mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 20:38:29 +00:00
Compare commits
58 Commits
brandon/cr
...
devin/1746
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
70379689cf | ||
|
|
e891563135 | ||
|
|
409892d65f | ||
|
|
62f3df7ed5 | ||
|
|
4cf8913d31 | ||
|
|
82647358b2 | ||
|
|
6cc2f510bf | ||
|
|
9a65abf6b8 | ||
|
|
b3185ad90c | ||
|
|
c887ff1f47 | ||
|
|
22e5d39884 | ||
|
|
9ee6824ccd | ||
|
|
da73865f25 | ||
|
|
627b9f1abb | ||
|
|
1b8001bf98 | ||
|
|
e59e07e4f7 | ||
|
|
ee239b1c06 | ||
|
|
bf459bf983 | ||
|
|
94eaa6740e | ||
|
|
6d7c1b0743 | ||
|
|
6b864ee21d | ||
|
|
1ffa8904db | ||
|
|
ad916abd76 | ||
|
|
9702711094 | ||
|
|
8094754239 | ||
|
|
bc5e303d5f | ||
|
|
ec89e003c8 | ||
|
|
0b0f2d30ab | ||
|
|
1df61aba4c | ||
|
|
da9220fa81 | ||
|
|
da4f356fab | ||
|
|
d932b20c6e | ||
|
|
2f9a2afd9e | ||
|
|
c1df7c410e | ||
|
|
54ebd6cf90 | ||
|
|
6b87d22a70 | ||
|
|
c4f7eaf259 | ||
|
|
236e42d0bc | ||
|
|
8c90db04b5 | ||
|
|
1261ce513f | ||
|
|
b07c51532c | ||
|
|
d763eefc2e | ||
|
|
e01c0a0f4c | ||
|
|
5a7a323f3a | ||
|
|
46be5e8097 | ||
|
|
bc2a86d66a | ||
|
|
11a3d4b840 | ||
|
|
6930b68484 | ||
|
|
c7c0647dd2 | ||
|
|
7b276e6797 | ||
|
|
3daba0c79e | ||
|
|
2c85e8e23a | ||
|
|
b0f1d1fcf0 | ||
|
|
611526596a | ||
|
|
fa373f9660 | ||
|
|
48bb8ef775 | ||
|
|
bbea797b0c | ||
|
|
066ad73423 |
3
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
3
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
@@ -65,7 +65,6 @@ body:
|
||||
- '3.10'
|
||||
- '3.11'
|
||||
- '3.12'
|
||||
- '3.13'
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
@@ -113,4 +112,4 @@ body:
|
||||
label: Additional context
|
||||
description: Add any other context about the problem here.
|
||||
validations:
|
||||
required: true
|
||||
required: true
|
||||
|
||||
2
.github/workflows/linter.yml
vendored
2
.github/workflows/linter.yml
vendored
@@ -13,4 +13,4 @@ jobs:
|
||||
pip install ruff
|
||||
|
||||
- name: Run Ruff Linter
|
||||
run: ruff check --exclude "templates","__init__.py"
|
||||
run: ruff check
|
||||
|
||||
8
.github/workflows/stale.yml
vendored
8
.github/workflows/stale.yml
vendored
@@ -1,5 +1,10 @@
|
||||
name: Mark stale issues and pull requests
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
issues: write
|
||||
pull-requests: write
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '10 12 * * *'
|
||||
@@ -8,9 +13,6 @@ on:
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
|
||||
2
.github/workflows/tests.yml
vendored
2
.github/workflows/tests.yml
vendored
@@ -23,7 +23,7 @@ jobs:
|
||||
|
||||
|
||||
- name: Set up Python
|
||||
run: uv python install 3.11.9
|
||||
run: uv python install 3.12.8
|
||||
|
||||
- name: Install the project
|
||||
run: uv sync --dev --all-extras
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
repos:
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.4.4
|
||||
rev: v0.8.2
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: ["--fix"]
|
||||
exclude: "templates"
|
||||
- id: ruff-format
|
||||
exclude: "templates"
|
||||
|
||||
9
.ruff.toml
Normal file
9
.ruff.toml
Normal file
@@ -0,0 +1,9 @@
|
||||
exclude = [
|
||||
"templates",
|
||||
"__init__.py",
|
||||
]
|
||||
|
||||
[lint]
|
||||
select = [
|
||||
"I", # isort rules
|
||||
]
|
||||
@@ -44,7 +44,7 @@ To get started with CrewAI, follow these simple steps:
|
||||
|
||||
### 1. Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, install CrewAI:
|
||||
|
||||
|
||||
@@ -28,20 +28,19 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
|
||||
### 1. Create
|
||||
|
||||
Create a new crew or pipeline.
|
||||
Create a new crew or flow.
|
||||
|
||||
```shell
|
||||
crewai create [OPTIONS] TYPE NAME
|
||||
```
|
||||
|
||||
- `TYPE`: Choose between "crew" or "pipeline"
|
||||
- `NAME`: Name of the crew or pipeline
|
||||
- `--router`: (Optional) Create a pipeline with router functionality
|
||||
- `TYPE`: Choose between "crew" or "flow"
|
||||
- `NAME`: Name of the crew or flow
|
||||
|
||||
Example:
|
||||
```shell
|
||||
crewai create crew my_new_crew
|
||||
crewai create pipeline my_new_pipeline --router
|
||||
crewai create flow my_new_flow
|
||||
```
|
||||
|
||||
### 2. Version
|
||||
|
||||
@@ -32,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
|
||||
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
|
||||
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
|
||||
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
|
||||
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
|
||||
@@ -41,6 +40,155 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
</Tip>
|
||||
|
||||
## Creating Crews
|
||||
|
||||
There are two ways to create crews in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
|
||||
|
||||
### YAML Configuration (Recommended)
|
||||
|
||||
Using YAML configuration provides a cleaner, more maintainable way to define crews and is consistent with how agents and tasks are defined in CrewAI projects.
|
||||
|
||||
After creating your CrewAI project as outlined in the [Installation](/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
|
||||
|
||||
#### Example Crew Class with Decorators
|
||||
|
||||
```python code
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
from crewai.project import CrewBase, agent, task, crew, before_kickoff, after_kickoff
|
||||
|
||||
|
||||
@CrewBase
|
||||
class YourCrewName:
|
||||
"""Description of your crew"""
|
||||
|
||||
# Paths to your YAML configuration files
|
||||
# To see an example agent and task defined in YAML, checkout the following:
|
||||
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
|
||||
# - Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@before_kickoff
|
||||
def prepare_inputs(self, inputs):
|
||||
# Modify inputs before the crew starts
|
||||
inputs['additional_data'] = "Some extra information"
|
||||
return inputs
|
||||
|
||||
@after_kickoff
|
||||
def process_output(self, output):
|
||||
# Modify output after the crew finishes
|
||||
output.raw += "\nProcessed after kickoff."
|
||||
return output
|
||||
|
||||
@agent
|
||||
def agent_one(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['agent_one'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@agent
|
||||
def agent_two(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['agent_two'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def task_one(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['task_one']
|
||||
)
|
||||
|
||||
@task
|
||||
def task_two(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['task_two']
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically collected by the @agent decorator
|
||||
tasks=self.tasks, # Automatically collected by the @task decorator.
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
```
|
||||
|
||||
<Note>
|
||||
Tasks will be executed in the order they are defined.
|
||||
</Note>
|
||||
|
||||
The `CrewBase` class, along with these decorators, automates the collection of agents and tasks, reducing the need for manual management.
|
||||
|
||||
#### Decorators overview from `annotations.py`
|
||||
|
||||
CrewAI provides several decorators in the `annotations.py` file that are used to mark methods within your crew class for special handling:
|
||||
|
||||
- `@CrewBase`: Marks the class as a crew base class.
|
||||
- `@agent`: Denotes a method that returns an `Agent` object.
|
||||
- `@task`: Denotes a method that returns a `Task` object.
|
||||
- `@crew`: Denotes the method that returns the `Crew` object.
|
||||
- `@before_kickoff`: (Optional) Marks a method to be executed before the crew starts.
|
||||
- `@after_kickoff`: (Optional) Marks a method to be executed after the crew finishes.
|
||||
|
||||
These decorators help in organizing your crew's structure and automatically collecting agents and tasks without manually listing them.
|
||||
|
||||
### Direct Code Definition (Alternative)
|
||||
|
||||
Alternatively, you can define the crew directly in code without using YAML configuration files.
|
||||
|
||||
```python code
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
from crewai_tools import YourCustomTool
|
||||
|
||||
class YourCrewName:
|
||||
def agent_one(self) -> Agent:
|
||||
return Agent(
|
||||
role="Data Analyst",
|
||||
goal="Analyze data trends in the market",
|
||||
backstory="An experienced data analyst with a background in economics",
|
||||
verbose=True,
|
||||
tools=[YourCustomTool()]
|
||||
)
|
||||
|
||||
def agent_two(self) -> Agent:
|
||||
return Agent(
|
||||
role="Market Researcher",
|
||||
goal="Gather information on market dynamics",
|
||||
backstory="A diligent researcher with a keen eye for detail",
|
||||
verbose=True
|
||||
)
|
||||
|
||||
def task_one(self) -> Task:
|
||||
return Task(
|
||||
description="Collect recent market data and identify trends.",
|
||||
expected_output="A report summarizing key trends in the market.",
|
||||
agent=self.agent_one()
|
||||
)
|
||||
|
||||
def task_two(self) -> Task:
|
||||
return Task(
|
||||
description="Research factors affecting market dynamics.",
|
||||
expected_output="An analysis of factors influencing the market.",
|
||||
agent=self.agent_two()
|
||||
)
|
||||
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=[self.agent_one(), self.agent_two()],
|
||||
tasks=[self.task_one(), self.task_two()],
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
In this example:
|
||||
|
||||
- Agents and tasks are defined directly within the class without decorators.
|
||||
- We manually create and manage the list of agents and tasks.
|
||||
- This approach provides more control but can be less maintainable for larger projects.
|
||||
|
||||
## Crew Output
|
||||
|
||||
@@ -188,4 +336,4 @@ Then, to replay from a specific task, use:
|
||||
crewai replay -t <task_id>
|
||||
```
|
||||
|
||||
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
|
||||
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
---
|
||||
title: Knowledge
|
||||
description: Understand what knowledge is in CrewAI and how to effectively use it.
|
||||
description: What is knowledge in CrewAI and how to use it.
|
||||
icon: book
|
||||
---
|
||||
|
||||
@@ -8,7 +8,8 @@ icon: book
|
||||
|
||||
## What is Knowledge?
|
||||
|
||||
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks. Think of it as giving your agents a reference library they can consult while working.
|
||||
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
|
||||
Think of it as giving your agents a reference library they can consult while working.
|
||||
|
||||
<Info>
|
||||
Key benefits of using Knowledge:
|
||||
@@ -37,151 +38,316 @@ CrewAI supports various types of knowledge sources out of the box:
|
||||
|
||||
## Quick Start
|
||||
|
||||
Here's a simple example using string-based knowledge:
|
||||
Here's an example using string-based knowledge:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai.knowledge import StringKnowledgeSource
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew, Process, LLM
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
|
||||
# 1. Create a knowledge source
|
||||
product_info = StringKnowledgeSource(
|
||||
content="""Our product X1000 has the following features:
|
||||
- 10-hour battery life
|
||||
- Water-resistant
|
||||
- Available in black and silver
|
||||
Price: $299.99""",
|
||||
metadata={"category": "product"}
|
||||
# Create a knowledge source
|
||||
content = "Users name is John. He is 30 years old and lives in San Francisco."
|
||||
string_source = StringKnowledgeSource(
|
||||
content=content,
|
||||
)
|
||||
|
||||
# 2. Create an agent with knowledge
|
||||
sales_agent = Agent(
|
||||
role="Sales Representative",
|
||||
goal="Accurately answer customer questions about products",
|
||||
backstory="Expert in product features and customer service",
|
||||
knowledge_sources=[product_info] # Attach knowledge to agent
|
||||
# Create an LLM with a temperature of 0 to ensure deterministic outputs
|
||||
llm = LLM(model="gpt-4o-mini", temperature=0)
|
||||
|
||||
# Create an agent with the knowledge store
|
||||
agent = Agent(
|
||||
role="About User",
|
||||
goal="You know everything about the user.",
|
||||
backstory="""You are a master at understanding people and their preferences.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
llm=llm,
|
||||
)
|
||||
task = Task(
|
||||
description="Answer the following questions about the user: {question}",
|
||||
expected_output="An answer to the question.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# 3. Create a task
|
||||
answer_task = Task(
|
||||
description="Answer: What colors is the X1000 available in and how much does it cost?",
|
||||
agent=sales_agent
|
||||
)
|
||||
|
||||
# 4. Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[sales_agent],
|
||||
tasks=[answer_task]
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
knowledge_sources=[string_source], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
|
||||
```
|
||||
|
||||
|
||||
Here's another example with the `CrewDoclingSource`
|
||||
```python Code
|
||||
from crewai import LLM, Agent, Crew, Process, Task
|
||||
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
|
||||
|
||||
# Create a knowledge source
|
||||
content_source = CrewDoclingSource(
|
||||
file_paths=[
|
||||
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking",
|
||||
"https://lilianweng.github.io/posts/2024-07-07-hallucination",
|
||||
],
|
||||
)
|
||||
|
||||
# Create an LLM with a temperature of 0 to ensure deterministic outputs
|
||||
llm = LLM(model="gpt-4o-mini", temperature=0)
|
||||
|
||||
# Create an agent with the knowledge store
|
||||
agent = Agent(
|
||||
role="About papers",
|
||||
goal="You know everything about the papers.",
|
||||
backstory="""You are a master at understanding papers and their content.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
llm=llm,
|
||||
)
|
||||
task = Task(
|
||||
description="Answer the following questions about the papers: {question}",
|
||||
expected_output="An answer to the question.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
knowledge_sources=[
|
||||
content_source
|
||||
], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
|
||||
)
|
||||
|
||||
result = crew.kickoff(
|
||||
inputs={
|
||||
"question": "What is the reward hacking paper about? Be sure to provide sources."
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Knowledge Configuration
|
||||
|
||||
### Collection Names
|
||||
|
||||
Knowledge sources are organized into collections for better management:
|
||||
|
||||
```python
|
||||
# Create knowledge sources with specific collections
|
||||
tech_specs = StringKnowledgeSource(
|
||||
content="Technical specifications...",
|
||||
collection_name="product_tech_specs"
|
||||
)
|
||||
|
||||
pricing_info = StringKnowledgeSource(
|
||||
content="Pricing information...",
|
||||
collection_name="product_pricing"
|
||||
)
|
||||
```
|
||||
|
||||
### Metadata and Filtering
|
||||
|
||||
Add metadata to organize and filter knowledge:
|
||||
|
||||
```python
|
||||
knowledge_source = StringKnowledgeSource(
|
||||
content="Product details...",
|
||||
metadata={
|
||||
"category": "electronics",
|
||||
"product_line": "premium",
|
||||
"last_updated": "2024-03"
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Chunking Configuration
|
||||
|
||||
Control how your content is split for processing:
|
||||
Control how content is split for processing by setting the chunk size and overlap.
|
||||
|
||||
```python
|
||||
knowledge_source = PDFKnowledgeSource(
|
||||
file_path="product_manual.pdf",
|
||||
chunk_size=2000, # Characters per chunk
|
||||
chunk_overlap=200 # Overlap between chunks
|
||||
```python Code
|
||||
knowledge_source = StringKnowledgeSource(
|
||||
content="Long content...",
|
||||
chunk_size=4000, # Characters per chunk (default)
|
||||
chunk_overlap=200 # Overlap between chunks (default)
|
||||
)
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
## Embedder Configuration
|
||||
|
||||
### Custom Knowledge Sources
|
||||
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
|
||||
|
||||
Create your own knowledge source by extending the base class:
|
||||
|
||||
```python
|
||||
from crewai.knowledge.source import BaseKnowledgeSource
|
||||
|
||||
class APIKnowledgeSource(BaseKnowledgeSource):
|
||||
def __init__(self, api_endpoint: str, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.api_endpoint = api_endpoint
|
||||
|
||||
def load_content(self):
|
||||
# Implement API data fetching
|
||||
response = requests.get(self.api_endpoint)
|
||||
return response.json()
|
||||
|
||||
def add(self):
|
||||
content = self.load_content()
|
||||
# Process and store content
|
||||
self.save_documents({"source": "api"})
|
||||
```
|
||||
|
||||
### Embedder Configuration
|
||||
|
||||
Customize the embedding process:
|
||||
|
||||
```python
|
||||
```python Code
|
||||
...
|
||||
string_source = StringKnowledgeSource(
|
||||
content="Users name is John. He is 30 years old and lives in San Francisco.",
|
||||
)
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
knowledge_sources=[source],
|
||||
...
|
||||
knowledge_sources=[string_source],
|
||||
embedder={
|
||||
"provider": "ollama",
|
||||
"config": {"model": "nomic-embed-text:latest"},
|
||||
}
|
||||
"provider": "openai",
|
||||
"config": {"model": "text-embedding-3-small"},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
### Referencing Sources
|
||||
## Clearing Knowledge
|
||||
|
||||
You can reference knowledge sources by their collection name or metadata.
|
||||
If you need to clear the knowledge stored in CrewAI, you can use the `crewai reset-memories` command with the `--knowledge` option.
|
||||
|
||||
* Add a directory to your crew project called `knowledge`:
|
||||
* File paths in knowledge can be referenced relative to the `knowledge` directory.
|
||||
```bash Command
|
||||
crewai reset-memories --knowledge
|
||||
```
|
||||
|
||||
Example:
|
||||
A file inside the `knowledge` directory called `example.txt` can be referenced as `example.txt`.
|
||||
This is useful when you've updated your knowledge sources and want to ensure that the agents are using the most recent information.
|
||||
|
||||
## Custom Knowledge Sources
|
||||
|
||||
CrewAI allows you to create custom knowledge sources for any type of data by extending the `BaseKnowledgeSource` class. Let's create a practical example that fetches and processes space news articles.
|
||||
|
||||
#### Space News Knowledge Source Example
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
from crewai import Agent, Task, Crew, Process, LLM
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
import requests
|
||||
from datetime import datetime
|
||||
from typing import Dict, Any
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
|
||||
"""Knowledge source that fetches data from Space News API."""
|
||||
|
||||
api_endpoint: str = Field(description="API endpoint URL")
|
||||
limit: int = Field(default=10, description="Number of articles to fetch")
|
||||
|
||||
def load_content(self) -> Dict[Any, str]:
|
||||
"""Fetch and format space news articles."""
|
||||
try:
|
||||
response = requests.get(
|
||||
f"{self.api_endpoint}?limit={self.limit}"
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
data = response.json()
|
||||
articles = data.get('results', [])
|
||||
|
||||
formatted_data = self._format_articles(articles)
|
||||
return {self.api_endpoint: formatted_data}
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to fetch space news: {str(e)}")
|
||||
|
||||
def _format_articles(self, articles: list) -> str:
|
||||
"""Format articles into readable text."""
|
||||
formatted = "Space News Articles:\n\n"
|
||||
for article in articles:
|
||||
formatted += f"""
|
||||
Title: {article['title']}
|
||||
Published: {article['published_at']}
|
||||
Summary: {article['summary']}
|
||||
News Site: {article['news_site']}
|
||||
URL: {article['url']}
|
||||
-------------------"""
|
||||
return formatted
|
||||
|
||||
def add(self) -> None:
|
||||
"""Process and store the articles."""
|
||||
content = self.load_content()
|
||||
for _, text in content.items():
|
||||
chunks = self._chunk_text(text)
|
||||
self.chunks.extend(chunks)
|
||||
|
||||
self._save_documents()
|
||||
|
||||
# Create knowledge source
|
||||
recent_news = SpaceNewsKnowledgeSource(
|
||||
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles",
|
||||
limit=10,
|
||||
)
|
||||
|
||||
# Create specialized agent
|
||||
space_analyst = Agent(
|
||||
role="Space News Analyst",
|
||||
goal="Answer questions about space news accurately and comprehensively",
|
||||
backstory="""You are a space industry analyst with expertise in space exploration,
|
||||
satellite technology, and space industry trends. You excel at answering questions
|
||||
about space news and providing detailed, accurate information.""",
|
||||
knowledge_sources=[recent_news],
|
||||
llm=LLM(model="gpt-4", temperature=0.0)
|
||||
)
|
||||
|
||||
# Create task that handles user questions
|
||||
analysis_task = Task(
|
||||
description="Answer this question about space news: {user_question}",
|
||||
expected_output="A detailed answer based on the recent space news articles",
|
||||
agent=space_analyst
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[space_analyst],
|
||||
tasks=[analysis_task],
|
||||
verbose=True,
|
||||
process=Process.sequential
|
||||
)
|
||||
|
||||
# Example usage
|
||||
result = crew.kickoff(
|
||||
inputs={"user_question": "What are the latest developments in space exploration?"}
|
||||
)
|
||||
```
|
||||
|
||||
```output Output
|
||||
# Agent: Space News Analyst
|
||||
## Task: Answer this question about space news: What are the latest developments in space exploration?
|
||||
|
||||
|
||||
# Agent: Space News Analyst
|
||||
## Final Answer:
|
||||
The latest developments in space exploration, based on recent space news articles, include the following:
|
||||
|
||||
1. SpaceX has received the final regulatory approvals to proceed with the second integrated Starship/Super Heavy launch, scheduled for as soon as the morning of Nov. 17, 2023. This is a significant step in SpaceX's ambitious plans for space exploration and colonization. [Source: SpaceNews](https://spacenews.com/starship-cleared-for-nov-17-launch/)
|
||||
|
||||
2. SpaceX has also informed the US Federal Communications Commission (FCC) that it plans to begin launching its first next-generation Starlink Gen2 satellites. This represents a major upgrade to the Starlink satellite internet service, which aims to provide high-speed internet access worldwide. [Source: Teslarati](https://www.teslarati.com/spacex-first-starlink-gen2-satellite-launch-2022/)
|
||||
|
||||
3. AI startup Synthetaic has raised $15 million in Series B funding. The company uses artificial intelligence to analyze data from space and air sensors, which could have significant applications in space exploration and satellite technology. [Source: SpaceNews](https://spacenews.com/ai-startup-synthetaic-raises-15-million-in-series-b-funding/)
|
||||
|
||||
4. The Space Force has formally established a unit within the U.S. Indo-Pacific Command, marking a permanent presence in the Indo-Pacific region. This could have significant implications for space security and geopolitics. [Source: SpaceNews](https://spacenews.com/space-force-establishes-permanent-presence-in-indo-pacific-region/)
|
||||
|
||||
5. Slingshot Aerospace, a space tracking and data analytics company, is expanding its network of ground-based optical telescopes to increase coverage of low Earth orbit. This could improve our ability to track and analyze objects in low Earth orbit, including satellites and space debris. [Source: SpaceNews](https://spacenews.com/slingshots-space-tracking-network-to-extend-coverage-of-low-earth-orbit/)
|
||||
|
||||
6. The National Natural Science Foundation of China has outlined a five-year project for researchers to study the assembly of ultra-large spacecraft. This could lead to significant advancements in spacecraft technology and space exploration capabilities. [Source: SpaceNews](https://spacenews.com/china-researching-challenges-of-kilometer-scale-ultra-large-spacecraft/)
|
||||
|
||||
7. The Center for AEroSpace Autonomy Research (CAESAR) at Stanford University is focusing on spacecraft autonomy. The center held a kickoff event on May 22, 2024, to highlight the industry, academia, and government collaboration it seeks to foster. This could lead to significant advancements in autonomous spacecraft technology. [Source: SpaceNews](https://spacenews.com/stanford-center-focuses-on-spacecraft-autonomy/)
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
#### Key Components Explained
|
||||
|
||||
1. **Custom Knowledge Source (`SpaceNewsKnowledgeSource`)**:
|
||||
|
||||
- Extends `BaseKnowledgeSource` for integration with CrewAI
|
||||
- Configurable API endpoint and article limit
|
||||
- Implements three key methods:
|
||||
- `load_content()`: Fetches articles from the API
|
||||
- `_format_articles()`: Structures the articles into readable text
|
||||
- `add()`: Processes and stores the content
|
||||
|
||||
2. **Agent Configuration**:
|
||||
|
||||
- Specialized role as a Space News Analyst
|
||||
- Uses the knowledge source to access space news
|
||||
|
||||
3. **Task Setup**:
|
||||
|
||||
- Takes a user question as input through `{user_question}`
|
||||
- Designed to provide detailed answers based on the knowledge source
|
||||
|
||||
4. **Crew Orchestration**:
|
||||
- Manages the workflow between agent and task
|
||||
- Handles input/output through the kickoff method
|
||||
|
||||
This example demonstrates how to:
|
||||
|
||||
- Create a custom knowledge source that fetches real-time data
|
||||
- Process and format external data for AI consumption
|
||||
- Use the knowledge source to answer specific user questions
|
||||
- Integrate everything seamlessly with CrewAI's agent system
|
||||
|
||||
#### About the Spaceflight News API
|
||||
|
||||
The example uses the [Spaceflight News API](https://api.spaceflightnewsapi.net/v4/docs/), which:
|
||||
|
||||
- Provides free access to space-related news articles
|
||||
- Requires no authentication
|
||||
- Returns structured data about space news
|
||||
- Supports pagination and filtering
|
||||
|
||||
You can customize the API query by modifying the endpoint URL:
|
||||
|
||||
```python
|
||||
source = TextFileKnowledgeSource(
|
||||
file_path="example.txt", # or /example.txt
|
||||
collection_name="example"
|
||||
# Fetch more articles
|
||||
recent_news = SpaceNewsKnowledgeSource(
|
||||
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles",
|
||||
limit=20, # Increase the number of articles
|
||||
)
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
knowledge_sources=[source],
|
||||
|
||||
# Add search parameters
|
||||
recent_news = SpaceNewsKnowledgeSource(
|
||||
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles?search=NASA", # Search for NASA news
|
||||
limit=10,
|
||||
)
|
||||
```
|
||||
|
||||
@@ -189,43 +355,14 @@ crew = Crew(
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="Content Organization">
|
||||
- Use meaningful collection names
|
||||
- Add detailed metadata for filtering
|
||||
- Keep chunk sizes appropriate for your content
|
||||
- Keep chunk sizes appropriate for your content type
|
||||
- Consider content overlap for context preservation
|
||||
- Organize related information into separate knowledge sources
|
||||
</Accordion>
|
||||
|
||||
|
||||
<Accordion title="Performance Tips">
|
||||
- Use smaller chunk sizes for precise retrieval
|
||||
- Implement metadata filtering for faster searches
|
||||
- Choose appropriate embedding models for your use case
|
||||
- Cache frequently accessed knowledge
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Error Handling">
|
||||
- Validate knowledge source content
|
||||
- Handle missing or corrupted files
|
||||
- Monitor embedding generation
|
||||
- Implement fallback options
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## Common Issues and Solutions
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="Content Not Found">
|
||||
If agents can't find relevant information:
|
||||
- Check chunk sizes
|
||||
- Verify knowledge source loading
|
||||
- Review metadata filters
|
||||
- Test with simpler queries first
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Performance Issues">
|
||||
If knowledge retrieval is slow:
|
||||
- Reduce chunk sizes
|
||||
- Optimize metadata filtering
|
||||
- Consider using a lighter embedding model
|
||||
- Cache frequently accessed content
|
||||
- Adjust chunk sizes based on content complexity
|
||||
- Configure appropriate embedding models
|
||||
- Consider using local embedding providers for faster processing
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
@@ -29,7 +29,7 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
|
||||
|
||||
## Available Models and Their Capabilities
|
||||
|
||||
Here's a detailed breakdown of supported models and their capabilities:
|
||||
Here's a detailed breakdown of supported models and their capabilities, you can compare performance at [lmarena.ai](https://lmarena.ai/?leaderboard) and [artificialanalysis.ai](https://artificialanalysis.ai/):
|
||||
|
||||
<Tabs>
|
||||
<Tab title="OpenAI">
|
||||
@@ -43,13 +43,104 @@ Here's a detailed breakdown of supported models and their capabilities:
|
||||
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
|
||||
</Note>
|
||||
</Tab>
|
||||
<Tab title="Nvidia NIM">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| nvidia/mistral-nemo-minitron-8b-8k-instruct | 8,192 tokens | State-of-the-art small language model delivering superior accuracy for chatbot, virtual assistants, and content generation. |
|
||||
| nvidia/nemotron-4-mini-hindi-4b-instruct| 4,096 tokens | A bilingual Hindi-English SLM for on-device inference, tailored specifically for Hindi Language. |
|
||||
| "nvidia/llama-3.1-nemotron-70b-instruct | 128k tokens | Llama-3.1-Nemotron-70B-Instruct is a large language model customized by NVIDIA in order to improve the helpfulness of LLM generated responses. |
|
||||
| nvidia/llama3-chatqa-1.5-8b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
|
||||
| nvidia/llama3-chatqa-1.5-70b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
|
||||
| nvidia/vila | 128k tokens | Multi-modal vision-language model that understands text/img/video and creates informative responses |
|
||||
| nvidia/neva-22| 4,096 tokens | Multi-modal vision-language model that understands text/images and generates informative responses |
|
||||
| nvidia/nemotron-mini-4b-instruct | 8,192 tokens | General-purpose tasks |
|
||||
| nvidia/usdcode-llama3-70b-instruct | 128k tokens | State-of-the-art LLM that answers OpenUSD knowledge queries and generates USD-Python code. |
|
||||
| nvidia/nemotron-4-340b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| meta/codellama-70b | 100k tokens | LLM capable of generating code from natural language and vice versa. |
|
||||
| meta/llama2-70b | 4,096 tokens | Cutting-edge large language AI model capable of generating text and code in response to prompts. |
|
||||
| meta/llama3-8b-instruct | 8,192 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama3-70b-instruct | 8,192 tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| meta/llama-3.1-8b-instruct | 128k tokens | Advanced state-of-the-art model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| meta/llama-3.1-405b-instruct | 128k tokens | Advanced LLM for synthetic data generation, distillation, and inference for chatbots, coding, and domain-specific tasks. |
|
||||
| meta/llama-3.2-1b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-3b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-11b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-90b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| google/gemma-7b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/codegemma-7b | 8,192 tokens | Cutting-edge model built on Google's Gemma-7B specialized for code generation and code completion. |
|
||||
| google/codegemma-1.1-7b | 8,192 tokens | Advanced programming model for code generation, completion, reasoning, and instruction following. |
|
||||
| google/recurrentgemma-2b | 8,192 tokens | Novel recurrent architecture based language model for faster inference when generating long sequences. |
|
||||
| google/gemma-2-9b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2-27b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2-2b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/deplot | 512 tokens | One-shot visual language understanding model that translates images of plots into tables. |
|
||||
| google/paligemma | 8,192 tokens | Vision language model adept at comprehending text and visual inputs to produce informative responses. |
|
||||
| mistralai/mistral-7b-instruct-v0.2 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
|
||||
| mistralai/mixtral-8x7b-instruct-v0.1 | 8,192 tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
|
||||
| mistralai/mistral-large | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| mistralai/mixtral-8x22b-instruct-v0.1 | 8,192 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| mistralai/mistral-7b-instruct-v0.3 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
|
||||
| nv-mistralai/mistral-nemo-12b-instruct | 128k tokens | Most advanced language model for reasoning, code, multilingual tasks; runs on a single GPU. |
|
||||
| mistralai/mamba-codestral-7b-v0.1 | 256k tokens | Model for writing and interacting with code across a wide range of programming languages and tasks. |
|
||||
| microsoft/phi-3-mini-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-mini-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-small-8k-instruct | 8,192 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-small-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-medium-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-medium-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3.5-mini-instruct | 128K tokens | Lightweight multilingual LLM powering AI applications in latency bound, memory/compute constrained environments |
|
||||
| microsoft/phi-3.5-moe-instruct | 128K tokens | Advanced LLM based on Mixture of Experts architecure to deliver compute efficient content generation |
|
||||
| microsoft/kosmos-2 | 1,024 tokens | Groundbreaking multimodal model designed to understand and reason about visual elements in images. |
|
||||
| microsoft/phi-3-vision-128k-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
|
||||
| microsoft/phi-3.5-vision-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
|
||||
| databricks/dbrx-instruct | 12k tokens | A general-purpose LLM with state-of-the-art performance in language understanding, coding, and RAG. |
|
||||
| snowflake/arctic | 1,024 tokens | Delivers high efficiency inference for enterprise applications focused on SQL generation and coding. |
|
||||
| aisingapore/sea-lion-7b-instruct | 4,096 tokens | LLM to represent and serve the linguistic and cultural diversity of Southeast Asia |
|
||||
| ibm/granite-8b-code-instruct | 4,096 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
|
||||
| ibm/granite-34b-code-instruct | 8,192 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
|
||||
| ibm/granite-3.0-8b-instruct | 4,096 tokens | Advanced Small Language Model supporting RAG, summarization, classification, code, and agentic AI |
|
||||
| ibm/granite-3.0-3b-a800m-instruct | 4,096 tokens | Highly efficient Mixture of Experts model for RAG, summarization, entity extraction, and classification |
|
||||
| mediatek/breeze-7b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| upstage/solar-10.7b-instruct | 4,096 tokens | Excels in NLP tasks, particularly in instruction-following, reasoning, and mathematics. |
|
||||
| writer/palmyra-med-70b-32k | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
|
||||
| writer/palmyra-med-70b | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
|
||||
| writer/palmyra-fin-70b-32k | 32k tokens | Specialized LLM for financial analysis, reporting, and data processing |
|
||||
| 01-ai/yi-large | 32k tokens | Powerful model trained on English and Chinese for diverse tasks including chatbot and creative writing. |
|
||||
| deepseek-ai/deepseek-coder-6.7b-instruct | 2k tokens | Powerful coding model offering advanced capabilities in code generation, completion, and infilling |
|
||||
| rakuten/rakutenai-7b-instruct | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| rakuten/rakutenai-7b-chat | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| baichuan-inc/baichuan2-13b-chat | 4,096 tokens | Support Chinese and English chat, coding, math, instruction following, solving quizzes |
|
||||
|
||||
<Note>
|
||||
NVIDIA's NIM support for models is expanding continuously! For the most up-to-date list of available models, please visit build.nvidia.com.
|
||||
</Note>
|
||||
</Tab>
|
||||
<Tab title="Gemini">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
|
||||
<Tip>
|
||||
Google's Gemini models are all multimodal, supporting audio, images, video and text, supporting context caching, json schema, function calling, etc.
|
||||
|
||||
These models are available via API_KEY from
|
||||
[The Gemini API](https://ai.google.dev/gemini-api/docs) and also from
|
||||
[Google Cloud Vertex](https://cloud.google.com/vertex-ai/generative-ai/docs/migrate/migrate-google-ai) as part of the
|
||||
[Model Garden](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/explore-models).
|
||||
</Tip>
|
||||
</Tab>
|
||||
<Tab title="Groq">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| Llama 3.1 70B/8B | 131,072 tokens | High-performance, large context tasks |
|
||||
| Llama 3.2 Series | 8,192 tokens | General-purpose tasks |
|
||||
| Mixtral 8x7B | 32,768 tokens | Balanced performance and context |
|
||||
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
|
||||
|
||||
<Tip>
|
||||
Groq is known for its fast inference speeds, making it suitable for real-time applications.
|
||||
@@ -60,7 +151,7 @@ Here's a detailed breakdown of supported models and their capabilities:
|
||||
|----------|---------------|--------------|
|
||||
| Deepseek Chat | 128,000 tokens | Specialized in technical discussions |
|
||||
| Claude 3 | Up to 200K tokens | Strong reasoning, code understanding |
|
||||
| Gemini | Varies by model | Multimodal capabilities |
|
||||
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
|
||||
|
||||
<Info>
|
||||
Provider selection should consider factors like:
|
||||
@@ -128,10 +219,10 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
|
||||
# llm: anthropic/claude-2.1
|
||||
# llm: anthropic/claude-2.0
|
||||
|
||||
# Google Models - Good for general tasks
|
||||
# llm: gemini/gemini-pro
|
||||
# Google Models - Strong reasoning, large cachable context window, multimodal
|
||||
# llm: gemini/gemini-1.5-pro-latest
|
||||
# llm: gemini/gemini-1.0-pro-latest
|
||||
# llm: gemini/gemini-1.5-flash-latest
|
||||
# llm: gemini/gemini-1.5-flash-8b-latest
|
||||
|
||||
# AWS Bedrock Models - Enterprise-grade
|
||||
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
@@ -350,13 +441,18 @@ Learn how to get the most out of your LLM configuration:
|
||||
|
||||
<Accordion title="Google">
|
||||
```python Code
|
||||
# Option 1. Gemini accessed with an API key.
|
||||
# https://ai.google.dev/gemini-api/docs/api-key
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
|
||||
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="gemini/gemini-pro",
|
||||
model="gemini/gemini-1.5-pro-latest",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
@@ -412,6 +508,20 @@ Learn how to get the most out of your LLM configuration:
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Nvidia NIM">
|
||||
```python Code
|
||||
NVIDIA_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="nvidia_nim/meta/llama3-70b-instruct",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Groq">
|
||||
```python Code
|
||||
GROQ_API_KEY=<your-api-key>
|
||||
@@ -502,20 +612,6 @@ Learn how to get the most out of your LLM configuration:
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Nvidia NIM">
|
||||
```python Code
|
||||
NVIDIA_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="nvidia_nim/meta/llama3-70b-instruct",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="SambaNova">
|
||||
```python Code
|
||||
SAMBANOVA_API_KEY=<your-api-key>
|
||||
|
||||
@@ -6,7 +6,7 @@ icon: list-check
|
||||
|
||||
## Overview of a Task
|
||||
|
||||
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
|
||||
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
|
||||
|
||||
Tasks provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
|
||||
|
||||
@@ -263,8 +263,148 @@ analysis_task = Task(
|
||||
)
|
||||
```
|
||||
|
||||
## Task Guardrails
|
||||
|
||||
Task guardrails provide a way to validate and transform task outputs before they
|
||||
are passed to the next task. This feature helps ensure data quality and provides
|
||||
efeedback to agents when their output doesn't meet specific criteria.
|
||||
|
||||
### Using Task Guardrails
|
||||
|
||||
To add a guardrail to a task, provide a validation function through the `guardrail` parameter:
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union, Dict, Any
|
||||
|
||||
def validate_blog_content(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
"""Validate blog content meets requirements."""
|
||||
try:
|
||||
# Check word count
|
||||
word_count = len(result.split())
|
||||
if word_count > 200:
|
||||
return (False, {
|
||||
"error": "Blog content exceeds 200 words",
|
||||
"code": "WORD_COUNT_ERROR",
|
||||
"context": {"word_count": word_count}
|
||||
})
|
||||
|
||||
# Additional validation logic here
|
||||
return (True, result.strip())
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": "Unexpected error during validation",
|
||||
"code": "SYSTEM_ERROR"
|
||||
})
|
||||
|
||||
blog_task = Task(
|
||||
description="Write a blog post about AI",
|
||||
expected_output="A blog post under 200 words",
|
||||
agent=blog_agent,
|
||||
guardrail=validate_blog_content # Add the guardrail function
|
||||
)
|
||||
```
|
||||
|
||||
### Guardrail Function Requirements
|
||||
|
||||
1. **Function Signature**:
|
||||
- Must accept exactly one parameter (the task output)
|
||||
- Should return a tuple of `(bool, Any)`
|
||||
- Type hints are recommended but optional
|
||||
|
||||
2. **Return Values**:
|
||||
- Success: Return `(True, validated_result)`
|
||||
- Failure: Return `(False, error_details)`
|
||||
|
||||
### Error Handling Best Practices
|
||||
|
||||
1. **Structured Error Responses**:
|
||||
```python Code
|
||||
def validate_with_context(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
try:
|
||||
# Main validation logic
|
||||
validated_data = perform_validation(result)
|
||||
return (True, validated_data)
|
||||
except ValidationError as e:
|
||||
return (False, {
|
||||
"error": str(e),
|
||||
"code": "VALIDATION_ERROR",
|
||||
"context": {"input": result}
|
||||
})
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": "Unexpected error",
|
||||
"code": "SYSTEM_ERROR"
|
||||
})
|
||||
```
|
||||
|
||||
2. **Error Categories**:
|
||||
- Use specific error codes
|
||||
- Include relevant context
|
||||
- Provide actionable feedback
|
||||
|
||||
3. **Validation Chain**:
|
||||
```python Code
|
||||
from typing import Any, Dict, List, Tuple, Union
|
||||
|
||||
def complex_validation(result: str) -> Tuple[bool, Union[str, Dict[str, Any]]]:
|
||||
"""Chain multiple validation steps."""
|
||||
# Step 1: Basic validation
|
||||
if not result:
|
||||
return (False, {"error": "Empty result", "code": "EMPTY_INPUT"})
|
||||
|
||||
# Step 2: Content validation
|
||||
try:
|
||||
validated = validate_content(result)
|
||||
if not validated:
|
||||
return (False, {"error": "Invalid content", "code": "CONTENT_ERROR"})
|
||||
|
||||
# Step 3: Format validation
|
||||
formatted = format_output(validated)
|
||||
return (True, formatted)
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": str(e),
|
||||
"code": "VALIDATION_ERROR",
|
||||
"context": {"step": "content_validation"}
|
||||
})
|
||||
```
|
||||
|
||||
### Handling Guardrail Results
|
||||
|
||||
When a guardrail returns `(False, error)`:
|
||||
1. The error is sent back to the agent
|
||||
2. The agent attempts to fix the issue
|
||||
3. The process repeats until:
|
||||
- The guardrail returns `(True, result)`
|
||||
- Maximum retries are reached
|
||||
|
||||
Example with retry handling:
|
||||
```python Code
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
def validate_json_output(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
"""Validate and parse JSON output."""
|
||||
try:
|
||||
# Try to parse as JSON
|
||||
data = json.loads(result)
|
||||
return (True, data)
|
||||
except json.JSONDecodeError as e:
|
||||
return (False, {
|
||||
"error": "Invalid JSON format",
|
||||
"code": "JSON_ERROR",
|
||||
"context": {"line": e.lineno, "column": e.colno}
|
||||
})
|
||||
|
||||
task = Task(
|
||||
description="Generate a JSON report",
|
||||
expected_output="A valid JSON object",
|
||||
agent=analyst,
|
||||
guardrail=validate_json_output,
|
||||
max_retries=3 # Limit retry attempts
|
||||
)
|
||||
```
|
||||
|
||||
## Getting Structured Consistent Outputs from Tasks
|
||||
When you need to ensure that a task outputs a structured and consistent format, you can use the `output_pydantic` or `output_json` properties on a task. These properties allow you to define the expected output structure, making it easier to parse and utilize the results in your application.
|
||||
|
||||
<Note>
|
||||
It's also important to note that the output of the final task of a crew becomes the final output of the actual crew itself.
|
||||
@@ -608,6 +748,114 @@ While creating and executing tasks, certain validation mechanisms are in place t
|
||||
|
||||
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
|
||||
|
||||
## Task Guardrails
|
||||
|
||||
Task guardrails provide a powerful way to validate, transform, or filter task outputs before they are passed to the next task. Guardrails are optional functions that execute before the next task starts, allowing you to ensure that task outputs meet specific requirements or formats.
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union
|
||||
from crewai import Task
|
||||
|
||||
def validate_json_output(result: str) -> Tuple[bool, Union[dict, str]]:
|
||||
"""Validate that the output is valid JSON."""
|
||||
try:
|
||||
json_data = json.loads(result)
|
||||
return (True, json_data)
|
||||
except json.JSONDecodeError:
|
||||
return (False, "Output must be valid JSON")
|
||||
|
||||
task = Task(
|
||||
description="Generate JSON data",
|
||||
expected_output="Valid JSON object",
|
||||
guardrail=validate_json_output
|
||||
)
|
||||
```
|
||||
|
||||
### How Guardrails Work
|
||||
|
||||
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.
|
||||
2. **Execution Timing**: The guardrail function is executed before the next task starts, ensuring valid data flow between tasks.
|
||||
3. **Return Format**: Guardrails must return a tuple of `(success, data)`:
|
||||
- If `success` is `True`, `data` is the validated/transformed result
|
||||
- If `success` is `False`, `data` is the error message
|
||||
4. **Result Routing**:
|
||||
- On success (`True`), the result is automatically passed to the next task
|
||||
- On failure (`False`), the error is sent back to the agent to generate a new answer
|
||||
|
||||
### Common Use Cases
|
||||
|
||||
#### Data Format Validation
|
||||
```python Code
|
||||
def validate_email_format(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Ensure the output contains a valid email address."""
|
||||
import re
|
||||
email_pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
|
||||
if re.match(email_pattern, result.strip()):
|
||||
return (True, result.strip())
|
||||
return (False, "Output must be a valid email address")
|
||||
```
|
||||
|
||||
#### Content Filtering
|
||||
```python Code
|
||||
def filter_sensitive_info(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Remove or validate sensitive information."""
|
||||
sensitive_patterns = ['SSN:', 'password:', 'secret:']
|
||||
for pattern in sensitive_patterns:
|
||||
if pattern.lower() in result.lower():
|
||||
return (False, f"Output contains sensitive information ({pattern})")
|
||||
return (True, result)
|
||||
```
|
||||
|
||||
#### Data Transformation
|
||||
```python Code
|
||||
def normalize_phone_number(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Ensure phone numbers are in a consistent format."""
|
||||
import re
|
||||
digits = re.sub(r'\D', '', result)
|
||||
if len(digits) == 10:
|
||||
formatted = f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
|
||||
return (True, formatted)
|
||||
return (False, "Output must be a 10-digit phone number")
|
||||
```
|
||||
|
||||
### Advanced Features
|
||||
|
||||
#### Chaining Multiple Validations
|
||||
```python Code
|
||||
def chain_validations(*validators):
|
||||
"""Chain multiple validators together."""
|
||||
def combined_validator(result):
|
||||
for validator in validators:
|
||||
success, data = validator(result)
|
||||
if not success:
|
||||
return (False, data)
|
||||
result = data
|
||||
return (True, result)
|
||||
return combined_validator
|
||||
|
||||
# Usage
|
||||
task = Task(
|
||||
description="Get user contact info",
|
||||
expected_output="Email and phone",
|
||||
guardrail=chain_validations(
|
||||
validate_email_format,
|
||||
filter_sensitive_info
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
#### Custom Retry Logic
|
||||
```python Code
|
||||
task = Task(
|
||||
description="Generate data",
|
||||
expected_output="Valid data",
|
||||
guardrail=validate_data,
|
||||
max_retries=5 # Override default retry limit
|
||||
)
|
||||
```
|
||||
|
||||
## Creating Directories when Saving Files
|
||||
|
||||
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
|
||||
@@ -629,7 +877,7 @@ save_output_task = Task(
|
||||
|
||||
## Conclusion
|
||||
|
||||
Tasks are the driving force behind the actions of agents in CrewAI.
|
||||
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
|
||||
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
|
||||
Tasks are the driving force behind the actions of agents in CrewAI.
|
||||
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
|
||||
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
|
||||
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
|
||||
@@ -172,6 +172,48 @@ def my_tool(question: str) -> str:
|
||||
return "Result from your custom tool"
|
||||
```
|
||||
|
||||
### Structured Tools
|
||||
|
||||
The `StructuredTool` class wraps functions as tools, providing flexibility and validation while reducing boilerplate. It supports custom schemas and dynamic logic for seamless integration of complex functionalities.
|
||||
|
||||
#### Example:
|
||||
Using `StructuredTool.from_function`, you can wrap a function that interacts with an external API or system, providing a structured interface. This enables robust validation and consistent execution, making it easier to integrate complex functionalities into your applications as demonstrated in the following example:
|
||||
|
||||
```python
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Define the schema for the tool's input using Pydantic
|
||||
class APICallInput(BaseModel):
|
||||
endpoint: str
|
||||
parameters: dict
|
||||
|
||||
# Wrapper function to execute the API call
|
||||
def tool_wrapper(*args, **kwargs):
|
||||
# Here, you would typically call the API using the parameters
|
||||
# For demonstration, we'll return a placeholder string
|
||||
return f"Call the API at {kwargs['endpoint']} with parameters {kwargs['parameters']}"
|
||||
|
||||
# Create and return the structured tool
|
||||
def create_structured_tool():
|
||||
return CrewStructuredTool.from_function(
|
||||
name='Wrapper API',
|
||||
description="A tool to wrap API calls with structured input.",
|
||||
args_schema=APICallInput,
|
||||
func=tool_wrapper,
|
||||
)
|
||||
|
||||
# Example usage
|
||||
structured_tool = create_structured_tool()
|
||||
|
||||
# Execute the tool with structured input
|
||||
result = structured_tool._run(**{
|
||||
"endpoint": "https://example.com/api",
|
||||
"parameters": {"key1": "value1", "key2": "value2"}
|
||||
})
|
||||
print(result) # Output: Call the API at https://example.com/api with parameters {'key1': 'value1', 'key2': 'value2'}
|
||||
```
|
||||
|
||||
### Custom Caching Mechanism
|
||||
|
||||
<Tip>
|
||||
|
||||
211
docs/how-to/Portkey-Observability-and-Guardrails.md
Normal file
211
docs/how-to/Portkey-Observability-and-Guardrails.md
Normal file
@@ -0,0 +1,211 @@
|
||||
# Portkey Integration with CrewAI
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
|
||||
|
||||
|
||||
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
|
||||
|
||||
Portkey adds 4 core production capabilities to any CrewAI agent:
|
||||
1. Routing to **200+ LLMs**
|
||||
2. Making each LLM call more robust
|
||||
3. Full-stack tracing & cost, performance analytics
|
||||
4. Real-time guardrails to enforce behavior
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## Getting Started
|
||||
|
||||
1. **Install Required Packages:**
|
||||
|
||||
```bash
|
||||
pip install -qU crewai portkey-ai
|
||||
```
|
||||
|
||||
2. **Configure the LLM Client:**
|
||||
|
||||
To build CrewAI Agents with Portkey, you'll need two keys:
|
||||
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
|
||||
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
|
||||
|
||||
```python
|
||||
from crewai import LLM
|
||||
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
|
||||
|
||||
gpt_llm = LLM(
|
||||
model="gpt-4",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy", # We are using Virtual key
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
3. **Create and Run Your First Agent:**
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Define your agents with roles and goals
|
||||
coder = Agent(
|
||||
role='Software developer',
|
||||
goal='Write clear, concise code on demand',
|
||||
backstory='An expert coder with a keen eye for software trends.',
|
||||
llm=gpt_llm
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
|
||||
expected_output="A clear and concise HTML code",
|
||||
agent=coder
|
||||
)
|
||||
|
||||
# Instantiate your crew
|
||||
crew = Crew(
|
||||
agents=[coder],
|
||||
tasks=[task1],
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
|
||||
## Key Features
|
||||
|
||||
| Feature | Description |
|
||||
|---------|-------------|
|
||||
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
|
||||
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
|
||||
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
|
||||
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
|
||||
| 🚧 Security Controls | Set budget limits and implement role-based access control |
|
||||
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
|
||||
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
|
||||
|
||||
|
||||
## Production Features with Portkey Configs
|
||||
|
||||
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
|
||||
|
||||
<Frame>
|
||||
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
|
||||
</Frame>
|
||||
|
||||
|
||||
### 1. Use 250+ LLMs
|
||||
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
|
||||
|
||||
|
||||
Easily switch between different LLM providers:
|
||||
|
||||
```python
|
||||
# Anthropic Configuration
|
||||
anthropic_llm = LLM(
|
||||
model="claude-3-5-sonnet-latest",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy",
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
|
||||
trace_id="anthropic_agent"
|
||||
)
|
||||
)
|
||||
|
||||
# Azure OpenAI Configuration
|
||||
azure_llm = LLM(
|
||||
model="gpt-4",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy",
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
|
||||
trace_id="azure_agent"
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
### 2. Caching
|
||||
Improve response times and reduce costs with two powerful caching modes:
|
||||
- **Simple Cache**: Perfect for exact matches
|
||||
- **Semantic Cache**: Matches responses for requests that are semantically similar
|
||||
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
|
||||
|
||||
```py
|
||||
config = {
|
||||
"cache": {
|
||||
"mode": "semantic", # or "simple" for exact matching
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Production Reliability
|
||||
Portkey provides comprehensive reliability features:
|
||||
- **Automatic Retries**: Handle temporary failures gracefully
|
||||
- **Request Timeouts**: Prevent hanging operations
|
||||
- **Conditional Routing**: Route requests based on specific conditions
|
||||
- **Fallbacks**: Set up automatic provider failovers
|
||||
- **Load Balancing**: Distribute requests efficiently
|
||||
|
||||
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
|
||||
|
||||
|
||||
|
||||
### 4. Metrics
|
||||
|
||||
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
|
||||
|
||||
|
||||
- Cost per agent interaction
|
||||
- Response times and latency
|
||||
- Token usage and efficiency
|
||||
- Success/failure rates
|
||||
- Cache hit rates
|
||||
|
||||
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
|
||||
|
||||
### 5. Detailed Logging
|
||||
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
|
||||
|
||||
|
||||
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
|
||||
|
||||
<details>
|
||||
<summary><b>Traces</b></summary>
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>Logs</b></summary>
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
|
||||
</details>
|
||||
|
||||
### 6. Enterprise Security Features
|
||||
- Set budget limit and rate limts per Virtual Key (disposable API keys)
|
||||
- Implement role-based access control
|
||||
- Track system changes with audit logs
|
||||
- Configure data retention policies
|
||||
|
||||
|
||||
|
||||
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
|
||||
|
||||
## Resources
|
||||
|
||||
- [📘 Portkey Documentation](https://docs.portkey.ai)
|
||||
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
|
||||
- [🐦 Twitter](https://twitter.com/portkeyai)
|
||||
- [💬 Discord Community](https://discord.gg/DD7vgKK299)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -57,7 +57,7 @@ This feature is useful for debugging and understanding how agents interact with
|
||||
<Step title="Install AgentOps">
|
||||
Install AgentOps with:
|
||||
```bash
|
||||
pip install crewai[agentops]
|
||||
pip install 'crewai[agentops]'
|
||||
```
|
||||
or
|
||||
```bash
|
||||
|
||||
@@ -32,6 +32,7 @@ LiteLLM supports a wide range of providers, including but not limited to:
|
||||
- Cloudflare Workers AI
|
||||
- DeepInfra
|
||||
- Groq
|
||||
- [NVIDIA NIMs](https://docs.api.nvidia.com/nim/reference/models-1)
|
||||
- And many more!
|
||||
|
||||
For a complete and up-to-date list of supported providers, please refer to the [LiteLLM Providers documentation](https://docs.litellm.ai/docs/providers).
|
||||
|
||||
138
docs/how-to/multimodal-agents.mdx
Normal file
138
docs/how-to/multimodal-agents.mdx
Normal file
@@ -0,0 +1,138 @@
|
||||
---
|
||||
title: Using Multimodal Agents
|
||||
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
|
||||
icon: image
|
||||
---
|
||||
|
||||
# Using Multimodal Agents
|
||||
|
||||
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
|
||||
|
||||
## Enabling Multimodal Capabilities
|
||||
|
||||
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
|
||||
agent = Agent(
|
||||
role="Image Analyst",
|
||||
goal="Analyze and extract insights from images",
|
||||
backstory="An expert in visual content interpretation with years of experience in image analysis",
|
||||
multimodal=True # This enables multimodal capabilities
|
||||
)
|
||||
```
|
||||
|
||||
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
|
||||
|
||||
## Working with Images
|
||||
|
||||
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
|
||||
|
||||
Here's a complete example showing how to use a multimodal agent to analyze an image:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Create a multimodal agent
|
||||
image_analyst = Agent(
|
||||
role="Product Analyst",
|
||||
goal="Analyze product images and provide detailed descriptions",
|
||||
backstory="Expert in visual product analysis with deep knowledge of design and features",
|
||||
multimodal=True
|
||||
)
|
||||
|
||||
# Create a task for image analysis
|
||||
task = Task(
|
||||
description="Analyze the product image at https://example.com/product.jpg and provide a detailed description",
|
||||
agent=image_analyst
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[image_analyst],
|
||||
tasks=[task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Advanced Usage with Context
|
||||
|
||||
You can provide additional context or specific questions about the image when creating tasks for multimodal agents. The task description can include specific aspects you want the agent to focus on:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Create a multimodal agent for detailed analysis
|
||||
expert_analyst = Agent(
|
||||
role="Visual Quality Inspector",
|
||||
goal="Perform detailed quality analysis of product images",
|
||||
backstory="Senior quality control expert with expertise in visual inspection",
|
||||
multimodal=True # AddImageTool is automatically included
|
||||
)
|
||||
|
||||
# Create a task with specific analysis requirements
|
||||
inspection_task = Task(
|
||||
description="""
|
||||
Analyze the product image at https://example.com/product.jpg with focus on:
|
||||
1. Quality of materials
|
||||
2. Manufacturing defects
|
||||
3. Compliance with standards
|
||||
Provide a detailed report highlighting any issues found.
|
||||
""",
|
||||
agent=expert_analyst
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[expert_analyst],
|
||||
tasks=[inspection_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Tool Details
|
||||
|
||||
When working with multimodal agents, the `AddImageTool` is automatically configured with the following schema:
|
||||
|
||||
```python
|
||||
class AddImageToolSchema:
|
||||
image_url: str # Required: The URL or path of the image to process
|
||||
action: Optional[str] = None # Optional: Additional context or specific questions about the image
|
||||
```
|
||||
|
||||
The multimodal agent will automatically handle the image processing through its built-in tools, allowing it to:
|
||||
- Access images via URLs or local file paths
|
||||
- Process image content with optional context or specific questions
|
||||
- Provide analysis and insights based on the visual information and task requirements
|
||||
|
||||
## Best Practices
|
||||
|
||||
When working with multimodal agents, keep these best practices in mind:
|
||||
|
||||
1. **Image Access**
|
||||
- Ensure your images are accessible via URLs that the agent can reach
|
||||
- For local images, consider hosting them temporarily or using absolute file paths
|
||||
- Verify that image URLs are valid and accessible before running tasks
|
||||
|
||||
2. **Task Description**
|
||||
- Be specific about what aspects of the image you want the agent to analyze
|
||||
- Include clear questions or requirements in the task description
|
||||
- Consider using the optional `action` parameter for focused analysis
|
||||
|
||||
3. **Resource Management**
|
||||
- Image processing may require more computational resources than text-only tasks
|
||||
- Some language models may require base64 encoding for image data
|
||||
- Consider batch processing for multiple images to optimize performance
|
||||
|
||||
4. **Environment Setup**
|
||||
- Verify that your environment has the necessary dependencies for image processing
|
||||
- Ensure your language model supports multimodal capabilities
|
||||
- Test with small images first to validate your setup
|
||||
|
||||
5. **Error Handling**
|
||||
- Implement proper error handling for image loading failures
|
||||
- Have fallback strategies for when image processing fails
|
||||
- Monitor and log image processing operations for debugging
|
||||
@@ -7,7 +7,7 @@ icon: wrench
|
||||
<Note>
|
||||
**Python Version Requirements**
|
||||
|
||||
CrewAI requires `Python >=3.10 and <=3.13`. Here's how to check your version:
|
||||
CrewAI requires `Python >=3.10 and <3.13`. Here's how to check your version:
|
||||
```bash
|
||||
python3 --version
|
||||
```
|
||||
|
||||
@@ -129,7 +129,6 @@ nav:
|
||||
- Processes: 'core-concepts/Processes.md'
|
||||
- Crews: 'core-concepts/Crews.md'
|
||||
- Collaboration: 'core-concepts/Collaboration.md'
|
||||
- Pipeline: 'core-concepts/Pipeline.md'
|
||||
- Training: 'core-concepts/Training-Crew.md'
|
||||
- Memory: 'core-concepts/Memory.md'
|
||||
- Planning: 'core-concepts/Planning.md'
|
||||
|
||||
7507
poetry.lock
generated
7507
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -1,9 +1,9 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.85.0"
|
||||
version = "0.86.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
authors = [
|
||||
{ name = "Joao Moura", email = "joao@crewai.com" }
|
||||
]
|
||||
@@ -15,7 +15,6 @@ dependencies = [
|
||||
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
|
||||
"instructor>=1.3.3",
|
||||
"regex>=2024.9.11",
|
||||
"crewai-tools>=0.14.0",
|
||||
"click>=8.1.7",
|
||||
"python-dotenv>=1.0.0",
|
||||
"appdirs>=1.4.4",
|
||||
@@ -27,9 +26,10 @@ dependencies = [
|
||||
"uv>=0.4.25",
|
||||
"tomli-w>=1.1.0",
|
||||
"tomli>=2.0.2",
|
||||
"chromadb>=0.5.18",
|
||||
"chromadb>=0.5.23",
|
||||
"pdfplumber>=0.11.4",
|
||||
"openpyxl>=3.1.5",
|
||||
"blinker>=1.9.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
@@ -38,7 +38,7 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools>=0.14.0"]
|
||||
tools = ["crewai-tools>=0.17.0"]
|
||||
agentops = ["agentops>=0.3.0"]
|
||||
fastembed = ["fastembed>=0.4.1"]
|
||||
pdfplumber = [
|
||||
@@ -51,10 +51,13 @@ openpyxl = [
|
||||
"openpyxl>=3.1.5",
|
||||
]
|
||||
mem0 = ["mem0ai>=0.1.29"]
|
||||
docling = [
|
||||
"docling>=2.12.0",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
dev-dependencies = [
|
||||
"ruff>=0.4.10",
|
||||
"ruff>=0.8.2",
|
||||
"mypy>=1.10.0",
|
||||
"pre-commit>=3.6.0",
|
||||
"mkdocs>=1.4.3",
|
||||
@@ -64,7 +67,6 @@ dev-dependencies = [
|
||||
"mkdocs-material-extensions>=1.3.1",
|
||||
"pillow>=10.2.0",
|
||||
"cairosvg>=2.7.1",
|
||||
"crewai-tools>=0.14.0",
|
||||
"pytest>=8.0.0",
|
||||
"pytest-vcr>=1.0.2",
|
||||
"python-dotenv>=1.0.0",
|
||||
|
||||
@@ -5,9 +5,7 @@ from crewai.crew import Crew
|
||||
from crewai.flow.flow import Flow
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.llm import LLM
|
||||
from crewai.pipeline import Pipeline
|
||||
from crewai.process import Process
|
||||
from crewai.routers import Router
|
||||
from crewai.task import Task
|
||||
|
||||
warnings.filterwarnings(
|
||||
@@ -16,14 +14,12 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.85.0"
|
||||
__version__ = "0.86.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"Crew",
|
||||
"Process",
|
||||
"Task",
|
||||
"Pipeline",
|
||||
"Router",
|
||||
"LLM",
|
||||
"Flow",
|
||||
"Knowledge",
|
||||
|
||||
@@ -8,7 +8,7 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
|
||||
@@ -17,33 +17,26 @@ from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.task import Task
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.converter import generate_model_description
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
|
||||
def mock_agent_ops_provider():
|
||||
def track_agent(*args, **kwargs):
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" is already defined
|
||||
from agentops import track_agent # type: ignore
|
||||
except ImportError:
|
||||
|
||||
def track_agent():
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
return track_agent
|
||||
|
||||
|
||||
agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
else:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
|
||||
|
||||
@track_agent()
|
||||
class Agent(BaseAgent):
|
||||
@@ -122,6 +115,10 @@ class Agent(BaseAgent):
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
)
|
||||
multimodal: bool = Field(
|
||||
default=False,
|
||||
description="Whether the agent is multimodal.",
|
||||
)
|
||||
code_execution_mode: Literal["safe", "unsafe"] = Field(
|
||||
default="safe",
|
||||
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
|
||||
@@ -181,20 +178,11 @@ class Agent(BaseAgent):
|
||||
if key_name and key_name not in unaccepted_attributes:
|
||||
env_value = os.environ.get(key_name)
|
||||
if env_value:
|
||||
# Map key names containing "API_KEY" to "api_key"
|
||||
key_name = (
|
||||
"api_key" if "API_KEY" in key_name else key_name
|
||||
)
|
||||
# Map key names containing "API_BASE" to "api_base"
|
||||
key_name = (
|
||||
"api_base" if "API_BASE" in key_name else key_name
|
||||
)
|
||||
# Map key names containing "API_VERSION" to "api_version"
|
||||
key_name = (
|
||||
"api_version"
|
||||
if "API_VERSION" in key_name
|
||||
else key_name
|
||||
)
|
||||
key_name = key_name.lower()
|
||||
for pattern in LITELLM_PARAMS:
|
||||
if pattern in key_name:
|
||||
key_name = pattern
|
||||
break
|
||||
llm_params[key_name] = env_value
|
||||
# Check for default values if the environment variable is not set
|
||||
elif env_var.get("default", False):
|
||||
@@ -423,6 +411,10 @@ class Agent(BaseAgent):
|
||||
tools = agent_tools.tools()
|
||||
return tools
|
||||
|
||||
def get_multimodal_tools(self) -> List[Tool]:
|
||||
from crewai.tools.agent_tools.add_image_tool import AddImageTool
|
||||
return [AddImageTool()]
|
||||
|
||||
def get_code_execution_tools(self):
|
||||
try:
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
@@ -3,16 +3,15 @@ from typing import TYPE_CHECKING, Optional
|
||||
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
|
||||
|
||||
class CrewAgentExecutorMixin:
|
||||
@@ -100,14 +99,19 @@ class CrewAgentExecutorMixin:
|
||||
print(f"Failed to add to long term memory: {e}")
|
||||
pass
|
||||
|
||||
def _ask_human_input(self, final_answer: dict) -> str:
|
||||
def _ask_human_input(self, final_answer: str) -> str:
|
||||
"""Prompt human input for final decision making."""
|
||||
self._printer.print(
|
||||
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
|
||||
)
|
||||
|
||||
self._printer.print(
|
||||
content="\n\n=====\n## Please provide feedback on the Final Result and the Agent's actions:",
|
||||
content=(
|
||||
"\n\n=====\n"
|
||||
"## Please provide feedback on the Final Result and the Agent's actions. "
|
||||
"Respond with 'looks good' or a similar phrase when you're satisfied.\n"
|
||||
"=====\n"
|
||||
),
|
||||
color="bold_yellow",
|
||||
)
|
||||
return input()
|
||||
|
||||
@@ -16,7 +16,7 @@ from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N, Printer
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
@@ -90,7 +90,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
if "system" in self.prompt:
|
||||
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
|
||||
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
|
||||
|
||||
self.messages.append(self._format_msg(system_prompt, role="system"))
|
||||
self.messages.append(self._format_msg(user_prompt))
|
||||
else:
|
||||
@@ -103,17 +102,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer, human_feedback)
|
||||
formatted_answer = self._handle_human_feedback(formatted_answer)
|
||||
|
||||
# Making sure we only ask for it once, so disabling for the next thought loop
|
||||
self.ask_for_human_input = False
|
||||
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer)
|
||||
self._create_short_term_memory(formatted_answer)
|
||||
self._create_long_term_memory(formatted_answer)
|
||||
return {"output": formatted_answer.output}
|
||||
@@ -153,7 +143,20 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
tool_result = self._execute_tool_and_check_finality(
|
||||
formatted_answer
|
||||
)
|
||||
formatted_answer.text += f"\nObservation: {tool_result.result}"
|
||||
|
||||
# Directly append the result to the messages if the
|
||||
# tool is "Add image to content" in case of multimodal
|
||||
# agents
|
||||
if formatted_answer.tool == self._i18n.tools("add_image")["name"]:
|
||||
self.messages.append(tool_result.result)
|
||||
continue
|
||||
|
||||
else:
|
||||
if self.step_callback:
|
||||
self.step_callback(tool_result)
|
||||
|
||||
formatted_answer.text += f"\nObservation: {tool_result.result}"
|
||||
|
||||
formatted_answer.result = tool_result.result
|
||||
if tool_result.result_as_answer:
|
||||
return AgentFinish(
|
||||
@@ -309,7 +312,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._i18n.slice("summarizer_system_message"), role="system"
|
||||
),
|
||||
self._format_msg(
|
||||
self._i18n.slice("sumamrize_instruction").format(group=group),
|
||||
self._i18n.slice("summarize_instruction").format(group=group),
|
||||
),
|
||||
],
|
||||
callbacks=self.callbacks,
|
||||
@@ -326,16 +329,14 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
|
||||
def _handle_context_length(self) -> None:
|
||||
if self.respect_context_window:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Summarizing content to fit the model context window.",
|
||||
self._printer.print(
|
||||
content="Context length exceeded. Summarizing content to fit the model context window.",
|
||||
color="yellow",
|
||||
)
|
||||
self._summarize_messages()
|
||||
else:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
|
||||
self._printer.print(
|
||||
content="Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
|
||||
color="red",
|
||||
)
|
||||
raise SystemExit(
|
||||
@@ -362,15 +363,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
] = result.output
|
||||
training_handler.save(training_data)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Invalid train iteration type or agent_id not in training data.",
|
||||
self._printer.print(
|
||||
content="Invalid train iteration type or agent_id not in training data.",
|
||||
color="red",
|
||||
)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Crew is None or does not have _train_iteration attribute.",
|
||||
self._printer.print(
|
||||
content="Crew is None or does not have _train_iteration attribute.",
|
||||
color="red",
|
||||
)
|
||||
|
||||
@@ -388,15 +387,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
train_iteration, agent_id, training_data
|
||||
)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Invalid train iteration type. Expected int.",
|
||||
self._printer.print(
|
||||
content="Invalid train iteration type. Expected int.",
|
||||
color="red",
|
||||
)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Crew is None or does not have _train_iteration attribute.",
|
||||
self._printer.print(
|
||||
content="Crew is None or does not have _train_iteration attribute.",
|
||||
color="red",
|
||||
)
|
||||
|
||||
@@ -412,3 +409,81 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
|
||||
prompt = prompt.rstrip()
|
||||
return {"role": role, "content": prompt}
|
||||
|
||||
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
|
||||
"""
|
||||
Handles the human feedback loop, allowing the user to provide feedback
|
||||
on the agent's output and determining if additional iterations are needed.
|
||||
|
||||
Parameters:
|
||||
formatted_answer (AgentFinish): The initial output from the agent.
|
||||
|
||||
Returns:
|
||||
AgentFinish: The final output after incorporating human feedback.
|
||||
"""
|
||||
while self.ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer, human_feedback)
|
||||
|
||||
# Make an LLM call to verify if additional changes are requested based on human feedback
|
||||
additional_changes_prompt = self._i18n.slice(
|
||||
"human_feedback_classification"
|
||||
).format(feedback=human_feedback)
|
||||
|
||||
retry_count = 0
|
||||
llm_call_successful = False
|
||||
additional_changes_response = None
|
||||
|
||||
while retry_count < MAX_LLM_RETRY and not llm_call_successful:
|
||||
try:
|
||||
additional_changes_response = (
|
||||
self.llm.call(
|
||||
[
|
||||
self._format_msg(
|
||||
additional_changes_prompt, role="system"
|
||||
)
|
||||
],
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
.strip()
|
||||
.lower()
|
||||
)
|
||||
llm_call_successful = True
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
|
||||
self._printer.print(
|
||||
content=f"Error during LLM call to classify human feedback: {e}. Retrying... ({retry_count}/{MAX_LLM_RETRY})",
|
||||
color="red",
|
||||
)
|
||||
|
||||
if not llm_call_successful:
|
||||
self._printer.print(
|
||||
content="Error processing feedback after multiple attempts.",
|
||||
color="red",
|
||||
)
|
||||
self.ask_for_human_input = False
|
||||
break
|
||||
|
||||
if additional_changes_response == "false":
|
||||
self.ask_for_human_input = False
|
||||
elif additional_changes_response == "true":
|
||||
self.ask_for_human_input = True
|
||||
# Add human feedback to messages
|
||||
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
|
||||
# Invoke the loop again with updated messages
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer)
|
||||
else:
|
||||
# Unexpected response
|
||||
self._printer.print(
|
||||
content=f"Unexpected response from LLM: '{additional_changes_response}'. Assuming no additional changes requested.",
|
||||
color="red",
|
||||
)
|
||||
self.ask_for_human_input = False
|
||||
|
||||
return formatted_answer
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import re
|
||||
from typing import Any, Union
|
||||
|
||||
from json_repair import repair_json
|
||||
|
||||
from crewai.utilities import I18N
|
||||
|
||||
@@ -5,9 +5,10 @@ from typing import Any, Dict
|
||||
import requests
|
||||
from rich.console import Console
|
||||
|
||||
from crewai.cli.tools.main import ToolCommand
|
||||
|
||||
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
|
||||
from .utils import TokenManager, validate_token
|
||||
from crewai.cli.tools.main import ToolCommand
|
||||
|
||||
console = Console()
|
||||
|
||||
@@ -79,7 +80,9 @@ class AuthenticationCommand:
|
||||
style="yellow",
|
||||
)
|
||||
|
||||
console.print("\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n")
|
||||
console.print(
|
||||
"\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n"
|
||||
)
|
||||
return
|
||||
|
||||
if token_data["error"] not in ("authorization_pending", "slow_down"):
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
from .utils import TokenManager
|
||||
|
||||
|
||||
def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
return access_token
|
||||
|
||||
|
||||
|
||||
@@ -1,12 +1,11 @@
|
||||
from importlib.metadata import version as get_version
|
||||
from typing import Optional
|
||||
|
||||
import click
|
||||
import pkg_resources
|
||||
|
||||
from crewai.cli.add_crew_to_flow import add_crew_to_flow
|
||||
from crewai.cli.create_crew import create_crew
|
||||
from crewai.cli.create_flow import create_flow
|
||||
from crewai.cli.create_pipeline import create_pipeline
|
||||
from crewai.memory.storage.kickoff_task_outputs_storage import (
|
||||
KickoffTaskOutputsSQLiteStorage,
|
||||
)
|
||||
@@ -26,27 +25,24 @@ from .update_crew import update_crew
|
||||
|
||||
|
||||
@click.group()
|
||||
@click.version_option(get_version("crewai"))
|
||||
def crewai():
|
||||
"""Top-level command group for crewai."""
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
|
||||
@click.argument("type", type=click.Choice(["crew", "flow"]))
|
||||
@click.argument("name")
|
||||
@click.option("--provider", type=str, help="The provider to use for the crew")
|
||||
@click.option("--skip_provider", is_flag=True, help="Skip provider validation")
|
||||
def create(type, name, provider, skip_provider=False):
|
||||
"""Create a new crew, pipeline, or flow."""
|
||||
"""Create a new crew, or flow."""
|
||||
if type == "crew":
|
||||
create_crew(name, provider, skip_provider)
|
||||
elif type == "pipeline":
|
||||
create_pipeline(name)
|
||||
elif type == "flow":
|
||||
create_flow(name)
|
||||
else:
|
||||
click.secho(
|
||||
"Error: Invalid type. Must be 'crew', 'pipeline', or 'flow'.", fg="red"
|
||||
)
|
||||
click.secho("Error: Invalid type. Must be 'crew' or 'flow'.", fg="red")
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@@ -55,14 +51,17 @@ def create(type, name, provider, skip_provider=False):
|
||||
)
|
||||
def version(tools):
|
||||
"""Show the installed version of crewai."""
|
||||
crewai_version = pkg_resources.get_distribution("crewai").version
|
||||
try:
|
||||
crewai_version = get_version("crewai")
|
||||
except Exception:
|
||||
crewai_version = "unknown version"
|
||||
click.echo(f"crewai version: {crewai_version}")
|
||||
|
||||
if tools:
|
||||
try:
|
||||
tools_version = pkg_resources.get_distribution("crewai-tools").version
|
||||
tools_version = get_version("crewai")
|
||||
click.echo(f"crewai tools version: {tools_version}")
|
||||
except pkg_resources.DistributionNotFound:
|
||||
except Exception:
|
||||
click.echo("crewai tools not installed")
|
||||
|
||||
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import requests
|
||||
from requests.exceptions import JSONDecodeError
|
||||
from rich.console import Console
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
|
||||
from crewai.cli.authentication.token import get_auth_token
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
|
||||
console = Console()
|
||||
|
||||
@@ -1,13 +1,19 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
|
||||
|
||||
|
||||
class Settings(BaseModel):
|
||||
tool_repository_username: Optional[str] = Field(None, description="Username for interacting with the Tool Repository")
|
||||
tool_repository_password: Optional[str] = Field(None, description="Password for interacting with the Tool Repository")
|
||||
tool_repository_username: Optional[str] = Field(
|
||||
None, description="Username for interacting with the Tool Repository"
|
||||
)
|
||||
tool_repository_password: Optional[str] = Field(
|
||||
None, description="Password for interacting with the Tool Repository"
|
||||
)
|
||||
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
|
||||
|
||||
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
|
||||
|
||||
@@ -159,3 +159,6 @@ MODELS = {
|
||||
}
|
||||
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
|
||||
|
||||
LITELLM_PARAMS = ["api_key", "api_base", "api_version"]
|
||||
|
||||
@@ -1,107 +0,0 @@
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def create_pipeline(name, router=False):
|
||||
"""Create a new pipeline project."""
|
||||
folder_name = name.replace(" ", "_").replace("-", "_").lower()
|
||||
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
|
||||
|
||||
click.secho(f"Creating pipeline {folder_name}...", fg="green", bold=True)
|
||||
|
||||
project_root = Path(folder_name)
|
||||
if project_root.exists():
|
||||
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
|
||||
return
|
||||
|
||||
# Create directory structure
|
||||
(project_root / "src" / folder_name).mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "pipelines").mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(project_root / "tests").mkdir(exist_ok=True)
|
||||
|
||||
# Create .env file
|
||||
with open(project_root / ".env", "w") as file:
|
||||
file.write("OPENAI_API_KEY=YOUR_API_KEY")
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
template_folder = "pipeline_router" if router else "pipeline"
|
||||
templates_dir = package_dir / "templates" / template_folder
|
||||
|
||||
# List of template files to copy
|
||||
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
|
||||
src_template_files = ["__init__.py", "main.py"]
|
||||
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
|
||||
|
||||
if router:
|
||||
crew_folders = [
|
||||
"classifier_crew",
|
||||
"normal_crew",
|
||||
"urgent_crew",
|
||||
]
|
||||
pipelines_folders = [
|
||||
"pipelines/__init__.py",
|
||||
"pipelines/pipeline_classifier.py",
|
||||
"pipelines/pipeline_normal.py",
|
||||
"pipelines/pipeline_urgent.py",
|
||||
]
|
||||
else:
|
||||
crew_folders = [
|
||||
"research_crew",
|
||||
"write_linkedin_crew",
|
||||
"write_x_crew",
|
||||
]
|
||||
pipelines_folders = ["pipelines/__init__.py", "pipelines/pipeline.py"]
|
||||
|
||||
def process_file(src_file, dst_file):
|
||||
with open(src_file, "r") as file:
|
||||
content = file.read()
|
||||
|
||||
content = content.replace("{{name}}", name)
|
||||
content = content.replace("{{crew_name}}", class_name)
|
||||
content = content.replace("{{folder_name}}", folder_name)
|
||||
content = content.replace("{{pipeline_name}}", class_name)
|
||||
|
||||
with open(dst_file, "w") as file:
|
||||
file.write(content)
|
||||
|
||||
# Copy and process root template files
|
||||
for file_name in root_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy and process src template files
|
||||
for file_name in src_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy tools files
|
||||
for file_name in tools_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
shutil.copy(src_file, dst_file)
|
||||
|
||||
# Copy pipelines folders
|
||||
for file_name in pipelines_folders:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy crew folders
|
||||
for crew_folder in crew_folders:
|
||||
src_crew_folder = templates_dir / "crews" / crew_folder
|
||||
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
|
||||
if src_crew_folder.exists():
|
||||
shutil.copytree(src_crew_folder, dst_crew_folder)
|
||||
else:
|
||||
click.secho(
|
||||
f"Warning: Crew folder {crew_folder} not found in template.",
|
||||
fg="yellow",
|
||||
)
|
||||
|
||||
click.secho(f"Pipeline {name} created successfully!", fg="green", bold=True)
|
||||
@@ -1,9 +1,11 @@
|
||||
from typing import Optional
|
||||
import requests
|
||||
from os import getenv
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from typing import Optional
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import requests
|
||||
|
||||
from crewai.cli.version import get_crewai_version
|
||||
|
||||
|
||||
class PlusAPI:
|
||||
"""
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
|
||||
|
||||
def reset_memories_command(
|
||||
|
||||
@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install uv:
|
||||
|
||||
|
||||
@@ -12,6 +12,6 @@ reporting_task:
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with the mains topics, each with a full section of information.
|
||||
A fully fledged report with the main topics, each with a full section of information.
|
||||
Formatted as markdown without '```'
|
||||
agent: reporting_analyst
|
||||
|
||||
@@ -1,37 +1,26 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task, before_kickoff, after_kickoff
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from {{folder_name}}.tools.custom_tool import MyCustomTool
|
||||
# Uncomment the following line to use an example of a knowledge source
|
||||
# from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
# If you want to run a snippet of code before or after the crew starts,
|
||||
# you can use the @before_kickoff and @after_kickoff decorators
|
||||
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
|
||||
|
||||
@CrewBase
|
||||
class {{crew_name}}():
|
||||
"""{{crew_name}} crew"""
|
||||
|
||||
# Learn more about YAML configuration files here:
|
||||
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
|
||||
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@before_kickoff # Optional hook to be executed before the crew starts
|
||||
def pull_data_example(self, inputs):
|
||||
# Example of pulling data from an external API, dynamically changing the inputs
|
||||
inputs['extra_data'] = "This is extra data"
|
||||
return inputs
|
||||
|
||||
@after_kickoff # Optional hook to be executed after the crew has finished
|
||||
def log_results(self, output):
|
||||
# Example of logging results, dynamically changing the output
|
||||
print(f"Results: {output}")
|
||||
return output
|
||||
|
||||
# If you would like to add tools to your agents, you can learn more about it here:
|
||||
# https://docs.crewai.com/concepts/agents#agent-tools
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
# tools=[MyCustomTool()], # Example of custom tool, loaded on the beginning of file
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@@ -42,6 +31,9 @@ class {{crew_name}}():
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# To learn more about structured task outputs,
|
||||
# task dependencies, and task callbacks, check out the documentation:
|
||||
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
@@ -58,14 +50,8 @@ class {{crew_name}}():
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the {{crew_name}} crew"""
|
||||
# You can add knowledge sources here
|
||||
# knowledge_path = "user_preference.txt"
|
||||
# sources = [
|
||||
# TextFileKnowledgeSource(
|
||||
# file_path="knowledge/user_preference.txt",
|
||||
# metadata={"preference": "personal"}
|
||||
# ),
|
||||
# ]
|
||||
# To learn how to add knowledge sources to your crew, check out the documentation:
|
||||
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
|
||||
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
@@ -73,5 +59,4 @@ class {{crew_name}}():
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
|
||||
# knowledge_sources=sources, # In the case you want to add knowledge sources
|
||||
)
|
||||
|
||||
@@ -3,9 +3,9 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.85.0,<1.0.0"
|
||||
"crewai[tools]>=0.86.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
@@ -18,3 +18,6 @@ test = "{{folder_name}}.main:test"
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
[tool.crewai]
|
||||
type = "crew"
|
||||
|
||||
@@ -10,7 +10,7 @@ class MyCustomToolInput(BaseModel):
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
"Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install uv:
|
||||
|
||||
|
||||
@@ -1,31 +1,47 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# If you want to run a snippet of code before or after the crew starts,
|
||||
# you can use the @before_kickoff and @after_kickoff decorators
|
||||
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
|
||||
|
||||
|
||||
@CrewBase
|
||||
class PoemCrew():
|
||||
"""Poem Crew"""
|
||||
class PoemCrew:
|
||||
"""Poem Crew"""
|
||||
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
# Learn more about YAML configuration files here:
|
||||
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
|
||||
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def poem_writer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['poem_writer'],
|
||||
)
|
||||
# If you would lik to add tools to your crew, you can learn more about it here:
|
||||
# https://docs.crewai.com/concepts/agents#agent-tools
|
||||
@agent
|
||||
def poem_writer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config["poem_writer"],
|
||||
)
|
||||
|
||||
@task
|
||||
def write_poem(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['write_poem'],
|
||||
)
|
||||
# To learn more about structured task outputs,
|
||||
# task dependencies, and task callbacks, check out the documentation:
|
||||
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
|
||||
@task
|
||||
def write_poem(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["write_poem"],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Research Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Research Crew"""
|
||||
# To learn how to add knowledge sources to your crew, check out the documentation:
|
||||
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
|
||||
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
@@ -5,7 +5,7 @@ from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
from .crews.poem_crew.poem_crew import PoemCrew
|
||||
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew
|
||||
|
||||
|
||||
class PoemState(BaseModel):
|
||||
|
||||
@@ -3,9 +3,9 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.85.0,<1.0.0",
|
||||
"crewai[tools]>=0.86.0,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
@@ -15,3 +15,6 @@ plot = "{{folder_name}}.main:plot"
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
[tool.crewai]
|
||||
type = "flow"
|
||||
|
||||
@@ -13,7 +13,7 @@ class MyCustomToolInput(BaseModel):
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
"Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
|
||||
2
src/crewai/cli/templates/pipeline/.gitignore
vendored
2
src/crewai/cli/templates/pipeline/.gitignore
vendored
@@ -1,2 +0,0 @@
|
||||
.env
|
||||
__pycache__/
|
||||
@@ -1,57 +0,0 @@
|
||||
# {{crew_name}} Crew
|
||||
|
||||
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
|
||||
```bash
|
||||
crewai install
|
||||
```
|
||||
|
||||
### Customizing
|
||||
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
|
||||
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
|
||||
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
|
||||
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
|
||||
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
|
||||
|
||||
## Running the Project
|
||||
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
|
||||
|
||||
## Understanding Your Crew
|
||||
|
||||
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
|
||||
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat with our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
@@ -1,19 +0,0 @@
|
||||
researcher:
|
||||
role: >
|
||||
{topic} Senior Data Researcher
|
||||
goal: >
|
||||
Uncover cutting-edge developments in {topic}
|
||||
backstory: >
|
||||
You're a seasoned researcher with a knack for uncovering the latest
|
||||
developments in {topic}. Known for your ability to find the most relevant
|
||||
information and present it in a clear and concise manner.
|
||||
|
||||
reporting_analyst:
|
||||
role: >
|
||||
{topic} Reporting Analyst
|
||||
goal: >
|
||||
Create detailed reports based on {topic} data analysis and research findings
|
||||
backstory: >
|
||||
You're a meticulous analyst with a keen eye for detail. You're known for
|
||||
your ability to turn complex data into clear and concise reports, making
|
||||
it easy for others to understand and act on the information you provide.
|
||||
@@ -1,16 +0,0 @@
|
||||
research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
|
||||
reporting_task:
|
||||
description: >
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with a title, mains topics, each with a full section of information.
|
||||
agent: reporting_analyst
|
||||
@@ -1,58 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
class ResearchReport(BaseModel):
|
||||
"""Research Report"""
|
||||
title: str
|
||||
body: str
|
||||
|
||||
@CrewBase
|
||||
class ResearchCrew():
|
||||
"""Research Crew"""
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@agent
|
||||
def reporting_analyst(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['reporting_analyst'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['research_task'],
|
||||
)
|
||||
|
||||
@task
|
||||
def reporting_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['reporting_task'],
|
||||
output_pydantic=ResearchReport
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Research Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,51 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from {{folder_name}}.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
@CrewBase
|
||||
class WriteLinkedInCrew():
|
||||
"""Research Crew"""
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@agent
|
||||
def reporting_analyst(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['reporting_analyst'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['research_task'],
|
||||
)
|
||||
|
||||
@task
|
||||
def reporting_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['reporting_task'],
|
||||
output_file='report.md'
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the {{crew_name}} crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,14 +0,0 @@
|
||||
x_writer_agent:
|
||||
role: >
|
||||
Expert Social Media Content Creator specializing in short form written content
|
||||
goal: >
|
||||
Create viral-worthy, engaging short form posts that distill complex {topic} information
|
||||
into compelling 280-character messages
|
||||
backstory: >
|
||||
You're a social media virtuoso with a particular talent for short form content. Your posts
|
||||
consistently go viral due to your ability to craft hooks that stop users mid-scroll.
|
||||
You've studied the techniques of social media masters like Justin Welsh, Dickie Bush,
|
||||
Nicolas Cole, and Shaan Puri, incorporating their best practices into your own unique style.
|
||||
Your superpower is taking intricate {topic} concepts and transforming them into
|
||||
bite-sized, shareable content that resonates with a wide audience. You know exactly
|
||||
how to structure a post for maximum impact and engagement.
|
||||
@@ -1,22 +0,0 @@
|
||||
write_x_task:
|
||||
description: >
|
||||
Using the research report provided, create an engaging short form post about {topic}.
|
||||
Your post should have a great hook, summarize key points, and be structured for easy
|
||||
consumption on a digital platform. The post must be under 280 characters.
|
||||
Follow these guidelines:
|
||||
1. Start with an attention-grabbing hook
|
||||
2. Condense the main insights from the research
|
||||
3. Use clear, concise language
|
||||
4. Include a call-to-action or thought-provoking question if space allows
|
||||
5. Ensure the post flows well and is easy to read quickly
|
||||
|
||||
Here is the title of the research report you will be using
|
||||
|
||||
Title: {title}
|
||||
Research:
|
||||
{body}
|
||||
|
||||
expected_output: >
|
||||
A compelling X post under 280 characters that effectively summarizes the key findings
|
||||
about {topic}, starts with a strong hook, and is optimized for engagement on the platform.
|
||||
agent: x_writer_agent
|
||||
@@ -1,36 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
@CrewBase
|
||||
class WriteXCrew:
|
||||
"""Research Crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def x_writer_agent(self) -> Agent:
|
||||
return Agent(config=self.agents_config["x_writer_agent"], verbose=True)
|
||||
|
||||
@task
|
||||
def write_x_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["write_x_task"],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Write X Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,26 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
import asyncio
|
||||
from {{folder_name}}.pipelines.pipeline import {{pipeline_name}}Pipeline
|
||||
|
||||
async def run():
|
||||
"""
|
||||
Run the pipeline.
|
||||
"""
|
||||
inputs = [
|
||||
{"topic": "AI wearables"},
|
||||
]
|
||||
pipeline = {{pipeline_name}}Pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
|
||||
# Process and print results
|
||||
for result in results:
|
||||
print(f"Raw output: {result.raw}")
|
||||
if result.json_dict:
|
||||
print(f"JSON output: {result.json_dict}")
|
||||
print("\n")
|
||||
|
||||
def main():
|
||||
asyncio.run(run())
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,87 +0,0 @@
|
||||
"""
|
||||
This pipeline file includes two different examples to demonstrate the flexibility of crewAI pipelines.
|
||||
|
||||
Example 1: Two-Stage Pipeline
|
||||
-----------------------------
|
||||
This pipeline consists of two crews:
|
||||
1. ResearchCrew: Performs research on a given topic.
|
||||
2. WriteXCrew: Generates an X (Twitter) post based on the research findings.
|
||||
|
||||
Key features:
|
||||
- The ResearchCrew's final task uses output_json to store all research findings in a JSON object.
|
||||
- This JSON object is then passed to the WriteXCrew, where tasks can access the research findings.
|
||||
|
||||
Example 2: Two-Stage Pipeline with Parallel Execution
|
||||
-------------------------------------------------------
|
||||
This pipeline consists of three crews:
|
||||
1. ResearchCrew: Performs research on a given topic.
|
||||
2. WriteXCrew and WriteLinkedInCrew: Run in parallel, using the research findings to generate posts for X and LinkedIn, respectively.
|
||||
|
||||
Key features:
|
||||
- Demonstrates the ability to run multiple crews in parallel.
|
||||
- Shows how to structure a pipeline with both sequential and parallel stages.
|
||||
|
||||
Usage:
|
||||
- To switch between examples, comment/uncomment the respective code blocks below.
|
||||
- Ensure that you have implemented all necessary crew classes (ResearchCrew, WriteXCrew, WriteLinkedInCrew) before running.
|
||||
"""
|
||||
|
||||
# Common imports for both examples
|
||||
from crewai import Pipeline
|
||||
|
||||
|
||||
|
||||
# Uncomment the crews you need for your chosen example
|
||||
from ..crews.research_crew.research_crew import ResearchCrew
|
||||
from ..crews.write_x_crew.write_x_crew import WriteXCrew
|
||||
# from .crews.write_linkedin_crew.write_linkedin_crew import WriteLinkedInCrew # Uncomment for Example 2
|
||||
|
||||
# EXAMPLE 1: Two-Stage Pipeline
|
||||
# -----------------------------
|
||||
# Uncomment the following code block to use Example 1
|
||||
|
||||
class {{pipeline_name}}Pipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.research_crew = ResearchCrew().crew()
|
||||
self.write_x_crew = WriteXCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.research_crew,
|
||||
self.write_x_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
|
||||
|
||||
# EXAMPLE 2: Two-Stage Pipeline with Parallel Execution
|
||||
# -------------------------------------------------------
|
||||
# Uncomment the following code block to use Example 2
|
||||
|
||||
# @PipelineBase
|
||||
# class {{pipeline_name}}Pipeline:
|
||||
# def __init__(self):
|
||||
# # Initialize crews
|
||||
# self.research_crew = ResearchCrew().crew()
|
||||
# self.write_x_crew = WriteXCrew().crew()
|
||||
# self.write_linkedin_crew = WriteLinkedInCrew().crew()
|
||||
|
||||
# @pipeline
|
||||
# def create_pipeline(self):
|
||||
# return Pipeline(
|
||||
# stages=[
|
||||
# self.research_crew,
|
||||
# [self.write_x_crew, self.write_linkedin_crew] # Parallel execution
|
||||
# ]
|
||||
# )
|
||||
|
||||
# async def run(self, inputs):
|
||||
# pipeline = self.create_pipeline()
|
||||
# results = await pipeline.kickoff(inputs)
|
||||
# return results
|
||||
@@ -1,17 +0,0 @@
|
||||
[tool.poetry]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.85.0,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
@@ -1,19 +0,0 @@
|
||||
from typing import Type
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MyCustomToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "this is an example of a tool output, ignore it and move along."
|
||||
@@ -1,2 +0,0 @@
|
||||
.env
|
||||
__pycache__/
|
||||
@@ -1,54 +0,0 @@
|
||||
# {{crew_name}} Crew
|
||||
|
||||
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
```bash
|
||||
crewai install
|
||||
```
|
||||
### Customizing
|
||||
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
|
||||
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
|
||||
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
|
||||
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
|
||||
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
|
||||
|
||||
## Running the Project
|
||||
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
|
||||
|
||||
## Understanding Your Crew
|
||||
|
||||
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
|
||||
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat with our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
@@ -1,19 +0,0 @@
|
||||
researcher:
|
||||
role: >
|
||||
{topic} Senior Data Researcher
|
||||
goal: >
|
||||
Uncover cutting-edge developments in {topic}
|
||||
backstory: >
|
||||
You're a seasoned researcher with a knack for uncovering the latest
|
||||
developments in {topic}. Known for your ability to find the most relevant
|
||||
information and present it in a clear and concise manner.
|
||||
|
||||
reporting_analyst:
|
||||
role: >
|
||||
{topic} Reporting Analyst
|
||||
goal: >
|
||||
Create detailed reports based on {topic} data analysis and research findings
|
||||
backstory: >
|
||||
You're a meticulous analyst with a keen eye for detail. You're known for
|
||||
your ability to turn complex data into clear and concise reports, making
|
||||
it easy for others to understand and act on the information you provide.
|
||||
@@ -1,17 +0,0 @@
|
||||
research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
|
||||
reporting_task:
|
||||
description: >
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with the mains topics, each with a full section of information.
|
||||
Formatted as markdown without '```'
|
||||
agent: reporting_analyst
|
||||
@@ -1,40 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
class UrgencyScore(BaseModel):
|
||||
urgency_score: int
|
||||
|
||||
@CrewBase
|
||||
class ClassifierCrew:
|
||||
"""Email Classifier Crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def classifier(self) -> Agent:
|
||||
return Agent(config=self.agents_config["classifier"], verbose=True)
|
||||
|
||||
@task
|
||||
def urgent_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["classify_email"],
|
||||
output_pydantic=UrgencyScore,
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Email Classifier Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,7 +0,0 @@
|
||||
classifier:
|
||||
role: >
|
||||
Email Classifier
|
||||
goal: >
|
||||
Classify the email: {email} as urgent or normal from a score of 1 to 10, where 1 is not urgent and 10 is urgent. Return the urgency score only.`
|
||||
backstory: >
|
||||
You are a highly efficient and experienced email classifier, trained to quickly assess and classify emails. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing normal situations and maintaining smooth operations.
|
||||
@@ -1,7 +0,0 @@
|
||||
classify_email:
|
||||
description: >
|
||||
Classify the email: {email}
|
||||
as urgent or normal.
|
||||
expected_output: >
|
||||
Classify the email from a scale of 1 to 10, where 1 is not urgent and 10 is urgent. Return the urgency score only.
|
||||
agent: classifier
|
||||
@@ -1,7 +0,0 @@
|
||||
normal_handler:
|
||||
role: >
|
||||
Normal Email Processor
|
||||
goal: >
|
||||
Process normal emails and create an email to respond to the sender.
|
||||
backstory: >
|
||||
You are a highly efficient and experienced normal email handler, trained to quickly assess and respond to normal communications. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing normal situations and maintaining smooth operations.
|
||||
@@ -1,6 +0,0 @@
|
||||
normal_task:
|
||||
description: >
|
||||
Process and respond to normal email quickly.
|
||||
expected_output: >
|
||||
An email response to the normal email.
|
||||
agent: normal_handler
|
||||
@@ -1,36 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
@CrewBase
|
||||
class NormalCrew:
|
||||
"""Normal Email Crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def normal_handler(self) -> Agent:
|
||||
return Agent(config=self.agents_config["normal_handler"], verbose=True)
|
||||
|
||||
@task
|
||||
def urgent_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["normal_task"],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Normal Email Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,7 +0,0 @@
|
||||
urgent_handler:
|
||||
role: >
|
||||
Urgent Email Processor
|
||||
goal: >
|
||||
Process urgent emails and create an email to respond to the sender.
|
||||
backstory: >
|
||||
You are a highly efficient and experienced urgent email handler, trained to quickly assess and respond to time-sensitive communications. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing critical situations and maintaining smooth operations.
|
||||
@@ -1,6 +0,0 @@
|
||||
urgent_task:
|
||||
description: >
|
||||
Process and respond to urgent email quickly.
|
||||
expected_output: >
|
||||
An email response to the urgent email.
|
||||
agent: urgent_handler
|
||||
@@ -1,36 +0,0 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from demo_pipeline.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
@CrewBase
|
||||
class UrgentCrew:
|
||||
"""Urgent Email Crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@agent
|
||||
def urgent_handler(self) -> Agent:
|
||||
return Agent(config=self.agents_config["urgent_handler"], verbose=True)
|
||||
|
||||
@task
|
||||
def urgent_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["urgent_task"],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Urgent Email Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
@@ -1,75 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
import asyncio
|
||||
from crewai.routers.router import Route
|
||||
from crewai.routers.router import Router
|
||||
|
||||
from {{folder_name}}.pipelines.pipeline_classifier import EmailClassifierPipeline
|
||||
from {{folder_name}}.pipelines.pipeline_normal import NormalPipeline
|
||||
from {{folder_name}}.pipelines.pipeline_urgent import UrgentPipeline
|
||||
|
||||
async def run():
|
||||
"""
|
||||
Run the pipeline.
|
||||
"""
|
||||
inputs = [
|
||||
{
|
||||
"email": """
|
||||
Subject: URGENT: Marketing Campaign Launch - Immediate Action Required
|
||||
Dear Team,
|
||||
I'm reaching out regarding our upcoming marketing campaign that requires your immediate attention and swift action. We're facing a critical deadline, and our success hinges on our ability to mobilize quickly.
|
||||
Key points:
|
||||
|
||||
Campaign launch: 48 hours from now
|
||||
Target audience: 250,000 potential customers
|
||||
Expected ROI: 35% increase in Q3 sales
|
||||
|
||||
What we need from you NOW:
|
||||
|
||||
Final approval on creative assets (due in 3 hours)
|
||||
Confirmation of media placements (due by end of day)
|
||||
Last-minute budget allocation for paid social media push
|
||||
|
||||
Our competitors are poised to launch similar campaigns, and we must act fast to maintain our market advantage. Delays could result in significant lost opportunities and potential revenue.
|
||||
Please prioritize this campaign above all other tasks. I'll be available for the next 24 hours to address any concerns or roadblocks.
|
||||
Let's make this happen!
|
||||
[Your Name]
|
||||
Marketing Director
|
||||
P.S. I'll be scheduling an emergency team meeting in 1 hour to discuss our action plan. Attendance is mandatory.
|
||||
"""
|
||||
}
|
||||
]
|
||||
|
||||
pipeline_classifier = EmailClassifierPipeline().create_pipeline()
|
||||
pipeline_urgent = UrgentPipeline().create_pipeline()
|
||||
pipeline_normal = NormalPipeline().create_pipeline()
|
||||
|
||||
router = Router(
|
||||
routes={
|
||||
"high_urgency": Route(
|
||||
condition=lambda x: x.get("urgency_score", 0) > 7,
|
||||
pipeline=pipeline_urgent
|
||||
),
|
||||
"low_urgency": Route(
|
||||
condition=lambda x: x.get("urgency_score", 0) <= 7,
|
||||
pipeline=pipeline_normal
|
||||
)
|
||||
},
|
||||
default=pipeline_normal
|
||||
)
|
||||
|
||||
pipeline = pipeline_classifier >> router
|
||||
|
||||
results = await pipeline.kickoff(inputs)
|
||||
|
||||
# Process and print results
|
||||
for result in results:
|
||||
print(f"Raw output: {result.raw}")
|
||||
if result.json_dict:
|
||||
print(f"JSON output: {result.json_dict}")
|
||||
print("\n")
|
||||
|
||||
def main():
|
||||
asyncio.run(run())
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,24 +0,0 @@
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.classifier_crew.classifier_crew import ClassifierCrew
|
||||
|
||||
|
||||
@PipelineBase
|
||||
class EmailClassifierPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.classifier_crew = ClassifierCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.classifier_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.normal_crew.normal_crew import NormalCrew
|
||||
|
||||
|
||||
@PipelineBase
|
||||
class NormalPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.normal_crew = NormalCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.normal_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
|
||||
|
||||
@@ -1,23 +0,0 @@
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.urgent_crew.urgent_crew import UrgentCrew
|
||||
|
||||
@PipelineBase
|
||||
class UrgentPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.urgent_crew = UrgentCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.urgent_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
|
||||
|
||||
@@ -1,21 +0,0 @@
|
||||
[project]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.85.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
run_crew = "{{folder_name}}.main:main"
|
||||
train = "{{folder_name}}.main:train"
|
||||
replay = "{{folder_name}}.main:replay"
|
||||
test = "{{folder_name}}.main:test"
|
||||
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
from typing import Type
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MyCustomToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "this is an example of a tool output, ignore it and move along."
|
||||
@@ -5,7 +5,7 @@ custom tools to power up your crews.
|
||||
|
||||
## Installing
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project
|
||||
uses [UV](https://docs.astral.sh/uv/) for dependency management and package
|
||||
handling, offering a seamless setup and execution experience.
|
||||
|
||||
|
||||
@@ -3,8 +3,10 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.85.0"
|
||||
"crewai[tools]>=0.86.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
type = "tool"
|
||||
|
||||
@@ -117,7 +117,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
|
||||
published_handle = publish_response.json()["handle"]
|
||||
console.print(
|
||||
f"Succesfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
|
||||
f"Successfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
|
||||
style="bold green",
|
||||
)
|
||||
|
||||
@@ -138,7 +138,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
|
||||
self._add_package(get_response.json())
|
||||
|
||||
console.print(f"Succesfully installed {handle}", style="bold green")
|
||||
console.print(f"Successfully installed {handle}", style="bold green")
|
||||
|
||||
def login(self):
|
||||
login_response = self.plus_api_client.login_to_tool_repository()
|
||||
|
||||
@@ -33,26 +33,6 @@ def copy_template(src, dst, name, class_name, folder_name):
|
||||
click.secho(f" - Created {dst}", fg="green")
|
||||
|
||||
|
||||
# Drop the simple_toml_parser when we move to python3.11
|
||||
def simple_toml_parser(content):
|
||||
result = {}
|
||||
current_section = result
|
||||
for line in content.split("\n"):
|
||||
line = line.strip()
|
||||
if line.startswith("[") and line.endswith("]"):
|
||||
# New section
|
||||
section = line[1:-1].split(".")
|
||||
current_section = result
|
||||
for key in section:
|
||||
current_section = current_section.setdefault(key, {})
|
||||
elif "=" in line:
|
||||
key, value = line.split("=", 1)
|
||||
key = key.strip()
|
||||
value = value.strip().strip('"')
|
||||
current_section[key] = value
|
||||
return result
|
||||
|
||||
|
||||
def read_toml(file_path: str = "pyproject.toml"):
|
||||
"""Read the content of a TOML file and return it as a dictionary."""
|
||||
with open(file_path, "rb") as f:
|
||||
@@ -63,7 +43,7 @@ def read_toml(file_path: str = "pyproject.toml"):
|
||||
def parse_toml(content):
|
||||
if sys.version_info >= (3, 11):
|
||||
return tomllib.loads(content)
|
||||
return simple_toml_parser(content)
|
||||
return tomli.loads(content)
|
||||
|
||||
|
||||
def get_project_name(
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import importlib.metadata
|
||||
|
||||
|
||||
def get_crewai_version() -> str:
|
||||
"""Get the version number of CrewAI running the CLI"""
|
||||
return importlib.metadata.version("crewai")
|
||||
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
import warnings
|
||||
from concurrent.futures import Future
|
||||
from hashlib import md5
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
@@ -23,12 +22,12 @@ from crewai.agent import Agent
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.memory.user.user_memory import UserMemory
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
@@ -36,6 +35,7 @@ from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
@@ -49,15 +49,11 @@ from crewai.utilities.planning_handler import CrewPlanner
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
agentops = None
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
@@ -538,9 +534,6 @@ class Crew(BaseModel):
|
||||
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
|
||||
if agent.allow_code_execution: # type: ignore # BaseAgent" has no attribute "allow_code_execution"
|
||||
agent.tools += agent.get_code_execution_tools() # type: ignore # "BaseAgent" has no attribute "get_code_execution_tools"; maybe "get_delegation_tools"?
|
||||
|
||||
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
|
||||
@@ -677,7 +670,6 @@ class Crew(BaseModel):
|
||||
)
|
||||
manager.tools = []
|
||||
raise Exception("Manager agent should not have tools")
|
||||
manager.tools = self.manager_agent.get_delegation_tools(self.agents)
|
||||
else:
|
||||
self.manager_llm = (
|
||||
getattr(self.manager_llm, "model_name", None)
|
||||
@@ -689,6 +681,7 @@ class Crew(BaseModel):
|
||||
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
||||
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
|
||||
tools=AgentTools(agents=self.agents).tools(),
|
||||
allow_delegation=True,
|
||||
llm=self.manager_llm,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
@@ -731,7 +724,14 @@ class Crew(BaseModel):
|
||||
f"No agent available for task: {task.description}. Ensure that either the task has an assigned agent or a manager agent is provided."
|
||||
)
|
||||
|
||||
self._prepare_agent_tools(task)
|
||||
# Determine which tools to use - task tools take precedence over agent tools
|
||||
tools_for_task = task.tools or agent_to_use.tools or []
|
||||
tools_for_task = self._prepare_tools(
|
||||
agent_to_use,
|
||||
task,
|
||||
tools_for_task
|
||||
)
|
||||
|
||||
self._log_task_start(task, agent_to_use.role)
|
||||
|
||||
if isinstance(task, ConditionalTask):
|
||||
@@ -748,7 +748,7 @@ class Crew(BaseModel):
|
||||
future = task.execute_async(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=agent_to_use.tools,
|
||||
tools=tools_for_task,
|
||||
)
|
||||
futures.append((task, future, task_index))
|
||||
else:
|
||||
@@ -760,7 +760,7 @@ class Crew(BaseModel):
|
||||
task_output = task.execute_sync(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=agent_to_use.tools,
|
||||
tools=tools_for_task,
|
||||
)
|
||||
task_outputs = [task_output]
|
||||
self._process_task_result(task, task_output)
|
||||
@@ -797,45 +797,67 @@ class Crew(BaseModel):
|
||||
return skipped_task_output
|
||||
return None
|
||||
|
||||
def _prepare_agent_tools(self, task: Task):
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
self._update_manager_tools(task)
|
||||
else:
|
||||
raise ValueError("Manager agent is required for hierarchical process.")
|
||||
elif task.agent and task.agent.allow_delegation:
|
||||
self._add_delegation_tools(task)
|
||||
def _prepare_tools(self, agent: BaseAgent, task: Task, tools: List[Tool]) -> List[Tool]:
|
||||
# Add delegation tools if agent allows delegation
|
||||
if agent.allow_delegation:
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
tools = self._update_manager_tools(task, tools)
|
||||
else:
|
||||
raise ValueError("Manager agent is required for hierarchical process.")
|
||||
|
||||
elif agent and agent.allow_delegation:
|
||||
tools = self._add_delegation_tools(task, tools)
|
||||
|
||||
# Add code execution tools if agent allows code execution
|
||||
if agent.allow_code_execution:
|
||||
tools = self._add_code_execution_tools(agent, tools)
|
||||
|
||||
if agent and agent.multimodal:
|
||||
tools = self._add_multimodal_tools(agent, tools)
|
||||
|
||||
return tools
|
||||
|
||||
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
|
||||
if self.process == Process.hierarchical:
|
||||
return self.manager_agent
|
||||
return task.agent
|
||||
|
||||
def _add_delegation_tools(self, task: Task):
|
||||
def _merge_tools(self, existing_tools: List[Tool], new_tools: List[Tool]) -> List[Tool]:
|
||||
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
|
||||
if not new_tools:
|
||||
return existing_tools
|
||||
|
||||
# Create mapping of tool names to new tools
|
||||
new_tool_map = {tool.name: tool for tool in new_tools}
|
||||
|
||||
# Remove any existing tools that will be replaced
|
||||
tools = [tool for tool in existing_tools if tool.name not in new_tool_map]
|
||||
|
||||
# Add all new tools
|
||||
tools.extend(new_tools)
|
||||
|
||||
return tools
|
||||
|
||||
def _inject_delegation_tools(self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]):
|
||||
delegation_tools = task_agent.get_delegation_tools(agents)
|
||||
return self._merge_tools(tools, delegation_tools)
|
||||
|
||||
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
multimodal_tools = agent.get_multimodal_tools()
|
||||
return self._merge_tools(tools, multimodal_tools)
|
||||
|
||||
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
code_tools = agent.get_code_execution_tools()
|
||||
return self._merge_tools(tools, code_tools)
|
||||
|
||||
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
|
||||
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
|
||||
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
|
||||
delegation_tools = task.agent.get_delegation_tools(agents_for_delegation)
|
||||
|
||||
# Add tools if they are not already in task.tools
|
||||
for new_tool in delegation_tools:
|
||||
# Find the index of the tool with the same name
|
||||
existing_tool_index = next(
|
||||
(
|
||||
index
|
||||
for index, tool in enumerate(task.tools or [])
|
||||
if tool.name == new_tool.name
|
||||
),
|
||||
None,
|
||||
)
|
||||
if not task.tools:
|
||||
task.tools = []
|
||||
|
||||
if existing_tool_index is not None:
|
||||
# Replace the existing tool
|
||||
task.tools[existing_tool_index] = new_tool
|
||||
else:
|
||||
# Add the new tool
|
||||
task.tools.append(new_tool)
|
||||
if not tools:
|
||||
tools = []
|
||||
tools = self._inject_delegation_tools(tools, task.agent, agents_for_delegation)
|
||||
return tools
|
||||
|
||||
def _log_task_start(self, task: Task, role: str = "None"):
|
||||
if self.output_log_file:
|
||||
@@ -843,14 +865,13 @@ class Crew(BaseModel):
|
||||
task_name=task.name, task=task.description, agent=role, status="started"
|
||||
)
|
||||
|
||||
def _update_manager_tools(self, task: Task):
|
||||
def _update_manager_tools(self, task: Task, tools: List[Tool]):
|
||||
if self.manager_agent:
|
||||
if task.agent:
|
||||
self.manager_agent.tools = task.agent.get_delegation_tools([task.agent])
|
||||
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
|
||||
else:
|
||||
self.manager_agent.tools = self.manager_agent.get_delegation_tools(
|
||||
self.agents
|
||||
)
|
||||
tools = self._inject_delegation_tools(tools, self.manager_agent, self.agents)
|
||||
return tools
|
||||
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
|
||||
context = (
|
||||
@@ -1034,6 +1055,7 @@ class Crew(BaseModel):
|
||||
agentops.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
is_auto_end=True,
|
||||
)
|
||||
self._telemetry.end_crew(self, final_string_output)
|
||||
|
||||
@@ -1073,17 +1095,5 @@ class Crew(BaseModel):
|
||||
|
||||
evaluator.print_crew_evaluation_result()
|
||||
|
||||
def __rshift__(self, other: "Crew") -> "Pipeline":
|
||||
"""
|
||||
Implements the >> operator to add another Crew to an existing Pipeline.
|
||||
"""
|
||||
from crewai.pipeline.pipeline import Pipeline
|
||||
|
||||
if not isinstance(other, Crew):
|
||||
raise TypeError(
|
||||
f"Unsupported operand type for >>: '{type(self).__name__}' and '{type(other).__name__}'"
|
||||
)
|
||||
return Pipeline(stages=[self, other])
|
||||
|
||||
def __repr__(self):
|
||||
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
|
||||
|
||||
@@ -14,8 +14,15 @@ from typing import (
|
||||
cast,
|
||||
)
|
||||
|
||||
from blinker import Signal
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from crewai.flow.flow_events import (
|
||||
FlowFinishedEvent,
|
||||
FlowStartedEvent,
|
||||
MethodExecutionFinishedEvent,
|
||||
MethodExecutionStartedEvent,
|
||||
)
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
from crewai.telemetry import Telemetry
|
||||
@@ -73,10 +80,27 @@ def listen(condition):
|
||||
return decorator
|
||||
|
||||
|
||||
def router(method):
|
||||
def router(condition):
|
||||
def decorator(func):
|
||||
func.__is_router__ = True
|
||||
func.__router_for__ = method.__name__
|
||||
# Handle conditions like listen/start
|
||||
if isinstance(condition, str):
|
||||
func.__trigger_methods__ = [condition]
|
||||
func.__condition_type__ = "OR"
|
||||
elif (
|
||||
isinstance(condition, dict)
|
||||
and "type" in condition
|
||||
and "methods" in condition
|
||||
):
|
||||
func.__trigger_methods__ = condition["methods"]
|
||||
func.__condition_type__ = condition["type"]
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
func.__trigger_methods__ = [condition.__name__]
|
||||
func.__condition_type__ = "OR"
|
||||
else:
|
||||
raise ValueError(
|
||||
"Condition must be a method, string, or a result of or_() or and_()"
|
||||
)
|
||||
return func
|
||||
|
||||
return decorator
|
||||
@@ -116,8 +140,8 @@ class FlowMeta(type):
|
||||
|
||||
start_methods = []
|
||||
listeners = {}
|
||||
routers = {}
|
||||
router_paths = {}
|
||||
routers = set()
|
||||
|
||||
for attr_name, attr_value in dct.items():
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
@@ -130,18 +154,11 @@ class FlowMeta(type):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
|
||||
elif hasattr(attr_value, "__is_router__"):
|
||||
routers[attr_value.__router_for__] = attr_name
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
# Register router as a listener to its triggering method
|
||||
trigger_method_name = attr_value.__router_for__
|
||||
methods = [trigger_method_name]
|
||||
condition_type = "OR"
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
|
||||
routers.add(attr_name)
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
setattr(cls, "_start_methods", start_methods)
|
||||
setattr(cls, "_listeners", listeners)
|
||||
@@ -156,9 +173,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
_start_methods: List[str] = []
|
||||
_listeners: Dict[str, tuple[str, List[str]]] = {}
|
||||
_routers: Dict[str, str] = {}
|
||||
_routers: Set[str] = set()
|
||||
_router_paths: Dict[str, List[str]] = {}
|
||||
initial_state: Union[Type[T], T, None] = None
|
||||
event_emitter = Signal("event_emitter")
|
||||
|
||||
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
|
||||
class _FlowGeneric(cls): # type: ignore
|
||||
@@ -202,20 +220,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
return self._method_outputs
|
||||
|
||||
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Initializes or updates the state with the provided inputs.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of inputs to initialize or update the state.
|
||||
|
||||
Raises:
|
||||
ValueError: If inputs do not match the structured state model.
|
||||
TypeError: If state is neither a BaseModel instance nor a dictionary.
|
||||
"""
|
||||
if isinstance(self._state, BaseModel):
|
||||
# Structured state management
|
||||
# Structured state
|
||||
try:
|
||||
# Define a function to create the dynamic class
|
||||
|
||||
def create_model_with_extra_forbid(
|
||||
base_model: Type[BaseModel],
|
||||
) -> Type[BaseModel]:
|
||||
@@ -225,50 +233,33 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
return ModelWithExtraForbid
|
||||
|
||||
# Create the dynamic class
|
||||
ModelWithExtraForbid = create_model_with_extra_forbid(
|
||||
self._state.__class__
|
||||
)
|
||||
|
||||
# Create a new instance using the combined state and inputs
|
||||
self._state = cast(
|
||||
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
|
||||
)
|
||||
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
||||
elif isinstance(self._state, dict):
|
||||
# Unstructured state management
|
||||
self._state.update(inputs)
|
||||
else:
|
||||
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow synchronously.
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=FlowStartedEvent(
|
||||
type="flow_started",
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
return asyncio.run(self.kickoff_async())
|
||||
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow asynchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
if not self._start_methods:
|
||||
raise ValueError("No start method defined")
|
||||
|
||||
@@ -276,20 +267,23 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
)
|
||||
|
||||
# Create tasks for all start methods
|
||||
tasks = [
|
||||
self._execute_start_method(start_method)
|
||||
for start_method in self._start_methods
|
||||
]
|
||||
|
||||
# Run all start methods concurrently
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
# Return the final output (from the last executed method)
|
||||
if self._method_outputs:
|
||||
return self._method_outputs[-1]
|
||||
else:
|
||||
return None # Or raise an exception if no methods were executed
|
||||
final_output = self._method_outputs[-1] if self._method_outputs else None
|
||||
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=FlowFinishedEvent(
|
||||
type="flow_finished",
|
||||
flow_name=self.__class__.__name__,
|
||||
result=final_output,
|
||||
),
|
||||
)
|
||||
return final_output
|
||||
|
||||
async def _execute_start_method(self, start_method_name: str) -> None:
|
||||
result = await self._execute_method(
|
||||
@@ -305,70 +299,105 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if asyncio.iscoroutinefunction(method)
|
||||
else method(*args, **kwargs)
|
||||
)
|
||||
self._method_outputs.append(result) # Store the output
|
||||
|
||||
# Track method execution counts
|
||||
self._method_outputs.append(result)
|
||||
self._method_execution_counts[method_name] = (
|
||||
self._method_execution_counts.get(method_name, 0) + 1
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
|
||||
listener_tasks = []
|
||||
|
||||
if trigger_method in self._routers:
|
||||
router_method = self._methods[self._routers[trigger_method]]
|
||||
path = await self._execute_method(
|
||||
self._routers[trigger_method], router_method
|
||||
# First, handle routers repeatedly until no router triggers anymore
|
||||
while True:
|
||||
routers_triggered = self._find_triggered_methods(
|
||||
trigger_method, router_only=True
|
||||
)
|
||||
trigger_method = path
|
||||
if not routers_triggered:
|
||||
break
|
||||
for router_name in routers_triggered:
|
||||
await self._execute_single_listener(router_name, result)
|
||||
# After executing router, the router's result is the path
|
||||
# The last router executed sets the trigger_method
|
||||
# The router result is the last element in self._method_outputs
|
||||
trigger_method = self._method_outputs[-1]
|
||||
|
||||
# Now that no more routers are triggered by current trigger_method,
|
||||
# execute normal listeners
|
||||
listeners_triggered = self._find_triggered_methods(
|
||||
trigger_method, router_only=False
|
||||
)
|
||||
if listeners_triggered:
|
||||
tasks = [
|
||||
self._execute_single_listener(listener_name, result)
|
||||
for listener_name in listeners_triggered
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
def _find_triggered_methods(
|
||||
self, trigger_method: str, router_only: bool
|
||||
) -> List[str]:
|
||||
triggered = []
|
||||
for listener_name, (condition_type, methods) in self._listeners.items():
|
||||
is_router = listener_name in self._routers
|
||||
|
||||
if router_only != is_router:
|
||||
continue
|
||||
|
||||
if condition_type == "OR":
|
||||
# If the trigger_method matches any in methods, run this
|
||||
if trigger_method in methods:
|
||||
# Schedule the listener without preventing re-execution
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
triggered.append(listener_name)
|
||||
elif condition_type == "AND":
|
||||
# Initialize pending methods for this listener if not already done
|
||||
if listener_name not in self._pending_and_listeners:
|
||||
self._pending_and_listeners[listener_name] = set(methods)
|
||||
# Remove the trigger method from pending methods
|
||||
self._pending_and_listeners[listener_name].discard(trigger_method)
|
||||
if trigger_method in self._pending_and_listeners[listener_name]:
|
||||
self._pending_and_listeners[listener_name].discard(trigger_method)
|
||||
|
||||
if not self._pending_and_listeners[listener_name]:
|
||||
# All required methods have been executed
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
triggered.append(listener_name)
|
||||
# Reset pending methods for this listener
|
||||
self._pending_and_listeners.pop(listener_name, None)
|
||||
|
||||
# Run all listener tasks concurrently and wait for them to complete
|
||||
if listener_tasks:
|
||||
await asyncio.gather(*listener_tasks)
|
||||
return triggered
|
||||
|
||||
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
|
||||
try:
|
||||
method = self._methods[listener_name]
|
||||
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=MethodExecutionStartedEvent(
|
||||
type="method_execution_started",
|
||||
method_name=listener_name,
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
sig = inspect.signature(method)
|
||||
params = list(sig.parameters.values())
|
||||
|
||||
# Exclude 'self' parameter
|
||||
method_params = [p for p in params if p.name != "self"]
|
||||
|
||||
if method_params:
|
||||
# If listener expects parameters, pass the result
|
||||
listener_result = await self._execute_method(
|
||||
listener_name, method, result
|
||||
)
|
||||
else:
|
||||
# If listener does not expect parameters, call without arguments
|
||||
listener_result = await self._execute_method(listener_name, method)
|
||||
|
||||
# Execute listeners of this listener
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=MethodExecutionFinishedEvent(
|
||||
type="method_execution_finished",
|
||||
method_name=listener_name,
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute listeners (and possibly routers) of this listener
|
||||
await self._execute_listeners(listener_name, listener_result)
|
||||
|
||||
except Exception as e:
|
||||
print(
|
||||
f"[Flow._execute_single_listener] Error in method {listener_name}: {e}"
|
||||
@@ -381,5 +410,4 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self._telemetry.flow_plotting_span(
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
)
|
||||
|
||||
plot_flow(self, filename)
|
||||
|
||||
33
src/crewai/flow/flow_events.py
Normal file
33
src/crewai/flow/flow_events.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from dataclasses import dataclass, field
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
class Event:
|
||||
type: str
|
||||
flow_name: str
|
||||
timestamp: datetime = field(init=False)
|
||||
|
||||
def __post_init__(self):
|
||||
self.timestamp = datetime.now()
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlowStartedEvent(Event):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class MethodExecutionStartedEvent(Event):
|
||||
method_name: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class MethodExecutionFinishedEvent(Event):
|
||||
method_name: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlowFinishedEvent(Event):
|
||||
result: Optional[Any] = None
|
||||
@@ -31,16 +31,50 @@ def get_possible_return_constants(function):
|
||||
print(f"Source code:\n{source}")
|
||||
return None
|
||||
|
||||
return_values = []
|
||||
return_values = set()
|
||||
dict_definitions = {}
|
||||
|
||||
class DictionaryAssignmentVisitor(ast.NodeVisitor):
|
||||
def visit_Assign(self, node):
|
||||
# Check if this assignment is assigning a dictionary literal to a variable
|
||||
if isinstance(node.value, ast.Dict) and len(node.targets) == 1:
|
||||
target = node.targets[0]
|
||||
if isinstance(target, ast.Name):
|
||||
var_name = target.id
|
||||
dict_values = []
|
||||
# Extract string values from the dictionary
|
||||
for val in node.value.values:
|
||||
if isinstance(val, ast.Constant) and isinstance(val.value, str):
|
||||
dict_values.append(val.value)
|
||||
# If non-string, skip or just ignore
|
||||
if dict_values:
|
||||
dict_definitions[var_name] = dict_values
|
||||
self.generic_visit(node)
|
||||
|
||||
class ReturnVisitor(ast.NodeVisitor):
|
||||
def visit_Return(self, node):
|
||||
# Check if the return value is a constant (Python 3.8+)
|
||||
if isinstance(node.value, ast.Constant):
|
||||
return_values.append(node.value.value)
|
||||
# Direct string return
|
||||
if isinstance(node.value, ast.Constant) and isinstance(
|
||||
node.value.value, str
|
||||
):
|
||||
return_values.add(node.value.value)
|
||||
# Dictionary-based return, like return paths[result]
|
||||
elif isinstance(node.value, ast.Subscript):
|
||||
# Check if we're subscripting a known dictionary variable
|
||||
if isinstance(node.value.value, ast.Name):
|
||||
var_name = node.value.value.id
|
||||
if var_name in dict_definitions:
|
||||
# Add all possible dictionary values
|
||||
for v in dict_definitions[var_name]:
|
||||
return_values.add(v)
|
||||
self.generic_visit(node)
|
||||
|
||||
# First pass: identify dictionary assignments
|
||||
DictionaryAssignmentVisitor().visit(code_ast)
|
||||
# Second pass: identify returns
|
||||
ReturnVisitor().visit(code_ast)
|
||||
return return_values
|
||||
|
||||
return list(return_values) if return_values else None
|
||||
|
||||
|
||||
def calculate_node_levels(flow):
|
||||
@@ -61,10 +95,7 @@ def calculate_node_levels(flow):
|
||||
current_level = levels[current]
|
||||
visited.add(current)
|
||||
|
||||
for listener_name, (
|
||||
condition_type,
|
||||
trigger_methods,
|
||||
) in flow._listeners.items():
|
||||
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
|
||||
if condition_type == "OR":
|
||||
if current in trigger_methods:
|
||||
if (
|
||||
@@ -89,7 +120,7 @@ def calculate_node_levels(flow):
|
||||
queue.append(listener_name)
|
||||
|
||||
# Handle router connections
|
||||
if current in flow._routers.values():
|
||||
if current in flow._routers:
|
||||
router_method_name = current
|
||||
paths = flow._router_paths.get(router_method_name, [])
|
||||
for path in paths:
|
||||
@@ -105,6 +136,7 @@ def calculate_node_levels(flow):
|
||||
levels[listener_name] = current_level + 1
|
||||
if listener_name not in visited:
|
||||
queue.append(listener_name)
|
||||
|
||||
return levels
|
||||
|
||||
|
||||
@@ -142,7 +174,7 @@ def dfs_ancestors(node, ancestors, visited, flow):
|
||||
dfs_ancestors(listener_name, ancestors, visited, flow)
|
||||
|
||||
# Handle router methods separately
|
||||
if node in flow._routers.values():
|
||||
if node in flow._routers:
|
||||
router_method_name = node
|
||||
paths = flow._router_paths.get(router_method_name, [])
|
||||
for path in paths:
|
||||
|
||||
@@ -94,12 +94,14 @@ def add_edges(net, flow, node_positions, colors):
|
||||
ancestors = build_ancestor_dict(flow)
|
||||
parent_children = build_parent_children_dict(flow)
|
||||
|
||||
# Edges for normal listeners
|
||||
for method_name in flow._listeners:
|
||||
condition_type, trigger_methods = flow._listeners[method_name]
|
||||
is_and_condition = condition_type == "AND"
|
||||
|
||||
for trigger in trigger_methods:
|
||||
if trigger in flow._methods or trigger in flow._routers.values():
|
||||
# Check if nodes exist before adding edges
|
||||
if trigger in node_positions and method_name in node_positions:
|
||||
is_router_edge = any(
|
||||
trigger in paths for paths in flow._router_paths.values()
|
||||
)
|
||||
@@ -135,7 +137,22 @@ def add_edges(net, flow, node_positions, colors):
|
||||
}
|
||||
|
||||
net.add_edge(trigger, method_name, **edge_style)
|
||||
else:
|
||||
# Nodes not found in node_positions. Check if it's a known router outcome and a known method.
|
||||
is_router_edge = any(
|
||||
trigger in paths for paths in flow._router_paths.values()
|
||||
)
|
||||
# Check if method_name is a known method
|
||||
method_known = method_name in flow._methods
|
||||
|
||||
# If it's a known router edge and the method is known, don't warn.
|
||||
# This means the path is legitimate, just not reflected as nodes here.
|
||||
if not (is_router_edge and method_known):
|
||||
print(
|
||||
f"Warning: No node found for '{trigger}' or '{method_name}'. Skipping edge."
|
||||
)
|
||||
|
||||
# Edges for router return paths
|
||||
for router_method_name, paths in flow._router_paths.items():
|
||||
for path in paths:
|
||||
for listener_name, (
|
||||
@@ -143,36 +160,49 @@ def add_edges(net, flow, node_positions, colors):
|
||||
trigger_methods,
|
||||
) in flow._listeners.items():
|
||||
if path in trigger_methods:
|
||||
is_cycle_edge = is_ancestor(trigger, method_name, ancestors)
|
||||
parent_has_multiple_children = (
|
||||
len(parent_children.get(router_method_name, [])) > 1
|
||||
)
|
||||
needs_curvature = is_cycle_edge or parent_has_multiple_children
|
||||
if (
|
||||
router_method_name in node_positions
|
||||
and listener_name in node_positions
|
||||
):
|
||||
is_cycle_edge = is_ancestor(
|
||||
router_method_name, listener_name, ancestors
|
||||
)
|
||||
parent_has_multiple_children = (
|
||||
len(parent_children.get(router_method_name, [])) > 1
|
||||
)
|
||||
needs_curvature = is_cycle_edge or parent_has_multiple_children
|
||||
|
||||
if needs_curvature:
|
||||
source_pos = node_positions.get(router_method_name)
|
||||
target_pos = node_positions.get(listener_name)
|
||||
if needs_curvature:
|
||||
source_pos = node_positions.get(router_method_name)
|
||||
target_pos = node_positions.get(listener_name)
|
||||
|
||||
if source_pos and target_pos:
|
||||
dx = target_pos[0] - source_pos[0]
|
||||
smooth_type = "curvedCCW" if dx <= 0 else "curvedCW"
|
||||
index = get_child_index(
|
||||
router_method_name, listener_name, parent_children
|
||||
)
|
||||
edge_smooth = {
|
||||
"type": smooth_type,
|
||||
"roundness": 0.2 + (0.1 * index),
|
||||
}
|
||||
if source_pos and target_pos:
|
||||
dx = target_pos[0] - source_pos[0]
|
||||
smooth_type = "curvedCCW" if dx <= 0 else "curvedCW"
|
||||
index = get_child_index(
|
||||
router_method_name, listener_name, parent_children
|
||||
)
|
||||
edge_smooth = {
|
||||
"type": smooth_type,
|
||||
"roundness": 0.2 + (0.1 * index),
|
||||
}
|
||||
else:
|
||||
edge_smooth = {"type": "cubicBezier"}
|
||||
else:
|
||||
edge_smooth = {"type": "cubicBezier"}
|
||||
else:
|
||||
edge_smooth = False
|
||||
edge_smooth = False
|
||||
|
||||
edge_style = {
|
||||
"color": colors["router_edge"],
|
||||
"width": 2,
|
||||
"arrows": "to",
|
||||
"dashes": True,
|
||||
"smooth": edge_smooth,
|
||||
}
|
||||
net.add_edge(router_method_name, listener_name, **edge_style)
|
||||
edge_style = {
|
||||
"color": colors["router_edge"],
|
||||
"width": 2,
|
||||
"arrows": "to",
|
||||
"dashes": True,
|
||||
"smooth": edge_smooth,
|
||||
}
|
||||
net.add_edge(router_method_name, listener_name, **edge_style)
|
||||
else:
|
||||
# Same check here: known router edge and known method?
|
||||
method_known = listener_name in flow._methods
|
||||
if not method_known:
|
||||
print(
|
||||
f"Warning: No node found for '{router_method_name}' or '{listener_name}'. Skipping edge."
|
||||
)
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from typing import List, Optional, Dict, Any
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
from crewai.utilities.constants import DEFAULT_SCORE_THRESHOLD
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false" # removes logging from fastembed
|
||||
|
||||
@@ -46,9 +45,7 @@ class Knowledge(BaseModel):
|
||||
source.storage = self.storage
|
||||
source.add()
|
||||
|
||||
def query(
|
||||
self, query: List[str], limit: int = 3, preference: Optional[str] = None
|
||||
) -> List[Dict[str, Any]]:
|
||||
def query(self, query: List[str], limit: int = 3) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Query across all knowledge sources to find the most relevant information.
|
||||
Returns the top_k most relevant chunks.
|
||||
@@ -57,8 +54,6 @@ class Knowledge(BaseModel):
|
||||
results = self.storage.search(
|
||||
query,
|
||||
limit,
|
||||
filter={"preference": preference} if preference else None,
|
||||
score_threshold=DEFAULT_SCORE_THRESHOLD,
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
@@ -1,30 +1,41 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Union, List, Dict, Any
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from pydantic import Field
|
||||
from pydantic import Field, field_validator
|
||||
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
from crewai.utilities.logger import Logger
|
||||
|
||||
|
||||
class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
"""Base class for knowledge sources that load content from files."""
|
||||
|
||||
_logger: Logger = Logger(verbose=True)
|
||||
file_path: Union[Path, List[Path], str, List[str]] = Field(
|
||||
..., description="The path to the file"
|
||||
file_path: Optional[Union[Path, List[Path], str, List[str]]] = Field(
|
||||
default=None,
|
||||
description="[Deprecated] The path to the file. Use file_paths instead.",
|
||||
)
|
||||
file_paths: Optional[Union[Path, List[Path], str, List[str]]] = Field(
|
||||
default_factory=list, description="The path to the file"
|
||||
)
|
||||
content: Dict[Path, str] = Field(init=False, default_factory=dict)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
safe_file_paths: List[Path] = Field(default_factory=list)
|
||||
|
||||
@field_validator("file_path", "file_paths", mode="before")
|
||||
def validate_file_path(cls, v, values):
|
||||
"""Validate that at least one of file_path or file_paths is provided."""
|
||||
if v is None and ("file_path" not in values or values.get("file_path") is None):
|
||||
raise ValueError("Either file_path or file_paths must be provided")
|
||||
return v
|
||||
|
||||
def model_post_init(self, _):
|
||||
"""Post-initialization method to load content."""
|
||||
self.safe_file_paths = self._process_file_paths()
|
||||
self.validate_paths()
|
||||
self.validate_content()
|
||||
self.content = self.load_content()
|
||||
|
||||
@abstractmethod
|
||||
@@ -32,13 +43,13 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
"""Load and preprocess file content. Should be overridden by subclasses. Assume that the file path is relative to the project root in the knowledge directory."""
|
||||
pass
|
||||
|
||||
def validate_paths(self):
|
||||
def validate_content(self):
|
||||
"""Validate the paths."""
|
||||
for path in self.safe_file_paths:
|
||||
if not path.exists():
|
||||
self._logger.log(
|
||||
"error",
|
||||
f"File not found: {path}. Try adding sources to the knowledge directory. If its inside the knowledge directory, use the relative path.",
|
||||
f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.",
|
||||
color="red",
|
||||
)
|
||||
raise FileNotFoundError(f"File not found: {path}")
|
||||
@@ -49,10 +60,9 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
color="red",
|
||||
)
|
||||
|
||||
def save_documents(self, metadata: Dict[str, Any]):
|
||||
def _save_documents(self):
|
||||
"""Save the documents to the storage."""
|
||||
chunk_metadatas = [metadata.copy() for _ in self.chunks]
|
||||
self.storage.save(self.chunks, chunk_metadatas)
|
||||
self.storage.save(self.chunks)
|
||||
|
||||
def convert_to_path(self, path: Union[Path, str]) -> Path:
|
||||
"""Convert a path to a Path object."""
|
||||
@@ -60,13 +70,30 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
|
||||
def _process_file_paths(self) -> List[Path]:
|
||||
"""Convert file_path to a list of Path objects."""
|
||||
paths = (
|
||||
[self.file_path]
|
||||
if isinstance(self.file_path, (str, Path))
|
||||
else self.file_path
|
||||
|
||||
if hasattr(self, "file_path") and self.file_path is not None:
|
||||
self._logger.log(
|
||||
"warning",
|
||||
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
|
||||
color="yellow",
|
||||
)
|
||||
self.file_paths = self.file_path
|
||||
|
||||
if self.file_paths is None:
|
||||
raise ValueError("Your source must be provided with a file_paths: []")
|
||||
|
||||
# Convert single path to list
|
||||
path_list: List[Union[Path, str]] = (
|
||||
[self.file_paths]
|
||||
if isinstance(self.file_paths, (str, Path))
|
||||
else list(self.file_paths)
|
||||
if isinstance(self.file_paths, list)
|
||||
else []
|
||||
)
|
||||
|
||||
if not isinstance(paths, list):
|
||||
raise ValueError("file_path must be a Path, str, or a list of these types")
|
||||
if not path_list:
|
||||
raise ValueError(
|
||||
"file_path/file_paths must be a Path, str, or a list of these types"
|
||||
)
|
||||
|
||||
return [self.convert_to_path(path) for path in paths]
|
||||
return [self.convert_to_path(path) for path in path_list]
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Dict, Any, Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
@@ -17,11 +17,11 @@ class BaseKnowledgeSource(BaseModel, ABC):
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict)
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
|
||||
collection_name: Optional[str] = Field(default=None)
|
||||
|
||||
@abstractmethod
|
||||
def load_content(self) -> Dict[Any, str]:
|
||||
def validate_content(self) -> Any:
|
||||
"""Load and preprocess content from the source."""
|
||||
pass
|
||||
|
||||
@@ -41,9 +41,9 @@ class BaseKnowledgeSource(BaseModel, ABC):
|
||||
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
|
||||
]
|
||||
|
||||
def save_documents(self, metadata: Dict[str, Any]):
|
||||
def _save_documents(self):
|
||||
"""
|
||||
Save the documents to the storage.
|
||||
This method should be called after the chunks and embeddings are generated.
|
||||
"""
|
||||
self.storage.save(self.chunks, metadata)
|
||||
self.storage.save(self.chunks)
|
||||
|
||||
120
src/crewai/knowledge/source/crew_docling_source.py
Normal file
120
src/crewai/knowledge/source/crew_docling_source.py
Normal file
@@ -0,0 +1,120 @@
|
||||
from pathlib import Path
|
||||
from typing import Iterator, List, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.document_converter import DocumentConverter
|
||||
from docling.exceptions import ConversionError
|
||||
from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
|
||||
from docling_core.types.doc.document import DoclingDocument
|
||||
from pydantic import Field
|
||||
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
from crewai.utilities.logger import Logger
|
||||
|
||||
|
||||
class CrewDoclingSource(BaseKnowledgeSource):
|
||||
"""Default Source class for converting documents to markdown or json
|
||||
This will auto support PDF, DOCX, and TXT, XLSX, Images, and HTML files without any additional dependencies and follows the docling package as the source of truth.
|
||||
"""
|
||||
|
||||
_logger: Logger = Logger(verbose=True)
|
||||
|
||||
file_path: Optional[List[Union[Path, str]]] = Field(default=None)
|
||||
file_paths: List[Union[Path, str]] = Field(default_factory=list)
|
||||
chunks: List[str] = Field(default_factory=list)
|
||||
safe_file_paths: List[Union[Path, str]] = Field(default_factory=list)
|
||||
content: List[DoclingDocument] = Field(default_factory=list)
|
||||
document_converter: DocumentConverter = Field(
|
||||
default_factory=lambda: DocumentConverter(
|
||||
allowed_formats=[
|
||||
InputFormat.MD,
|
||||
InputFormat.ASCIIDOC,
|
||||
InputFormat.PDF,
|
||||
InputFormat.DOCX,
|
||||
InputFormat.HTML,
|
||||
InputFormat.IMAGE,
|
||||
InputFormat.XLSX,
|
||||
InputFormat.PPTX,
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
def model_post_init(self, _) -> None:
|
||||
if self.file_path:
|
||||
self._logger.log(
|
||||
"warning",
|
||||
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
|
||||
color="yellow",
|
||||
)
|
||||
self.file_paths = self.file_path
|
||||
self.safe_file_paths = self.validate_content()
|
||||
self.content = self._load_content()
|
||||
|
||||
def _load_content(self) -> List[DoclingDocument]:
|
||||
try:
|
||||
return self._convert_source_to_docling_documents()
|
||||
except ConversionError as e:
|
||||
self._logger.log(
|
||||
"error",
|
||||
f"Error loading content: {e}. Supported formats: {self.document_converter.allowed_formats}",
|
||||
"red",
|
||||
)
|
||||
raise e
|
||||
except Exception as e:
|
||||
self._logger.log("error", f"Error loading content: {e}")
|
||||
raise e
|
||||
|
||||
def add(self) -> None:
|
||||
if self.content is None:
|
||||
return
|
||||
for doc in self.content:
|
||||
new_chunks_iterable = self._chunk_doc(doc)
|
||||
self.chunks.extend(list(new_chunks_iterable))
|
||||
self._save_documents()
|
||||
|
||||
def _convert_source_to_docling_documents(self) -> List[DoclingDocument]:
|
||||
conv_results_iter = self.document_converter.convert_all(self.safe_file_paths)
|
||||
return [result.document for result in conv_results_iter]
|
||||
|
||||
def _chunk_doc(self, doc: DoclingDocument) -> Iterator[str]:
|
||||
chunker = HierarchicalChunker()
|
||||
for chunk in chunker.chunk(doc):
|
||||
yield chunk.text
|
||||
|
||||
def validate_content(self) -> List[Union[Path, str]]:
|
||||
processed_paths: List[Union[Path, str]] = []
|
||||
for path in self.file_paths:
|
||||
if isinstance(path, str):
|
||||
if path.startswith(("http://", "https://")):
|
||||
try:
|
||||
if self._validate_url(path):
|
||||
processed_paths.append(path)
|
||||
else:
|
||||
raise ValueError(f"Invalid URL format: {path}")
|
||||
except Exception as e:
|
||||
raise ValueError(f"Invalid URL: {path}. Error: {str(e)}")
|
||||
else:
|
||||
local_path = Path(KNOWLEDGE_DIRECTORY + "/" + path)
|
||||
if local_path.exists():
|
||||
processed_paths.append(local_path)
|
||||
else:
|
||||
raise FileNotFoundError(f"File not found: {local_path}")
|
||||
else:
|
||||
# this is an instance of Path
|
||||
processed_paths.append(path)
|
||||
return processed_paths
|
||||
|
||||
def _validate_url(self, url: str) -> bool:
|
||||
try:
|
||||
result = urlparse(url)
|
||||
return all(
|
||||
[
|
||||
result.scheme in ("http", "https"),
|
||||
result.netloc,
|
||||
len(result.netloc.split(".")) >= 2, # Ensure domain has TLD
|
||||
]
|
||||
)
|
||||
except Exception:
|
||||
return False
|
||||
@@ -1,6 +1,6 @@
|
||||
import csv
|
||||
from typing import Dict, List
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
|
||||
|
||||
@@ -30,7 +30,7 @@ class CSVKnowledgeSource(BaseFileKnowledgeSource):
|
||||
)
|
||||
new_chunks = self._chunk_text(content_str)
|
||||
self.chunks.extend(new_chunks)
|
||||
self.save_documents(metadata=self.metadata)
|
||||
self._save_documents()
|
||||
|
||||
def _chunk_text(self, text: str) -> List[str]:
|
||||
"""Utility method to split text into chunks."""
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user