Compare commits

...

52 Commits

Author SHA1 Message Date
Thiago Moretto
4ca785eb15 Merge pull request #1597 from crewAIInc/tm-fix-crew-train-test
Fix crew_train_success test
2024-11-13 10:52:49 -03:00
Thiago Moretto
c57cbd8591 Fix crew_train_success test 2024-11-13 10:47:49 -03:00
Thiago Moretto
7fb1289205 Merge pull request #1596 from crewAIInc/tm-recording-cached-prompt-tokens
Add cached prompt tokens info on usage metrics
2024-11-13 10:37:29 -03:00
Thiago Moretto
f02681ae01 Merge branch 'main' into tm-recording-cached-prompt-tokens 2024-11-13 10:19:02 -03:00
Thiago Moretto
c725105b1f do not include cached on total 2024-11-13 10:18:30 -03:00
Thiago Moretto
36aa4bcb46 Cached prompt tokens on usage metrics 2024-11-13 10:16:30 -03:00
Eduardo Chiarotti
b98f8f9fe1 fix: Step callback issue (#1595)
* fix: Step callback issue

* fix: Add empty thought since its required
2024-11-13 10:07:28 -03:00
João Moura
bcfcf88e78 removing prints 2024-11-12 18:37:57 -03:00
Thiago Moretto
fd0de3a47e Merge pull request #1588 from crewAIInc/tm-workaround-litellm-bug
fixing LiteLLM callback replacement bug
2024-11-12 17:19:01 -03:00
Thiago Moretto
c7b9ae02fd fix test_agent_usage_metrics_are_captured_for_hierarchical_process 2024-11-12 16:43:43 -03:00
Thiago Moretto
4afb022572 fix LiteLLM callback replacement 2024-11-12 15:04:57 -03:00
João Moura
8610faef22 add missing init 2024-11-11 02:29:40 -03:00
João Moura
6d677541c7 preparing new version 2024-11-11 00:03:52 -03:00
João Moura
49220ec163 preparing new version 2024-11-10 23:46:38 -03:00
João Moura
40a676b7ac curring new version 2024-11-10 21:16:36 -03:00
João Moura
50bf146d1e preparing new version 2024-11-10 20:47:56 -03:00
João Moura
40d378abfb updating LLM docs 2024-11-10 11:36:03 -03:00
João Moura
1b09b085a7 preparing new version 2024-11-10 11:00:16 -03:00
João Moura
9f2acfe91f making sure we don't check for agents that were not used in the crew 2024-11-06 23:07:23 -03:00
Brandon Hancock (bhancock_ai)
e856359e23 fix missing config (#1557) 2024-11-05 12:07:29 -05:00
Brandon Hancock (bhancock_ai)
faa231e278 Fix flows to support cycles and added in test (#1556) 2024-11-05 12:02:54 -05:00
Brandon Hancock (bhancock_ai)
3d44795476 Feat/watson in cli (#1535)
* getting cli and .env to work together for different models

* support new models

* clean up prints

* Add support for cerebras

* Fix watson keys
2024-11-05 12:01:57 -05:00
Tony Kipkemboi
f50e709985 docs update (#1558)
* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion

* update crewai enterprise link in docs
2024-11-05 11:26:19 -05:00
Brandon Hancock (bhancock_ai)
d70c542547 Raise an error if an LLM doesnt return a response (#1548) 2024-11-04 11:42:38 -05:00
Gui Vieira
57201fb856 Increase providers fetching timeout 2024-11-01 18:54:40 -03:00
Brandon Hancock (bhancock_ai)
9b142e580b add inputs to flows (#1553)
* add inputs to flows

* fix flows lint
2024-11-01 14:37:02 -07:00
Brandon Hancock (bhancock_ai)
3878daffd6 Feat/ibm memory (#1549)
* Everything looks like its working. Waiting for lorenze review.

* Update docs as well.

* clean up for PR
2024-11-01 16:42:46 -04:00
Tony Kipkemboi
34954e6f74 Update docs (#1550)
* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion
2024-11-01 15:58:36 -04:00
C0deZ
e66a135d5d refactor: Move BaseTool to main package and centralize tool description generation (#1514)
* move base_tool to main package and consolidate tool desscription generation

* update import path

* update tests

* update doc

* add base_tool test

* migrate agent delegation tools to use BaseTool

* update tests

* update import path for tool

* fix lint

* update param signature

* add from_langchain to BaseTool for backwards support of langchain tools

* fix the case where StructuredTool doesn't have func

---------

Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-01 12:30:48 -04:00
Vini Brasil
66698503b8 Replace .netrc with uv environment variables (#1541)
This commit replaces .netrc with uv environment variables for installing
tools from private repositories. To store credentials, I created a new
and reusable settings file for the CLI in
`$HOME/.config/crewai/settings.json`.

The issue with .netrc files is that they are applied system-wide and are
scoped by hostname, meaning we can't differentiate tool repositories
requests from regular requests to CrewAI's API.
2024-10-31 15:00:58 -03:00
Tony Kipkemboi
ec2967c362 Add llm providers accordion group (#1534)
* add llm providers accordion group

* fix numbering
2024-10-30 21:56:13 -04:00
Robin Wang
4ae07468f3 Enhance log storage to support more data types (#1530) 2024-10-30 16:45:19 -04:00
Brandon Hancock (bhancock_ai)
6193eb13fa Disable telemetry explicitly (#1536)
* Disable telemetry explicitly

* fix linting

* revert parts to og
2024-10-30 16:37:21 -04:00
Rip&Tear
55cd15bfc6 Added security.md file (#1533) 2024-10-30 12:07:38 -04:00
João Moura
5f46ff8836 prepare new version 2024-10-30 00:07:46 -03:00
Brandon Hancock (bhancock_ai)
cdfbd5f62b Bugfix/flows with multiple starts plus ands breaking (#1531)
* bugfix/flows-with-multiple-starts-plus-ands-breaking

* fix user found issue

* remove prints
2024-10-29 19:36:53 -03:00
Brandon Hancock (bhancock_ai)
b43f3987ec Update flows cli to allow you to easily add additional crews to a flow (#1525)
* Update flows cli to allow you to easily add additional crews to a flow

* fix failing test

* adding more error logs to test thats failing

* try again
2024-10-29 11:53:48 -04:00
Tony Kipkemboi
240527d06c Merge pull request #1519 from crewAIInc/feat/improve-tooling-docs
Improve tooling and flow docs
2024-10-29 11:05:17 -04:00
Brandon Hancock (bhancock_ai)
276cb7b7e8 Merge branch 'main' into feat/improve-tooling-docs 2024-10-29 10:41:04 -04:00
Brandon Hancock (bhancock_ai)
048aa6cbcc Update flows.mdx - Fix link 2024-10-29 10:40:49 -04:00
Brandon Hancock
fa9949b9d0 Update flow docs to talk about self evaluation example 2024-10-28 12:18:03 -05:00
Brandon Hancock
500072d855 Update flow docs to talk about self evaluation example 2024-10-28 12:17:44 -05:00
Brandon Hancock
04bcfa6e2d Improve tooling docs 2024-10-28 09:40:56 -05:00
Brandon Hancock (bhancock_ai)
26afee9bed improve tool text description and args (#1512)
* improve tool text descriptoin and args

* fix lint

* Drop print

* add back in docstring
2024-10-25 18:42:55 -04:00
Vini Brasil
f29f4abdd7 Forward install command options to uv sync (#1510)
Allow passing additional options from `crewai install` directly to
`uv sync`. This enables commands like `crewai install --locked` to work
as expected by forwarding all flags and options to the underlying uv
command.
2024-10-25 11:20:41 -03:00
Eduardo Chiarotti
4589d6fe9d feat: add tomli so we can support 3.10 (#1506)
* feat: add tomli so we can support 3.10

* feat: add validation for poetry data
2024-10-25 10:33:21 -03:00
Brandon Hancock (bhancock_ai)
201e652fa2 update plot command (#1504) 2024-10-24 14:44:30 -04:00
João Moura
8bc07e6071 new version 2024-10-23 18:10:37 -03:00
João Moura
6baaad045a new version 2024-10-23 18:08:49 -03:00
João Moura
74c1703310 updating crewai version 2024-10-23 17:58:58 -03:00
Brandon Hancock (bhancock_ai)
a921828e51 Fix memory imports for embedding functions (#1497) 2024-10-23 11:21:27 -04:00
Brandon Hancock (bhancock_ai)
e1fd83e6a7 support unsafe code execution. add in docker install and running checks. (#1496)
* support unsafe code execution. add in docker install and running checks.

* Update return type
2024-10-23 11:01:00 -04:00
81 changed files with 3639 additions and 1729 deletions

19
.github/security.md vendored Normal file
View File

@@ -0,0 +1,19 @@
CrewAI takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organization.
If you believe you have found a security vulnerability in any CrewAI product or service, please report it to us as described below.
## Reporting a Vulnerability
Please do not report security vulnerabilities through public GitHub issues.
To report a vulnerability, please email us at security@crewai.com.
Please include the requested information listed below so that we can triage your report more quickly
- Type of issue (e.g. SQL injection, cross-site scripting, etc.)
- Full paths of source file(s) related to the manifestation of the issue
- The location of the affected source code (tag/branch/commit or direct URL)
- Any special configuration required to reproduce the issue
- Step-by-step instructions to reproduce the issue (please include screenshots if needed)
- Proof-of-concept or exploit code (if possible)
- Impact of the issue, including how an attacker might exploit the issue
Once we have received your report, we will respond to you at the email address you provide. If the issue is confirmed, we will release a patch as soon as possible depending on the complexity of the issue.
At this time, we are not offering a bug bounty program. Any rewards will be at our discretion.

View File

@@ -31,16 +31,17 @@ Think of an agent as a member of a team, with specific skills and a particular j
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`.
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`. |
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
| **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. |
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`.
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`. |
| **Use System Prompt** *(optional)* | `use_system_prompt` | Adds the ability to not use system prompt (to support o1 models). Default is `True`. |
| **Respect Context Window** *(optional)* | `respect_context_window` | Summary strategy to avoid overflowing the context window. Default is `True`. |
| **Code Execution Mode** *(optional)* | `code_execution_mode` | Determines the mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution on the host machine). Default is `safe`. |
## Creating an agent
@@ -83,6 +84,7 @@ agent = Agent(
max_retry_limit=2, # Optional
use_system_prompt=True, # Optional
respect_context_window=True, # Optional
code_execution_mode='safe', # Optional, defaults to 'safe'
)
```
@@ -156,4 +158,4 @@ crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
## Conclusion
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents,
you can create sophisticated AI systems that leverage the power of collaborative intelligence.
you can create sophisticated AI systems that leverage the power of collaborative intelligence. The `code_execution_mode` attribute provides flexibility in how agents execute code, allowing for both secure and direct execution options.

View File

@@ -18,60 +18,63 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
## Getting Started
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
```python Code
### Passing Inputs to Flows
Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
#### Structured State Management
In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
```python
from crewai.flow.flow import Flow, listen, start
from dotenv import load_dotenv
from litellm import completion
from pydantic import BaseModel
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class ExampleFlow(Flow):
model = "gpt-4o-mini"
class StructuredExampleFlow(Flow[ExampleState]):
@start()
def generate_city(self):
print("Starting flow")
def first_method(self):
# Implementation
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": "Return the name of a random city in the world.",
},
],
)
flow = StructuredExampleFlow()
flow.kickoff(inputs={"counter": 10})
```
random_city = response["choices"][0]["message"]["content"]
print(f"Random City: {random_city}")
In this example, the `counter` is initialized to `10`, while `message` retains its default value.
return random_city
#### Unstructured State Management
@listen(generate_city)
def generate_fun_fact(self, random_city):
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": f"Tell me a fun fact about {random_city}",
},
],
)
In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
fun_fact = response["choices"][0]["message"]["content"]
return fun_fact
```python
from crewai.flow.flow import Flow, listen, start
class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
# Implementation
flow = UnstructuredExampleFlow()
flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
```
flow = ExampleFlow()
result = flow.kickoff()
Here, both `counter` and `message` are updated based on the provided inputs.
print(f"Generated fun fact: {result}")
**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
### Example Flow
```python
# Existing example code
```
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
@@ -94,14 +97,14 @@ The `@listen()` decorator can be used in several ways:
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
```python Code
```python
@listen("generate_city")
def generate_fun_fact(self, random_city):
# Implementation
```
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
```python Code
```python
@listen(generate_city)
def generate_fun_fact(self, random_city):
# Implementation
@@ -118,7 +121,7 @@ When you run a Flow, the final output is determined by the last method that comp
Here's how you can access the final output:
<CodeGroup>
```python Code
```python
from crewai.flow.flow import Flow, listen, start
class OutputExampleFlow(Flow):
@@ -130,18 +133,17 @@ class OutputExampleFlow(Flow):
def second_method(self, first_output):
return f"Second method received: {first_output}"
flow = OutputExampleFlow()
final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
````
```
``` text Output
```text
---- Final Output ----
Second method received: Output from first_method
````
```
</CodeGroup>
@@ -156,7 +158,7 @@ Here's an example of how to update and access the state:
<CodeGroup>
```python Code
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
@@ -184,7 +186,7 @@ print("Final State:")
print(flow.state)
```
```text Output
```text
Final Output: Hello from first_method - updated by second_method
Final State:
counter=2 message='Hello from first_method - updated by second_method'
@@ -208,10 +210,10 @@ allowing developers to choose the approach that best fits their application's ne
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
```python Code
```python
from crewai.flow.flow import Flow, listen, start
class UntructuredExampleFlow(Flow):
class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
@@ -230,8 +232,7 @@ class UntructuredExampleFlow(Flow):
print(f"State after third_method: {self.state}")
flow = UntructuredExampleFlow()
flow = UnstructuredExampleFlow()
flow.kickoff()
```
@@ -245,16 +246,14 @@ flow.kickoff()
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
```python Code
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class StructuredExampleFlow(Flow[ExampleState]):
@start()
@@ -273,7 +272,6 @@ class StructuredExampleFlow(Flow[ExampleState]):
print(f"State after third_method: {self.state}")
flow = StructuredExampleFlow()
flow.kickoff()
```
@@ -307,7 +305,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
<CodeGroup>
```python Code
```python
from crewai.flow.flow import Flow, listen, or_, start
class OrExampleFlow(Flow):
@@ -324,13 +322,11 @@ class OrExampleFlow(Flow):
def logger(self, result):
print(f"Logger: {result}")
flow = OrExampleFlow()
flow.kickoff()
```
```text Output
```text
Logger: Hello from the start method
Logger: Hello from the second method
```
@@ -346,7 +342,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
<CodeGroup>
```python Code
```python
from crewai.flow.flow import Flow, and_, listen, start
class AndExampleFlow(Flow):
@@ -368,7 +364,7 @@ flow = AndExampleFlow()
flow.kickoff()
```
```text Output
```text
---- Logger ----
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
```
@@ -385,7 +381,7 @@ You can specify different routes based on the output of the method, allowing you
<CodeGroup>
```python Code
```python
import random
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
@@ -416,12 +412,11 @@ class RouterFlow(Flow[ExampleState]):
def fourth_method(self):
print("Fourth method running")
flow = RouterFlow()
flow.kickoff()
```
```text Output
```text
Starting the structured flow
Third method running
Fourth method running
@@ -484,7 +479,7 @@ The `main.py` file is where you create your flow and connect the crews together.
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
```python Code
```python
#!/usr/bin/env python
from random import randint
@@ -560,6 +555,42 @@ uv run kickoff
The flow will execute, and you should see the output in the console.
### Adding Additional Crews Using the CLI
Once you have created your initial flow, you can easily add additional crews to your project using the CLI. This allows you to expand your flow's capabilities by integrating new crews without starting from scratch.
To add a new crew to your existing flow, use the following command:
```bash
crewai flow add-crew <crew_name>
```
This command will create a new directory for your crew within the `crews` folder of your flow project. It will include the necessary configuration files and a crew definition file, similar to the initial setup.
#### Folder Structure
After adding a new crew, your folder structure will look like this:
| Directory/File | Description |
| :--------------------- | :----------------------------------------------------------------- |
| `name_of_flow/` | Root directory for the flow. |
| ├── `crews/` | Contains directories for specific crews. |
| │ ├── `poem_crew/` | Directory for the "poem_crew" with its configurations and scripts. |
| │ │ ├── `config/` | Configuration files directory for the "poem_crew". |
| │ │ │ ├── `agents.yaml` | YAML file defining the agents for "poem_crew". |
| │ │ │ └── `tasks.yaml` | YAML file defining the tasks for "poem_crew". |
| │ │ └── `poem_crew.py` | Script for "poem_crew" functionality. |
| └── `name_of_crew/` | Directory for the new crew. |
| ├── `config/` | Configuration files directory for the new crew. |
| │ ├── `agents.yaml` | YAML file defining the agents for the new crew. |
| │ └── `tasks.yaml` | YAML file defining the tasks for the new crew. |
| └── `name_of_crew.py` | Script for the new crew functionality. |
You can then customize the `agents.yaml` and `tasks.yaml` files to define the agents and tasks for your new crew. The `name_of_crew.py` file will contain the crew's logic, which you can modify to suit your needs.
By using the CLI to add additional crews, you can efficiently build complex AI workflows that leverage multiple crews working together.
## Plot Flows
Visualizing your AI workflows can provide valuable insights into the structure and execution paths of your flows. CrewAI offers a powerful visualization tool that allows you to generate interactive plots of your flows, making it easier to understand and optimize your AI workflows.
@@ -576,7 +607,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
```python Code
```python
# Assuming you have a flow instance
flow.plot("my_flow_plot")
```
@@ -599,13 +630,114 @@ The generated plot will display nodes representing the tasks in your flow, with
By visualizing your flows, you can gain a clearer understanding of the workflow's structure, making it easier to debug, optimize, and communicate your AI processes to others.
### Conclusion
Plotting your flows is a powerful feature of CrewAI that enhances your ability to design and manage complex AI workflows. Whether you choose to use the `plot()` method or the command line, generating plots will provide you with a visual representation of your workflows, aiding in both development and presentation.
## Advanced
In this section, we explore more complex use cases of CrewAI Flows, starting with a self-evaluation loop. This pattern is crucial for developing AI systems that can iteratively improve their outputs through feedback.
### 1) Self-Evaluation Loop
The self-evaluation loop is a powerful pattern that allows AI workflows to automatically assess and refine their outputs. This example demonstrates how to set up a flow that generates content, evaluates it, and iterates based on feedback until the desired quality is achieved.
#### Overview
The self-evaluation loop involves two main Crews:
1. **ShakespeareanXPostCrew**: Generates a Shakespearean-style post on a given topic.
2. **XPostReviewCrew**: Evaluates the generated post, providing feedback on its validity and quality.
The process iterates until the post meets the criteria or a maximum retry limit is reached. This approach ensures high-quality outputs through iterative refinement.
#### Importance
This pattern is essential for building robust AI systems that can adapt and improve over time. By automating the evaluation and feedback loop, developers can ensure that their AI workflows produce reliable and high-quality results.
#### Main Code Highlights
Below is the `main.py` file for the self-evaluation loop flow:
```python
from typing import Optional
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
from self_evaluation_loop_flow.crews.shakespeare_crew.shakespeare_crew import (
ShakespeareanXPostCrew,
)
from self_evaluation_loop_flow.crews.x_post_review_crew.x_post_review_crew import (
XPostReviewCrew,
)
class ShakespeareXPostFlowState(BaseModel):
x_post: str = ""
feedback: Optional[str] = None
valid: bool = False
retry_count: int = 0
class ShakespeareXPostFlow(Flow[ShakespeareXPostFlowState]):
@start("retry")
def generate_shakespeare_x_post(self):
print("Generating Shakespearean X post")
topic = "Flying cars"
result = (
ShakespeareanXPostCrew()
.crew()
.kickoff(inputs={"topic": topic, "feedback": self.state.feedback})
)
print("X post generated", result.raw)
self.state.x_post = result.raw
@router(generate_shakespeare_x_post)
def evaluate_x_post(self):
if self.state.retry_count > 3:
return "max_retry_exceeded"
result = XPostReviewCrew().crew().kickoff(inputs={"x_post": self.state.x_post})
self.state.valid = result["valid"]
self.state.feedback = result["feedback"]
print("valid", self.state.valid)
print("feedback", self.state.feedback)
self.state.retry_count += 1
if self.state.valid:
return "complete"
return "retry"
@listen("complete")
def save_result(self):
print("X post is valid")
print("X post:", self.state.x_post)
with open("x_post.txt", "w") as file:
file.write(self.state.x_post)
@listen("max_retry_exceeded")
def max_retry_exceeded_exit(self):
print("Max retry count exceeded")
print("X post:", self.state.x_post)
print("Feedback:", self.state.feedback)
def kickoff():
shakespeare_flow = ShakespeareXPostFlow()
shakespeare_flow.kickoff()
def plot():
shakespeare_flow = ShakespeareXPostFlow()
shakespeare_flow.plot()
if __name__ == "__main__":
kickoff()
```
#### Code Highlights
- **Retry Mechanism**: The flow uses a retry mechanism to regenerate the post if it doesn't meet the criteria, up to a maximum of three retries.
- **Feedback Loop**: Feedback from the `XPostReviewCrew` is used to refine the post iteratively.
- **State Management**: The flow maintains state using a Pydantic model, ensuring type safety and clarity.
For a complete example and further details, please refer to the [Self Evaluation Loop Flow repository](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow).
## Next Steps
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are four specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are five specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
1. **Email Auto Responder Flow**: This example demonstrates an infinite loop where a background job continually runs to automate email responses. It's a great use case for tasks that need to be performed repeatedly without manual intervention. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/email_auto_responder_flow)
@@ -615,6 +747,8 @@ If you're interested in exploring additional examples of flows, we have a variet
4. **Meeting Assistant Flow**: This flow demonstrates how to broadcast one event to trigger multiple follow-up actions. For instance, after a meeting is completed, the flow can update a Trello board, send a Slack message, and save the results. It's a great example of handling multiple outcomes from a single event, making it ideal for comprehensive task management and notification systems. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/meeting_assistant_flow)
5. **Self Evaluation Loop Flow**: This flow demonstrates a self-evaluation loop where AI workflows automatically assess and refine their outputs through feedback. It involves generating content, evaluating it, and iterating until the desired quality is achieved. This pattern is crucial for developing robust AI systems that can adapt and improve over time. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow)
By exploring these examples, you can gain insights into how to leverage CrewAI Flows for various use cases, from automating repetitive tasks to managing complex, multi-step processes with dynamic decision-making and human feedback.
Also, check out our YouTube video on how to use flows in CrewAI below!

View File

@@ -25,52 +25,148 @@ By default, CrewAI uses the `gpt-4o-mini` model. It uses environment variables i
- `OPENAI_API_BASE`
- `OPENAI_API_KEY`
### 2. String Identifier
### 2. Updating YAML files
```python Code
agent = Agent(llm="gpt-4o", ...)
You can update the `agents.yml` file to refer to the LLM you want to use:
```yaml Code
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis to gather relevant information,
synthesize findings, and produce well-documented insights.
backstory: A dedicated research professional with years of experience in academic
investigation, literature review, and data analysis, known for thorough and
methodical approaches to complex research questions.
verbose: true
llm: openai/gpt-4o
# llm: azure/gpt-4o-mini
# llm: gemini/gemini-pro
# llm: anthropic/claude-3-5-sonnet-20240620
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
# llm: mistral/mistral-large-latest
# llm: ollama/llama3:70b
# llm: groq/llama-3.2-90b-vision-preview
# llm: watsonx/meta-llama/llama-3-1-70b-instruct
# ...
```
### 3. LLM Instance
Keep in mind that you will need to set certain ENV vars depending on the model you are
using to account for the credentials or set a custom LLM object like described below.
Here are some of the required ENV vars for some of the LLM integrations:
List of [more providers](https://docs.litellm.ai/docs/providers).
<AccordionGroup>
<Accordion title="OpenAI">
```python Code
OPENAI_API_KEY=<your-api-key>
OPENAI_API_BASE=<optional-custom-base-url>
OPENAI_MODEL_NAME=<openai-model-name>
OPENAI_ORGANIZATION=<your-org-id> # OPTIONAL
OPENAI_API_BASE=<openaiai-api-base> # OPTIONAL
```
</Accordion>
```python Code
from crewai import LLM
<Accordion title="Anthropic">
```python Code
ANTHROPIC_API_KEY=<your-api-key>
```
</Accordion>
llm = LLM(model="gpt-4", temperature=0.7)
agent = Agent(llm=llm, ...)
```
<Accordion title="Google">
```python Code
GEMINI_API_KEY=<your-api-key>
```
</Accordion>
### 4. Custom LLM Objects
<Accordion title="Azure">
```python Code
AZURE_API_KEY=<your-api-key> # "my-azure-api-key"
AZURE_API_BASE=<your-resource-url> # "https://example-endpoint.openai.azure.com"
AZURE_API_VERSION=<api-version> # "2023-05-15"
AZURE_AD_TOKEN=<your-azure-ad-token> # Optional
AZURE_API_TYPE=<your-azure-api-type> # Optional
```
</Accordion>
<Accordion title="AWS Bedrock">
```python Code
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
```
</Accordion>
<Accordion title="Mistral">
```python Code
MISTRAL_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Groq">
```python Code
GROQ_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="IBM watsonx.ai">
```python Code
WATSONX_URL=<your-url> # (required) Base URL of your WatsonX instance
WATSONX_APIKEY=<your-apikey> # (required) IBM cloud API key
WATSONX_TOKEN=<your-token> # (required) IAM auth token (alternative to APIKEY)
WATSONX_PROJECT_ID=<your-project-id> # (optional) Project ID of your WatsonX instance
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id> # (optional) ID of deployment space for deployed models
```
</Accordion>
</AccordionGroup>
### 3. Custom LLM Objects
Pass a custom LLM implementation or object from another library.
See below for examples.
<Tabs>
<Tab title="String Identifier">
```python Code
agent = Agent(llm="gpt-4o", ...)
```
</Tab>
<Tab title="LLM Instance">
```python Code
from crewai import LLM
llm = LLM(model="gpt-4", temperature=0.7)
agent = Agent(llm=llm, ...)
```
</Tab>
</Tabs>
## Connecting to OpenAI-Compatible LLMs
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
1. Using environment variables:
<Tabs>
<Tab title="Using Environment Variables">
```python Code
import os
```python Code
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
```
</Tab>
<Tab title="Using LLM Class Attributes">
```python Code
from crewai import LLM
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
```
2. Using LLM class attributes:
```python Code
from crewai import LLM
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
```
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
```
</Tab>
</Tabs>
## LLM Configuration Options
@@ -97,55 +193,180 @@ When configuring an LLM for your agent, you have access to a wide range of param
| **api_key** | `str` | Your API key for authentication. |
## OpenAI Example Configuration
These are examples of how to configure LLMs for your agent.
```python Code
from crewai import LLM
<AccordionGroup>
<Accordion title="OpenAI">
llm = LLM(
model="gpt-4",
temperature=0.8,
max_tokens=150,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42,
base_url="https://api.openai.com/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
```python Code
from crewai import LLM
## Cerebras Example Configuration
llm = LLM(
model="gpt-4",
temperature=0.8,
max_tokens=150,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42,
base_url="https://api.openai.com/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
```python Code
from crewai import LLM
<Accordion title="Cerebras">
llm = LLM(
model="cerebras/llama-3.1-70b",
base_url="https://api.cerebras.ai/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
```python Code
from crewai import LLM
## Using Ollama (Local LLMs)
llm = LLM(
model="cerebras/llama-3.1-70b",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
CrewAI supports using Ollama for running open-source models locally:
<Accordion title="Ollama (Local LLMs)">
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
3. Configure agent:
CrewAI supports using Ollama for running open-source models locally:
```python Code
from crewai import LLM
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
3. Configure agent:
agent = Agent(
llm=LLM(model="ollama/llama3.1", base_url="http://localhost:11434"),
...
)
```
```python Code
from crewai import LLM
agent = Agent(
llm=LLM(
model="ollama/llama3.1",
base_url="http://localhost:11434"
),
...
)
```
</Accordion>
<Accordion title="Groq">
```python Code
from crewai import LLM
llm = LLM(
model="groq/llama3-8b-8192",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Anthropic">
```python Code
from crewai import LLM
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Fireworks AI">
```python Code
from crewai import LLM
llm = LLM(
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Gemini">
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-1.5-pro-002",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Perplexity AI (pplx-api)">
```python Code
from crewai import LLM
llm = LLM(
model="perplexity/mistral-7b-instruct",
base_url="https://api.perplexity.ai/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="IBM watsonx.ai">
You can use IBM Watson by seeting the following ENV vars:
```python Code
WATSONX_URL=<your-url>
WATSONX_APIKEY=<your-apikey>
WATSONX_PROJECT_ID=<your-project-id>
```
You can then define your agents llms by updating the `agents.yml`
```yaml Code
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis to gather relevant information,
synthesize findings, and produce well-documented insights.
backstory: A dedicated research professional with years of experience in academic
investigation, literature review, and data analysis, known for thorough and
methodical approaches to complex research questions.
verbose: true
llm: watsonx/meta-llama/llama-3-1-70b-instruct
```
You can also set up agents more dynamically as a base level LLM instance, like bellow:
```python Code
from crewai import LLM
llm = LLM(
model="watsonx/ibm/granite-13b-chat-v2",
base_url="https://api.watsonx.ai/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Hugging Face">
```python Code
from crewai import LLM
llm = LLM(
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
api_key="your-api-key-here",
base_url="your_api_endpoint"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
</AccordionGroup>
## Changing the Base API URL

View File

@@ -118,7 +118,7 @@ Alternatively, you can directly pass the OpenAIEmbeddingFunction to the embedder
Example:
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb.utils.embedding_functions.openai_embedding_function import OpenAIEmbeddingFunction
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
my_crew = Crew(
agents=[...],
@@ -174,6 +174,7 @@ my_crew = Crew(
### Using Azure OpenAI embeddings
```python Code
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
@@ -182,7 +183,7 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
embedder=OpenAIEmbeddingFunction(
api_key="YOUR_API_KEY",
api_base="YOUR_API_BASE_PATH",
api_type="azure",
@@ -195,6 +196,7 @@ my_crew = Crew(
### Using Vertex AI embeddings
```python Code
from chromadb.utils.embedding_functions import GoogleVertexEmbeddingFunction
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
@@ -203,7 +205,7 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.GoogleVertexEmbeddingFunction(
embedder=GoogleVertexEmbeddingFunction(
project_id="YOUR_PROJECT_ID",
region="YOUR_REGION",
api_key="YOUR_API_KEY",
@@ -252,6 +254,31 @@ my_crew = Crew(
)
```
### Using Watson embeddings
```python Code
from crewai import Crew, Agent, Task, Process
# Note: Ensure you have installed and imported `ibm_watsonx_ai` for Watson embeddings to work.
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "watson",
"config": {
"model": "<model_name>",
"api_url": "<api_url>",
"api_key": "<YOUR_API_KEY>",
"project_id": "<YOUR_PROJECT_ID>",
}
}
)
```
### Resetting Memory
```shell

View File

@@ -5,13 +5,14 @@ icon: screwdriver-wrench
---
## Introduction
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
This documentation outlines how to create, integrate, and leverage these tools within the CrewAI framework, including a new focus on collaboration tools.
## What is a Tool?
A tool in CrewAI is a skill or function that agents can utilize to perform various actions.
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
A tool in CrewAI is a skill or function that agents can utilize to perform various actions.
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
enabling everything from simple searches to complex interactions and effective teamwork among agents.
## Key Characteristics of Tools
@@ -103,57 +104,53 @@ crew.kickoff()
Here is a list of the available tools and their descriptions:
| Tool | Description |
| :-------------------------- | :-------------------------------------------------------------------------------------------- |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
| **Vision Tool** | A tool for generating images using the DALL-E API. |
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
| Tool | Description |
| :------------------------------- | :--------------------------------------------------------------------------------------------- |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search. |
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
| **Vision Tool** | A tool for generating images using the DALL-E API. |
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **YoutubeChannelSearchTool** | A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
## Creating your own Tools
<Tip>
Developers can craft `custom tools` tailored for their agents needs or utilize pre-built options.
Developers can craft `custom tools` tailored for their agents needs or
utilize pre-built options.
</Tip>
To create your own CrewAI tools you will need to install our extra tools package:
```bash
pip install 'crewai[tools]'
```
Once you do that there are two main ways for one to create a CrewAI tool:
There are two main ways for one to create a CrewAI tool:
### Subclassing `BaseTool`
```python Code
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
@@ -167,7 +164,7 @@ class MyCustomTool(BaseTool):
### Utilizing the `tool` Decorator
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool("Name of my tool")
def my_tool(question: str) -> str:
"""Clear description for what this tool is useful for, your agent will need this information to use it."""
@@ -178,11 +175,13 @@ def my_tool(question: str) -> str:
### Custom Caching Mechanism
<Tip>
Tools can optionally implement a `cache_function` to fine-tune caching behavior. This function determines when to cache results based on specific conditions, offering granular control over caching logic.
Tools can optionally implement a `cache_function` to fine-tune caching
behavior. This function determines when to cache results based on specific
conditions, offering granular control over caching logic.
</Tip>
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool
def multiplication_tool(first_number: int, second_number: int) -> str:
@@ -208,6 +207,6 @@ writer1 = Agent(
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling,
caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling,
caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -6,28 +6,27 @@ icon: hammer
## Creating and Utilizing Tools in CrewAI
This guide provides detailed instructions on creating custom tools for the CrewAI framework and how to efficiently manage and utilize these tools,
incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools,
This guide provides detailed instructions on creating custom tools for the CrewAI framework and how to efficiently manage and utilize these tools,
incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools,
enabling agents to perform a wide range of actions.
### Prerequisites
Before creating your own tools, ensure you have the crewAI extra tools package installed:
```bash
pip install 'crewai[tools]'
```
### Subclassing `BaseTool`
To create a personalized tool, inherit from `BaseTool` and define the necessary attributes and the `_run` method.
To create a personalized tool, inherit from `BaseTool` and define the necessary attributes, including the `args_schema` for input validation, and the `_run` method.
```python Code
from crewai_tools import BaseTool
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "What this tool does. It's vital for effective utilization."
args_schema: Type[BaseModel] = MyToolInput
def _run(self, argument: str) -> str:
# Your tool's logic here
@@ -40,7 +39,7 @@ Alternatively, you can use the tool decorator `@tool`. This approach allows you
offering a concise and efficient way to create specialized tools tailored to your needs.
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool("Tool Name")
def my_simple_tool(question: str) -> str:
@@ -66,5 +65,5 @@ def my_cache_strategy(arguments: dict, result: str) -> bool:
cached_tool.cache_function = my_cache_strategy
```
By adhering to these guidelines and incorporating new functionalities and collaboration tools into your tool creation and management processes,
By adhering to these guidelines and incorporating new functionalities and collaboration tools into your tool creation and management processes,
you can leverage the full capabilities of the CrewAI framework, enhancing both the development experience and the efficiency of your AI agents.

View File

@@ -330,4 +330,4 @@ This will clear the crew's memory, allowing for a fresh start.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI Enterprise](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com/), where you can deploy your crew in a few clicks.

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.75.1"
version = "0.79.4"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"
@@ -16,7 +16,7 @@ dependencies = [
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3",
"regex>=2024.9.11",
"crewai-tools>=0.13.2",
"crewai-tools>=0.14.0",
"click>=8.1.7",
"python-dotenv>=1.0.0",
"appdirs>=1.4.4",
@@ -28,6 +28,7 @@ dependencies = [
"uv>=0.4.25",
"tomli-w>=1.1.0",
"chromadb>=0.4.24",
"tomli>=2.0.2",
]
[project.urls]
@@ -36,7 +37,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.13.2"]
tools = ["crewai-tools>=0.14.0"]
agentops = ["agentops>=0.3.0"]
[tool.uv]
@@ -51,7 +52,7 @@ dev-dependencies = [
"mkdocs-material-extensions>=1.3.1",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"crewai-tools>=0.13.2",
"crewai-tools>=0.14.0",
"pytest>=8.0.0",
"pytest-vcr>=1.0.2",
"python-dotenv>=1.0.0",

View File

@@ -14,5 +14,5 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.75.1"
__version__ = "0.79.4"
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]

View File

@@ -1,15 +1,18 @@
import os
from inspect import signature
from typing import Any, List, Optional, Union
import shutil
import subprocess
from typing import Any, List, Literal, Optional, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.tools.agent_tools import AgentTools
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools import BaseTool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.token_counter_callback import TokenCalcHandler
@@ -112,10 +115,19 @@ class Agent(BaseAgent):
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
code_execution_mode: Literal["safe", "unsafe"] = Field(
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
@model_validator(mode="after")
def post_init_setup(self):
self.agent_ops_agent_name = self.role
unnacepted_attributes = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
# Handle different cases for self.llm
if isinstance(self.llm, str):
@@ -125,8 +137,12 @@ class Agent(BaseAgent):
# If it's already an LLM instance, keep it as is
pass
elif self.llm is None:
# If it's None, use environment variables or default
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
# Determine the model name from environment variables or use default
model_name = (
os.environ.get("OPENAI_MODEL_NAME")
or os.environ.get("MODEL")
or "gpt-4o-mini"
)
llm_params = {"model": model_name}
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
@@ -135,9 +151,44 @@ class Agent(BaseAgent):
if api_base:
llm_params["base_url"] = api_base
api_key = os.environ.get("OPENAI_API_KEY")
if api_key:
llm_params["api_key"] = api_key
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
# Iterate over all environment variables to find matching API keys or use defaults
for provider, env_vars in ENV_VARS.items():
if provider == set_provider:
for env_var in env_vars:
if env_var["key_name"] in unnacepted_attributes:
continue
# Check if the environment variable is set
if "key_name" in env_var:
env_value = os.environ.get(env_var["key_name"])
if env_value:
# Map key names containing "API_KEY" to "api_key"
key_name = (
"api_key"
if "API_KEY" in env_var["key_name"]
else env_var["key_name"]
)
# Map key names containing "API_BASE" to "api_base"
key_name = (
"api_base"
if "API_BASE" in env_var["key_name"]
else key_name
)
# Map key names containing "API_VERSION" to "api_version"
key_name = (
"api_version"
if "API_VERSION" in env_var["key_name"]
else key_name
)
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
# Only add default if the key is already set in os.environ
if key in os.environ:
llm_params[key] = value
self.llm = LLM(**llm_params)
else:
@@ -173,6 +224,9 @@ class Agent(BaseAgent):
if not self.agent_executor:
self._setup_agent_executor()
if self.allow_code_execution:
self._validate_docker_installation()
return self
def _setup_agent_executor(self):
@@ -184,7 +238,7 @@ class Agent(BaseAgent):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
"""Execute a task with the agent.
@@ -251,7 +305,9 @@ class Agent(BaseAgent):
return result
def create_agent_executor(self, tools=None, task=None) -> None:
def create_agent_executor(
self, tools: Optional[List[BaseTool]] = None, task=None
) -> None:
"""Create an agent executor for the agent.
Returns:
@@ -308,7 +364,9 @@ class Agent(BaseAgent):
try:
from crewai_tools import CodeInterpreterTool
return [CodeInterpreterTool()]
# Set the unsafe_mode based on the code_execution_mode attribute
unsafe_mode = self.code_execution_mode == "unsafe"
return [CodeInterpreterTool(unsafe_mode=unsafe_mode)]
except ModuleNotFoundError:
self._logger.log(
"info", "Coding tools not available. Install crewai_tools. "
@@ -322,7 +380,7 @@ class Agent(BaseAgent):
tools_list = []
try:
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
from crewai_tools import BaseTool as CrewAITool
from crewai.tools import BaseTool as CrewAITool
for tool in tools:
if isinstance(tool, CrewAITool):
@@ -381,33 +439,42 @@ class Agent(BaseAgent):
return description
def _render_text_description_and_args(self, tools: List[Any]) -> str:
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
"""Render the tool name, description, and args in plain text.
Output will be in the format of:
Output will be in the format of:
.. code-block:: markdown
.. code-block:: markdown
search: This tool is used for search, args: {"query": {"type": "string"}}
calculator: This tool is used for math, \
args: {"expression": {"type": "string"}}
args: {"expression": {"type": "string"}}
"""
tool_strings = []
for tool in tools:
args_schema = str(tool.model_fields)
if hasattr(tool, "func") and tool.func:
sig = signature(tool.func)
description = (
f"Tool Name: {tool.name}{sig}\nTool Description: {tool.description}"
)
else:
description = (
f"Tool Name: {tool.name}\nTool Description: {tool.description}"
)
tool_strings.append(f"{description}\nTool Arguments: {args_schema}")
tool_strings.append(tool.description)
return "\n".join(tool_strings)
def _validate_docker_installation(self) -> None:
"""Check if Docker is installed and running."""
if not shutil.which("docker"):
raise RuntimeError(
f"Docker is not installed. Please install Docker to use code execution with agent: {self.role}"
)
try:
subprocess.run(
["docker", "info"],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
except subprocess.CalledProcessError:
raise RuntimeError(
f"Docker is not running. Please start Docker to use code execution with agent: {self.role}"
)
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])

View File

@@ -18,6 +18,7 @@ from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools import BaseTool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
@@ -49,11 +50,11 @@ class BaseAgent(ABC, BaseModel):
Methods:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[Any]] = None) -> str:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[BaseTool]] = None) -> str:
Abstract method to execute a task.
create_agent_executor(tools=None) -> None:
Abstract method to create an agent executor.
_parse_tools(tools: List[Any]) -> List[Any]:
_parse_tools(tools: List[BaseTool]) -> List[Any]:
Abstract method to parse tools.
get_delegation_tools(agents: List["BaseAgent"]):
Abstract method to set the agents task tools for handling delegation and question asking to other agents in crew.
@@ -105,7 +106,7 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[Any]] = Field(
tools: Optional[List[BaseTool]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: Optional[int] = Field(
@@ -188,7 +189,7 @@ class BaseAgent(ABC, BaseModel):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
pass
@@ -197,11 +198,11 @@ class BaseAgent(ABC, BaseModel):
pass
@abstractmethod
def _parse_tools(self, tools: List[Any]) -> List[Any]:
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
pass
@abstractmethod
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[Any]:
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[BaseTool]:
"""Set the task tools that init BaseAgenTools class."""
pass

View File

@@ -4,6 +4,7 @@ from crewai.types.usage_metrics import UsageMetrics
class TokenProcess:
total_tokens: int = 0
prompt_tokens: int = 0
cached_prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
@@ -15,6 +16,9 @@ class TokenProcess:
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_cached_prompt_tokens(self, tokens: int):
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
@@ -22,6 +26,7 @@ class TokenProcess:
return UsageMetrics(
total_tokens=self.total_tokens,
prompt_tokens=self.prompt_tokens,
cached_prompt_tokens=self.cached_prompt_tokens,
completion_tokens=self.completion_tokens,
successful_requests=self.successful_requests,
)

View File

@@ -117,6 +117,15 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
callbacks=self.callbacks,
)
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError(
"Invalid response from LLM call - None or empty."
)
if not self.use_stop_words:
try:
self._format_answer(answer)
@@ -136,25 +145,26 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer.result = action_result
self._show_logs(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
thought="",
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
except OutputParserException as e:
self.messages.append({"role": "user", "content": e.error})
@@ -323,9 +333,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_data[agent_id][train_iteration]["improved_output"] = (
result.output
)
training_handler.save(training_data)
else:
self._logger.log(
@@ -376,4 +386,5 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return CrewAgentParser(agent=self.agent).parse(answer)
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
prompt = prompt.rstrip()
return {"role": role, "content": prompt}

View File

@@ -1,6 +1,6 @@
from typing import Any, Optional, Union
from ..tools.cache_tools import CacheTools
from ..tools.cache_tools.cache_tools import CacheTools
from ..tools.tool_calling import InstructorToolCalling, ToolCalling
from .cache.cache_handler import CacheHandler

View File

@@ -0,0 +1,70 @@
from pathlib import Path
import click
from crewai.cli.utils import copy_template
def add_crew_to_flow(crew_name: str) -> None:
"""Add a new crew to the current flow."""
# Check if pyproject.toml exists in the current directory
if not Path("pyproject.toml").exists():
print("This command must be run from the root of a flow project.")
raise click.ClickException(
"This command must be run from the root of a flow project."
)
# Determine the flow folder based on the current directory
flow_folder = Path.cwd()
crews_folder = flow_folder / "src" / flow_folder.name / "crews"
if not crews_folder.exists():
print("Crews folder does not exist in the current flow.")
raise click.ClickException("Crews folder does not exist in the current flow.")
# Create the crew within the flow's crews directory
create_embedded_crew(crew_name, parent_folder=crews_folder)
click.echo(
f"Crew {crew_name} added to the current flow successfully!",
)
def create_embedded_crew(crew_name: str, parent_folder: Path) -> None:
"""Create a new crew within an existing flow project."""
folder_name = crew_name.replace(" ", "_").replace("-", "_").lower()
class_name = crew_name.replace("_", " ").replace("-", " ").title().replace(" ", "")
crew_folder = parent_folder / folder_name
if crew_folder.exists():
if not click.confirm(
f"Crew {folder_name} already exists. Do you want to override it?"
):
click.secho("Operation cancelled.", fg="yellow")
return
click.secho(f"Overriding crew {folder_name}...", fg="green", bold=True)
else:
click.secho(f"Creating crew {folder_name}...", fg="green", bold=True)
crew_folder.mkdir(parents=True)
# Create config and crew.py files
config_folder = crew_folder / "config"
config_folder.mkdir(exist_ok=True)
templates_dir = Path(__file__).parent / "templates" / "crew"
config_template_files = ["agents.yaml", "tasks.yaml"]
crew_template_file = f"{folder_name}.py" # Updated file name
for file_name in config_template_files:
src_file = templates_dir / "config" / file_name
dst_file = config_folder / file_name
copy_template(src_file, dst_file, crew_name, class_name, folder_name)
src_file = templates_dir / "crew.py"
dst_file = crew_folder / crew_template_file
copy_template(src_file, dst_file, crew_name, class_name, folder_name)
click.secho(
f"Crew {crew_name} added to the flow successfully!", fg="green", bold=True
)

View File

@@ -3,6 +3,7 @@ from typing import Optional
import click
import pkg_resources
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
from crewai.cli.create_pipeline import create_pipeline
@@ -33,10 +34,11 @@ def crewai():
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
@click.argument("name")
@click.option("--provider", type=str, help="The provider to use for the crew")
def create(type, name, provider):
@click.option("--skip_provider", is_flag=True, help="Skip provider validation")
def create(type, name, provider, skip_provider=False):
"""Create a new crew, pipeline, or flow."""
if type == "crew":
create_crew(name, provider)
create_crew(name, provider, skip_provider)
elif type == "pipeline":
create_pipeline(name)
elif type == "flow":
@@ -177,10 +179,16 @@ def test(n_iterations: int, model: str):
evaluate_crew(n_iterations, model)
@crewai.command()
def install():
@crewai.command(
context_settings=dict(
ignore_unknown_options=True,
allow_extra_args=True,
)
)
@click.pass_context
def install(context):
"""Install the Crew."""
install_crew()
install_crew(context.args)
@crewai.command()
@@ -319,5 +327,13 @@ def flow_plot():
plot_flow()
@flow.command(name="add-crew")
@click.argument("crew_name")
def flow_add_crew(crew_name):
"""Add a crew to an existing flow."""
click.echo(f"Adding crew {crew_name} to the flow")
add_crew_to_flow(crew_name)
if __name__ == "__main__":
crewai()

38
src/crewai/cli/config.py Normal file
View File

@@ -0,0 +1,38 @@
import json
from pathlib import Path
from pydantic import BaseModel, Field
from typing import Optional
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
class Settings(BaseModel):
tool_repository_username: Optional[str] = Field(None, description="Username for interacting with the Tool Repository")
tool_repository_password: Optional[str] = Field(None, description="Password for interacting with the Tool Repository")
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
"""Load Settings from config path"""
config_path.parent.mkdir(parents=True, exist_ok=True)
file_data = {}
if config_path.is_file():
try:
with config_path.open("r") as f:
file_data = json.load(f)
except json.JSONDecodeError:
file_data = {}
merged_data = {**file_data, **data}
super().__init__(config_path=config_path, **merged_data)
def dump(self) -> None:
"""Save current settings to settings.json"""
if self.config_path.is_file():
with self.config_path.open("r") as f:
existing_data = json.load(f)
else:
existing_data = {}
updated_data = {**existing_data, **self.model_dump(exclude_unset=True)}
with self.config_path.open("w") as f:
json.dump(updated_data, f, indent=4)

View File

@@ -1,19 +1,168 @@
ENV_VARS = {
'openai': ['OPENAI_API_KEY'],
'anthropic': ['ANTHROPIC_API_KEY'],
'gemini': ['GEMINI_API_KEY'],
'groq': ['GROQ_API_KEY'],
'ollama': ['FAKE_KEY'],
"openai": [
{
"prompt": "Enter your OPENAI API key (press Enter to skip)",
"key_name": "OPENAI_API_KEY",
}
],
"anthropic": [
{
"prompt": "Enter your ANTHROPIC API key (press Enter to skip)",
"key_name": "ANTHROPIC_API_KEY",
}
],
"gemini": [
{
"prompt": "Enter your GEMINI API key (press Enter to skip)",
"key_name": "GEMINI_API_KEY",
}
],
"groq": [
{
"prompt": "Enter your GROQ API key (press Enter to skip)",
"key_name": "GROQ_API_KEY",
}
],
"watson": [
{
"prompt": "Enter your WATSONX URL (press Enter to skip)",
"key_name": "WATSONX_URL",
},
{
"prompt": "Enter your WATSONX API Key (press Enter to skip)",
"key_name": "WATSONX_APIKEY",
},
{
"prompt": "Enter your WATSONX Project Id (press Enter to skip)",
"key_name": "WATSONX_PROJECT_ID",
},
],
"ollama": [
{
"default": True,
"API_BASE": "http://localhost:11434",
}
],
"bedrock": [
{
"prompt": "Enter your AWS Access Key ID (press Enter to skip)",
"key_name": "AWS_ACCESS_KEY_ID",
},
{
"prompt": "Enter your AWS Secret Access Key (press Enter to skip)",
"key_name": "AWS_SECRET_ACCESS_KEY",
},
{
"prompt": "Enter your AWS Region Name (press Enter to skip)",
"key_name": "AWS_REGION_NAME",
},
],
"azure": [
{
"prompt": "Enter your Azure deployment name (must start with 'azure/')",
"key_name": "model",
},
{
"prompt": "Enter your AZURE API key (press Enter to skip)",
"key_name": "AZURE_API_KEY",
},
{
"prompt": "Enter your AZURE API base URL (press Enter to skip)",
"key_name": "AZURE_API_BASE",
},
{
"prompt": "Enter your AZURE API version (press Enter to skip)",
"key_name": "AZURE_API_VERSION",
},
],
"cerebras": [
{
"prompt": "Enter your Cerebras model name (must start with 'cerebras/')",
"key_name": "model",
},
{
"prompt": "Enter your Cerebras API version (press Enter to skip)",
"key_name": "CEREBRAS_API_KEY",
},
],
}
PROVIDERS = ['openai', 'anthropic', 'gemini', 'groq', 'ollama']
PROVIDERS = [
"openai",
"anthropic",
"gemini",
"groq",
"ollama",
"watson",
"bedrock",
"azure",
"cerebras",
]
MODELS = {
'openai': ['gpt-4', 'gpt-4o', 'gpt-4o-mini', 'o1-mini', 'o1-preview'],
'anthropic': ['claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-opus-20240229', 'claude-3-haiku-20240307'],
'gemini': ['gemini-1.5-flash', 'gemini-1.5-pro', 'gemini-gemma-2-9b-it', 'gemini-gemma-2-27b-it'],
'groq': ['llama-3.1-8b-instant', 'llama-3.1-70b-versatile', 'llama-3.1-405b-reasoning', 'gemma2-9b-it', 'gemma-7b-it'],
'ollama': ['llama3.1', 'mixtral'],
"openai": ["gpt-4", "gpt-4o", "gpt-4o-mini", "o1-mini", "o1-preview"],
"anthropic": [
"claude-3-5-sonnet-20240620",
"claude-3-sonnet-20240229",
"claude-3-opus-20240229",
"claude-3-haiku-20240307",
],
"gemini": [
"gemini/gemini-1.5-flash",
"gemini/gemini-1.5-pro",
"gemini/gemini-gemma-2-9b-it",
"gemini/gemini-gemma-2-27b-it",
],
"groq": [
"groq/llama-3.1-8b-instant",
"groq/llama-3.1-70b-versatile",
"groq/llama-3.1-405b-reasoning",
"groq/gemma2-9b-it",
"groq/gemma-7b-it",
],
"ollama": ["ollama/llama3.1", "ollama/mixtral"],
"watson": [
"watsonx/google/flan-t5-xxl",
"watsonx/google/flan-ul2",
"watsonx/bigscience/mt0-xxl",
"watsonx/eleutherai/gpt-neox-20b",
"watsonx/ibm/mpt-7b-instruct2",
"watsonx/bigcode/starcoder",
"watsonx/meta-llama/llama-2-70b-chat",
"watsonx/meta-llama/llama-2-13b-chat",
"watsonx/ibm/granite-13b-instruct-v1",
"watsonx/ibm/granite-13b-chat-v1",
"watsonx/google/flan-t5-xl",
"watsonx/ibm/granite-13b-chat-v2",
"watsonx/ibm/granite-13b-instruct-v2",
"watsonx/elyza/elyza-japanese-llama-2-7b-instruct",
"watsonx/ibm-mistralai/mixtral-8x7b-instruct-v01-q",
],
"bedrock": [
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-v2:1",
"bedrock/anthropic.claude-v2",
"bedrock/anthropic.claude-instant-v1",
"bedrock/meta.llama3-1-405b-instruct-v1:0",
"bedrock/meta.llama3-1-70b-instruct-v1:0",
"bedrock/meta.llama3-1-8b-instruct-v1:0",
"bedrock/meta.llama3-70b-instruct-v1:0",
"bedrock/meta.llama3-8b-instruct-v1:0",
"bedrock/amazon.titan-text-lite-v1",
"bedrock/amazon.titan-text-express-v1",
"bedrock/cohere.command-text-v14",
"bedrock/ai21.j2-mid-v1",
"bedrock/ai21.j2-ultra-v1",
"bedrock/ai21.jamba-instruct-v1:0",
"bedrock/meta.llama2-13b-chat-v1",
"bedrock/meta.llama2-70b-chat-v1",
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],
}
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"

View File

@@ -1,11 +1,11 @@
import shutil
import sys
from pathlib import Path
import click
from crewai.cli.constants import ENV_VARS
from crewai.cli.constants import ENV_VARS, MODELS
from crewai.cli.provider import (
PROVIDERS,
get_provider_data,
select_model,
select_provider,
@@ -29,20 +29,20 @@ def create_folder_structure(name, parent_folder=None):
click.secho("Operation cancelled.", fg="yellow")
sys.exit(0)
click.secho(f"Overriding folder {folder_name}...", fg="green", bold=True)
else:
click.secho(
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
fg="green",
bold=True,
)
shutil.rmtree(folder_path) # Delete the existing folder and its contents
if not folder_path.exists():
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
click.secho(
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
fg="green",
bold=True,
)
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
return folder_path, folder_name, class_name
@@ -81,77 +81,88 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
copy_template(src_file, dst_file, name, class_name, folder_path.name)
def create_crew(name, parent_folder=None):
def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
folder_path, folder_name, class_name = create_folder_structure(name, parent_folder)
env_vars = load_env_vars(folder_path)
if not skip_provider:
if not provider:
provider_models = get_provider_data()
if not provider_models:
return
existing_provider = None
for provider, env_keys in ENV_VARS.items():
if any(key in env_vars for key in env_keys):
existing_provider = provider
break
existing_provider = None
for provider, env_keys in ENV_VARS.items():
if any(
"key_name" in details and details["key_name"] in env_vars
for details in env_keys
):
existing_provider = provider
break
if existing_provider:
if not click.confirm(
f"Found existing environment variable configuration for {existing_provider.capitalize()}. Do you want to override it?"
):
click.secho("Keeping existing provider configuration.", fg="yellow")
if existing_provider:
if not click.confirm(
f"Found existing environment variable configuration for {existing_provider.capitalize()}. Do you want to override it?"
):
click.secho("Keeping existing provider configuration.", fg="yellow")
return
provider_models = get_provider_data()
if not provider_models:
return
provider_models = get_provider_data()
if not provider_models:
return
while True:
selected_provider = select_provider(provider_models)
if selected_provider is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_provider: # Valid selection
break
click.secho(
"No provider selected. Please try again or press 'q' to exit.", fg="red"
)
while True:
selected_provider = select_provider(provider_models)
if selected_provider is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_provider: # Valid selection
break
click.secho(
"No provider selected. Please try again or press 'q' to exit.", fg="red"
)
# Check if the selected provider has predefined models
if selected_provider in MODELS and MODELS[selected_provider]:
while True:
selected_model = select_model(selected_provider, provider_models)
if selected_model is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_model: # Valid selection
break
click.secho(
"No model selected. Please try again or press 'q' to exit.",
fg="red",
)
env_vars["MODEL"] = selected_model
while True:
selected_model = select_model(selected_provider, provider_models)
if selected_model is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_model: # Valid selection
break
click.secho(
"No model selected. Please try again or press 'q' to exit.", fg="red"
)
# Check if the selected provider requires API keys
if selected_provider in ENV_VARS:
provider_env_vars = ENV_VARS[selected_provider]
for details in provider_env_vars:
if details.get("default", False):
# Automatically add default key-value pairs
for key, value in details.items():
if key not in ["prompt", "key_name", "default"]:
env_vars[key] = value
elif "key_name" in details:
# Prompt for non-default key-value pairs
prompt = details["prompt"]
key_name = details["key_name"]
api_key_value = click.prompt(prompt, default="", show_default=False)
if selected_provider in PROVIDERS:
api_key_var = ENV_VARS[selected_provider][0]
else:
api_key_var = click.prompt(
f"Enter the environment variable name for your {selected_provider.capitalize()} API key",
type=str,
default="",
)
if api_key_value.strip():
env_vars[key_name] = api_key_value
api_key_value = ""
click.echo(
f"Enter your {selected_provider.capitalize()} API key (press Enter to skip): ",
nl=False,
)
try:
api_key_value = input()
except (KeyboardInterrupt, EOFError):
api_key_value = ""
if env_vars:
write_env_file(folder_path, env_vars)
click.secho("API keys and model saved to .env file", fg="green")
else:
click.secho(
"No API keys provided. Skipping .env file creation.", fg="yellow"
)
if api_key_value.strip():
env_vars = {api_key_var: api_key_value}
write_env_file(folder_path, env_vars)
click.secho("API key saved to .env file", fg="green")
else:
click.secho("No API key provided. Skipping .env file creation.", fg="yellow")
env_vars["MODEL"] = selected_model
click.secho(f"Selected model: {selected_model}", fg="green")
click.secho(f"Selected model: {env_vars.get('MODEL', 'N/A')}", fg="green")
package_dir = Path(__file__).parent
templates_dir = package_dir / "templates" / "crew"

View File

@@ -3,12 +3,13 @@ import subprocess
import click
def install_crew() -> None:
def install_crew(proxy_options: list[str]) -> None:
"""
Install the crew by running the UV command to lock and install.
"""
try:
subprocess.run(["uv", "sync"], check=True, capture_output=False, text=True)
command = ["uv", "sync"] + proxy_options
subprocess.run(command, check=True, capture_output=False, text=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)

View File

@@ -7,7 +7,7 @@ def plot_flow() -> None:
"""
Plot the flow by running a command in the UV environment.
"""
command = ["uv", "run", "plot_flow"]
command = ["uv", "run", "plot"]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)

View File

@@ -164,7 +164,7 @@ def fetch_provider_data(cache_file):
- dict or None: The fetched provider data or None if the operation fails.
"""
try:
response = requests.get(JSON_URL, stream=True, timeout=10)
response = requests.get(JSON_URL, stream=True, timeout=60)
response.raise_for_status()
data = download_data(response)
with open(cache_file, "w") as f:

View File

@@ -1,10 +1,9 @@
import subprocess
import click
import tomllib
from packaging import version
from crewai.cli.utils import get_crewai_version
from crewai.cli.utils import get_crewai_version, read_toml
def run_crew() -> None:
@@ -15,10 +14,9 @@ def run_crew() -> None:
crewai_version = get_crewai_version()
min_required_version = "0.71.0"
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pyproject_data = read_toml()
if data.get("tool", {}).get("poetry") and (
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
click.secho(
@@ -26,7 +24,6 @@ def run_crew() -> None:
f"Please run `crewai update` to update your pyproject.toml to use uv.",
fg="red",
)
print()
try:
subprocess.run(command, capture_output=False, text=True, check=True)
@@ -35,10 +32,7 @@ def run_crew() -> None:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True, nl=True)
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
if data.get("tool", {}).get("poetry"):
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",

View File

@@ -8,9 +8,12 @@ from crewai.project import CrewBase, agent, crew, task
# from crewai_tools import SerperDevTool
@CrewBase
class {{crew_name}}Crew():
class {{crew_name}}():
"""{{crew_name}} crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@agent
def researcher(self) -> Agent:
return Agent(
@@ -48,4 +51,4 @@ class {{crew_name}}Crew():
process=Process.sequential,
verbose=True,
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
)
)

View File

@@ -1,6 +1,10 @@
#!/usr/bin/env python
import sys
from {{folder_name}}.crew import {{crew_name}}Crew
import warnings
from {{folder_name}}.crew import {{crew_name}}
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
# This main file is intended to be a way for you to run your
# crew locally, so refrain from adding unnecessary logic into this file.
@@ -14,7 +18,7 @@ def run():
inputs = {
'topic': 'AI LLMs'
}
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
{{crew_name}}().crew().kickoff(inputs=inputs)
def train():
@@ -25,7 +29,7 @@ def train():
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
{{crew_name}}().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
@@ -35,7 +39,7 @@ def replay():
Replay the crew execution from a specific task.
"""
try:
{{crew_name}}Crew().crew().replay(task_id=sys.argv[1])
{{crew_name}}().crew().replay(task_id=sys.argv[1])
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
@@ -48,7 +52,7 @@ def test():
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.75.1,<1.0.0"
"crewai[tools]>=0.79.4,<1.0.0"
]
[project.scripts]

View File

@@ -1,11 +1,18 @@
from crewai_tools import BaseTool
from crewai.tools import BaseTool
from typing import Type
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput
def _run(self, argument: str) -> str:
# Implementation goes here

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.75.1,<1.0.0",
"crewai[tools]>=0.79.4,<1.0.0",
]
[project.scripts]

View File

@@ -1,4 +1,13 @@
from crewai_tools import BaseTool
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
@@ -6,6 +15,7 @@ class MyCustomTool(BaseTool):
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput
def _run(self, argument: str) -> str:
# Implementation goes here

View File

@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.75.1,<1.0.0" }
crewai = { extras = ["tools"], version = ">=0.79.4,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]

View File

@@ -1,11 +1,18 @@
from crewai_tools import BaseTool
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput
def _run(self, argument: str) -> str:
# Implementation goes here

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.75.1,<1.0.0"
"crewai[tools]>=0.79.4,<1.0.0"
]
[project.scripts]

View File

@@ -1,11 +1,18 @@
from crewai_tools import BaseTool
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput
def _run(self, argument: str) -> str:
# Implementation goes here

View File

@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.75.1"
"crewai[tools]>=0.79.4"
]

View File

@@ -1,4 +1,5 @@
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class {{class_name}}(BaseTool):
name: str = "Name of my tool"

View File

@@ -1,17 +1,15 @@
import base64
import os
import platform
import subprocess
import tempfile
from pathlib import Path
from netrc import netrc
import stat
import click
from rich.console import Console
from crewai.cli import git
from crewai.cli.command import BaseCommand, PlusAPIMixin
from crewai.cli.config import Settings
from crewai.cli.utils import (
get_project_description,
get_project_name,
@@ -153,26 +151,16 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
raise SystemExit
login_response_json = login_response.json()
self._set_netrc_credentials(login_response_json["credential"])
settings = Settings()
settings.tool_repository_username = login_response_json["credential"]["username"]
settings.tool_repository_password = login_response_json["credential"]["password"]
settings.dump()
console.print(
"Successfully authenticated to the tool repository.", style="bold green"
)
def _set_netrc_credentials(self, credentials, netrc_path=None):
if not netrc_path:
netrc_filename = "_netrc" if platform.system() == "Windows" else ".netrc"
netrc_path = Path.home() / netrc_filename
netrc_path.touch(mode=stat.S_IRUSR | stat.S_IWUSR, exist_ok=True)
netrc_instance = netrc(file=netrc_path)
netrc_instance.hosts["app.crewai.com"] = (credentials["username"], "", credentials["password"])
with open(netrc_path, 'w') as file:
file.write(str(netrc_instance))
console.print(f"Added credentials to {netrc_path}", style="bold green")
def _add_package(self, tool_details):
tool_handle = tool_details["handle"]
repository_handle = tool_details["repository"]["handle"]
@@ -187,7 +175,11 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
tool_handle,
]
add_package_result = subprocess.run(
add_package_command, capture_output=False, text=True, check=True
add_package_command,
capture_output=False,
env=self._build_env_with_credentials(repository_handle),
text=True,
check=True
)
if add_package_result.stderr:
@@ -206,3 +198,13 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
"[bold yellow]Tip:[/bold yellow] Navigate to a different directory and try again."
)
raise SystemExit
def _build_env_with_credentials(self, repository_handle: str):
repository_handle = repository_handle.upper().replace("-", "_")
settings = Settings()
env = os.environ.copy()
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(settings.tool_repository_username or "")
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(settings.tool_repository_password or "")
return env

View File

@@ -2,7 +2,8 @@ import os
import shutil
import tomli_w
import tomllib
from crewai.cli.utils import read_toml
def update_crew() -> None:
@@ -18,10 +19,9 @@ def migrate_pyproject(input_file, output_file):
And it will be used to migrate the pyproject.toml to the new format when uv is used.
When the time comes that uv supports the new format, this function will be deprecated.
"""
poetry_data = {}
# Read the input pyproject.toml
with open(input_file, "rb") as f:
pyproject = tomllib.load(f)
pyproject_data = read_toml()
# Initialize the new project structure
new_pyproject = {
@@ -30,30 +30,30 @@ def migrate_pyproject(input_file, output_file):
}
# Migrate project metadata
if "tool" in pyproject and "poetry" in pyproject["tool"]:
poetry = pyproject["tool"]["poetry"]
new_pyproject["project"]["name"] = poetry.get("name")
new_pyproject["project"]["version"] = poetry.get("version")
new_pyproject["project"]["description"] = poetry.get("description")
if "tool" in pyproject_data and "poetry" in pyproject_data["tool"]:
poetry_data = pyproject_data["tool"]["poetry"]
new_pyproject["project"]["name"] = poetry_data.get("name")
new_pyproject["project"]["version"] = poetry_data.get("version")
new_pyproject["project"]["description"] = poetry_data.get("description")
new_pyproject["project"]["authors"] = [
{
"name": author.split("<")[0].strip(),
"email": author.split("<")[1].strip(">").strip(),
}
for author in poetry.get("authors", [])
for author in poetry_data.get("authors", [])
]
new_pyproject["project"]["requires-python"] = poetry.get("python")
new_pyproject["project"]["requires-python"] = poetry_data.get("python")
else:
# If it's already in the new format, just copy the project section
new_pyproject["project"] = pyproject.get("project", {})
new_pyproject["project"] = pyproject_data.get("project", {})
# Migrate or copy dependencies
if "dependencies" in new_pyproject["project"]:
# If dependencies are already in the new format, keep them as is
pass
elif "dependencies" in poetry:
elif poetry_data and "dependencies" in poetry_data:
new_pyproject["project"]["dependencies"] = []
for dep, version in poetry["dependencies"].items():
for dep, version in poetry_data["dependencies"].items():
if isinstance(version, dict): # Handle extras
extras = ",".join(version.get("extras", []))
new_dep = f"{dep}[{extras}]"
@@ -67,10 +67,10 @@ def migrate_pyproject(input_file, output_file):
new_pyproject["project"]["dependencies"].append(new_dep)
# Migrate or copy scripts
if "scripts" in poetry:
new_pyproject["project"]["scripts"] = poetry["scripts"]
elif "scripts" in pyproject.get("project", {}):
new_pyproject["project"]["scripts"] = pyproject["project"]["scripts"]
if poetry_data and "scripts" in poetry_data:
new_pyproject["project"]["scripts"] = poetry_data["scripts"]
elif pyproject_data.get("project", {}) and "scripts" in pyproject_data["project"]:
new_pyproject["project"]["scripts"] = pyproject_data["project"]["scripts"]
else:
new_pyproject["project"]["scripts"] = {}
@@ -87,8 +87,8 @@ def migrate_pyproject(input_file, output_file):
new_pyproject["project"]["scripts"]["run_crew"] = f"{module_name}.main:run"
# Migrate optional dependencies
if "extras" in poetry:
new_pyproject["project"]["optional-dependencies"] = poetry["extras"]
if poetry_data and "extras" in poetry_data:
new_pyproject["project"]["optional-dependencies"] = poetry_data["extras"]
# Backup the old pyproject.toml
backup_file = "pyproject-old.toml"

View File

@@ -6,6 +6,7 @@ from functools import reduce
from typing import Any, Dict, List
import click
import tomli
from rich.console import Console
from crewai.cli.authentication.utils import TokenManager
@@ -54,6 +55,13 @@ def simple_toml_parser(content):
return result
def read_toml(file_path: str = "pyproject.toml"):
"""Read the content of a TOML file and return it as a dictionary."""
with open(file_path, "rb") as f:
toml_dict = tomli.load(f)
return toml_dict
def parse_toml(content):
if sys.version_info >= (3, 11):
return tomllib.loads(content)

View File

@@ -32,7 +32,7 @@ from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools import AgentTools
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import (
@@ -445,13 +445,14 @@ class Crew(BaseModel):
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
for agent in train_crew.agents:
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
if training_data.get(str(agent.id)):
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
def kickoff(
self,

View File

@@ -1,10 +1,20 @@
# flow.py
import asyncio
import inspect
from typing import Any, Callable, Dict, Generic, List, Set, Type, TypeVar, Union
from typing import (
Any,
Callable,
Dict,
Generic,
List,
Optional,
Set,
Type,
TypeVar,
Union,
cast,
)
from pydantic import BaseModel
from pydantic import BaseModel, ValidationError
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.utils import get_possible_return_constants
@@ -120,6 +130,7 @@ class FlowMeta(type):
methods = attr_value.__trigger_methods__
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
elif hasattr(attr_value, "__is_router__"):
routers[attr_value.__router_for__] = attr_name
possible_returns = get_possible_return_constants(attr_value)
@@ -159,7 +170,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
def __init__(self) -> None:
self._methods: Dict[str, Callable] = {}
self._state: T = self._create_initial_state()
self._completed_methods: Set[str] = set()
self._method_execution_counts: Dict[str, int] = {}
self._pending_and_listeners: Dict[str, Set[str]] = {}
self._method_outputs: List[Any] = [] # List to store all method outputs
@@ -190,10 +201,74 @@ class Flow(Generic[T], metaclass=FlowMeta):
"""Returns the list of all outputs from executed methods."""
return self._method_outputs
def kickoff(self) -> Any:
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
"""
Initializes or updates the state with the provided inputs.
Args:
inputs: Dictionary of inputs to initialize or update the state.
Raises:
ValueError: If inputs do not match the structured state model.
TypeError: If state is neither a BaseModel instance nor a dictionary.
"""
if isinstance(self._state, BaseModel):
# Structured state management
try:
# Define a function to create the dynamic class
def create_model_with_extra_forbid(
base_model: Type[BaseModel],
) -> Type[BaseModel]:
class ModelWithExtraForbid(base_model): # type: ignore
model_config = base_model.model_config.copy()
model_config["extra"] = "forbid"
return ModelWithExtraForbid
# Create the dynamic class
ModelWithExtraForbid = create_model_with_extra_forbid(
self._state.__class__
)
# Create a new instance using the combined state and inputs
self._state = cast(
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
)
except ValidationError as e:
raise ValueError(f"Invalid inputs for structured state: {e}") from e
elif isinstance(self._state, dict):
# Unstructured state management
self._state.update(inputs)
else:
raise TypeError("State must be a BaseModel instance or a dictionary.")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Starts the execution of the flow synchronously.
Args:
inputs: Optional dictionary of inputs to initialize or update the state.
Returns:
The final output from the flow execution.
"""
if inputs is not None:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
async def kickoff_async(self) -> Any:
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Starts the execution of the flow asynchronously.
Args:
inputs: Optional dictionary of inputs to initialize or update the state.
Returns:
The final output from the flow execution.
"""
if inputs is not None:
self._initialize_state(inputs)
if not self._start_methods:
raise ValueError("No start method defined")
@@ -216,17 +291,27 @@ class Flow(Generic[T], metaclass=FlowMeta):
else:
return None # Or raise an exception if no methods were executed
async def _execute_start_method(self, start_method: str) -> None:
result = await self._execute_method(self._methods[start_method])
await self._execute_listeners(start_method, result)
async def _execute_start_method(self, start_method_name: str) -> None:
result = await self._execute_method(
start_method_name, self._methods[start_method_name]
)
await self._execute_listeners(start_method_name, result)
async def _execute_method(self, method: Callable, *args: Any, **kwargs: Any) -> Any:
async def _execute_method(
self, method_name: str, method: Callable, *args: Any, **kwargs: Any
) -> Any:
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result) # Store the output
# Track method execution counts
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
return result
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
@@ -234,32 +319,39 @@ class Flow(Generic[T], metaclass=FlowMeta):
if trigger_method in self._routers:
router_method = self._methods[self._routers[trigger_method]]
path = await self._execute_method(router_method)
# Use the path as the new trigger method
path = await self._execute_method(
self._routers[trigger_method], router_method
)
trigger_method = path
for listener, (condition_type, methods) in self._listeners.items():
for listener_name, (condition_type, methods) in self._listeners.items():
if condition_type == "OR":
if trigger_method in methods:
# Schedule the listener without preventing re-execution
listener_tasks.append(
self._execute_single_listener(listener, result)
self._execute_single_listener(listener_name, result)
)
elif condition_type == "AND":
if listener not in self._pending_and_listeners:
self._pending_and_listeners[listener] = set()
self._pending_and_listeners[listener].add(trigger_method)
if set(methods) == self._pending_and_listeners[listener]:
# Initialize pending methods for this listener if not already done
if listener_name not in self._pending_and_listeners:
self._pending_and_listeners[listener_name] = set(methods)
# Remove the trigger method from pending methods
self._pending_and_listeners[listener_name].discard(trigger_method)
if not self._pending_and_listeners[listener_name]:
# All required methods have been executed
listener_tasks.append(
self._execute_single_listener(listener, result)
self._execute_single_listener(listener_name, result)
)
del self._pending_and_listeners[listener]
# Reset pending methods for this listener
self._pending_and_listeners.pop(listener_name, None)
# Run all listener tasks concurrently and wait for them to complete
await asyncio.gather(*listener_tasks)
if listener_tasks:
await asyncio.gather(*listener_tasks)
async def _execute_single_listener(self, listener: str, result: Any) -> None:
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
try:
method = self._methods[listener]
method = self._methods[listener_name]
sig = inspect.signature(method)
params = list(sig.parameters.values())
@@ -268,15 +360,19 @@ class Flow(Generic[T], metaclass=FlowMeta):
if method_params:
# If listener expects parameters, pass the result
listener_result = await self._execute_method(method, result)
listener_result = await self._execute_method(
listener_name, method, result
)
else:
# If listener does not expect parameters, call without arguments
listener_result = await self._execute_method(method)
listener_result = await self._execute_method(listener_name, method)
# Execute listeners of this listener
await self._execute_listeners(listener, listener_result)
await self._execute_listeners(listener_name, listener_result)
except Exception as e:
print(f"[Flow._execute_single_listener] Error in method {listener}: {e}")
print(
f"[Flow._execute_single_listener] Error in method {listener_name}: {e}"
)
import traceback
traceback.print_exc()

View File

@@ -1,7 +1,10 @@
import io
import logging
import sys
import warnings
from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Union
import logging
import warnings
import litellm
from litellm import get_supported_openai_params
@@ -9,9 +12,6 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
import sys
import io
class FilteredStream(io.StringIO):
def write(self, s):
@@ -118,12 +118,12 @@ class LLM:
litellm.drop_params = True
litellm.set_verbose = False
litellm.callbacks = callbacks
self.set_callbacks(callbacks)
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
with suppress_warnings():
if callbacks and len(callbacks) > 0:
litellm.callbacks = callbacks
self.set_callbacks(callbacks)
try:
params = {
@@ -181,3 +181,15 @@ class LLM:
def get_context_window_size(self) -> int:
# Only using 75% of the context window size to avoid cutting the message in the middle
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
def set_callbacks(self, callbacks: List[Any]):
callback_types = [type(callback) for callback in callbacks]
for callback in litellm.success_callback[:]:
if type(callback) in callback_types:
litellm.success_callback.remove(callback)
for callback in litellm._async_success_callback[:]:
if type(callback) in callback_types:
litellm._async_success_callback.remove(callback)
litellm.callbacks = callbacks

View File

@@ -70,7 +70,7 @@ class KickoffTaskOutputsSQLiteStorage:
task.expected_output,
json.dumps(output, cls=CrewJSONEncoder),
task_index,
json.dumps(inputs),
json.dumps(inputs, cls=CrewJSONEncoder),
was_replayed,
),
)

View File

@@ -4,13 +4,13 @@ import logging
import os
import shutil
import uuid
from typing import Any, Dict, List, Optional
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import db_storage_path
from typing import Any, Dict, List, Optional, cast
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.api import ClientAPI
from chromadb.api.types import validate_embedding_function
from chromadb import Documents, EmbeddingFunction, Embeddings
from typing import cast
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import db_storage_path
@contextlib.contextmanager
@@ -21,9 +21,11 @@ def suppress_logging(
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with contextlib.redirect_stdout(io.StringIO()), contextlib.redirect_stderr(
io.StringIO()
), contextlib.suppress(UserWarning):
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
@@ -113,12 +115,52 @@ class RAGStorage(BaseRAGStorage):
self.embedder_config = embedding_functions.HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
elif provider == "watson":
try:
import ibm_watsonx_ai.foundation_models as watson_models
from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai.metanames import (
EmbedTextParamsMetaNames as EmbedParams,
)
except ImportError as e:
raise ImportError(
"IBM Watson dependencies are not installed. Please install them to use Watson embedding."
) from e
class WatsonEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
if isinstance(input, str):
input = [input]
embed_params = {
EmbedParams.TRUNCATE_INPUT_TOKENS: 3,
EmbedParams.RETURN_OPTIONS: {"input_text": True},
}
embedding = watson_models.Embeddings(
model_id=config.get("model"),
params=embed_params,
credentials=Credentials(
api_key=config.get("api_key"), url=config.get("api_url")
),
project_id=config.get("project_id"),
)
try:
embeddings = embedding.embed_documents(input)
return cast(Embeddings, embeddings)
except Exception as e:
print("Error during Watson embedding:", e)
raise e
self.embedder_config = WatsonEmbeddingFunction()
else:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface]"
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface, watson]"
)
else:
validate_embedding_function(self.embedder_config) # type: ignore # used for validating embedder_config if defined a embedding function/class
validate_embedding_function(self.embedder_config)
self.embedder_config = self.embedder_config
def _initialize_app(self):

View File

@@ -20,6 +20,7 @@ from pydantic import (
from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
@@ -91,7 +92,7 @@ class Task(BaseModel):
output: Optional[TaskOutput] = Field(
description="Task output, it's final result after being executed", default=None
)
tools: Optional[List[Any]] = Field(
tools: Optional[List[BaseTool]] = Field(
default_factory=list,
description="Tools the agent is limited to use for this task.",
)
@@ -185,7 +186,7 @@ class Task(BaseModel):
self,
agent: Optional[BaseAgent] = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> TaskOutput:
"""Execute the task synchronously."""
return self._execute_core(agent, context, tools)
@@ -202,7 +203,7 @@ class Task(BaseModel):
self,
agent: BaseAgent | None = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> Future[TaskOutput]:
"""Execute the task asynchronously."""
future: Future[TaskOutput] = Future()

View File

@@ -21,7 +21,7 @@ with suppress_warnings():
from opentelemetry import trace # noqa: E402
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter # noqa: E402
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter # noqa: E402
from opentelemetry.sdk.resources import SERVICE_NAME, Resource # noqa: E402
from opentelemetry.sdk.trace import TracerProvider # noqa: E402
from opentelemetry.sdk.trace.export import BatchSpanProcessor # noqa: E402
@@ -48,6 +48,10 @@ class Telemetry:
def __init__(self):
self.ready = False
self.trace_set = False
if os.getenv("OTEL_SDK_DISABLED", "false").lower() == "true":
return
try:
telemetry_endpoint = "https://telemetry.crewai.com:4319"
self.resource = Resource(

View File

@@ -0,0 +1 @@
from .base_tool import BaseTool, tool

View File

@@ -1,25 +0,0 @@
from crewai.agents.agent_builder.utilities.base_agent_tool import BaseAgentTools
class AgentTools(BaseAgentTools):
"""Default tools around agent delegation"""
def tools(self):
from langchain.tools import StructuredTool
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
tools = [
StructuredTool.from_function(
func=self.delegate_work,
name="Delegate work to coworker",
description=self.i18n.tools("delegate_work").format(
coworkers=coworkers
),
),
StructuredTool.from_function(
func=self.ask_question,
name="Ask question to coworker",
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
),
]
return tools

View File

@@ -0,0 +1,32 @@
from crewai.tools.base_tool import BaseTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.utilities import I18N
from .delegate_work_tool import DelegateWorkTool
from .ask_question_tool import AskQuestionTool
class AgentTools:
"""Manager class for agent-related tools"""
def __init__(self, agents: list[BaseAgent], i18n: I18N = I18N()):
self.agents = agents
self.i18n = i18n
def tools(self) -> list[BaseTool]:
"""Get all available agent tools"""
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
delegate_tool = DelegateWorkTool(
agents=self.agents,
i18n=self.i18n,
description=self.i18n.tools("delegate_work").format(coworkers=coworkers),
)
ask_tool = AskQuestionTool(
agents=self.agents,
i18n=self.i18n,
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
)
return [delegate_tool, ask_tool]

View File

@@ -0,0 +1,26 @@
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
from typing import Optional
from pydantic import BaseModel, Field
class AskQuestionToolSchema(BaseModel):
question: str = Field(..., description="The question to ask")
context: str = Field(..., description="The context for the question")
coworker: str = Field(..., description="The role/name of the coworker to ask")
class AskQuestionTool(BaseAgentTool):
"""Tool for asking questions to coworkers"""
name: str = "Ask question to coworker"
args_schema: type[BaseModel] = AskQuestionToolSchema
def _run(
self,
question: str,
context: str,
coworker: Optional[str] = None,
**kwargs,
) -> str:
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, question, context)

View File

@@ -1,22 +1,19 @@
from abc import ABC, abstractmethod
from typing import List, Optional, Union
from pydantic import BaseModel, Field
from typing import Optional, Union
from pydantic import Field
from crewai.tools.base_tool import BaseTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.task import Task
from crewai.utilities import I18N
class BaseAgentTools(BaseModel, ABC):
"""Default tools around agent delegation"""
class BaseAgentTool(BaseTool):
"""Base class for agent-related tools"""
agents: List[BaseAgent] = Field(description="List of agents in this crew.")
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
@abstractmethod
def tools(self):
pass
agents: list[BaseAgent] = Field(description="List of available agents")
i18n: I18N = Field(
default_factory=I18N, description="Internationalization settings"
)
def _get_coworker(self, coworker: Optional[str], **kwargs) -> Optional[str]:
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
@@ -24,27 +21,11 @@ class BaseAgentTools(BaseModel, ABC):
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return coworker
def delegate_work(
self, task: str, context: str, coworker: Optional[str] = None, **kwargs
):
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, task, context)
def ask_question(
self, question: str, context: str, coworker: Optional[str] = None, **kwargs
):
"""Useful to ask a question, opinion or take from a coworker passing all necessary context and names."""
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, question, context)
def _execute(
self, agent_name: Union[str, None], task: str, context: Union[str, None]
):
"""Execute the command."""
) -> str:
try:
if agent_name is None:
agent_name = ""
@@ -57,7 +38,6 @@ class BaseAgentTools(BaseModel, ABC):
# when it should look like this:
# {"task": "....", "coworker": "...."}
agent_name = agent_name.casefold().replace('"', "").replace("\n", "")
agent = [ # type: ignore # Incompatible types in assignment (expression has type "list[BaseAgent]", variable has type "str | None")
available_agent
for available_agent in self.agents

View File

@@ -0,0 +1,29 @@
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
from typing import Optional
from pydantic import BaseModel, Field
class DelegateWorkToolSchema(BaseModel):
task: str = Field(..., description="The task to delegate")
context: str = Field(..., description="The context for the task")
coworker: str = Field(
..., description="The role/name of the coworker to delegate to"
)
class DelegateWorkTool(BaseAgentTool):
"""Tool for delegating work to coworkers"""
name: str = "Delegate work to coworker"
args_schema: type[BaseModel] = DelegateWorkToolSchema
def _run(
self,
task: str,
context: str,
coworker: Optional[str] = None,
**kwargs,
) -> str:
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, task, context)

View File

@@ -0,0 +1,186 @@
from abc import ABC, abstractmethod
from typing import Any, Callable, Type, get_args, get_origin
from langchain_core.tools import StructuredTool
from pydantic import BaseModel, ConfigDict, Field, validator
from pydantic import BaseModel as PydanticBaseModel
class BaseTool(BaseModel, ABC):
class _ArgsSchemaPlaceholder(PydanticBaseModel):
pass
model_config = ConfigDict()
name: str
"""The unique name of the tool that clearly communicates its purpose."""
description: str
"""Used to tell the model how/when/why to use the tool."""
args_schema: Type[PydanticBaseModel] = Field(default_factory=_ArgsSchemaPlaceholder)
"""The schema for the arguments that the tool accepts."""
description_updated: bool = False
"""Flag to check if the description has been updated."""
cache_function: Callable = lambda _args=None, _result=None: True
"""Function that will be used to determine if the tool should be cached, should return a boolean. If None, the tool will be cached."""
result_as_answer: bool = False
"""Flag to check if the tool should be the final agent answer."""
@validator("args_schema", always=True, pre=True)
def _default_args_schema(
cls, v: Type[PydanticBaseModel]
) -> Type[PydanticBaseModel]:
if not isinstance(v, cls._ArgsSchemaPlaceholder):
return v
return type(
f"{cls.__name__}Schema",
(PydanticBaseModel,),
{
"__annotations__": {
k: v for k, v in cls._run.__annotations__.items() if k != "return"
},
},
)
def model_post_init(self, __context: Any) -> None:
self._generate_description()
super().model_post_init(__context)
def run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
print(f"Using Tool: {self.name}")
return self._run(*args, **kwargs)
@abstractmethod
def _run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Here goes the actual implementation of the tool."""
def to_langchain(self) -> StructuredTool:
self._set_args_schema()
return StructuredTool(
name=self.name,
description=self.description,
args_schema=self.args_schema,
func=self._run,
)
@classmethod
def from_langchain(cls, tool: StructuredTool) -> "BaseTool":
if cls == Tool:
if tool.func is None:
raise ValueError("StructuredTool must have a callable 'func'")
return Tool(
name=tool.name,
description=tool.description,
args_schema=tool.args_schema,
func=tool.func,
)
raise NotImplementedError(f"from_langchain not implemented for {cls.__name__}")
def _set_args_schema(self):
if self.args_schema is None:
class_name = f"{self.__class__.__name__}Schema"
self.args_schema = type(
class_name,
(PydanticBaseModel,),
{
"__annotations__": {
k: v
for k, v in self._run.__annotations__.items()
if k != "return"
},
},
)
def _generate_description(self):
args_schema = {
name: {
"description": field.description,
"type": BaseTool._get_arg_annotations(field.annotation),
}
for name, field in self.args_schema.model_fields.items()
}
self.description = f"Tool Name: {self.name}\nTool Arguments: {args_schema}\nTool Description: {self.description}"
@staticmethod
def _get_arg_annotations(annotation: type[Any] | None) -> str:
if annotation is None:
return "None"
origin = get_origin(annotation)
args = get_args(annotation)
if origin is None:
return (
annotation.__name__
if hasattr(annotation, "__name__")
else str(annotation)
)
if args:
args_str = ", ".join(BaseTool._get_arg_annotations(arg) for arg in args)
return f"{origin.__name__}[{args_str}]"
return origin.__name__
class Tool(BaseTool):
func: Callable
"""The function that will be executed when the tool is called."""
def _run(self, *args: Any, **kwargs: Any) -> Any:
return self.func(*args, **kwargs)
def to_langchain(
tools: list[BaseTool | StructuredTool],
) -> list[StructuredTool]:
return [t.to_langchain() if isinstance(t, BaseTool) else t for t in tools]
def tool(*args):
"""
Decorator to create a tool from a function.
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(f: Callable) -> BaseTool:
if f.__doc__ is None:
raise ValueError("Function must have a docstring")
if f.__annotations__ is None:
raise ValueError("Function must have type annotations")
class_name = "".join(tool_name.split()).title()
args_schema = type(
class_name,
(PydanticBaseModel,),
{
"__annotations__": {
k: v for k, v in f.__annotations__.items() if k != "return"
},
},
)
return Tool(
name=tool_name,
description=f.__doc__,
func=f,
args_schema=args_schema,
)
return _make_tool
if len(args) == 1 and callable(args[0]):
return _make_with_name(args[0].__name__)(args[0])
if len(args) == 1 and isinstance(args[0], str):
return _make_with_name(args[0])
raise ValueError("Invalid arguments")

View File

@@ -10,6 +10,7 @@ import crewai.utilities.events as events
from crewai.agents.tools_handler import ToolsHandler
from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools import BaseTool
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
from crewai.utilities import I18N, Converter, ConverterError, Printer
@@ -49,7 +50,7 @@ class ToolUsage:
def __init__(
self,
tools_handler: ToolsHandler,
tools: List[Any],
tools: List[BaseTool],
original_tools: List[Any],
tools_description: str,
tools_names: str,
@@ -298,22 +299,7 @@ class ToolUsage:
"""Render the tool name and description in plain text."""
descriptions = []
for tool in self.tools:
args = {
name: {
"description": field.description,
"type": field.annotation.__name__,
}
for name, field in tool.args_schema.model_fields.items()
}
descriptions.append(
"\n".join(
[
f"Tool Name: {tool.name.lower()}",
f"Tool Description: {tool.description}",
f"Tool Arguments: {args}",
]
)
)
descriptions.append(tool.description)
return "\n--\n".join(descriptions)
def _function_calling(self, tool_string: str):

View File

@@ -8,6 +8,7 @@ class UsageMetrics(BaseModel):
Attributes:
total_tokens: Total number of tokens used.
prompt_tokens: Number of tokens used in prompts.
cached_prompt_tokens: Number of cached prompt tokens used.
completion_tokens: Number of tokens used in completions.
successful_requests: Number of successful requests made.
"""
@@ -16,6 +17,9 @@ class UsageMetrics(BaseModel):
prompt_tokens: int = Field(
default=0, description="Number of tokens used in prompts."
)
cached_prompt_tokens: int = Field(
default=0, description="Number of cached prompt tokens used."
)
completion_tokens: int = Field(
default=0, description="Number of tokens used in completions."
)
@@ -32,5 +36,6 @@ class UsageMetrics(BaseModel):
"""
self.total_tokens += usage_metrics.total_tokens
self.prompt_tokens += usage_metrics.prompt_tokens
self.cached_prompt_tokens += usage_metrics.cached_prompt_tokens
self.completion_tokens += usage_metrics.completion_tokens
self.successful_requests += usage_metrics.successful_requests

View File

@@ -2,13 +2,14 @@ from datetime import datetime, date
import json
from uuid import UUID
from pydantic import BaseModel
from decimal import Decimal
class CrewJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, BaseModel):
return self._handle_pydantic_model(obj)
elif isinstance(obj, UUID):
elif isinstance(obj, UUID) or isinstance(obj, Decimal):
return str(obj)
elif isinstance(obj, datetime) or isinstance(obj, date):

View File

@@ -1,5 +1,5 @@
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Usage
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
@@ -11,8 +11,11 @@ class TokenCalcHandler(CustomLogger):
if self.token_cost_process is None:
return
usage : Usage = response_obj["usage"]
self.token_cost_process.sum_successful_requests(1)
self.token_cost_process.sum_prompt_tokens(response_obj["usage"].prompt_tokens)
self.token_cost_process.sum_completion_tokens(
response_obj["usage"].completion_tokens
)
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
if usage.prompt_tokens_details:
self.token_cost_process.sum_cached_prompt_tokens(
usage.prompt_tokens_details.cached_tokens
)

View File

@@ -5,7 +5,6 @@ from unittest import mock
from unittest.mock import patch
import pytest
from crewai_tools import tool
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
@@ -14,6 +13,7 @@ from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserExcep
from crewai.llm import LLM
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools import tool
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.utilities.events import Emitter
@@ -277,9 +277,10 @@ def test_cache_hitting():
"multiplier-{'first_number': 12, 'second_number': 3}": 36,
}
with patch.object(CacheHandler, "read") as read, patch.object(
Emitter, "emit"
) as emit:
with (
patch.object(CacheHandler, "read") as read,
patch.object(Emitter, "emit") as emit,
):
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
@@ -604,7 +605,7 @@ def test_agent_respect_the_max_rpm_set(capsys):
def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -642,7 +643,7 @@ def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
def test_agent_without_max_rpm_respet_crew_rpm(capsys):
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -696,7 +697,7 @@ def test_agent_without_max_rpm_respet_crew_rpm(capsys):
def test_agent_error_on_parsing_tool(capsys):
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -739,7 +740,7 @@ def test_agent_error_on_parsing_tool(capsys):
def test_agent_remembers_output_format_after_using_tools_too_many_times():
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -863,11 +864,16 @@ def test_agent_function_calling_llm():
from crewai.tools.tool_usage import ToolUsage
with patch.object(
instructor, "from_litellm", wraps=instructor.from_litellm
) as mock_from_litellm, patch.object(
ToolUsage, "_original_tool_calling", side_effect=Exception("Forced exception")
) as mock_original_tool_calling:
with (
patch.object(
instructor, "from_litellm", wraps=instructor.from_litellm
) as mock_from_litellm,
patch.object(
ToolUsage,
"_original_tool_calling",
side_effect=Exception("Forced exception"),
) as mock_original_tool_calling,
):
crew.kickoff()
mock_from_litellm.assert_called()
mock_original_tool_calling.assert_called()
@@ -894,7 +900,7 @@ def test_agent_count_formatting_error():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Get Greetings"
@@ -924,7 +930,7 @@ def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_usage_information_is_appended_to_agent():
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Decide Greetings"

View File

@@ -2,6 +2,7 @@ import hashlib
from typing import Any, List, Optional
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
from pydantic import BaseModel
@@ -10,13 +11,13 @@ class TestAgent(BaseAgent):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
return ""
def create_agent_executor(self, tools=None) -> None: ...
def _parse_tools(self, tools: List[Any]) -> List[Any]:
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
return []
def get_delegation_tools(self, agents: List["BaseAgent"]): ...

View File

@@ -10,7 +10,8 @@ interactions:
criteria for your final answer: 1 bullet point about dog that''s under 15 words.\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -19,49 +20,50 @@ interactions:
connection:
- keep-alive
content-length:
- '869'
- '919'
content-type:
- application/json
cookie:
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7auGDrAVE0iXSBBhySZp3xE8gvP\",\n \"object\":
\"chat.completion\",\n \"created\": 1727214164,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer\\nFinal
Answer: Dogs are unparalleled in loyalty and companionship to humans.\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 175,\n \"completion_tokens\":
21,\n \"total_tokens\": 196,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
body:
string: !!binary |
H4sIAAAAAAAAA4xSy27bMBC86ysWPEuB7ciV7VuAIkUObQ+59QFhTa0kttQuS9Jx08D/XkhyLAVJ
gV4EaGdnMLPDpwRAmUrtQOkWo+6czW7u41q2t3+cvCvuPvxafSG+58XHTzXlxWeV9gzZ/yAdn1lX
WjpnKRrhEdaeMFKvuiyul3m+uV7lA9BJRbanNS5muWSdYZOtFqs8WxTZcnNmt2I0BbWDrwkAwNPw
7X1yRb/VDhbp86SjELAhtbssASgvtp8oDMGEiBxVOoFaOBIP1u+A5QgaGRrzQIDQ9LYBORzJA3zj
W8No4Wb438F7aQKgJ7DyiBb6zMhGOKRA3CJrww10xBEttIQ2toBcgTyQR2vhSNZmezLcXM39eKoP
Afub8MHa8/x0CWilcV724Yxf5rVhE9rSEwbhPkyI4tSAnhKA78MhDy9uo5yXzsUyyk/iMHSzHvXU
1N+Ejo0BqCgR7Yy13aZv6JUVRTQ2zKpQGnVL1USdesNDZWQGJLPUr928pT0mN9z8j/wEaE0uUlU6
T5XRLxNPa5765/2vtcuVB8MqPIZIXVkbbsg7b8bHVbuyXm9xs8xXRa2SU/IXAAD//wMAq2ZCBWoD
AAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85f22ddda01cf3-GRU
- 8e19bf36db158761-GRU
Connection:
- keep-alive
Content-Encoding:
@@ -69,19 +71,27 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:42:44 GMT
- Tue, 12 Nov 2024 21:52:04 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
path=/; expires=Tue, 12-Nov-24 22:22:04 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '349'
- '601'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -89,19 +99,20 @@ interactions:
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
- '200000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999792'
- '199793'
x-ratelimit-reset-requests:
- 6ms
- 8.64s
x-ratelimit-reset-tokens:
- 0s
- 62ms
x-request-id:
- req_4c8cd76fdfba7b65e5ce85397b33c22b
http_version: HTTP/1.1
status_code: 200
- req_77fb166b4e272bfd45c37c08d2b93b0c
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are cat Researcher. You
have a lot of experience with cat.\nYour personal goal is: Express hot takes
@@ -113,7 +124,8 @@ interactions:
criteria for your final answer: 1 bullet point about cat that''s under 15 words.\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -122,49 +134,53 @@ interactions:
connection:
- keep-alive
content-length:
- '869'
- '919'
content-type:
- application/json
cookie:
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
_cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7auNbAqjT3rgBX92rhxBLuhaLBj\",\n \"object\":
\"chat.completion\",\n \"created\": 1727214164,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now can give a great answer\\nFinal
Answer: Cats are highly independent, agile, and intuitive creatures beloved
by millions worldwide.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
175,\n \"completion_tokens\": 28,\n \"total_tokens\": 203,\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
body:
string: !!binary |
H4sIAAAAAAAAA4xSy27bMBC86ysWPFuB7MhN6ltQIGmBnlL00BcEmlxJ21JLhlzFLQL/eyH5IRlt
gV4EaGZnMLPLlwxAkVUbUKbVYrrg8rsPsg4P+Orxs9XvPz0U8eP966dS6sdo3wa1GBR++x2NnFRX
xnfBoZDnA20iasHBdXlzvSzL2+vVeiQ6b9ENsiZIXvq8I6Z8VazKvLjJl7dHdevJYFIb+JIBALyM
3yEnW/ypNlAsTkiHKekG1eY8BKCidwOidEqURLOoxUQaz4I8Rn8H7HdgNENDzwgamiE2aE47jABf
+Z5YO7gb/zfwRksCHRGGGAHZIg/D1GmXFiBtpGfiBjyDtEgR/I5BMHYJNFvomZ56hIAxedaOhDBd
zYNFrPukh+Vw79wR35+bOt+E6LfpyJ/xmphSW0XUyfPQKokPamT3GcC3caP9xZJUiL4LUon/gZzG
I60Pfmo65MSuTqR40W6GF8c7XPpVFkWTS7ObKKNNi3aSTgfUvSU/I7JZ6z/T/M370Jy4+R/7iTAG
g6CtQkRL5rLxNBZxeOf/GjtveQys0q8k2FU1cYMxRDq8sjpUxVYXdrkq66XK9tlvAAAA//8DAIjK
KzJzAwAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85f2321c1c1cf3-GRU
- 8e19bf3fae118761-GRU
Connection:
- keep-alive
Content-Encoding:
@@ -172,7 +188,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:42:45 GMT
- Tue, 12 Nov 2024 21:52:05 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -181,10 +197,12 @@ interactions:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '430'
- '464'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -192,19 +210,20 @@ interactions:
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
- '200000'
x-ratelimit-remaining-requests:
- '9999'
- '9998'
x-ratelimit-remaining-tokens:
- '29999792'
- '199792'
x-ratelimit-reset-requests:
- 6ms
- 16.369s
x-ratelimit-reset-tokens:
- 0s
- 62ms
x-request-id:
- req_ace859b7d9e83d9fa7753ce23bb03716
http_version: HTTP/1.1
status_code: 200
- req_91706b23d0ef23458ba63ec18304cd28
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are apple Researcher.
You have a lot of experience with apple.\nYour personal goal is: Express hot
@@ -217,7 +236,7 @@ interactions:
under 15 words.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o"}'
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -226,49 +245,53 @@ interactions:
connection:
- keep-alive
content-length:
- '879'
- '929'
content-type:
- application/json
cookie:
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
_cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7avZ0yqY18ukQS7SnLkZydsx72b\",\n \"object\":
\"chat.completion\",\n \"created\": 1727214165,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer.\\n\\nFinal
Answer: Apples are incredibly versatile, nutritious, and a staple in diets globally.\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 175,\n \"completion_tokens\":
25,\n \"total_tokens\": 200,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": \"fp_a5d11b2ef2\"\n}\n"
body:
string: !!binary |
H4sIAAAAAAAAA4xSPW/bMBDd9SsOXLpIgeTITarNS4t26JJubSHQ5IliSh1ZHv0RBP7vhSTHctAU
6CJQ7909vHd3zxmAsFo0IFQvkxqCKzYPaf1b2/hhW+8PR9N9Kh9W5Zdhjebr4zeRjx1++4gqvXTd
KD8Eh8l6mmkVUSYcVau726qu729X7ydi8Brd2GZCKmpfDJZssSpXdVHeFdX9ubv3ViGLBr5nAADP
03f0SRqPooEyf0EGZJYGRXMpAhDRuxERktlykpREvpDKU0KarH8G8gdQksDYPYIEM9oGSXzACPCD
PlqSDjbTfwObEBy+Y0Dl+YkTDmApoYkyIUMvoz7IiDmw79L8kqSBMe7HMMAoB4fM7ikHpF6SsmRg
xxgBjwGjRVJ4c+00YrdjOU6Lds6d8dMluvMmRL/lM3/BO0uW+zaiZE9jTE4+iIk9ZQA/pxHvXk1N
hOiHkNrkfyHxtLX1rCeWzS7svEsAkXyS7govq/wNvVZjktbx1ZKEkqpHvbQuG5U7bf0VkV2l/tvN
W9pzckvmf+QXQikMCXUbImqrXideyiKOh/+vssuUJ8NiPpO2s2Qwhmjns+tCW25lqatV3VUiO2V/
AAAA//8DAPtpFJCEAwAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85f2369a761cf3-GRU
- 8e19bf447ba48761-GRU
Connection:
- keep-alive
Content-Encoding:
@@ -276,7 +299,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:42:46 GMT
- Tue, 12 Nov 2024 21:52:06 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -285,10 +308,12 @@ interactions:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '389'
- '655'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -296,17 +321,18 @@ interactions:
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
- '200000'
x-ratelimit-remaining-requests:
- '9999'
- '9997'
x-ratelimit-remaining-tokens:
- '29999791'
- '199791'
x-ratelimit-reset-requests:
- 6ms
- 24.239s
x-ratelimit-reset-tokens:
- 0s
- 62ms
x-request-id:
- req_0167388f0a7a7f1a1026409834ceb914
http_version: HTTP/1.1
status_code: 200
- req_a228208b0e965ecee334a6947d6c9e7c
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,205 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, world!"}], "model": "gpt-4o-mini",
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '101'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSwWrcMBS8+ytedY6LvWvYZi8lpZSkBJLSQiChGK307FUi66nSc9Ml7L8H2e56
l7bQiw8zb8Yzg14yAGG0WINQW8mq8za/+Oqv5MUmXv+8+/Hl3uO3j59u1efreHO+/PAszpKCNo+o
+LfqraLOW2RDbqRVQMmYXMvVsqyWy1VVDERHGm2StZ7zivLOOJMvikWVF6u8fDept2QURrGGhwwA
4GX4ppxO4y+xhsFrQDqMUbYo1ocjABHIJkTIGE1k6ViczaQix+iG6JdoLb2BS3oGJR1cwSiAHfXA
pOXu/bEwYNNHmcK73toJ3x+SWGp9oE2c+APeGGfitg4oI7n018jkxcDuM4DvQ+P+pITwgTrPNdMT
umRYlqOdmHeeyfOJY2JpZ3gxjXRqVmtkaWw8GkwoqbaoZ+W8ruy1oSMiO6r8Z5a/eY+1jWv/x34m
lELPqGsfUBt12nc+C5ge4b/ODhMPgUXcRcauboxrMfhgxifQ+LrYyEKXi6opRbbPXgEAAP//AwAM
DMWoEAMAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e185b2c1b790303-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 12 Nov 2024 17:49:00 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=l.QrRLcNZkML_KSfxjir6YCV35B8GNTitBTNh7cPGc4-1731433740-1.0.1.1-j1ejlmykyoI8yk6i6pQjtPoovGzfxI2f5vG6u0EqodQMjCvhbHfNyN_wmYkeT._BMvFi.zDQ8m_PqEHr8tSdEQ;
path=/; expires=Tue, 12-Nov-24 18:19:00 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=jcCDyMK__Fd0V5DMeqt9yXdlKc7Hsw87a1K01pZu9l0-1731433740848-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '322'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '200000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '199978'
x-ratelimit-reset-requests:
- 8.64s
x-ratelimit-reset-tokens:
- 6ms
x-request-id:
- req_037288753767e763a51a04eae757ca84
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "Hello, world from another agent!"}],
"model": "gpt-4o-mini", "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '120'
content-type:
- application/json
cookie:
- __cf_bm=l.QrRLcNZkML_KSfxjir6YCV35B8GNTitBTNh7cPGc4-1731433740-1.0.1.1-j1ejlmykyoI8yk6i6pQjtPoovGzfxI2f5vG6u0EqodQMjCvhbHfNyN_wmYkeT._BMvFi.zDQ8m_PqEHr8tSdEQ;
_cfuvid=jcCDyMK__Fd0V5DMeqt9yXdlKc7Hsw87a1K01pZu9l0-1731433740848-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSy27bMBC86yu2PFuBZAt14UvRU5MA7aVAEKAIBJpcSUwoLkuu6jiB/z3QI5aM
tkAvPMzsDGZ2+ZoACKPFDoRqJKvW2/TLD3+z//oiD8dfL7d339zvW125x9zX90/3mVj1Cto/ouJ3
1ZWi1ltkQ26kVUDJ2Lvm201ebDbbIh+IljTaXlZ7TgtKW+NMus7WRZpt0/zTpG7IKIxiBz8TAIDX
4e1zOo3PYgfZ6h1pMUZZo9idhwBEINsjQsZoIkvHYjWTihyjG6Jfo7X0Ab4bhcAEipxDxXAw3IB0
xA0GkDU6voJrOoCSDm5gNIUjdcCk5fHz0jxg1UXZF3SdtRN+Oqe1VPtA+zjxZ7wyzsSmDCgjuT5Z
ZPJiYE8JwMOwle6iqPCBWs8l0xO63jAvRjsx32JBfpxIJpZ2xjfTJi/dSo0sjY2LrQolVYN6Vs4n
kJ02tCCSRec/w/zNe+xtXP0/9jOhFHpGXfqA2qjLwvNYwP6n/mvsvOMhsIjHyNiWlXE1Bh/M+E8q
X2Z7mel8XVS5SE7JGwAAAP//AwA/cK4yNQMAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e185b31398a0303-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 12 Nov 2024 17:49:02 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '889'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '200000'
x-ratelimit-remaining-requests:
- '9998'
x-ratelimit-remaining-tokens:
- '199975'
x-ratelimit-reset-requests:
- 16.489s
x-ratelimit-reset-tokens:
- 7ms
x-request-id:
- req_bde3810b36a4859688e53d1df64bdd20
status:
code: 200
message: OK
version: 1

View File

@@ -1,7 +1,9 @@
from pathlib import Path
from unittest import mock
import pytest
from click.testing import CliRunner
from crewai.cli.cli import (
deploy_create,
deploy_list,
@@ -9,6 +11,7 @@ from crewai.cli.cli import (
deploy_push,
deploy_remove,
deply_status,
flow_add_crew,
reset_memories,
signup,
test,
@@ -277,3 +280,42 @@ def test_deploy_remove_no_uuid(command, runner):
assert result.exit_code == 0
mock_deploy.remove_crew.assert_called_once_with(uuid=None)
@mock.patch("crewai.cli.add_crew_to_flow.create_embedded_crew")
@mock.patch("pathlib.Path.exists", return_value=True) # Mock the existence check
def test_flow_add_crew(mock_path_exists, mock_create_embedded_crew, runner):
crew_name = "new_crew"
result = runner.invoke(flow_add_crew, [crew_name])
# Log the output for debugging
print(result.output)
assert result.exit_code == 0, f"Command failed with output: {result.output}"
assert f"Adding crew {crew_name} to the flow" in result.output
# Verify that create_embedded_crew was called with the correct arguments
mock_create_embedded_crew.assert_called_once()
call_args, call_kwargs = mock_create_embedded_crew.call_args
assert call_args[0] == crew_name
assert "parent_folder" in call_kwargs
assert isinstance(call_kwargs["parent_folder"], Path)
def test_add_crew_to_flow_not_in_root(runner):
# Simulate not being in the root of a flow project
with mock.patch("pathlib.Path.exists", autospec=True) as mock_exists:
# Mock Path.exists to return False when checking for pyproject.toml
def exists_side_effect(self):
if self.name == "pyproject.toml":
return False # Simulate that pyproject.toml does not exist
return True # All other paths exist
mock_exists.side_effect = exists_side_effect
result = runner.invoke(flow_add_crew, ["new_crew"])
assert result.exit_code != 0
assert "This command must be run from the root of a flow project." in str(
result.output
)

109
tests/cli/config_test.py Normal file
View File

@@ -0,0 +1,109 @@
import unittest
import json
import tempfile
import shutil
from pathlib import Path
from crewai.cli.config import Settings
class TestSettings(unittest.TestCase):
def setUp(self):
self.test_dir = Path(tempfile.mkdtemp())
self.config_path = self.test_dir / "settings.json"
def tearDown(self):
shutil.rmtree(self.test_dir)
def test_empty_initialization(self):
settings = Settings(config_path=self.config_path)
self.assertIsNone(settings.tool_repository_username)
self.assertIsNone(settings.tool_repository_password)
def test_initialization_with_data(self):
settings = Settings(
config_path=self.config_path,
tool_repository_username="user1"
)
self.assertEqual(settings.tool_repository_username, "user1")
self.assertIsNone(settings.tool_repository_password)
def test_initialization_with_existing_file(self):
self.config_path.parent.mkdir(parents=True, exist_ok=True)
with self.config_path.open("w") as f:
json.dump({"tool_repository_username": "file_user"}, f)
settings = Settings(config_path=self.config_path)
self.assertEqual(settings.tool_repository_username, "file_user")
def test_merge_file_and_input_data(self):
self.config_path.parent.mkdir(parents=True, exist_ok=True)
with self.config_path.open("w") as f:
json.dump({
"tool_repository_username": "file_user",
"tool_repository_password": "file_pass"
}, f)
settings = Settings(
config_path=self.config_path,
tool_repository_username="new_user"
)
self.assertEqual(settings.tool_repository_username, "new_user")
self.assertEqual(settings.tool_repository_password, "file_pass")
def test_dump_new_settings(self):
settings = Settings(
config_path=self.config_path,
tool_repository_username="user1"
)
settings.dump()
with self.config_path.open("r") as f:
saved_data = json.load(f)
self.assertEqual(saved_data["tool_repository_username"], "user1")
def test_update_existing_settings(self):
self.config_path.parent.mkdir(parents=True, exist_ok=True)
with self.config_path.open("w") as f:
json.dump({"existing_setting": "value"}, f)
settings = Settings(
config_path=self.config_path,
tool_repository_username="user1"
)
settings.dump()
with self.config_path.open("r") as f:
saved_data = json.load(f)
self.assertEqual(saved_data["existing_setting"], "value")
self.assertEqual(saved_data["tool_repository_username"], "user1")
def test_none_values(self):
settings = Settings(
config_path=self.config_path,
tool_repository_username=None
)
settings.dump()
with self.config_path.open("r") as f:
saved_data = json.load(f)
self.assertIsNone(saved_data.get("tool_repository_username"))
def test_invalid_json_in_config(self):
self.config_path.parent.mkdir(parents=True, exist_ok=True)
with self.config_path.open("w") as f:
f.write("invalid json")
try:
settings = Settings(config_path=self.config_path)
self.assertIsNone(settings.tool_repository_username)
except json.JSONDecodeError:
self.fail("Settings initialization should handle invalid JSON")
def test_empty_config_file(self):
self.config_path.parent.mkdir(parents=True, exist_ok=True)
self.config_path.touch()
settings = Settings(config_path=self.config_path)
self.assertIsNone(settings.tool_repository_username)

View File

@@ -82,6 +82,7 @@ def test_install_success(mock_get, mock_subprocess_run):
capture_output=False,
text=True,
check=True,
env=unittest.mock.ANY
)
assert "Succesfully installed sample-tool" in output

View File

@@ -456,7 +456,7 @@ def test_crew_verbose_output(capsys):
def test_cache_hitting_between_agents():
from unittest.mock import call, patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def multiplier(first_number: int, second_number: int) -> float:
@@ -499,7 +499,7 @@ def test_cache_hitting_between_agents():
def test_api_calls_throttling(capsys):
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -564,6 +564,7 @@ def test_crew_kickoff_usage_metrics():
assert result.token_usage.prompt_tokens > 0
assert result.token_usage.completion_tokens > 0
assert result.token_usage.successful_requests > 0
assert result.token_usage.cached_prompt_tokens == 0
def test_agents_rpm_is_never_set_if_crew_max_RPM_is_not_set():
@@ -1111,7 +1112,7 @@ def test_dont_set_agents_step_callback_if_already_set():
def test_crew_function_calling_llm():
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
llm = "gpt-4o"
@@ -1146,7 +1147,7 @@ def test_crew_function_calling_llm():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_with_no_arguments():
from crewai_tools import tool
from crewai.tools import tool
@tool
def return_data() -> str:
@@ -1280,10 +1281,11 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
assert result.raw == "Howdy!"
assert result.token_usage == UsageMetrics(
total_tokens=2626,
prompt_tokens=2482,
completion_tokens=144,
successful_requests=5,
total_tokens=1673,
prompt_tokens=1562,
completion_tokens=111,
successful_requests=3,
cached_prompt_tokens=0
)
@@ -1309,8 +1311,9 @@ def test_hierarchical_crew_creation_tasks_with_agents():
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
assert crew.manager_agent.tools[0].description.startswith(
"Delegate a specific task to one of the following coworkers: Senior Writer"
assert (
"Delegate a specific task to one of the following coworkers: Senior Writer\n"
in crew.manager_agent.tools[0].description
)
@@ -1337,8 +1340,9 @@ def test_hierarchical_crew_creation_tasks_with_async_execution():
crew.kickoff()
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
assert crew.manager_agent.tools[0].description.startswith(
assert (
"Delegate a specific task to one of the following coworkers: Senior Writer\n"
in crew.manager_agent.tools[0].description
)
@@ -1370,8 +1374,9 @@ def test_hierarchical_crew_creation_tasks_with_sync_last():
crew.kickoff()
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
assert crew.manager_agent.tools[0].description.startswith(
assert (
"Delegate a specific task to one of the following coworkers: Senior Writer, Researcher, CEO\n"
in crew.manager_agent.tools[0].description
)
@@ -1494,7 +1499,7 @@ def test_task_callback_on_crew():
def test_tools_with_custom_caching():
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def multiplcation_tool(first_number: int, second_number: int) -> int:
@@ -1696,7 +1701,7 @@ def test_manager_agent_in_agents_raises_exception():
def test_manager_agent_with_tools_raises_exception():
from crewai_tools import tool
from crewai.tools import tool
@tool
def testing_tool(first_number: int, second_number: int) -> int:
@@ -1774,26 +1779,22 @@ def test_crew_train_success(
]
)
crew_training_handler.assert_has_calls(
[
mock.call("training_data.pkl"),
mock.call().load(),
mock.call("trained_agents_data.pkl"),
mock.call().save_trained_data(
agent_id="Researcher",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
),
mock.call("trained_agents_data.pkl"),
mock.call().save_trained_data(
agent_id="Senior Writer",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
),
mock.call(),
mock.call().load(),
mock.call(),
mock.call().load(),
]
)
crew_training_handler.assert_any_call("training_data.pkl")
crew_training_handler().load.assert_called()
crew_training_handler.assert_any_call("trained_agents_data.pkl")
crew_training_handler().load.assert_called()
crew_training_handler().save_trained_data.assert_has_calls([
mock.call(
agent_id="Researcher",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
),
mock.call(
agent_id="Senior Writer",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
)
])
def test_crew_train_error():

264
tests/flow_test.py Normal file
View File

@@ -0,0 +1,264 @@
"""Test Flow creation and execution basic functionality."""
import asyncio
import pytest
from crewai.flow.flow import Flow, and_, listen, or_, router, start
def test_simple_sequential_flow():
"""Test a simple flow with two steps called sequentially."""
execution_order = []
class SimpleFlow(Flow):
@start()
def step_1(self):
execution_order.append("step_1")
@listen(step_1)
def step_2(self):
execution_order.append("step_2")
flow = SimpleFlow()
flow.kickoff()
assert execution_order == ["step_1", "step_2"]
def test_flow_with_multiple_starts():
"""Test a flow with multiple start methods."""
execution_order = []
class MultiStartFlow(Flow):
@start()
def step_a(self):
execution_order.append("step_a")
@start()
def step_b(self):
execution_order.append("step_b")
@listen(step_a)
def step_c(self):
execution_order.append("step_c")
@listen(step_b)
def step_d(self):
execution_order.append("step_d")
flow = MultiStartFlow()
flow.kickoff()
assert "step_a" in execution_order
assert "step_b" in execution_order
assert "step_c" in execution_order
assert "step_d" in execution_order
assert execution_order.index("step_c") > execution_order.index("step_a")
assert execution_order.index("step_d") > execution_order.index("step_b")
def test_cyclic_flow():
"""Test a cyclic flow that runs a finite number of iterations."""
execution_order = []
class CyclicFlow(Flow):
iteration = 0
max_iterations = 3
@start("loop")
def step_1(self):
if self.iteration >= self.max_iterations:
return # Do not proceed further
execution_order.append(f"step_1_{self.iteration}")
@listen(step_1)
def step_2(self):
execution_order.append(f"step_2_{self.iteration}")
@router(step_2)
def step_3(self):
execution_order.append(f"step_3_{self.iteration}")
self.iteration += 1
if self.iteration < self.max_iterations:
return "loop"
return "exit"
flow = CyclicFlow()
flow.kickoff()
expected_order = []
for i in range(flow.max_iterations):
expected_order.extend([f"step_1_{i}", f"step_2_{i}", f"step_3_{i}"])
assert execution_order == expected_order
def test_flow_with_and_condition():
"""Test a flow where a step waits for multiple other steps to complete."""
execution_order = []
class AndConditionFlow(Flow):
@start()
def step_1(self):
execution_order.append("step_1")
@start()
def step_2(self):
execution_order.append("step_2")
@listen(and_(step_1, step_2))
def step_3(self):
execution_order.append("step_3")
flow = AndConditionFlow()
flow.kickoff()
assert "step_1" in execution_order
assert "step_2" in execution_order
assert execution_order[-1] == "step_3"
assert execution_order.index("step_3") > execution_order.index("step_1")
assert execution_order.index("step_3") > execution_order.index("step_2")
def test_flow_with_or_condition():
"""Test a flow where a step is triggered when any of multiple steps complete."""
execution_order = []
class OrConditionFlow(Flow):
@start()
def step_a(self):
execution_order.append("step_a")
@start()
def step_b(self):
execution_order.append("step_b")
@listen(or_(step_a, step_b))
def step_c(self):
execution_order.append("step_c")
flow = OrConditionFlow()
flow.kickoff()
assert "step_a" in execution_order or "step_b" in execution_order
assert "step_c" in execution_order
assert execution_order.index("step_c") > min(
execution_order.index("step_a"), execution_order.index("step_b")
)
def test_flow_with_router():
"""Test a flow that uses a router method to determine the next step."""
execution_order = []
class RouterFlow(Flow):
@start()
def start_method(self):
execution_order.append("start_method")
@router(start_method)
def router(self):
execution_order.append("router")
# Ensure the condition is set to True to follow the "step_if_true" path
condition = True
return "step_if_true" if condition else "step_if_false"
@listen("step_if_true")
def truthy(self):
execution_order.append("step_if_true")
@listen("step_if_false")
def falsy(self):
execution_order.append("step_if_false")
flow = RouterFlow()
flow.kickoff()
assert execution_order == ["start_method", "router", "step_if_true"]
def test_async_flow():
"""Test an asynchronous flow."""
execution_order = []
class AsyncFlow(Flow):
@start()
async def step_1(self):
execution_order.append("step_1")
await asyncio.sleep(0.1)
@listen(step_1)
async def step_2(self):
execution_order.append("step_2")
await asyncio.sleep(0.1)
flow = AsyncFlow()
asyncio.run(flow.kickoff_async())
assert execution_order == ["step_1", "step_2"]
def test_flow_with_exceptions():
"""Test flow behavior when exceptions occur in steps."""
execution_order = []
class ExceptionFlow(Flow):
@start()
def step_1(self):
execution_order.append("step_1")
raise ValueError("An error occurred in step_1")
@listen(step_1)
def step_2(self):
execution_order.append("step_2")
flow = ExceptionFlow()
with pytest.raises(ValueError):
flow.kickoff()
# Ensure step_2 did not execute
assert execution_order == ["step_1"]
def test_flow_restart():
"""Test restarting a flow after it has completed."""
execution_order = []
class RestartableFlow(Flow):
@start()
def step_1(self):
execution_order.append("step_1")
@listen(step_1)
def step_2(self):
execution_order.append("step_2")
flow = RestartableFlow()
flow.kickoff()
flow.kickoff() # Restart the flow
assert execution_order == ["step_1", "step_2", "step_1", "step_2"]
def test_flow_with_custom_state():
"""Test a flow that maintains and modifies internal state."""
class StateFlow(Flow):
def __init__(self):
super().__init__()
self.counter = 0
@start()
def step_1(self):
self.counter += 1
@listen(step_1)
def step_2(self):
self.counter *= 2
assert self.counter == 2
flow = StateFlow()
flow.kickoff()
assert flow.counter == 2

30
tests/llm_test.py Normal file
View File

@@ -0,0 +1,30 @@
import pytest
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.llm import LLM
from crewai.utilities.token_counter_callback import TokenCalcHandler
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_callback_replacement():
llm = LLM(model="gpt-4o-mini")
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
llm.call(
messages=[{"role": "user", "content": "Hello, world!"}],
callbacks=[calc_handler_1],
)
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
llm.call(
messages=[{"role": "user", "content": "Hello, world from another agent!"}],
callbacks=[calc_handler_2],
)
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
# The first handler should not have been updated
assert usage_metrics_1.successful_requests == 1
assert usage_metrics_2.successful_requests == 1
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()

View File

@@ -15,7 +15,7 @@ from pydantic_core import ValidationError
def test_task_tool_reflect_agent_tools():
from crewai_tools import tool
from crewai.tools import tool
@tool
def fake_tool() -> None:
@@ -39,7 +39,7 @@ def test_task_tool_reflect_agent_tools():
def test_task_tool_takes_precedence_over_agent_tools():
from crewai_tools import tool
from crewai.tools import tool
@tool
def fake_tool() -> None:
@@ -656,7 +656,7 @@ def test_increment_delegations_for_sequential_process():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_increment_tool_errors():
from crewai_tools import tool
from crewai.tools import tool
@tool
def scoring_examples() -> None:

View File

@@ -3,7 +3,7 @@
import pytest
from crewai.agent import Agent
from crewai.tools.agent_tools import AgentTools
from crewai.tools.agent_tools.agent_tools import AgentTools
researcher = Agent(
role="researcher",
@@ -11,12 +11,14 @@ researcher = Agent(
backstory="You're an expert researcher, specialized in technology",
allow_delegation=False,
)
tools = AgentTools(agents=[researcher])
tools = AgentTools(agents=[researcher]).tools()
delegate_tool = tools[0]
ask_tool = tools[1]
@pytest.mark.vcr(filter_headers=["authorization"])
def test_delegate_work():
result = tools.delegate_work(
result = delegate_tool.run(
coworker="researcher",
task="share your take on AI Agents",
context="I heard you hate them",
@@ -30,8 +32,8 @@ def test_delegate_work():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_delegate_work_with_wrong_co_worker_variable():
result = tools.delegate_work(
co_worker="researcher",
result = delegate_tool.run(
coworker="researcher",
task="share your take on AI Agents",
context="I heard you hate them",
)
@@ -44,7 +46,7 @@ def test_delegate_work_with_wrong_co_worker_variable():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ask_question():
result = tools.ask_question(
result = ask_tool.run(
coworker="researcher",
question="do you hate AI Agents?",
context="I heard you LOVE them",
@@ -58,8 +60,8 @@ def test_ask_question():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ask_question_with_wrong_co_worker_variable():
result = tools.ask_question(
co_worker="researcher",
result = ask_tool.run(
coworker="researcher",
question="do you hate AI Agents?",
context="I heard you LOVE them",
)
@@ -72,8 +74,8 @@ def test_ask_question_with_wrong_co_worker_variable():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_delegate_work_withwith_coworker_as_array():
result = tools.delegate_work(
co_worker="[researcher]",
result = delegate_tool.run(
coworker="[researcher]",
task="share your take on AI Agents",
context="I heard you hate them",
)
@@ -86,8 +88,8 @@ def test_delegate_work_withwith_coworker_as_array():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ask_question_with_coworker_as_array():
result = tools.ask_question(
co_worker="[researcher]",
result = ask_tool.run(
coworker="[researcher]",
question="do you hate AI Agents?",
context="I heard you LOVE them",
)
@@ -99,7 +101,7 @@ def test_ask_question_with_coworker_as_array():
def test_delegate_work_to_wrong_agent():
result = tools.ask_question(
result = ask_tool.run(
coworker="writer",
question="share your take on AI Agents",
context="I heard you hate them",
@@ -112,7 +114,7 @@ def test_delegate_work_to_wrong_agent():
def test_ask_question_to_wrong_agent():
result = tools.ask_question(
result = ask_tool.run(
coworker="writer",
question="do you hate AI Agents?",
context="I heard you LOVE them",

View File

@@ -0,0 +1,109 @@
from typing import Callable
from crewai.tools import BaseTool, tool
def test_creating_a_tool_using_annotation():
@tool("Name of my tool")
def my_tool(question: str) -> str:
"""Clear description for what this tool is useful for, you agent will need this information to use it."""
return question
# Assert all the right attributes were defined
assert my_tool.name == "Name of my tool"
assert (
my_tool.description
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
)
assert my_tool.args_schema.schema()["properties"] == {
"question": {"title": "Question", "type": "string"}
}
assert (
my_tool.func("What is the meaning of life?") == "What is the meaning of life?"
)
# Assert the langchain tool conversion worked as expected
converted_tool = my_tool.to_langchain()
assert converted_tool.name == "Name of my tool"
assert (
converted_tool.description
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
)
assert converted_tool.args_schema.schema()["properties"] == {
"question": {"title": "Question", "type": "string"}
}
assert (
converted_tool.func("What is the meaning of life?")
== "What is the meaning of life?"
)
def test_creating_a_tool_using_baseclass():
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
def _run(self, question: str) -> str:
return question
my_tool = MyCustomTool()
# Assert all the right attributes were defined
assert my_tool.name == "Name of my tool"
assert (
my_tool.description
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
)
assert my_tool.args_schema.schema()["properties"] == {
"question": {"title": "Question", "type": "string"}
}
assert my_tool.run("What is the meaning of life?") == "What is the meaning of life?"
# Assert the langchain tool conversion worked as expected
converted_tool = my_tool.to_langchain()
assert converted_tool.name == "Name of my tool"
assert (
converted_tool.description
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
)
assert converted_tool.args_schema.schema()["properties"] == {
"question": {"title": "Question", "type": "string"}
}
assert (
converted_tool.run("What is the meaning of life?")
== "What is the meaning of life?"
)
def test_setting_cache_function():
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
cache_function: Callable = lambda: False
def _run(self, question: str) -> str:
return question
my_tool = MyCustomTool()
# Assert all the right attributes were defined
assert not my_tool.cache_function()
def test_default_cache_function_is_true():
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
def _run(self, question: str) -> str:
return question
my_tool = MyCustomTool()
# Assert all the right attributes were defined
assert my_tool.cache_function()

View File

@@ -3,11 +3,11 @@ import random
from unittest.mock import MagicMock
import pytest
from crewai_tools import BaseTool
from pydantic import BaseModel, Field
from crewai import Agent, Task
from crewai.tools.tool_usage import ToolUsage
from crewai.tools import BaseTool
class RandomNumberToolInput(BaseModel):
@@ -103,11 +103,7 @@ def test_tool_usage_render():
rendered = tool_usage._render()
# Updated checks to match the actual output
assert "Tool Name: random number generator" in rendered
assert (
"Random Number Generator(min_value: 'integer', max_value: 'integer') - Generates a random number within a specified range min_value: 'The minimum value of the range (inclusive)', max_value: 'The maximum value of the range (inclusive)'"
in rendered
)
assert "Tool Name: Random Number Generator" in rendered
assert "Tool Arguments:" in rendered
assert (
"'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}"
@@ -117,3 +113,11 @@ def test_tool_usage_render():
"'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}"
in rendered
)
assert (
"Tool Description: Generates a random number within a specified range"
in rendered
)
assert (
"Tool Name: Random Number Generator\nTool Arguments: {'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}, 'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}}\nTool Description: Generates a random number within a specified range"
in rendered
)

1918
uv.lock generated

File diff suppressed because it is too large Load Diff