=[MyCustomTool(result_as_answer=True)],
)

View File

@@ -6,33 +6,25 @@ description: Comprehensive guide on integrating CrewAI with various Large Langua
## Connect CrewAI to LLMs
!!! note "Default LLM"
By default, CrewAI uses OpenAI's GPT-4 model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4o") for language processing. You can configure your agents to use a different model or API as described in this guide.
By default, CrewAI uses OpenAI's GPT-4o model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4o") for language processing. You can configure your agents to use a different model or API as described in this guide.
By default, CrewAI uses OpenAI's GPT-4 model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4") for language processing. You can configure your agents to use a different model or API as described in this guide.
CrewAI offers flexibility in connecting to various LLMs, including local models via [Ollama](https://ollama.ai) and different APIs like Azure. It's compatible with all [LangChain LLM](https://python.langchain.com/docs/integrations/llms/) components, enabling diverse integrations for tailored AI solutions.
CrewAI provides extensive versatility in integrating with various Language Models (LLMs), including local options through Ollama such as Llama and Mixtral to cloud-based solutions like Azure. Its compatibility extends to all [LangChain LLM components](https://python.langchain.com/v0.2/docs/integrations/llms/), offering a wide range of integration possibilities for customized AI applications.
## CrewAI Agent Overview
The platform supports connections to an array of Generative AI models, including:
The `Agent` class is the cornerstone for implementing AI solutions in CrewAI. Here's a comprehensive overview of the Agent class attributes and methods:
- OpenAI's suite of advanced language models
- Anthropic's cutting-edge AI offerings
- Ollama's diverse range of locally-hosted generative model & embeddings
- LM Studio's diverse range of locally hosted generative models & embeddings
- Groq's Super Fast LLM offerings
- Azures' generative AI offerings
- HuggingFace's generative AI offerings
- **Attributes**:
- `role`: Defines the agent's role within the solution.
- `goal`: Specifies the agent's objective.
- `backstory`: Provides a background story to the agent.
- `cache` *Optional*: Determines whether the agent should use a cache for tool usage. Default is `True`.
- `max_rpm` *Optional*: Maximum number of requests per minute the agent's execution should respect. Optional.
- `verbose` *Optional*: Enables detailed logging of the agent's execution. Default is `False`.
- `allow_delegation` *Optional*: Allows the agent to delegate tasks to other agents, default is `True`.
- `tools`: Specifies the tools available to the agent for task execution. Optional.
- `max_iter` *Optional*: Maximum number of iterations for an agent to execute a task, default is 25.
- `max_execution_time` *Optional*: Maximum execution time for an agent to execute a task. Optional.
- `step_callback` *Optional*: Provides a callback function to be executed after each step. Optional.
- `llm` *Optional*: Indicates the Large Language Model the agent uses. By default, it uses the GPT-4 model defined in the environment variable "OPENAI_MODEL_NAME".
- `function_calling_llm` *Optional* : Will turn the ReAct CrewAI agent into a function-calling agent.
- `callbacks` *Optional*: A list of callback functions from the LangChain library that are triggered during the agent's execution process.
- `system_template` *Optional*: Optional string to define the system format for the agent.
- `prompt_template` *Optional*: Optional string to define the prompt format for the agent.
- `response_template` *Optional*: Optional string to define the response format for the agent.
This broad spectrum of LLM options enables users to select the most suitable model for their specific needs, whether prioritizing local deployment, specialized capabilities, or cloud-based scalability.
## Changing the default LLM
The default LLM is provided through the `langchain openai` package, which is installed by default when you install CrewAI. You can change this default LLM to a different model or API by setting the `OPENAI_MODEL_NAME` environment variable. This straightforward process allows you to harness the power of different OpenAI models, enhancing the flexibility and capabilities of your CrewAI implementation.
```python
# Required
os.environ["OPENAI_MODEL_NAME"]="gpt-4-0125-preview"
@@ -45,30 +37,27 @@ example_agent = Agent(
verbose=True
)
```
## Ollama Local Integration
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, you will need the `langchain-ollama` package. You can then set the following environment variables to connect to your Ollama instance running locally on port 11434.
## Ollama Integration
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, set the appropriate environment variables as shown below.
### Setting Up Ollama
- **Environment Variables Configuration**: To integrate Ollama, set the following environment variables:
```sh
OPENAI_API_BASE='http://localhost:11434'
OPENAI_MODEL_NAME='llama2' # Adjust based on available model
OPENAI_API_KEY=''
os.environ[OPENAI_API_BASE]='http://localhost:11434'
os.environ[OPENAI_MODEL_NAME]='llama2' # Adjust based on available model
os.environ[OPENAI_API_KEY]='' # No API Key required for Ollama
```
## Ollama Integration (ex. for using Llama 2 locally)
1. [Download Ollama](https://ollama.com/download).
2. After setting up the Ollama, Pull the Llama2 by typing following lines into the terminal ```ollama pull llama2```.
3. Enjoy your free Llama2 model that powered up by excellent agents from crewai.
## Ollama Integration Step by Step (ex. for using Llama 3.1 8B locally)
1. [Download and install Ollama](https://ollama.com/download).
2. After setting up the Ollama, Pull the Llama3.1 8B model by typing following lines into your terminal ```ollama run llama3.1```.
3. Llama3.1 should now be served locally on `http://localhost:11434`
```
from crewai import Agent, Task, Crew
from langchain.llms import Ollama
from langchain_ollama import ChatOllama
import os
os.environ["OPENAI_API_KEY"] = "NA"
llm = Ollama(
model = "llama2",
model = "llama3.1",
base_url = "http://localhost:11434")
general_agent = Agent(role = "Math Professor",
@@ -98,13 +87,14 @@ There are a couple of different ways you can use HuggingFace to host your LLM.
### Your own HuggingFace endpoint
```python
from langchain_community.llms import HuggingFaceEndpoint
from langchain_huggingface import HuggingFaceEndpoint,
llm = HuggingFaceEndpoint(
endpoint_url="<YOUR_ENDPOINT_URL_HERE>",
huggingfacehub_api_token="<HF_TOKEN_HERE>",
repo_id="microsoft/Phi-3-mini-4k-instruct",
task="text-generation",
max_new_tokens=512
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
)
agent = Agent(
@@ -115,66 +105,50 @@ agent = Agent(
)
```
### From HuggingFaceHub endpoint
```python
from langchain_community.llms import HuggingFaceHub
llm = HuggingFaceHub(
repo_id="HuggingFaceH4/zephyr-7b-beta",
huggingfacehub_api_token="<HF_TOKEN_HERE>",
task="text-generation",
)
```
## OpenAI Compatible API Endpoints
Switch between APIs and models seamlessly using environment variables, supporting platforms like FastChat, LM Studio, Groq, and Mistral AI.
### Configuration Examples
#### FastChat
```sh
OPENAI_API_BASE="http://localhost:8001/v1"
OPENAI_MODEL_NAME='oh-2.5m7b-q51'
OPENAI_API_KEY=NA
os.environ[OPENAI_API_BASE]="http://localhost:8001/v1"
os.environ[OPENAI_MODEL_NAME]='oh-2.5m7b-q51'
os.environ[OPENAI_API_KEY]=NA
```
#### LM Studio
Launch [LM Studio](https://lmstudio.ai) and go to the Server tab. Then select a model from the dropdown menu and wait for it to load. Once it's loaded, click the green Start Server button and use the URL, port, and API key that's shown (you can modify them). Below is an example of the default settings as of LM Studio 0.2.19:
```sh
OPENAI_API_BASE="http://localhost:1234/v1"
OPENAI_API_KEY="lm-studio"
os.environ[OPENAI_API_BASE]="http://localhost:1234/v1"
os.environ[OPENAI_API_KEY]="lm-studio"
```
#### Groq API
```sh
OPENAI_API_KEY=your-groq-api-key
OPENAI_MODEL_NAME='llama3-8b-8192'
OPENAI_API_BASE=https://api.groq.com/openai/v1
os.environ[OPENAI_API_KEY]=your-groq-api-key
os.environ[OPENAI_MODEL_NAME]='llama3-8b-8192'
os.environ[OPENAI_API_BASE]=https://api.groq.com/openai/v1
```
#### Mistral API
```sh
OPENAI_API_KEY=your-mistral-api-key
OPENAI_API_BASE=https://api.mistral.ai/v1
OPENAI_MODEL_NAME="mistral-small"
os.environ[OPENAI_API_KEY]=your-mistral-api-key
os.environ[OPENAI_API_BASE]=https://api.mistral.ai/v1
os.environ[OPENAI_MODEL_NAME]="mistral-small"
```
### Solar
```python
```sh
from langchain_community.chat_models.solar import SolarChat
# Initialize language model
os.environ["SOLAR_API_KEY"] = "your-solar-api-key"
llm = SolarChat(max_tokens=1024)
```
```sh
os.environ[SOLAR_API_BASE]="https://api.upstage.ai/v1/solar"
os.environ[SOLAR_API_KEY]="your-solar-api-key"
```
# Free developer API key available here: https://console.upstage.ai/services/solar
# Langchain Example: https://github.com/langchain-ai/langchain/pull/18556
```
### text-gen-web-ui
```sh
OPENAI_API_BASE=http://localhost:5000/v1
OPENAI_MODEL_NAME=NA
OPENAI_API_KEY=NA
```
### Cohere
```python
@@ -190,10 +164,11 @@ llm = ChatCohere()
### Azure Open AI Configuration
For Azure OpenAI API integration, set the following environment variables:
```sh
AZURE_OPENAI_VERSION="2022-12-01"
AZURE_OPENAI_DEPLOYMENT=""
AZURE_OPENAI_ENDPOINT=""
AZURE_OPENAI_KEY=""
os.environ[AZURE_OPENAI_DEPLOYMENT] = "You deployment"
os.environ["OPENAI_API_VERSION"] = "2023-12-01-preview"
os.environ["AZURE_OPENAI_ENDPOINT"] = "Your Endpoint"
os.environ["AZURE_OPENAI_API_KEY"] = "<Your API Key>"
```
### Example Agent with Azure LLM
@@ -216,6 +191,5 @@ azure_agent = Agent(
llm=azure_llm
)
```
## Conclusion
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.

View File

@@ -0,0 +1,49 @@
---
title: Replay Tasks from Latest Crew Kickoff
description: Replay tasks from the latest crew.kickoff(...)
---
## Introduction
CrewAI provides the ability to replay from a task specified from the latest crew kickoff. This feature is particularly useful when you've finished a kickoff and may want to retry certain tasks or don't need to refetch data over and your agents already have the context saved from the kickoff execution so you just need to replay the tasks you want to.
## Note:
You must run `crew.kickoff()` before you can replay a task. Currently, only the latest kickoff is supported, so if you use `kickoff_for_each`, it will only allow you to replay from the most recent crew run.
Here's an example of how to replay from a task:
### Replaying from specific task Using the CLI
To use the replay feature, follow these steps:
1. Open your terminal or command prompt.
2. Navigate to the directory where your CrewAI project is located.
3. Run the following command:
To view latest kickoff task_ids use:
```shell
crewai log-tasks-outputs
```
Once you have your task_id to replay from use:
```shell
crewai replay -t <task_id>
```
### Replaying from a task Programmatically
To replay from a task programmatically, use the following steps:
1. Specify the task_id and input parameters for the replay process.
2. Execute the replay command within a try-except block to handle potential errors.
```python
def replay():
"""
Replay the crew execution from a specific task.
"""
task_id = '<task_id>'
inputs = {"topic": "CrewAI Training"} # this is optional, you can pass in the inputs you want to replay otherwise uses the previous kickoffs inputs
try:
YourCrewName_Crew().crew().replay(task_id=task_id, inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -1,137 +0,0 @@
---
title: Starting a New CrewAI Project
description: A comprehensive guide to starting a new CrewAI project, including the latest updates and project setup methods.
---
# Starting Your CrewAI Project
Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started.
## Prerequisites
We assume you have already installed CrewAI. If not, please refer to the [installation guide](how-to/Installing-CrewAI.md) to install CrewAI and its dependencies.
## Creating a New Project
To create a new project, run the following CLI command:
```shell
$ crewai create my_project
```
This command will create a new project folder with the following structure:
```shell
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
You can now start developing your project by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of your project, and the `crew.py` file is where you define your agents and tasks.
## Customizing Your Project
To customize your project, you can:
- Modify `src/my_project/config/agents.yaml` to define your agents.
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
- Add your environment variables into the `.env` file.
### Example: Defining Agents and Tasks
#### agents.yaml
```yaml
researcher:
role: >
Job Candidate Researcher
goal: >
Find potential candidates for the job
backstory: >
You are adept at finding the right candidates by exploring various online
resources. Your skill in identifying suitable candidates ensures the best
match for job positions.
```
#### tasks.yaml
```yaml
research_candidates_task:
description: >
Conduct thorough research to find potential candidates for the specified job.
Utilize various online resources and databases to gather a comprehensive list of potential candidates.
Ensure that the candidates meet the job requirements provided.
Job Requirements:
{job_requirements}
expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
```
## Installing Dependencies
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:
```shell
$ cd my_project
$ poetry lock
$ poetry install
```
This will install the dependencies specified in the `pyproject.toml` file.
## Interpolating Variables
Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{variable}` will be replaced by the value of the variable in the `main.py` file.
#### agents.yaml
```yaml
research_task:
description: >
Conduct a thorough research about the customer and competitors in the context
of {customer_domain}.
Make sure you find any interesting and relevant information given the
current year is 2024.
expected_output: >
A complete report on the customer and their customers and competitors,
including their demographics, preferences, market positioning and audience engagement.
```
#### main.py
```python
# main.py
def run():
inputs = {
"customer_domain": "crewai.com"
}
MyProjectCrew(inputs).crew().kickoff(inputs=inputs)
```
## Running Your Project
To run your project, use the following command:
```shell
$ poetry run my_project
```
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.

View File

@@ -5,6 +5,19 @@
Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
<div style="display:flex; margin:0 auto; justify-content: center;">
<div style="width:25%">
<h2>Getting Started</h2>
<ul>
<li><a href='./getting-started/Installing-CrewAI'>
Installing CrewAI
</a>
</li>
<li><a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
Start a New CrewAI Project: Template Method
</a>
</li>
</ul>
</div>
<div style="width:25%">
<h2>Core Concepts</h2>
<ul>
@@ -43,26 +56,16 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Memory
</a>
</li>
<li>
<a href="./core-concepts/Planning">
Planning
</a>
</li>
</ul>
</div>
<div style="width:30%">
<h2>How-To Guides</h2>
<ul>
<li>
<a href="./how-to/Start-a-New-CrewAI-Project">
Starting Your crewAI Project
</a>
</li>
<li>
<a href="./how-to/Installing-CrewAI">
Installing crewAI
</a>
</li>
<li>
<a href="./how-to/Creating-a-Crew-and-kick-it-off">
Getting Started
</a>
</li>
<li>
<a href="./how-to/Create-Custom-Tools">
Create Custom Tools
@@ -113,6 +116,16 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Kickoff a Crew for a List
</a>
</li>
<li>
<a href="./how-to/Replay-tasks-from-latest-Crew-Kickoff">
Replay from a Task
</a>
</li>
<li>
<a href="./how-to/Conditional-Tasks">
Conditional Tasks
</a>
</li>
<li>
<a href="./how-to/AgentOps-Observability">
Agent Monitoring with AgentOps

View File

@@ -5,7 +5,7 @@ description: Understanding the telemetry data collected by CrewAI and how it con
## Telemetry
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users.
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users. We don't offer a way to disable it now, but we will in the future.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy.
@@ -22,7 +22,7 @@ It's pivotal to understand that **NO data is collected** concerning prompts, tas
- **Tool Usage**: Identifying which tools are most frequently used allows us to prioritize improvements in those areas.
### Opt-In Further Telemetry Sharing
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. This opt-in approach respects user privacy and aligns with data protection standards by ensuring users have control over their data sharing preferences. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
### Updates and Revisions
We are committed to maintaining the accuracy and transparency of our documentation. Regular reviews and updates are performed to ensure our documentation accurately reflects the latest developments of our codebase and telemetry practices. Users are encouraged to review this section for the most current information on our data collection practices and how they contribute to the improvement of CrewAI.

View File

@@ -1,9 +1,9 @@
# CodeInterpreterTool
## Description
This tool is used to give the Agent the ability to run code (Python3) from the code generated by the Agent itself. The code is executed in a sandboxed environment, so it is safe to run any code.
This tool enables the Agent to execute Python 3 code that it has generated autonomously. The code is run in a secure, isolated environment, ensuring safety regardless of the content.
It is incredible useful since it allows the Agent to generate code, run it in the same environment, get the result and use it to make decisions.
This functionality is particularly valuable as it allows the Agent to create code, execute it within the same ecosystem, obtain the results, and utilize that information to inform subsequent decisions and actions.
## Requirements

View File

@@ -2,7 +2,7 @@
## Description
This tools is a wrapper around the composio toolset and gives your agent access to a wide variety of tools from the composio SDK.
This tools is a wrapper around the composio set of tools and gives your agent access to a wide variety of tools from the composio SDK.
## Installation
@@ -19,7 +19,7 @@ after the installation is complete, either run `composio login` or export your c
The following example demonstrates how to initialize the tool and execute a github action:
1. Initialize toolset
1. Initialize Composio tools
```python
from composio import App

View File

@@ -29,5 +29,69 @@ To effectively use the `SerperDevTool`, follow these steps:
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
## Parameters
The `SerperDevTool` comes with several parameters that will be passed to the API :
- **search_url**: The URL endpoint for the search API. (Default is `https://google.serper.dev/search`)
- **country**: Optional. Specify the country for the search results.
- **location**: Optional. Specify the location for the search results.
- **locale**: Optional. Specify the locale for the search results.
- **n_results**: Number of search results to return. Default is `10`.
The values for `country`, `location`, `locale` and `search_url` can be found on the [Serper Playground](https://serper.dev/playground).
## Example with Parameters
Here is an example demonstrating how to use the tool with additional parameters:
```python
from crewai_tools import SerperDevTool
tool = SerperDevTool(
search_url="https://google.serper.dev/scholar",
n_results=2,
)
print(tool.run(search_query="ChatGPT"))
# Using Tool: Search the internet
# Search results: Title: Role of chat gpt in public health
# Link: https://link.springer.com/article/10.1007/s10439-023-03172-7
# Snippet: … ChatGPT in public health. In this overview, we will examine the potential uses of ChatGPT in
# ---
# Title: Potential use of chat gpt in global warming
# Link: https://link.springer.com/article/10.1007/s10439-023-03171-8
# Snippet: … as ChatGPT, have the potential to play a critical role in advancing our understanding of climate
# ---
```
```python
from crewai_tools import SerperDevTool
tool = SerperDevTool(
country="fr",
locale="fr",
location="Paris, Paris, Ile-de-France, France",
n_results=2,
)
print(tool.run(search_query="Jeux Olympiques"))
# Using Tool: Search the internet
# Search results: Title: Jeux Olympiques de Paris 2024 - Actualités, calendriers, résultats
# Link: https://olympics.com/fr/paris-2024
# Snippet: Quels sont les sports présents aux Jeux Olympiques de Paris 2024 ? · Athlétisme · Aviron · Badminton · Basketball · Basketball 3x3 · Boxe · Breaking · Canoë ...
# ---
# Title: Billetterie Officielle de Paris 2024 - Jeux Olympiques et Paralympiques
# Link: https://tickets.paris2024.org/
# Snippet: Achetez vos billets exclusivement sur le site officiel de la billetterie de Paris 2024 pour participer au plus grand événement sportif au monde.
# ---
```
## Conclusion
By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.
By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. The updated parameters allow for more customized and localized search results. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.

View File

@@ -119,6 +119,9 @@ theme:
nav:
- Home: '/'
- Getting Started:
- Installing CrewAI: 'getting-started/Installing-CrewAI.md'
- Starting a new CrewAI project: 'getting-started/Start-a-New-CrewAI-Project-Template-Method.md'
- Core Concepts:
- Agents: 'core-concepts/Agents.md'
- Tasks: 'core-concepts/Tasks.md'
@@ -128,6 +131,8 @@ nav:
- Collaboration: 'core-concepts/Collaboration.md'
- Training: 'core-concepts/Training-Crew.md'
- Memory: 'core-concepts/Memory.md'
- Planning: 'core-concepts/Planning.md'
- Testing: 'core-concepts/Testing.md'
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
- How to Guides:
@@ -145,6 +150,8 @@ nav:
- Human Input on Execution: 'how-to/Human-Input-on-Execution.md'
- Kickoff a Crew Asynchronously: 'how-to/Kickoff-async.md'
- Kickoff a Crew for a List: 'how-to/Kickoff-for-each.md'
- Replay from a specific task from a kickoff: 'how-to/Replay-tasks-from-latest-Crew-Kickoff.md'
- Conditional Tasks: 'how-to/Conditional-Tasks.md'
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Tools Docs:
@@ -180,6 +187,7 @@ nav:
- Landing Page Generator: https://github.com/joaomdmoura/crewAI-examples/tree/main/landing_page_generator"
- Prepare for meetings: https://github.com/joaomdmoura/crewAI-examples/tree/main/prep-for-a-meeting"
- Telemetry: 'telemetry/Telemetry.md'
- Change Log: 'https://github.com/crewAIInc/crewAI/releases'
extra_css:
- stylesheets/output.css

1289
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "crewai"
version = "0.36.0"
version = "0.46.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
authors = ["Joao Moura <joao@crewai.com>"]
readme = "README.md"
@@ -21,12 +21,12 @@ opentelemetry-sdk = "^1.22.0"
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
instructor = "1.3.3"
regex = "^2023.12.25"
crewai-tools = { version = "^0.4.8", optional = true }
crewai-tools = { version = "^0.4.26", optional = true }
click = "^8.1.7"
python-dotenv = "^1.0.0"
appdirs = "^1.4.4"
jsonref = "^1.1.0"
agentops = { version = "^0.1.9", optional = true }
agentops = { version = "^0.3.0", optional = true }
embedchain = "^0.1.114"
json-repair = "^0.25.2"
@@ -46,7 +46,7 @@ mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
mkdocs-material-extensions = "^1.3.1"
pillow = "^10.2.0"
cairosvg = "^2.7.1"
crewai-tools = "^0.4.8"
crewai-tools = "^0.4.26"
[tool.poetry.group.test.dependencies]
pytest = "^8.0.0"

View File

@@ -55,8 +55,6 @@ class Agent(BaseAgent):
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
allow_code_execution: Enable code execution for the agent.
max_retry_limit: Maximum number of retries for an agent to execute a task when an error occurs.
"""
_times_executed: int = PrivateAttr(default=0)
@@ -262,6 +260,7 @@ class Agent(BaseAgent):
"tools_handler": self.tools_handler,
"function_calling_llm": self.function_calling_llm,
"callbacks": self.callbacks,
"max_tokens": self.max_tokens,
}
if self._rpm_controller:

View File

@@ -1,6 +1,7 @@
import uuid
from abc import ABC, abstractmethod
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Dict, List, Optional, TypeVar
from pydantic import (
@@ -44,6 +45,7 @@ class BaseAgent(ABC, BaseModel):
i18n (I18N): Internationalization settings.
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
max_tokens: Maximum number of tokens for the agent to generate in a response.
Methods:
@@ -117,6 +119,9 @@ class BaseAgent(ABC, BaseModel):
tools_handler: InstanceOf[ToolsHandler] = Field(
default=None, description="An instance of the ToolsHandler class."
)
max_tokens: Optional[int] = Field(
default=None, description="Maximum number of tokens for the agent's execution."
)
_original_role: str | None = None
_original_goal: str | None = None
@@ -162,6 +167,11 @@ class BaseAgent(ABC, BaseModel):
self._token_process = TokenProcess()
return self
@property
def key(self):
source = [self.role, self.goal, self.backstory]
return md5("|".join(source).encode()).hexdigest()
@abstractmethod
def execute_task(
self,
@@ -180,7 +190,7 @@ class BaseAgent(ABC, BaseModel):
pass
@abstractmethod
def get_delegation_tools(self, agents: List["BaseAgent"]):
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[Any]:
"""Set the task tools that init BaseAgenTools class."""
pass

View File

@@ -3,7 +3,6 @@ from typing import TYPE_CHECKING, Optional
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities import I18N
@@ -39,18 +38,17 @@ class CrewAgentExecutorMixin:
and "Action: Delegate work to coworker" not in output.log
):
try:
memory = ShortTermMemoryItem(
data=output.log,
agent=self.crew_agent.role,
metadata={
"observation": self.task.description,
},
)
if (
hasattr(self.crew, "_short_term_memory")
and self.crew._short_term_memory
):
self.crew._short_term_memory.save(memory)
self.crew._short_term_memory.save(
value=output.log,
metadata={
"observation": self.task.description,
},
agent=self.crew_agent.role,
)
except Exception as e:
print(f"Failed to add to short term memory: {e}")
pass

View File

@@ -1,6 +1,8 @@
import threading
import time
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union
import click
from langchain.agents import AgentExecutor
from langchain.agents.agent import ExceptionTool
@@ -11,12 +13,21 @@ from langchain_core.tools import BaseTool
from langchain_core.utils.input import get_color_mapping
from pydantic import InstanceOf
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.utilities.logger import Logger
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
@@ -40,6 +51,8 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
system_template: Optional[str] = None
prompt_template: Optional[str] = None
response_template: Optional[str] = None
_logger: Logger = Logger(verbose_level=2)
_fit_context_window_strategy: Optional[Literal["summarize"]] = "summarize"
def _call(
self,
@@ -131,7 +144,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
# Call the LLM to see what to do.
output = self.agent.plan( # type: ignore # Incompatible types in assignment (expression has type "AgentAction | AgentFinish | list[AgentAction]", variable has type "AgentAction")
output = self.agent.plan(
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
@@ -185,6 +198,27 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
yield AgentStep(action=output, observation=observation)
return
except Exception as e:
if LLMContextLengthExceededException(str(e))._is_context_limit_error(
str(e)
):
output = self._handle_context_length_error(
intermediate_steps, run_manager, inputs
)
if isinstance(output, AgentFinish):
yield output
elif isinstance(output, list):
for step in output:
yield step
return
yield AgentStep(
action=AgentAction("_Exception", str(e), str(e)),
observation=str(e),
)
return
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
if self.should_ask_for_human_input:
@@ -235,6 +269,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
agent=self.crew_agent,
action=agent_action,
)
tool_calling = tool_usage.parse(agent_action.log)
if isinstance(tool_calling, ToolUsageErrorException):
@@ -242,6 +277,8 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in name_to_tool_map
]:
observation = tool_usage.use(tool_calling, agent_action.log)
else:
@@ -278,3 +315,91 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
CrewTrainingHandler(TRAINING_DATA_FILE).append(
self.crew._train_iteration, agent_id, training_data
)
def _handle_context_length(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> List[Tuple[AgentAction, str]]:
text = intermediate_steps[0][1]
original_action = intermediate_steps[0][0]
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n"],
chunk_size=8000,
chunk_overlap=500,
)
if self._fit_context_window_strategy == "summarize":
docs = text_splitter.create_documents([text])
self._logger.log(
"debug",
"Summarizing Content, it is recommended to use a RAG tool",
color="bold_blue",
)
summarize_chain = load_summarize_chain(
self.llm, chain_type="map_reduce", verbose=True
)
summarized_docs = []
for doc in docs:
summary = summarize_chain.invoke(
{"input_documents": [doc]}, return_only_outputs=True
)
summarized_docs.append(summary["output_text"])
formatted_results = "\n\n".join(summarized_docs)
summary_step = AgentStep(
action=AgentAction(
tool=original_action.tool,
tool_input=original_action.tool_input,
log=original_action.log,
),
observation=formatted_results,
)
summary_tuple = (summary_step.action, summary_step.observation)
return [summary_tuple]
return intermediate_steps
def _handle_context_length_error(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
run_manager: Optional[CallbackManagerForChainRun],
inputs: Dict[str, str],
) -> Union[AgentFinish, List[AgentStep]]:
self._logger.log(
"debug",
"Context length exceeded. Asking user if they want to use summarize prompt to fit, this will reduce context length.",
color="yellow",
)
user_choice = click.confirm(
"Context length exceeded. Do you want to summarize the text to fit models context window?"
)
if user_choice:
self._logger.log(
"debug",
"Context length exceeded. Using summarize prompt to fit, this will reduce context length.",
color="bold_blue",
)
intermediate_steps = self._handle_context_length(intermediate_steps)
output = self.agent.plan(
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
)
if isinstance(output, AgentFinish):
return output
elif isinstance(output, AgentAction):
return [AgentStep(action=output, observation=None)]
else:
return [AgentStep(action=action, observation=None) for action in output]
else:
self._logger.log(
"debug",
"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
color="red",
)
raise SystemExit(
"Context length exceeded and user opted not to summarize. Consider using smaller text or RAG tools from crewai_tools."
)

View File

@@ -1,7 +1,15 @@
import click
import pkg_resources
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
from .create_crew import create_crew
from .evaluate_crew import evaluate_crew
from .replay_from_task import replay_task_command
from .reset_memories_command import reset_memories_command
from .run_crew import run_crew
from .train_crew import train_crew
@@ -48,5 +56,104 @@ def train(n_iterations: int):
train_crew(n_iterations)
@crewai.command()
@click.option(
"-t",
"--task_id",
type=str,
help="Replay the crew from this task ID, including all subsequent tasks.",
)
def replay(task_id: str) -> None:
"""
Replay the crew execution from a specific task.
Args:
task_id (str): The ID of the task to replay from.
"""
try:
click.echo(f"Replaying the crew from task {task_id}")
replay_task_command(task_id)
except Exception as e:
click.echo(f"An error occurred while replaying: {e}", err=True)
@crewai.command()
def log_tasks_outputs() -> None:
"""
Retrieve your latest crew.kickoff() task outputs.
"""
try:
storage = KickoffTaskOutputsSQLiteStorage()
tasks = storage.load()
if not tasks:
click.echo(
"No task outputs found. Only crew kickoff task outputs are logged."
)
return
for index, task in enumerate(tasks, 1):
click.echo(f"Task {index}: {task['task_id']}")
click.echo(f"Description: {task['expected_output']}")
click.echo("------")
except Exception as e:
click.echo(f"An error occurred while logging task outputs: {e}", err=True)
@crewai.command()
@click.option("-l", "--long", is_flag=True, help="Reset LONG TERM memory")
@click.option("-s", "--short", is_flag=True, help="Reset SHORT TERM memory")
@click.option("-e", "--entities", is_flag=True, help="Reset ENTITIES memory")
@click.option(
"-k",
"--kickoff-outputs",
is_flag=True,
help="Reset LATEST KICKOFF TASK OUTPUTS",
)
@click.option("-a", "--all", is_flag=True, help="Reset ALL memories")
def reset_memories(long, short, entities, kickoff_outputs, all):
"""
Reset the crew memories (long, short, entity, latest_crew_kickoff_ouputs). This will delete all the data saved.
"""
try:
if not all and not (long or short or entities or kickoff_outputs):
click.echo(
"Please specify at least one memory type to reset using the appropriate flags."
)
return
reset_memories_command(long, short, entities, kickoff_outputs, all)
except Exception as e:
click.echo(f"An error occurred while resetting memories: {e}", err=True)
@crewai.command()
@click.option(
"-n",
"--n_iterations",
type=int,
default=3,
help="Number of iterations to Test the crew",
)
@click.option(
"-m",
"--model",
type=str,
default="gpt-4o-mini",
help="LLM Model to run the tests on the Crew. For now only accepting only OpenAI models.",
)
def test(n_iterations: int, model: str):
"""Test the crew and evaluate the results."""
click.echo(f"Testing the crew for {n_iterations} iterations with model {model}")
evaluate_crew(n_iterations, model)
@crewai.command()
def run():
"""Run the crew."""
click.echo("Running the crew")
run_crew()
if __name__ == "__main__":
crewai()

View File

@@ -0,0 +1,30 @@
import subprocess
import click
def evaluate_crew(n_iterations: int, model: str) -> None:
"""
Test and Evaluate the crew by running a command in the Poetry environment.
Args:
n_iterations (int): The number of iterations to test the crew.
model (str): The model to test the crew with.
"""
command = ["poetry", "run", "test", str(n_iterations), model]
try:
if n_iterations <= 0:
raise ValueError("The number of iterations must be a positive integer.")
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while testing the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -0,0 +1,24 @@
import subprocess
import click
def replay_task_command(task_id: str) -> None:
"""
Replay the crew execution from a specific task.
Args:
task_id (str): The ID of the task to replay from.
"""
command = ["poetry", "run", "replay", task_id]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while replaying the task: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -0,0 +1,49 @@
import subprocess
import click
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
"""
Reset the crew memories.
Args:
long (bool): Whether to reset the long-term memory.
short (bool): Whether to reset the short-term memory.
entity (bool): Whether to reset the entity memory.
kickoff_outputs (bool): Whether to reset the latest kickoff task outputs.
all (bool): Whether to reset all memories.
"""
try:
if all:
ShortTermMemory().reset()
EntityMemory().reset()
LongTermMemory().reset()
TaskOutputStorageHandler().reset()
click.echo("All memories have been reset.")
else:
if long:
LongTermMemory().reset()
click.echo("Long term memory has been reset.")
if short:
ShortTermMemory().reset()
click.echo("Short term memory has been reset.")
if entity:
EntityMemory().reset()
click.echo("Entity memory has been reset.")
if kickoff_outputs:
TaskOutputStorageHandler().reset()
click.echo("Latest Kickoff outputs stored has been reset.")
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while resetting the memories: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -0,0 +1,23 @@
import subprocess
import click
def run_crew() -> None:
"""
Run the crew by running a command in the Poetry environment.
"""
command = ["poetry", "run", "run_crew"]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -34,6 +34,10 @@ poetry install
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
$ crewai run
```
or
```bash
poetry run {{folder_name}}
```

View File

@@ -5,6 +5,7 @@ research_task:
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
@@ -13,3 +14,4 @@ reporting_task:
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst

View File

@@ -32,14 +32,12 @@ class {{crew_name}}Crew():
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
agent=self.researcher()
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
agent=self.reporting_analyst(),
output_file='report.md'
)

View File

@@ -2,9 +2,15 @@
import sys
from {{folder_name}}.crew import {{crew_name}}Crew
# This main file is intended to be a way for your to run your
# crew locally, so refrain from adding necessary logic into this file.
# Replace with inputs you want to test with, it will automatically
# interpolate any tasks and agents information
def run():
# Replace with your inputs, it will automatically interpolate any tasks and agents information
"""
Run the crew.
"""
inputs = {
'topic': 'AI LLMs'
}
@@ -15,9 +21,34 @@ def train():
"""
Train the crew for a given number of iterations.
"""
inputs = {"topic": "AI LLMs"}
inputs = {
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
def replay():
"""
Replay the crew execution from a specific task.
"""
try:
{{crew_name}}Crew().crew().replay(task_id=sys.argv[1])
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
def test():
"""
Test the crew execution and returns the results.
"""
inputs = {
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -6,11 +6,14 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = "^0.35.8" }
crewai = { extras = ["tools"], version = "^0.46.0" }
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:run"
run_crew = "{{folder_name}}.main:run"
train = "{{folder_name}}.main:train"
replay = "{{folder_name}}.main:replay"
test = "{{folder_name}}.main:test"
[build-system]
requires = ["poetry-core"]

View File

@@ -2,19 +2,20 @@ import asyncio
import json
import uuid
from concurrent.futures import Future
from hashlib import md5
from typing import Any, Dict, List, Optional, Tuple, Union
from langchain_core.callbacks import BaseCallbackHandler
from pydantic import (
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
Json,
PrivateAttr,
field_validator,
model_validator,
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
Json,
PrivateAttr,
field_validator,
model_validator,
)
from pydantic_core import PydanticCustomError
@@ -27,16 +28,23 @@ from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools import AgentTools
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.constants import (
TRAINED_AGENTS_DATA_FILE,
TRAINING_DATA_FILE,
)
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
)
from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.training_handler import CrewTrainingHandler
try:
@@ -67,6 +75,7 @@ class Crew(BaseModel):
task_callback: Callback to be executed after each task for every agents execution.
step_callback: Callback to be executed after each step for every agents execution.
share_crew: Whether you want to share the complete crew information and execution with crewAI to make the library better, and allow us to train models.
planning: Plan the crew execution and add the plan to the crew.
"""
__hash__ = object.__hash__ # type: ignore
@@ -80,6 +89,13 @@ class Crew(BaseModel):
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
_train: Optional[bool] = PrivateAttr(default=False)
_train_iteration: Optional[int] = PrivateAttr()
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
_logging_color: str = PrivateAttr(
default="bold_purple",
)
_task_output_handler: TaskOutputStorageHandler = PrivateAttr(
default_factory=TaskOutputStorageHandler
)
cache: bool = Field(default=True)
model_config = ConfigDict(arbitrary_types_allowed=True)
@@ -135,6 +151,22 @@ class Crew(BaseModel):
default=False,
description="output_log_file",
)
planning: Optional[bool] = Field(
default=False,
description="Plan the crew execution and add the plan to the crew.",
)
planning_llm: Optional[Any] = Field(
default=None,
description="Language model that will run the AgentPlanner if planning is True.",
)
task_execution_output_json_files: Optional[List[str]] = Field(
default=None,
description="List of file paths for task execution JSON files.",
)
execution_logs: List[Dict[str, Any]] = Field(
default=[],
description="List of execution logs for tasks",
)
@field_validator("id", mode="before")
@classmethod
@@ -239,20 +271,6 @@ class Crew(BaseModel):
return self
@model_validator(mode="after")
def check_tasks_in_hierarchical_process_not_async(self):
"""Validates that the tasks in hierarchical process are not flagged with async_execution."""
if self.process == Process.hierarchical:
for task in self.tasks:
if task.async_execution:
raise PydanticCustomError(
"async_execution_in_hierarchical_process",
"Hierarchical process error: Tasks cannot be flagged with async_execution.",
{},
)
return self
@model_validator(mode="after")
def validate_end_with_at_most_one_async_task(self):
"""Validates that the crew ends with at most one asynchronous task."""
@@ -274,6 +292,29 @@ class Crew(BaseModel):
return self
@model_validator(mode="after")
def validate_first_task(self) -> "Crew":
"""Ensure the first task is not a ConditionalTask."""
if self.tasks and isinstance(self.tasks[0], ConditionalTask):
raise PydanticCustomError(
"invalid_first_task",
"The first task cannot be a ConditionalTask.",
{},
)
return self
@model_validator(mode="after")
def validate_async_tasks_not_async(self) -> "Crew":
"""Ensure that ConditionalTask is not async."""
for task in self.tasks:
if task.async_execution and isinstance(task, ConditionalTask):
raise PydanticCustomError(
"invalid_async_conditional_task",
f"Conditional Task: {task.description} , cannot be executed asynchronously.", # type: ignore # Argument of type "str" cannot be assigned to parameter "message_template" of type "LiteralString"
{},
)
return self
@model_validator(mode="after")
def validate_async_task_cannot_include_sequential_async_tasks_in_context(self):
"""
@@ -310,6 +351,13 @@ class Crew(BaseModel):
)
return self
@property
def key(self) -> str:
source = [agent.key for agent in self.agents] + [
task.key for task in self.tasks
]
return md5("|".join(source).encode()).hexdigest()
def _setup_from_config(self):
assert self.config is not None, "Config should not be None."
@@ -376,7 +424,11 @@ class Crew(BaseModel):
) -> CrewOutput:
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
self._task_output_handler.reset()
self._logging_color = "bold_purple"
if inputs is not None:
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
@@ -398,12 +450,15 @@ class Crew(BaseModel):
agent.create_agent_executor()
if self.planning:
self._handle_crew_planning()
metrics = []
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result = self._run_hierarchical_process() # type: ignore # Incompatible types in assignment (expression has type "str | dict[str, Any]", variable has type "str")
result = self._run_hierarchical_process()
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
@@ -440,6 +495,7 @@ class Crew(BaseModel):
results.append(output)
self.usage_metrics = total_usage_metrics
self._task_output_handler.reset()
return results
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = {}) -> CrewOutput:
@@ -488,129 +544,58 @@ class Crew(BaseModel):
total_usage_metrics[key] += crew.usage_metrics.get(key, 0)
self.usage_metrics = total_usage_metrics
self._task_output_handler.reset()
return results
def _handle_crew_planning(self):
"""Handles the Crew planning."""
self._logger.log("info", "Planning the crew execution")
result = CrewPlanner(
tasks=self.tasks, planning_agent_llm=self.planning_llm
)._handle_crew_planning()
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
task.description += step_plan
def _store_execution_log(
self,
task: Task,
output: TaskOutput,
task_index: int,
was_replayed: bool = False,
):
if self._inputs:
inputs = self._inputs
else:
inputs = {}
log = {
"task": task,
"output": {
"description": output.description,
"summary": output.summary,
"raw": output.raw,
"pydantic": output.pydantic,
"json_dict": output.json_dict,
"output_format": output.output_format,
"agent": output.agent,
},
"task_index": task_index,
"inputs": inputs,
"was_replayed": was_replayed,
}
self._task_output_handler.update(task_index, log)
def _run_sequential_process(self) -> CrewOutput:
"""Executes tasks sequentially and returns the final output."""
task_outputs: List[TaskOutput] = []
futures: List[Tuple[Task, Future[TaskOutput]]] = []
return self._execute_tasks(self.tasks)
for task in self.tasks:
if task.agent and task.agent.allow_delegation:
agents_for_delegation = [
agent for agent in self.agents if agent != task.agent
]
if len(self.agents) > 1 and len(agents_for_delegation) > 0:
delegation_tools = task.agent.get_delegation_tools(
agents_for_delegation
)
# Add tools if they are not already in task.tools
for new_tool in delegation_tools:
# Find the index of the tool with the same name
existing_tool_index = next(
(
index
for index, tool in enumerate(task.tools or [])
if tool.name == new_tool.name
),
None,
)
if not task.tools:
task.tools = []
if existing_tool_index is not None:
# Replace the existing tool
task.tools[existing_tool_index] = new_tool
else:
# Add the new tool
task.tools.append(new_tool)
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== Working Agent: {role}", color="bold_purple")
self._logger.log(
"info", f"== Starting Task: {task.description}", color="bold_purple"
)
if self.output_log_file:
self._file_handler.log(
agent=role, task=task.description, status="started"
)
if task.async_execution:
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
future = task.execute_async(
agent=task.agent, context=context, tools=task.tools
)
futures.append((task, future))
else:
# Before executing a synchronous task, wait for all async tasks to complete
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Clear the futures list after processing all async results
futures.clear()
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
task_output = task.execute_sync(
agent=task.agent, context=context, tools=task.tools
)
task_outputs = [task_output]
self._process_task_result(task, task_output)
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Important: There should only be one task output in the list
# If there are more or 0, something went wrong.
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
return CrewOutput(
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=[task.output for task in self.tasks if task.output],
token_usage=token_usage,
)
def _process_task_result(self, task: Task, output: TaskOutput) -> None:
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== [{role}] Task output: {output}\n\n")
if self.output_log_file:
self._file_handler.log(agent=role, task=output, status="completed")
# TODO: @joao, Breaking change. Changed return type. Usage metrics is included in crewoutput
def _run_hierarchical_process(self) -> CrewOutput:
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
self._create_manager_agent()
return self._execute_tasks(self.tasks)
def _create_manager_agent(self):
i18n = I18N(prompt_file=self.prompt_file)
if self.manager_agent is not None:
self.manager_agent.allow_delegation = True
@@ -629,74 +614,186 @@ class Crew(BaseModel):
)
self.manager_agent = manager
def _execute_tasks(
self,
tasks: List[Task],
start_index: Optional[int] = 0,
was_replayed: bool = False,
) -> CrewOutput:
"""Executes tasks sequentially and returns the final output.
Args:
tasks (List[Task]): List of tasks to execute
manager (Optional[BaseAgent], optional): Manager agent to use for delegation. Defaults to None.
Returns:
CrewOutput: Final output of the crew
"""
task_outputs: List[TaskOutput] = []
futures: List[Tuple[Task, Future[TaskOutput]]] = []
futures: List[Tuple[Task, Future[TaskOutput], int]] = []
last_sync_output: Optional[TaskOutput] = None
# TODO: IF USER OVERRIDE THE CONTEXT, PASS THAT
for task in self.tasks:
self._logger.log("debug", f"Working Agent: {manager.role}")
self._logger.log("info", f"Starting Task: {task.description}")
for task_index, task in enumerate(tasks):
if start_index is not None and task_index < start_index:
if task.output:
if task.async_execution:
task_outputs.append(task.output)
else:
task_outputs = [task.output]
last_sync_output = task.output
continue
if self.output_log_file:
self._file_handler.log(
agent=manager.role, task=task.description, status="started"
agent_to_use = self._get_agent_to_use(task)
if agent_to_use is None:
raise ValueError(
f"No agent available for task: {task.description}. Ensure that either the task has an assigned agent or a manager agent is provided."
)
self._prepare_agent_tools(task)
self._log_task_start(task, agent_to_use.role)
if isinstance(task, ConditionalTask):
skipped_task_output = self._handle_conditional_task(
task, task_outputs, futures, task_index, was_replayed
)
if skipped_task_output:
continue
if task.async_execution:
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
context = self._get_context(
task, [last_sync_output] if last_sync_output else []
)
future = task.execute_async(
agent=manager, context=context, tools=manager.tools
agent=agent_to_use,
context=context,
tools=agent_to_use.tools,
)
futures.append((task, future))
futures.append((task, future, task_index))
else:
# Before executing a synchronous task, wait for all async tasks to complete
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Clear the futures list after processing all async results
task_outputs = self._process_async_tasks(futures, was_replayed)
futures.clear()
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
context = self._get_context(task, task_outputs)
task_output = task.execute_sync(
agent=manager, context=context, tools=manager.tools
agent=agent_to_use,
context=context,
tools=agent_to_use.tools,
)
task_outputs = [task_output]
self._process_task_result(task, task_output)
self._store_execution_log(task, task_output, task_index, was_replayed)
# Process any remaining async results
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
task_outputs = self._process_async_tasks(futures, was_replayed)
# Important: There should only be one task output in the list
# If there are more or 0, something went wrong.
return self._create_crew_output(task_outputs)
def _handle_conditional_task(
self,
task: ConditionalTask,
task_outputs: List[TaskOutput],
futures: List[Tuple[Task, Future[TaskOutput], int]],
task_index: int,
was_replayed: bool,
) -> Optional[TaskOutput]:
if futures:
task_outputs = self._process_async_tasks(futures, was_replayed)
futures.clear()
previous_output = task_outputs[task_index - 1] if task_outputs else None
if previous_output is not None and not task.should_execute(previous_output):
self._logger.log(
"debug",
f"Skipping conditional task: {task.description}",
color="yellow",
)
skipped_task_output = task.get_skipped_task_output()
if not was_replayed:
self._store_execution_log(task, skipped_task_output, task_index)
return skipped_task_output
return None
def _prepare_agent_tools(self, task: Task):
if self.process == Process.hierarchical:
if self.manager_agent:
self._update_manager_tools(task)
else:
raise ValueError("Manager agent is required for hierarchical process.")
elif task.agent and task.agent.allow_delegation:
self._add_delegation_tools(task)
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
if self.process == Process.hierarchical:
return self.manager_agent
return task.agent
def _add_delegation_tools(self, task: Task):
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
delegation_tools = task.agent.get_delegation_tools(agents_for_delegation)
# Add tools if they are not already in task.tools
for new_tool in delegation_tools:
# Find the index of the tool with the same name
existing_tool_index = next(
(
index
for index, tool in enumerate(task.tools or [])
if tool.name == new_tool.name
),
None,
)
if not task.tools:
task.tools = []
if existing_tool_index is not None:
# Replace the existing tool
task.tools[existing_tool_index] = new_tool
else:
# Add the new tool
task.tools.append(new_tool)
def _log_task_start(self, task: Task, role: str = "None"):
color = self._logging_color
self._logger.log("debug", f"== Working Agent: {role}", color=color)
self._logger.log("info", f"== Starting Task: {task.description}", color=color)
if self.output_log_file:
self._file_handler.log(agent=role, task=task.description, status="started")
def _update_manager_tools(self, task: Task):
if self.manager_agent:
if task.agent:
self.manager_agent.tools = task.agent.get_delegation_tools([task.agent])
else:
self.manager_agent.tools = self.manager_agent.get_delegation_tools(
self.agents
)
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
return context
def _process_task_result(self, task: Task, output: TaskOutput) -> None:
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== [{role}] Task output: {output}\n\n")
if self.output_log_file:
self._file_handler.log(agent=role, task=output, status="completed")
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
return CrewOutput(
@@ -707,6 +804,74 @@ class Crew(BaseModel):
token_usage=token_usage,
)
def _process_async_tasks(
self,
futures: List[Tuple[Task, Future[TaskOutput], int]],
was_replayed: bool = False,
) -> List[TaskOutput]:
task_outputs: List[TaskOutput] = []
for future_task, future, task_index in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
self._store_execution_log(
future_task, task_output, task_index, was_replayed
)
return task_outputs
def _find_task_index(
self, task_id: str, stored_outputs: List[Any]
) -> Optional[int]:
return next(
(
index
for (index, d) in enumerate(stored_outputs)
if d["task_id"] == str(task_id)
),
None,
)
def replay(
self, task_id: str, inputs: Optional[Dict[str, Any]] = None
) -> CrewOutput:
stored_outputs = self._task_output_handler.load()
if not stored_outputs:
raise ValueError(f"Task with id {task_id} not found in the crew's tasks.")
start_index = self._find_task_index(task_id, stored_outputs)
if start_index is None:
raise ValueError(f"Task with id {task_id} not found in the crew's tasks.")
replay_inputs = (
inputs if inputs is not None else stored_outputs[start_index]["inputs"]
)
self._inputs = replay_inputs
if replay_inputs:
self._interpolate_inputs(replay_inputs)
if self.process == Process.hierarchical:
self._create_manager_agent()
for i in range(start_index):
stored_output = stored_outputs[i][
"output"
] # for adding context to the task
task_output = TaskOutput(
description=stored_output["description"],
agent=stored_output["agent"],
raw=stored_output["raw"],
pydantic=stored_output["pydantic"],
json_dict=stored_output["json_dict"],
output_format=stored_output["output_format"],
)
self.tasks[i].output = task_output
self._logging_color = "bold_blue"
result = self._execute_tasks(self.tasks, start_index, True)
return result
def copy(self):
"""Create a deep copy of the Crew."""
@@ -789,5 +954,20 @@ class Crew(BaseModel):
return total_usage_metrics
def test(
self,
n_iterations: int,
openai_model_name: str,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations."""
evaluator = CrewEvaluator(self, openai_model_name)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
self.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"

View File

@@ -24,18 +24,6 @@ class CrewOutput(BaseModel):
description="Processed token summary", default={}
)
# TODO: Joao - Adding this safety check breakes when people want to see
# The full output of a CrewOutput.
# @property
# def pydantic(self) -> Optional[BaseModel]:
# # Check if the final task output included a pydantic model
# if self.tasks_output[-1].output_format != OutputFormat.PYDANTIC:
# raise ValueError(
# "No pydantic model found in the final task. Please make sure to set the output_pydantic property in the final task in your crew."
# )
# return self._pydantic
@property
def json(self) -> Optional[str]:
if self.tasks_output[-1].output_format != OutputFormat.JSON:
@@ -46,11 +34,13 @@ class CrewOutput(BaseModel):
return json.dumps(self.json_dict)
def to_dict(self) -> Dict[str, Any]:
"""Convert json_output and pydantic_output to a dictionary."""
output_dict = {}
if self.json_dict:
return self.json_dict
if self.pydantic:
return self.pydantic.model_dump()
raise ValueError("No output to convert to dictionary")
output_dict.update(self.json_dict)
elif self.pydantic:
output_dict.update(self.pydantic.model_dump())
return output_dict
def __str__(self):
if self.pydantic:

View File

@@ -23,3 +23,9 @@ class EntityMemory(Memory):
"""Saves an entity item into the SQLite storage."""
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)
def reset(self) -> None:
try:
self.storage.reset()
except Exception as e:
raise Exception(f"An error occurred while resetting the entity memory: {e}")

View File

@@ -30,3 +30,6 @@ class LongTermMemory(Memory):
def search(self, task: str, latest_n: int = 3) -> Dict[str, Any]:
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"
def reset(self) -> None:
self.storage.reset()

View File

@@ -1,3 +1,4 @@
from typing import Any, Dict, Optional
from crewai.memory.memory import Memory
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.memory.storage.rag_storage import RAGStorage
@@ -18,8 +19,23 @@ class ShortTermMemory(Memory):
)
super().__init__(storage)
def save(self, item: ShortTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
super().save(item.data, item.metadata, item.agent)
def save(
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
def search(self, query: str, score_threshold: float = 0.35):
return self.storage.search(query=query, score_threshold=score_threshold) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
def reset(self) -> None:
try:
self.storage.reset()
except Exception as e:
raise Exception(
f"An error occurred while resetting the short-term memory: {e}"
)

View File

@@ -3,7 +3,10 @@ from typing import Any, Dict, Optional
class ShortTermMemoryItem:
def __init__(
self, data: Any, agent: str, metadata: Optional[Dict[str, Any]] = None
self,
data: Any,
agent: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
):
self.data = data
self.agent = agent

View File

@@ -4,8 +4,11 @@ from typing import Any, Dict
class Storage:
"""Abstract base class defining the storage interface"""
def save(self, key: str, value: Any, metadata: Dict[str, Any]) -> None:
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
pass
def search(self, key: str) -> Dict[str, Any]: # type: ignore
pass
def reset(self) -> None:
pass

View File

@@ -0,0 +1,166 @@
import json
import sqlite3
from typing import Any, Dict, List, Optional
from crewai.task import Task
from crewai.utilities import Printer
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
from crewai.utilities.paths import db_storage_path
class KickoffTaskOutputsSQLiteStorage:
"""
An updated SQLite storage class for kickoff task outputs storage.
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
) -> None:
self.db_path = db_path
self._printer: Printer = Printer()
self._initialize_db()
def _initialize_db(self):
"""
Initializes the SQLite database and creates LTM table
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS latest_kickoff_task_outputs (
task_id TEXT PRIMARY KEY,
expected_output TEXT,
output JSON,
task_index INTEGER,
inputs JSON,
was_replayed BOOLEAN,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
)
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
color="red",
)
def add(
self,
task: Task,
output: Dict[str, Any],
task_index: int,
was_replayed: bool = False,
inputs: Dict[str, Any] = {},
):
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
INSERT OR REPLACE INTO latest_kickoff_task_outputs
(task_id, expected_output, output, task_index, inputs, was_replayed)
VALUES (?, ?, ?, ?, ?, ?)
""",
(
str(task.id),
task.expected_output,
json.dumps(output, cls=CrewJSONEncoder),
task_index,
json.dumps(inputs),
was_replayed,
),
)
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
color="red",
)
def update(
self,
task_index: int,
**kwargs,
):
"""
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
fields = []
values = []
for key, value in kwargs.items():
fields.append(f"{key} = ?")
values.append(
json.dumps(value, cls=CrewJSONEncoder)
if isinstance(value, dict)
else value
)
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?"
values.append(task_index)
cursor.execute(query, tuple(values))
conn.commit()
if cursor.rowcount == 0:
self._printer.print(
f"No row found with task_index {task_index}. No update performed.",
color="red",
)
except sqlite3.Error as e:
self._printer.print(f"UPDATE KICKOFF TASK OUTPUTS ERROR: {e}", color="red")
def load(self) -> Optional[List[Dict[str, Any]]]:
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT *
FROM latest_kickoff_task_outputs
ORDER BY task_index
""")
rows = cursor.fetchall()
results = []
for row in rows:
result = {
"task_id": row[0],
"expected_output": row[1],
"output": json.loads(row[2]),
"task_index": row[3],
"inputs": json.loads(row[4]),
"was_replayed": row[5],
"timestamp": row[6],
}
results.append(result)
return results
except sqlite3.Error as e:
self._printer.print(
content=f"LOADING KICKOFF TASK OUTPUTS ERROR: An error occurred while querying kickoff task outputs: {e}",
color="red",
)
return None
def delete_all(self):
"""
Deletes all rows from the latest_kickoff_task_outputs table.
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"ERROR: Failed to delete all kickoff task outputs: {e}",
color="red",
)

View File

@@ -103,3 +103,20 @@ class LTMSQLiteStorage:
color="red",
)
return None
def reset(
self,
) -> None:
"""Resets the LTM table with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM long_term_memories")
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"MEMORY ERROR: An error occurred while deleting all rows in LTM: {e}",
color="red",
)
return None

View File

@@ -2,6 +2,7 @@ import contextlib
import io
import logging
import os
import shutil
from typing import Any, Dict, List, Optional
from embedchain import App
@@ -71,13 +72,13 @@ class RAGStorage(Storage):
if embedder_config:
config["embedder"] = embedder_config
self.type = type
self.app = App.from_config(config=config)
self.app.llm = FakeLLM()
if allow_reset:
self.app.reset()
def save(self, value: Any, metadata: Dict[str, Any]) -> None: # type: ignore # BUG?: Should be save(key, value, metadata) Signature of "save" incompatible with supertype "Storage"
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
self._generate_embedding(value, metadata)
def search( # type: ignore # BUG?: Signature of "search" incompatible with supertype "Storage"
@@ -102,3 +103,11 @@ class RAGStorage(Storage):
def _generate_embedding(self, text: str, metadata: Dict[str, Any]) -> Any:
with suppress_logging():
self.app.add(text, data_type="text", metadata=metadata)
def reset(self) -> None:
try:
shutil.rmtree(f"{db_storage_path()}/{self.type}")
except Exception as e:
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)

View File

@@ -1,2 +1,25 @@
from .annotations import agent, crew, task
from .annotations import (
agent,
crew,
task,
output_json,
output_pydantic,
tool,
callback,
llm,
cache_handler,
)
from .crew_base import CrewBase
__all__ = [
"agent",
"crew",
"task",
"output_json",
"output_pydantic",
"tool",
"callback",
"CrewBase",
"llm",
"cache_handler",
]

View File

@@ -30,6 +30,37 @@ def agent(func):
return func
def llm(func):
func.is_llm = True
func = memoize(func)
return func
def output_json(cls):
cls.is_output_json = True
return cls
def output_pydantic(cls):
cls.is_output_pydantic = True
return cls
def tool(func):
func.is_tool = True
return memoize(func)
def callback(func):
func.is_callback = True
return memoize(func)
def cache_handler(func):
func.is_cache_handler = True
return memoize(func)
def crew(func):
def wrapper(self, *args, **kwargs):
instantiated_tasks = []

View File

@@ -1,6 +1,7 @@
import inspect
import os
from pathlib import Path
from typing import Any, Callable, Dict
import yaml
from dotenv import load_dotenv
@@ -20,11 +21,6 @@ def CrewBase(cls):
base_directory = Path(frame_info.filename).parent.resolve()
break
if base_directory is None:
raise Exception(
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
)
original_agents_config_path = getattr(
cls, "agents_config", "config/agents.yaml"
)
@@ -32,12 +28,20 @@ def CrewBase(cls):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.base_directory is None:
raise Exception(
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
)
self.agents_config = self.load_yaml(
os.path.join(self.base_directory, self.original_agents_config_path)
)
self.tasks_config = self.load_yaml(
os.path.join(self.base_directory, self.original_tasks_config_path)
)
self.map_all_agent_variables()
self.map_all_task_variables()
@staticmethod
def load_yaml(config_path: str):
@@ -45,4 +49,138 @@ def CrewBase(cls):
# parsedContent = YamlParser.parse(file) # type: ignore # Argument 1 to "parse" has incompatible type "TextIOWrapper"; expected "YamlParser"
return yaml.safe_load(file)
def _get_all_functions(self):
return {
name: getattr(self, name)
for name in dir(self)
if callable(getattr(self, name))
}
def _filter_functions(
self, functions: Dict[str, Callable], attribute: str
) -> Dict[str, Callable]:
return {
name: func
for name, func in functions.items()
if hasattr(func, attribute)
}
def map_all_agent_variables(self) -> None:
all_functions = self._get_all_functions()
llms = self._filter_functions(all_functions, "is_llm")
tool_functions = self._filter_functions(all_functions, "is_tool")
cache_handler_functions = self._filter_functions(
all_functions, "is_cache_handler"
)
callbacks = self._filter_functions(all_functions, "is_callback")
agents = self._filter_functions(all_functions, "is_agent")
for agent_name, agent_info in self.agents_config.items():
self._map_agent_variables(
agent_name,
agent_info,
agents,
llms,
tool_functions,
cache_handler_functions,
callbacks,
)
def _map_agent_variables(
self,
agent_name: str,
agent_info: Dict[str, Any],
agents: Dict[str, Callable],
llms: Dict[str, Callable],
tool_functions: Dict[str, Callable],
cache_handler_functions: Dict[str, Callable],
callbacks: Dict[str, Callable],
) -> None:
if llm := agent_info.get("llm"):
self.agents_config[agent_name]["llm"] = llms[llm]()
if tools := agent_info.get("tools"):
self.agents_config[agent_name]["tools"] = [
tool_functions[tool]() for tool in tools
]
if function_calling_llm := agent_info.get("function_calling_llm"):
self.agents_config[agent_name]["function_calling_llm"] = agents[
function_calling_llm
]()
if step_callback := agent_info.get("step_callback"):
self.agents_config[agent_name]["step_callback"] = callbacks[
step_callback
]()
if cache_handler := agent_info.get("cache_handler"):
self.agents_config[agent_name]["cache_handler"] = (
cache_handler_functions[cache_handler]()
)
def map_all_task_variables(self) -> None:
all_functions = self._get_all_functions()
agents = self._filter_functions(all_functions, "is_agent")
tasks = self._filter_functions(all_functions, "is_task")
output_json_functions = self._filter_functions(
all_functions, "is_output_json"
)
tool_functions = self._filter_functions(all_functions, "is_tool")
callback_functions = self._filter_functions(all_functions, "is_callback")
output_pydantic_functions = self._filter_functions(
all_functions, "is_output_pydantic"
)
for task_name, task_info in self.tasks_config.items():
self._map_task_variables(
task_name,
task_info,
agents,
tasks,
output_json_functions,
tool_functions,
callback_functions,
output_pydantic_functions,
)
def _map_task_variables(
self,
task_name: str,
task_info: Dict[str, Any],
agents: Dict[str, Callable],
tasks: Dict[str, Callable],
output_json_functions: Dict[str, Callable],
tool_functions: Dict[str, Callable],
callback_functions: Dict[str, Callable],
output_pydantic_functions: Dict[str, Callable],
) -> None:
if context_list := task_info.get("context"):
self.tasks_config[task_name]["context"] = [
tasks[context_task_name]() for context_task_name in context_list
]
if tools := task_info.get("tools"):
self.tasks_config[task_name]["tools"] = [
tool_functions[tool]() for tool in tools
]
if agent_name := task_info.get("agent"):
self.tasks_config[task_name]["agent"] = agents[agent_name]()
if output_json := task_info.get("output_json"):
self.tasks_config[task_name]["output_json"] = output_json_functions[
output_json
]
if output_pydantic := task_info.get("output_pydantic"):
self.tasks_config[task_name]["output_pydantic"] = (
output_pydantic_functions[output_pydantic]
)
if callbacks := task_info.get("callbacks"):
self.tasks_config[task_name]["callbacks"] = [
callback_functions[callback]() for callback in callbacks
]
return WrappedClass

View File

@@ -1,13 +1,13 @@
import datetime
import json
import os
import re
import threading
import uuid
from concurrent.futures import Future
from copy import copy
from hashlib import md5
from typing import Any, Dict, List, Optional, Tuple, Type, Union
from langchain_openai import ChatOpenAI
from opentelemetry.trace import Span
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
from pydantic_core import PydanticCustomError
@@ -16,10 +16,8 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
from crewai.utilities.converter import Converter, ConverterError
from crewai.utilities.converter import Converter, convert_to_model
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
class Task(BaseModel):
@@ -110,6 +108,7 @@ class Task(BaseModel):
_original_description: str | None = None
_original_expected_output: str | None = None
_thread: threading.Thread | None = None
_execution_time: float | None = None
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
@@ -123,9 +122,15 @@ class Task(BaseModel):
"may_not_set_field", "This field is not to be set by the user.", {}
)
def _set_start_execution_time(self) -> float:
return datetime.datetime.now().timestamp()
def _set_end_execution_time(self, start_time: float) -> None:
self._execution_time = datetime.datetime.now().timestamp() - start_time
@field_validator("output_file")
@classmethod
def output_file_validattion(cls, value: str) -> str:
def output_file_validation(cls, value: str) -> str:
"""Validate the output file path by removing the / from the beginning of the path."""
if value.startswith("/"):
return value[1:]
@@ -173,6 +178,14 @@ class Task(BaseModel):
"""Execute the task synchronously."""
return self._execute_core(agent, context, tools)
@property
def key(self) -> str:
description = self._original_description or self.description
expected_output = self._original_expected_output or self.expected_output
source = [description, expected_output]
return md5("|".join(source).encode()).hexdigest()
def execute_async(
self,
agent: BaseAgent | None = None,
@@ -205,11 +218,13 @@ class Task(BaseModel):
) -> TaskOutput:
"""Run the core execution logic of the task."""
agent = agent or self.agent
self.agent = agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
)
start_time = self._set_start_execution_time()
self._execution_span = self._telemetry.task_started(crew=agent.crew, task=self)
self.prompt_context = context
@@ -233,18 +248,21 @@ class Task(BaseModel):
)
self.output = task_output
self._set_end_execution_time(start_time)
if self.callback:
self.callback(self.output)
if self._execution_span:
self._telemetry.task_ended(self._execution_span, self)
self._telemetry.task_ended(self._execution_span, self, agent.crew)
self._execution_span = None
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json() if pydantic_output else result
else pydantic_output.model_dump_json()
if pydantic_output
else result
)
self._save_file(content)
@@ -314,13 +332,6 @@ class Task(BaseModel):
return copied_task
def _create_converter(self, *args, **kwargs) -> Converter:
"""Create a converter instance."""
converter = self.agent.get_output_converter(*args, **kwargs)
if self.converter_cls:
converter = self.converter_cls(*args, **kwargs)
return converter
def _export_output(
self, result: str
) -> Tuple[Optional[BaseModel], Optional[Dict[str, Any]]]:
@@ -328,75 +339,26 @@ class Task(BaseModel):
json_output: Optional[Dict[str, Any]] = None
if self.output_pydantic or self.output_json:
model_output = self._convert_to_model(result)
pydantic_output = (
model_output if isinstance(model_output, BaseModel) else None
model_output = convert_to_model(
result,
self.output_pydantic,
self.output_json,
self.agent,
self.converter_cls,
)
if isinstance(model_output, str):
if isinstance(model_output, BaseModel):
pydantic_output = model_output
elif isinstance(model_output, dict):
json_output = model_output
elif isinstance(model_output, str):
try:
json_output = json.loads(model_output)
except json.JSONDecodeError:
json_output = None
else:
json_output = model_output if isinstance(model_output, dict) else None
return pydantic_output, json_output
def _convert_to_model(self, result: str) -> Union[dict, BaseModel, str]:
model = self.output_pydantic or self.output_json
if model is None:
return result
try:
return self._validate_model(result, model)
except Exception:
return self._handle_partial_json(result, model)
def _validate_model(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel]:
exported_result = model.model_validate_json(result)
if self.output_json:
return exported_result.model_dump()
return exported_result
def _handle_partial_json(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel, str]:
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
exported_result = model.model_validate_json(match.group(0))
if self.output_json:
return exported_result.model_dump()
return exported_result
except Exception:
pass
return self._convert_with_instructions(result, model)
def _convert_with_instructions(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel, str]:
llm = self.agent.function_calling_llm or self.agent.llm
instructions = self._get_conversion_instructions(model, llm)
converter = self._create_converter(
llm=llm, text=result, model=model, instructions=instructions
)
exported_result = (
converter.to_pydantic() if self.output_pydantic else converter.to_json()
)
if isinstance(exported_result, ConverterError):
Printer().print(
content=f"{exported_result.message} Using raw output instead.",
color="red",
)
return result
return exported_result
def _get_output_format(self) -> OutputFormat:
if self.output_json:
return OutputFormat.JSON
@@ -404,34 +366,22 @@ class Task(BaseModel):
return OutputFormat.PYDANTIC
return OutputFormat.RAW
def _get_conversion_instructions(self, model: Type[BaseModel], llm: Any) -> str:
instructions = "I'm gonna convert this raw text into valid JSON."
if not self._is_gpt(llm):
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
return instructions
def _save_output(self, content: str) -> None:
if not self.output_file:
raise Exception("Output file path is not set.")
directory = os.path.dirname(self.output_file)
if directory and not os.path.exists(directory):
os.makedirs(directory)
with open(self.output_file, "w", encoding="utf-8") as file:
file.write(content)
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def _save_file(self, result: Any) -> None:
if self.output_file is None:
raise ValueError("output_file is not set.")
directory = os.path.dirname(self.output_file) # type: ignore # Value of type variable "AnyOrLiteralStr" of "dirname" cannot be "str | None"
if directory and not os.path.exists(directory):
os.makedirs(directory)
with open(self.output_file, "w", encoding="utf-8") as file: # type: ignore # Argument 1 to "open" has incompatible type "str | None"; expected "int | str | bytes | PathLike[str] | PathLike[bytes]"
file.write(result)
with open(self.output_file, "w", encoding="utf-8") as file:
if isinstance(result, dict):
import json
json.dump(result, file, ensure_ascii=False, indent=2)
else:
file.write(str(result))
return None
def __repr__(self):

View File

@@ -0,0 +1,47 @@
from typing import Any, Callable
from pydantic import Field
from crewai.task import Task
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
class ConditionalTask(Task):
"""
A task that can be conditionally executed based on the output of another task.
Note: This cannot be the only task you have in your crew and cannot be the first since its needs context from the previous task.
"""
condition: Callable[[TaskOutput], bool] = Field(
default=None,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
def __init__(
self,
condition: Callable[[Any], bool],
**kwargs,
):
super().__init__(**kwargs)
self.condition = condition
def should_execute(self, context: TaskOutput) -> bool:
"""
Determines whether the conditional task should be executed based on the provided context.
Args:
context (Any): The context or output from the previous task that will be evaluated by the condition.
Returns:
bool: True if the task should be executed, False otherwise.
"""
return self.condition(context)
def get_skipped_task_output(self):
return TaskOutput(
description=self.description,
raw="",
agent=self.agent.role if self.agent else "",
output_format=OutputFormat.RAW,
)

View File

@@ -11,9 +11,7 @@ class TaskOutput(BaseModel):
description: str = Field(description="Description of the task")
summary: Optional[str] = Field(description="Summary of the task", default=None)
raw: str = Field(
description="Raw output of the task", default=""
) # TODO: @joao: breaking change, by renaming raw_output to raw, but now consistent with CrewOutput
raw: str = Field(description="Raw output of the task", default="")
pydantic: Optional[BaseModel] = Field(
description="Pydantic output of task", default=None
)
@@ -32,22 +30,6 @@ class TaskOutput(BaseModel):
self.summary = f"{excerpt}..."
return self
# TODO: Joao - Adding this safety check breakes when people want to see
# The full output of a TaskOutput or CrewOutput.
# @property
# def pydantic(self) -> Optional[BaseModel]:
# # Check if the final task output included a pydantic model
# if self.output_format != OutputFormat.PYDANTIC:
# raise ValueError(
# """
# Invalid output format requested.
# If you would like to access the pydantic model,
# please make sure to set the output_pydantic property for the task.
# """
# )
# return self._pydantic
@property
def json(self) -> Optional[str]:
if self.output_format != OutputFormat.JSON:
@@ -66,7 +48,7 @@ class TaskOutput(BaseModel):
output_dict = {}
if self.json_dict:
output_dict.update(self.json_dict)
if self.pydantic:
elif self.pydantic:
output_dict.update(self.pydantic.model_dump())
return output_dict

View File

@@ -40,7 +40,7 @@ class Telemetry:
- Roles of agents in a crew
- Tools names available
Users can opt-in to sharing more complete data suing the `share_crew`
Users can opt-in to sharing more complete data using the `share_crew`
attribute in the Crew class.
"""
@@ -92,13 +92,8 @@ class Telemetry:
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "python_version", platform.python_version())
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
if crew.share_crew:
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
self._add_attribute(span, "crew_process", crew.process)
self._add_attribute(span, "crew_memory", crew.memory)
self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
@@ -109,6 +104,7 @@ class Telemetry:
json.dumps(
[
{
"key": agent.key,
"id": str(agent.id),
"role": agent.role,
"goal": agent.goal,
@@ -133,12 +129,14 @@ class Telemetry:
json.dumps(
[
{
"key": task.key,
"id": str(task.id),
"description": task.description,
"expected_output": task.expected_output,
"async_execution?": task.async_execution,
"human_input?": task.human_input,
"agent_role": task.agent.role if task.agent else "None",
"agent_key": task.agent.key if task.agent else None,
"context": (
[task.description for task in task.context]
if task.context
@@ -157,6 +155,12 @@ class Telemetry:
self._add_attribute(span, "platform_system", platform.system())
self._add_attribute(span, "platform_version", platform.version())
self._add_attribute(span, "cpus", os.cpu_count())
if crew.share_crew:
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
@@ -170,8 +174,9 @@ class Telemetry:
created_span = tracer.start_span("Task Created")
self._add_attribute(created_span, "crew_key", crew.key)
self._add_attribute(created_span, "crew_id", str(crew.id))
self._add_attribute(created_span, "task_index", crew.tasks.index(task))
self._add_attribute(created_span, "task_key", task.key)
self._add_attribute(created_span, "task_id", str(task.id))
if crew.share_crew:
@@ -187,8 +192,9 @@ class Telemetry:
span = tracer.start_span("Task Execution")
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "task_index", crew.tasks.index(task))
self._add_attribute(span, "task_key", task.key)
self._add_attribute(span, "task_id", str(task.id))
if crew.share_crew:
@@ -203,13 +209,16 @@ class Telemetry:
return None
def task_ended(self, span: Span, task: Task):
def task_ended(self, span: Span, task: Task, crew: Crew):
"""Records task execution in a crew."""
if self.ready:
try:
self._add_attribute(
span, "output", task.output.raw_output if task.output else ""
)
if crew.share_crew:
self._add_attribute(
span,
"task_output",
task.output.raw if task.output else "",
)
span.set_status(Status(StatusCode.OK))
span.end()
@@ -284,10 +293,10 @@ class Telemetry:
"""Records the complete execution of a crew.
This is only collected if the user has opted-in to share the crew.
"""
self.crew_creation(crew, inputs)
if (self.ready) and (crew.share_crew):
try:
self.crew_creation(crew, inputs)
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Execution")
self._add_attribute(
@@ -295,6 +304,7 @@ class Telemetry:
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
@@ -305,6 +315,7 @@ class Telemetry:
json.dumps(
[
{
"key": agent.key,
"id": str(agent.id),
"role": agent.role,
"goal": agent.goal,
@@ -335,6 +346,7 @@ class Telemetry:
"async_execution?": task.async_execution,
"human_input?": task.human_input,
"agent_role": task.agent.role if task.agent else "None",
"agent_key": task.agent.key if task.agent else None,
"context": (
[task.description for task in task.context]
if task.context

View File

@@ -16,7 +16,7 @@ try:
except ImportError:
agentops = None
OPENAI_BIGGER_MODELS = ["gpt-4"]
OPENAI_BIGGER_MODELS = ["gpt-4o"]
class ToolUsageErrorException(Exception):
@@ -86,7 +86,8 @@ class ToolUsage:
) -> str:
if isinstance(calling, ToolUsageErrorException):
error = calling.message
self._printer.print(content=f"\n\n{error}\n", color="red")
if self.agent.verbose:
self._printer.print(content=f"\n\n{error}\n", color="red")
self.task.increment_tools_errors()
return error
@@ -96,7 +97,8 @@ class ToolUsage:
except Exception as e:
error = getattr(e, "message", str(e))
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{error}\n", color="red")
if self.agent.verbose:
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
@@ -112,7 +114,8 @@ class ToolUsage:
result = self._i18n.errors("task_repeated_usage").format(
tool_names=self.tools_names
)
self._printer.print(content=f"\n\n{result}\n", color="purple")
if self.agent.verbose:
self._printer.print(content=f"\n\n{result}\n", color="purple")
self._telemetry.tool_repeated_usage(
llm=self.function_calling_llm,
tool_name=tool.name,
@@ -151,16 +154,12 @@ class ToolUsage:
for k, v in calling.arguments.items()
if k in acceptable_args
}
result = tool._run(**arguments)
result = tool.invoke(input=arguments)
except Exception:
if tool.args_schema:
arguments = calling.arguments
result = tool._run(**arguments)
else:
arguments = calling.arguments.values() # type: ignore # Incompatible types in assignment (expression has type "dict_values[str, Any]", variable has type "dict[str, Any]")
result = tool._run(*arguments)
arguments = calling.arguments
result = tool.invoke(input=arguments)
else:
result = tool._run()
result = tool.invoke(input={})
except Exception as e:
self._run_attempts += 1
if self._run_attempts > self._max_parsing_attempts:
@@ -172,7 +171,10 @@ class ToolUsage:
f'\n{error_message}.\nMoving on then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
).message
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{error_message}\n", color="red")
if self.agent.verbose:
self._printer.print(
content=f"\n\n{error_message}\n", color="red"
)
return error # type: ignore # No return value expected
self.task.increment_tools_errors()
@@ -196,7 +198,8 @@ class ToolUsage:
calling=calling, output=result, should_cache=should_cache
)
self._printer.print(content=f"\n\n{result}\n", color="purple")
if self.agent.verbose:
self._printer.print(content=f"\n\n{result}\n", color="purple")
if agentops:
agentops.record(tool_event)
self._telemetry.tool_usage(
@@ -350,7 +353,8 @@ class ToolUsage:
if self._run_attempts > self._max_parsing_attempts:
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{e}\n", color="red")
if self.agent.verbose:
self._printer.print(content=f"\n\n{e}\n", color="red")
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_usage_error").format(error=e)}\nMoving on then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
)

View File

@@ -7,6 +7,9 @@ from .parser import YamlParser
from .printer import Printer
from .prompts import Prompts
from .rpm_controller import RPMController
from .exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
__all__ = [
"Converter",
@@ -19,4 +22,5 @@ __all__ = [
"Prompts",
"RPMController",
"YamlParser",
"LLMContextLengthExceededException",
]

View File

@@ -1,9 +1,14 @@
import json
import re
from typing import Any, Optional, Type, Union
from langchain.schema import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, ValidationError
from crewai.agents.agent_builder.utilities.base_output_converter import OutputConverter
from crewai.utilities.printer import Printer
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
class ConverterError(Exception):
@@ -38,10 +43,10 @@ class Converter(OutputConverter):
return self._create_instructor().to_json()
else:
return json.dumps(self._create_chain().invoke({}).model_dump())
except Exception:
except Exception as e:
if current_attempt < self.max_attempts:
return self.to_json(current_attempt + 1)
return ConverterError("Failed to convert text into JSON.")
return ConverterError(f"Failed to convert text into JSON, error: {e}.")
def _create_instructor(self):
"""Create an instructor."""
@@ -72,3 +77,153 @@ class Converter(OutputConverter):
def is_gpt(self) -> bool:
"""Return if llm provided is of gpt from openai."""
return isinstance(self.llm, ChatOpenAI) and self.llm.openai_api_base is None
def convert_to_model(
result: str,
output_pydantic: Optional[Type[BaseModel]],
output_json: Optional[Type[BaseModel]],
agent: Any,
converter_cls: Optional[Type[Converter]] = None,
) -> Union[dict, BaseModel, str]:
model = output_pydantic or output_json
if model is None:
return result
try:
escaped_result = json.dumps(json.loads(result, strict=False))
return validate_model(escaped_result, model, bool(output_json))
except json.JSONDecodeError as e:
Printer().print(
content=f"Error parsing JSON: {e}. Attempting to handle partial JSON.",
color="yellow",
)
return handle_partial_json(
result, model, bool(output_json), agent, converter_cls
)
except ValidationError as e:
Printer().print(
content=f"Pydantic validation error: {e}. Attempting to handle partial JSON.",
color="yellow",
)
return handle_partial_json(
result, model, bool(output_json), agent, converter_cls
)
except Exception as e:
Printer().print(
content=f"Unexpected error during model conversion: {type(e).__name__}: {e}. Returning original result.",
color="red",
)
return result
def validate_model(
result: str, model: Type[BaseModel], is_json_output: bool
) -> Union[dict, BaseModel]:
exported_result = model.model_validate_json(result)
if is_json_output:
return exported_result.model_dump()
return exported_result
def handle_partial_json(
result: str,
model: Type[BaseModel],
is_json_output: bool,
agent: Any,
converter_cls: Optional[Type[Converter]] = None,
) -> Union[dict, BaseModel, str]:
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
exported_result = model.model_validate_json(match.group(0))
if is_json_output:
return exported_result.model_dump()
return exported_result
except json.JSONDecodeError as e:
Printer().print(
content=f"Error parsing JSON: {e}. The extracted JSON-like string is not valid JSON. Attempting alternative conversion method.",
color="yellow",
)
except ValidationError as e:
Printer().print(
content=f"Pydantic validation error: {e}. The JSON structure doesn't match the expected model. Attempting alternative conversion method.",
color="yellow",
)
except Exception as e:
Printer().print(
content=f"Unexpected error during partial JSON handling: {type(e).__name__}: {e}. Attempting alternative conversion method.",
color="red",
)
return convert_with_instructions(
result, model, is_json_output, agent, converter_cls
)
def convert_with_instructions(
result: str,
model: Type[BaseModel],
is_json_output: bool,
agent: Any,
converter_cls: Optional[Type[Converter]] = None,
) -> Union[dict, BaseModel, str]:
llm = agent.function_calling_llm or agent.llm
instructions = get_conversion_instructions(model, llm)
converter = create_converter(
agent=agent,
converter_cls=converter_cls,
llm=llm,
text=result,
model=model,
instructions=instructions,
)
exported_result = (
converter.to_pydantic() if not is_json_output else converter.to_json()
)
if isinstance(exported_result, ConverterError):
Printer().print(
content=f"{exported_result.message} Using raw output instead.",
color="red",
)
return result
return exported_result
def get_conversion_instructions(model: Type[BaseModel], llm: Any) -> str:
instructions = "I'm gonna convert this raw text into valid JSON."
if not is_gpt(llm):
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
return instructions
def is_gpt(llm: Any) -> bool:
from langchain_openai import ChatOpenAI
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def create_converter(
agent: Optional[Any] = None,
converter_cls: Optional[Type[Converter]] = None,
*args,
**kwargs,
) -> Converter:
if agent and not converter_cls:
if hasattr(agent, "get_output_converter"):
converter = agent.get_output_converter(*args, **kwargs)
else:
raise AttributeError("Agent does not have a 'get_output_converter' method")
elif converter_cls:
converter = converter_cls(*args, **kwargs)
else:
raise ValueError("Either agent or converter_cls must be provided")
if not converter:
raise Exception("No output converter found or set.")
return converter

View File

@@ -0,0 +1,31 @@
from datetime import datetime
import json
from uuid import UUID
from pydantic import BaseModel
class CrewJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, BaseModel):
return self._handle_pydantic_model(obj)
elif isinstance(obj, UUID):
return str(obj)
elif isinstance(obj, datetime):
return obj.isoformat()
return super().default(obj)
def _handle_pydantic_model(self, obj):
try:
data = obj.model_dump()
# Remove circular references
for key, value in data.items():
if isinstance(value, BaseModel):
data[key] = str(
value
) # Convert nested models to string representation
return data
except RecursionError:
return str(
obj
) # Fall back to string representation if circular reference is detected

View File

@@ -1,5 +1,5 @@
import json
from typing import Any, List, Type, Union
from typing import Any, List, Type
import regex
from langchain.output_parsers import PydanticOutputParser
@@ -7,19 +7,24 @@ from langchain_core.exceptions import OutputParserException
from langchain_core.outputs import Generation
from langchain_core.pydantic_v1 import ValidationError
from pydantic import BaseModel
from pydantic.v1 import BaseModel as V1BaseModel
class CrewPydanticOutputParser(PydanticOutputParser):
"""Parses the text into pydantic models"""
pydantic_object: Union[Type[BaseModel], Type[V1BaseModel]]
pydantic_object: Type[BaseModel]
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
def parse_result(self, result: List[Generation]) -> Any:
result[0].text = self._transform_in_valid_json(result[0].text)
json_object = super().parse_result(result)
# Treating edge case of function calling llm returning the name instead of tool_name
json_object = json.loads(result[0].text)
if "tool_name" not in json_object:
json_object["tool_name"] = json_object.get("name", "")
result[0].text = json.dumps(json_object)
try:
return self.pydantic_object.parse_obj(json_object)
return self.pydantic_object.model_validate(json_object)
except ValidationError as e:
name = self.pydantic_object.__name__
msg = f"Failed to parse {name} from completion {json_object}. Got: {e}"

View File

@@ -0,0 +1,163 @@
from collections import defaultdict
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
class TaskEvaluationPydanticOutput(BaseModel):
quality: float = Field(
description="A score from 1 to 10 evaluating on completion, quality, and overall performance from the task_description and task_expected_output to the actual Task Output."
)
class CrewEvaluator:
"""
A class to evaluate the performance of the agents in the crew based on the tasks they have performed.
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
tasks_scores: defaultdict = defaultdict(list)
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
self.crew = crew
self.openai_model_name = openai_model_name
self._setup_for_evaluating()
def _setup_for_evaluating(self) -> None:
"""Sets up the crew for evaluating."""
for task in self.crew.tasks:
task.callback = self.evaluate
def _evaluator_agent(self):
return Agent(
role="Task Execution Evaluator",
goal=(
"Your goal is to evaluate the performance of the agents in the crew based on the tasks they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=ChatOpenAI(model=self.openai_model_name),
)
def _evaluation_task(
self, evaluator_agent: Agent, task_to_evaluate: Task, task_output: str
) -> Task:
return Task(
description=(
"Based on the task description and the expected output, compare and evaluate the performance of the agents in the crew based on the Task Output they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
f"task_description: {task_to_evaluate.description} "
f"task_expected_output: {task_to_evaluate.expected_output} "
f"agent: {task_to_evaluate.agent.role if task_to_evaluate.agent else None} "
f"agent_goal: {task_to_evaluate.agent.goal if task_to_evaluate.agent else None} "
f"Task Output: {task_output}"
),
expected_output="Evaluation Score from 1 to 10 based on the performance of the agents on the tasks",
agent=evaluator_agent,
output_pydantic=TaskEvaluationPydanticOutput,
)
def set_iteration(self, iteration: int) -> None:
self.iteration = iteration
def print_crew_evaluation_result(self) -> None:
"""
Prints the evaluation result of the crew in a table.
A Crew with 2 tasks using the command crewai test -n 2
will output the following table:
Task Scores
(1-10 Higher is better)
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
│ Crew │ 9.5 │ 9.0 │ 9.2 │
└────────────┴───────┴───────┴────────────┘
"""
task_averages = [
sum(scores) / len(scores) for scores in zip(*self.tasks_scores.values())
]
crew_average = sum(task_averages) / len(task_averages)
# Create a table
table = Table(title="Tasks Scores \n (1-10 Higher is better)")
# Add columns for the table
table.add_column("Tasks/Crew")
for run in range(1, len(self.tasks_scores) + 1):
table.add_column(f"Run {run}")
table.add_column("Avg. Total")
# Add rows for each task
for task_index in range(len(task_averages)):
task_scores = [
self.tasks_scores[run][task_index]
for run in range(1, len(self.tasks_scores) + 1)
]
avg_score = task_averages[task_index]
table.add_row(
f"Task {task_index + 1}", *map(str, task_scores), f"{avg_score:.1f}"
)
# Add a row for the crew average
crew_scores = [
sum(self.tasks_scores[run]) / len(self.tasks_scores[run])
for run in range(1, len(self.tasks_scores) + 1)
]
table.add_row("Crew", *map(str, crew_scores), f"{crew_average:.1f}")
run_exec_times = [
int(sum(tasks_exec_times))
for _, tasks_exec_times in self.run_execution_times.items()
]
execution_time_avg = int(sum(run_exec_times) / len(run_exec_times))
table.add_row(
"Execution Time (s)",
*map(str, run_exec_times),
f"{execution_time_avg}",
)
# Display the table in the terminal
console = Console()
console.print(table)
def evaluate(self, task_output: TaskOutput):
"""Evaluates the performance of the agents in the crew based on the tasks they have performed."""
current_task = None
for task in self.crew.tasks:
if task.description == task_output.description:
current_task = task
break
if not current_task or not task_output:
raise ValueError(
"Task to evaluate and task output are required for evaluation"
)
evaluator_agent = self._evaluator_agent()
evaluation_task = self._evaluation_task(
evaluator_agent, current_task, task_output.raw
)
evaluation_result = evaluation_task.execute_sync()
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(
current_task._execution_time
)
else:
raise ValueError("Evaluation result is not in the expected format")

View File

@@ -54,23 +54,23 @@ class TaskEvaluator:
def __init__(self, original_agent):
self.llm = original_agent.llm
def evaluate(self, task, ouput) -> TaskEvaluation:
def evaluate(self, task, output) -> TaskEvaluation:
evaluation_query = (
f"Assess the quality of the task completed based on the description, expected output, and actual results.\n\n"
f"Task Description:\n{task.description}\n\n"
f"Expected Output:\n{task.expected_output}\n\n"
f"Actual Output:\n{ouput}\n\n"
f"Actual Output:\n{output}\n\n"
"Please provide:\n"
"- Bullet points suggestions to improve future similar tasks\n"
"- A score from 0 to 10 evaluating on completion, quality, and overall performance"
"- Entities extracted from the task output, if any, their type, description, and relationships"
)
instructions = "I'm gonna convert this raw text into valid JSON."
instructions = "Convert all responses into valid JSON output."
if not self._is_gpt(self.llm):
model_schema = PydanticSchemaParser(model=TaskEvaluation).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
instructions = f"{instructions}\n\nReturn only valid JSON with the following schema:\n```json\n{model_schema}\n```"
converter = Converter(
llm=self.llm,

View File

@@ -0,0 +1,26 @@
class LLMContextLengthExceededException(Exception):
CONTEXT_LIMIT_ERRORS = [
"maximum context length",
"context length exceeded",
"context_length_exceeded",
"context window full",
"too many tokens",
"input is too long",
"exceeds token limit",
]
def __init__(self, error_message: str):
self.original_error_message = error_message
super().__init__(self._get_error_message(error_message))
def _is_context_limit_error(self, error_message: str) -> bool:
return any(
phrase.lower() in error_message.lower()
for phrase in self.CONTEXT_LIMIT_ERRORS
)
def _get_error_message(self, error_message: str):
return (
f"LLM context length exceeded. Original error: {error_message}\n"
"Consider using a smaller input or implementing a text splitting strategy."
)

View File

@@ -1,5 +1,7 @@
import os
import pickle
from datetime import datetime

View File

@@ -1,17 +1,28 @@
import re
class YamlParser:
@staticmethod
def parse(file):
"""
Parses a YAML file, modifies specific patterns, and checks for unsupported 'context' usage.
Args:
file (file object): The YAML file to parse.
Returns:
str: The modified content of the YAML file.
Raises:
ValueError: If 'context:' is used incorrectly.
"""
content = file.read()
# Replace single { and } with doubled ones, while leaving already doubled ones intact and the other special characters {# and {%
modified_content = re.sub(r"(?<!\{){(?!\{)(?!\#)(?!\%)", "{{", content)
modified_content = re.sub(
r"(?<!\})(?<!\%)(?<!\#)\}(?!})", "}}", modified_content
)
modified_content = re.sub(r"(?<!\})(?<!\%)(?<!\#)\}(?!})", "}}", modified_content)
# Check for 'context:' not followed by '[' and raise an error
if re.search(r"context:(?!\s*\[)", modified_content):
raise ValueError(
"Context is currently only supported in code when creating a task. Please use the 'context' key in the task configuration."
"Context is currently only supported in code when creating a task. "
"Please use the 'context' key in the task configuration."
)
return modified_content

View File

@@ -0,0 +1,76 @@
from typing import Any, List, Optional
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from crewai.agent import Agent
from crewai.task import Task
class PlannerTaskPydanticOutput(BaseModel):
list_of_plans_per_task: List[str]
class CrewPlanner:
def __init__(self, tasks: List[Task], planning_agent_llm: Optional[Any] = None):
self.tasks = tasks
if planning_agent_llm is None:
self.planning_agent_llm = ChatOpenAI(model="gpt-4o-mini")
else:
self.planning_agent_llm = planning_agent_llm
def _handle_crew_planning(self) -> PlannerTaskPydanticOutput:
"""Handles the Crew planning by creating detailed step-by-step plans for each task."""
planning_agent = self._create_planning_agent()
tasks_summary = self._create_tasks_summary()
planner_task = self._create_planner_task(planning_agent, tasks_summary)
result = planner_task.execute_sync()
if isinstance(result.pydantic, PlannerTaskPydanticOutput):
return result.pydantic
raise ValueError("Failed to get the Planning output")
def _create_planning_agent(self) -> Agent:
"""Creates the planning agent for the crew planning."""
return Agent(
role="Task Execution Planner",
goal=(
"Your goal is to create an extremely detailed, step-by-step plan based on the tasks and tools "
"available to each agent so that they can perform the tasks in an exemplary manner"
),
backstory="Planner agent for crew planning",
llm=self.planning_agent_llm,
)
def _create_planner_task(self, planning_agent: Agent, tasks_summary: str) -> Task:
"""Creates the planner task using the given agent and tasks summary."""
return Task(
description=(
f"Based on these tasks summary: {tasks_summary} \n Create the most descriptive plan based on the tasks "
"descriptions, tools available, and agents' goals for them to execute their goals with perfection."
),
expected_output="Step by step plan on how the agents can execute their tasks using the available tools with mastery",
agent=planning_agent,
output_pydantic=PlannerTaskPydanticOutput,
)
def _create_tasks_summary(self) -> str:
"""Creates a summary of all tasks."""
tasks_summary = []
for idx, task in enumerate(self.tasks):
tasks_summary.append(
f"""
Task Number {idx + 1} - {task.description}
"task_description": {task.description}
"task_expected_output": {task.expected_output}
"agent": {task.agent.role if task.agent else "None"}
"agent_goal": {task.agent.goal if task.agent else "None"}
"task_tools": {task.tools}
"agent_tools": {task.agent.tools if task.agent else "None"}
"""
)
return " ".join(tasks_summary)

View File

@@ -8,6 +8,10 @@ class Printer:
self._print_bold_green(content)
elif color == "bold_purple":
self._print_bold_purple(content)
elif color == "bold_blue":
self._print_bold_blue(content)
elif color == "yellow":
self._print_yellow(content)
else:
print(content)
@@ -22,3 +26,9 @@ class Printer:
def _print_red(self, content):
print("\033[91m {}\033[00m".format(content))
def _print_bold_blue(self, content):
print("\033[1m\033[94m {}\033[00m".format(content))
def _print_yellow(self, content):
print("\033[93m {}\033[00m".format(content))

View File

@@ -16,11 +16,13 @@ class PydanticSchemaParser(BaseModel):
return self._get_model_schema(self.model)
def _get_model_schema(self, model, depth=0) -> str:
lines = []
indent = " " * depth
lines = [f"{indent}{{"]
for field_name, field in model.model_fields.items():
field_type_str = self._get_field_type(field, depth + 1)
lines.append(f"{' ' * 4 * depth}- {field_name}: {field_type_str}")
lines.append(f"{indent} {field_name}: {field_type_str},")
lines[-1] = lines[-1].rstrip(",") # Remove trailing comma from last item
lines.append(f"{indent}}}")
return "\n".join(lines)
def _get_field_type(self, field, depth) -> str:
@@ -35,6 +37,6 @@ class PydanticSchemaParser(BaseModel):
else:
return f"List[{list_item_type.__name__}]"
elif issubclass(field_type, BaseModel):
return f"\n{self._get_model_schema(field_type, depth)}"
return self._get_model_schema(field_type, depth)
else:
return field_type.__name__

View File

@@ -0,0 +1,61 @@
from pydantic import BaseModel, Field
from datetime import datetime
from typing import Dict, Any, Optional, List
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
from crewai.task import Task
class ExecutionLog(BaseModel):
task_id: str
expected_output: Optional[str] = None
output: Dict[str, Any]
timestamp: datetime = Field(default_factory=datetime.now)
task_index: int
inputs: Dict[str, Any] = Field(default_factory=dict)
was_replayed: bool = False
def __getitem__(self, key: str) -> Any:
return getattr(self, key)
class TaskOutputStorageHandler:
def __init__(self) -> None:
self.storage = KickoffTaskOutputsSQLiteStorage()
def update(self, task_index: int, log: Dict[str, Any]):
saved_outputs = self.load()
if saved_outputs is None:
raise ValueError("Logs cannot be None")
if log.get("was_replayed", False):
replayed = {
"task_id": str(log["task"].id),
"expected_output": log["task"].expected_output,
"output": log["output"],
"was_replayed": log["was_replayed"],
"inputs": log["inputs"],
}
self.storage.update(
task_index,
**replayed,
)
else:
self.storage.add(**log)
def add(
self,
task: Task,
output: Dict[str, Any],
task_index: int,
inputs: Dict[str, Any] = {},
was_replayed: bool = False,
):
self.storage.add(task, output, task_index, was_replayed, inputs)
def reset(self):
self.storage.delete_all()
def load(self) -> Optional[List[Dict[str, Any]]]:
return self.storage.load()

View File

@@ -10,24 +10,24 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
class TokenCalcHandler(BaseCallbackHandler):
model_name: str = ""
token_cost_process: TokenProcess
encoding: tiktoken.Encoding
def __init__(self, model_name, token_cost_process):
self.model_name = model_name
self.token_cost_process = token_cost_process
try:
self.encoding = tiktoken.encoding_for_model(self.model_name)
except KeyError:
self.encoding = tiktoken.get_encoding("cl100k_base")
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
try:
encoding = tiktoken.encoding_for_model(self.model_name)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if self.token_cost_process is None:
return
for prompt in prompts:
self.token_cost_process.sum_prompt_tokens(len(encoding.encode(prompt)))
self.token_cost_process.sum_prompt_tokens(len(self.encoding.encode(prompt)))
async def on_llm_new_token(self, token: str, **kwargs) -> None:
self.token_cost_process.sum_completion_tokens(1)

View File

@@ -7,6 +7,7 @@ import pytest
from langchain.tools import tool
from langchain_core.exceptions import OutputParserException
from langchain_openai import ChatOpenAI
from langchain.schema import AgentAction
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
@@ -397,7 +398,7 @@ def test_agent_moved_on_after_max_iterations():
)
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool over and over until you're told you can give yout final answer.",
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool over and over until you're told you can give your final answer.",
expected_output="The final answer",
)
output = agent.execute_task(
@@ -948,7 +949,7 @@ def test_agent_use_trained_data(crew_training_handler):
crew_training_handler().load.return_value = {
agent.role: {
"suggestions": [
"The result of the math operatio must be right.",
"The result of the math operation must be right.",
"Result must be better than 1.",
]
}
@@ -958,7 +959,7 @@ def test_agent_use_trained_data(crew_training_handler):
assert (
result == "What is 1 + 1?You MUST follow these feedbacks: \n "
"The result of the math operatio must be right.\n - Result must be better than 1."
"The result of the math operation must be right.\n - Result must be better than 1."
)
crew_training_handler.assert_has_calls(
[mock.call(), mock.call("trained_agents_data.pkl"), mock.call().load()]
@@ -1014,3 +1015,75 @@ def test_agent_max_retry_limit():
),
]
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_handle_context_length_exceeds_limit():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
)
original_action = AgentAction(
tool="test_tool", tool_input="test_input", log="test_log"
)
with patch.object(
CrewAgentExecutor, "_iter_next_step", wraps=agent.agent_executor._iter_next_step
) as private_mock:
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool.",
expected_output="The final answer",
)
agent.execute_task(
task=task,
)
private_mock.assert_called_once()
with patch("crewai.agents.executor.click") as mock_prompt:
mock_prompt.return_value = "y"
with patch.object(
CrewAgentExecutor, "_handle_context_length"
) as mock_handle_context:
mock_handle_context.side_effect = ValueError(
"Context length limit exceeded"
)
long_input = "This is a very long input. " * 10000
# Attempt to handle context length, expecting the mocked error
with pytest.raises(ValueError) as excinfo:
agent.agent_executor._handle_context_length(
[(original_action, long_input)]
)
assert "Context length limit exceeded" in str(excinfo.value)
mock_handle_context.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_handle_context_length_exceeds_limit_cli_no():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
)
task = Task(description="test task", agent=agent, expected_output="test output")
with patch.object(
CrewAgentExecutor, "_iter_next_step", wraps=agent.agent_executor._iter_next_step
) as private_mock:
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool.",
expected_output="The final answer",
)
agent.execute_task(
task=task,
)
private_mock.assert_called_once()
with patch("crewai.agents.executor.click") as mock_prompt:
mock_prompt.return_value = "n"
pytest.raises(SystemExit)
with patch.object(
CrewAgentExecutor, "_handle_context_length"
) as mock_handle_context:
mock_handle_context.assert_not_called()

View File

@@ -0,0 +1,36 @@
import hashlib
from typing import Any, List, Optional
from crewai.agents.agent_builder.base_agent import BaseAgent
from pydantic import BaseModel
class TestAgent(BaseAgent):
def execute_task(
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> str:
return ""
def create_agent_executor(self, tools=None) -> None: ...
def _parse_tools(self, tools: List[Any]) -> List[Any]:
return []
def get_delegation_tools(self, agents: List["BaseAgent"]): ...
def get_output_converter(
self, llm: Any, text: str, model: type[BaseModel] | None, instructions: str
): ...
def test_key():
agent = TestAgent(
role="test role",
goal="test goal",
backstory="test backstory",
)
hash = hashlib.md5("test role|test goal|test backstory".encode()).hexdigest()
assert agent.key == hash

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,151 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Researcher. You''re an expert researcher,
specialized in technology, software engineering, AI and startups. You work as
a freelancer and is now working on doing research and analysis for a new customer.\nYour
personal goal is: Make the best research and analysis on content about AI and
AI agentsTo give my best complete final answer to the task use the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete
final answer to the task.\nYour final answer must be the great and the most
complete as possible, it must be outcome described.\n\nI MUST use these formats,
my job depends on it!\nCurrent Task: Say Hi\n\nThis is the expect criteria for
your final answer: Hi \n you MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:\n",
"role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"], "stream":
true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1072'
content-type:
- application/json
cookie:
- _cfuvid=Nxp5RE8CN2EyHxMIvB_SaTizIH5w0eWt9SPilMuIjMk-1721227661802-0.0.1.1-604800000;
__cf_bm=jadAYV2gh7qPDzgKO9A4JzJTaI9c2fnnjxloIQZeOIw-1721227661-1.0.1.1-apaA8kQyGiEV3kOuXHe8z1zeyvxd_jBHCQpdqWirUlylrUo.uRZjRDueI.sSXS4hXoWkyIW6kIMt7lamQM2mdw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9m0FB4Oy6X0apYX2wcQ30rTBkmtxT","object":"chat.completion.chunk","created":1721227709,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a4b087e7d024593-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Wed, 17 Jul 2024 14:48:29 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '142'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999753'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_75100793afc289eaf8b56127e1cc0532
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,181 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test role. test backstory\nYour personal
goal is: test goalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: The final answer is 42.
But don''t give it yet, instead keep using the `get_final_answer` tool.\n\nThis
is the expect criteria for your final answer: The final answer \n you MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '938'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
The"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
is"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"42"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rDmhDy41qR9B2jdH1zkXoxv4LMn6","object":"chat.completion.chunk","created":1722471399,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ac1a40879b87d1f-LAX
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Thu, 01 Aug 2024 00:16:40 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=MHUl15YVi607cmuLtQ84ESiH30IyJiIW1a40fopQ81w-1722471400-1.0.1.1-OGpq5Ezj6iE0ToM1diQllGb70.J3O_K2De9NbwZPWmW2qN07U20adJ_0yd6PKUNqMdL.xEnLcNAOWVmsfrLUrQ;
path=/; expires=Thu, 01-Aug-24 00:46:40 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=G2ZVNvfNfFk4DeKyZ7jMYetG7wOasINAGHstrOnuAY8-1722471400129-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '131'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_b68b417b3fe1c67244279551e411b37a
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,162 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test role. test backstory\nYour personal
goal is: test goalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: The final answer is 42.
But don''t give it yet, instead keep using the `get_final_answer` tool.\n\nThis
is the expect criteria for your final answer: The final answer \n you MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '938'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{"content":"42"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9rI1RAFocnugKoDvAxLndHW5uBeU9","object":"chat.completion.chunk","created":1722487689,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4e2b2da518","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ac331b9eaee2b7f-LAX
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Thu, 01 Aug 2024 04:48:09 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=OXht5zC71vWYFW_z_933m3sZfFS2xBez0DHv93FvT5s-1722487689-1.0.1.1-wE8JTR7MnwUgiiTDppYg8A7zLEiidth.MB0zrwONeAtNWRjKC1tuGf8LZYDlYIHUhqG73syYExpZ.5pZhzJkcg;
path=/; expires=Thu, 01-Aug-24 05:18:09 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=PAR7y4xRe4VzRT.7GK34Tq5r8vevY6xq0E.i.R40xnU-1722487689562-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '84'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_105dcfc53c9672dea0437249c12c3319
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,262 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Scorer. You''re an expert scorer, specialized
in scoring titles.\nYour personal goal is: Score the titleTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: my best complete final answer to the task.\nYour
final answer must be the great and the most complete as possible, it must be
outcome described.\n\nI MUST use these formats, my job depends on it!\nCurrent
Task: Give me an integer score between 1-5 for the following title: ''The impact
of AI in the future of work''\n\nThis is the expect criteria for your final
answer: The score of the title. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '997'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.14
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.14
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltULlJQMDDjI2f7PpkjJ7DsxWjEQ","object":"chat.completion.chunk","created":1721201741,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a488e81aa7f0c7e-EWR
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Wed, 17 Jul 2024 07:35:41 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=Ypr9N3lq.OD8hpimnkpN61rAsWyk216I8Tq7RA8.uwQ-1721201741-1.0.1.1-6Cj4aX9I96QHMmPwJBpO1iCFOJsvzq_agUIrl3XS.YhlPuGyA4K9sDONExvLn.cDe3W_p_1ET7Pt_hxjtHPAXQ;
path=/; expires=Wed, 17-Jul-24 08:05:41 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=NLa1BaUsRvD7shojIzUH9YSRXQIEzaoJVcq2_gNwqm0-1721201741646-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '106'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999771'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_e52461a1ab2702e360f6303fbcb4cc3c
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "4"}, {"role": "system", "content":
"I''m gonna convert this raw text into valid JSON."}], "model": "gpt-4o", "tool_choice":
{"type": "function", "function": {"name": "ScoreOutput"}}, "tools": [{"type":
"function", "function": {"name": "ScoreOutput", "description": "Correctly extracted
`ScoreOutput` with all the required parameters with correct types", "parameters":
{"properties": {"score": {"title": "Score", "type": "integer"}}, "required":
["score"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '519'
content-type:
- application/json
cookie:
- __cf_bm=Ypr9N3lq.OD8hpimnkpN61rAsWyk216I8Tq7RA8.uwQ-1721201741-1.0.1.1-6Cj4aX9I96QHMmPwJBpO1iCFOJsvzq_agUIrl3XS.YhlPuGyA4K9sDONExvLn.cDe3W_p_1ET7Pt_hxjtHPAXQ;
_cfuvid=NLa1BaUsRvD7shojIzUH9YSRXQIEzaoJVcq2_gNwqm0-1721201741646-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.14
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.14
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA2xS22rjMBB991eIeY6LHTubrR9LKYUttKWUvbUYRRnb6sqSVhqTJiH/vshxYzes
H8QwZ86FGe8jxkCuoWAgGk6itSq+VPR8d8O/vXXZbiOzx13S5D9/PNwSv8nvYBYYZvWGgj5YF8K0
ViFJo4+wcMgJg2q6nKfzJF3maQ+0Zo0q0GpLcW7ieTLP42QRp9lAbIwU6KFgvyPGGNv3b4io1/gO
BUtmH50Wvec1QnEaYgycUaED3HvpiWuC2QgKowl1SK07pSYAGaNKwZUajY/fflKPe+JKlVe/nqvV
98vNtslul3/Xj7vrzaZ6StOJ31F6a/tAVafFaT8T/NQvzswYA83bnvskjMP7jmxHZ3TGgLu6a1FT
iA77F/Bh+AWK/ACfRg/R/+rXoTqc1qpMbZ1Z+bMtQSW19E3pkPs+LXgy9mgR5F7783WfLgLWmdZS
SeYP6iD4dbgejP/LCC4GjAxxNeEsoiEe+K0nbMtK6hqddbI/JVS2FDkuVl8qnqUQHaJ/AAAA//8D
ACb4o2zTAgAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a488e858ca50c7e-EWR
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 17 Jul 2024 07:35:42 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '241'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999968'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_01c2f40fe9c73f883b7ed5b60c8067e5
status:
code: 200
message: OK
version: 1

View File

@@ -1,296 +1,266 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
personal goal is: test goal\n\nYou ONLY have access to the following tools,
and should NEVER make up tools that are not listed here:\n\nmultiplier: multiplier(first_number:
int, second_number: int) -> float - Useful for when you need to multiply two
numbers together.\n\nUse the following format:\n\nThought: you should always
think about what to do\nAction: the action to take, only one name of [multiplier],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple a python dictionary using \" to wrap keys and values.\nObservation:
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n\n\nCurrent Task: What is 3 times 4?\n\nThis is the expect criteria
for your final answer: The result of the multiplication. \n you MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought: \n"}], "model": "gpt-4", "n": 1, "stop":
body: '{"messages": [{"content": "You are test role. test backstory\nYour personal
goal is: test goal\nYou ONLY have access to the following tools, and should
NEVER make up tools that are not listed here:\n\nmultiplier(first_number: int,
second_number: int) -> float - Useful for when you need to multiply two numbers
together.\n\nUse the following format:\n\nThought: you should always think about
what to do\nAction: the action to take, only one name of [multiplier], just
the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n\nCurrent Task: What is 3 times
4?\n\nThis is the expect criteria for your final answer: The result of the multiplication.
\n you MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o",
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1277'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
need"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
to"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
determine"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
the"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
product"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
multiplier"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
Input"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
{\""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"first"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
\""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"second"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"}"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFmdFjejvg8ErQVjcpCsY8q7QbBI","object":"chat.completion.chunk","created":1720810787,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a2345bd1ffd742e-MIA
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Fri, 12 Jul 2024 18:59:47 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=EvHnbspWLzEWYmRV1sLsvFlp1S5ePQd_KIGldEvula4-1720810787-1.0.1.1-fcfgfphTZearpEpqAdn5vCov8FO3hERf4Zij0dZmjoTuHkfcpXthynLGlq2sBt7SpE72ogziXHDlNZsSvmBQzA;
path=/; expires=Fri, 12-Jul-24 19:29:47 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=QoRToNVlfxPsZucAm6jmW5xUqoEucDbQTYK4SkSwmUc-1720810787746-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '90'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999703'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f9575c9cc6494a463ddd5681e599b56d
status:
code: 200
message: OK
- request:
body: '{"messages": [{"content": "You are test role. test backstory\nYour personal
goal is: test goal\nYou ONLY have access to the following tools, and should
NEVER make up tools that are not listed here:\n\nmultiplier(first_number: int,
second_number: int) -> float - Useful for when you need to multiply two numbers
together.\n\nUse the following format:\n\nThought: you should always think about
what to do\nAction: the action to take, only one name of [multiplier], just
the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n\nCurrent Task: What is 3 times
4?\n\nThis is the expect criteria for your final answer: The result of the multiplication.
\n you MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:\nI need to determine the product
of 3 and 4.\n\nAction: multiplier\nAction Input: {\"first_number\": 3, \"second_number\":
4}\nObservation: 12\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop":
["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
- gzip, deflate
connection:
- keep-alive
content-length:
- '1268'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.12.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.12.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
need"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
to"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
calculate"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
the"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
product"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"multi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"plier"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
Input"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"{\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
\""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"first"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":",\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
\""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"second"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"}\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQXsDdREkfWKHVzRsYPnQXOyQNX","object":"chat.completion.chunk","created":1709396581,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 85e2ba970e5851e6-GRU
Cache-Control:
- no-cache, must-revalidate
Connection:
- keep-alive
Content-Type:
- text/event-stream
Date:
- Sat, 02 Mar 2024 16:23:01 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=C0VdYjpV_Hv7CqW8v18fK47fudXVna82_U1z_FcZ1Ng-1709396581-1.0.1.1-3mcMHbUjGImAUy9c5jtpPwFU1NQDoziKGjF8PNiFaGvST9S6PAOQVvyo4vHhKkznZM38Rs39YASCuQyyHRlkUg;
path=/; expires=Sat, 02-Mar-24 16:53:01 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=XwSpHIa8bLFKjduTc6qVKOscgm9TIoxw5Nm7uklFgXw-1709396581628-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400
openai-model:
- gpt-4-0613
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '360'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '300000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '299706'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 58ms
x-request-id:
- req_e3515cf2ba7a535d68b03019b57dfbf1
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
personal goal is: test goal\n\nYou ONLY have access to the following tools,
and should NEVER make up tools that are not listed here:\n\nmultiplier: multiplier(first_number:
int, second_number: int) -> float - Useful for when you need to multiply two
numbers together.\n\nUse the following format:\n\nThought: you should always
think about what to do\nAction: the action to take, only one name of [multiplier],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple a python dictionary using \" to wrap keys and values.\nObservation:
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n\n\nCurrent Task: What is 3 times 4?\n\nThis is the expect criteria
for your final answer: The result of the multiplication. \n you MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought: \nI need to calculate the product of 3 and
4.\n\nAction: \nmultiplier\n\nAction Input: \n{\n \"first_number\": 3,\n \"second_number\":
4\n}\n\nObservation: 12\n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '1428'
- '1420'
content-type:
- application/json
cookie:
- __cf_bm=C0VdYjpV_Hv7CqW8v18fK47fudXVna82_U1z_FcZ1Ng-1709396581-1.0.1.1-3mcMHbUjGImAUy9c5jtpPwFU1NQDoziKGjF8PNiFaGvST9S6PAOQVvyo4vHhKkznZM38Rs39YASCuQyyHRlkUg;
_cfuvid=XwSpHIa8bLFKjduTc6qVKOscgm9TIoxw5Nm7uklFgXw-1709396581628-0.0.1.1-604800000
- __cf_bm=EvHnbspWLzEWYmRV1sLsvFlp1S5ePQd_KIGldEvula4-1720810787-1.0.1.1-fcfgfphTZearpEpqAdn5vCov8FO3hERf4Zij0dZmjoTuHkfcpXthynLGlq2sBt7SpE72ogziXHDlNZsSvmBQzA;
_cfuvid=QoRToNVlfxPsZucAm6jmW5xUqoEucDbQTYK4SkSwmUc-1720810787746-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.12.0
- OpenAI/Python 1.35.10
x-stainless-arch:
- arm64
x-stainless-async:
@@ -300,7 +270,7 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.12.0
- 1.35.10
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
@@ -309,60 +279,60 @@ interactions:
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
string: 'data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
know"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
the"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"12"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"12"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8yMQZOVWWNho7BfFEeCd0GJq4Qstq","object":"chat.completion.chunk","created":1709396583,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: {"id":"chatcmpl-9kFme2PvSyqdXzFbvYY0WXafqzr5K","object":"chat.completion.chunk","created":1720810788,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
@@ -373,47 +343,41 @@ interactions:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 85e2baa3593951e6-GRU
Cache-Control:
- no-cache, must-revalidate
- 8a2345c21e0b742e-MIA
Connection:
- keep-alive
Content-Type:
- text/event-stream
- text/event-stream; charset=utf-8
Date:
- Sat, 02 Mar 2024 16:23:03 GMT
- Fri, 12 Jul 2024 18:59:48 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400
openai-model:
- gpt-4-0613
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '321'
- '133'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '300000'
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '299670'
- '21999671'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 65ms
- 0s
x-request-id:
- req_5670da4792b11cfa6dd8ed3b6dd85cbc
- req_be7165ee4924469e40e6a6b89a758b39
status:
code: 200
message: OK

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,697 @@
interactions:
- request:
body: '{"messages": [{"content": "You are Researcher. You''re an expert researcher,
specialized in technology, software engineering, AI and startups. You work as
a freelancer and is now working on doing research and analysis for a new customer.\nYour
personal goal is: Make the best research and analysis on content about AI and
AI agentsTo give my best complete final answer to the task use the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete
final answer to the task.\nYour final answer must be the great and the most
complete as possible, it must be outcome described.\n\nI MUST use these formats,
my job depends on it!\nCurrent Task: Generate a list of 5 interesting ideas
to explore for an article, where each bulletpoint is under 15 words.\n\nThis
is the expect criteria for your final answer: Bullet point list of 5 important
events. No additional commentary. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '1237'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.3
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.3
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Ethical"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
implications"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
decision"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-making"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
healthcare"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
agents"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
revolution"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"izing"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
customer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
service"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
e"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-commerce"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Advances"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-driven"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
predictive"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
maintenance"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
for"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
industries"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
The"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
role"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
autonomous"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
vehicle"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
safety"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
personalized"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
education"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Adaptive"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
learning"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
technologies"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7QxB9Y779gwWcC1EK2JtcMZ7vCS","object":"chat.completion.chunk","created":1720540363,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a097b99ad909e50-SJC
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 09 Jul 2024 15:52:44 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=3B5vxI0ieroGmK5h7cD7a8bCSrrPh4hLjrbw87J9XRE-1720540364-1.0.1.1-BXhaEwefXZ7Ez0Fg7.8O4AAnOoPc5b7O.4CdzhLnbo9WIF30RlsTzH58YBRxoQipeSCQMxhePm2HaNR6nNfWEQ;
path=/; expires=Tue, 09-Jul-24 16:22:44 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=D7VkuRYil_ytD3F4vcJzvO0gmVHyb3ZlnhCIjCrlyWE-1720540364005-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- user-soijsnuwuk3xvbf91w0jc33c
openai-processing-ms:
- '114'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '5000'
x-ratelimit-limit-tokens:
- '450000'
x-ratelimit-remaining-requests:
- '4999'
x-ratelimit-remaining-tokens:
- '449712'
x-ratelimit-reset-requests:
- 12ms
x-ratelimit-reset-tokens:
- 38ms
x-request-id:
- req_94f0907cc8b2065f1e223070d2be2a85
status:
code: 200
message: OK
- request:
body: '{"messages": [{"content": "You are Researcher. You''re an expert researcher,
specialized in technology, software engineering, AI and startups. You work as
a freelancer and is now working on doing research and analysis for a new customer.\nYour
personal goal is: Make the best research and analysis on content about AI and
AI agentsTo give my best complete final answer to the task use the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete
final answer to the task.\nYour final answer must be the great and the most
complete as possible, it must be outcome described.\n\nI MUST use these formats,
my job depends on it!\nCurrent Task: Generate a list of 5 interesting ideas
to explore for an article, where each bulletpoint is under 15 words.\n\nThis
is the expect criteria for your final answer: Bullet point list of 5 important
events. No additional commentary. \n you MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"],
"stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '1237'
content-type:
- application/json
cookie:
- __cf_bm=3B5vxI0ieroGmK5h7cD7a8bCSrrPh4hLjrbw87J9XRE-1720540364-1.0.1.1-BXhaEwefXZ7Ez0Fg7.8O4AAnOoPc5b7O.4CdzhLnbo9WIF30RlsTzH58YBRxoQipeSCQMxhePm2HaNR6nNfWEQ;
_cfuvid=D7VkuRYil_ytD3F4vcJzvO0gmVHyb3ZlnhCIjCrlyWE-1720540364005-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.3
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.3
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Evolution"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Agents"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Customer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Service"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Healthcare"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Transform"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"ing"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Diagnostics"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Treatment"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Ethical"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Imp"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"lications"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Autonomous"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Systems"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Driven"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Start"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"ups"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Dis"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"ruption"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Innovation"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"-"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Cyber"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"security"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Def"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"ending"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Against"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Modern"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
Threat"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"s"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9j7Qz3vXpsGKDVKeZa6oBvQ1PkdmE","object":"chat.completion.chunk","created":1720540365,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a097ba2bc449e50-SJC
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Tue, 09 Jul 2024 15:52:45 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- user-soijsnuwuk3xvbf91w0jc33c
openai-processing-ms:
- '117'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '5000'
x-ratelimit-limit-tokens:
- '450000'
x-ratelimit-remaining-requests:
- '4999'
x-ratelimit-remaining-tokens:
- '449712'
x-ratelimit-reset-requests:
- 12ms
x-ratelimit-reset-tokens:
- 38ms
x-request-id:
- req_a28d912698f7b75be87900d3a64bc91f
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,161 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Test Task\n\nThis is the
expect criteria for your final answer: Say Hi to John \n you MUST return the
actual complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\ncontext raw output\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop":
["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '918'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.3
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.3
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
John"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFSxQSL63v0sL4iqWFRWkul8QbhP","object":"chat.completion.chunk","created":1720809567,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a2327f1190467c1-SJC
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Fri, 12 Jul 2024 18:39:27 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=df.hIcEr2QTS045wWa7HSF0ATx6AeLAoPPW0FoIx7W4-1720809567-1.0.1.1-1Y2nQ4DHdc5HUHFO08LdQOoWZykmQ0xe67vzmv2dS4OnnKEHYd9GMzcq.vWODTXoI.BoSxQiRrylKYuuO2t8Tw;
path=/; expires=Fri, 12-Jul-24 19:09:27 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Zmb0XRHa49q2R664FqlS3F.aojtATJKKGnkUiQoH92I-1720809567257-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '83'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999792'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4fd8c7c8d47e20be017fb8de1ccb07c9
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,159 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Test Task\n\nThis is the
expect criteria for your final answer: Say Hi \n you MUST return the actual
complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\ncontext raw output\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop":
["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '910'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.14
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.14
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ltUKsvuhS55Ng70kOmxKNQcksxm4","object":"chat.completion.chunk","created":1721201740,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a488e7859304288-EWR
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Wed, 17 Jul 2024 07:35:40 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=tBullt04HIYduv1QEpAn86_ghx9PQ4DMe9LwLp7.bu4-1721201740-1.0.1.1-sGn3OYi9ntPGIzwuC4RH0UTUQFVy.BUFIvy9v9IrjorYeAsecsuuuREs7b19i4dXygWnZZEkH6cxvnQeJ62g7g;
path=/; expires=Wed, 17-Jul-24 08:05:40 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=uSSEccAecytxcWKGJoaQXLVBAwHLrZ.QckpcK..rN48-1721201740355-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '83'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999793'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_89b4947eaf51788bd7a69d6cc0da6c08
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,472 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Context Task\n\nThis is
the expect criteria for your final answer: Say John \n you MUST return the actual
complete content as the final answer, not a summary.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n":
1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '851'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.3
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.3
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
Say"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
John"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4hrEQNmcSJd7kCqA2oxUWQ4qOr","object":"chat.completion.chunk","created":1720808063,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a23033dc9abce48-SJC
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Fri, 12 Jul 2024 18:14:23 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=iykqFZ5ecR102MDyK48cHc9Ge3aXJBNKkesB4w9tCz4-1720808063-1.0.1.1-Eg_rjCINHV9hw7HzDFtJgxfwBfr9SahyJnbyo.JfBNFYax9M.ZcSVwmQwySE6AzVg.5AaLC05iljPfXmN26FrA;
path=/; expires=Fri, 12-Jul-24 18:44:23 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=KWM5AhkXkvM2JvJ6J7QHiC9iposfEkI9eZRl8w6aVTY-1720808063923-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '84'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999807'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_e6b4b9610f2f254a228ad44dda349115
status:
code: 200
message: OK
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Test Task\n\nThis is the
expect criteria for your final answer: Say Hi to John \n you MUST return the
actual complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\nSay John\n\nBegin! This is VERY important to you, use
the tools available and give your best Final Answer, your job depends on it!\n\nThought:\n",
"role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"], "stream":
true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '908'
content-type:
- application/json
cookie:
- __cf_bm=iykqFZ5ecR102MDyK48cHc9Ge3aXJBNKkesB4w9tCz4-1720808063-1.0.1.1-Eg_rjCINHV9hw7HzDFtJgxfwBfr9SahyJnbyo.JfBNFYax9M.ZcSVwmQwySE6AzVg.5AaLC05iljPfXmN26FrA;
_cfuvid=KWM5AhkXkvM2JvJ6J7QHiC9iposfEkI9eZRl8w6aVTY-1720808063923-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.3
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.3
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
John"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iocDiUNkL6NucVvumIQYikY61","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a230340ec4cce48-SJC
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Fri, 12 Jul 2024 18:14:24 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '69'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999795'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f3233314439a85e7a197be3d067c6d1c
status:
code: 200
message: OK
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Test Task\n\nThis is the
expect criteria for your final answer: Say Hi to John \n you MUST return the
actual complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\ncontext raw output\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop":
["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '918'
content-type:
- application/json
cookie:
- __cf_bm=iykqFZ5ecR102MDyK48cHc9Ge3aXJBNKkesB4w9tCz4-1720808063-1.0.1.1-Eg_rjCINHV9hw7HzDFtJgxfwBfr9SahyJnbyo.JfBNFYax9M.ZcSVwmQwySE6AzVg.5AaLC05iljPfXmN26FrA;
_cfuvid=KWM5AhkXkvM2JvJ6J7QHiC9iposfEkI9eZRl8w6aVTY-1720808063923-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.35.3
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.35.3
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.5
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{"content":"
John"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kF4iAwQ2K0M2fy86qpF660mrclmY","object":"chat.completion.chunk","created":1720808064,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_d33f7b429e","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a2303443f0cce48-SJC
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Fri, 12 Jul 2024 18:14:24 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '86'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '21999791'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_649687e24793d5b5782ecf58bc76386a
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,163 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Test Task\n\nThis is the
expect criteria for your final answer: Say Hi to John \n you MUST return the
actual complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\ncontext raw output\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "logprobs": false,
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '937'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.36.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.36.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
John"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a643794fe0341e9-EWR
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Sat, 20 Jul 2024 16:09:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=7kfE3khl2E.6zM44yel5nToHzdtz0QeQ4wkLuGYyqSs-1721491782-1.0.1.1-XUb95eXTriHvSUSCH.TCyAmCGCbPK6L7p_tRTDBon8Fo6ns8TDbDoDGA.wVCFI4MTXSxkqrjD0GpYDj4GBTeSQ;
path=/; expires=Sat, 20-Jul-24 16:39:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=iN41lAEk.DjpRMAtG.K0NEvIN0xB9eS0CUCU2iWmjv4-1721491782137-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '104'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999791'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4d90924dd28a0fb48c857f03515f0ca8
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,449 @@
interactions:
- request:
body: !!binary |
CrG5AQokCiIKDHNlcnZpY2UubmFtZRISChBjcmV3QUktdGVsZW1ldHJ5Eoe5AQoSChBjcmV3YWku
dGVsZW1ldHJ5EpACChB1aPb7uNmPUxB3quhKypN4EgjnW4at80oLKCoOVGFzayBFeGVjdXRpb24w
ATnIwfLEssXiF0FI2USctcXiF0ouCghjcmV3X2tleRIiCiA5OGE3ZDIxNDI1MjEwNzY5MzhjYzg3
Yzc2OWRlZGNkM0oxCgdjcmV3X2lkEiYKJDQzOTNlYjRmLTRiMDMtNDgzOS1hMmMwLWViY2IwNTMy
NDJjNEouCgh0YXNrX2tleRIiCiBhZmE2OThiMjYyZDM1NDNmOWE2MTFlNGQ1MTQ1ZWQ2YUoxCgd0
YXNrX2lkEiYKJDM1ZTA0MTVkLTlhNzYtNDc5YS1hOGFkLTI2NjJiZDQ0NjRiMXoCGAGFAQABAAAS
ig0KEBXTWyRbS66PohO2H7pX1jQSCBQxHUkWdA7dKgxDcmV3IENyZWF0ZWQwATmAAQ+ftcXiF0E4
fhGftcXiF0oaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjM2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoG
My4xMS41Si4KCGNyZXdfa2V5EiIKIGNhN2MwMTM2ZWM3YmY1ZGU3NWRlNWQyNjY5OWRhM2I0SjEK
B2NyZXdfaWQSJgokYzk5MzVhMDItOGJjYi00YTJlLThhZjktYTU5NWNmMTgyMzYzShwKDGNyZXdf
cHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9v
Zl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUr+BAoLY3Jld19hZ2VudHMS
7gQK6wRbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAi
Yjg4NzA5MjYtYzNiYi00MDUyLWIxYTctNDY3ZDdjNDJmMjVkIiwgInJvbGUiOiAiUmVzZWFyY2hl
ciIsICJnb2FsIjogIk1ha2UgdGhlIGJlc3QgcmVzZWFyY2ggYW5kIGFuYWx5c2lzIG9uIGNvbnRl
bnQgYWJvdXQgQUkgYW5kIEFJIGFnZW50cyIsICJiYWNrc3RvcnkiOiAiWW91J3JlIGFuIGV4cGVy
dCByZXNlYXJjaGVyLCBzcGVjaWFsaXplZCBpbiB0ZWNobm9sb2d5LCBzb2Z0d2FyZSBlbmdpbmVl
cmluZywgQUkgYW5kIHN0YXJ0dXBzLiBZb3Ugd29yayBhcyBhIGZyZWVsYW5jZXIgYW5kIGlzIG5v
dyB3b3JraW5nIG9uIGRvaW5nIHJlc2VhcmNoIGFuZCBhbmFseXNpcyBmb3IgYSBuZXcgY3VzdG9t
ZXIuIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDI1LCAibWF4X3JwbSI6IG51bGws
ICJpMThuIjogbnVsbCwgImxsbSI6ICJ7XCJuYW1lXCI6IG51bGwsIFwibW9kZWxfbmFtZVwiOiBc
ImdwdC00b1wiLCBcInRlbXBlcmF0dXJlXCI6IDAuNywgXCJjbGFzc1wiOiBcIkNoYXRPcGVuQUlc
In0iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAidG9vbHNfbmFtZXMiOiBbXX1dSskD
CgpjcmV3X3Rhc2tzEroDCrcDW3sia2V5IjogIjk0NGFlZjBiYWM4NDBmMWMyN2JkODNhOTM3YmMz
NjFiIiwgImlkIjogIjVkZDRjMTJhLThmOWItNDRmNi1iYjRhLWVkODdiNTgzZGU1MCIsICJkZXNj
cmlwdGlvbiI6ICJHaXZlIG1lIGEgbGlzdCBvZiA1IGludGVyZXN0aW5nIGlkZWFzIHRvIGV4cGxv
cmUgZm9yIG5hIGFydGljbGUsIHdoYXQgbWFrZXMgdGhlbSB1bmlxdWUgYW5kIGludGVyZXN0aW5n
LiIsICJleHBlY3RlZF9vdXRwdXQiOiAiQnVsbGV0IHBvaW50IGxpc3Qgb2YgNSBpbXBvcnRhbnQg
ZXZlbnRzLiIsICJhc3luY19leGVjdXRpb24/IjogdHJ1ZSwgImh1bWFuX2lucHV0PyI6IGZhbHNl
LCAiYWdlbnRfcm9sZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUx
ODE1MDZlNDFmZDljNDU2M2Q3NSIsICJjb250ZXh0IjogbnVsbCwgInRvb2xzX25hbWVzIjogW119
XUoqCghwbGF0Zm9ybRIeChxtYWNPUy0xNC4xLjEtYXJtNjQtYXJtLTY0Yml0ShwKEHBsYXRmb3Jt
X3JlbGVhc2USCAoGMjMuMS4wShsKD3BsYXRmb3JtX3N5c3RlbRIICgZEYXJ3aW5KewoQcGxhdGZv
cm1fdmVyc2lvbhJnCmVEYXJ3aW4gS2VybmVsIFZlcnNpb24gMjMuMS4wOiBNb24gT2N0ICA5IDIx
OjI3OjI0IFBEVCAyMDIzOyByb290OnhudS0xMDAwMi40MS45fjYvUkVMRUFTRV9BUk02NF9UNjAw
MEoKCgRjcHVzEgIYCnoCGAGFAQABAAASjgIKEIq7Mjq32M5Kt5dKJnjskZ0SCMx1TtvU1+T2KgxU
YXNrIENyZWF0ZWQwATkI9iiftcXiF0HAfimftcXiF0ouCghjcmV3X2tleRIiCiBjYTdjMDEzNmVj
N2JmNWRlNzVkZTVkMjY2OTlkYTNiNEoxCgdjcmV3X2lkEiYKJGM5OTM1YTAyLThiY2ItNGEyZS04
YWY5LWE1OTVjZjE4MjM2M0ouCgh0YXNrX2tleRIiCiA5NDRhZWYwYmFjODQwZjFjMjdiZDgzYTkz
N2JjMzYxYkoxCgd0YXNrX2lkEiYKJDVkZDRjMTJhLThmOWItNDRmNi1iYjRhLWVkODdiNTgzZGU1
MHoCGAGFAQABAAASkAIKEE4G7Oi0pafO3nARt5VKez4SCM6Ua5kmBYFDKg5UYXNrIEV4ZWN1dGlv
bjABOXC1KZ+1xeIXQWDhMJ+1xeIXSi4KCGNyZXdfa2V5EiIKIGNhN2MwMTM2ZWM3YmY1ZGU3NWRl
NWQyNjY5OWRhM2I0SjEKB2NyZXdfaWQSJgokYzk5MzVhMDItOGJjYi00YTJlLThhZjktYTU5NWNm
MTgyMzYzSi4KCHRhc2tfa2V5EiIKIDk0NGFlZjBiYWM4NDBmMWMyN2JkODNhOTM3YmMzNjFiSjEK
B3Rhc2tfaWQSJgokNWRkNGMxMmEtOGY5Yi00NGY2LWJiNGEtZWQ4N2I1ODNkZTUwegIYAYUBAAEA
ABLUGQoQX+5PRYVQ3O7KzTa1tWKiRxIIuu8x8CYW2KEqDENyZXcgQ3JlYXRlZDABOUjW1qO1xeIX
QUjE2aO1xeIXShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuMzYuMEoaCg5weXRob25fdmVyc2lvbhII
CgYzLjExLjVKLgoIY3Jld19rZXkSIgogYTBhYzk1MzU0ZDMyOWJhN2Y2OTQ4M2FkZmUwYzdkMjhK
MQoHY3Jld19pZBImCiQ5MzgzYzU2Yy1lNzQ3LTQwYmItOTlhYi01NGE2NGRkY2Q3YTlKHAoMY3Jl
d19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVy
X29mX3Rhc2tzEgIYBEobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSvcHCgtjcmV3X2FnZW50
cxLnBwrkB1t7ImtleSI6ICJkYWI1MjFlYmQzMWFlMTJmZWUxODlhMzhkMzA5MGQ5MyIsICJpZCI6
ICJhMzAzNTliZi01Y2QwLTQ3MGYtOTk2NS0yYjZhZTU0YmVmY2MiLCAicm9sZSI6ICJXcml0ZXIi
LCAiZ29hbCI6ICJZb3Ugd3JpdGUgbGVzc3NvbnMgb2YgbWF0aCBmb3Iga2lkcy4iLCAiYmFja3N0
b3J5IjogIllvdSdyZSBhbiBleHBlcnQgaW4gd3JpdHRpbmcgYW5kIHlvdSBsb3ZlIHRvIHRlYWNo
IGtpZHMgYnV0IHlvdSBrbm93IG5vdGhpbmcgb2YgbWF0aC4iLCAidmVyYm9zZT8iOiBmYWxzZSwg
Im1heF9pdGVyIjogMjUsICJtYXhfcnBtIjogbnVsbCwgImkxOG4iOiBudWxsLCAibGxtIjogIntc
Im5hbWVcIjogbnVsbCwgXCJtb2RlbF9uYW1lXCI6IFwiZ3B0LTRvXCIsIFwidGVtcGVyYXR1cmVc
IjogMC43LCBcImNsYXNzXCI6IFwiQ2hhdE9wZW5BSVwifSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/
IjogZmFsc2UsICJ0b29sc19uYW1lcyI6IFsibXVsdGlwbGNhdGlvbl90b29sIl19LCB7ImtleSI6
ICJkYWI1MjFlYmQzMWFlMTJmZWUxODlhMzhkMzA5MGQ5MyIsICJpZCI6ICJhN2JiNTI4ZS0yM2M4
LTQ1MzItYjNiYS0yOWU1NDNiMGFhN2YiLCAicm9sZSI6ICJXcml0ZXIiLCAiZ29hbCI6ICJZb3Ug
d3JpdGUgbGVzc3NvbnMgb2YgbWF0aCBmb3Iga2lkcy4iLCAiYmFja3N0b3J5IjogIllvdSdyZSBh
biBleHBlcnQgaW4gd3JpdHRpbmcgYW5kIHlvdSBsb3ZlIHRvIHRlYWNoIGtpZHMgYnV0IHlvdSBr
bm93IG5vdGhpbmcgb2YgbWF0aC4iLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjUs
ICJtYXhfcnBtIjogbnVsbCwgImkxOG4iOiBudWxsLCAibGxtIjogIntcIm5hbWVcIjogbnVsbCwg
XCJtb2RlbF9uYW1lXCI6IFwiZ3B0LTRvXCIsIFwidGVtcGVyYXR1cmVcIjogMC43LCBcImNsYXNz
XCI6IFwiQ2hhdE9wZW5BSVwifSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJ0b29s
c19uYW1lcyI6IFsibXVsdGlwbGNhdGlvbl90b29sIl19XUqaDQoKY3Jld190YXNrcxKLDQqIDVt7
ImtleSI6ICIzMGYzMjg2M2EyZWI3OThkMTA5NmM5MDcwMjgwOTgzMCIsICJpZCI6ICIxNjhlOWNm
Ny1hYWJjLTRkMGUtYTg1OS01ODEyZGM4MDg4NTYiLCAiZGVzY3JpcHRpb24iOiAiV2hhdCBpcyAy
IHRpbWVzIDY/IFJldHVybiBvbmx5IHRoZSBudW1iZXIgYWZ0ZXIgdXNpbmcgdGhlIG11bHRpcGxp
Y2F0aW9uIHRvb2wuIiwgImV4cGVjdGVkX291dHB1dCI6ICJ0aGUgcmVzdWx0IG9mIG11bHRpcGxp
Y2F0aW9uIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNl
LCAiYWdlbnRfcm9sZSI6ICJXcml0ZXIiLCAiYWdlbnRfa2V5IjogImRhYjUyMWViZDMxYWUxMmZl
ZTE4OWEzOGQzMDkwZDkzIiwgImNvbnRleHQiOiBudWxsLCAidG9vbHNfbmFtZXMiOiBbIm11bHRp
cGxjYXRpb25fdG9vbCJdfSwgeyJrZXkiOiAiM2QwYmRlZTMxMjdhZjk5MGIzNjZjMTJkZGJkNGE4
YTYiLCAiaWQiOiAiMDdkYmU0MzAtZDMxNC00MjgwLWEwODUtOGQ0MTQyZjNjZTFlIiwgImRlc2Ny
aXB0aW9uIjogIldoYXQgaXMgMyB0aW1lcyAxPyBSZXR1cm4gb25seSB0aGUgbnVtYmVyIGFmdGVy
IHVzaW5nIHRoZSBtdWx0aXBsaWNhdGlvbiB0b29sLiIsICJleHBlY3RlZF9vdXRwdXQiOiAidGhl
IHJlc3VsdCBvZiBtdWx0aXBsaWNhdGlvbiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJo
dW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiV3JpdGVyIiwgImFnZW50X2tleSI6
ICJkYWI1MjFlYmQzMWFlMTJmZWUxODlhMzhkMzA5MGQ5MyIsICJjb250ZXh0IjogbnVsbCwgInRv
b2xzX25hbWVzIjogWyJtdWx0aXBsY2F0aW9uX3Rvb2wiXX0sIHsia2V5IjogIjMwZjMyODYzYTJl
Yjc5OGQxMDk2YzkwNzAyODA5ODMwIiwgImlkIjogImFlYjJmMjk1LTI3NDUtNGYwMi05MjQxLWU3
NTk2MjVjOWQyMCIsICJkZXNjcmlwdGlvbiI6ICJXaGF0IGlzIDIgdGltZXMgNj8gUmV0dXJuIG9u
bHkgdGhlIG51bWJlciBhZnRlciB1c2luZyB0aGUgbXVsdGlwbGljYXRpb24gdG9vbC4iLCAiZXhw
ZWN0ZWRfb3V0cHV0IjogInRoZSByZXN1bHQgb2YgbXVsdGlwbGljYXRpb24iLCAiYXN5bmNfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIldy
aXRlciIsICJhZ2VudF9rZXkiOiAiZGFiNTIxZWJkMzFhZTEyZmVlMTg5YTM4ZDMwOTBkOTMiLCAi
Y29udGV4dCI6IG51bGwsICJ0b29sc19uYW1lcyI6IFsibXVsdGlwbGNhdGlvbl90b29sIl19LCB7
ImtleSI6ICIzZDBiZGVlMzEyN2FmOTkwYjM2NmMxMmRkYmQ0YThhNiIsICJpZCI6ICI5MGE0N2Fm
Ny1jZjc5LTQ3NjYtOWJjNS02Nzg3MWMwOTFiOTYiLCAiZGVzY3JpcHRpb24iOiAiV2hhdCBpcyAz
IHRpbWVzIDE/IFJldHVybiBvbmx5IHRoZSBudW1iZXIgYWZ0ZXIgdXNpbmcgdGhlIG11bHRpcGxp
Y2F0aW9uIHRvb2wuIiwgImV4cGVjdGVkX291dHB1dCI6ICJ0aGUgcmVzdWx0IG9mIG11bHRpcGxp
Y2F0aW9uIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNl
LCAiYWdlbnRfcm9sZSI6ICJXcml0ZXIiLCAiYWdlbnRfa2V5IjogImRhYjUyMWViZDMxYWUxMmZl
ZTE4OWEzOGQzMDkwZDkzIiwgImNvbnRleHQiOiBudWxsLCAidG9vbHNfbmFtZXMiOiBbIm11bHRp
cGxjYXRpb25fdG9vbCJdfV1KKgoIcGxhdGZvcm0SHgocbWFjT1MtMTQuMS4xLWFybTY0LWFybS02
NGJpdEocChBwbGF0Zm9ybV9yZWxlYXNlEggKBjIzLjEuMEobCg9wbGF0Zm9ybV9zeXN0ZW0SCAoG
RGFyd2luSnsKEHBsYXRmb3JtX3ZlcnNpb24SZwplRGFyd2luIEtlcm5lbCBWZXJzaW9uIDIzLjEu
MDogTW9uIE9jdCAgOSAyMToyNzoyNCBQRFQgMjAyMzsgcm9vdDp4bnUtMTAwMDIuNDEuOX42L1JF
TEVBU0VfQVJNNjRfVDYwMDBKCgoEY3B1cxICGAp6AhgBhQEAAQAAEo4CChDMsDVWCtNnTZd78P6M
F0qHEghu/cLCLfIljioMVGFzayBDcmVhdGVkMAE5ALHzo7XF4hdBMCb0o7XF4hdKLgoIY3Jld19r
ZXkSIgogYTBhYzk1MzU0ZDMyOWJhN2Y2OTQ4M2FkZmUwYzdkMjhKMQoHY3Jld19pZBImCiQ5Mzgz
YzU2Yy1lNzQ3LTQwYmItOTlhYi01NGE2NGRkY2Q3YTlKLgoIdGFza19rZXkSIgogMzBmMzI4NjNh
MmViNzk4ZDEwOTZjOTA3MDI4MDk4MzBKMQoHdGFza19pZBImCiQxNjhlOWNmNy1hYWJjLTRkMGUt
YTg1OS01ODEyZGM4MDg4NTZ6AhgBhQEAAQAAEpUBChB1ZPMBfoWizT2O65qegWcGEgjmR3EI+Dhz
KSoKVG9vbCBVc2FnZTABOUCLN6W1xeIXQWBWOKW1xeIXShoKDmNyZXdhaV92ZXJzaW9uEggKBjAu
MzYuMEohCgl0b29sX25hbWUSFAoSbXVsdGlwbGNhdGlvbl90b29sSg4KCGF0dGVtcHRzEgIYAXoC
GAGFAQABAAASkAIKEEukGnCGulTfJ1/e50UIF5ASCBeMmMmX2ss5Kg5UYXNrIEV4ZWN1dGlvbjAB
OShR9KO1xeIXQQBL+KW1xeIXSi4KCGNyZXdfa2V5EiIKIGEwYWM5NTM1NGQzMjliYTdmNjk0ODNh
ZGZlMGM3ZDI4SjEKB2NyZXdfaWQSJgokOTM4M2M1NmMtZTc0Ny00MGJiLTk5YWItNTRhNjRkZGNk
N2E5Si4KCHRhc2tfa2V5EiIKIDMwZjMyODYzYTJlYjc5OGQxMDk2YzkwNzAyODA5ODMwSjEKB3Rh
c2tfaWQSJgokMTY4ZTljZjctYWFiYy00ZDBlLWE4NTktNTgxMmRjODA4ODU2egIYAYUBAAEAABKO
AgoQeq27u45vVnfO3QW8y5TkKhII8pwpZBclUSUqDFRhc2sgQ3JlYXRlZDABOXCRBaa1xeIXQeAl
Bqa1xeIXSi4KCGNyZXdfa2V5EiIKIGEwYWM5NTM1NGQzMjliYTdmNjk0ODNhZGZlMGM3ZDI4SjEK
B2NyZXdfaWQSJgokOTM4M2M1NmMtZTc0Ny00MGJiLTk5YWItNTRhNjRkZGNkN2E5Si4KCHRhc2tf
a2V5EiIKIDNkMGJkZWUzMTI3YWY5OTBiMzY2YzEyZGRiZDRhOGE2SjEKB3Rhc2tfaWQSJgokMDdk
YmU0MzAtZDMxNC00MjgwLWEwODUtOGQ0MTQyZjNjZTFlegIYAYUBAAEAABKVAQoQDpoau444Nc2P
TpqGSwuJUBII3odk2PVsECQqClRvb2wgVXNhZ2UwATlQXjmntcXiF0GwSDqntcXiF0oaCg5jcmV3
YWlfdmVyc2lvbhIICgYwLjM2LjBKIQoJdG9vbF9uYW1lEhQKEm11bHRpcGxjYXRpb25fdG9vbEoO
CghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEpACChBW89qgKwxZoE48iGgYORjmEggn0gOg6T0j3SoO
VGFzayBFeGVjdXRpb24wATnYUAamtcXiF0GwUfSntcXiF0ouCghjcmV3X2tleRIiCiBhMGFjOTUz
NTRkMzI5YmE3ZjY5NDgzYWRmZTBjN2QyOEoxCgdjcmV3X2lkEiYKJDkzODNjNTZjLWU3NDctNDBi
Yi05OWFiLTU0YTY0ZGRjZDdhOUouCgh0YXNrX2tleRIiCiAzZDBiZGVlMzEyN2FmOTkwYjM2NmMx
MmRkYmQ0YThhNkoxCgd0YXNrX2lkEiYKJDA3ZGJlNDMwLWQzMTQtNDI4MC1hMDg1LThkNDE0MmYz
Y2UxZXoCGAGFAQABAAASjgIKECX4kiD6RrdHOsL/u1WPaKISCEn8hmiuaOxzKgxUYXNrIENyZWF0
ZWQwATngAQCotcXiF0GwhgCotcXiF0ouCghjcmV3X2tleRIiCiBhMGFjOTUzNTRkMzI5YmE3ZjY5
NDgzYWRmZTBjN2QyOEoxCgdjcmV3X2lkEiYKJDkzODNjNTZjLWU3NDctNDBiYi05OWFiLTU0YTY0
ZGRjZDdhOUouCgh0YXNrX2tleRIiCiAzMGYzMjg2M2EyZWI3OThkMTA5NmM5MDcwMjgwOTgzMEox
Cgd0YXNrX2lkEiYKJGFlYjJmMjk1LTI3NDUtNGYwMi05MjQxLWU3NTk2MjVjOWQyMHoCGAGFAQAB
AAASlQEKEA/spc2u3GsQSPtfjOb6NJISCG3tEmcOqAoDKgpUb29sIFVzYWdlMAE58GZDqbXF4hdB
IFlEqbXF4hdKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC4zNi4wSiEKCXRvb2xfbmFtZRIUChJtdWx0
aXBsY2F0aW9uX3Rvb2xKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAABKQAgoQsO+zsd47DClQTmS7
ZfZYLxII2UxCduX9osEqDlRhc2sgRXhlY3V0aW9uMAE5qLEAqLXF4hdByLEBqrXF4hdKLgoIY3Jl
d19rZXkSIgogYTBhYzk1MzU0ZDMyOWJhN2Y2OTQ4M2FkZmUwYzdkMjhKMQoHY3Jld19pZBImCiQ5
MzgzYzU2Yy1lNzQ3LTQwYmItOTlhYi01NGE2NGRkY2Q3YTlKLgoIdGFza19rZXkSIgogMzBmMzI4
NjNhMmViNzk4ZDEwOTZjOTA3MDI4MDk4MzBKMQoHdGFza19pZBImCiRhZWIyZjI5NS0yNzQ1LTRm
MDItOTI0MS1lNzU5NjI1YzlkMjB6AhgBhQEAAQAAEo4CChD55L/w1V+ezIjuajyG1hwUEggBdDur
+CTqUCoMVGFzayBDcmVhdGVkMAE52AcPqrXF4hdBSJwPqrXF4hdKLgoIY3Jld19rZXkSIgogYTBh
Yzk1MzU0ZDMyOWJhN2Y2OTQ4M2FkZmUwYzdkMjhKMQoHY3Jld19pZBImCiQ5MzgzYzU2Yy1lNzQ3
LTQwYmItOTlhYi01NGE2NGRkY2Q3YTlKLgoIdGFza19rZXkSIgogM2QwYmRlZTMxMjdhZjk5MGIz
NjZjMTJkZGJkNGE4YTZKMQoHdGFza19pZBImCiQ5MGE0N2FmNy1jZjc5LTQ3NjYtOWJjNS02Nzg3
MWMwOTFiOTZ6AhgBhQEAAQAAEpUBChA+cdY4kcsaUDolyJw3c952EggtUbX8zXBaySoKVG9vbCBV
c2FnZTABOaAHUKu1xeIXQcDSUKu1xeIXShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuMzYuMEohCgl0
b29sX25hbWUSFAoSbXVsdGlwbGNhdGlvbl90b29sSg4KCGF0dGVtcHRzEgIYAXoCGAGFAQABAAAS
kAIKEAvnVK0WhsX8u4xShcr/sooSCC+aS9IRpThCKg5UYXNrIEV4ZWN1dGlvbjABOUDHD6q1xeIX
QVC9IKy1xeIXSi4KCGNyZXdfa2V5EiIKIGEwYWM5NTM1NGQzMjliYTdmNjk0ODNhZGZlMGM3ZDI4
SjEKB2NyZXdfaWQSJgokOTM4M2M1NmMtZTc0Ny00MGJiLTk5YWItNTRhNjRkZGNkN2E5Si4KCHRh
c2tfa2V5EiIKIDNkMGJkZWUzMTI3YWY5OTBiMzY2YzEyZGRiZDRhOGE2SjEKB3Rhc2tfaWQSJgok
OTBhNDdhZjctY2Y3OS00NzY2LTliYzUtNjc4NzFjMDkxYjk2egIYAYUBAAEAABKrCwoQfae3w+r8
n0qGJnp7DP6RtxIILhPziA5VzRwqDENyZXcgQ3JlYXRlZDABOZipkrW1xeIXQZDIlLW1xeIXShoK
DmNyZXdhaV92ZXJzaW9uEggKBjAuMzYuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjExLjVKLgoI
Y3Jld19rZXkSIgogYzk3YjVmZWI1ZDFiNjZiYjU5MDA2YWFhMDFhMjljZDZKMQoHY3Jld19pZBIm
CiQ2M2Y2MGU1Yi1kMjZkLTQwZjMtYTQyMC0wNzQ3Y2MwOWM5YWRKHAoMY3Jld19wcm9jZXNzEgwK
CnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhABShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIY
AUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStIDCgtjcmV3X2FnZW50cxLCAwq/A1t7Imtl
eSI6ICIwN2Q5OWI2MzA0MTFkMzVmZDkwNDdhNTMyZDUzZGRhNyIsICJpZCI6ICJhMGJlYjc4ZS04
ZGUzLTQ5YjEtYWRkZS1mODg3NWMzNjM3ZGYiLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgImdvYWwi
OiAiWW91IHJlc2VhcmNoIGFib3V0IG1hdGguIiwgImJhY2tzdG9yeSI6ICJZb3UncmUgYW4gZXhw
ZXJ0IGluIHJlc2VhcmNoIGFuZCB5b3UgbG92ZSB0byBsZWFybiBuZXcgdGhpbmdzLiIsICJ2ZXJi
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyNSwgIm1heF9ycG0iOiBudWxsLCAiaTE4biI6IG51
bGwsICJsbG0iOiAie1wibmFtZVwiOiBudWxsLCBcIm1vZGVsX25hbWVcIjogXCJncHQtNG9cIiwg
XCJ0ZW1wZXJhdHVyZVwiOiAwLjcsIFwiY2xhc3NcIjogXCJDaGF0T3BlbkFJXCJ9IiwgImRlbGVn
YXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgInRvb2xzX25hbWVzIjogW119XUqWAwoKY3Jld190YXNr
cxKHAwqEA1t7ImtleSI6ICI2Mzk5NjUxN2YzZjNmMWM5NGQ2YmI2MTdhYTBiMWM0ZiIsICJpZCI6
ICIwMmNiOWIyYS0yODIyLTQwNTYtYjQ5MC04YjA0YzA2MTg2M2IiLCAiZGVzY3JpcHRpb24iOiAi
UmVzZWFyY2ggYSB0b3BpYyB0byB0ZWFjaCBhIGtpZCBhZ2VkIDYgYWJvdXQgbWF0aC4iLCAiZXhw
ZWN0ZWRfb3V0cHV0IjogIkEgdG9waWMsIGV4cGxhbmF0aW9uLCBhbmdsZSwgYW5kIGV4YW1wbGVz
LiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFn
ZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiMDdkOTliNjMwNDExZDM1ZmQ5
MDQ3YTUzMmQ1M2RkYTciLCAiY29udGV4dCI6IG51bGwsICJ0b29sc19uYW1lcyI6IFtdfV1KKgoI
cGxhdGZvcm0SHgocbWFjT1MtMTQuMS4xLWFybTY0LWFybS02NGJpdEocChBwbGF0Zm9ybV9yZWxl
YXNlEggKBjIzLjEuMEobCg9wbGF0Zm9ybV9zeXN0ZW0SCAoGRGFyd2luSnsKEHBsYXRmb3JtX3Zl
cnNpb24SZwplRGFyd2luIEtlcm5lbCBWZXJzaW9uIDIzLjEuMDogTW9uIE9jdCAgOSAyMToyNzoy
NCBQRFQgMjAyMzsgcm9vdDp4bnUtMTAwMDIuNDEuOX42L1JFTEVBU0VfQVJNNjRfVDYwMDBKCgoE
Y3B1cxICGAp6AhgBhQEAAQAAEo4CChDwvE8C6FMSvgaW9DsUngzEEgi69DWPEIv7/ioMVGFzayBD
cmVhdGVkMAE5QJOmtbXF4hdBSOWmtbXF4hdKLgoIY3Jld19rZXkSIgogYzk3YjVmZWI1ZDFiNjZi
YjU5MDA2YWFhMDFhMjljZDZKMQoHY3Jld19pZBImCiQ2M2Y2MGU1Yi1kMjZkLTQwZjMtYTQyMC0w
NzQ3Y2MwOWM5YWRKLgoIdGFza19rZXkSIgogNjM5OTY1MTdmM2YzZjFjOTRkNmJiNjE3YWEwYjFj
NGZKMQoHdGFza19pZBImCiQwMmNiOWIyYS0yODIyLTQwNTYtYjQ5MC04YjA0YzA2MTg2M2J6AhgB
hQEAAQAAEpACChA9ji0VC42jOLjDFsSGAZehEgi88WVi+J8WZyoOVGFzayBFeGVjdXRpb24wATlA
EKe1tcXiF0GwOXS9tcXiF0ouCghjcmV3X2tleRIiCiBjOTdiNWZlYjVkMWI2NmJiNTkwMDZhYWEw
MWEyOWNkNkoxCgdjcmV3X2lkEiYKJDYzZjYwZTViLWQyNmQtNDBmMy1hNDIwLTA3NDdjYzA5Yzlh
ZEouCgh0YXNrX2tleRIiCiA2Mzk5NjUxN2YzZjNmMWM5NGQ2YmI2MTdhYTBiMWM0ZkoxCgd0YXNr
X2lkEiYKJDAyY2I5YjJhLTI4MjItNDA1Ni1iNDkwLThiMDRjMDYxODYzYnoCGAGFAQABAAASqwsK
EOSKFi2MNd2ArhJhwSRFLU8SCLUBjfAc1xVOKgxDcmV3IENyZWF0ZWQwATlAcNi/tcXiF0G4zdq/
tcXiF0oaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjM2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
MS41Si4KCGNyZXdfa2V5EiIKIGM5N2I1ZmViNWQxYjY2YmI1OTAwNmFhYTAxYTI5Y2Q2SjEKB2Ny
ZXdfaWQSJgokNmFlNzhhZjEtNDE5Ny00ODU2LWE1OTItYWEzZGNmMTI5OGJhShwKDGNyZXdfcHJv
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrSAwoLY3Jld19hZ2VudHMSwgMK
vwNbeyJrZXkiOiAiMDdkOTliNjMwNDExZDM1ZmQ5MDQ3YTUzMmQ1M2RkYTciLCAiaWQiOiAiYWUz
ZjEwYmYtNThlMy00NjNjLWI4YTUtMDZjNTAxYTVlNWY0IiwgInJvbGUiOiAiUmVzZWFyY2hlciIs
ICJnb2FsIjogIllvdSByZXNlYXJjaCBhYm91dCBtYXRoLiIsICJiYWNrc3RvcnkiOiAiWW91J3Jl
IGFuIGV4cGVydCBpbiByZXNlYXJjaCBhbmQgeW91IGxvdmUgdG8gbGVhcm4gbmV3IHRoaW5ncy4i
LCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjUsICJtYXhfcnBtIjogbnVsbCwgImkx
OG4iOiBudWxsLCAibGxtIjogIntcIm5hbWVcIjogbnVsbCwgXCJtb2RlbF9uYW1lXCI6IFwiZ3B0
LTRvXCIsIFwidGVtcGVyYXR1cmVcIjogMC43LCBcImNsYXNzXCI6IFwiQ2hhdE9wZW5BSVwifSIs
ICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJ0b29sc19uYW1lcyI6IFtdfV1KlgMKCmNy
ZXdfdGFza3MShwMKhANbeyJrZXkiOiAiNjM5OTY1MTdmM2YzZjFjOTRkNmJiNjE3YWEwYjFjNGYi
LCAiaWQiOiAiNTQ4NzY5YWUtMmFjZS00NzIwLTlhYWEtZWY3YmVjZGRmMjAyIiwgImRlc2NyaXB0
aW9uIjogIlJlc2VhcmNoIGEgdG9waWMgdG8gdGVhY2ggYSBraWQgYWdlZCA2IGFib3V0IG1hdGgu
IiwgImV4cGVjdGVkX291dHB1dCI6ICJBIHRvcGljLCBleHBsYW5hdGlvbiwgYW5nbGUsIGFuZCBl
eGFtcGxlcy4iLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFs
c2UsICJhZ2VudF9yb2xlIjogIlJlc2VhcmNoZXIiLCAiYWdlbnRfa2V5IjogIjA3ZDk5YjYzMDQx
MWQzNWZkOTA0N2E1MzJkNTNkZGE3IiwgImNvbnRleHQiOiBudWxsLCAidG9vbHNfbmFtZXMiOiBb
XX1dSioKCHBsYXRmb3JtEh4KHG1hY09TLTE0LjEuMS1hcm02NC1hcm0tNjRiaXRKHAoQcGxhdGZv
cm1fcmVsZWFzZRIICgYyMy4xLjBKGwoPcGxhdGZvcm1fc3lzdGVtEggKBkRhcndpbkp7ChBwbGF0
Zm9ybV92ZXJzaW9uEmcKZURhcndpbiBLZXJuZWwgVmVyc2lvbiAyMy4xLjA6IE1vbiBPY3QgIDkg
MjE6Mjc6MjQgUERUIDIwMjM7IHJvb3Q6eG51LTEwMDAyLjQxLjl+Ni9SRUxFQVNFX0FSTTY0X1Q2
MDAwSgoKBGNwdXMSAhgKegIYAYUBAAEAABKOAgoQJwZSCcuSu3diAuOYiVdE2BIIeF1BeIAKnP4q
DFRhc2sgQ3JlYXRlZDABOYhX77+1xeIXQcCh77+1xeIXSi4KCGNyZXdfa2V5EiIKIGM5N2I1ZmVi
NWQxYjY2YmI1OTAwNmFhYTAxYTI5Y2Q2SjEKB2NyZXdfaWQSJgokNmFlNzhhZjEtNDE5Ny00ODU2
LWE1OTItYWEzZGNmMTI5OGJhSi4KCHRhc2tfa2V5EiIKIDYzOTk2NTE3ZjNmM2YxYzk0ZDZiYjYx
N2FhMGIxYzRmSjEKB3Rhc2tfaWQSJgokNTQ4NzY5YWUtMmFjZS00NzIwLTlhYWEtZWY3YmVjZGRm
MjAyegIYAYUBAAEAABKQAgoQxBgL6L3Ce74Cu4q6j0ErDRIIEnXenwnk/A4qDlRhc2sgRXhlY3V0
aW9uMAE5uMzvv7XF4hdBAEPaxrXF4hdKLgoIY3Jld19rZXkSIgogYzk3YjVmZWI1ZDFiNjZiYjU5
MDA2YWFhMDFhMjljZDZKMQoHY3Jld19pZBImCiQ2YWU3OGFmMS00MTk3LTQ4NTYtYTU5Mi1hYTNk
Y2YxMjk4YmFKLgoIdGFza19rZXkSIgogNjM5OTY1MTdmM2YzZjFjOTRkNmJiNjE3YWEwYjFjNGZK
MQoHdGFza19pZBImCiQ1NDg3NjlhZS0yYWNlLTQ3MjAtOWFhYS1lZjdiZWNkZGYyMDJ6AhgBhQEA
AQAAEo0MChB2PHWFIMgXT4sbnL1Fk9tqEgj1iM6d8aLAFyoMQ3JldyBDcmVhdGVkMAE5SKovx7XF
4hdBwAcyx7XF4hdKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC4zNi4wShoKDnB5dGhvbl92ZXJzaW9u
EggKBjMuMTEuNUouCghjcmV3X2tleRIiCiA4YzI3NTJmNDllNWI5ZDJiNjhjYjM1Y2FjOGZjYzg2
ZEoxCgdjcmV3X2lkEiYKJDA2MTdhZjU1LWEwNjQtNDEwMi05YjQ0LThhMThiZWU0NTg3OEocCgxj
cmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1i
ZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAFK/gQKC2NyZXdfYWdl
bnRzEu4ECusEW3sia2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlk
IjogIjc4YmM1N2I4LWIwZTgtNDZlNy04OTIzLTQ2ZDJlMWQ4MjQwNyIsICJyb2xlIjogIlJlc2Vh
cmNoZXIiLCAiZ29hbCI6ICJNYWtlIHRoZSBiZXN0IHJlc2VhcmNoIGFuZCBhbmFseXNpcyBvbiBj
b250ZW50IGFib3V0IEFJIGFuZCBBSSBhZ2VudHMiLCAiYmFja3N0b3J5IjogIllvdSdyZSBhbiBl
eHBlcnQgcmVzZWFyY2hlciwgc3BlY2lhbGl6ZWQgaW4gdGVjaG5vbG9neSwgc29mdHdhcmUgZW5n
aW5lZXJpbmcsIEFJIGFuZCBzdGFydHVwcy4gWW91IHdvcmsgYXMgYSBmcmVlbGFuY2VyIGFuZCBp
cyBub3cgd29ya2luZyBvbiBkb2luZyByZXNlYXJjaCBhbmQgYW5hbHlzaXMgZm9yIGEgbmV3IGN1
c3RvbWVyLiIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyNSwgIm1heF9ycG0iOiBu
dWxsLCAiaTE4biI6IG51bGwsICJsbG0iOiAie1wibmFtZVwiOiBudWxsLCBcIm1vZGVsX25hbWVc
IjogXCJncHQtNG9cIiwgXCJ0ZW1wZXJhdHVyZVwiOiAwLjcsIFwiY2xhc3NcIjogXCJDaGF0T3Bl
bkFJXCJ9IiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgInRvb2xzX25hbWVzIjogW119
XUrMAgoKY3Jld190YXNrcxK9Agq6Alt7ImtleSI6ICIwZDY4NWEyMTk5NGQ5NDkwOTdiYzVhNTZk
NzM3ZTZkMSIsICJpZCI6ICI0M2JjZTUwNy0yZGJmLTRiMDMtYTIyMy0zYzMxMmU1MTI4YWQiLCAi
ZGVzY3JpcHRpb24iOiAiU2F5IEhpIiwgImV4cGVjdGVkX291dHB1dCI6ICJUaGUgd29yZDogSGki
LCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2Vu
dF9yb2xlIjogIlJlc2VhcmNoZXIiLCAiYWdlbnRfa2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0
MWZkOWM0NTYzZDc1IiwgImNvbnRleHQiOiBudWxsLCAidG9vbHNfbmFtZXMiOiBbXX1dSioKCHBs
YXRmb3JtEh4KHG1hY09TLTE0LjEuMS1hcm02NC1hcm0tNjRiaXRKHAoQcGxhdGZvcm1fcmVsZWFz
ZRIICgYyMy4xLjBKGwoPcGxhdGZvcm1fc3lzdGVtEggKBkRhcndpbkp7ChBwbGF0Zm9ybV92ZXJz
aW9uEmcKZURhcndpbiBLZXJuZWwgVmVyc2lvbiAyMy4xLjA6IE1vbiBPY3QgIDkgMjE6Mjc6MjQg
UERUIDIwMjM7IHJvb3Q6eG51LTEwMDAyLjQxLjl+Ni9SRUxFQVNFX0FSTTY0X1Q2MDAwSgoKBGNw
dXMSAhgKegIYAYUBAAEAABKOAgoQgFFdbbcq9b6XpdCgV4ygHxII5FvLDHBJWfYqDFRhc2sgQ3Jl
YXRlZDABOcB3Sce1xeIXQfDsSce1xeIXSi4KCGNyZXdfa2V5EiIKIDhjMjc1MmY0OWU1YjlkMmI2
OGNiMzVjYWM4ZmNjODZkSjEKB2NyZXdfaWQSJgokMDYxN2FmNTUtYTA2NC00MTAyLTliNDQtOGEx
OGJlZTQ1ODc4Si4KCHRhc2tfa2V5EiIKIDBkNjg1YTIxOTk0ZDk0OTA5N2JjNWE1NmQ3MzdlNmQx
SjEKB3Rhc2tfaWQSJgokNDNiY2U1MDctMmRiZi00YjAzLWEyMjMtM2MzMTJlNTEyOGFkegIYAYUB
AAEAABKQAgoQrD1woM4vvML78Ycv2kKJPBIIQiPC5tnfBsEqDlRhc2sgRXhlY3V0aW9uMAE5uB9K
x7XF4hdB0DoqyLXF4hdKLgoIY3Jld19rZXkSIgogOGMyNzUyZjQ5ZTViOWQyYjY4Y2IzNWNhYzhm
Y2M4NmRKMQoHY3Jld19pZBImCiQwNjE3YWY1NS1hMDY0LTQxMDItOWI0NC04YTE4YmVlNDU4NzhK
LgoIdGFza19rZXkSIgogMGQ2ODVhMjE5OTRkOTQ5MDk3YmM1YTU2ZDczN2U2ZDFKMQoHdGFza19p
ZBImCiQ0M2JjZTUwNy0yZGJmLTRiMDMtYTIyMy0zYzMxMmU1MTI4YWR6AhgBhQEAAQAAEskSChDy
v1twhKVTS2/hcmcIXG8LEginut5ahEsb9yoMQ3JldyBDcmVhdGVkMAE5eMNWyrXF4hdBUBFZyrXF
4hdKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC4zNi4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTEu
NUouCghjcmV3X2tleRIiCiBlM2ZkYTBmMzExMGZlODBiMTg5NDdjMDE0NzE0MzBhNEoxCgdjcmV3
X2lkEiYKJGJiZmUxOTdkLWFmM2QtNDUwYy04NzlhLWNkOWQyODQyYzk5NUoeCgxjcmV3X3Byb2Nl
c3MSDgoMaGllcmFyY2hpY2FsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkrFCQoLY3Jld19hZ2VudHMStQkK
sglbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiNzhi
YzU3YjgtYjBlOC00NmU3LTg5MjMtNDZkMmUxZDgyNDA3IiwgInJvbGUiOiAiUmVzZWFyY2hlciIs
ICJnb2FsIjogIk1ha2UgdGhlIGJlc3QgcmVzZWFyY2ggYW5kIGFuYWx5c2lzIG9uIGNvbnRlbnQg
YWJvdXQgQUkgYW5kIEFJIGFnZW50cyIsICJiYWNrc3RvcnkiOiAiWW91J3JlIGFuIGV4cGVydCBy
ZXNlYXJjaGVyLCBzcGVjaWFsaXplZCBpbiB0ZWNobm9sb2d5LCBzb2Z0d2FyZSBlbmdpbmVlcmlu
ZywgQUkgYW5kIHN0YXJ0dXBzLiBZb3Ugd29yayBhcyBhIGZyZWVsYW5jZXIgYW5kIGlzIG5vdyB3
b3JraW5nIG9uIGRvaW5nIHJlc2VhcmNoIGFuZCBhbmFseXNpcyBmb3IgYSBuZXcgY3VzdG9tZXIu
IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDI1LCAibWF4X3JwbSI6IG51bGwsICJp
MThuIjogbnVsbCwgImxsbSI6ICJ7XCJuYW1lXCI6IG51bGwsIFwibW9kZWxfbmFtZVwiOiBcImdw
dC00b1wiLCBcInRlbXBlcmF0dXJlXCI6IDAuNywgXCJjbGFzc1wiOiBcIkNoYXRPcGVuQUlcIn0i
LCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5
IjogIjlhNTAxNWVmNDg5NWRjNjI3OGQ1NDgxOGJhNDQ2YWY3IiwgImlkIjogIjk2YzIxOTk1LWFl
ZDItNGJjNC1iYjY4LTdiOTA3ZTYzYjQyNSIsICJyb2xlIjogIlNlbmlvciBXcml0ZXIiLCAiZ29h
bCI6ICJXcml0ZSB0aGUgYmVzdCBjb250ZW50IGFib3V0IEFJIGFuZCBBSSBhZ2VudHMuIiwgImJh
Y2tzdG9yeSI6ICJZb3UncmUgYSBzZW5pb3Igd3JpdGVyLCBzcGVjaWFsaXplZCBpbiB0ZWNobm9s
b2d5LCBzb2Z0d2FyZSBlbmdpbmVlcmluZywgQUkgYW5kIHN0YXJ0dXBzLiBZb3Ugd29yayBhcyBh
IGZyZWVsYW5jZXIgYW5kIGFyZSBub3cgd29ya2luZyBvbiB3cml0aW5nIGNvbnRlbnQgZm9yIGEg
bmV3IGN1c3RvbWVyLiIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyNSwgIm1heF9y
cG0iOiBudWxsLCAiaTE4biI6IG51bGwsICJsbG0iOiAie1wibmFtZVwiOiBudWxsLCBcIm1vZGVs
X25hbWVcIjogXCJncHQtNG9cIiwgXCJ0ZW1wZXJhdHVyZVwiOiAwLjcsIFwiY2xhc3NcIjogXCJD
aGF0T3BlbkFJXCJ9IiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgInRvb2xzX25hbWVz
IjogW119XUq/BAoKY3Jld190YXNrcxKwBAqtBFt7ImtleSI6ICI1ZmE2NWMwNmE5ZTMxZjJjNjk1
NDMyNjY4YWNkNjJkZCIsICJpZCI6ICJjNTFlMzZjZC1iMzc3LTRiMjMtOTY1ZC0xMjE4ZjAxN2Rl
NTkiLCAiZGVzY3JpcHRpb24iOiAiQ29tZSB1cCB3aXRoIGEgbGlzdCBvZiA1IGludGVyZXN0aW5n
IGlkZWFzIHRvIGV4cGxvcmUgZm9yIGFuIGFydGljbGUsIHRoZW4gd3JpdGUgb25lIGFtYXppbmcg
cGFyYWdyYXBoIGhpZ2hsaWdodCBmb3IgZWFjaCBpZGVhIHRoYXQgc2hvd2Nhc2VzIGhvdyBnb29k
IGFuIGFydGljbGUgYWJvdXQgdGhpcyB0b3BpYyBjb3VsZCBiZS4gUmV0dXJuIHRoZSBsaXN0IG9m
IGlkZWFzIHdpdGggdGhlaXIgcGFyYWdyYXBoIGFuZCB5b3VyIG5vdGVzLiIsICJleHBlY3RlZF9v
dXRwdXQiOiAiNSBidWxsZXQgcG9pbnRzIHdpdGggYSBwYXJhZ3JhcGggZm9yIGVhY2ggaWRlYS4i
LCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2Vu
dF9yb2xlIjogIk5vbmUiLCAiYWdlbnRfa2V5IjogbnVsbCwgImNvbnRleHQiOiBudWxsLCAidG9v
bHNfbmFtZXMiOiBbXX1dSioKCHBsYXRmb3JtEh4KHG1hY09TLTE0LjEuMS1hcm02NC1hcm0tNjRi
aXRKHAoQcGxhdGZvcm1fcmVsZWFzZRIICgYyMy4xLjBKGwoPcGxhdGZvcm1fc3lzdGVtEggKBkRh
cndpbkp7ChBwbGF0Zm9ybV92ZXJzaW9uEmcKZURhcndpbiBLZXJuZWwgVmVyc2lvbiAyMy4xLjA6
IE1vbiBPY3QgIDkgMjE6Mjc6MjQgUERUIDIwMjM7IHJvb3Q6eG51LTEwMDAyLjQxLjl+Ni9SRUxF
QVNFX0FSTTY0X1Q2MDAwSgoKBGNwdXMSAhgKegIYAYUBAAEAABLJEgoQC4ERVCPi0URQcsRKT+/y
GxIInSinsu8yhJsqDENyZXcgQ3JlYXRlZDABOcAcwM61xeIXQaiRws61xeIXShoKDmNyZXdhaV92
ZXJzaW9uEggKBjAuMzYuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjExLjVKLgoIY3Jld19rZXkS
IgogZTNmZGEwZjMxMTBmZTgwYjE4OTQ3YzAxNDcxNDMwYTRKMQoHY3Jld19pZBImCiQxMTUxYTA2
Zi02YjdhLTQzZGYtOWZjNi05MzJmYTYzY2RhZjRKHgoMY3Jld19wcm9jZXNzEg4KDGhpZXJhcmNo
aWNhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNy
ZXdfbnVtYmVyX29mX2FnZW50cxICGAJKxQkKC2NyZXdfYWdlbnRzErUJCrIJW3sia2V5IjogIjhi
ZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjc4YmM1N2I4LWIwZTgtNDZl
Ny04OTIzLTQ2ZDJlMWQ4MjQwNyIsICJyb2xlIjogIlJlc2VhcmNoZXIiLCAiZ29hbCI6ICJNYWtl
IHRoZSBiZXN0IHJlc2VhcmNoIGFuZCBhbmFseXNpcyBvbiBjb250ZW50IGFib3V0IEFJIGFuZCBB
SSBhZ2VudHMiLCAiYmFja3N0b3J5IjogIllvdSdyZSBhbiBleHBlcnQgcmVzZWFyY2hlciwgc3Bl
Y2lhbGl6ZWQgaW4gdGVjaG5vbG9neSwgc29mdHdhcmUgZW5naW5lZXJpbmcsIEFJIGFuZCBzdGFy
dHVwcy4gWW91IHdvcmsgYXMgYSBmcmVlbGFuY2VyIGFuZCBpcyBub3cgd29ya2luZyBvbiBkb2lu
ZyByZXNlYXJjaCBhbmQgYW5hbHlzaXMgZm9yIGEgbmV3IGN1c3RvbWVyLiIsICJ2ZXJib3NlPyI6
IGZhbHNlLCAibWF4X2l0ZXIiOiAyNSwgIm1heF9ycG0iOiBudWxsLCAiaTE4biI6IG51bGwsICJs
bG0iOiAie1wibmFtZVwiOiBudWxsLCBcIm1vZGVsX25hbWVcIjogXCJncHQtNG9cIiwgXCJ0ZW1w
ZXJhdHVyZVwiOiAwLjcsIFwiY2xhc3NcIjogXCJDaGF0T3BlbkFJXCJ9IiwgImRlbGVnYXRpb25f
ZW5hYmxlZD8iOiBmYWxzZSwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4
OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICI5NmMyMTk5NS1hZWQyLTRiYzQtYmI2OC03
YjkwN2U2M2I0MjUiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImdvYWwiOiAiV3JpdGUgdGhl
IGJlc3QgY29udGVudCBhYm91dCBBSSBhbmQgQUkgYWdlbnRzLiIsICJiYWNrc3RvcnkiOiAiWW91
J3JlIGEgc2VuaW9yIHdyaXRlciwgc3BlY2lhbGl6ZWQgaW4gdGVjaG5vbG9neSwgc29mdHdhcmUg
ZW5naW5lZXJpbmcsIEFJIGFuZCBzdGFydHVwcy4gWW91IHdvcmsgYXMgYSBmcmVlbGFuY2VyIGFu
ZCBhcmUgbm93IHdvcmtpbmcgb24gd3JpdGluZyBjb250ZW50IGZvciBhIG5ldyBjdXN0b21lci4i
LCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjUsICJtYXhfcnBtIjogbnVsbCwgImkx
OG4iOiBudWxsLCAibGxtIjogIntcIm5hbWVcIjogbnVsbCwgXCJtb2RlbF9uYW1lXCI6IFwiZ3B0
LTRvXCIsIFwidGVtcGVyYXR1cmVcIjogMC43LCBcImNsYXNzXCI6IFwiQ2hhdE9wZW5BSVwifSIs
ICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJ0b29sc19uYW1lcyI6IFtdfV1KvwQKCmNy
ZXdfdGFza3MSsAQKrQRbeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGQi
LCAiaWQiOiAiMDIzOGY1NWUtZTMwYy00MDIwLWE0ZmQtNWY2ZmUzNjE1NjA4IiwgImRlc2NyaXB0
aW9uIjogIkNvbWUgdXAgd2l0aCBhIGxpc3Qgb2YgNSBpbnRlcmVzdGluZyBpZGVhcyB0byBleHBs
b3JlIGZvciBhbiBhcnRpY2xlLCB0aGVuIHdyaXRlIG9uZSBhbWF6aW5nIHBhcmFncmFwaCBoaWdo
bGlnaHQgZm9yIGVhY2ggaWRlYSB0aGF0IHNob3djYXNlcyBob3cgZ29vZCBhbiBhcnRpY2xlIGFi
b3V0IHRoaXMgdG9waWMgY291bGQgYmUuIFJldHVybiB0aGUgbGlzdCBvZiBpZGVhcyB3aXRoIHRo
ZWlyIHBhcmFncmFwaCBhbmQgeW91ciBub3Rlcy4iLCAiZXhwZWN0ZWRfb3V0cHV0IjogIjUgYnVs
bGV0IHBvaW50cyB3aXRoIGEgcGFyYWdyYXBoIGZvciBlYWNoIGlkZWEuIiwgImFzeW5jX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJOb25l
IiwgImFnZW50X2tleSI6IG51bGwsICJjb250ZXh0IjogbnVsbCwgInRvb2xzX25hbWVzIjogW119
XUoqCghwbGF0Zm9ybRIeChxtYWNPUy0xNC4xLjEtYXJtNjQtYXJtLTY0Yml0ShwKEHBsYXRmb3Jt
X3JlbGVhc2USCAoGMjMuMS4wShsKD3BsYXRmb3JtX3N5c3RlbRIICgZEYXJ3aW5KewoQcGxhdGZv
cm1fdmVyc2lvbhJnCmVEYXJ3aW4gS2VybmVsIFZlcnNpb24gMjMuMS4wOiBNb24gT2N0ICA5IDIx
OjI3OjI0IFBEVCAyMDIzOyByb290OnhudS0xMDAwMi40MS45fjYvUkVMRUFTRV9BUk02NF9UNjAw
MEoKCgRjcHVzEgIYCnoCGAGFAQABAAASwRUKEK+2FWN+LUsj3/10yDBx5MMSCPaor0csAVI6KgxD
cmV3IENyZWF0ZWQwATlwEcXPtcXiF0FQscfPtcXiF0oaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjM2
LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMS41Si4KCGNyZXdfa2V5EiIKIGQzODQ2YzlkMjc2
ZThlNmU0M2UzMWY2MTc2MzU3YjRmSjEKB2NyZXdfaWQSJgokYzE0MGJlNTgtOTJjZS00YzQyLWJk
YjQtOThjNTlmMGUzYzAxShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVt
b3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAJKGwoVY3Jld19udW1iZXJfb2ZfYWdl
bnRzEgIYAkrFCQoLY3Jld19hZ2VudHMStQkKsglbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2
ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiNzhiYzU3YjgtYjBlOC00NmU3LTg5MjMtNDZkMmUxZDgy
NDA3IiwgInJvbGUiOiAiUmVzZWFyY2hlciIsICJnb2FsIjogIk1ha2UgdGhlIGJlc3QgcmVzZWFy
Y2ggYW5kIGFuYWx5c2lzIG9uIGNvbnRlbnQgYWJvdXQgQUkgYW5kIEFJIGFnZW50cyIsICJiYWNr
c3RvcnkiOiAiWW91J3JlIGFuIGV4cGVydCByZXNlYXJjaGVyLCBzcGVjaWFsaXplZCBpbiB0ZWNo
bm9sb2d5LCBzb2Z0d2FyZSBlbmdpbmVlcmluZywgQUkgYW5kIHN0YXJ0dXBzLiBZb3Ugd29yayBh
cyBhIGZyZWVsYW5jZXIgYW5kIGlzIG5vdyB3b3JraW5nIG9uIGRvaW5nIHJlc2VhcmNoIGFuZCBh
bmFseXNpcyBmb3IgYSBuZXcgY3VzdG9tZXIuIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRl
ciI6IDI1LCAibWF4X3JwbSI6IG51bGwsICJpMThuIjogbnVsbCwgImxsbSI6ICJ7XCJuYW1lXCI6
IG51bGwsIFwibW9kZWxfbmFtZVwiOiBcImdwdC00b1wiLCBcInRlbXBlcmF0dXJlXCI6IDAuNywg
XCJjbGFzc1wiOiBcIkNoYXRPcGVuQUlcIn0iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNl
LCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5IjogIjlhNTAxNWVmNDg5NWRjNjI3OGQ1NDgxOGJh
NDQ2YWY3IiwgImlkIjogIjk2YzIxOTk1LWFlZDItNGJjNC1iYjY4LTdiOTA3ZTYzYjQyNSIsICJy
b2xlIjogIlNlbmlvciBXcml0ZXIiLCAiZ29hbCI6ICJXcml0ZSB0aGUgYmVzdCBjb250ZW50IGFi
b3V0IEFJIGFuZCBBSSBhZ2VudHMuIiwgImJhY2tzdG9yeSI6ICJZb3UncmUgYSBzZW5pb3Igd3Jp
dGVyLCBzcGVjaWFsaXplZCBpbiB0ZWNobm9sb2d5LCBzb2Z0d2FyZSBlbmdpbmVlcmluZywgQUkg
YW5kIHN0YXJ0dXBzLiBZb3Ugd29yayBhcyBhIGZyZWVsYW5jZXIgYW5kIGFyZSBub3cgd29ya2lu
ZyBvbiB3cml0aW5nIGNvbnRlbnQgZm9yIGEgbmV3IGN1c3RvbWVyLiIsICJ2ZXJib3NlPyI6IGZh
bHNlLCAibWF4X2l0ZXIiOiAyNSwgIm1heF9ycG0iOiBudWxsLCAiaTE4biI6IG51bGwsICJsbG0i
OiAie1wibmFtZVwiOiBudWxsLCBcIm1vZGVsX25hbWVcIjogXCJncHQtNG9cIiwgXCJ0ZW1wZXJh
dHVyZVwiOiAwLjcsIFwiY2xhc3NcIjogXCJDaGF0T3BlbkFJXCJ9IiwgImRlbGVnYXRpb25fZW5h
YmxlZD8iOiBmYWxzZSwgInRvb2xzX25hbWVzIjogW119XUq5BwoKY3Jld190YXNrcxKqBwqnB1t7
ImtleSI6ICJlOWU2YjcyYWFjMzI2NDU5ZGQ3MDY4ZjBiMTcxN2MxYyIsICJpZCI6ICI5NWE1NzQz
Yy1lMjRmLTQ4ODItYmQ3Mi02ZmZlZjViYTMzNTYiLCAiZGVzY3JpcHRpb24iOiAiR2VuZXJhdGUg
YSBsaXN0IG9mIDUgaW50ZXJlc3RpbmcgaWRlYXMgdG8gZXhwbG9yZSBmb3IgYW4gYXJ0aWNsZSwg
d2hlcmUgZWFjaCBidWxsZXRwb2ludCBpcyB1bmRlciAxNSB3b3Jkcy4iLCAiZXhwZWN0ZWRfb3V0
cHV0IjogIkJ1bGxldCBwb2ludCBsaXN0IG9mIDUgaW1wb3J0YW50IGV2ZW50cy4gTm8gYWRkaXRp
b25hbCBjb21tZW50YXJ5LiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1
dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiOGJk
MjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiY29udGV4dCI6IG51bGwsICJ0b29sc19u
YW1lcyI6IFtdfSwgeyJrZXkiOiAiZWVlZTdlNzNkNWRmNjZkNDhkMmQ4MDdiYWZmODc0ZjMiLCAi
aWQiOiAiNzA4MGY4M2YtNmQ1Zi00MzM0LTgwZTctODI3NzEzNmQ4ZDdkIiwgImRlc2NyaXB0aW9u
IjogIldyaXRlIGEgc2VudGVuY2UgYWJvdXQgdGhlIGV2ZW50cyIsICJleHBlY3RlZF9vdXRwdXQi
OiAiQSBzZW50ZW5jZSBhYm91dCB0aGUgZXZlbnRzIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxz
ZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwg
ImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJjb250ZXh0
IjogWyJHZW5lcmF0ZSBhIGxpc3Qgb2YgNSBpbnRlcmVzdGluZyBpZGVhcyB0byBleHBsb3JlIGZv
ciBhbiBhcnRpY2xlLCB3aGVyZSBlYWNoIGJ1bGxldHBvaW50IGlzIHVuZGVyIDE1IHdvcmRzLiJd
LCAidG9vbHNfbmFtZXMiOiBbXX1dSioKCHBsYXRmb3JtEh4KHG1hY09TLTE0LjEuMS1hcm02NC1h
cm0tNjRiaXRKHAoQcGxhdGZvcm1fcmVsZWFzZRIICgYyMy4xLjBKGwoPcGxhdGZvcm1fc3lzdGVt
EggKBkRhcndpbkp7ChBwbGF0Zm9ybV92ZXJzaW9uEmcKZURhcndpbiBLZXJuZWwgVmVyc2lvbiAy
My4xLjA6IE1vbiBPY3QgIDkgMjE6Mjc6MjQgUERUIDIwMjM7IHJvb3Q6eG51LTEwMDAyLjQxLjl+
Ni9SRUxFQVNFX0FSTTY0X1Q2MDAwSgoKBGNwdXMSAhgKegIYAYUBAAEAABKxCwoQrufF6FYNBLX1
X9l1YHzEsBIIg+LU+V/XPr0qDENyZXcgQ3JlYXRlZDABOYhBV9K1xeIXQcB/WdK1xeIXShoKDmNy
ZXdhaV92ZXJzaW9uEggKBjAuMzYuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjExLjVKLgoIY3Jl
d19rZXkSIgogNjczOGFkNWI4Y2IzZTZmMWMxYzkzNTBiOTZjMmU2NzhKMQoHY3Jld19pZBImCiQw
ZDFjYjk0Yy1kMjgyLTQwYWUtYWVlYy0yN2JjNzc1NGZmOThKHAoMY3Jld19wcm9jZXNzEgwKCnNl
cXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUob
ChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSuEDCgtjcmV3X2FnZW50cxLRAwrOA1t7ImtleSI6
ICI1MTJhNmRjMzc5ZjY2YjIxZWVhYjI0ZTYzNDgzNmY3MiIsICJpZCI6ICJjOTMwNzU2OS05OTRl
LTRkMTItYWI5OS01NzlhYjZhNDMyMDkiLCAicm9sZSI6ICJDb250ZW50IFdyaXRlciIsICJnb2Fs
IjogIldyaXRlIGVuZ2FnaW5nIGNvbnRlbnQgb24gdmFyaW91cyB0b3BpY3MuIiwgImJhY2tzdG9y
eSI6ICJZb3UgaGF2ZSBhIGJhY2tncm91bmQgaW4gam91cm5hbGlzbSBhbmQgY3JlYXRpdmUgd3Jp
dGluZy4iLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjUsICJtYXhfcnBtIjogbnVs
bCwgImkxOG4iOiBudWxsLCAibGxtIjogIntcIm5hbWVcIjogbnVsbCwgXCJtb2RlbF9uYW1lXCI6
IFwiZ3B0LTRvXCIsIFwidGVtcGVyYXR1cmVcIjogMC43LCBcImNsYXNzXCI6IFwiQ2hhdE9wZW5B
SVwifSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogdHJ1ZSwgInRvb2xzX25hbWVzIjogW119XUqN
AwoKY3Jld190YXNrcxL+Agr7Alt7ImtleSI6ICIzNDc3MDc2YmUzYWY3MTMwNDYyZWRhYTJlYjhh
MDQ4ZSIsICJpZCI6ICI4NDMxNmNhOS05ZDNmLTRkZjctODQ4OC0zMDBmNDMxYWE1MDgiLCAiZGVz
Y3JpcHRpb24iOiAiV3JpdGUgYSBkZXRhaWxlZCBhcnRpY2xlIGFib3V0IEFJIGluIGhlYWx0aGNh
cmUuIiwgImV4cGVjdGVkX291dHB1dCI6ICJBIDEgcGFyYWdyYXBoIGFydGljbGUgYWJvdXQgQUku
IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdl
bnRfcm9sZSI6ICJDb250ZW50IFdyaXRlciIsICJhZ2VudF9rZXkiOiAiNTEyYTZkYzM3OWY2NmIy
MWVlYWIyNGU2MzQ4MzZmNzIiLCAiY29udGV4dCI6IG51bGwsICJ0b29sc19uYW1lcyI6IFtdfV1K
KgoIcGxhdGZvcm0SHgocbWFjT1MtMTQuMS4xLWFybTY0LWFybS02NGJpdEocChBwbGF0Zm9ybV9y
ZWxlYXNlEggKBjIzLjEuMEobCg9wbGF0Zm9ybV9zeXN0ZW0SCAoGRGFyd2luSnsKEHBsYXRmb3Jt
X3ZlcnNpb24SZwplRGFyd2luIEtlcm5lbCBWZXJzaW9uIDIzLjEuMDogTW9uIE9jdCAgOSAyMToy
NzoyNCBQRFQgMjAyMzsgcm9vdDp4bnUtMTAwMDIuNDEuOX42L1JFTEVBU0VfQVJNNjRfVDYwMDBK
CgoEY3B1cxICGAp6AhgBhQEAAQAA
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, br
Connection:
- keep-alive
Content-Length:
- '23733'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.25.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Tue, 16 Jul 2024 18:43:12 GMT
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,159 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Test Task\n\nThis is the
expect criteria for your final answer: Say Hi \n you MUST return the actual
complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\ncontext raw output\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "logprobs": false,
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '929'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.36.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.36.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a643791a80e8c96-EWR
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Sat, 20 Jul 2024 16:09:41 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=cam5sECdaTzbttLIOaiuvh9flDIAXp_FLPODnDEOn6k-1721491781-1.0.1.1-hyFl43P7HIWZsGueyWuDeO579sZ41as2mvrM.cQS1E8KSLG2ZZ0DxDGbVvHYRO0eflTUJohgZu6CGltvjQfMtQ;
path=/; expires=Sat, 20-Jul-24 16:39:41 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=nmlgS.bqXAu0rZ.OlHPfXrIrdnVgrBSW3e0UuU3N5ng-1721491781661-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '126'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999794'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_31484eeb0af939af4e0d9c47441ba2db
status:
code: 200
message: OK
version: 1

View File

@@ -20,7 +20,7 @@ interactions:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
- gzip, deflate
connection:
- keep-alive
content-length:
@@ -44,80 +44,103 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
string: 'data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
need"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
to"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
decide"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
choose"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
on"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
an"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
appropriate"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
greeting"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
to"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
make"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
everyone"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
feel"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
welcome"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
Decide"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
Greetings"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
Input"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{"content":"
{}\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{"content":"
{}"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWRAEA0akLHaVsdYQP1dYZ73QJC","object":"chat.completion.chunk","created":1720137083,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_4008e3b719","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: {"id":"chatcmpl-9kFn5wBmr3LxGG62NXc5GVlHvdhYu","object":"chat.completion.chunk","created":1720810815,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_298125635f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
@@ -128,20 +151,20 @@ interactions:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89e305e3c8e382f5-GIG
- 8a23466b68c6da17-MIA
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Thu, 04 Jul 2024 23:51:24 GMT
- Fri, 12 Jul 2024 19:00:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=y7BtDW9RWNaYoBExulKsMw50ppqr1itieWbcStDWqVc-1720137084-1.0.1.1-EYCEQ9jOimP45.FgXjdzWftUrV1HHm49W4wbcxFhbrj2DVC1LnMbz9.l.c._AqBRgFAE3xVolosvjmoFDAMPYQ;
path=/; expires=Fri, 05-Jul-24 00:21:24 GMT; domain=.api.openai.com; HttpOnly;
- __cf_bm=5Q4fR7Axcb9pOI3.xD7MckzP6nvjl7aUGw1NJkxLXiY-1720810815-1.0.1.1-nBCqeg7gu9__SL5Jstz.kPKlKOisvW1iKhTWpyXfY.wyoYUCxPPcaOkFtXjn4wZuibClBrGVEsFDAAuB1Jwj1g;
path=/; expires=Fri, 12-Jul-24 19:30:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=pZBoWQ1_gTeUh2oe6ta.S2mxWtdaHvAtn6m2HszLdwk-1720137084219-0.0.1.1-604800000;
- _cfuvid=VtZy6_mT_xZheA53qWxlfPk4NhcrOjGYsGlKoh66LSw-1720810815947-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
@@ -150,7 +173,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '335'
- '537'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -158,17 +181,17 @@ interactions:
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999700'
- '21999701'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
- 0s
x-request-id:
- req_b3f7e3c47df2641d6bef704ef3ae8a0f
- req_1b582ffd4f0b3972542c2dff29ded287
status:
code: 200
message: OK
@@ -187,24 +210,24 @@ interactions:
greeting.\n\nThis is the expect criteria for your final answer: The greeting.
\n you MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:\nI need to decide on an appropriate
greeting.\n\nAction: Decide Greetings\nAction Input: {}\n\nObservation: Howdy!\n",
"role": "user"}], "model": "gpt-4o", "n": 1, "stop": ["\nObservation"], "stream":
true, "temperature": 0.7}'
Answer, your job depends on it!\n\nThought:\nThought: I need to choose an appropriate
greeting to make everyone feel welcome.\nAction: Decide Greetings\nAction Input:
{}\nObservation: Howdy!\n", "role": "user"}], "model": "gpt-4o", "n": 1, "stop":
["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
- gzip, deflate
connection:
- keep-alive
content-length:
- '1404'
- '1436'
content-type:
- application/json
cookie:
- __cf_bm=y7BtDW9RWNaYoBExulKsMw50ppqr1itieWbcStDWqVc-1720137084-1.0.1.1-EYCEQ9jOimP45.FgXjdzWftUrV1HHm49W4wbcxFhbrj2DVC1LnMbz9.l.c._AqBRgFAE3xVolosvjmoFDAMPYQ;
_cfuvid=pZBoWQ1_gTeUh2oe6ta.S2mxWtdaHvAtn6m2HszLdwk-1720137084219-0.0.1.1-604800000
- __cf_bm=5Q4fR7Axcb9pOI3.xD7MckzP6nvjl7aUGw1NJkxLXiY-1720810815-1.0.1.1-nBCqeg7gu9__SL5Jstz.kPKlKOisvW1iKhTWpyXfY.wyoYUCxPPcaOkFtXjn4wZuibClBrGVEsFDAAuB1Jwj1g;
_cfuvid=VtZy6_mT_xZheA53qWxlfPk4NhcrOjGYsGlKoh66LSw-1720810815947-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
@@ -222,68 +245,68 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
string: 'data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"
know"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"
the"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"
final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"
How"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"dy"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"dy"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9hQWSD5B35ANI9JLmbxUdPECfNd43","object":"chat.completion.chunk","created":1720137084,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_ce0793330f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: {"id":"chatcmpl-9kFn6xVncEzHOGdnzGN9R8fMONMEi","object":"chat.completion.chunk","created":1720810816,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_dd932ca5d1","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
@@ -294,13 +317,13 @@ interactions:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 89e305ea4abc82f5-GIG
- 8a234672c9fbda17-MIA
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Thu, 04 Jul 2024 23:51:24 GMT
- Fri, 12 Jul 2024 19:00:16 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -310,7 +333,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '91'
- '122'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -318,17 +341,17 @@ interactions:
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '16000000'
- '22000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '15999673'
- '21999666'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
- 0s
x-request-id:
- req_10032db16fa190e8435947a6aaa700ff
- req_484dde23b57ef3f715ab183690fe73b9
status:
code: 200
message: OK

Some files were not shown because too many files have changed in this diff Show More