mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-24 00:08:29 +00:00
Compare commits
25 Commits
bugfix/dro
...
bugfix/fix
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
eb84ae5e85 | ||
|
|
25690c861f | ||
|
|
2709a9205a | ||
|
|
2404baab10 | ||
|
|
d19d7b01ec | ||
|
|
d89cdb23ce | ||
|
|
a3ad2c1957 | ||
|
|
4ff2252012 | ||
|
|
573d1a8c34 | ||
|
|
315cce7711 | ||
|
|
839f3c4142 | ||
|
|
10b42bd0d4 | ||
|
|
a690bb91b3 | ||
|
|
1f014c1d61 | ||
|
|
164d105fd1 | ||
|
|
a5f2de3e98 | ||
|
|
c3e7a3ec19 | ||
|
|
cba8c9faec | ||
|
|
bcb7fb27d0 | ||
|
|
6ccede42f7 | ||
|
|
c310044bec | ||
|
|
5263df24b6 | ||
|
|
dea6ed7ef0 | ||
|
|
d3a0dad323 | ||
|
|
67bf4aea56 |
@@ -43,7 +43,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
|
||||
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
|
||||
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
|
||||
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
|
||||
| **Embedder Config** _(optional)_ | `embedder_config` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
|
||||
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
|
||||
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
|
||||
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
|
||||
|
||||
@@ -152,7 +152,7 @@ agent = Agent(
|
||||
use_system_prompt=True, # Default: True
|
||||
tools=[SerperDevTool()], # Optional: List of tools
|
||||
knowledge_sources=None, # Optional: List of knowledge sources
|
||||
embedder_config=None, # Optional: Custom embedder configuration
|
||||
embedder=None, # Optional: Custom embedder configuration
|
||||
system_template=None, # Optional: Custom system prompt template
|
||||
prompt_template=None, # Optional: Custom prompt template
|
||||
response_template=None, # Optional: Custom response template
|
||||
|
||||
@@ -324,6 +324,13 @@ agent = Agent(
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
llm=gemini_llm,
|
||||
embedder={
|
||||
"provider": "google",
|
||||
"config": {
|
||||
"model": "models/text-embedding-004",
|
||||
"api_key": GEMINI_API_KEY,
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
task = Task(
|
||||
|
||||
@@ -33,11 +33,12 @@ crew = Crew(
|
||||
| :------------------------------- | :---------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Description** | `description` | `str` | A clear, concise statement of what the task entails. |
|
||||
| **Expected Output** | `expected_output` | `str` | A detailed description of what the task's completion looks like. |
|
||||
| **Name** _(optional)_ | `name` | `Optional[str]` | A name identifier for the task. |
|
||||
| **Agent** _(optional)_ | `agent` | `Optional[BaseAgent]` | The agent responsible for executing the task. |
|
||||
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | The tools/resources the agent is limited to use for this task. |
|
||||
| **Name** _(optional)_ | `name` | `Optional[str]` | A name identifier for the task. |
|
||||
| **Agent** _(optional)_ | `agent` | `Optional[BaseAgent]` | The agent responsible for executing the task. |
|
||||
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | The tools/resources the agent is limited to use for this task. |
|
||||
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Other tasks whose outputs will be used as context for this task. |
|
||||
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | Whether the task should be executed asynchronously. Defaults to False. |
|
||||
| **Human Input** _(optional)_ | `human_input` | `Optional[bool]` | Whether the task should have a human review the final answer of the agent. Defaults to False. |
|
||||
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
|
||||
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
|
||||
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.98.0"
|
||||
version = "0.100.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
@@ -11,7 +11,7 @@ dependencies = [
|
||||
# Core Dependencies
|
||||
"pydantic>=2.4.2",
|
||||
"openai>=1.13.3",
|
||||
"litellm==1.57.4",
|
||||
"litellm==1.59.8",
|
||||
"instructor>=1.3.3",
|
||||
# Text Processing
|
||||
"pdfplumber>=0.11.4",
|
||||
@@ -36,6 +36,7 @@ dependencies = [
|
||||
"tomli-w>=1.1.0",
|
||||
"tomli>=2.0.2",
|
||||
"blinker>=1.9.0",
|
||||
"json5>=0.10.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
|
||||
@@ -14,7 +14,7 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.98.0"
|
||||
__version__ = "0.100.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"Crew",
|
||||
|
||||
@@ -61,6 +61,7 @@ class Agent(BaseAgent):
|
||||
tools: Tools at agents disposal
|
||||
step_callback: Callback to be executed after each step of the agent execution.
|
||||
knowledge_sources: Knowledge sources for the agent.
|
||||
embedder: Embedder configuration for the agent.
|
||||
"""
|
||||
|
||||
_times_executed: int = PrivateAttr(default=0)
|
||||
@@ -122,17 +123,10 @@ class Agent(BaseAgent):
|
||||
default="safe",
|
||||
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
|
||||
)
|
||||
embedder_config: Optional[Dict[str, Any]] = Field(
|
||||
embedder: Optional[Dict[str, Any]] = Field(
|
||||
default=None,
|
||||
description="Embedder configuration for the agent.",
|
||||
)
|
||||
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
|
||||
default=None,
|
||||
description="Knowledge sources for the agent.",
|
||||
)
|
||||
_knowledge: Optional[Knowledge] = PrivateAttr(
|
||||
default=None,
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
@@ -163,10 +157,11 @@ class Agent(BaseAgent):
|
||||
if isinstance(self.knowledge_sources, list) and all(
|
||||
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
|
||||
):
|
||||
self._knowledge = Knowledge(
|
||||
self.knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder_config=self.embedder_config,
|
||||
embedder=self.embedder,
|
||||
collection_name=knowledge_agent_name,
|
||||
storage=self.knowledge_storage or None,
|
||||
)
|
||||
except (TypeError, ValueError) as e:
|
||||
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
|
||||
@@ -225,8 +220,8 @@ class Agent(BaseAgent):
|
||||
if memory.strip() != "":
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
if self._knowledge:
|
||||
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
|
||||
if self.knowledge:
|
||||
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
|
||||
if agent_knowledge_snippets:
|
||||
agent_knowledge_context = extract_knowledge_context(
|
||||
agent_knowledge_snippets
|
||||
|
||||
@@ -18,6 +18,8 @@ from pydantic_core import PydanticCustomError
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
@@ -48,6 +50,8 @@ class BaseAgent(ABC, BaseModel):
|
||||
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
|
||||
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
|
||||
max_tokens: Maximum number of tokens for the agent to generate in a response.
|
||||
knowledge_sources: Knowledge sources for the agent.
|
||||
knowledge_storage: Custom knowledge storage for the agent.
|
||||
|
||||
|
||||
Methods:
|
||||
@@ -130,6 +134,17 @@ class BaseAgent(ABC, BaseModel):
|
||||
max_tokens: Optional[int] = Field(
|
||||
default=None, description="Maximum number of tokens for the agent's execution."
|
||||
)
|
||||
knowledge: Optional[Knowledge] = Field(
|
||||
default=None, description="Knowledge for the agent."
|
||||
)
|
||||
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
|
||||
default=None,
|
||||
description="Knowledge sources for the agent.",
|
||||
)
|
||||
knowledge_storage: Optional[Any] = Field(
|
||||
default=None,
|
||||
description="Custom knowledge storage for the agent.",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
@@ -256,13 +271,44 @@ class BaseAgent(ABC, BaseModel):
|
||||
"tools_handler",
|
||||
"cache_handler",
|
||||
"llm",
|
||||
"knowledge_sources",
|
||||
"knowledge_storage",
|
||||
"knowledge",
|
||||
}
|
||||
|
||||
# Copy llm and clear callbacks
|
||||
# Copy llm
|
||||
existing_llm = shallow_copy(self.llm)
|
||||
copied_knowledge = shallow_copy(self.knowledge)
|
||||
copied_knowledge_storage = shallow_copy(self.knowledge_storage)
|
||||
# Properly copy knowledge sources if they exist
|
||||
existing_knowledge_sources = None
|
||||
if self.knowledge_sources:
|
||||
# Create a shared storage instance for all knowledge sources
|
||||
shared_storage = (
|
||||
self.knowledge_sources[0].storage if self.knowledge_sources else None
|
||||
)
|
||||
|
||||
existing_knowledge_sources = []
|
||||
for source in self.knowledge_sources:
|
||||
copied_source = (
|
||||
source.model_copy()
|
||||
if hasattr(source, "model_copy")
|
||||
else shallow_copy(source)
|
||||
)
|
||||
# Ensure all copied sources use the same storage instance
|
||||
copied_source.storage = shared_storage
|
||||
existing_knowledge_sources.append(copied_source)
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
|
||||
copied_agent = type(self)(
|
||||
**copied_data,
|
||||
llm=existing_llm,
|
||||
tools=self.tools,
|
||||
knowledge_sources=existing_knowledge_sources,
|
||||
knowledge=copied_knowledge,
|
||||
knowledge_storage=copied_knowledge_storage,
|
||||
)
|
||||
|
||||
return copied_agent
|
||||
|
||||
|
||||
@@ -95,18 +95,29 @@ class CrewAgentExecutorMixin:
|
||||
pass
|
||||
|
||||
def _ask_human_input(self, final_answer: str) -> str:
|
||||
"""Prompt human input for final decision making."""
|
||||
"""Prompt human input with mode-appropriate messaging."""
|
||||
self._printer.print(
|
||||
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
|
||||
)
|
||||
|
||||
self._printer.print(
|
||||
content=(
|
||||
# Training mode prompt (single iteration)
|
||||
if self.crew and getattr(self.crew, "_train", False):
|
||||
prompt = (
|
||||
"\n\n=====\n"
|
||||
"## Please provide feedback on the Final Result and the Agent's actions. "
|
||||
"Respond with 'looks good' or a similar phrase when you're satisfied.\n"
|
||||
"## TRAINING MODE: Provide feedback to improve the agent's performance.\n"
|
||||
"This will be used to train better versions of the agent.\n"
|
||||
"Please provide detailed feedback about the result quality and reasoning process.\n"
|
||||
"=====\n"
|
||||
),
|
||||
color="bold_yellow",
|
||||
)
|
||||
)
|
||||
# Regular human-in-the-loop prompt (multiple iterations)
|
||||
else:
|
||||
prompt = (
|
||||
"\n\n=====\n"
|
||||
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
|
||||
"Respond with 'looks good' to accept or provide specific improvement requests.\n"
|
||||
"You can provide multiple rounds of feedback until satisfied.\n"
|
||||
"=====\n"
|
||||
)
|
||||
|
||||
self._printer.print(content=prompt, color="bold_yellow")
|
||||
return input()
|
||||
|
||||
@@ -100,6 +100,12 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
|
||||
try:
|
||||
formatted_answer = self._invoke_loop()
|
||||
except AssertionError:
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
raise
|
||||
except Exception as e:
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
# Do not retry on litellm errors
|
||||
@@ -115,7 +121,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._create_long_term_memory(formatted_answer)
|
||||
return {"output": formatted_answer.output}
|
||||
|
||||
def _invoke_loop(self):
|
||||
def _invoke_loop(self) -> AgentFinish:
|
||||
"""
|
||||
Main loop to invoke the agent's thought process until it reaches a conclusion
|
||||
or the maximum number of iterations is reached.
|
||||
@@ -161,6 +167,11 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
finally:
|
||||
self.iterations += 1
|
||||
|
||||
# During the invoke loop, formatted_answer alternates between AgentAction
|
||||
# (when the agent is using tools) and eventually becomes AgentFinish
|
||||
# (when the agent reaches a final answer). This assertion confirms we've
|
||||
# reached a final answer and helps type checking understand this transition.
|
||||
assert isinstance(formatted_answer, AgentFinish)
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
@@ -292,8 +303,11 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._printer.print(
|
||||
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
|
||||
)
|
||||
description = (
|
||||
getattr(self.task, "description") if self.task else "Not Found"
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"\033[95m## Task:\033[00m \033[92m{self.task.description}\033[00m"
|
||||
content=f"\033[95m## Task:\033[00m \033[92m{description}\033[00m"
|
||||
)
|
||||
|
||||
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
|
||||
@@ -418,58 +432,50 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
)
|
||||
|
||||
def _handle_crew_training_output(
|
||||
self, result: AgentFinish, human_feedback: str | None = None
|
||||
self, result: AgentFinish, human_feedback: Optional[str] = None
|
||||
) -> None:
|
||||
"""Function to handle the process of the training data."""
|
||||
"""Handle the process of saving training data."""
|
||||
agent_id = str(self.agent.id) # type: ignore
|
||||
train_iteration = (
|
||||
getattr(self.crew, "_train_iteration", None) if self.crew else None
|
||||
)
|
||||
|
||||
if train_iteration is None or not isinstance(train_iteration, int):
|
||||
self._printer.print(
|
||||
content="Invalid or missing train iteration. Cannot save training data.",
|
||||
color="red",
|
||||
)
|
||||
return
|
||||
|
||||
# Load training data
|
||||
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
|
||||
training_data = training_handler.load()
|
||||
training_data = training_handler.load() or {}
|
||||
|
||||
# Check if training data exists, human input is not requested, and self.crew is valid
|
||||
if training_data and not self.ask_for_human_input:
|
||||
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
|
||||
train_iteration = self.crew._train_iteration
|
||||
if agent_id in training_data and isinstance(train_iteration, int):
|
||||
training_data[agent_id][train_iteration][
|
||||
"improved_output"
|
||||
] = result.output
|
||||
training_handler.save(training_data)
|
||||
else:
|
||||
self._printer.print(
|
||||
content="Invalid train iteration type or agent_id not in training data.",
|
||||
color="red",
|
||||
)
|
||||
else:
|
||||
self._printer.print(
|
||||
content="Crew is None or does not have _train_iteration attribute.",
|
||||
color="red",
|
||||
)
|
||||
# Initialize or retrieve agent's training data
|
||||
agent_training_data = training_data.get(agent_id, {})
|
||||
|
||||
if self.ask_for_human_input and human_feedback is not None:
|
||||
training_data = {
|
||||
if human_feedback is not None:
|
||||
# Save initial output and human feedback
|
||||
agent_training_data[train_iteration] = {
|
||||
"initial_output": result.output,
|
||||
"human_feedback": human_feedback,
|
||||
"agent": agent_id,
|
||||
"agent_role": self.agent.role, # type: ignore
|
||||
}
|
||||
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
|
||||
train_iteration = self.crew._train_iteration
|
||||
if isinstance(train_iteration, int):
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).append(
|
||||
train_iteration, agent_id, training_data
|
||||
)
|
||||
else:
|
||||
self._printer.print(
|
||||
content="Invalid train iteration type. Expected int.",
|
||||
color="red",
|
||||
)
|
||||
else:
|
||||
# Save improved output
|
||||
if train_iteration in agent_training_data:
|
||||
agent_training_data[train_iteration]["improved_output"] = result.output
|
||||
else:
|
||||
self._printer.print(
|
||||
content="Crew is None or does not have _train_iteration attribute.",
|
||||
content=(
|
||||
f"No existing training data for agent {agent_id} and iteration "
|
||||
f"{train_iteration}. Cannot save improved output."
|
||||
),
|
||||
color="red",
|
||||
)
|
||||
return
|
||||
|
||||
# Update the training data and save
|
||||
training_data[agent_id] = agent_training_data
|
||||
training_handler.save(training_data)
|
||||
|
||||
def _format_prompt(self, prompt: str, inputs: Dict[str, str]) -> str:
|
||||
prompt = prompt.replace("{input}", inputs["input"])
|
||||
@@ -485,82 +491,103 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
return {"role": role, "content": prompt}
|
||||
|
||||
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
|
||||
"""
|
||||
Handles the human feedback loop, allowing the user to provide feedback
|
||||
on the agent's output and determining if additional iterations are needed.
|
||||
"""Handle human feedback with different flows for training vs regular use.
|
||||
|
||||
Parameters:
|
||||
formatted_answer (AgentFinish): The initial output from the agent.
|
||||
Args:
|
||||
formatted_answer: The initial AgentFinish result to get feedback on
|
||||
|
||||
Returns:
|
||||
AgentFinish: The final output after incorporating human feedback.
|
||||
AgentFinish: The final answer after processing feedback
|
||||
"""
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
|
||||
if self._is_training_mode():
|
||||
return self._handle_training_feedback(formatted_answer, human_feedback)
|
||||
|
||||
return self._handle_regular_feedback(formatted_answer, human_feedback)
|
||||
|
||||
def _is_training_mode(self) -> bool:
|
||||
"""Check if crew is in training mode."""
|
||||
return bool(self.crew and self.crew._train)
|
||||
|
||||
def _handle_training_feedback(
|
||||
self, initial_answer: AgentFinish, feedback: str
|
||||
) -> AgentFinish:
|
||||
"""Process feedback for training scenarios with single iteration."""
|
||||
self._printer.print(
|
||||
content="\nProcessing training feedback.\n",
|
||||
color="yellow",
|
||||
)
|
||||
self._handle_crew_training_output(initial_answer, feedback)
|
||||
self.messages.append(self._format_msg(f"Feedback: {feedback}"))
|
||||
improved_answer = self._invoke_loop()
|
||||
self._handle_crew_training_output(improved_answer)
|
||||
self.ask_for_human_input = False
|
||||
return improved_answer
|
||||
|
||||
def _handle_regular_feedback(
|
||||
self, current_answer: AgentFinish, initial_feedback: str
|
||||
) -> AgentFinish:
|
||||
"""Process feedback for regular use with potential multiple iterations."""
|
||||
feedback = initial_feedback
|
||||
answer = current_answer
|
||||
|
||||
while self.ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
response = self._get_llm_feedback_response(feedback)
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer, human_feedback)
|
||||
|
||||
# Make an LLM call to verify if additional changes are requested based on human feedback
|
||||
additional_changes_prompt = self._i18n.slice(
|
||||
"human_feedback_classification"
|
||||
).format(feedback=human_feedback)
|
||||
|
||||
retry_count = 0
|
||||
llm_call_successful = False
|
||||
additional_changes_response = None
|
||||
|
||||
while retry_count < MAX_LLM_RETRY and not llm_call_successful:
|
||||
try:
|
||||
additional_changes_response = (
|
||||
self.llm.call(
|
||||
[
|
||||
self._format_msg(
|
||||
additional_changes_prompt, role="system"
|
||||
)
|
||||
],
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
.strip()
|
||||
.lower()
|
||||
)
|
||||
llm_call_successful = True
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
|
||||
self._printer.print(
|
||||
content=f"Error during LLM call to classify human feedback: {e}. Retrying... ({retry_count}/{MAX_LLM_RETRY})",
|
||||
color="red",
|
||||
)
|
||||
|
||||
if not llm_call_successful:
|
||||
self._printer.print(
|
||||
content="Error processing feedback after multiple attempts.",
|
||||
color="red",
|
||||
)
|
||||
if not self._feedback_requires_changes(response):
|
||||
self.ask_for_human_input = False
|
||||
break
|
||||
|
||||
if additional_changes_response == "false":
|
||||
self.ask_for_human_input = False
|
||||
elif additional_changes_response == "true":
|
||||
self.ask_for_human_input = True
|
||||
# Add human feedback to messages
|
||||
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
|
||||
# Invoke the loop again with updated messages
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer)
|
||||
else:
|
||||
# Unexpected response
|
||||
self._printer.print(
|
||||
content=f"Unexpected response from LLM: '{additional_changes_response}'. Assuming no additional changes requested.",
|
||||
color="red",
|
||||
)
|
||||
self.ask_for_human_input = False
|
||||
answer = self._process_feedback_iteration(feedback)
|
||||
feedback = self._ask_human_input(answer.output)
|
||||
|
||||
return formatted_answer
|
||||
return answer
|
||||
|
||||
def _get_llm_feedback_response(self, feedback: str) -> Optional[str]:
|
||||
"""Get LLM classification of whether feedback requires changes."""
|
||||
prompt = self._i18n.slice("human_feedback_classification").format(
|
||||
feedback=feedback
|
||||
)
|
||||
message = self._format_msg(prompt, role="system")
|
||||
|
||||
for retry in range(MAX_LLM_RETRY):
|
||||
try:
|
||||
response = self.llm.call([message], callbacks=self.callbacks)
|
||||
return response.strip().lower() if response else None
|
||||
except Exception as error:
|
||||
self._log_feedback_error(retry, error)
|
||||
|
||||
self._log_max_retries_exceeded()
|
||||
return None
|
||||
|
||||
def _feedback_requires_changes(self, response: Optional[str]) -> bool:
|
||||
"""Determine if feedback response indicates need for changes."""
|
||||
return response == "true" if response else False
|
||||
|
||||
def _process_feedback_iteration(self, feedback: str) -> AgentFinish:
|
||||
"""Process a single feedback iteration."""
|
||||
self.messages.append(self._format_msg(f"Feedback: {feedback}"))
|
||||
return self._invoke_loop()
|
||||
|
||||
def _log_feedback_error(self, retry_count: int, error: Exception) -> None:
|
||||
"""Log feedback processing errors."""
|
||||
self._printer.print(
|
||||
content=(
|
||||
f"Error processing feedback: {error}. "
|
||||
f"Retrying... ({retry_count + 1}/{MAX_LLM_RETRY})"
|
||||
),
|
||||
color="red",
|
||||
)
|
||||
|
||||
def _log_max_retries_exceeded(self) -> None:
|
||||
"""Log when max retries for feedback processing are exceeded."""
|
||||
self._printer.print(
|
||||
content=(
|
||||
f"Failed to process feedback after {MAX_LLM_RETRY} attempts. "
|
||||
"Ending feedback loop."
|
||||
),
|
||||
color="red",
|
||||
)
|
||||
|
||||
def _handle_max_iterations_exceeded(self, formatted_answer):
|
||||
"""
|
||||
|
||||
@@ -1,11 +1,3 @@
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
message="Valid config keys have changed in V2*",
|
||||
category=UserWarning,
|
||||
)
|
||||
|
||||
import os
|
||||
from importlib.metadata import version as get_version
|
||||
from typing import Optional, Tuple
|
||||
@@ -358,7 +350,10 @@ def chat():
|
||||
Start a conversation with the Crew, collecting user-supplied inputs,
|
||||
and using the Chat LLM to generate responses.
|
||||
"""
|
||||
click.echo("Starting a conversation with the Crew")
|
||||
click.secho(
|
||||
"\nStarting a conversation with the Crew\n" "Type 'exit' or Ctrl+C to quit.\n",
|
||||
)
|
||||
|
||||
run_chat()
|
||||
|
||||
|
||||
|
||||
@@ -1,17 +1,52 @@
|
||||
import json
|
||||
import platform
|
||||
import re
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple
|
||||
|
||||
import click
|
||||
import tomli
|
||||
from packaging import version
|
||||
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.crew import Crew
|
||||
from crewai.llm import LLM
|
||||
from crewai.types.crew_chat import ChatInputField, ChatInputs
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
MIN_REQUIRED_VERSION = "0.98.0"
|
||||
|
||||
|
||||
def check_conversational_crews_version(
|
||||
crewai_version: str, pyproject_data: dict
|
||||
) -> bool:
|
||||
"""
|
||||
Check if the installed crewAI version supports conversational crews.
|
||||
|
||||
Args:
|
||||
crewai_version: The current version of crewAI.
|
||||
pyproject_data: Dictionary containing pyproject.toml data.
|
||||
|
||||
Returns:
|
||||
bool: True if version check passes, False otherwise.
|
||||
"""
|
||||
try:
|
||||
if version.parse(crewai_version) < version.parse(MIN_REQUIRED_VERSION):
|
||||
click.secho(
|
||||
"You are using an older version of crewAI that doesn't support conversational crews. "
|
||||
"Run 'uv upgrade crewai' to get the latest version.",
|
||||
fg="red",
|
||||
)
|
||||
return False
|
||||
except version.InvalidVersion:
|
||||
click.secho("Invalid crewAI version format detected.", fg="red")
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def run_chat():
|
||||
"""
|
||||
@@ -19,20 +54,47 @@ def run_chat():
|
||||
Incorporates crew_name, crew_description, and input fields to build a tool schema.
|
||||
Exits if crew_name or crew_description are missing.
|
||||
"""
|
||||
crewai_version = get_crewai_version()
|
||||
pyproject_data = read_toml()
|
||||
|
||||
if not check_conversational_crews_version(crewai_version, pyproject_data):
|
||||
return
|
||||
|
||||
crew, crew_name = load_crew_and_name()
|
||||
chat_llm = initialize_chat_llm(crew)
|
||||
if not chat_llm:
|
||||
return
|
||||
|
||||
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
|
||||
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
|
||||
system_message = build_system_message(crew_chat_inputs)
|
||||
|
||||
# Call the LLM to generate the introductory message
|
||||
introductory_message = chat_llm.call(
|
||||
messages=[{"role": "system", "content": system_message}]
|
||||
# Indicate that the crew is being analyzed
|
||||
click.secho(
|
||||
"\nAnalyzing crew and required inputs - this may take 3 to 30 seconds "
|
||||
"depending on the complexity of your crew.",
|
||||
fg="white",
|
||||
)
|
||||
click.secho(f"\nAssistant: {introductory_message}\n", fg="green")
|
||||
|
||||
# Start loading indicator
|
||||
loading_complete = threading.Event()
|
||||
loading_thread = threading.Thread(target=show_loading, args=(loading_complete,))
|
||||
loading_thread.start()
|
||||
|
||||
try:
|
||||
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
|
||||
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
|
||||
system_message = build_system_message(crew_chat_inputs)
|
||||
|
||||
# Call the LLM to generate the introductory message
|
||||
introductory_message = chat_llm.call(
|
||||
messages=[{"role": "system", "content": system_message}]
|
||||
)
|
||||
finally:
|
||||
# Stop loading indicator
|
||||
loading_complete.set()
|
||||
loading_thread.join()
|
||||
|
||||
# Indicate that the analysis is complete
|
||||
click.secho("\nFinished analyzing crew.\n", fg="white")
|
||||
|
||||
click.secho(f"Assistant: {introductory_message}\n", fg="green")
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": system_message},
|
||||
@@ -43,15 +105,17 @@ def run_chat():
|
||||
crew_chat_inputs.crew_name: create_tool_function(crew, messages),
|
||||
}
|
||||
|
||||
click.secho(
|
||||
"\nEntering an interactive chat loop with function-calling.\n"
|
||||
"Type 'exit' or Ctrl+C to quit.\n",
|
||||
fg="cyan",
|
||||
)
|
||||
|
||||
chat_loop(chat_llm, messages, crew_tool_schema, available_functions)
|
||||
|
||||
|
||||
def show_loading(event: threading.Event):
|
||||
"""Display animated loading dots while processing."""
|
||||
while not event.is_set():
|
||||
print(".", end="", flush=True)
|
||||
time.sleep(1)
|
||||
print()
|
||||
|
||||
|
||||
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
|
||||
"""Initializes the chat LLM and handles exceptions."""
|
||||
try:
|
||||
@@ -85,7 +149,7 @@ def build_system_message(crew_chat_inputs: ChatInputs) -> str:
|
||||
"Please keep your responses concise and friendly. "
|
||||
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
|
||||
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
|
||||
"If you are ever unsure about a user's request or need clarification, ask the user for more information."
|
||||
"If you are ever unsure about a user's request or need clarification, ask the user for more information. "
|
||||
"Before doing anything else, introduce yourself with a friendly message like: 'Hey! I'm here to help you with [crew's purpose]. Could you please provide me with [inputs] so we can get started?' "
|
||||
"For example: 'Hey! I'm here to help you with uncovering and reporting cutting-edge developments through thorough research and detailed analysis. Could you please provide me with a topic you're interested in? This will help us generate a comprehensive research report and detailed analysis.'"
|
||||
f"\nCrew Name: {crew_chat_inputs.crew_name}"
|
||||
@@ -102,25 +166,33 @@ def create_tool_function(crew: Crew, messages: List[Dict[str, str]]) -> Any:
|
||||
return run_crew_tool_with_messages
|
||||
|
||||
|
||||
def flush_input():
|
||||
"""Flush any pending input from the user."""
|
||||
if platform.system() == "Windows":
|
||||
# Windows platform
|
||||
import msvcrt
|
||||
|
||||
while msvcrt.kbhit():
|
||||
msvcrt.getch()
|
||||
else:
|
||||
# Unix-like platforms (Linux, macOS)
|
||||
import termios
|
||||
|
||||
termios.tcflush(sys.stdin, termios.TCIFLUSH)
|
||||
|
||||
|
||||
def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
|
||||
"""Main chat loop for interacting with the user."""
|
||||
while True:
|
||||
try:
|
||||
user_input = click.prompt("You", type=str)
|
||||
if user_input.strip().lower() in ["exit", "quit"]:
|
||||
click.echo("Exiting chat. Goodbye!")
|
||||
break
|
||||
# Flush any pending input before accepting new input
|
||||
flush_input()
|
||||
|
||||
messages.append({"role": "user", "content": user_input})
|
||||
final_response = chat_llm.call(
|
||||
messages=messages,
|
||||
tools=[crew_tool_schema],
|
||||
available_functions=available_functions,
|
||||
user_input = get_user_input()
|
||||
handle_user_input(
|
||||
user_input, chat_llm, messages, crew_tool_schema, available_functions
|
||||
)
|
||||
|
||||
messages.append({"role": "assistant", "content": final_response})
|
||||
click.secho(f"\nAssistant: {final_response}\n", fg="green")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
click.echo("\nExiting chat. Goodbye!")
|
||||
break
|
||||
@@ -129,6 +201,55 @@ def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
|
||||
break
|
||||
|
||||
|
||||
def get_user_input() -> str:
|
||||
"""Collect multi-line user input with exit handling."""
|
||||
click.secho(
|
||||
"\nYou (type your message below. Press 'Enter' twice when you're done):",
|
||||
fg="blue",
|
||||
)
|
||||
user_input_lines = []
|
||||
while True:
|
||||
line = input()
|
||||
if line.strip().lower() == "exit":
|
||||
return "exit"
|
||||
if line == "":
|
||||
break
|
||||
user_input_lines.append(line)
|
||||
return "\n".join(user_input_lines)
|
||||
|
||||
|
||||
def handle_user_input(
|
||||
user_input: str,
|
||||
chat_llm: LLM,
|
||||
messages: List[Dict[str, str]],
|
||||
crew_tool_schema: Dict[str, Any],
|
||||
available_functions: Dict[str, Any],
|
||||
) -> None:
|
||||
if user_input.strip().lower() == "exit":
|
||||
click.echo("Exiting chat. Goodbye!")
|
||||
return
|
||||
|
||||
if not user_input.strip():
|
||||
click.echo("Empty message. Please provide input or type 'exit' to quit.")
|
||||
return
|
||||
|
||||
messages.append({"role": "user", "content": user_input})
|
||||
|
||||
# Indicate that assistant is processing
|
||||
click.echo()
|
||||
click.secho("Assistant is processing your input. Please wait...", fg="green")
|
||||
|
||||
# Process assistant's response
|
||||
final_response = chat_llm.call(
|
||||
messages=messages,
|
||||
tools=[crew_tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
messages.append({"role": "assistant", "content": final_response})
|
||||
click.secho(f"\nAssistant: {final_response}\n", fg="green")
|
||||
|
||||
|
||||
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
|
||||
"""
|
||||
Dynamically build a Littellm 'function' schema for the given crew.
|
||||
@@ -323,10 +444,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
|
||||
):
|
||||
# Replace placeholders with input names
|
||||
task_description = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.description
|
||||
lambda m: m.group(1), task.description or ""
|
||||
)
|
||||
expected_output = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.expected_output
|
||||
lambda m: m.group(1), task.expected_output or ""
|
||||
)
|
||||
context_texts.append(f"Task Description: {task_description}")
|
||||
context_texts.append(f"Expected Output: {expected_output}")
|
||||
@@ -337,10 +458,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
|
||||
or f"{{{input_name}}}" in agent.backstory
|
||||
):
|
||||
# Replace placeholders with input names
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
|
||||
agent_backstory = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), agent.backstory
|
||||
lambda m: m.group(1), agent.backstory or ""
|
||||
)
|
||||
context_texts.append(f"Agent Role: {agent_role}")
|
||||
context_texts.append(f"Agent Goal: {agent_goal}")
|
||||
@@ -381,18 +502,20 @@ def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
|
||||
for task in crew.tasks:
|
||||
# Replace placeholders with input names
|
||||
task_description = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.description
|
||||
lambda m: m.group(1), task.description or ""
|
||||
)
|
||||
expected_output = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.expected_output
|
||||
lambda m: m.group(1), task.expected_output or ""
|
||||
)
|
||||
context_texts.append(f"Task Description: {task_description}")
|
||||
context_texts.append(f"Expected Output: {expected_output}")
|
||||
for agent in crew.agents:
|
||||
# Replace placeholders with input names
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
|
||||
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
|
||||
agent_backstory = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), agent.backstory or ""
|
||||
)
|
||||
context_texts.append(f"Agent Role: {agent_role}")
|
||||
context_texts.append(f"Agent Goal: {agent_goal}")
|
||||
context_texts.append(f"Agent Backstory: {agent_backstory}")
|
||||
|
||||
@@ -11,7 +11,6 @@ def run_crew() -> None:
|
||||
"""
|
||||
Run the crew by running a command in the UV environment.
|
||||
"""
|
||||
click.echo("Running crew hello...")
|
||||
command = ["uv", "run", "run_crew"]
|
||||
crewai_version = get_crewai_version()
|
||||
min_required_version = "0.71.0"
|
||||
|
||||
1
src/crewai/cli/templates/crew/.gitignore
vendored
1
src/crewai/cli/templates/crew/.gitignore
vendored
@@ -1,2 +1,3 @@
|
||||
.env
|
||||
__pycache__/
|
||||
.DS_Store
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.98.0,<1.0.0"
|
||||
"crewai[tools]>=0.100.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
1
src/crewai/cli/templates/flow/.gitignore
vendored
1
src/crewai/cli/templates/flow/.gitignore
vendored
@@ -1,3 +1,4 @@
|
||||
.env
|
||||
__pycache__/
|
||||
lib/
|
||||
.DS_Store
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.98.0,<1.0.0",
|
||||
"crewai[tools]>=0.100.0,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.98.0"
|
||||
"crewai[tools]>=0.100.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
|
||||
@@ -4,6 +4,7 @@ import re
|
||||
import uuid
|
||||
import warnings
|
||||
from concurrent.futures import Future
|
||||
from copy import copy as shallow_copy
|
||||
from hashlib import md5
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
@@ -57,6 +58,9 @@ except ImportError:
|
||||
agentops = None
|
||||
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
|
||||
class Crew(BaseModel):
|
||||
"""
|
||||
Represents a group of agents, defining how they should collaborate and the tasks they should perform.
|
||||
@@ -207,8 +211,9 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="LLM used to handle chatting with the crew.",
|
||||
)
|
||||
_knowledge: Optional[Knowledge] = PrivateAttr(
|
||||
knowledge: Optional[Knowledge] = Field(
|
||||
default=None,
|
||||
description="Knowledge for the crew.",
|
||||
)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@@ -286,7 +291,7 @@ class Crew(BaseModel):
|
||||
if isinstance(self.knowledge_sources, list) and all(
|
||||
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
|
||||
):
|
||||
self._knowledge = Knowledge(
|
||||
self.knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder_config=self.embedder,
|
||||
collection_name="crew",
|
||||
@@ -489,21 +494,26 @@ class Crew(BaseModel):
|
||||
train_crew = self.copy()
|
||||
train_crew._setup_for_training(filename)
|
||||
|
||||
for n_iteration in range(n_iterations):
|
||||
train_crew._train_iteration = n_iteration
|
||||
train_crew.kickoff(inputs=inputs)
|
||||
try:
|
||||
for n_iteration in range(n_iterations):
|
||||
train_crew._train_iteration = n_iteration
|
||||
train_crew.kickoff(inputs=inputs)
|
||||
|
||||
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
|
||||
for agent in train_crew.agents:
|
||||
if training_data.get(str(agent.id)):
|
||||
result = TaskEvaluator(agent).evaluate_training_data(
|
||||
training_data=training_data, agent_id=str(agent.id)
|
||||
)
|
||||
|
||||
CrewTrainingHandler(filename).save_trained_data(
|
||||
agent_id=str(agent.role), trained_data=result.model_dump()
|
||||
)
|
||||
for agent in train_crew.agents:
|
||||
if training_data.get(str(agent.id)):
|
||||
result = TaskEvaluator(agent).evaluate_training_data(
|
||||
training_data=training_data, agent_id=str(agent.id)
|
||||
)
|
||||
CrewTrainingHandler(filename).save_trained_data(
|
||||
agent_id=str(agent.role), trained_data=result.model_dump()
|
||||
)
|
||||
except Exception as e:
|
||||
self._logger.log("error", f"Training failed: {e}", color="red")
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).clear()
|
||||
CrewTrainingHandler(filename).clear()
|
||||
raise
|
||||
|
||||
def kickoff(
|
||||
self,
|
||||
@@ -988,8 +998,8 @@ class Crew(BaseModel):
|
||||
return result
|
||||
|
||||
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
|
||||
if self._knowledge:
|
||||
return self._knowledge.query(query)
|
||||
if self.knowledge:
|
||||
return self.knowledge.query(query)
|
||||
return None
|
||||
|
||||
def fetch_inputs(self) -> Set[str]:
|
||||
@@ -1033,6 +1043,8 @@ class Crew(BaseModel):
|
||||
"_telemetry",
|
||||
"agents",
|
||||
"tasks",
|
||||
"knowledge_sources",
|
||||
"knowledge",
|
||||
}
|
||||
|
||||
cloned_agents = [agent.copy() for agent in self.agents]
|
||||
@@ -1040,6 +1052,9 @@ class Crew(BaseModel):
|
||||
task_mapping = {}
|
||||
|
||||
cloned_tasks = []
|
||||
existing_knowledge_sources = shallow_copy(self.knowledge_sources)
|
||||
existing_knowledge = shallow_copy(self.knowledge)
|
||||
|
||||
for task in self.tasks:
|
||||
cloned_task = task.copy(cloned_agents, task_mapping)
|
||||
cloned_tasks.append(cloned_task)
|
||||
@@ -1059,7 +1074,13 @@ class Crew(BaseModel):
|
||||
copied_data.pop("agents", None)
|
||||
copied_data.pop("tasks", None)
|
||||
|
||||
copied_crew = Crew(**copied_data, agents=cloned_agents, tasks=cloned_tasks)
|
||||
copied_crew = Crew(
|
||||
**copied_data,
|
||||
agents=cloned_agents,
|
||||
tasks=cloned_tasks,
|
||||
knowledge_sources=existing_knowledge_sources,
|
||||
knowledge=existing_knowledge,
|
||||
)
|
||||
|
||||
return copied_crew
|
||||
|
||||
|
||||
@@ -15,20 +15,20 @@ class Knowledge(BaseModel):
|
||||
Args:
|
||||
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
embedder: Optional[Dict[str, Any]] = None
|
||||
"""
|
||||
|
||||
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
embedder: Optional[Dict[str, Any]] = None
|
||||
collection_name: Optional[str] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
collection_name: str,
|
||||
sources: List[BaseKnowledgeSource],
|
||||
embedder_config: Optional[Dict[str, Any]] = None,
|
||||
embedder: Optional[Dict[str, Any]] = None,
|
||||
storage: Optional[KnowledgeStorage] = None,
|
||||
**data,
|
||||
):
|
||||
@@ -37,25 +37,23 @@ class Knowledge(BaseModel):
|
||||
self.storage = storage
|
||||
else:
|
||||
self.storage = KnowledgeStorage(
|
||||
embedder_config=embedder_config, collection_name=collection_name
|
||||
embedder=embedder, collection_name=collection_name
|
||||
)
|
||||
self.sources = sources
|
||||
self.storage.initialize_knowledge_storage()
|
||||
for source in sources:
|
||||
source.storage = self.storage
|
||||
source.add()
|
||||
self._add_sources()
|
||||
|
||||
def query(self, query: List[str], limit: int = 3) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Query across all knowledge sources to find the most relevant information.
|
||||
Returns the top_k most relevant chunks.
|
||||
|
||||
|
||||
Raises:
|
||||
ValueError: If storage is not initialized.
|
||||
"""
|
||||
if self.storage is None:
|
||||
raise ValueError("Storage is not initialized.")
|
||||
|
||||
|
||||
results = self.storage.search(
|
||||
query,
|
||||
limit,
|
||||
@@ -63,6 +61,9 @@ class Knowledge(BaseModel):
|
||||
return results
|
||||
|
||||
def _add_sources(self):
|
||||
for source in self.sources:
|
||||
source.storage = self.storage
|
||||
source.add()
|
||||
try:
|
||||
for source in self.sources:
|
||||
source.storage = self.storage
|
||||
source.add()
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
@@ -29,7 +29,13 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
def validate_file_path(cls, v, info):
|
||||
"""Validate that at least one of file_path or file_paths is provided."""
|
||||
# Single check if both are None, O(1) instead of nested conditions
|
||||
if v is None and info.data.get("file_path" if info.field_name == "file_paths" else "file_paths") is None:
|
||||
if (
|
||||
v is None
|
||||
and info.data.get(
|
||||
"file_path" if info.field_name == "file_paths" else "file_paths"
|
||||
)
|
||||
is None
|
||||
):
|
||||
raise ValueError("Either file_path or file_paths must be provided")
|
||||
return v
|
||||
|
||||
|
||||
@@ -48,11 +48,11 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedder_config: Optional[Dict[str, Any]] = None,
|
||||
embedder: Optional[Dict[str, Any]] = None,
|
||||
collection_name: Optional[str] = None,
|
||||
):
|
||||
self.collection_name = collection_name
|
||||
self._set_embedder_config(embedder_config)
|
||||
self._set_embedder_config(embedder)
|
||||
|
||||
def search(
|
||||
self,
|
||||
@@ -99,7 +99,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
)
|
||||
if self.app:
|
||||
self.collection = self.app.get_or_create_collection(
|
||||
name=collection_name, embedding_function=self.embedder_config
|
||||
name=collection_name, embedding_function=self.embedder
|
||||
)
|
||||
else:
|
||||
raise Exception("Vector Database Client not initialized")
|
||||
@@ -187,17 +187,15 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
|
||||
def _set_embedder_config(
|
||||
self, embedder_config: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
def _set_embedder_config(self, embedder: Optional[Dict[str, Any]] = None) -> None:
|
||||
"""Set the embedding configuration for the knowledge storage.
|
||||
|
||||
Args:
|
||||
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
|
||||
If None or empty, defaults to the default embedding function.
|
||||
"""
|
||||
self.embedder_config = (
|
||||
EmbeddingConfigurator().configure_embedder(embedder_config)
|
||||
if embedder_config
|
||||
self.embedder = (
|
||||
EmbeddingConfigurator().configure_embedder(embedder)
|
||||
if embedder
|
||||
else self._create_default_embedding_function()
|
||||
)
|
||||
|
||||
@@ -431,7 +431,9 @@ class Task(BaseModel):
|
||||
content = (
|
||||
json_output
|
||||
if json_output
|
||||
else pydantic_output.model_dump_json() if pydantic_output else result
|
||||
else pydantic_output.model_dump_json()
|
||||
if pydantic_output
|
||||
else result
|
||||
)
|
||||
self._save_file(content)
|
||||
|
||||
@@ -452,7 +454,7 @@ class Task(BaseModel):
|
||||
return "\n".join(tasks_slices)
|
||||
|
||||
def interpolate_inputs_and_add_conversation_history(
|
||||
self, inputs: Dict[str, Union[str, int, float]]
|
||||
self, inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]]
|
||||
) -> None:
|
||||
"""Interpolate inputs into the task description, expected output, and output file path.
|
||||
Add conversation history if present.
|
||||
@@ -524,7 +526,9 @@ class Task(BaseModel):
|
||||
)
|
||||
|
||||
def interpolate_only(
|
||||
self, input_string: Optional[str], inputs: Dict[str, Union[str, int, float]]
|
||||
self,
|
||||
input_string: Optional[str],
|
||||
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]],
|
||||
) -> str:
|
||||
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched.
|
||||
|
||||
@@ -532,17 +536,39 @@ class Task(BaseModel):
|
||||
input_string: The string containing template variables to interpolate.
|
||||
Can be None or empty, in which case an empty string is returned.
|
||||
inputs: Dictionary mapping template variables to their values.
|
||||
Supported value types are strings, integers, and floats.
|
||||
If input_string is empty or has no placeholders, inputs can be empty.
|
||||
Supported value types are strings, integers, floats, and dicts/lists
|
||||
containing only these types and other nested dicts/lists.
|
||||
|
||||
Returns:
|
||||
The interpolated string with all template variables replaced with their values.
|
||||
Empty string if input_string is None or empty.
|
||||
|
||||
Raises:
|
||||
ValueError: If a required template variable is missing from inputs.
|
||||
KeyError: If a template variable is not found in the inputs dictionary.
|
||||
ValueError: If a value contains unsupported types
|
||||
"""
|
||||
|
||||
# Validation function for recursive type checking
|
||||
def validate_type(value: Any) -> None:
|
||||
if value is None:
|
||||
return
|
||||
if isinstance(value, (str, int, float, bool)):
|
||||
return
|
||||
if isinstance(value, (dict, list)):
|
||||
for item in value.values() if isinstance(value, dict) else value:
|
||||
validate_type(item)
|
||||
return
|
||||
raise ValueError(
|
||||
f"Unsupported type {type(value).__name__} in inputs. "
|
||||
"Only str, int, float, bool, dict, and list are allowed."
|
||||
)
|
||||
|
||||
# Validate all input values
|
||||
for key, value in inputs.items():
|
||||
try:
|
||||
validate_type(value)
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Invalid value for key '{key}': {str(e)}") from e
|
||||
|
||||
if input_string is None or not input_string:
|
||||
return ""
|
||||
if "{" not in input_string and "}" not in input_string:
|
||||
@@ -551,15 +577,7 @@ class Task(BaseModel):
|
||||
raise ValueError(
|
||||
"Inputs dictionary cannot be empty when interpolating variables"
|
||||
)
|
||||
|
||||
try:
|
||||
# Validate input types
|
||||
for key, value in inputs.items():
|
||||
if not isinstance(value, (str, int, float)):
|
||||
raise ValueError(
|
||||
f"Value for key '{key}' must be a string, integer, or float, got {type(value).__name__}"
|
||||
)
|
||||
|
||||
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
|
||||
|
||||
for key in inputs.keys():
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
import ast
|
||||
import datetime
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
from difflib import SequenceMatcher
|
||||
from json import JSONDecodeError
|
||||
from textwrap import dedent
|
||||
from typing import Any, Dict, List, Union
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import json5
|
||||
from json_repair import repair_json
|
||||
|
||||
import crewai.utilities.events as events
|
||||
@@ -407,28 +408,55 @@ class ToolUsage:
|
||||
)
|
||||
return self._tool_calling(tool_string)
|
||||
|
||||
def _validate_tool_input(self, tool_input: str) -> Dict[str, Any]:
|
||||
def _validate_tool_input(self, tool_input: Optional[str]) -> Dict[str, Any]:
|
||||
if tool_input is None:
|
||||
return {}
|
||||
|
||||
if not isinstance(tool_input, str) or not tool_input.strip():
|
||||
raise Exception(
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
)
|
||||
|
||||
# Attempt 1: Parse as JSON
|
||||
try:
|
||||
# Replace Python literals with JSON equivalents
|
||||
replacements = {
|
||||
r"'": '"',
|
||||
r"None": "null",
|
||||
r"True": "true",
|
||||
r"False": "false",
|
||||
}
|
||||
for pattern, replacement in replacements.items():
|
||||
tool_input = re.sub(pattern, replacement, tool_input)
|
||||
|
||||
arguments = json.loads(tool_input)
|
||||
except json.JSONDecodeError:
|
||||
# Attempt to repair JSON string
|
||||
repaired_input = repair_json(tool_input)
|
||||
try:
|
||||
arguments = json.loads(repaired_input)
|
||||
except json.JSONDecodeError as e:
|
||||
raise Exception(f"Invalid tool input JSON: {e}")
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (JSONDecodeError, TypeError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
return arguments
|
||||
# Attempt 2: Parse as Python literal
|
||||
try:
|
||||
arguments = ast.literal_eval(tool_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (ValueError, SyntaxError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
# Attempt 3: Parse as JSON5
|
||||
try:
|
||||
arguments = json5.loads(tool_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (JSONDecodeError, ValueError, TypeError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
# Attempt 4: Repair JSON
|
||||
try:
|
||||
repaired_input = repair_json(tool_input)
|
||||
self._printer.print(
|
||||
content=f"Repaired JSON: {repaired_input}", color="blue"
|
||||
)
|
||||
arguments = json.loads(repaired_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except Exception as e:
|
||||
self._printer.print(content=f"Failed to repair JSON: {e}", color="red")
|
||||
|
||||
# If all parsing attempts fail, raise an error
|
||||
raise Exception(
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
)
|
||||
|
||||
def on_tool_error(self, tool: Any, tool_calling: ToolCalling, e: Exception) -> None:
|
||||
event_data = self._prepare_event_data(tool, tool_calling)
|
||||
|
||||
@@ -43,7 +43,6 @@ class EmbeddingConfigurator:
|
||||
raise Exception(
|
||||
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
|
||||
)
|
||||
|
||||
return self.embedding_functions[provider](config, model_name)
|
||||
|
||||
@staticmethod
|
||||
|
||||
@@ -92,13 +92,34 @@ class TaskEvaluator:
|
||||
"""
|
||||
|
||||
output_training_data = training_data[agent_id]
|
||||
|
||||
final_aggregated_data = ""
|
||||
for _, data in output_training_data.items():
|
||||
|
||||
for iteration, data in output_training_data.items():
|
||||
improved_output = data.get("improved_output")
|
||||
initial_output = data.get("initial_output")
|
||||
human_feedback = data.get("human_feedback")
|
||||
|
||||
if not all([improved_output, initial_output, human_feedback]):
|
||||
missing_fields = [
|
||||
field
|
||||
for field in ["improved_output", "initial_output", "human_feedback"]
|
||||
if not data.get(field)
|
||||
]
|
||||
error_msg = (
|
||||
f"Critical training data error: Missing fields ({', '.join(missing_fields)}) "
|
||||
f"for agent {agent_id} in iteration {iteration}.\n"
|
||||
"This indicates a broken training process. "
|
||||
"Cannot proceed with evaluation.\n"
|
||||
"Please check your training implementation."
|
||||
)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
final_aggregated_data += (
|
||||
f"Initial Output:\n{data['initial_output']}\n\n"
|
||||
f"Human Feedback:\n{data['human_feedback']}\n\n"
|
||||
f"Improved Output:\n{data['improved_output']}\n\n"
|
||||
f"Iteration: {iteration}\n"
|
||||
f"Initial Output:\n{initial_output}\n\n"
|
||||
f"Human Feedback:\n{human_feedback}\n\n"
|
||||
f"Improved Output:\n{improved_output}\n\n"
|
||||
"------------------------------------------------\n\n"
|
||||
)
|
||||
|
||||
evaluation_query = (
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
import os
|
||||
|
||||
from crewai.utilities.file_handler import PickleHandler
|
||||
|
||||
|
||||
@@ -29,3 +31,10 @@ class CrewTrainingHandler(PickleHandler):
|
||||
data[agent_id] = {train_iteration: new_data}
|
||||
|
||||
self.save(data)
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Clear the training data by removing the file or resetting its contents."""
|
||||
if os.path.exists(self.file_path):
|
||||
with open(self.file_path, "wb") as file:
|
||||
# Overwrite with an empty dictionary
|
||||
self.save({})
|
||||
|
||||
@@ -10,13 +10,14 @@ from crewai import Agent, Crew, Task
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
from crewai.tools import tool
|
||||
from crewai.tools.tool_calling import InstructorToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.tools.tool_usage_events import ToolUsageFinished
|
||||
from crewai.utilities import Printer, RPMController
|
||||
from crewai.utilities import RPMController
|
||||
from crewai.utilities.events import Emitter
|
||||
|
||||
|
||||
@@ -1602,6 +1603,45 @@ def test_agent_with_knowledge_sources():
|
||||
assert "red" in result.raw.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources_works_with_copy():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
with patch(
|
||||
"crewai.knowledge.source.base_knowledge_source.BaseKnowledgeSource",
|
||||
autospec=True,
|
||||
) as MockKnowledgeSource:
|
||||
mock_knowledge_source_instance = MockKnowledgeSource.return_value
|
||||
mock_knowledge_source_instance.__class__ = BaseKnowledgeSource
|
||||
mock_knowledge_source_instance.sources = [string_source]
|
||||
|
||||
agent = Agent(
|
||||
role="Information Agent",
|
||||
goal="Provide information based on knowledge sources",
|
||||
backstory="You have access to specific knowledge sources.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
knowledge_sources=[string_source],
|
||||
)
|
||||
|
||||
with patch(
|
||||
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
|
||||
) as MockKnowledgeStorage:
|
||||
mock_knowledge_storage = MockKnowledgeStorage.return_value
|
||||
agent.knowledge_storage = mock_knowledge_storage
|
||||
|
||||
agent_copy = agent.copy()
|
||||
|
||||
assert agent_copy.role == agent.role
|
||||
assert agent_copy.goal == agent.goal
|
||||
assert agent_copy.backstory == agent.backstory
|
||||
assert agent_copy.knowledge_sources is not None
|
||||
assert len(agent_copy.knowledge_sources) == 1
|
||||
assert isinstance(agent_copy.knowledge_sources[0], StringKnowledgeSource)
|
||||
assert agent_copy.knowledge_sources[0].content == content
|
||||
assert isinstance(agent_copy.llm, LLM)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_litellm_auth_error_handling():
|
||||
"""Test that LiteLLM authentication errors are handled correctly and not retried."""
|
||||
|
||||
@@ -1,117 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRlxiTxduAVoXHHY58Fvfbll5IS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458417,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: This is a test task, and the context or question from the coworker is
|
||||
not specified. Therefore, my best effort would be to affirm my readiness to
|
||||
answer accurately and in detail any question about Futel Football Club based
|
||||
on the context described. If provided with specific information or questions,
|
||||
I will ensure to respond comprehensively as required by my job directives.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 177,\n \"completion_tokens\":
|
||||
82,\n \"total_tokens\": 259,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78bf7bd6cc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:40 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2263'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_7c1a31da73cd103e9f410f908e59187f
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,119 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRrFJZGKw8cIEshvuW1PKwFZFKs\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458423,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Although you mentioned this being a \\\"Test task\\\" and haven't provided
|
||||
a specific question regarding Futel Football Club, your request appears to involve
|
||||
ensuring accuracy and detail in responses. For a proper answer about Futel,
|
||||
I'd be ready to provide details about the club's history, management, players,
|
||||
match schedules, and recent performance statistics. Remember to ask specific
|
||||
questions to receive a targeted response. If this were a real context where
|
||||
information was shared, I would respond precisely to what's been asked regarding
|
||||
Futel Football Club.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 113,\n \"total_tokens\": 290,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c1d0ecdc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:47 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '3097'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_179e1d56e2b17303e40480baffbc7b08
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,114 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRqgg7eiHnDi2DOqdk99fiqOboz\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458422,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Your best answer to your coworker asking you this, accounting for the
|
||||
context shared. You MUST return the actual complete content as the final answer,
|
||||
not a summary.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 44,\n \"total_tokens\": 221,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c164ad2c002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:43 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '899'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_9f5226208edb90a27987aaf7e0ca03d3
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,119 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRjmwH5mrykLxQhFwTqqTiDtuTf\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458415,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: As this is a test task, please note that Futel Football Club is fictional
|
||||
and any specific details about it would not be available. However, if you have
|
||||
specific questions or need information about a particular aspect of Futel or
|
||||
any general football club inquiry, feel free to ask, and I'll do my best to
|
||||
assist you with your query!\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 79,\n \"total_tokens\": 256,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78be5eebfc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:37 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
path=/; expires=Thu, 09-Jan-25 22:03:37 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2730'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_014478ba748f860d10ac250ca0ba824a
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,119 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRofLgmzWcDya5LILqYwIJYgFoq\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458420,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: As an official Futel Football Club infopoint, my responsibility is to
|
||||
provide detailed and accurate information about the club. This includes answering
|
||||
questions regarding team statistics, player performances, upcoming fixtures,
|
||||
ticketing and fan zone details, club history, and community initiatives. Our
|
||||
focus is to ensure that fans and stakeholders have access to the latest and
|
||||
most precise information about the club's on and off-pitch activities. If there's
|
||||
anything specific you need to know, just let me know, and I'll be more than
|
||||
happy to assist!\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 115,\n \"total_tokens\": 292,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c066f37c002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:42 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2459'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_a146dd27f040f39a576750970cca0f52
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -14,6 +14,7 @@ from crewai.agent import Agent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crew import Crew
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.process import Process
|
||||
from crewai.project import crew
|
||||
@@ -555,12 +556,12 @@ def test_crew_with_delegating_agents_should_not_override_task_tools():
|
||||
_, kwargs = mock_execute_sync.call_args
|
||||
tools = kwargs["tools"]
|
||||
|
||||
assert any(
|
||||
isinstance(tool, TestTool) for tool in tools
|
||||
), "TestTool should be present"
|
||||
assert any(
|
||||
"delegate" in tool.name.lower() for tool in tools
|
||||
), "Delegation tool should be present"
|
||||
assert any(isinstance(tool, TestTool) for tool in tools), (
|
||||
"TestTool should be present"
|
||||
)
|
||||
assert any("delegate" in tool.name.lower() for tool in tools), (
|
||||
"Delegation tool should be present"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -619,12 +620,12 @@ def test_crew_with_delegating_agents_should_not_override_agent_tools():
|
||||
_, kwargs = mock_execute_sync.call_args
|
||||
tools = kwargs["tools"]
|
||||
|
||||
assert any(
|
||||
isinstance(tool, TestTool) for tool in new_ceo.tools
|
||||
), "TestTool should be present"
|
||||
assert any(
|
||||
"delegate" in tool.name.lower() for tool in tools
|
||||
), "Delegation tool should be present"
|
||||
assert any(isinstance(tool, TestTool) for tool in new_ceo.tools), (
|
||||
"TestTool should be present"
|
||||
)
|
||||
assert any("delegate" in tool.name.lower() for tool in tools), (
|
||||
"Delegation tool should be present"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -748,17 +749,17 @@ def test_task_tools_override_agent_tools_with_allow_delegation():
|
||||
used_tools = kwargs["tools"]
|
||||
|
||||
# Confirm AnotherTestTool is present but TestTool is not
|
||||
assert any(
|
||||
isinstance(tool, AnotherTestTool) for tool in used_tools
|
||||
), "AnotherTestTool should be present"
|
||||
assert not any(
|
||||
isinstance(tool, TestTool) for tool in used_tools
|
||||
), "TestTool should not be present among used tools"
|
||||
assert any(isinstance(tool, AnotherTestTool) for tool in used_tools), (
|
||||
"AnotherTestTool should be present"
|
||||
)
|
||||
assert not any(isinstance(tool, TestTool) for tool in used_tools), (
|
||||
"TestTool should not be present among used tools"
|
||||
)
|
||||
|
||||
# Confirm delegation tool(s) are present
|
||||
assert any(
|
||||
"delegate" in tool.name.lower() for tool in used_tools
|
||||
), "Delegation tool should be present"
|
||||
assert any("delegate" in tool.name.lower() for tool in used_tools), (
|
||||
"Delegation tool should be present"
|
||||
)
|
||||
|
||||
# Finally, make sure the agent's original tools remain unchanged
|
||||
assert len(researcher_with_delegation.tools) == 1
|
||||
@@ -1466,7 +1467,6 @@ def test_dont_set_agents_step_callback_if_already_set():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_function_calling_llm():
|
||||
|
||||
from crewai import LLM
|
||||
from crewai.tools import tool
|
||||
|
||||
@@ -1560,9 +1560,9 @@ def test_code_execution_flag_adds_code_tool_upon_kickoff():
|
||||
|
||||
# Verify that exactly one tool was used and it was a CodeInterpreterTool
|
||||
assert len(used_tools) == 1, "Should have exactly one tool"
|
||||
assert isinstance(
|
||||
used_tools[0], CodeInterpreterTool
|
||||
), "Tool should be CodeInterpreterTool"
|
||||
assert isinstance(used_tools[0], CodeInterpreterTool), (
|
||||
"Tool should be CodeInterpreterTool"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -3107,9 +3107,9 @@ def test_fetch_inputs():
|
||||
expected_placeholders = {"role_detail", "topic", "field"}
|
||||
actual_placeholders = crew.fetch_inputs()
|
||||
|
||||
assert (
|
||||
actual_placeholders == expected_placeholders
|
||||
), f"Expected {expected_placeholders}, but got {actual_placeholders}"
|
||||
assert actual_placeholders == expected_placeholders, (
|
||||
f"Expected {expected_placeholders}, but got {actual_placeholders}"
|
||||
)
|
||||
|
||||
|
||||
def test_task_tools_preserve_code_execution_tools():
|
||||
@@ -3182,20 +3182,20 @@ def test_task_tools_preserve_code_execution_tools():
|
||||
used_tools = kwargs["tools"]
|
||||
|
||||
# Verify all expected tools are present
|
||||
assert any(
|
||||
isinstance(tool, TestTool) for tool in used_tools
|
||||
), "Task's TestTool should be present"
|
||||
assert any(
|
||||
isinstance(tool, CodeInterpreterTool) for tool in used_tools
|
||||
), "CodeInterpreterTool should be present"
|
||||
assert any(
|
||||
"delegate" in tool.name.lower() for tool in used_tools
|
||||
), "Delegation tool should be present"
|
||||
assert any(isinstance(tool, TestTool) for tool in used_tools), (
|
||||
"Task's TestTool should be present"
|
||||
)
|
||||
assert any(isinstance(tool, CodeInterpreterTool) for tool in used_tools), (
|
||||
"CodeInterpreterTool should be present"
|
||||
)
|
||||
assert any("delegate" in tool.name.lower() for tool in used_tools), (
|
||||
"Delegation tool should be present"
|
||||
)
|
||||
|
||||
# Verify the total number of tools (TestTool + CodeInterpreter + 2 delegation tools)
|
||||
assert (
|
||||
len(used_tools) == 4
|
||||
), "Should have TestTool, CodeInterpreter, and 2 delegation tools"
|
||||
assert len(used_tools) == 4, (
|
||||
"Should have TestTool, CodeInterpreter, and 2 delegation tools"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -3239,9 +3239,9 @@ def test_multimodal_flag_adds_multimodal_tools():
|
||||
used_tools = kwargs["tools"]
|
||||
|
||||
# Check that the multimodal tool was added
|
||||
assert any(
|
||||
isinstance(tool, AddImageTool) for tool in used_tools
|
||||
), "AddImageTool should be present when agent is multimodal"
|
||||
assert any(isinstance(tool, AddImageTool) for tool in used_tools), (
|
||||
"AddImageTool should be present when agent is multimodal"
|
||||
)
|
||||
|
||||
# Verify we have exactly one tool (just the AddImageTool)
|
||||
assert len(used_tools) == 1, "Should only have the AddImageTool"
|
||||
@@ -3467,9 +3467,9 @@ def test_crew_guardrail_feedback_in_context():
|
||||
assert len(execution_contexts) > 1, "Task should have been executed multiple times"
|
||||
|
||||
# Verify that the second execution included the guardrail feedback
|
||||
assert (
|
||||
"Output must contain the keyword 'IMPORTANT'" in execution_contexts[1]
|
||||
), "Guardrail feedback should be included in retry context"
|
||||
assert "Output must contain the keyword 'IMPORTANT'" in execution_contexts[1], (
|
||||
"Guardrail feedback should be included in retry context"
|
||||
)
|
||||
|
||||
# Verify final output meets guardrail requirements
|
||||
assert "IMPORTANT" in result.raw, "Final output should contain required keyword"
|
||||
@@ -3494,7 +3494,6 @@ def test_before_kickoff_callback():
|
||||
|
||||
@before_kickoff
|
||||
def modify_inputs(self, inputs):
|
||||
|
||||
self.inputs_modified = True
|
||||
inputs["modified"] = True
|
||||
return inputs
|
||||
@@ -3596,3 +3595,21 @@ def test_before_kickoff_without_inputs():
|
||||
# Verify that the inputs were initialized and modified inside the before_kickoff method
|
||||
assert test_crew_instance.received_inputs is not None
|
||||
assert test_crew_instance.received_inputs.get("modified") is True
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_with_knowledge_sources_works_with_copy():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[Task(description="test", expected_output="test", agent=researcher)],
|
||||
knowledge_sources=[string_source],
|
||||
)
|
||||
|
||||
crew_copy = crew.copy()
|
||||
|
||||
assert crew_copy.knowledge_sources == crew.knowledge_sources
|
||||
assert len(crew_copy.agents) == len(crew.agents)
|
||||
assert len(crew_copy.tasks) == len(crew.tasks)
|
||||
|
||||
@@ -779,6 +779,43 @@ def test_interpolate_only():
|
||||
assert result == no_placeholders
|
||||
|
||||
|
||||
def test_interpolate_only_with_dict_inside_expected_output():
|
||||
"""Test the interpolate_only method for various scenarios including JSON structure preservation."""
|
||||
task = Task(
|
||||
description="Unused in this test",
|
||||
expected_output="Unused in this test: {questions}",
|
||||
)
|
||||
|
||||
json_string = '{"questions": {"main_question": "What is the user\'s name?", "secondary_question": "What is the user\'s age?"}}'
|
||||
result = task.interpolate_only(
|
||||
input_string=json_string,
|
||||
inputs={
|
||||
"questions": {
|
||||
"main_question": "What is the user's name?",
|
||||
"secondary_question": "What is the user's age?",
|
||||
}
|
||||
},
|
||||
)
|
||||
assert '"main_question": "What is the user\'s name?"' in result
|
||||
assert '"secondary_question": "What is the user\'s age?"' in result
|
||||
assert result == json_string
|
||||
|
||||
normal_string = "Hello {name}, welcome to {place}!"
|
||||
result = task.interpolate_only(
|
||||
input_string=normal_string, inputs={"name": "John", "place": "CrewAI"}
|
||||
)
|
||||
assert result == "Hello John, welcome to CrewAI!"
|
||||
|
||||
result = task.interpolate_only(input_string="", inputs={"unused": "value"})
|
||||
assert result == ""
|
||||
|
||||
no_placeholders = "Hello, this is a test"
|
||||
result = task.interpolate_only(
|
||||
input_string=no_placeholders, inputs={"unused": "value"}
|
||||
)
|
||||
assert result == no_placeholders
|
||||
|
||||
|
||||
def test_task_output_str_with_pydantic():
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
|
||||
@@ -966,3 +1003,283 @@ def test_task_execution_times():
|
||||
assert task.start_time is not None
|
||||
assert task.end_time is not None
|
||||
assert task.execution_duration == (task.end_time - task.start_time).total_seconds()
|
||||
|
||||
|
||||
def test_interpolate_with_list_of_strings():
|
||||
task = Task(
|
||||
description="Test list interpolation",
|
||||
expected_output="List: {items}",
|
||||
)
|
||||
|
||||
# Test simple list of strings
|
||||
input_str = "Available items: {items}"
|
||||
inputs = {"items": ["apple", "banana", "cherry"]}
|
||||
result = task.interpolate_only(input_str, inputs)
|
||||
assert result == f"Available items: {inputs['items']}"
|
||||
|
||||
# Test empty list
|
||||
empty_list_input = {"items": []}
|
||||
result = task.interpolate_only(input_str, empty_list_input)
|
||||
assert result == "Available items: []"
|
||||
|
||||
|
||||
def test_interpolate_with_list_of_dicts():
|
||||
task = Task(
|
||||
description="Test list of dicts interpolation",
|
||||
expected_output="People: {people}",
|
||||
)
|
||||
|
||||
input_data = {
|
||||
"people": [
|
||||
{"name": "Alice", "age": 30, "skills": ["Python", "AI"]},
|
||||
{"name": "Bob", "age": 25, "skills": ["Java", "Cloud"]},
|
||||
]
|
||||
}
|
||||
result = task.interpolate_only("{people}", input_data)
|
||||
|
||||
parsed_result = eval(result)
|
||||
assert isinstance(parsed_result, list)
|
||||
assert len(parsed_result) == 2
|
||||
assert parsed_result[0]["name"] == "Alice"
|
||||
assert parsed_result[0]["age"] == 30
|
||||
assert parsed_result[0]["skills"] == ["Python", "AI"]
|
||||
assert parsed_result[1]["name"] == "Bob"
|
||||
assert parsed_result[1]["age"] == 25
|
||||
assert parsed_result[1]["skills"] == ["Java", "Cloud"]
|
||||
|
||||
|
||||
def test_interpolate_with_nested_structures():
|
||||
task = Task(
|
||||
description="Test nested structures",
|
||||
expected_output="Company: {company}",
|
||||
)
|
||||
|
||||
input_data = {
|
||||
"company": {
|
||||
"name": "TechCorp",
|
||||
"departments": [
|
||||
{
|
||||
"name": "Engineering",
|
||||
"employees": 50,
|
||||
"tools": ["Git", "Docker", "Kubernetes"],
|
||||
},
|
||||
{"name": "Sales", "employees": 20, "regions": {"north": 5, "south": 3}},
|
||||
],
|
||||
}
|
||||
}
|
||||
result = task.interpolate_only("{company}", input_data)
|
||||
parsed = eval(result)
|
||||
|
||||
assert parsed["name"] == "TechCorp"
|
||||
assert len(parsed["departments"]) == 2
|
||||
assert parsed["departments"][0]["tools"] == ["Git", "Docker", "Kubernetes"]
|
||||
assert parsed["departments"][1]["regions"]["north"] == 5
|
||||
|
||||
|
||||
def test_interpolate_with_special_characters():
|
||||
task = Task(
|
||||
description="Test special characters in dicts",
|
||||
expected_output="Data: {special_data}",
|
||||
)
|
||||
|
||||
input_data = {
|
||||
"special_data": {
|
||||
"quotes": """This has "double" and 'single' quotes""",
|
||||
"unicode": "文字化けテスト",
|
||||
"symbols": "!@#$%^&*()",
|
||||
"empty": "",
|
||||
}
|
||||
}
|
||||
result = task.interpolate_only("{special_data}", input_data)
|
||||
parsed = eval(result)
|
||||
|
||||
assert parsed["quotes"] == """This has "double" and 'single' quotes"""
|
||||
assert parsed["unicode"] == "文字化けテスト"
|
||||
assert parsed["symbols"] == "!@#$%^&*()"
|
||||
assert parsed["empty"] == ""
|
||||
|
||||
|
||||
def test_interpolate_mixed_types():
|
||||
task = Task(
|
||||
description="Test mixed type interpolation",
|
||||
expected_output="Mixed: {data}",
|
||||
)
|
||||
|
||||
input_data = {
|
||||
"data": {
|
||||
"name": "Test Dataset",
|
||||
"samples": 1000,
|
||||
"features": ["age", "income", "location"],
|
||||
"metadata": {
|
||||
"source": "public",
|
||||
"validated": True,
|
||||
"tags": ["demo", "test", "temp"],
|
||||
},
|
||||
}
|
||||
}
|
||||
result = task.interpolate_only("{data}", input_data)
|
||||
parsed = eval(result)
|
||||
|
||||
assert parsed["name"] == "Test Dataset"
|
||||
assert parsed["samples"] == 1000
|
||||
assert parsed["metadata"]["tags"] == ["demo", "test", "temp"]
|
||||
|
||||
|
||||
def test_interpolate_complex_combination():
|
||||
task = Task(
|
||||
description="Test complex combination",
|
||||
expected_output="Report: {report}",
|
||||
)
|
||||
|
||||
input_data = {
|
||||
"report": [
|
||||
{
|
||||
"month": "January",
|
||||
"metrics": {"sales": 15000, "expenses": 8000, "profit": 7000},
|
||||
"top_products": ["Product A", "Product B"],
|
||||
},
|
||||
{
|
||||
"month": "February",
|
||||
"metrics": {"sales": 18000, "expenses": 8500, "profit": 9500},
|
||||
"top_products": ["Product C", "Product D"],
|
||||
},
|
||||
]
|
||||
}
|
||||
result = task.interpolate_only("{report}", input_data)
|
||||
parsed = eval(result)
|
||||
|
||||
assert len(parsed) == 2
|
||||
assert parsed[0]["month"] == "January"
|
||||
assert parsed[1]["metrics"]["profit"] == 9500
|
||||
assert "Product D" in parsed[1]["top_products"]
|
||||
|
||||
|
||||
def test_interpolate_invalid_type_validation():
|
||||
task = Task(
|
||||
description="Test invalid type validation",
|
||||
expected_output="Should never reach here",
|
||||
)
|
||||
|
||||
# Test with invalid top-level type
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
task.interpolate_only("{data}", {"data": set()}) # type: ignore we are purposely testing this failure
|
||||
|
||||
assert "Unsupported type set" in str(excinfo.value)
|
||||
|
||||
# Test with invalid nested type
|
||||
invalid_nested = {
|
||||
"profile": {
|
||||
"name": "John",
|
||||
"age": 30,
|
||||
"tags": {"a", "b", "c"}, # Set is invalid
|
||||
}
|
||||
}
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
task.interpolate_only("{data}", {"data": invalid_nested})
|
||||
assert "Unsupported type set" in str(excinfo.value)
|
||||
|
||||
|
||||
def test_interpolate_custom_object_validation():
|
||||
task = Task(
|
||||
description="Test custom object rejection",
|
||||
expected_output="Should never reach here",
|
||||
)
|
||||
|
||||
class CustomObject:
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def __str__(self):
|
||||
return str(self.value)
|
||||
|
||||
# Test with custom object at top level
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
task.interpolate_only("{obj}", {"obj": CustomObject(5)}) # type: ignore we are purposely testing this failure
|
||||
assert "Unsupported type CustomObject" in str(excinfo.value)
|
||||
|
||||
# Test with nested custom object in dictionary
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
task.interpolate_only(
|
||||
"{data}", {"data": {"valid": 1, "invalid": CustomObject(5)}}
|
||||
)
|
||||
assert "Unsupported type CustomObject" in str(excinfo.value)
|
||||
|
||||
# Test with nested custom object in list
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
task.interpolate_only("{data}", {"data": [1, "valid", CustomObject(5)]})
|
||||
assert "Unsupported type CustomObject" in str(excinfo.value)
|
||||
|
||||
# Test with deeply nested custom object
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
task.interpolate_only(
|
||||
"{data}", {"data": {"level1": {"level2": [{"level3": CustomObject(5)}]}}}
|
||||
)
|
||||
assert "Unsupported type CustomObject" in str(excinfo.value)
|
||||
|
||||
|
||||
def test_interpolate_valid_complex_types():
|
||||
task = Task(
|
||||
description="Test valid complex types",
|
||||
expected_output="Validation should pass",
|
||||
)
|
||||
|
||||
# Valid complex structure
|
||||
valid_data = {
|
||||
"name": "Valid Dataset",
|
||||
"stats": {
|
||||
"count": 1000,
|
||||
"distribution": [0.2, 0.3, 0.5],
|
||||
"features": ["age", "income"],
|
||||
"nested": {"deep": [1, 2, 3], "deeper": {"a": 1, "b": 2.5}},
|
||||
},
|
||||
}
|
||||
|
||||
# Should not raise any errors
|
||||
result = task.interpolate_only("{data}", {"data": valid_data})
|
||||
parsed = eval(result)
|
||||
assert parsed["name"] == "Valid Dataset"
|
||||
assert parsed["stats"]["nested"]["deeper"]["b"] == 2.5
|
||||
|
||||
|
||||
def test_interpolate_edge_cases():
|
||||
task = Task(
|
||||
description="Test edge cases",
|
||||
expected_output="Edge case handling",
|
||||
)
|
||||
|
||||
# Test empty dict and list
|
||||
assert task.interpolate_only("{}", {"data": {}}) == "{}"
|
||||
assert task.interpolate_only("[]", {"data": []}) == "[]"
|
||||
|
||||
# Test numeric types
|
||||
assert task.interpolate_only("{num}", {"num": 42}) == "42"
|
||||
assert task.interpolate_only("{num}", {"num": 3.14}) == "3.14"
|
||||
|
||||
# Test boolean values (valid JSON types)
|
||||
assert task.interpolate_only("{flag}", {"flag": True}) == "True"
|
||||
assert task.interpolate_only("{flag}", {"flag": False}) == "False"
|
||||
|
||||
|
||||
def test_interpolate_valid_types():
|
||||
task = Task(
|
||||
description="Test valid types including null and boolean",
|
||||
expected_output="Should pass validation",
|
||||
)
|
||||
|
||||
# Test with boolean and null values (valid JSON types)
|
||||
valid_data = {
|
||||
"name": "Test",
|
||||
"active": True,
|
||||
"deleted": False,
|
||||
"optional": None,
|
||||
"nested": {"flag": True, "empty": None},
|
||||
}
|
||||
|
||||
result = task.interpolate_only("{data}", {"data": valid_data})
|
||||
parsed = eval(result)
|
||||
|
||||
assert parsed["active"] is True
|
||||
assert parsed["deleted"] is False
|
||||
assert parsed["optional"] is None
|
||||
assert parsed["nested"]["flag"] is True
|
||||
assert parsed["nested"]["empty"] is None
|
||||
|
||||
@@ -1,51 +0,0 @@
|
||||
import pytest
|
||||
|
||||
from crewai import Agent
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
|
||||
|
||||
class InternalAgentTool(BaseAgentTool):
|
||||
"""Concrete implementation of BaseAgentTool for testing."""
|
||||
|
||||
def _run(self, *args, **kwargs):
|
||||
"""Implement required _run method."""
|
||||
return "Test response"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"role_name,should_match",
|
||||
[
|
||||
("Futel Official Infopoint", True), # exact match
|
||||
(' "Futel Official Infopoint" ', True), # extra quotes and spaces
|
||||
("Futel Official Infopoint\n", True), # trailing newline
|
||||
('"Futel Official Infopoint"', True), # embedded quotes
|
||||
(" FUTEL\nOFFICIAL INFOPOINT ", True), # multiple whitespace and newline
|
||||
],
|
||||
)
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_tool_role_matching(role_name, should_match):
|
||||
"""Test that agent tools can match roles regardless of case, whitespace, and special characters."""
|
||||
# Create test agent
|
||||
test_agent = Agent(
|
||||
role="Futel Official Infopoint",
|
||||
goal="Answer questions about Futel",
|
||||
backstory="Futel Football Club info",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
# Create test agent tool
|
||||
agent_tool = InternalAgentTool(
|
||||
name="test_tool", description="Test tool", agents=[test_agent]
|
||||
)
|
||||
|
||||
# Test role matching
|
||||
result = agent_tool._execute(agent_name=role_name, task="Test task", context=None)
|
||||
|
||||
if should_match:
|
||||
assert (
|
||||
"coworker mentioned not found" not in result.lower()
|
||||
), f"Should find agent with role name: {role_name}"
|
||||
else:
|
||||
assert (
|
||||
"coworker mentioned not found" in result.lower()
|
||||
), f"Should not find agent with role name: {role_name}"
|
||||
@@ -231,3 +231,255 @@ def test_validate_tool_input_with_special_characters():
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_none_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {}
|
||||
|
||||
|
||||
def test_validate_tool_input_valid_json():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"key": "value", "number": 42, "flag": true}'
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_python_dict():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = "{'key': 'value', 'number': 42, 'flag': True}"
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_json5_unquoted_keys():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = "{key: 'value', number: 42, flag: true}"
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_with_trailing_commas():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"key": "value", "number": 42, "flag": true,}'
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_invalid_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
invalid_inputs = [
|
||||
"Just a string",
|
||||
"['list', 'of', 'values']",
|
||||
"12345",
|
||||
"",
|
||||
]
|
||||
|
||||
for invalid_input in invalid_inputs:
|
||||
with pytest.raises(Exception) as e_info:
|
||||
tool_usage._validate_tool_input(invalid_input)
|
||||
assert (
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
in str(e_info.value)
|
||||
)
|
||||
|
||||
# Test for None input separately
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {} # Expecting an empty dictionary
|
||||
|
||||
|
||||
def test_validate_tool_input_complex_structure():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = """
|
||||
{
|
||||
"user": {
|
||||
"name": "Alice",
|
||||
"age": 30
|
||||
},
|
||||
"items": [
|
||||
{"id": 1, "value": "Item1"},
|
||||
{"id": 2, "value": "Item2",}
|
||||
],
|
||||
"active": true,
|
||||
}
|
||||
"""
|
||||
expected_arguments = {
|
||||
"user": {"name": "Alice", "age": 30},
|
||||
"items": [
|
||||
{"id": 1, "value": "Item1"},
|
||||
{"id": 2, "value": "Item2"},
|
||||
],
|
||||
"active": True,
|
||||
}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_code_content():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"filename": "script.py", "content": "def hello():\\n print(\'Hello, world!\')"}'
|
||||
expected_arguments = {
|
||||
"filename": "script.py",
|
||||
"content": "def hello():\n print('Hello, world!')",
|
||||
}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_with_escaped_quotes():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"text": "He said, \\"Hello, world!\\""}'
|
||||
expected_arguments = {"text": 'He said, "Hello, world!"'}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_large_json_content():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Simulate a large JSON content
|
||||
tool_input = (
|
||||
'{"data": ' + json.dumps([{"id": i, "value": i * 2} for i in range(1000)]) + "}"
|
||||
)
|
||||
expected_arguments = {"data": [{"id": i, "value": i * 2} for i in range(1000)]}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_none_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {} # Expecting an empty dictionary
|
||||
|
||||
@@ -48,9 +48,9 @@ def test_evaluate_training_data(converter_mock):
|
||||
mock.call(
|
||||
llm=original_agent.llm,
|
||||
text="Assess the quality of the training data based on the llm output, human feedback , and llm "
|
||||
"output improved result.\n\nInitial Output:\nInitial output 1\n\nHuman Feedback:\nHuman feedback "
|
||||
"1\n\nImproved Output:\nImproved output 1\n\nInitial Output:\nInitial output 2\n\nHuman "
|
||||
"Feedback:\nHuman feedback 2\n\nImproved Output:\nImproved output 2\n\nPlease provide:\n- Provide "
|
||||
"output improved result.\n\nIteration: data1\nInitial Output:\nInitial output 1\n\nHuman Feedback:\nHuman feedback "
|
||||
"1\n\nImproved Output:\nImproved output 1\n\n------------------------------------------------\n\nIteration: data2\nInitial Output:\nInitial output 2\n\nHuman "
|
||||
"Feedback:\nHuman feedback 2\n\nImproved Output:\nImproved output 2\n\n------------------------------------------------\n\nPlease provide:\n- Provide "
|
||||
"a list of clear, actionable instructions derived from the Human Feedbacks to enhance the Agent's "
|
||||
"performance. Analyze the differences between Initial Outputs and Improved Outputs to generate specific "
|
||||
"action items for future tasks. Ensure all key and specificpoints from the human feedback are "
|
||||
|
||||
21
uv.lock
generated
21
uv.lock
generated
@@ -649,7 +649,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai"
|
||||
version = "0.98.0"
|
||||
version = "0.100.0"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "appdirs" },
|
||||
@@ -659,6 +659,7 @@ dependencies = [
|
||||
{ name = "click" },
|
||||
{ name = "instructor" },
|
||||
{ name = "json-repair" },
|
||||
{ name = "json5" },
|
||||
{ name = "jsonref" },
|
||||
{ name = "litellm" },
|
||||
{ name = "openai" },
|
||||
@@ -737,8 +738,9 @@ requires-dist = [
|
||||
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
|
||||
{ name = "instructor", specifier = ">=1.3.3" },
|
||||
{ name = "json-repair", specifier = ">=0.25.2" },
|
||||
{ name = "json5", specifier = ">=0.10.0" },
|
||||
{ name = "jsonref", specifier = ">=1.1.0" },
|
||||
{ name = "litellm", specifier = "==1.57.4" },
|
||||
{ name = "litellm", specifier = "==1.59.8" },
|
||||
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.29" },
|
||||
{ name = "openai", specifier = ">=1.13.3" },
|
||||
{ name = "openpyxl", specifier = ">=3.1.5" },
|
||||
@@ -2077,6 +2079,15 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/23/38/34cb843cee4c5c27aa5c822e90e99bf96feb3dfa705713b5b6e601d17f5c/json_repair-0.30.0-py3-none-any.whl", hash = "sha256:bda4a5552dc12085c6363ff5acfcdb0c9cafc629989a2112081b7e205828228d", size = 17641 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "json5"
|
||||
version = "0.10.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/85/3d/bbe62f3d0c05a689c711cff57b2e3ac3d3e526380adb7c781989f075115c/json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559", size = 48202 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa", size = 34049 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "jsonlines"
|
||||
version = "3.1.0"
|
||||
@@ -2363,7 +2374,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "litellm"
|
||||
version = "1.57.4"
|
||||
version = "1.59.8"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "aiohttp" },
|
||||
@@ -2378,9 +2389,9 @@ dependencies = [
|
||||
{ name = "tiktoken" },
|
||||
{ name = "tokenizers" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/1a/9a/115bde058901b087e7fec1bed4be47baf8d5c78aff7dd2ffebcb922003ff/litellm-1.57.4.tar.gz", hash = "sha256:747a870ddee9c71f9560fc68ad02485bc1008fcad7d7a43e87867a59b8ed0669", size = 6304427 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/86/b0/c8ec06bd1c87a92d6d824008982b3c82b450d7bd3be850a53913f1ac4907/litellm-1.59.8.tar.gz", hash = "sha256:9d645cc4460f6a9813061f07086648c4c3d22febc8e1f21c663f2b7750d90512", size = 6428607 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/72/35c8509cb2a37343c213b794420405cbef2e1fdf8626ee981fcbba3d7c5c/litellm-1.57.4-py3-none-any.whl", hash = "sha256:afe48924d8a36db801018970a101622fce33d117fe9c54441c0095c491511abb", size = 6592126 },
|
||||
{ url = "https://files.pythonhosted.org/packages/b9/38/889da058f566ef9ea321aafa25e423249492cf2a508dfdc0e5acfcf04526/litellm-1.59.8-py3-none-any.whl", hash = "sha256:2473914bd2343485a185dfe7eedb12ee5fda32da3c9d9a8b73f6966b9b20cf39", size = 6716233 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
Reference in New Issue
Block a user