mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
93 Commits
brandon/cr
...
brandon/cr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ef3c89ccf3 | ||
|
|
76c4f2a2b4 | ||
|
|
fbc6a10f2e | ||
|
|
5d8f8cbc79 | ||
|
|
0dfe3bcb0a | ||
|
|
3f81383285 | ||
|
|
e8a49e7687 | ||
|
|
ed48efb9aa | ||
|
|
c3291b967b | ||
|
|
92e867010c | ||
|
|
5059aef574 | ||
|
|
c50d62b82f | ||
|
|
f46a12b3b4 | ||
|
|
dd0b622826 | ||
|
|
835eb9fbea | ||
|
|
8cb10f9fcc | ||
|
|
30e26c9e35 | ||
|
|
01329a01ab | ||
|
|
0e11b33f6e | ||
|
|
5113bca025 | ||
|
|
71c5972fc7 | ||
|
|
ba55160d6b | ||
|
|
24e973d792 | ||
|
|
96427c1dd2 | ||
|
|
f15d5cbb64 | ||
|
|
c8a5a3e32e | ||
|
|
32fdd11c93 | ||
|
|
7f830b4f43 | ||
|
|
d6c57402cf | ||
|
|
42bea00184 | ||
|
|
5a6b0ff398 | ||
|
|
1b57bc0c75 | ||
|
|
96544009f5 | ||
|
|
44c8765add | ||
|
|
bc31019b67 | ||
|
|
ff16348d4c | ||
|
|
7310f4d85b | ||
|
|
ac331504e9 | ||
|
|
6823f76ff4 | ||
|
|
c3ac3219fe | ||
|
|
104ef7a0c2 | ||
|
|
2bbf8ed8a8 | ||
|
|
5dc6644ac7 | ||
|
|
9c0f97eaf7 | ||
|
|
164e7895bf | ||
|
|
fb46fb9ca3 | ||
|
|
effb7efc37 | ||
|
|
f5098e7e45 | ||
|
|
b15d632308 | ||
|
|
e534efa3e9 | ||
|
|
8001314718 | ||
|
|
e91ac4c5ad | ||
|
|
e19bdcb97d | ||
|
|
b8aa46a767 | ||
|
|
ab79ee32fd | ||
|
|
8d9c49a281 | ||
|
|
e659b60d8b | ||
|
|
7987bfee39 | ||
|
|
b6075f1a97 | ||
|
|
9820a69443 | ||
|
|
753118687d | ||
|
|
35e234ed6e | ||
|
|
2d54b096af | ||
|
|
493f046c03 | ||
|
|
3b6d1838b4 | ||
|
|
769ab940ed | ||
|
|
498a9e6e68 | ||
|
|
699be4887c | ||
|
|
854c58ded7 | ||
|
|
a19a4a5556 | ||
|
|
59e51f18fd | ||
|
|
7d981ba8ce | ||
|
|
6dad33f47c | ||
|
|
18c3925fa3 | ||
|
|
000e2666fb | ||
|
|
91ff331fec | ||
|
|
e3c7c0185d | ||
|
|
405650840e | ||
|
|
1bd188e0d2 | ||
|
|
9de7aa6377 | ||
|
|
d4c0a4248c | ||
|
|
c4167a5517 | ||
|
|
c055c35361 | ||
|
|
a318a226de | ||
|
|
e88cb2fea6 | ||
|
|
0ab072a95e | ||
|
|
5e8322b272 | ||
|
|
5a3b888f43 | ||
|
|
d7473edb41 | ||
|
|
d125c85a2b | ||
|
|
b46e663778 | ||
|
|
2787c9b0ef | ||
|
|
e77442cf34 |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -2,6 +2,7 @@
|
||||
.pytest_cache
|
||||
__pycache__
|
||||
dist/
|
||||
lib/
|
||||
.env
|
||||
assets/*
|
||||
.idea
|
||||
@@ -15,4 +16,4 @@ rc-tests/*
|
||||
*.pkl
|
||||
temp/*
|
||||
.vscode/*
|
||||
crew_tasks_output.json
|
||||
crew_tasks_output.json
|
||||
|
||||
290
README.md
290
README.md
@@ -1,10 +1,10 @@
|
||||
<div align="center">
|
||||
|
||||

|
||||

|
||||
|
||||
# **crewAI**
|
||||
# **CrewAI**
|
||||
|
||||
🤖 **crewAI**: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
|
||||
🤖 **CrewAI**: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
|
||||
|
||||
<h3>
|
||||
|
||||
@@ -44,100 +44,222 @@ To get started with CrewAI, follow these simple steps:
|
||||
|
||||
### 1. Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. CrewAI uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Then, install CrewAI:
|
||||
|
||||
```shell
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command: pip install 'crewai[tools]'. This command installs the basic package and also adds extra components which require more dependencies to function."
|
||||
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
The command above installs the basic package and also adds extra components which require more dependencies to function.
|
||||
|
||||
### 2. Setting Up Your Crew
|
||||
### 2. Setting Up Your Crew with the YAML Configuration
|
||||
|
||||
To create a new CrewAI project, run the following CLI (Command Line Interface) command:
|
||||
|
||||
```shell
|
||||
crewai create crew <project_name>
|
||||
```
|
||||
|
||||
This command creates a new project folder with the following structure:
|
||||
|
||||
```
|
||||
my_project/
|
||||
├── .gitignore
|
||||
├── pyproject.toml
|
||||
├── README.md
|
||||
├── .env
|
||||
└── src/
|
||||
└── my_project/
|
||||
├── __init__.py
|
||||
├── main.py
|
||||
├── crew.py
|
||||
├── tools/
|
||||
│ ├── custom_tool.py
|
||||
│ └── __init__.py
|
||||
└── config/
|
||||
├── agents.yaml
|
||||
└── tasks.yaml
|
||||
```
|
||||
|
||||
You can now start developing your crew by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of the project, the `crew.py` file is where you define your crew, the `agents.yaml` file is where you define your agents, and the `tasks.yaml` file is where you define your tasks.
|
||||
|
||||
#### To customize your project, you can:
|
||||
|
||||
- Modify `src/my_project/config/agents.yaml` to define your agents.
|
||||
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
|
||||
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
|
||||
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
|
||||
- Add your environment variables into the `.env` file.
|
||||
|
||||
#### Example of a simple crew with a sequential process:
|
||||
|
||||
Instatiate your crew:
|
||||
|
||||
```shell
|
||||
crewai create crew latest-ai-development
|
||||
```
|
||||
|
||||
Modify the files as needed to fit your use case:
|
||||
|
||||
**agents.yaml**
|
||||
|
||||
```yaml
|
||||
# src/my_project/config/agents.yaml
|
||||
researcher:
|
||||
role: >
|
||||
{topic} Senior Data Researcher
|
||||
goal: >
|
||||
Uncover cutting-edge developments in {topic}
|
||||
backstory: >
|
||||
You're a seasoned researcher with a knack for uncovering the latest
|
||||
developments in {topic}. Known for your ability to find the most relevant
|
||||
information and present it in a clear and concise manner.
|
||||
|
||||
reporting_analyst:
|
||||
role: >
|
||||
{topic} Reporting Analyst
|
||||
goal: >
|
||||
Create detailed reports based on {topic} data analysis and research findings
|
||||
backstory: >
|
||||
You're a meticulous analyst with a keen eye for detail. You're known for
|
||||
your ability to turn complex data into clear and concise reports, making
|
||||
it easy for others to understand and act on the information you provide.
|
||||
```
|
||||
|
||||
**tasks.yaml**
|
||||
|
||||
```yaml
|
||||
# src/my_project/config/tasks.yaml
|
||||
research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
|
||||
reporting_task:
|
||||
description: >
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with the mains topics, each with a full section of information.
|
||||
Formatted as markdown without '```'
|
||||
agent: reporting_analyst
|
||||
output_file: report.md
|
||||
```
|
||||
|
||||
**crew.py**
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
# src/my_project/crew.py
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
@CrewBase
|
||||
class LatestAiDevelopmentCrew():
|
||||
"""LatestAiDevelopment crew"""
|
||||
|
||||
# You can choose to use a local model through Ollama for example. See https://docs.crewai.com/how-to/LLM-Connections/ for more information.
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
verbose=True,
|
||||
tools=[SerperDevTool()]
|
||||
)
|
||||
|
||||
# os.environ["OPENAI_API_BASE"] = 'http://localhost:11434/v1'
|
||||
# os.environ["OPENAI_MODEL_NAME"] ='openhermes' # Adjust based on available model
|
||||
# os.environ["OPENAI_API_KEY"] ='sk-111111111111111111111111111111111111111111111111'
|
||||
@agent
|
||||
def reporting_analyst(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['reporting_analyst'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# You can pass an optional llm attribute specifying what model you wanna use.
|
||||
# It can be a local model through Ollama / LM Studio or a remote
|
||||
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
|
||||
# If you don't specify a model, the default is OpenAI gpt-4o
|
||||
#
|
||||
# import os
|
||||
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
|
||||
#
|
||||
# OR
|
||||
#
|
||||
# from langchain_openai import ChatOpenAI
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['research_task'],
|
||||
)
|
||||
|
||||
search_tool = SerperDevTool()
|
||||
@task
|
||||
def reporting_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['reporting_task'],
|
||||
output_file='report.md'
|
||||
)
|
||||
|
||||
# Define your agents with roles and goals
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Uncover cutting-edge developments in AI and data science',
|
||||
backstory="""You work at a leading tech think tank.
|
||||
Your expertise lies in identifying emerging trends.
|
||||
You have a knack for dissecting complex data and presenting actionable insights.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
# You can pass an optional llm attribute specifying what model you wanna use.
|
||||
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7),
|
||||
tools=[search_tool]
|
||||
)
|
||||
writer = Agent(
|
||||
role='Tech Content Strategist',
|
||||
goal='Craft compelling content on tech advancements',
|
||||
backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
|
||||
You transform complex concepts into compelling narratives.""",
|
||||
verbose=True,
|
||||
allow_delegation=True
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
|
||||
Identify key trends, breakthrough technologies, and potential industry impacts.""",
|
||||
expected_output="Full analysis report in bullet points",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
task2 = Task(
|
||||
description="""Using the insights provided, develop an engaging blog
|
||||
post that highlights the most significant AI advancements.
|
||||
Your post should be informative yet accessible, catering to a tech-savvy audience.
|
||||
Make it sound cool, avoid complex words so it doesn't sound like AI.""",
|
||||
expected_output="Full blog post of at least 4 paragraphs",
|
||||
agent=writer
|
||||
)
|
||||
|
||||
# Instantiate your crew with a sequential process
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2],
|
||||
verbose=True,
|
||||
process = Process.sequential
|
||||
)
|
||||
|
||||
# Get your crew to work!
|
||||
result = crew.kickoff()
|
||||
|
||||
print("######################")
|
||||
print(result)
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the LatestAiDevelopment crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
```
|
||||
|
||||
**main.py**
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python
|
||||
# src/my_project/main.py
|
||||
import sys
|
||||
from latest_ai_development.crew import LatestAiDevelopmentCrew
|
||||
|
||||
def run():
|
||||
"""
|
||||
Run the crew.
|
||||
"""
|
||||
inputs = {
|
||||
'topic': 'AI Agents'
|
||||
}
|
||||
LatestAiDevelopmentCrew().crew().kickoff(inputs=inputs)
|
||||
```
|
||||
|
||||
### 3. Running Your Crew
|
||||
|
||||
Before running your crew, make sure you have the following keys set as environment variables in your `.env` file:
|
||||
|
||||
- An [OpenAI API key](https://platform.openai.com/account/api-keys) (or other LLM API key): `OPENAI_API_KEY=sk-...`
|
||||
- A [Serper.dev](https://serper.dev/) API key: `SERPER_API_KEY=YOUR_KEY_HERE`
|
||||
|
||||
Lock the dependencies and install them by using the CLI command but first, navigate to your project directory:
|
||||
|
||||
```shell
|
||||
cd my_project
|
||||
crewai install
|
||||
```
|
||||
|
||||
To run your crew, execute the following command in the root of your project:
|
||||
|
||||
```bash
|
||||
crewai run
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```bash
|
||||
python src/my_project/main.py
|
||||
```
|
||||
|
||||
You should see the output in the console and the `report.md` file should be created in the root of your project with the full final report.
|
||||
|
||||
In addition to the sequential process, you can use the hierarchical process, which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results. [See more about the processes here](https://docs.crewai.com/core-concepts/Processes/).
|
||||
|
||||
## Key Features
|
||||
@@ -148,13 +270,13 @@ In addition to the sequential process, you can use the hierarchical process, whi
|
||||
- **Processes Driven**: Currently only supports `sequential` task execution and `hierarchical` processes, but more complex processes like consensual and autonomous are being worked on.
|
||||
- **Save output as file**: Save the output of individual tasks as a file, so you can use it later.
|
||||
- **Parse output as Pydantic or Json**: Parse the output of individual tasks as a Pydantic model or as a Json if you want to.
|
||||
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models, even ones running locally!
|
||||
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models, even ones running locally!
|
||||
|
||||

|
||||
|
||||
## Examples
|
||||
|
||||
You can test different real life examples of AI crews in the [crewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
|
||||
You can test different real life examples of AI crews in the [CrewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
|
||||
|
||||
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/landing_page_generator)
|
||||
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
|
||||
@@ -185,9 +307,9 @@ You can test different real life examples of AI crews in the [crewAI-examples re
|
||||
|
||||
## Connecting Your Crew to a Model
|
||||
|
||||
crewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
|
||||
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
|
||||
|
||||
Please refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring you agents' connections to models.
|
||||
Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring you agents' connections to models.
|
||||
|
||||
## How CrewAI Compares
|
||||
|
||||
@@ -258,7 +380,7 @@ It's pivotal to understand that **NO data is collected** concerning prompts, tas
|
||||
|
||||
Data collected includes:
|
||||
|
||||
- Version of crewAI
|
||||
- Version of CrewAI
|
||||
- So we can understand how many users are using the latest version
|
||||
- Version of Python
|
||||
- So we can decide on what versions to better support
|
||||
@@ -283,7 +405,7 @@ Users can opt-in to Further Telemetry, sharing the complete telemetry data by se
|
||||
|
||||
## License
|
||||
|
||||
CrewAI is released under the MIT License.
|
||||
CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/blob/main/LICENSE).
|
||||
|
||||
## Frequently Asked Questions (FAQ)
|
||||
|
||||
@@ -316,7 +438,7 @@ A: Yes, CrewAI is open-source and welcomes contributions from the community.
|
||||
A: CrewAI uses anonymous telemetry to collect usage data for improvement purposes. No sensitive data (like prompts, task descriptions, or API calls) is collected. Users can opt-in to share more detailed data by setting `share_crew=True` on their Crews.
|
||||
|
||||
### Q: Where can I find examples of CrewAI in action?
|
||||
A: You can find various real-life examples in the [crewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), including trip planners, stock analysis tools, and more.
|
||||
A: You can find various real-life examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), including trip planners, stock analysis tools, and more.
|
||||
|
||||
### Q: How can I contribute to CrewAI?
|
||||
A: Contributions are welcome! You can fork the repository, create a new branch for your feature, add your improvement, and send a pull request. Check the Contribution section in the README for more details.
|
||||
|
||||
@@ -11,31 +11,33 @@ description: What are crewAI Agents and how to use them.
|
||||
<li class='leading-3'>Make decisions</li>
|
||||
<li class='leading-3'>Communicate with other agents</li>
|
||||
</ul>
|
||||
<br/>
|
||||
<br/>
|
||||
Think of an agent as a member of a team, with specific skills and a particular job to do. Agents can have different roles like 'Researcher', 'Writer', or 'Customer Support', each contributing to the overall goal of the crew.
|
||||
|
||||
## Agent Attributes
|
||||
|
||||
| Attribute | Parameter | Description |
|
||||
| :------------------------- | :---- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Role** | `role` | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
|
||||
| **Goal** | `goal` | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
|
||||
| **Backstory** | `backstory` | Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
|
||||
| **LLM** *(optional)* | `llm` | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
|
||||
| **Tools** *(optional)* | `tools` | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. |
|
||||
| :------------------------- | :--------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Role** | `role` | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
|
||||
| **Goal** | `goal` | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
|
||||
| **Backstory** | `backstory`| Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
|
||||
| **LLM** *(optional)* | `llm` | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
|
||||
| **Tools** *(optional)* | `tools` | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. |
|
||||
| **Function Calling LLM** *(optional)* | `function_calling_llm` | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
|
||||
| **Max Iter** *(optional)* | `max_iter` | Max Iter is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
|
||||
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
|
||||
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
|
||||
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
|
||||
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `True`. |
|
||||
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`.
|
||||
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
|
||||
| **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. |
|
||||
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
|
||||
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
|
||||
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
|
||||
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
|
||||
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`. |
|
||||
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`.
|
||||
| **Use System Prompt** *(optional)* | `use_system_prompt` | Adds the ability to not use system prompt (to support o1 models). Default is `True`. |
|
||||
| **Respect Context Window** *(optional)* | `respect_context_window` | Summary strategy to avoid overflowing the context window. Default is `True`. |
|
||||
|
||||
## Creating an Agent
|
||||
|
||||
@@ -63,7 +65,7 @@ agent = Agent(
|
||||
max_rpm=None, # Optional
|
||||
max_execution_time=None, # Optional
|
||||
verbose=True, # Optional
|
||||
allow_delegation=True, # Optional
|
||||
allow_delegation=False, # Optional
|
||||
step_callback=my_intermediate_step_callback, # Optional
|
||||
cache=True, # Optional
|
||||
system_template=my_system_template, # Optional
|
||||
@@ -74,8 +76,10 @@ agent = Agent(
|
||||
tools_handler=my_tools_handler, # Optional
|
||||
cache_handler=my_cache_handler, # Optional
|
||||
callbacks=[callback1, callback2], # Optional
|
||||
allow_code_execution=True, # Optiona
|
||||
allow_code_execution=True, # Optional
|
||||
max_retry_limit=2, # Optional
|
||||
use_system_prompt=True, # Optional
|
||||
respect_context_window=True, # Optional
|
||||
)
|
||||
```
|
||||
|
||||
@@ -105,7 +109,7 @@ agent = Agent(
|
||||
|
||||
BaseAgent includes attributes and methods required to integrate with your crews to run and delegate tasks to other agents within your own crew.
|
||||
|
||||
CrewAI is a universal multi agent framework that allows for all agents to work together to automate tasks and solve problems.
|
||||
CrewAI is a universal multi-agent framework that allows for all agents to work together to automate tasks and solve problems.
|
||||
|
||||
|
||||
```py
|
||||
|
||||
@@ -85,20 +85,20 @@ Example:
|
||||
crewai replay -t task_123456
|
||||
```
|
||||
|
||||
### 5. log_tasks_outputs
|
||||
### 5. log-tasks-outputs
|
||||
|
||||
Retrieve your latest crew.kickoff() task outputs.
|
||||
|
||||
```
|
||||
crewai log_tasks_outputs
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
### 6. reset_memories
|
||||
### 6. reset-memories
|
||||
|
||||
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
|
||||
|
||||
```
|
||||
crewai reset_memories [OPTIONS]
|
||||
crewai reset-memories [OPTIONS]
|
||||
```
|
||||
|
||||
- `-l, --long`: Reset LONG TERM memory
|
||||
@@ -109,8 +109,8 @@ crewai reset_memories [OPTIONS]
|
||||
|
||||
Example:
|
||||
```
|
||||
crewai reset_memories --long --short
|
||||
crewai reset_memories --all
|
||||
crewai reset-memories --long --short
|
||||
crewai reset-memories --all
|
||||
```
|
||||
|
||||
### 7. test
|
||||
|
||||
@@ -27,7 +27,7 @@ The `Crew` class has been enriched with several attributes to support advanced f
|
||||
- **Memory Usage (`memory`)**: Indicates whether the crew should use memory to store memories of its execution, enhancing task execution and agent learning.
|
||||
- **Embedder Configuration (`embedder`)**: Specifies the configuration for the embedder to be used by the crew for understanding and generating language. This attribute supports customization of the language model provider.
|
||||
- **Cache Management (`cache`)**: Determines whether the crew should use a cache to store the results of tool executions, optimizing performance.
|
||||
- **Output Logging (`output_log_file`)**: Specifies the file path for logging the output of the crew execution.
|
||||
- **Output Logging (`output_log_file`)**: Specifies the file path for logging the output of the crew's execution.
|
||||
- **Planning Mode (`planning`)**: Allows crews to plan their actions before executing tasks by setting `planning=True` when creating the `Crew` instance. This feature enhances coordination and efficiency.
|
||||
- **Replay Feature**: Introduces a new CLI for listing tasks from the last run and replaying from a specific task, enhancing task management and troubleshooting.
|
||||
|
||||
|
||||
@@ -13,18 +13,18 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| :------------------------------------ | :--------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Tasks** | `tasks` | A list of tasks assigned to the crew. |
|
||||
| **Agents** | `agents` | A list of agents that are part of the crew. |
|
||||
| **Process** _(optional)_ | `process` | The process flow (e.g., sequential, hierarchical) the crew follows. |
|
||||
| **Verbose** _(optional)_ | `verbose` | The verbosity level for logging during execution. |
|
||||
| **Process** _(optional)_ | `process` | The process flow (e.g., sequential, hierarchical) the crew follows. Default is `sequential`. |
|
||||
| **Verbose** _(optional)_ | `verbose` | The verbosity level for logging during execution. Defaults to `False`. |
|
||||
| **Manager LLM** _(optional)_ | `manager_llm` | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
|
||||
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
|
||||
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. |
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
|
||||
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
|
||||
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
|
||||
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. |
|
||||
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. |
|
||||
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). Defaults to `False`. |
|
||||
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
|
||||
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
|
||||
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |
|
||||
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
|
||||
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
|
||||
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
@@ -38,65 +38,6 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
!!! note "Crew Max RPM"
|
||||
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
|
||||
## Creating a Crew
|
||||
|
||||
When assembling a crew, you combine agents with complementary roles and tools, assign tasks, and select a process that dictates their execution order and interaction.
|
||||
|
||||
### Example: Assembling a Crew
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
from langchain_community.tools import DuckDuckGoSearchRun
|
||||
from crewai_tools import tool
|
||||
|
||||
@tool('DuckDuckGoSearch')
|
||||
def search(search_query: str):
|
||||
"""Search the web for information on a given topic"""
|
||||
return DuckDuckGoSearchRun().run(search_query)
|
||||
|
||||
# Define agents with specific roles and tools
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Discover innovative AI technologies',
|
||||
backstory="""You're a senior research analyst at a large company.
|
||||
You're responsible for analyzing data and providing insights
|
||||
to the business.
|
||||
You're currently working on a project to analyze the
|
||||
trends and innovations in the space of artificial intelligence.""",
|
||||
tools=[search]
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role='Content Writer',
|
||||
goal='Write engaging articles on AI discoveries',
|
||||
backstory="""You're a senior writer at a large company.
|
||||
You're responsible for creating content to the business.
|
||||
You're currently working on a project to write about trends
|
||||
and innovations in the space of AI for your next meeting.""",
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create tasks for the agents
|
||||
research_task = Task(
|
||||
description='Identify breakthrough AI technologies',
|
||||
agent=researcher,
|
||||
expected_output='A bullet list summary of the top 5 most important AI news'
|
||||
)
|
||||
write_article_task = Task(
|
||||
description='Draft an article on the latest AI technologies',
|
||||
agent=writer,
|
||||
expected_output='3 paragraph blog post on the latest AI technologies'
|
||||
)
|
||||
|
||||
# Assemble the crew with a sequential process
|
||||
my_crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research_task, write_article_task],
|
||||
process=Process.sequential,
|
||||
full_output=True,
|
||||
verbose=True,
|
||||
)
|
||||
```
|
||||
|
||||
## Crew Output
|
||||
|
||||
|
||||
627
docs/core-concepts/Flows.md
Normal file
627
docs/core-concepts/Flows.md
Normal file
@@ -0,0 +1,627 @@
|
||||
# CrewAI Flows
|
||||
|
||||
## Introduction
|
||||
|
||||
CrewAI Flows is a powerful feature designed to streamline the creation and management of AI workflows. Flows allow developers to combine and coordinate coding tasks and Crews efficiently, providing a robust framework for building sophisticated AI automations.
|
||||
|
||||
Flows allow you to create structured, event-driven workflows. They provide a seamless way to connect multiple tasks, manage state, and control the flow of execution in your AI applications. With Flows, you can easily design and implement multi-step processes that leverage the full potential of CrewAI's capabilities.
|
||||
|
||||
1. **Simplified Workflow Creation**: Easily chain together multiple Crews and tasks to create complex AI workflows.
|
||||
|
||||
2. **State Management**: Flows make it super easy to manage and share state between different tasks in your workflow.
|
||||
|
||||
3. **Event-Driven Architecture**: Built on an event-driven model, allowing for dynamic and responsive workflows.
|
||||
|
||||
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
|
||||
|
||||
## Getting Started
|
||||
|
||||
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from litellm import completion
|
||||
|
||||
|
||||
class ExampleFlow(Flow):
|
||||
model = "gpt-4o-mini"
|
||||
|
||||
@start()
|
||||
def generate_city(self):
|
||||
print("Starting flow")
|
||||
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Return the name of a random city in the world.",
|
||||
},
|
||||
],
|
||||
)
|
||||
|
||||
random_city = response["choices"][0]["message"]["content"]
|
||||
print(f"Random City: {random_city}")
|
||||
|
||||
return random_city
|
||||
|
||||
@listen(generate_city)
|
||||
def generate_fun_fact(self, random_city):
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"Tell me a fun fact about {random_city}",
|
||||
},
|
||||
],
|
||||
)
|
||||
|
||||
fun_fact = response["choices"][0]["message"]["content"]
|
||||
return fun_fact
|
||||
|
||||
|
||||
async def main():
|
||||
flow = ExampleFlow()
|
||||
result = await flow.kickoff()
|
||||
|
||||
print(f"Generated fun fact: {result}")
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
|
||||
|
||||
When you run the Flow, it will generate a random city and then generate a fun fact about that city. The output will be printed to the console.
|
||||
|
||||
### @start()
|
||||
|
||||
The `@start()` decorator is used to mark a method as the starting point of a Flow. When a Flow is started, all the methods decorated with `@start()` are executed in parallel. You can have multiple start methods in a Flow, and they will all be executed when the Flow is started.
|
||||
|
||||
### @listen()
|
||||
|
||||
The `@listen()` decorator is used to mark a method as a listener for the output of another task in the Flow. The method decorated with `@listen()` will be executed when the specified task emits an output. The method can access the output of the task it is listening to as an argument.
|
||||
|
||||
#### Usage
|
||||
|
||||
The `@listen()` decorator can be used in several ways:
|
||||
|
||||
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
|
||||
|
||||
```python
|
||||
@listen("generate_city")
|
||||
def generate_fun_fact(self, random_city):
|
||||
# Implementation
|
||||
```
|
||||
|
||||
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
|
||||
```python
|
||||
@listen(generate_city)
|
||||
def generate_fun_fact(self, random_city):
|
||||
# Implementation
|
||||
```
|
||||
|
||||
### Flow Output
|
||||
|
||||
Accessing and handling the output of a Flow is essential for integrating your AI workflows into larger applications or systems. CrewAI Flows provide straightforward mechanisms to retrieve the final output, access intermediate results, and manage the overall state of your Flow.
|
||||
|
||||
#### Retrieving the Final Output
|
||||
|
||||
When you run a Flow, the final output is determined by the last method that completes. The `kickoff()` method returns the output of this final method.
|
||||
|
||||
Here's how you can access the final output:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class OutputExampleFlow(Flow):
|
||||
@start()
|
||||
def first_method(self):
|
||||
return "Output from first_method"
|
||||
|
||||
@listen(first_method)
|
||||
def second_method(self, first_output):
|
||||
return f"Second method received: {first_output}"
|
||||
|
||||
async def main():
|
||||
flow = OutputExampleFlow()
|
||||
final_output = await flow.kickoff()
|
||||
print("---- Final Output ----")
|
||||
print(final_output)
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
In this example, the `second_method` is the last method to complete, so its output will be the final output of the Flow. The `kickoff()` method will return this final output, which is then printed to the console.
|
||||
|
||||
The output of the Flow will be:
|
||||
|
||||
```
|
||||
---- Final Output ----
|
||||
Second method received: Output from first_method
|
||||
```
|
||||
|
||||
#### Accessing and Updating State
|
||||
|
||||
In addition to retrieving the final output, you can also access and update the state within your Flow. The state can be used to store and share data between different methods in the Flow. After the Flow has run, you can access the state to retrieve any information that was added or updated during the execution.
|
||||
|
||||
Here's an example of how to update and access the state:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
class StateExampleFlow(Flow[ExampleState]):
|
||||
|
||||
@start()
|
||||
def first_method(self):
|
||||
self.state.message = "Hello from first_method"
|
||||
self.state.counter += 1
|
||||
|
||||
@listen(first_method)
|
||||
def second_method(self):
|
||||
self.state.message += " - updated by second_method"
|
||||
self.state.counter += 1
|
||||
return self.state.message
|
||||
|
||||
async def main():
|
||||
flow = StateExampleFlow()
|
||||
final_output = await flow.kickoff()
|
||||
print(f"Final Output: {final_output}")
|
||||
print("Final State:")
|
||||
print(flow.state)
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
In this example, the state is updated by both `first_method` and `second_method`. After the Flow has run, you can access the final state to see the updates made by these methods.
|
||||
|
||||
The output of the Flow will be:
|
||||
|
||||
```
|
||||
Final Output: Hello from first_method - updated by second_method
|
||||
Final State:
|
||||
counter=2 message='Hello from first_method - updated by second_method'
|
||||
```
|
||||
|
||||
By ensuring that the final method's output is returned and providing access to the state, CrewAI Flows make it easy to integrate the results of your AI workflows into larger applications or systems, while also maintaining and accessing the state throughout the Flow's execution.
|
||||
|
||||
## Flow State Management
|
||||
|
||||
Managing state effectively is crucial for building reliable and maintainable AI workflows. CrewAI Flows provides robust mechanisms for both unstructured and structured state management, allowing developers to choose the approach that best fits their application's needs.
|
||||
|
||||
### Unstructured State Management
|
||||
|
||||
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class. This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class UntructuredExampleFlow(Flow):
|
||||
|
||||
@start()
|
||||
def first_method(self):
|
||||
self.state.message = "Hello from structured flow"
|
||||
self.state.counter = 0
|
||||
|
||||
@listen(first_method)
|
||||
def second_method(self):
|
||||
self.state.counter += 1
|
||||
self.state.message += " - updated"
|
||||
|
||||
@listen(second_method)
|
||||
def third_method(self):
|
||||
self.state.counter += 1
|
||||
self.state.message += " - updated again"
|
||||
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
async def main():
|
||||
flow = UntructuredExampleFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
**Key Points:**
|
||||
|
||||
- **Flexibility:** You can dynamically add attributes to `self.state` without predefined constraints.
|
||||
- **Simplicity:** Ideal for straightforward workflows where state structure is minimal or varies significantly.
|
||||
|
||||
### Structured State Management
|
||||
|
||||
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow. By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
@start()
|
||||
def first_method(self):
|
||||
self.state.message = "Hello from structured flow"
|
||||
|
||||
@listen(first_method)
|
||||
def second_method(self):
|
||||
self.state.counter += 1
|
||||
self.state.message += " - updated"
|
||||
|
||||
@listen(second_method)
|
||||
def third_method(self):
|
||||
self.state.counter += 1
|
||||
self.state.message += " - updated again"
|
||||
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
async def main():
|
||||
flow = StructuredExampleFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
**Key Points:**
|
||||
|
||||
- **Defined Schema:** `ExampleState` clearly outlines the state structure, enhancing code readability and maintainability.
|
||||
- **Type Safety:** Leveraging Pydantic ensures that state attributes adhere to the specified types, reducing runtime errors.
|
||||
- **Auto-Completion:** IDEs can provide better auto-completion and error checking based on the defined state model.
|
||||
|
||||
### Choosing Between Unstructured and Structured State Management
|
||||
|
||||
- **Use Unstructured State Management when:**
|
||||
|
||||
- The workflow's state is simple or highly dynamic.
|
||||
- Flexibility is prioritized over strict state definitions.
|
||||
- Rapid prototyping is required without the overhead of defining schemas.
|
||||
|
||||
- **Use Structured State Management when:**
|
||||
- The workflow requires a well-defined and consistent state structure.
|
||||
- Type safety and validation are important for your application's reliability.
|
||||
- You want to leverage IDE features like auto-completion and type checking for better developer experience.
|
||||
|
||||
By providing both unstructured and structured state management options, CrewAI Flows empowers developers to build AI workflows that are both flexible and robust, catering to a wide range of application requirements.
|
||||
|
||||
## Flow Control
|
||||
|
||||
### Conditional Logic
|
||||
|
||||
#### or
|
||||
|
||||
The `or_` function in Flows allows you to listen to multiple methods and trigger the listener method when any of the specified methods emit an output.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai.flow.flow import Flow, listen, or_, start
|
||||
|
||||
class OrExampleFlow(Flow):
|
||||
|
||||
@start()
|
||||
def start_method(self):
|
||||
return "Hello from the start method"
|
||||
|
||||
@listen(start_method)
|
||||
def second_method(self):
|
||||
return "Hello from the second method"
|
||||
|
||||
@listen(or_(start_method, second_method))
|
||||
def logger(self, result):
|
||||
print(f"Logger: {result}")
|
||||
|
||||
|
||||
async def main():
|
||||
flow = OrExampleFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
When you run this Flow, the `logger` method will be triggered by the output of either the `start_method` or the `second_method`. The `or_` function is to listen to multiple methods and trigger the listener method when any of the specified methods emit an output.
|
||||
|
||||
The output of the Flow will be:
|
||||
|
||||
```
|
||||
Logger: Hello from the start method
|
||||
Logger: Hello from the second method
|
||||
```
|
||||
|
||||
#### and
|
||||
|
||||
The `and_` function in Flows allows you to listen to multiple methods and trigger the listener method only when all the specified methods emit an output.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai.flow.flow import Flow, and_, listen, start
|
||||
|
||||
class AndExampleFlow(Flow):
|
||||
|
||||
@start()
|
||||
def start_method(self):
|
||||
self.state["greeting"] = "Hello from the start method"
|
||||
|
||||
@listen(start_method)
|
||||
def second_method(self):
|
||||
self.state["joke"] = "What do computers eat? Microchips."
|
||||
|
||||
@listen(and_(start_method, second_method))
|
||||
def logger(self):
|
||||
print("---- Logger ----")
|
||||
print(self.state)
|
||||
|
||||
|
||||
async def main():
|
||||
flow = AndExampleFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
When you run this Flow, the `logger` method will be triggered only when both the `start_method` and the `second_method` emit an output. The `and_` function is used to listen to multiple methods and trigger the listener method only when all the specified methods emit an output.
|
||||
|
||||
The output of the Flow will be:
|
||||
|
||||
```
|
||||
---- Logger ----
|
||||
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
|
||||
```
|
||||
|
||||
### Router
|
||||
|
||||
The `@router()` decorator in Flows allows you to define conditional routing logic based on the output of a method. You can specify different routes based on the output of the method, allowing you to control the flow of execution dynamically.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
import random
|
||||
from crewai.flow.flow import Flow, listen, router, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
success_flag: bool = False
|
||||
|
||||
class RouterFlow(Flow[ExampleState]):
|
||||
|
||||
@start()
|
||||
def start_method(self):
|
||||
print("Starting the structured flow")
|
||||
random_boolean = random.choice([True, False])
|
||||
self.state.success_flag = random_boolean
|
||||
|
||||
@router(start_method)
|
||||
def second_method(self):
|
||||
if self.state.success_flag:
|
||||
return "success"
|
||||
else:
|
||||
return "failed"
|
||||
|
||||
@listen("success")
|
||||
def third_method(self):
|
||||
print("Third method running")
|
||||
|
||||
@listen("failed")
|
||||
def fourth_method(self):
|
||||
print("Fourth method running")
|
||||
|
||||
|
||||
async def main():
|
||||
flow = RouterFlow()
|
||||
await flow.kickoff()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
In the above example, the `start_method` generates a random boolean value and sets it in the state. The `second_method` uses the `@router()` decorator to define conditional routing logic based on the value of the boolean. If the boolean is `True`, the method returns `"success"`, and if it is `False`, the method returns `"failed"`. The `third_method` and `fourth_method` listen to the output of the `second_method` and execute based on the returned value.
|
||||
|
||||
When you run this Flow, the output will change based on the random boolean value generated by the `start_method`, but you should see an output similar to the following:
|
||||
|
||||
```
|
||||
Starting the structured flow
|
||||
Third method running
|
||||
```
|
||||
|
||||
## Adding Crews to Flows
|
||||
|
||||
Creating a flow with multiple crews in CrewAI is straightforward. You can generate a new CrewAI project that includes all the scaffolding needed to create a flow with multiple crews by running the following command:
|
||||
|
||||
```bash
|
||||
crewai create flow name_of_flow
|
||||
```
|
||||
|
||||
This command will generate a new CrewAI project with the necessary folder structure. The generated project includes a prebuilt crew called `poem_crew` that is already working. You can use this crew as a template by copying, pasting, and editing it to create other crews.
|
||||
|
||||
### Folder Structure
|
||||
|
||||
After running the `crewai create flow name_of_flow` command, you will see a folder structure similar to the following:
|
||||
|
||||
```
|
||||
name_of_flow/
|
||||
├── crews/
|
||||
│ └── poem_crew/
|
||||
│ ├── config/
|
||||
│ │ ├── agents.yaml
|
||||
│ │ └── tasks.yaml
|
||||
│ ├── poem_crew.py
|
||||
├── tools/
|
||||
│ └── custom_tool.py
|
||||
├── main.py
|
||||
├── README.md
|
||||
├── pyproject.toml
|
||||
└── .gitignore
|
||||
```
|
||||
|
||||
### Building Your Crews
|
||||
|
||||
In the `crews` folder, you can define multiple crews. Each crew will have its own folder containing configuration files and the crew definition file. For example, the `poem_crew` folder contains:
|
||||
|
||||
- `config/agents.yaml`: Defines the agents for the crew.
|
||||
- `config/tasks.yaml`: Defines the tasks for the crew.
|
||||
- `poem_crew.py`: Contains the crew definition, including agents, tasks, and the crew itself.
|
||||
|
||||
You can copy, paste, and edit the `poem_crew` to create other crews.
|
||||
|
||||
### Connecting Crews in `main.py`
|
||||
|
||||
The `main.py` file is where you create your flow and connect the crews together. You can define your flow by using the `Flow` class and the decorators `@start` and `@listen` to specify the flow of execution.
|
||||
|
||||
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python
|
||||
import asyncio
|
||||
from random import randint
|
||||
|
||||
from pydantic import BaseModel
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from .crews.poem_crew.poem_crew import PoemCrew
|
||||
|
||||
class PoemState(BaseModel):
|
||||
sentence_count: int = 1
|
||||
poem: str = ""
|
||||
|
||||
class PoemFlow(Flow[PoemState]):
|
||||
|
||||
@start()
|
||||
def generate_sentence_count(self):
|
||||
print("Generating sentence count")
|
||||
# Generate a number between 1 and 5
|
||||
self.state.sentence_count = randint(1, 5)
|
||||
|
||||
@listen(generate_sentence_count)
|
||||
def generate_poem(self):
|
||||
print("Generating poem")
|
||||
poem_crew = PoemCrew().crew()
|
||||
result = poem_crew.kickoff(inputs={"sentence_count": self.state.sentence_count})
|
||||
|
||||
print("Poem generated", result.raw)
|
||||
self.state.poem = result.raw
|
||||
|
||||
@listen(generate_poem)
|
||||
def save_poem(self):
|
||||
print("Saving poem")
|
||||
with open("poem.txt", "w") as f:
|
||||
f.write(self.state.poem)
|
||||
|
||||
async def run():
|
||||
"""
|
||||
Run the flow.
|
||||
"""
|
||||
poem_flow = PoemFlow()
|
||||
await poem_flow.kickoff()
|
||||
|
||||
def main():
|
||||
asyncio.run(run())
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
In this example, the `PoemFlow` class defines a flow that generates a sentence count, uses the `PoemCrew` to generate a poem, and then saves the poem to a file. The flow is kicked off by calling the `kickoff()` method.
|
||||
|
||||
### Running the Flow
|
||||
|
||||
Before running the flow, make sure to install the dependencies by running:
|
||||
|
||||
```bash
|
||||
poetry install
|
||||
```
|
||||
|
||||
Once all of the dependencies are installed, you need to activate the virtual environment by running:
|
||||
|
||||
```bash
|
||||
poetry shell
|
||||
```
|
||||
|
||||
After activating the virtual environment, you can run the flow by executing one of the following commands:
|
||||
|
||||
```bash
|
||||
crewai flow run
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```bash
|
||||
poetry run run_flow
|
||||
```
|
||||
|
||||
The flow will execute, and you should see the output in the console.
|
||||
|
||||
## Plot Flows
|
||||
|
||||
Visualizing your AI workflows can provide valuable insights into the structure and execution paths of your flows. CrewAI offers a powerful visualization tool that allows you to generate interactive plots of your flows, making it easier to understand and optimize your AI workflows.
|
||||
|
||||
### What are Plots?
|
||||
|
||||
Plots in CrewAI are graphical representations of your AI workflows. They display the various tasks, their connections, and the flow of data between them. This visualization helps in understanding the sequence of operations, identifying bottlenecks, and ensuring that the workflow logic aligns with your expectations.
|
||||
|
||||
### How to Generate a Plot
|
||||
|
||||
CrewAI provides two convenient methods to generate plots of your flows:
|
||||
|
||||
#### Option 1: Using the `plot()` Method
|
||||
|
||||
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
|
||||
|
||||
```python
|
||||
# Assuming you have a flow instance
|
||||
flow.plot("my_flow_plot")
|
||||
```
|
||||
|
||||
This will generate a file named `my_flow_plot.html` in your current directory. You can open this file in a web browser to view the interactive plot.
|
||||
|
||||
#### Option 2: Using the Command Line
|
||||
|
||||
If you are working within a structured CrewAI project, you can generate a plot using the command line. This is particularly useful for larger projects where you want to visualize the entire flow setup.
|
||||
|
||||
```bash
|
||||
crewai flow plot
|
||||
```
|
||||
|
||||
This command will generate an HTML file with the plot of your flow, similar to the `plot()` method. The file will be saved in your project directory, and you can open it in a web browser to explore the flow.
|
||||
|
||||
### Understanding the Plot
|
||||
|
||||
The generated plot will display nodes representing the tasks in your flow, with directed edges indicating the flow of execution. The plot is interactive, allowing you to zoom in and out, and hover over nodes to see additional details.
|
||||
|
||||
By visualizing your flows, you can gain a clearer understanding of the workflow's structure, making it easier to debug, optimize, and communicate your AI processes to others.
|
||||
|
||||
### Conclusion
|
||||
|
||||
Plotting your flows is a powerful feature of CrewAI that enhances your ability to design and manage complex AI workflows. Whether you choose to use the `plot()` method or the command line, generating plots will provide you with a visual representation of your workflows, aiding in both development and presentation.
|
||||
|
||||
## Next Steps
|
||||
|
||||
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are four specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
|
||||
|
||||
1. **Email Auto Responder Flow**: This example demonstrates an infinite loop where a background job continually runs to automate email responses. It's a great use case for tasks that need to be performed repeatedly without manual intervention. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/email_auto_responder_flow)
|
||||
|
||||
2. **Lead Score Flow**: This flow showcases adding human-in-the-loop feedback and handling different conditional branches using the router. It's an excellent example of how to incorporate dynamic decision-making and human oversight into your workflows. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/lead-score-flow)
|
||||
|
||||
3. **Write a Book Flow**: This example excels at chaining multiple crews together, where the output of one crew is used by another. Specifically, one crew outlines an entire book, and another crew generates chapters based on the outline. Eventually, everything is connected to produce a complete book. This flow is perfect for complex, multi-step processes that require coordination between different tasks. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/write_a_book_with_flows)
|
||||
|
||||
4. **Meeting Assistant Flow**: This flow demonstrates how to broadcast one event to trigger multiple follow-up actions. For instance, after a meeting is completed, the flow can update a Trello board, send a Slack message, and save the results. It's a great example of handling multiple outcomes from a single event, making it ideal for comprehensive task management and notification systems. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/meeting_assistant_flow)
|
||||
|
||||
By exploring these examples, you can gain insights into how to leverage CrewAI Flows for various use cases, from automating repetitive tasks to managing complex, multi-step processes with dynamic decision-making and human feedback.
|
||||
155
docs/core-concepts/LLMs.md
Normal file
155
docs/core-concepts/LLMs.md
Normal file
@@ -0,0 +1,155 @@
|
||||
# Large Language Models (LLMs) in crewAI
|
||||
|
||||
## Introduction
|
||||
Large Language Models (LLMs) are the backbone of intelligent agents in the crewAI framework. This guide will help you understand, configure, and optimize LLM usage for your crewAI projects.
|
||||
|
||||
## Table of Contents
|
||||
- [Key Concepts](#key-concepts)
|
||||
- [Configuring LLMs for Agents](#configuring-llms-for-agents)
|
||||
- [1. Default Configuration](#1-default-configuration)
|
||||
- [2. String Identifier](#2-string-identifier)
|
||||
- [3. LLM Instance](#3-llm-instance)
|
||||
- [4. Custom LLM Objects](#4-custom-llm-objects)
|
||||
- [Connecting to OpenAI-Compatible LLMs](#connecting-to-openai-compatible-llms)
|
||||
- [LLM Configuration Options](#llm-configuration-options)
|
||||
- [Using Ollama (Local LLMs)](#using-ollama-local-llms)
|
||||
- [Changing the Base API URL](#changing-the-base-api-url)
|
||||
- [Best Practices](#best-practices)
|
||||
- [Troubleshooting](#troubleshooting)
|
||||
|
||||
## Key Concepts
|
||||
- **LLM**: Large Language Model, the AI powering agent intelligence
|
||||
- **Agent**: A crewAI entity that uses an LLM to perform tasks
|
||||
- **Provider**: A service that offers LLM capabilities (e.g., OpenAI, Anthropic, Ollama, [more providers](https://docs.litellm.ai/docs/providers))
|
||||
|
||||
## Configuring LLMs for Agents
|
||||
|
||||
crewAI offers flexible options for setting up LLMs:
|
||||
|
||||
### 1. Default Configuration
|
||||
By default, crewAI uses the `gpt-4o-mini` model. It uses environment variables if no LLM is specified:
|
||||
- `OPENAI_MODEL_NAME` (defaults to "gpt-4o-mini" if not set)
|
||||
- `OPENAI_API_BASE`
|
||||
- `OPENAI_API_KEY`
|
||||
|
||||
### 2. String Identifier
|
||||
```python
|
||||
agent = Agent(llm="gpt-4o", ...)
|
||||
```
|
||||
|
||||
### 3. LLM Instance
|
||||
List of [more providers](https://docs.litellm.ai/docs/providers).
|
||||
```python
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(model="gpt-4", temperature=0.7)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
### 4. Custom LLM Objects
|
||||
Pass a custom LLM implementation or object from another library.
|
||||
|
||||
## Connecting to OpenAI-Compatible LLMs
|
||||
|
||||
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
|
||||
|
||||
1. Using environment variables:
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
|
||||
```
|
||||
|
||||
2. Using LLM class attributes:
|
||||
```python
|
||||
llm = LLM(
|
||||
model="custom-model-name",
|
||||
api_key="your-api-key",
|
||||
base_url="https://api.your-provider.com/v1"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
## LLM Configuration Options
|
||||
|
||||
When configuring an LLM for your agent, you have access to a wide range of parameters:
|
||||
|
||||
| Parameter | Type | Description |
|
||||
|-----------|------|-------------|
|
||||
| `model` | str | The name of the model to use (e.g., "gpt-4", "gpt-3.5-turbo", "ollama/llama3.1", [more providers](https://docs.litellm.ai/docs/providers)) |
|
||||
| `timeout` | float, int | Maximum time (in seconds) to wait for a response |
|
||||
| `temperature` | float | Controls randomness in output (0.0 to 1.0) |
|
||||
| `top_p` | float | Controls diversity of output (0.0 to 1.0) |
|
||||
| `n` | int | Number of completions to generate |
|
||||
| `stop` | str, List[str] | Sequence(s) to stop generation |
|
||||
| `max_tokens` | int | Maximum number of tokens to generate |
|
||||
| `presence_penalty` | float | Penalizes new tokens based on their presence in the text so far |
|
||||
| `frequency_penalty` | float | Penalizes new tokens based on their frequency in the text so far |
|
||||
| `logit_bias` | Dict[int, float] | Modifies likelihood of specified tokens appearing in the completion |
|
||||
| `response_format` | Dict[str, Any] | Specifies the format of the response (e.g., {"type": "json_object"}) |
|
||||
| `seed` | int | Sets a random seed for deterministic results |
|
||||
| `logprobs` | bool | Whether to return log probabilities of the output tokens |
|
||||
| `top_logprobs` | int | Number of most likely tokens to return the log probabilities for |
|
||||
| `base_url` | str | The base URL for the API endpoint |
|
||||
| `api_version` | str | The version of the API to use |
|
||||
| `api_key` | str | Your API key for authentication |
|
||||
|
||||
Example:
|
||||
```python
|
||||
llm = LLM(
|
||||
model="gpt-4",
|
||||
temperature=0.8,
|
||||
max_tokens=150,
|
||||
top_p=0.9,
|
||||
frequency_penalty=0.1,
|
||||
presence_penalty=0.1,
|
||||
stop=["END"],
|
||||
seed=42,
|
||||
base_url="https://api.openai.com/v1",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
## Using Ollama (Local LLMs)
|
||||
|
||||
crewAI supports using Ollama for running open-source models locally:
|
||||
|
||||
1. Install Ollama: [ollama.ai](https://ollama.ai/)
|
||||
2. Run a model: `ollama run llama2`
|
||||
3. Configure agent:
|
||||
```python
|
||||
agent = Agent(
|
||||
llm=LLM(model="ollama/llama3.1", base_url="http://localhost:11434"),
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
## Changing the Base API URL
|
||||
|
||||
You can change the base API URL for any LLM provider by setting the `base_url` parameter:
|
||||
|
||||
```python
|
||||
llm = LLM(
|
||||
model="custom-model-name",
|
||||
base_url="https://api.your-provider.com/v1",
|
||||
api_key="your-api-key"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
This is particularly useful when working with OpenAI-compatible APIs or when you need to specify a different endpoint for your chosen provider.
|
||||
|
||||
## Best Practices
|
||||
1. **Choose the right model**: Balance capability and cost.
|
||||
2. **Optimize prompts**: Clear, concise instructions improve output.
|
||||
3. **Manage tokens**: Monitor and limit token usage for efficiency.
|
||||
4. **Use appropriate temperature**: Lower for factual tasks, higher for creative ones.
|
||||
5. **Implement error handling**: Gracefully manage API errors and rate limits.
|
||||
|
||||
## Troubleshooting
|
||||
- **API Errors**: Check your API key, network connection, and rate limits.
|
||||
- **Unexpected Outputs**: Refine your prompts and adjust temperature or top_p.
|
||||
- **Performance Issues**: Consider using a more powerful model or optimizing your queries.
|
||||
- **Timeout Errors**: Increase the `timeout` parameter or optimize your input.
|
||||
@@ -4,16 +4,17 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
|
||||
---
|
||||
|
||||
## Introduction to Memory Systems in crewAI
|
||||
|
||||
!!! note "Enhancing Agent Intelligence"
|
||||
The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents. This system comprises short-term memory, long-term memory, entity memory, and contextual memory, each serving a unique purpose in aiding agents to remember, reason, and learn from past interactions.
|
||||
|
||||
## Memory System Components
|
||||
|
||||
| Component | Description |
|
||||
| :------------------- | :----------------------------------------------------------- |
|
||||
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes, enabling agents to recall and utilize information relevant to their current context during the current executions. |
|
||||
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. So Agents can remember what they did right and wrong across multiple executions |
|
||||
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. |
|
||||
| Component | Description |
|
||||
| :------------------- | :---------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes using `RAG`, enabling agents to recall and utilize information relevant to their current context during the current executions.|
|
||||
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
|
||||
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
|
||||
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
|
||||
|
||||
## How Memory Systems Empower Agents
|
||||
@@ -27,12 +28,12 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
|
||||
## Implementing Memory in Your Crew
|
||||
|
||||
When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform.
|
||||
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
|
||||
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI embeddings by default, but you can change it by setting `embedder` to a different model. It's also possible to initialize the memory instance with your own instance.
|
||||
|
||||
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using EmbedChain package.
|
||||
The **Long-Term Memory** uses SQLLite3 to store task results. Currently, there is no way to override these storage implementations.
|
||||
The data storage files are saved into a platform specific location found using the appdirs package
|
||||
and the name of the project which can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
|
||||
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using the EmbedChain package.
|
||||
The **Long-Term Memory** uses SQLite3 to store task results. Currently, there is no way to override these storage implementations.
|
||||
The data storage files are saved into a platform-specific location found using the appdirs package,
|
||||
and the name of the project can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
|
||||
|
||||
### Example: Configuring Memory for a Crew
|
||||
|
||||
@@ -49,6 +50,45 @@ my_crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
### Example: Use Custom Memory Instances e.g FAISS as the VectorDB
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
# Assemble your crew with memory capabilities
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process="Process.sequential",
|
||||
memory=True,
|
||||
long_term_memory=EnhanceLongTermMemory(
|
||||
storage=LTMSQLiteStorage(
|
||||
db_path="/my_data_dir/my_crew1/long_term_memory_storage.db"
|
||||
)
|
||||
),
|
||||
short_term_memory=EnhanceShortTermMemory(
|
||||
storage=CustomRAGStorage(
|
||||
crew_name="my_crew",
|
||||
storage_type="short_term",
|
||||
data_dir="//my_data_dir",
|
||||
model=embedder["model"],
|
||||
dimension=embedder["dimension"],
|
||||
),
|
||||
),
|
||||
entity_memory=EnhanceEntityMemory(
|
||||
storage=CustomRAGStorage(
|
||||
crew_name="my_crew",
|
||||
storage_type="entities",
|
||||
data_dir="//my_data_dir",
|
||||
model=embedder["model"],
|
||||
dimension=embedder["dimension"],
|
||||
),
|
||||
),
|
||||
verbose=True,
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
## Additional Embedding Providers
|
||||
|
||||
### Using OpenAI embeddings (already default)
|
||||
@@ -56,17 +96,17 @@ my_crew = Crew(
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "openai",
|
||||
"config":{
|
||||
"model": 'text-embedding-3-small'
|
||||
}
|
||||
}
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": 'text-embedding-3-small'
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
@@ -75,19 +115,19 @@ my_crew = Crew(
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "google",
|
||||
"config":{
|
||||
"model": 'models/embedding-001',
|
||||
"task_type": "retrieval_document",
|
||||
"title": "Embeddings for Embedchain"
|
||||
}
|
||||
}
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "google",
|
||||
"config": {
|
||||
"model": 'models/embedding-001',
|
||||
"task_type": "retrieval_document",
|
||||
"title": "Embeddings for Embedchain"
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
@@ -96,18 +136,18 @@ my_crew = Crew(
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "azure_openai",
|
||||
"config":{
|
||||
"model": 'text-embedding-ada-002',
|
||||
"deployment_name": "your_embedding_model_deployment_name"
|
||||
}
|
||||
}
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "azure_openai",
|
||||
"config": {
|
||||
"model": 'text-embedding-ada-002',
|
||||
"deployment_name": "your_embedding_model_deployment_name"
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
@@ -116,14 +156,14 @@ my_crew = Crew(
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "gpt4all"
|
||||
}
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "gpt4all"
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
@@ -132,17 +172,17 @@ my_crew = Crew(
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "vertexai",
|
||||
"config":{
|
||||
"model": 'textembedding-gecko'
|
||||
}
|
||||
}
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "vertexai",
|
||||
"config": {
|
||||
"model": 'textembedding-gecko'
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
@@ -151,24 +191,24 @@ my_crew = Crew(
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "cohere",
|
||||
"config":{
|
||||
"model": "embed-english-v3.0",
|
||||
"vector_dimension": 1024
|
||||
}
|
||||
}
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "cohere",
|
||||
"config": {
|
||||
"model": "embed-english-v3.0",
|
||||
"vector_dimension": 1024
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Resetting Memory
|
||||
```sh
|
||||
crewai reset_memories [OPTIONS]
|
||||
crewai reset-memories [OPTIONS]
|
||||
```
|
||||
|
||||
#### Resetting Memory Options
|
||||
|
||||
@@ -12,7 +12,7 @@ A pipeline in crewAI represents a structured workflow that allows for the sequen
|
||||
Understanding the following terms is crucial for working effectively with pipelines:
|
||||
|
||||
- **Stage**: A distinct part of the pipeline, which can be either sequential (a single crew) or parallel (multiple crews executing concurrently).
|
||||
- **Run**: A specific execution of the pipeline for a given set of inputs, representing a single instance of processing through the pipeline.
|
||||
- **Kickoff**: A specific execution of the pipeline for a given set of inputs, representing a single instance of processing through the pipeline.
|
||||
- **Branch**: Parallel executions within a stage (e.g., concurrent crew operations).
|
||||
- **Trace**: The journey of an individual input through the entire pipeline, capturing the path and transformations it undergoes.
|
||||
|
||||
@@ -28,13 +28,13 @@ This represents a pipeline with three stages:
|
||||
2. A parallel stage with two branches (crew2 and crew3 executing concurrently)
|
||||
3. Another sequential stage (crew4)
|
||||
|
||||
Each input creates its own run, flowing through all stages of the pipeline. Multiple runs can be processed concurrently, each following the defined pipeline structure.
|
||||
Each input creates its own kickoff, flowing through all stages of the pipeline. Multiple kickoffs can be processed concurrently, each following the defined pipeline structure.
|
||||
|
||||
## Pipeline Attributes
|
||||
|
||||
| Attribute | Parameters | Description |
|
||||
| :--------- | :--------- | :---------------------------------------------------------------------------------------------- |
|
||||
| **Stages** | `stages` | A list of crews, lists of crews, or routers representing the stages to be executed in sequence. |
|
||||
| Attribute | Parameters | Description |
|
||||
| :--------- | :---------- | :----------------------------------------------------------------------------------------------------------------- |
|
||||
| **Stages** | `stages` | A list of `PipelineStage` (crews, lists of crews, or routers) representing the stages to be executed in sequence. |
|
||||
|
||||
## Creating a Pipeline
|
||||
|
||||
@@ -43,7 +43,7 @@ When creating a pipeline, you define a series of stages, each consisting of eith
|
||||
### Example: Assembling a Pipeline
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent, Task, Pipeline
|
||||
from crewai import Crew, Process, Pipeline
|
||||
|
||||
# Define your crews
|
||||
research_crew = Crew(
|
||||
@@ -74,7 +74,8 @@ my_pipeline = Pipeline(
|
||||
|
||||
| Method | Description |
|
||||
| :--------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **process_runs** | Executes the pipeline, processing all stages and returning the results. This method initiates one or more runs through the pipeline, handling the flow of data between stages. |
|
||||
| **kickoff** | Executes the pipeline, processing all stages and returning the results. This method initiates one or more kickoffs through the pipeline, handling the flow of data between stages. |
|
||||
| **process_runs** | Runs the pipeline for each input provided, handling the flow and transformation of data between stages. |
|
||||
|
||||
## Pipeline Output
|
||||
|
||||
@@ -99,12 +100,12 @@ The output of a pipeline in the crewAI framework is encapsulated within the `Pip
|
||||
| Attribute | Parameters | Type | Description |
|
||||
| :---------------- | :-------------- | :------------------------- | :-------------------------------------------------------------------------------------------- |
|
||||
| **ID** | `id` | `UUID4` | A unique identifier for the run result. |
|
||||
| **Raw** | `raw` | `str` | The raw output of the final stage in the pipeline run. |
|
||||
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the final stage, if applicable. |
|
||||
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the final stage, if applicable. |
|
||||
| **Token Usage** | `token_usage` | `Dict[str, Any]` | A summary of token usage across all stages of the pipeline run. |
|
||||
| **Trace** | `trace` | `List[Any]` | A trace of the journey of inputs through the pipeline run. |
|
||||
| **Crews Outputs** | `crews_outputs` | `List[CrewOutput]` | A list of `CrewOutput` objects, representing the outputs from each crew in the pipeline run. |
|
||||
| **Raw** | `raw` | `str` | The raw output of the final stage in the pipeline kickoff. |
|
||||
| **Pydantic** | `pydantic` | `Any` | A Pydantic model object representing the structured output of the final stage, if applicable. |
|
||||
| **JSON Dict** | `json_dict` | `Union[Dict[str, Any], None]` | A dictionary representing the JSON output of the final stage, if applicable. |
|
||||
| **Token Usage** | `token_usage` | `Dict[str, UsageMetrics]` | A summary of token usage across all stages of the pipeline kickoff. |
|
||||
| **Trace** | `trace` | `List[Any]` | A trace of the journey of inputs through the pipeline kickoff. |
|
||||
| **Crews Outputs** | `crews_outputs` | `List[CrewOutput]` | A list of `CrewOutput` objects, representing the outputs from each crew in the pipeline kickoff. |
|
||||
|
||||
### Pipeline Run Result Methods and Properties
|
||||
|
||||
@@ -112,7 +113,7 @@ The output of a pipeline in the crewAI framework is encapsulated within the `Pip
|
||||
| :-------------- | :------------------------------------------------------------------------------------------------------- |
|
||||
| **json** | Returns the JSON string representation of the run result if the output format of the final task is JSON. |
|
||||
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
|
||||
| \***\*str\*\*** | Returns the string representation of the run result, prioritizing Pydantic, then JSON, then raw. |
|
||||
| **str** | Returns the string representation of the run result, prioritizing Pydantic, then JSON, then raw. |
|
||||
|
||||
### Accessing Pipeline Outputs
|
||||
|
||||
@@ -261,7 +262,7 @@ In this example, the router decides between an urgent pipeline and a normal pipe
|
||||
|
||||
### Error Handling and Validation
|
||||
|
||||
The Pipeline class includes validation mechanisms to ensure the robustness of the pipeline structure:
|
||||
The `Pipeline` class includes validation mechanisms to ensure the robustness of the pipeline structure:
|
||||
|
||||
- Validates that stages contain only Crew instances or lists of Crew instances.
|
||||
- Prevents double nesting of stages to maintain a clear structure.
|
||||
|
||||
@@ -43,7 +43,7 @@ my_crew = Crew(
|
||||
|
||||
### Example
|
||||
|
||||
When running the base case example, you will see something like the following output, which represents the output of the AgentPlanner responsible for creating the step-by-step logic to add to the Agents tasks.
|
||||
When running the base case example, you will see something like the following output, which represents the output of the AgentPlanner responsible for creating the step-by-step logic to add to the Agents' tasks.
|
||||
|
||||
```
|
||||
[2024-07-15 16:49:11][INFO]: Planning the crew execution
|
||||
@@ -96,7 +96,7 @@ A list with 10 bullet points of the most relevant information about AI LLMs.
|
||||
|
||||
**Agent Goal:** Create detailed reports based on AI LLMs data analysis and research findings
|
||||
|
||||
**Task Expected Output:** A fully fledge report with the main topics, each with a full section of information. Formatted as markdown without '```'
|
||||
**Task Expected Output:** A fully fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'
|
||||
|
||||
**Task Tools:** None specified
|
||||
|
||||
@@ -130,5 +130,4 @@ A list with 10 bullet points of the most relevant information about AI LLMs.
|
||||
- Double-check formatting and make any necessary adjustments.
|
||||
|
||||
**Expected Output:**
|
||||
A fully-fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'.
|
||||
```
|
||||
A fully fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'.
|
||||
|
||||
@@ -12,22 +12,22 @@ Tasks within crewAI can be collaborative, requiring multiple agents to work toge
|
||||
|
||||
## Task Attributes
|
||||
|
||||
| Attribute | Parameters | Description |
|
||||
| :------------------------------- | :---------------- | :------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Description** | `description` | A clear, concise statement of what the task entails. |
|
||||
| **Agent** | `agent` | The agent responsible for the task, assigned either directly or by the crew's process. |
|
||||
| **Expected Output** | `expected_output` | A detailed description of what the task's completion looks like. |
|
||||
| **Tools** _(optional)_ | `tools` | The functions or capabilities the agent can utilize to perform the task. Defaults to an empty list. |
|
||||
| **Async Execution** _(optional)_ | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion. Defaults to False. |
|
||||
| **Context** _(optional)_ | `context` | Specifies tasks whose outputs are used as context for this task. |
|
||||
| **Config** _(optional)_ | `config` | Additional configuration details for the agent executing the task, allowing further customization. Defaults to None. |
|
||||
| **Output JSON** _(optional)_ | `output_json` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output Pydantic** _(optional)_ | `output_pydantic` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output File** _(optional)_ | `output_file` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
|
||||
| **Output** _(optional)_ | `output` | An instance of `TaskOutput`, containing the raw, JSON, and Pydantic output plus additional details. |
|
||||
| **Callback** _(optional)_ | `callback` | A callable that is executed with the task's output upon completion. |
|
||||
| **Human Input** _(optional)_ | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. Defaults to False.|
|
||||
| **Converter Class** _(optional)_ | `converter_cls` | A converter class used to export structured output. Defaults to None. |
|
||||
| Attribute | Parameters | Type | Description |
|
||||
| :------------------------------- | :---------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Description** | `description` | `str` | A clear, concise statement of what the task entails. |
|
||||
| **Agent** | `agent` | `Optional[BaseAgent]` | The agent responsible for the task, assigned either directly or by the crew's process. |
|
||||
| **Expected Output** | `expected_output` | `str` | A detailed description of what the task's completion looks like. |
|
||||
| **Tools** _(optional)_ | `tools` | `Optional[List[Any]]` | The functions or capabilities the agent can utilize to perform the task. Defaults to an empty list. |
|
||||
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | If set, the task executes asynchronously, allowing progression without waiting for completion. Defaults to False. |
|
||||
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Specifies tasks whose outputs are used as context for this task. |
|
||||
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Additional configuration details for the agent executing the task, allowing further customization. Defaults to None. |
|
||||
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
|
||||
| **Output** _(optional)_ | `output` | `Optional[TaskOutput]` | An instance of `TaskOutput`, containing the raw, JSON, and Pydantic output plus additional details. |
|
||||
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | A callable that is executed with the task's output upon completion. |
|
||||
| **Human Input** _(optional)_ | `human_input` | `Optional[bool]` | Indicates if the task should involve human review at the end, useful for tasks needing human oversight. Defaults to False.|
|
||||
| **Converter Class** _(optional)_ | `converter_cls` | `Optional[Type[Converter]]` | A converter class used to export structured output. Defaults to None. |
|
||||
|
||||
## Creating a Task
|
||||
|
||||
@@ -49,28 +49,28 @@ Directly specify an `agent` for assignment or let the `hierarchical` CrewAI's pr
|
||||
## Task Output
|
||||
|
||||
!!! note "Understanding Task Outputs"
|
||||
The output of a task in the crewAI framework is encapsulated within the `TaskOutput` class. This class provides a structured way to access results of a task, including various formats such as raw strings, JSON, and Pydantic models.
|
||||
The output of a task in the crewAI framework is encapsulated within the `TaskOutput` class. This class provides a structured way to access results of a task, including various formats such as raw output, JSON, and Pydantic models.
|
||||
By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput` will only include the `pydantic` or `json_dict` output if the original `Task` object was configured with `output_pydantic` or `output_json`, respectively.
|
||||
|
||||
### Task Output Attributes
|
||||
|
||||
| Attribute | Parameters | Type | Description |
|
||||
| :---------------- | :-------------- | :------------------------- | :------------------------------------------------------------------------------------------------- |
|
||||
| **Description** | `description` | `str` | A brief description of the task. |
|
||||
| **Summary** | `summary` | `Optional[str]` | A short summary of the task, auto-generated from the first 10 words of the description. |
|
||||
| **Description** | `description` | `str` | Description of the task. |
|
||||
| **Summary** | `summary` | `Optional[str]` | Summary of the task, auto-generated from the first 10 words of the description. |
|
||||
| **Raw** | `raw` | `str` | The raw output of the task. This is the default format for the output. |
|
||||
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the task. |
|
||||
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
|
||||
| **Agent** | `agent` | `str` | The agent that executed the task. |
|
||||
| **Output Format** | `output_format` | `OutputFormat` | The format of the task output, with options including RAW, JSON, and Pydantic. The default is RAW. |
|
||||
|
||||
### Task Output Methods and Properties
|
||||
### Task Methods and Properties
|
||||
|
||||
| Method/Property | Description |
|
||||
| :-------------- | :------------------------------------------------------------------------------------------------ |
|
||||
| **json** | Returns the JSON string representation of the task output if the output format is JSON. |
|
||||
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
|
||||
| \***\*str\*\*** | Returns the string representation of the task output, prioritizing Pydantic, then JSON, then raw. |
|
||||
| **str** | Returns the string representation of the task output, prioritizing Pydantic, then JSON, then raw. |
|
||||
|
||||
### Accessing Task Outputs
|
||||
|
||||
@@ -234,7 +234,7 @@ def callback_function(output: TaskOutput):
|
||||
print(f"""
|
||||
Task completed!
|
||||
Task: {output.description}
|
||||
Output: {output.raw_output}
|
||||
Output: {output.raw}
|
||||
""")
|
||||
|
||||
research_task = Task(
|
||||
@@ -275,7 +275,7 @@ result = crew.kickoff()
|
||||
print(f"""
|
||||
Task completed!
|
||||
Task: {task1.output.description}
|
||||
Output: {task1.output.raw_output}
|
||||
Output: {task1.output.raw}
|
||||
""")
|
||||
```
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ Testing is a crucial part of the development process, and it is essential to ens
|
||||
|
||||
### Using the Testing Feature
|
||||
|
||||
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics. The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now, the only provider available is OpenAI.
|
||||
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics. The parameters are `n_iterations` and `model`, which are optional and default to 2 and `gpt-4o-mini` respectively. For now, the only provider available is OpenAI.
|
||||
|
||||
```bash
|
||||
crewai test
|
||||
@@ -21,20 +21,36 @@ If you want to run more iterations or use a different model, you can specify the
|
||||
crewai test --n_iterations 5 --model gpt-4o
|
||||
```
|
||||
|
||||
or using the short forms:
|
||||
|
||||
```bash
|
||||
crewai test -n 5 -m gpt-4o
|
||||
```
|
||||
|
||||
When you run the `crewai test` command, the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
|
||||
|
||||
A table of scores at the end will show the performance of the crew in terms of the following metrics:
|
||||
|
||||
```
|
||||
Task Scores
|
||||
(1-10 Higher is better)
|
||||
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
|
||||
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
|
||||
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
|
||||
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
|
||||
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
|
||||
│ Crew │ 9.5 │ 9.0 │ 9.2 │
|
||||
└────────────┴───────┴───────┴────────────┘
|
||||
Tasks Scores
|
||||
(1-10 Higher is better)
|
||||
┏━━━━━━━━━━━━━━━━━━━━┯━━━━━━━┯━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Tasks/Crew/Agents │ Run 1 │ Run 2 │ Avg. Total │ Agents │ ┃
|
||||
┠────────────────────┼───────┼───────┼────────────┼────────────────────────────────┼─────────────────────────────────┨
|
||||
┃ Task 1 │ 9.0 │ 9.5 │ 9.2 │ - Professional Insights │ ┃
|
||||
┃ │ │ │ │ Researcher │ ┃
|
||||
┃ │ │ │ │ │ ┃
|
||||
┃ Task 2 │ 9.0 │ 10.0 │ 9.5 │ - Company Profile Investigator │ ┃
|
||||
┃ │ │ │ │ │ ┃
|
||||
┃ Task 3 │ 9.0 │ 9.0 │ 9.0 │ - Automation Insights │ ┃
|
||||
┃ │ │ │ │ Specialist │ ┃
|
||||
┃ │ │ │ │ │ ┃
|
||||
┃ Task 4 │ 9.0 │ 9.0 │ 9.0 │ - Final Report Compiler │ ┃
|
||||
┃ │ │ │ │ │ - Automation Insights ┃
|
||||
┃ │ │ │ │ │ Specialist ┃
|
||||
┃ Crew │ 9.00 │ 9.38 │ 9.2 │ │ ┃
|
||||
┃ Execution Time (s) │ 126 │ 145 │ 135 │ │ ┃
|
||||
┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━┷━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
|
||||
```
|
||||
|
||||
The example above shows the test results for two runs of the crew with two tasks, with the average total score for each task and the crew as a whole.
|
||||
|
||||
@@ -106,7 +106,7 @@ Here is a list of the available tools and their descriptions:
|
||||
| **CodeInterpreterTool** | A tool for interpreting python code. |
|
||||
| **ComposioTool** | Enables use of Composio tools. |
|
||||
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
|
||||
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
|
||||
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
|
||||
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
|
||||
@@ -114,7 +114,7 @@ Here is a list of the available tools and their descriptions:
|
||||
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
|
||||
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
|
||||
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
|
||||
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages url using Firecrawl and returning its contents. |
|
||||
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
|
||||
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
|
||||
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
|
||||
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
|
||||
@@ -123,14 +123,14 @@ Here is a list of the available tools and their descriptions:
|
||||
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
|
||||
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
|
||||
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
|
||||
| **Vision Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
|
||||
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
|
||||
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
|
||||
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
|
||||
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
|
||||
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
|
||||
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
|
||||
| **Vision Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
|
||||
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
|
||||
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
|
||||
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
|
||||
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
|
||||
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
|
||||
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
|
||||
|
||||
## Creating your own Tools
|
||||
|
||||
@@ -144,6 +144,7 @@ pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
Once you do that there are two main ways for one to create a crewAI tool:
|
||||
|
||||
### Subclassing `BaseTool`
|
||||
|
||||
```python
|
||||
|
||||
@@ -16,7 +16,7 @@ To use the training feature, follow these steps:
|
||||
3. Run the following command:
|
||||
|
||||
```shell
|
||||
crewai train -n <n_iterations> <filename>
|
||||
crewai train -n <n_iterations> <filename> (optional)
|
||||
```
|
||||
|
||||
!!! note "Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`."
|
||||
|
||||
@@ -5,9 +5,10 @@ description: Learn how to integrate LangChain tools with CrewAI agents to enhanc
|
||||
|
||||
## Using LangChain Tools
|
||||
!!! info "LangChain Integration"
|
||||
CrewAI seamlessly integrates with LangChain’s comprehensive toolkit for search-based queries and more, here are the available built-in tools that are offered by Langchain [LangChain Toolkit](https://python.langchain.com/docs/integrations/tools/)
|
||||
CrewAI seamlessly integrates with LangChain’s comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with crewAI.
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent
|
||||
from langchain.agents import Tool
|
||||
from langchain.utilities import GoogleSerperAPIWrapper
|
||||
|
||||
@@ -35,10 +35,10 @@ query_tool = LlamaIndexTool.from_query_engine(
|
||||
|
||||
# Create and assign the tools to an agent
|
||||
agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[tool, *tools, query_tool]
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[tool, *tools, query_tool]
|
||||
)
|
||||
|
||||
# rest of the code ...
|
||||
@@ -54,4 +54,4 @@ To effectively use the LlamaIndexTool, follow these steps:
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
2. **Install and Use LlamaIndex**: Follow LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
|
||||
2. **Install and Use LlamaIndex**: Follow the LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 94 KiB After Width: | Height: | Size: 14 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 97 KiB After Width: | Height: | Size: 14 KiB |
@@ -71,25 +71,59 @@ To customize your pipeline project, you can:
|
||||
3. Modify `src/<project_name>/main.py` to set up and run your pipelines.
|
||||
4. Add your environment variables into the `.env` file.
|
||||
|
||||
### Example: Defining a Pipeline
|
||||
## Example 1: Defining a Two-Stage Sequential Pipeline
|
||||
|
||||
Here's an example of how to define a pipeline in `src/<project_name>/pipelines/normal_pipeline.py`:
|
||||
Here's an example of how to define a pipeline with sequential stages in `src/<project_name>/pipelines/pipeline.py`:
|
||||
|
||||
```python
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.normal_crew import NormalCrew
|
||||
from ..crews.research_crew.research_crew import ResearchCrew
|
||||
from ..crews.write_x_crew.write_x_crew import WriteXCrew
|
||||
|
||||
@PipelineBase
|
||||
class NormalPipeline:
|
||||
class SequentialPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.normal_crew = NormalCrew().crew()
|
||||
self.research_crew = ResearchCrew().crew()
|
||||
self.write_x_crew = WriteXCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.normal_crew
|
||||
self.research_crew,
|
||||
self.write_x_crew
|
||||
]
|
||||
)
|
||||
|
||||
async def kickoff(self, inputs):
|
||||
pipeline = self.create_pipeline()
|
||||
results = await pipeline.kickoff(inputs)
|
||||
return results
|
||||
```
|
||||
|
||||
## Example 2: Defining a Two-Stage Pipeline with Parallel Execution
|
||||
|
||||
```python
|
||||
from crewai import Pipeline
|
||||
from crewai.project import PipelineBase
|
||||
from ..crews.research_crew.research_crew import ResearchCrew
|
||||
from ..crews.write_x_crew.write_x_crew import WriteXCrew
|
||||
from ..crews.write_linkedin_crew.write_linkedin_crew import WriteLinkedInCrew
|
||||
|
||||
@PipelineBase
|
||||
class ParallelExecutionPipeline:
|
||||
def __init__(self):
|
||||
# Initialize crews
|
||||
self.research_crew = ResearchCrew().crew()
|
||||
self.write_x_crew = WriteXCrew().crew()
|
||||
self.write_linkedin_crew = WriteLinkedInCrew().crew()
|
||||
|
||||
def create_pipeline(self):
|
||||
return Pipeline(
|
||||
stages=[
|
||||
self.research_crew,
|
||||
[self.write_x_crew, self.write_linkedin_crew] # Parallel execution
|
||||
]
|
||||
)
|
||||
|
||||
@@ -126,4 +160,4 @@ This will initialize your pipeline and begin task execution as defined in your `
|
||||
|
||||
Pipelines can be deployed in the same way as regular CrewAI projects. The easiest way is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your pipeline in a few clicks.
|
||||
|
||||
Remember, when working with pipelines, you're orchestrating multiple crews to work together in a sequence or parallel fashion. This allows for more complex workflows and information processing tasks.
|
||||
Remember, when working with pipelines, you're orchestrating multiple crews to work together in a sequence or parallel fashion. This allows for more complex workflows and information processing tasks.
|
||||
@@ -1,5 +1,7 @@
|
||||
---
|
||||
|
||||
title: Starting a New CrewAI Project - Using Template
|
||||
|
||||
description: A comprehensive guide to starting a new CrewAI project, including the latest updates and project setup methods.
|
||||
---
|
||||
|
||||
@@ -21,6 +23,7 @@ $ pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Creating a New Project
|
||||
|
||||
In this example, we will be using poetry as our virtual environment manager.
|
||||
|
||||
To create a new CrewAI project, run the following CLI command:
|
||||
@@ -95,10 +98,13 @@ research_candidates_task:
|
||||
```
|
||||
|
||||
### Referencing Variables:
|
||||
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task won't recognize the reference properly.
|
||||
|
||||
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from `tasks.yaml` file. Ensure your annotated agent and function name are the same; otherwise, your task won't recognize the reference properly.
|
||||
|
||||
#### Example References
|
||||
agent.yaml
|
||||
|
||||
`agents.yaml`
|
||||
|
||||
```yaml
|
||||
email_summarizer:
|
||||
role: >
|
||||
@@ -110,7 +116,8 @@ email_summarizer:
|
||||
llm: mixtal_llm
|
||||
```
|
||||
|
||||
task.yaml
|
||||
`tasks.yaml`
|
||||
|
||||
```yaml
|
||||
email_summarizer_task:
|
||||
description: >
|
||||
@@ -123,37 +130,34 @@ email_summarizer_task:
|
||||
- research_task
|
||||
```
|
||||
|
||||
Use the annotations to properly reference the agent and task in the crew.py file.
|
||||
Use the annotations to properly reference the agent and task in the `crew.py` file.
|
||||
|
||||
### Annotations include:
|
||||
* [@agent](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L17)
|
||||
* [@task](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L4)
|
||||
* [@crew](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L69)
|
||||
* [@llm](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L23)
|
||||
* [@tool](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L39)
|
||||
* [@callback](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L44)
|
||||
* [@output_json](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L29)
|
||||
* [@output_pydantic](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L34)
|
||||
* [@cache_handler](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L49)
|
||||
|
||||
crew.py
|
||||
```py
|
||||
* `@agent`
|
||||
* `@task`
|
||||
* `@crew`
|
||||
* `@tool`
|
||||
* `@callback`
|
||||
* `@output_json`
|
||||
* `@output_pydantic`
|
||||
* `@cache_handler`
|
||||
|
||||
`crew.py`
|
||||
|
||||
```python
|
||||
# ...
|
||||
@llm
|
||||
def mixtal_llm(self):
|
||||
return ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
|
||||
@agent
|
||||
def email_summarizer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config["email_summarizer"],
|
||||
)
|
||||
|
||||
@agent
|
||||
def email_summarizer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config["email_summarizer"],
|
||||
)
|
||||
## ...other tasks defined
|
||||
@task
|
||||
def email_summarizer_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["email_summarizer_task"],
|
||||
)
|
||||
@task
|
||||
def email_summarizer_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["email_summarizer_task"],
|
||||
)
|
||||
# ...
|
||||
```
|
||||
|
||||
@@ -172,7 +176,7 @@ This will install the dependencies specified in the `pyproject.toml` file.
|
||||
|
||||
Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{variable}` will be replaced by the value of the variable in the `main.py` file.
|
||||
|
||||
#### agents.yaml
|
||||
#### tasks.yaml
|
||||
|
||||
```yaml
|
||||
research_task:
|
||||
@@ -204,6 +208,7 @@ To run your project, use the following command:
|
||||
```shell
|
||||
$ crewai run
|
||||
```
|
||||
|
||||
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
|
||||
|
||||
### Replay Tasks from Latest Crew Kickoff
|
||||
|
||||
@@ -19,7 +19,7 @@ from crewai.task import Task
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
# Define a condition function for the conditional task
|
||||
# if false task will be skipped, true, then execute task
|
||||
# If false, the task will be skipped, if true, then execute the task.
|
||||
def is_data_missing(output: TaskOutput) -> bool:
|
||||
return len(output.pydantic.events) < 10 # this will skip this task
|
||||
|
||||
@@ -29,21 +29,21 @@ data_fetcher_agent = Agent(
|
||||
goal="Fetch data online using Serper tool",
|
||||
backstory="Backstory 1",
|
||||
verbose=True,
|
||||
tools=[SerperDevTool()],
|
||||
tools=[SerperDevTool()]
|
||||
)
|
||||
|
||||
data_processor_agent = Agent(
|
||||
role="Data Processor",
|
||||
goal="Process fetched data",
|
||||
backstory="Backstory 2",
|
||||
verbose=True,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
summary_generator_agent = Agent(
|
||||
role="Summary Generator",
|
||||
goal="Generate summary from fetched data",
|
||||
backstory="Backstory 3",
|
||||
verbose=True,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
class EventOutput(BaseModel):
|
||||
@@ -69,7 +69,7 @@ conditional_task = ConditionalTask(
|
||||
|
||||
task3 = Task(
|
||||
description="Generate summary of events in San Francisco from fetched data",
|
||||
expected_output="summary_generated",
|
||||
expected_output="A complete report on the customer and their customers and competitors, including their demographics, preferences, market positioning and audience engagement.",
|
||||
agent=summary_generator_agent,
|
||||
)
|
||||
|
||||
@@ -78,7 +78,7 @@ crew = Crew(
|
||||
agents=[data_fetcher_agent, data_processor_agent, summary_generator_agent],
|
||||
tasks=[task1, conditional_task, task3],
|
||||
verbose=True,
|
||||
planning=True # Enable planning feature
|
||||
planning=True
|
||||
)
|
||||
|
||||
# Run the crew
|
||||
|
||||
@@ -91,4 +91,4 @@ Custom prompt files should be structured in JSON format and include all necessar
|
||||
- **Improved Usability**: Supports multiple languages, making it suitable for global projects.
|
||||
- **Consistency**: Ensures uniform prompt structures across different agents and tasks.
|
||||
|
||||
By incorporating these updates, CrewAI provides users with the ability to fully customize and internationalize their agent prompts, making the platform more versatile and user-friendly.
|
||||
By incorporating these updates, CrewAI provides users with the ability to fully customize and internationalize their agent prompts, making the platform more versatile and user-friendly.
|
||||
@@ -14,12 +14,15 @@ Crafting an efficient CrewAI team hinges on the ability to dynamically tailor yo
|
||||
- **Cache** *(Optional)*: Determines whether the agent should use a cache for tool usage.
|
||||
- **Max RPM**: Sets the maximum number of requests per minute (`max_rpm`). This attribute is optional and can be set to `None` for no limit, allowing for unlimited queries to external services if needed.
|
||||
- **Verbose** *(Optional)*: Enables detailed logging of an agent's actions, useful for debugging and optimization. Specifically, it provides insights into agent execution processes, aiding in the optimization of performance.
|
||||
- **Allow Delegation** *(Optional)*: `allow_delegation` controls whether the agent is allowed to delegate tasks to other agents.
|
||||
- **Max Iter** *(Optional)*: The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 25, providing a balance between thoroughness and efficiency. Once the agent approaches this number, it will try its best to give a good answer.
|
||||
- **Allow Delegation** *(Optional)*: `allow_delegation` controls whether the agent is allowed to delegate tasks to other agents. This attribute is now set to `False` by default.
|
||||
- **Max Iter** *(Optional)*: The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 25, providing a balance between thoroughness and efficiency.
|
||||
- **Max Execution Time** *(Optional)*: `max_execution_time` Sets the maximum execution time for an agent to complete a task.
|
||||
- **System Template** *(Optional)*: `system_template` defines the system format for the agent.
|
||||
- **Prompt Template** *(Optional)*: `prompt_template` defines the prompt format for the agent.
|
||||
- **Response Template** *(Optional)*: `response_template` defines the response format for the agent.
|
||||
- **Use System Prompt** *(Optional)*: `use_system_prompt` controls whether the agent will use a system prompt for task execution. Agents can now operate without system prompts.
|
||||
- **Respect Context Window**: `respect_context_window` renames the sliding context window attribute and enables it by default to maintain context size.
|
||||
- **Max Retry Limit**: `max_retry_limit` defines the maximum number of retries for an agent to execute a task when an error occurs.
|
||||
|
||||
## Advanced Customization Options
|
||||
Beyond the basic attributes, CrewAI allows for deeper customization to enhance an agent's behavior and capabilities significantly.
|
||||
@@ -67,12 +70,11 @@ agent = Agent(
|
||||
verbose=True,
|
||||
max_rpm=None, # No limit on requests per minute
|
||||
max_iter=25, # Default value for maximum iterations
|
||||
allow_delegation=False
|
||||
)
|
||||
```
|
||||
|
||||
## Delegation and Autonomy
|
||||
Controlling an agent's ability to delegate tasks or ask questions is vital for tailoring its autonomy and collaborative dynamics within the CrewAI framework. By default, the `allow_delegation` attribute is set to `True`, enabling agents to seek assistance or delegate tasks as needed. This default behavior promotes collaborative problem-solving and efficiency within the CrewAI ecosystem. If needed, delegation can be disabled to suit specific operational requirements.
|
||||
Controlling an agent's ability to delegate tasks or ask questions is vital for tailoring its autonomy and collaborative dynamics within the CrewAI framework. By default, the `allow_delegation` attribute is now set to `False`, disabling agents to seek assistance or delegate tasks as needed. This default behavior can be changed to promote collaborative problem-solving and efficiency within the CrewAI ecosystem. If needed, delegation can be enabled to suit specific operational requirements.
|
||||
|
||||
### Example: Disabling Delegation for an Agent
|
||||
```python
|
||||
@@ -80,7 +82,7 @@ agent = Agent(
|
||||
role='Content Writer',
|
||||
goal='Write engaging content on market trends',
|
||||
backstory='A seasoned writer with expertise in market analysis.',
|
||||
allow_delegation=False # Disabling delegation
|
||||
allow_delegation=True # Enabling delegation
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
@@ -1,27 +1,31 @@
|
||||
---
|
||||
title: Forcing Tool Output as Result
|
||||
description: Learn how to force tool output as the result in of an Agent's task in CrewAI.
|
||||
description: Learn how to force tool output as the result in an Agent's task in CrewAI.
|
||||
---
|
||||
|
||||
## Introduction
|
||||
In CrewAI, you can force the output of a tool as the result of an agent's task. This feature is useful when you want to ensure that the tool output is captured and returned as the task result, and avoid the agent modifying the output during the task execution.
|
||||
In CrewAI, you can force the output of a tool as the result of an agent's task. This feature is useful when you want to ensure that the tool output is captured and returned as the task result, avoiding any agent modification during the task execution.
|
||||
|
||||
## Forcing Tool Output as Result
|
||||
To force the tool output as the result of an agent's task, you can set the `result_as_answer` parameter to `True` when creating the agent. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent.
|
||||
To force the tool output as the result of an agent's task, you need to set the `result_as_answer` parameter to `True` when adding a tool to the agent. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent.
|
||||
|
||||
Here's an example of how to force the tool output as the result of an agent's task:
|
||||
|
||||
```python
|
||||
# ...
|
||||
from crewai.agent import Agent
|
||||
from my_tool import MyCustomTool
|
||||
|
||||
# Define a custom tool that returns the result as the answer
|
||||
# Create a coding agent with the custom tool
|
||||
coding_agent = Agent(
|
||||
role="Data Scientist",
|
||||
goal="Produce amazing reports on AI",
|
||||
backstory="You work with data and AI",
|
||||
tools=[MyCustomTool(result_as_answer=True)],
|
||||
)
|
||||
|
||||
# Assuming the tool's execution and result population occurs within the system
|
||||
task_result = coding_agent.execute_task(task)
|
||||
```
|
||||
|
||||
## Workflow in Action
|
||||
|
||||
@@ -16,6 +16,13 @@ By default, tasks in CrewAI are managed through a sequential process. However, a
|
||||
- **Task Delegation**: A manager agent allocates tasks among crew members based on their roles and capabilities.
|
||||
- **Result Validation**: The manager evaluates outcomes to ensure they meet the required standards.
|
||||
- **Efficient Workflow**: Emulates corporate structures, providing an organized approach to task management.
|
||||
- **System Prompt Handling**: Optionally specify whether the system should use predefined prompts.
|
||||
- **Stop Words Control**: Optionally specify whether stop words should be used, supporting various models including the o1 models.
|
||||
- **Context Window Respect**: Prioritize important context by enabling respect of the context window, which is now the default behavior.
|
||||
- **Delegation Control**: Delegation is now disabled by default to give users explicit control.
|
||||
- **Max Requests Per Minute**: Configurable option to set the maximum number of requests per minute.
|
||||
- **Max Iterations**: Limit the maximum number of iterations for obtaining a final answer.
|
||||
|
||||
|
||||
## Implementing the Hierarchical Process
|
||||
To utilize the hierarchical process, it's essential to explicitly set the process attribute to `Process.hierarchical`, as the default behavior is `Process.sequential`. Define a crew with a designated manager and establish a clear chain of command.
|
||||
@@ -38,6 +45,9 @@ researcher = Agent(
|
||||
cache=True,
|
||||
verbose=False,
|
||||
# tools=[] # This can be optionally specified; defaults to an empty list
|
||||
use_system_prompt=True, # Enable or disable system prompts for this agent
|
||||
max_rpm=30, # Limit on the number of requests per minute
|
||||
max_iter=5 # Maximum number of iterations for a final answer
|
||||
)
|
||||
writer = Agent(
|
||||
role='Writer',
|
||||
@@ -46,6 +56,9 @@ writer = Agent(
|
||||
cache=True,
|
||||
verbose=False,
|
||||
# tools=[] # Optionally specify tools; defaults to an empty list
|
||||
use_system_prompt=True, # Enable or disable system prompts for this agent
|
||||
max_rpm=30, # Limit on the number of requests per minute
|
||||
max_iter=5 # Maximum number of iterations for a final answer
|
||||
)
|
||||
|
||||
# Establishing the crew with a hierarchical process and additional configurations
|
||||
@@ -54,6 +67,7 @@ project_crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory if manager_agent is not set
|
||||
process=Process.hierarchical, # Specifies the hierarchical management approach
|
||||
respect_context_window=True, # Enable respect of the context window for tasks
|
||||
memory=True, # Enable memory usage for enhanced task execution
|
||||
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
|
||||
planning=True, # Enable planning feature for pre-execution strategy
|
||||
|
||||
@@ -74,7 +74,8 @@ task2 = Task(
|
||||
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
|
||||
),
|
||||
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
|
||||
agent=writer
|
||||
agent=writer,
|
||||
human_input=True
|
||||
)
|
||||
|
||||
# Instantiate your crew with a sequential process
|
||||
|
||||
@@ -72,7 +72,7 @@ asyncio.run(async_crew_execution())
|
||||
|
||||
## Example: Multiple Asynchronous Crew Executions
|
||||
|
||||
In this example, we'll show how to kickoff multiple crews asynchronously and wait for all of them to complete using asyncio.gather():
|
||||
In this example, we'll show how to kickoff multiple crews asynchronously and wait for all of them to complete using `asyncio.gather()`:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
@@ -114,4 +114,4 @@ async def async_multiple_crews():
|
||||
|
||||
# Run the async function
|
||||
asyncio.run(async_multiple_crews())
|
||||
```
|
||||
```
|
||||
@@ -25,13 +25,17 @@ coding_agent = Agent(
|
||||
# Create a task that requires code execution
|
||||
data_analysis_task = Task(
|
||||
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
|
||||
agent=coding_agent
|
||||
agent=coding_agent,
|
||||
expected_output="The average age calculated from the dataset"
|
||||
)
|
||||
|
||||
# Create a crew and add the task
|
||||
analysis_crew = Crew(
|
||||
agents=[coding_agent],
|
||||
tasks=[data_analysis_task]
|
||||
tasks=[data_analysis_task],
|
||||
verbose=True,
|
||||
memory=False,
|
||||
respect_context_window=True # enable by default
|
||||
)
|
||||
|
||||
datasets = [
|
||||
@@ -42,4 +46,4 @@ datasets = [
|
||||
|
||||
# Execute the crew
|
||||
result = analysis_crew.kickoff_for_each(inputs=datasets)
|
||||
```
|
||||
```
|
||||
@@ -1,196 +1,163 @@
|
||||
---
|
||||
title: Connect CrewAI to LLMs
|
||||
description: Comprehensive guide on integrating CrewAI with various Large Language Models (LLMs), including detailed class attributes, methods, and configuration options.
|
||||
description: Comprehensive guide on integrating CrewAI with various Large Language Models (LLMs) using LiteLLM, including supported providers and configuration options.
|
||||
---
|
||||
|
||||
## Connect CrewAI to LLMs
|
||||
|
||||
CrewAI uses LiteLLM to connect to a wide variety of Language Models (LLMs). This integration provides extensive versatility, allowing you to use models from numerous providers with a simple, unified interface.
|
||||
|
||||
!!! note "Default LLM"
|
||||
By default, CrewAI uses OpenAI's GPT-4o model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4o") for language processing. You can configure your agents to use a different model or API as described in this guide.
|
||||
By default, CrewAI uses OpenAI's GPT-4 model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4") for language processing. You can configure your agents to use a different model or API as described in this guide.
|
||||
By default, CrewAI uses the `gpt-4o-mini` model. This is determined by the `OPENAI_MODEL_NAME` environment variable, which defaults to "gpt-4o-mini" if not set. You can easily configure your agents to use a different model or provider as described in this guide.
|
||||
|
||||
CrewAI provides extensive versatility in integrating with various Language Models (LLMs), including local options through Ollama such as Llama and Mixtral to cloud-based solutions like Azure. Its compatibility extends to all [LangChain LLM components](https://python.langchain.com/v0.2/docs/integrations/llms/), offering a wide range of integration possibilities for customized AI applications.
|
||||
## Supported Providers
|
||||
|
||||
The platform supports connections to an array of Generative AI models, including:
|
||||
LiteLLM supports a wide range of providers, including but not limited to:
|
||||
|
||||
- OpenAI's suite of advanced language models
|
||||
- Anthropic's cutting-edge AI offerings
|
||||
- Ollama's diverse range of locally-hosted generative model & embeddings
|
||||
- LM Studio's diverse range of locally hosted generative models & embeddings
|
||||
- Groq's Super Fast LLM offerings
|
||||
- Azures' generative AI offerings
|
||||
- HuggingFace's generative AI offerings
|
||||
- OpenAI
|
||||
- Anthropic
|
||||
- Google (Vertex AI, Gemini)
|
||||
- Azure OpenAI
|
||||
- AWS (Bedrock, SageMaker)
|
||||
- Cohere
|
||||
- Hugging Face
|
||||
- Ollama
|
||||
- Mistral AI
|
||||
- Replicate
|
||||
- Together AI
|
||||
- AI21
|
||||
- Cloudflare Workers AI
|
||||
- DeepInfra
|
||||
- Groq
|
||||
- And many more!
|
||||
|
||||
This broad spectrum of LLM options enables users to select the most suitable model for their specific needs, whether prioritizing local deployment, specialized capabilities, or cloud-based scalability.
|
||||
For a complete and up-to-date list of supported providers, please refer to the [LiteLLM Providers documentation](https://docs.litellm.ai/docs/providers).
|
||||
|
||||
## Changing the LLM
|
||||
|
||||
To use a different LLM with your CrewAI agents, you have several options:
|
||||
|
||||
### 1. Using a String Identifier
|
||||
|
||||
Pass the model name as a string when initializing the agent:
|
||||
|
||||
## Changing the default LLM
|
||||
The default LLM is provided through the `langchain openai` package, which is installed by default when you install CrewAI. You can change this default LLM to a different model or API by setting the `OPENAI_MODEL_NAME` environment variable. This straightforward process allows you to harness the power of different OpenAI models, enhancing the flexibility and capabilities of your CrewAI implementation.
|
||||
```python
|
||||
# Required
|
||||
os.environ["OPENAI_MODEL_NAME"]="gpt-4-0125-preview"
|
||||
from crewai import Agent
|
||||
|
||||
# Agent will automatically use the model defined in the environment variable
|
||||
example_agent = Agent(
|
||||
role='Local Expert',
|
||||
goal='Provide insights about the city',
|
||||
backstory="A knowledgeable local guide.",
|
||||
verbose=True
|
||||
# Using OpenAI's GPT-4
|
||||
openai_agent = Agent(
|
||||
role='OpenAI Expert',
|
||||
goal='Provide insights using GPT-4',
|
||||
backstory="An AI assistant powered by OpenAI's latest model.",
|
||||
llm='gpt-4'
|
||||
)
|
||||
|
||||
# Using Anthropic's Claude
|
||||
claude_agent = Agent(
|
||||
role='Anthropic Expert',
|
||||
goal='Analyze data using Claude',
|
||||
backstory="An AI assistant leveraging Anthropic's language model.",
|
||||
llm='claude-2'
|
||||
)
|
||||
```
|
||||
|
||||
## Ollama Local Integration
|
||||
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, you will need the `langchain-ollama` package. You can then set the following environment variables to connect to your Ollama instance running locally on port 11434.
|
||||
### 2. Using the LLM Class
|
||||
|
||||
```sh
|
||||
os.environ[OPENAI_API_BASE]='http://localhost:11434'
|
||||
os.environ[OPENAI_MODEL_NAME]='llama2' # Adjust based on available model
|
||||
os.environ[OPENAI_API_KEY]='' # No API Key required for Ollama
|
||||
```
|
||||
For more detailed configuration, use the LLM class:
|
||||
|
||||
## Ollama Integration Step by Step (ex. for using Llama 3.1 8B locally)
|
||||
1. [Download and install Ollama](https://ollama.com/download).
|
||||
2. After setting up the Ollama, Pull the Llama3.1 8B model by typing following lines into your terminal ```ollama run llama3.1```.
|
||||
3. Llama3.1 should now be served locally on `http://localhost:11434`
|
||||
```
|
||||
from crewai import Agent, Task, Crew
|
||||
from langchain_ollama import ChatOllama
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "NA"
|
||||
|
||||
llm = ChatOllama(
|
||||
model = "llama3.1",
|
||||
base_url = "http://localhost:11434")
|
||||
|
||||
general_agent = Agent(role = "Math Professor",
|
||||
goal = """Provide the solution to the students that are asking mathematical questions and give them the answer.""",
|
||||
backstory = """You are an excellent math professor that likes to solve math questions in a way that everyone can understand your solution""",
|
||||
allow_delegation = False,
|
||||
verbose = True,
|
||||
llm = llm)
|
||||
|
||||
task = Task(description="""what is 3 + 5""",
|
||||
agent = general_agent,
|
||||
expected_output="A numerical answer.")
|
||||
|
||||
crew = Crew(
|
||||
agents=[general_agent],
|
||||
tasks=[task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
## HuggingFace Integration
|
||||
There are a couple of different ways you can use HuggingFace to host your LLM.
|
||||
|
||||
### Your own HuggingFace endpoint
|
||||
```python
|
||||
from langchain_huggingface import HuggingFaceEndpoint
|
||||
from crewai import Agent, LLM
|
||||
|
||||
llm = HuggingFaceEndpoint(
|
||||
repo_id="microsoft/Phi-3-mini-4k-instruct",
|
||||
task="text-generation",
|
||||
max_new_tokens=512,
|
||||
do_sample=False,
|
||||
repetition_penalty=1.03,
|
||||
llm = LLM(
|
||||
model="gpt-4",
|
||||
temperature=0.7,
|
||||
base_url="https://api.openai.com/v1",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role="HuggingFace Agent",
|
||||
goal="Generate text using HuggingFace",
|
||||
backstory="A diligent explorer of GitHub docs.",
|
||||
role='Customized LLM Expert',
|
||||
goal='Provide tailored responses',
|
||||
backstory="An AI assistant with custom LLM settings.",
|
||||
llm=llm
|
||||
)
|
||||
```
|
||||
|
||||
## OpenAI Compatible API Endpoints
|
||||
Switch between APIs and models seamlessly using environment variables, supporting platforms like FastChat, LM Studio, Groq, and Mistral AI.
|
||||
## Configuration Options
|
||||
|
||||
### Configuration Examples
|
||||
#### FastChat
|
||||
```sh
|
||||
os.environ["OPENAI_API_BASE"]='http://localhost:8001/v1'
|
||||
os.environ["OPENAI_MODEL_NAME"]='oh-2.5m7b-q51'
|
||||
os.environ[OPENAI_API_KEY]='NA'
|
||||
```
|
||||
When configuring an LLM for your agent, you have access to a wide range of parameters:
|
||||
|
||||
#### LM Studio
|
||||
Launch [LM Studio](https://lmstudio.ai) and go to the Server tab. Then select a model from the dropdown menu and wait for it to load. Once it's loaded, click the green Start Server button and use the URL, port, and API key that's shown (you can modify them). Below is an example of the default settings as of LM Studio 0.2.19:
|
||||
```sh
|
||||
os.environ["OPENAI_API_BASE"]='http://localhost:1234/v1'
|
||||
os.environ["OPENAI_API_KEY"]='lm-studio'
|
||||
```
|
||||
| Parameter | Type | Description |
|
||||
|-----------|------|-------------|
|
||||
| `model` | str | The name of the model to use (e.g., "gpt-4", "claude-2") |
|
||||
| `temperature` | float | Controls randomness in output (0.0 to 1.0) |
|
||||
| `max_tokens` | int | Maximum number of tokens to generate |
|
||||
| `top_p` | float | Controls diversity of output (0.0 to 1.0) |
|
||||
| `frequency_penalty` | float | Penalizes new tokens based on their frequency in the text so far |
|
||||
| `presence_penalty` | float | Penalizes new tokens based on their presence in the text so far |
|
||||
| `stop` | str, List[str] | Sequence(s) to stop generation |
|
||||
| `base_url` | str | The base URL for the API endpoint |
|
||||
| `api_key` | str | Your API key for authentication |
|
||||
|
||||
#### Groq API
|
||||
```sh
|
||||
os.environ["OPENAI_API_KEY"]='your-groq-api-key'
|
||||
os.environ["OPENAI_MODEL_NAME"]='llama3-8b-8192'
|
||||
os.environ["OPENAI_API_BASE"]='https://api.groq.com/openai/v1'
|
||||
```
|
||||
For a complete list of parameters and their descriptions, refer to the LLM class documentation.
|
||||
|
||||
#### Mistral API
|
||||
```sh
|
||||
os.environ["OPENAI_API_KEY"]='your-mistral-api-key'
|
||||
os.environ["OPENAI_API_BASE"]='https://api.mistral.ai/v1'
|
||||
os.environ["OPENAI_MODEL_NAME"]='mistral-small'
|
||||
```
|
||||
## Connecting to OpenAI-Compatible LLMs
|
||||
|
||||
### Solar
|
||||
```sh
|
||||
from langchain_community.chat_models.solar import SolarChat
|
||||
```
|
||||
```sh
|
||||
os.environ[SOLAR_API_BASE]="https://api.upstage.ai/v1/solar"
|
||||
os.environ[SOLAR_API_KEY]="your-solar-api-key"
|
||||
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
|
||||
|
||||
# Free developer API key available here: https://console.upstage.ai/services/solar
|
||||
# Langchain Example: https://github.com/langchain-ai/langchain/pull/18556
|
||||
```
|
||||
### Using Environment Variables
|
||||
|
||||
### Cohere
|
||||
```python
|
||||
from langchain_cohere import ChatCohere
|
||||
# Initialize language model
|
||||
os.environ["COHERE_API_KEY"]='your-cohere-api-key'
|
||||
llm = ChatCohere()
|
||||
import os
|
||||
|
||||
# Free developer API key available here: https://cohere.com/
|
||||
# Langchain Documentation: https://python.langchain.com/docs/integrations/chat/cohere
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
|
||||
os.environ["OPENAI_MODEL_NAME"] = "your-model-name"
|
||||
```
|
||||
|
||||
### Azure Open AI Configuration
|
||||
For Azure OpenAI API integration, set the following environment variables:
|
||||
```sh
|
||||
### Using LLM Class Attributes
|
||||
|
||||
os.environ["AZURE_OPENAI_DEPLOYMENT"]='Your deployment'
|
||||
os.environ["OPENAI_API_VERSION"]='2023-12-01-preview'
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"]='Your Endpoint'
|
||||
os.environ["AZURE_OPENAI_API_KEY"]='Your API Key'
|
||||
```
|
||||
|
||||
### Example Agent with Azure LLM
|
||||
```python
|
||||
from dotenv import load_dotenv
|
||||
from crewai import Agent
|
||||
from langchain_openai import AzureChatOpenAI
|
||||
|
||||
load_dotenv()
|
||||
|
||||
azure_llm = AzureChatOpenAI(
|
||||
azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.environ.get("AZURE_OPENAI_KEY")
|
||||
llm = LLM(
|
||||
model="custom-model-name",
|
||||
api_key="your-api-key",
|
||||
base_url="https://api.your-provider.com/v1"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
azure_agent = Agent(
|
||||
role='Example Agent',
|
||||
goal='Demonstrate custom LLM configuration',
|
||||
backstory='A diligent explorer of GitHub docs.',
|
||||
llm=azure_llm
|
||||
## Using Local Models with Ollama
|
||||
|
||||
For local models like those provided by Ollama:
|
||||
|
||||
1. [Download and install Ollama](https://ollama.com/download)
|
||||
2. Pull the desired model (e.g., `ollama pull llama2`)
|
||||
3. Configure your agent:
|
||||
|
||||
```python
|
||||
agent = Agent(
|
||||
role='Local AI Expert',
|
||||
goal='Process information using a local model',
|
||||
backstory="An AI assistant running on local hardware.",
|
||||
llm=LLM(model="ollama/llama2", base_url="http://localhost:11434")
|
||||
)
|
||||
```
|
||||
|
||||
## Changing the Base API URL
|
||||
|
||||
You can change the base API URL for any LLM provider by setting the `base_url` parameter:
|
||||
|
||||
```python
|
||||
llm = LLM(
|
||||
model="custom-model-name",
|
||||
base_url="https://api.your-provider.com/v1",
|
||||
api_key="your-api-key"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
This is particularly useful when working with OpenAI-compatible APIs or when you need to specify a different endpoint for your chosen provider.
|
||||
|
||||
## Conclusion
|
||||
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.
|
||||
|
||||
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
---
|
||||
title: Replay Tasks from Latest Crew Kickoff
|
||||
description: Replay tasks from the latest crew.kickoff(...)
|
||||
|
||||
---
|
||||
|
||||
## Introduction
|
||||
@@ -16,22 +17,24 @@ To use the replay feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
3. Run the following commands:
|
||||
|
||||
To view the latest kickoff task_ids use:
|
||||
```shell
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
Once you have your task_id to replay from use:
|
||||
Once you have your `task_id` to replay, use:
|
||||
```shell
|
||||
crewai replay -t <task_id>
|
||||
```
|
||||
|
||||
**Note:** Ensure `crewai` is installed and configured correctly in your development environment.
|
||||
|
||||
### Replaying from a Task Programmatically
|
||||
To replay from a task programmatically, use the following steps:
|
||||
|
||||
1. Specify the task_id and input parameters for the replay process.
|
||||
1. Specify the `task_id` and input parameters for the replay process.
|
||||
2. Execute the replay command within a try-except block to handle potential errors.
|
||||
|
||||
```python
|
||||
@@ -49,4 +52,7 @@ To replay from a task programmatically, use the following steps:
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An unexpected error occurred: {e}")
|
||||
```
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
With the above enhancements and detailed functionality, replaying specific tasks in CrewAI has been made more efficient and robust. Ensure you follow the commands and steps precisely to make the most of these features.
|
||||
@@ -52,14 +52,17 @@ report_crew = Crew(
|
||||
# Execute the crew
|
||||
result = report_crew.kickoff()
|
||||
|
||||
# Accessing the type safe output
|
||||
# Accessing the type-safe output
|
||||
task_output: TaskOutput = result.tasks[0].output
|
||||
crew_output: CrewOutput = result.output
|
||||
```
|
||||
|
||||
### Note:
|
||||
Each task in a sequential process **must** have an agent assigned. Ensure that every `Task` includes an `agent` parameter.
|
||||
|
||||
### Workflow in Action
|
||||
1. **Initial Task**: In a sequential process, the first agent completes their task and signals completion.
|
||||
2. **Subsequent Tasks**: Agents pick up their tasks based on the process type, with outcomes of preceding tasks or manager directives guiding their execution.
|
||||
2. **Subsequent Tasks**: Agents pick up their tasks based on the process type, with outcomes of preceding tasks or directives guiding their execution.
|
||||
3. **Completion**: The process concludes once the final task is executed, leading to project completion.
|
||||
|
||||
## Advanced Features
|
||||
@@ -87,4 +90,6 @@ CrewAI tracks token usage across all tasks and agents. You can access these metr
|
||||
1. **Order Matters**: Arrange tasks in a logical sequence where each task builds upon the previous one.
|
||||
2. **Clear Task Descriptions**: Provide detailed descriptions for each task to guide the agents effectively.
|
||||
3. **Appropriate Agent Selection**: Match agents' skills and roles to the requirements of each task.
|
||||
4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones.
|
||||
4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones.
|
||||
|
||||
This updated documentation ensures that details accurately reflect the latest changes in the codebase and clearly describes how to leverage new features and configurations. The content is kept simple and direct to ensure easy understanding.
|
||||
@@ -53,6 +53,16 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
Crews
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./core-concepts/LLMs">
|
||||
LLMs
|
||||
</a>
|
||||
</li>
|
||||
<!-- <li>
|
||||
<a href="./core-concepts/Flows">
|
||||
Flows
|
||||
</a>
|
||||
</li> -->
|
||||
<li>
|
||||
<a href="./core-concepts/Pipeline">
|
||||
Pipeline
|
||||
@@ -80,7 +90,7 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div style="width:30%">
|
||||
<div style="width:25%">
|
||||
<h2>How-To Guides</h2>
|
||||
<ul>
|
||||
<li>
|
||||
@@ -155,7 +165,7 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div style="width:30%">
|
||||
<!-- <div style="width:25%">
|
||||
<h2>Examples</h2>
|
||||
<ul>
|
||||
<li>
|
||||
@@ -193,6 +203,26 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
Landing Page Generator
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a target='_blank' href="https://github.com/crewAIInc/crewAI-examples/tree/main/email_auto_responder_flow">
|
||||
Email Auto Responder Flow
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a target='_blank' href="https://github.com/crewAIInc/crewAI-examples/tree/main/lead-score-flow">
|
||||
Lead Score Flow
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a target='_blank' href="https://github.com/crewAIInc/crewAI-examples/tree/main/write_a_book_with_flows">
|
||||
Write a Book Flow
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a target='_blank' href="https://github.com/crewAIInc/crewAI-examples/tree/main/meeting_assistant_flow">
|
||||
Meeting Assistant Flow
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
</div> -->
|
||||
</div>
|
||||
|
||||
16
mkdocs.yml
16
mkdocs.yml
@@ -78,14 +78,14 @@ theme:
|
||||
|
||||
palette:
|
||||
- scheme: default
|
||||
primary: red
|
||||
accent: red
|
||||
primary: deep orange
|
||||
accent: deep orange
|
||||
toggle:
|
||||
icon: material/brightness-7
|
||||
name: Switch to dark mode
|
||||
- scheme: slate
|
||||
primary: red
|
||||
accent: red
|
||||
primary: deep orange
|
||||
accent: deep orange
|
||||
toggle:
|
||||
icon: material/brightness-4
|
||||
name: Switch to light mode
|
||||
@@ -162,7 +162,7 @@ nav:
|
||||
- Directory RAG Search: 'tools/DirectorySearchTool.md'
|
||||
- Directory Read: 'tools/DirectoryReadTool.md'
|
||||
- Docx Rag Search: 'tools/DOCXSearchTool.md'
|
||||
- EXA Serch Web Loader: 'tools/EXASearchTool.md'
|
||||
- EXA Search Web Loader: 'tools/EXASearchTool.md'
|
||||
- File Read: 'tools/FileReadTool.md'
|
||||
- File Write: 'tools/FileWriteTool.md'
|
||||
- Firecrawl Crawl Website Tool: 'tools/FirecrawlCrawlWebsiteTool.md'
|
||||
@@ -209,7 +209,7 @@ extra:
|
||||
provider: google
|
||||
property: G-N3Q505TMQ6
|
||||
social:
|
||||
- icon: fontawesome/brands/twitter
|
||||
link: https://twitter.com/joaomdmoura
|
||||
- icon: fontawesome/brands/x-twitter
|
||||
link: https://x.com/crewAIInc
|
||||
- icon: fontawesome/brands/github
|
||||
link: https://github.com/joaomdmoura/crewAI
|
||||
link: https://github.com/crewAIInc/crewAI
|
||||
|
||||
3404
poetry.lock
generated
3404
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "crewai"
|
||||
version = "0.55.2"
|
||||
version = "0.67.1"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
authors = ["Joao Moura <joao@crewai.com>"]
|
||||
readme = "README.md"
|
||||
@@ -14,14 +14,14 @@ Repository = "https://github.com/crewAIInc/crewAI"
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
pydantic = "^2.4.2"
|
||||
langchain = ">0.2,<=0.3"
|
||||
langchain = "^0.2.16"
|
||||
openai = "^1.13.3"
|
||||
opentelemetry-api = "^1.22.0"
|
||||
opentelemetry-sdk = "^1.22.0"
|
||||
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
|
||||
instructor = "1.3.3"
|
||||
regex = "^2024.7.24"
|
||||
crewai-tools = { version = "^0.12.0", optional = true }
|
||||
regex = "^2024.9.11"
|
||||
crewai-tools = { version = "^0.12.1", optional = true }
|
||||
click = "^8.1.7"
|
||||
python-dotenv = "^1.0.0"
|
||||
appdirs = "^1.4.4"
|
||||
@@ -30,6 +30,9 @@ agentops = { version = "^0.3.0", optional = true }
|
||||
embedchain = "^0.1.114"
|
||||
json-repair = "^0.25.2"
|
||||
auth0-python = "^4.7.1"
|
||||
poetry = "^1.8.3"
|
||||
litellm = "^1.44.22"
|
||||
pyvis = "^0.3.2"
|
||||
|
||||
[tool.poetry.extras]
|
||||
tools = ["crewai-tools"]
|
||||
@@ -47,13 +50,14 @@ mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
|
||||
mkdocs-material-extensions = "^1.3.1"
|
||||
pillow = "^10.2.0"
|
||||
cairosvg = "^2.7.1"
|
||||
crewai-tools = "^0.12.0"
|
||||
crewai-tools = "^0.12.1"
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
pytest = "^8.0.0"
|
||||
pytest-vcr = "^1.0.2"
|
||||
python-dotenv = "1.0.0"
|
||||
pytest-asyncio = "^0.23.7"
|
||||
pytest-subprocess = "^1.5.2"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
crewai = "crewai.cli.cli:crewai"
|
||||
|
||||
@@ -1,8 +1,19 @@
|
||||
import warnings
|
||||
from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.flow.flow import Flow
|
||||
from crewai.llm import LLM
|
||||
from crewai.pipeline import Pipeline
|
||||
from crewai.process import Process
|
||||
from crewai.routers import Router
|
||||
from crewai.task import Task
|
||||
|
||||
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router"]
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
message="Pydantic serializer warnings:",
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.65.2"
|
||||
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]
|
||||
|
||||
|
||||
@@ -1,17 +1,13 @@
|
||||
import os
|
||||
from inspect import signature
|
||||
from typing import Any, List, Optional, Tuple
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
from langchain.agents.agent import RunnableAgent
|
||||
from langchain.agents.tools import BaseTool
|
||||
from langchain.agents.tools import tool as LangChainTool
|
||||
from langchain_core.agents import AgentAction
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.utilities import Converter, Prompts
|
||||
@@ -34,7 +30,6 @@ agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" already defined on line 21
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
@@ -64,7 +59,6 @@ class Agent(BaseAgent):
|
||||
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
|
||||
tools: Tools at agents disposal
|
||||
step_callback: Callback to be executed after each step of the agent execution.
|
||||
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
|
||||
"""
|
||||
|
||||
_times_executed: int = PrivateAttr(default=0)
|
||||
@@ -81,18 +75,16 @@ class Agent(BaseAgent):
|
||||
default=None,
|
||||
description="Callback to be executed after each step of the agent execution.",
|
||||
)
|
||||
llm: Any = Field(
|
||||
default_factory=lambda: ChatOpenAI(
|
||||
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4o")
|
||||
),
|
||||
description="Language model that will run the agent.",
|
||||
use_system_prompt: Optional[bool] = Field(
|
||||
default=True,
|
||||
description="Use system prompt for the agent.",
|
||||
)
|
||||
llm: Union[str, InstanceOf[LLM], Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
|
||||
default=None, description="Callback to be executed"
|
||||
)
|
||||
system_template: Optional[str] = Field(
|
||||
default=None, description="System format for the agent."
|
||||
)
|
||||
@@ -108,6 +100,14 @@ class Agent(BaseAgent):
|
||||
allow_code_execution: Optional[bool] = Field(
|
||||
default=False, description="Enable code execution for the agent."
|
||||
)
|
||||
respect_context_window: bool = Field(
|
||||
default=True,
|
||||
description="Keep messages under the context window size by summarizing content.",
|
||||
)
|
||||
max_iter: int = Field(
|
||||
default=20,
|
||||
description="Maximum number of iterations for an agent to execute a task before giving it's best answer",
|
||||
)
|
||||
max_retry_limit: int = Field(
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
@@ -117,37 +117,64 @@ class Agent(BaseAgent):
|
||||
def post_init_setup(self):
|
||||
self.agent_ops_agent_name = self.role
|
||||
|
||||
# Different llms store the model name in different attributes
|
||||
model_name = getattr(self.llm, "model_name", None) or getattr(
|
||||
self.llm, "deployment_name", None
|
||||
)
|
||||
# Handle different cases for self.llm
|
||||
if isinstance(self.llm, str):
|
||||
# If it's a string, create an LLM instance
|
||||
self.llm = LLM(model=self.llm)
|
||||
elif isinstance(self.llm, LLM):
|
||||
# If it's already an LLM instance, keep it as is
|
||||
pass
|
||||
elif self.llm is None:
|
||||
# If it's None, use environment variables or default
|
||||
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
|
||||
llm_params = {"model": model_name}
|
||||
|
||||
if model_name:
|
||||
self._setup_llm_callbacks(model_name)
|
||||
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
|
||||
"OPENAI_BASE_URL"
|
||||
)
|
||||
if api_base:
|
||||
llm_params["base_url"] = api_base
|
||||
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
if api_key:
|
||||
llm_params["api_key"] = api_key
|
||||
|
||||
self.llm = LLM(**llm_params)
|
||||
else:
|
||||
# For any other type, attempt to extract relevant attributes
|
||||
llm_params = {
|
||||
"model": getattr(self.llm, "model_name", None)
|
||||
or getattr(self.llm, "deployment_name", None)
|
||||
or str(self.llm),
|
||||
"temperature": getattr(self.llm, "temperature", None),
|
||||
"max_tokens": getattr(self.llm, "max_tokens", None),
|
||||
"logprobs": getattr(self.llm, "logprobs", None),
|
||||
"timeout": getattr(self.llm, "timeout", None),
|
||||
"max_retries": getattr(self.llm, "max_retries", None),
|
||||
"api_key": getattr(self.llm, "api_key", None),
|
||||
"base_url": getattr(self.llm, "base_url", None),
|
||||
"organization": getattr(self.llm, "organization", None),
|
||||
}
|
||||
# Remove None values to avoid passing unnecessary parameters
|
||||
llm_params = {k: v for k, v in llm_params.items() if v is not None}
|
||||
self.llm = LLM(**llm_params)
|
||||
|
||||
# Similar handling for function_calling_llm
|
||||
if self.function_calling_llm:
|
||||
if isinstance(self.function_calling_llm, str):
|
||||
self.function_calling_llm = LLM(model=self.function_calling_llm)
|
||||
elif not isinstance(self.function_calling_llm, LLM):
|
||||
self.function_calling_llm = LLM(
|
||||
model=getattr(self.function_calling_llm, "model_name", None)
|
||||
or getattr(self.function_calling_llm, "deployment_name", None)
|
||||
or str(self.function_calling_llm)
|
||||
)
|
||||
|
||||
if not self.agent_executor:
|
||||
self._setup_agent_executor()
|
||||
|
||||
return self
|
||||
|
||||
def _setup_llm_callbacks(self, model_name: str):
|
||||
token_handler = TokenCalcHandler(model_name, self._token_process)
|
||||
|
||||
if not isinstance(self.llm.callbacks, list):
|
||||
self.llm.callbacks = []
|
||||
|
||||
if not any(
|
||||
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
|
||||
):
|
||||
self.llm.callbacks.append(token_handler)
|
||||
|
||||
if agentops and not any(
|
||||
isinstance(handler, agentops.LangchainCallbackHandler)
|
||||
for handler in self.llm.callbacks
|
||||
):
|
||||
agentops.stop_instrumenting()
|
||||
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
|
||||
|
||||
def _setup_agent_executor(self):
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
@@ -190,15 +217,7 @@ class Agent(BaseAgent):
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
tools = tools or self.tools or []
|
||||
parsed_tools = self._parse_tools(tools)
|
||||
self.create_agent_executor(tools=tools)
|
||||
self.agent_executor.tools = parsed_tools
|
||||
self.agent_executor.task = task
|
||||
|
||||
self.agent_executor.tools_description = self._render_text_description_and_args(
|
||||
parsed_tools
|
||||
)
|
||||
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
|
||||
self.create_agent_executor(tools=tools, task=task)
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
task_prompt = self._training_handler(task_prompt=task_prompt)
|
||||
@@ -211,6 +230,7 @@ class Agent(BaseAgent):
|
||||
"input": task_prompt,
|
||||
"tool_names": self.agent_executor.tools_names,
|
||||
"tools": self.agent_executor.tools_description,
|
||||
"ask_for_human_input": task.human_input,
|
||||
}
|
||||
)["output"]
|
||||
except Exception as e:
|
||||
@@ -231,73 +251,25 @@ class Agent(BaseAgent):
|
||||
|
||||
return result
|
||||
|
||||
def format_log_to_str(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
observation_prefix: str = "Observation: ",
|
||||
llm_prefix: str = "",
|
||||
) -> str:
|
||||
"""Construct the scratchpad that lets the agent continue its thought process."""
|
||||
thoughts = ""
|
||||
for action, observation in intermediate_steps:
|
||||
thoughts += action.log
|
||||
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
|
||||
return thoughts
|
||||
|
||||
def create_agent_executor(self, tools=None) -> None:
|
||||
def create_agent_executor(self, tools=None, task=None) -> None:
|
||||
"""Create an agent executor for the agent.
|
||||
|
||||
Returns:
|
||||
An instance of the CrewAgentExecutor class.
|
||||
"""
|
||||
tools = tools or self.tools or []
|
||||
|
||||
agent_args = {
|
||||
"input": lambda x: x["input"],
|
||||
"tools": lambda x: x["tools"],
|
||||
"tool_names": lambda x: x["tool_names"],
|
||||
"agent_scratchpad": lambda x: self.format_log_to_str(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
}
|
||||
|
||||
executor_args = {
|
||||
"llm": self.llm,
|
||||
"i18n": self.i18n,
|
||||
"crew": self.crew,
|
||||
"crew_agent": self,
|
||||
"tools": self._parse_tools(tools),
|
||||
"verbose": self.verbose,
|
||||
"original_tools": tools,
|
||||
"handle_parsing_errors": True,
|
||||
"max_iterations": self.max_iter,
|
||||
"max_execution_time": self.max_execution_time,
|
||||
"step_callback": self.step_callback,
|
||||
"tools_handler": self.tools_handler,
|
||||
"function_calling_llm": self.function_calling_llm,
|
||||
"callbacks": self.callbacks,
|
||||
"max_tokens": self.max_tokens,
|
||||
}
|
||||
|
||||
if self._rpm_controller:
|
||||
executor_args["request_within_rpm_limit"] = (
|
||||
self._rpm_controller.check_or_wait
|
||||
)
|
||||
parsed_tools = self._parse_tools(tools)
|
||||
|
||||
prompt = Prompts(
|
||||
i18n=self.i18n,
|
||||
agent=self,
|
||||
tools=tools,
|
||||
i18n=self.i18n,
|
||||
use_system_prompt=self.use_system_prompt,
|
||||
system_template=self.system_template,
|
||||
prompt_template=self.prompt_template,
|
||||
response_template=self.response_template,
|
||||
).task_execution()
|
||||
|
||||
execution_prompt = prompt.partial(
|
||||
goal=self.goal,
|
||||
role=self.role,
|
||||
backstory=self.backstory,
|
||||
)
|
||||
|
||||
stop_words = [self.i18n.slice("observation")]
|
||||
|
||||
if self.response_template:
|
||||
@@ -305,11 +277,26 @@ class Agent(BaseAgent):
|
||||
self.response_template.split("{{ .Response }}")[1].strip()
|
||||
)
|
||||
|
||||
bind = self.llm.bind(stop=stop_words)
|
||||
|
||||
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
|
||||
self.agent_executor = CrewAgentExecutor(
|
||||
agent=RunnableAgent(runnable=inner_agent), **executor_args
|
||||
llm=self.llm,
|
||||
task=task,
|
||||
agent=self,
|
||||
crew=self.crew,
|
||||
tools=parsed_tools,
|
||||
prompt=prompt,
|
||||
original_tools=tools,
|
||||
stop_words=stop_words,
|
||||
max_iter=self.max_iter,
|
||||
tools_handler=self.tools_handler,
|
||||
tools_names=self.__tools_names(parsed_tools),
|
||||
tools_description=self._render_text_description_and_args(parsed_tools),
|
||||
step_callback=self.step_callback,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
respect_context_window=self.respect_context_window,
|
||||
request_within_rpm_limit=(
|
||||
self._rpm_controller.check_or_wait if self._rpm_controller else None
|
||||
),
|
||||
callbacks=[TokenCalcHandler(self._token_process)],
|
||||
)
|
||||
|
||||
def get_delegation_tools(self, agents: List[BaseAgent]):
|
||||
@@ -330,7 +317,7 @@ class Agent(BaseAgent):
|
||||
def get_output_converter(self, llm, text, model, instructions):
|
||||
return Converter(llm=llm, text=text, model=model, instructions=instructions)
|
||||
|
||||
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]: # type: ignore # Function "langchain_core.tools.tool" is not valid as a type
|
||||
def _parse_tools(self, tools: List[Any]) -> List[Any]: # type: ignore
|
||||
"""Parse tools to be used for the task."""
|
||||
tools_list = []
|
||||
try:
|
||||
@@ -358,8 +345,9 @@ class Agent(BaseAgent):
|
||||
human_feedbacks = [
|
||||
i["human_feedback"] for i in data.get(agent_id, {}).values()
|
||||
]
|
||||
task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
|
||||
human_feedbacks
|
||||
task_prompt += (
|
||||
"\n\nYou MUST follow these instructions: \n "
|
||||
+ "\n - ".join(human_feedbacks)
|
||||
)
|
||||
|
||||
return task_prompt
|
||||
@@ -368,12 +356,13 @@ class Agent(BaseAgent):
|
||||
"""Use trained data for the agent task prompt to improve output."""
|
||||
if data := CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).load():
|
||||
if trained_data_output := data.get(self.role):
|
||||
task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
|
||||
trained_data_output["suggestions"]
|
||||
task_prompt += (
|
||||
"\n\nYou MUST follow these instructions: \n - "
|
||||
+ "\n - ".join(trained_data_output["suggestions"])
|
||||
)
|
||||
return task_prompt
|
||||
|
||||
def _render_text_description(self, tools: List[BaseTool]) -> str:
|
||||
def _render_text_description(self, tools: List[Any]) -> str:
|
||||
"""Render the tool name and description in plain text.
|
||||
|
||||
Output will be in the format of:
|
||||
@@ -392,7 +381,7 @@ class Agent(BaseAgent):
|
||||
|
||||
return description
|
||||
|
||||
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
|
||||
def _render_text_description_and_args(self, tools: List[Any]) -> str:
|
||||
"""Render the tool name, description, and args in plain text.
|
||||
|
||||
Output will be in the format of:
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
from .cache.cache_handler import CacheHandler
|
||||
from .executor import CrewAgentExecutor
|
||||
from .parser import CrewAgentParser
|
||||
from .tools_handler import ToolsHandler
|
||||
|
||||
__all__ = ["CacheHandler", "CrewAgentExecutor", "CrewAgentParser", "ToolsHandler"]
|
||||
__all__ = ["CacheHandler", "CrewAgentParser", "ToolsHandler"]
|
||||
|
||||
@@ -102,7 +102,8 @@ class BaseAgent(ABC, BaseModel):
|
||||
description="Maximum number of requests per minute for the agent execution to be respected.",
|
||||
)
|
||||
allow_delegation: bool = Field(
|
||||
default=True, description="Allow delegation of tasks to agents"
|
||||
default=False,
|
||||
description="Enable agent to delegate and ask questions among each other.",
|
||||
)
|
||||
tools: Optional[List[Any]] = Field(
|
||||
default_factory=list, description="Tools at agents' disposal"
|
||||
@@ -175,7 +176,11 @@ class BaseAgent(ABC, BaseModel):
|
||||
|
||||
@property
|
||||
def key(self):
|
||||
source = [self.role, self.goal, self.backstory]
|
||||
source = [
|
||||
self._original_role or self.role,
|
||||
self._original_goal or self.goal,
|
||||
self._original_backstory or self.backstory,
|
||||
]
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
@abstractmethod
|
||||
@@ -224,10 +229,8 @@ class BaseAgent(ABC, BaseModel):
|
||||
|
||||
# Copy llm and clear callbacks
|
||||
existing_llm = shallow_copy(self.llm)
|
||||
existing_llm.callbacks = []
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
|
||||
|
||||
return copied_agent
|
||||
|
||||
@@ -6,6 +6,7 @@ from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -19,15 +20,14 @@ class CrewAgentExecutorMixin:
|
||||
crew_agent: Optional["BaseAgent"]
|
||||
task: Optional["Task"]
|
||||
iterations: int
|
||||
force_answer_max_iterations: int
|
||||
have_forced_answer: bool
|
||||
max_iter: int
|
||||
_i18n: I18N
|
||||
_printer: Printer = Printer()
|
||||
|
||||
def _should_force_answer(self) -> bool:
|
||||
"""Determine if a forced answer is required based on iteration count."""
|
||||
return (
|
||||
self.iterations == self.force_answer_max_iterations
|
||||
) and not self.have_forced_answer
|
||||
return (self.iterations >= self.max_iter) and not self.have_forced_answer
|
||||
|
||||
def _create_short_term_memory(self, output) -> None:
|
||||
"""Create and save a short-term memory item if conditions are met."""
|
||||
@@ -102,6 +102,12 @@ class CrewAgentExecutorMixin:
|
||||
|
||||
def _ask_human_input(self, final_answer: dict) -> str:
|
||||
"""Prompt human input for final decision making."""
|
||||
return input(
|
||||
self._i18n.slice("getting_input").format(final_answer=final_answer)
|
||||
self._printer.print(
|
||||
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
|
||||
)
|
||||
|
||||
self._printer.print(
|
||||
content="\n\n=====\n## Please provide feedback on the Final Result and the Agent's actions:",
|
||||
color="bold_yellow",
|
||||
)
|
||||
return input()
|
||||
|
||||
@@ -39,9 +39,3 @@ class OutputConverter(BaseModel, ABC):
|
||||
def to_json(self, current_attempt=1):
|
||||
"""Convert text to json."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def is_gpt(self) -> bool:
|
||||
"""Return if llm provided is of gpt from openai."""
|
||||
pass
|
||||
|
||||
357
src/crewai/agents/crew_agent_executor.py
Normal file
357
src/crewai/agents/crew_agent_executor.py
Normal file
@@ -0,0 +1,357 @@
|
||||
import json
|
||||
import re
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
from crewai.agents.parser import CrewAgentParser
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N, Printer
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
from crewai.agents.parser import (
|
||||
AgentAction,
|
||||
AgentFinish,
|
||||
OutputParserException,
|
||||
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE,
|
||||
)
|
||||
|
||||
|
||||
class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
_logger: Logger = Logger()
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm: Any,
|
||||
task: Any,
|
||||
crew: Any,
|
||||
agent: Any,
|
||||
prompt: dict[str, str],
|
||||
max_iter: int,
|
||||
tools: List[Any],
|
||||
tools_names: str,
|
||||
stop_words: List[str],
|
||||
tools_description: str,
|
||||
tools_handler: ToolsHandler,
|
||||
step_callback: Any = None,
|
||||
original_tools: List[Any] = [],
|
||||
function_calling_llm: Any = None,
|
||||
respect_context_window: bool = False,
|
||||
request_within_rpm_limit: Any = None,
|
||||
callbacks: List[Any] = [],
|
||||
):
|
||||
self._i18n: I18N = I18N()
|
||||
self.llm = llm
|
||||
self.task = task
|
||||
self.agent = agent
|
||||
self.crew = crew
|
||||
self.prompt = prompt
|
||||
self.tools = tools
|
||||
self.tools_names = tools_names
|
||||
self.stop = stop_words
|
||||
self.max_iter = max_iter
|
||||
self.callbacks = callbacks
|
||||
self._printer: Printer = Printer()
|
||||
self.tools_handler = tools_handler
|
||||
self.original_tools = original_tools
|
||||
self.step_callback = step_callback
|
||||
self.use_stop_words = self.llm.supports_stop_words()
|
||||
self.tools_description = tools_description
|
||||
self.function_calling_llm = function_calling_llm
|
||||
self.respect_context_window = respect_context_window
|
||||
self.request_within_rpm_limit = request_within_rpm_limit
|
||||
self.ask_for_human_input = False
|
||||
self.messages: List[Dict[str, str]] = []
|
||||
self.iterations = 0
|
||||
self.log_error_after = 3
|
||||
self.have_forced_answer = False
|
||||
self.name_to_tool_map = {tool.name: tool for tool in self.tools}
|
||||
if self.llm.stop:
|
||||
self.llm.stop = list(set(self.llm.stop + self.stop))
|
||||
else:
|
||||
self.llm.stop = self.stop
|
||||
|
||||
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
||||
if "system" in self.prompt:
|
||||
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
|
||||
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
|
||||
|
||||
self.messages.append(self._format_msg(system_prompt, role="system"))
|
||||
self.messages.append(self._format_msg(user_prompt))
|
||||
else:
|
||||
user_prompt = self._format_prompt(self.prompt.get("prompt", ""), inputs)
|
||||
self.messages.append(self._format_msg(user_prompt))
|
||||
|
||||
self._show_start_logs()
|
||||
|
||||
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer, human_feedback)
|
||||
|
||||
# Making sure we only ask for it once, so disabling for the next thought loop
|
||||
self.ask_for_human_input = False
|
||||
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer)
|
||||
|
||||
return {"output": formatted_answer.output}
|
||||
|
||||
def _invoke_loop(self, formatted_answer=None):
|
||||
try:
|
||||
while not isinstance(formatted_answer, AgentFinish):
|
||||
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
|
||||
answer = self.llm.call(
|
||||
self.messages,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
|
||||
if not self.use_stop_words:
|
||||
try:
|
||||
self._format_answer(answer)
|
||||
except OutputParserException as e:
|
||||
if (
|
||||
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE
|
||||
in e.error
|
||||
):
|
||||
answer = answer.split("Observation:")[0].strip()
|
||||
|
||||
self.iterations += 1
|
||||
formatted_answer = self._format_answer(answer)
|
||||
|
||||
if isinstance(formatted_answer, AgentAction):
|
||||
action_result = self._use_tool(formatted_answer)
|
||||
formatted_answer.text += f"\nObservation: {action_result}"
|
||||
formatted_answer.result = action_result
|
||||
self._show_logs(formatted_answer)
|
||||
|
||||
if self.step_callback:
|
||||
self.step_callback(formatted_answer)
|
||||
|
||||
if self._should_force_answer():
|
||||
if self.have_forced_answer:
|
||||
return AgentFinish(
|
||||
output=self._i18n.errors(
|
||||
"force_final_answer_error"
|
||||
).format(formatted_answer.text),
|
||||
text=formatted_answer.text,
|
||||
)
|
||||
else:
|
||||
formatted_answer.text += (
|
||||
f'\n{self._i18n.errors("force_final_answer")}'
|
||||
)
|
||||
self.have_forced_answer = True
|
||||
self.messages.append(
|
||||
self._format_msg(formatted_answer.text, role="user")
|
||||
)
|
||||
|
||||
except OutputParserException as e:
|
||||
self.messages.append({"role": "user", "content": e.error})
|
||||
if self.iterations > self.log_error_after:
|
||||
self._printer.print(
|
||||
content=f"Error parsing LLM output, agent will retry: {e.error}",
|
||||
color="red",
|
||||
)
|
||||
return self._invoke_loop(formatted_answer)
|
||||
|
||||
except Exception as e:
|
||||
if LLMContextLengthExceededException(str(e))._is_context_limit_error(
|
||||
str(e)
|
||||
):
|
||||
self._handle_context_length()
|
||||
return self._invoke_loop(formatted_answer)
|
||||
else:
|
||||
raise e
|
||||
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
def _show_start_logs(self):
|
||||
if self.agent.verbose or (
|
||||
hasattr(self, "crew") and getattr(self.crew, "verbose", False)
|
||||
):
|
||||
agent_role = self.agent.role.split("\n")[0]
|
||||
self._printer.print(
|
||||
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"\033[95m## Task:\033[00m \033[92m{self.task.description}\033[00m"
|
||||
)
|
||||
|
||||
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
|
||||
if self.agent.verbose or (
|
||||
hasattr(self, "crew") and getattr(self.crew, "verbose", False)
|
||||
):
|
||||
agent_role = self.agent.role.split("\n")[0]
|
||||
if isinstance(formatted_answer, AgentAction):
|
||||
thought = re.sub(r"\n+", "\n", formatted_answer.thought)
|
||||
formatted_json = json.dumps(
|
||||
formatted_answer.tool_input,
|
||||
indent=2,
|
||||
ensure_ascii=False,
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
|
||||
)
|
||||
if thought and thought != "":
|
||||
self._printer.print(
|
||||
content=f"\033[95m## Thought:\033[00m \033[92m{thought}\033[00m"
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"\033[95m## Using tool:\033[00m \033[92m{formatted_answer.tool}\033[00m"
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"\033[95m## Tool Input:\033[00m \033[92m\n{formatted_json}\033[00m"
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"\033[95m## Tool Output:\033[00m \033[92m\n{formatted_answer.result}\033[00m"
|
||||
)
|
||||
elif isinstance(formatted_answer, AgentFinish):
|
||||
self._printer.print(
|
||||
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
|
||||
)
|
||||
|
||||
def _use_tool(self, agent_action: AgentAction) -> Any:
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=self.tools_handler,
|
||||
tools=self.tools,
|
||||
original_tools=self.original_tools,
|
||||
tools_description=self.tools_description,
|
||||
tools_names=self.tools_names,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
task=self.task, # type: ignore[arg-type]
|
||||
agent=self.agent,
|
||||
action=agent_action,
|
||||
)
|
||||
tool_calling = tool_usage.parse(agent_action.text)
|
||||
|
||||
if isinstance(tool_calling, ToolUsageErrorException):
|
||||
tool_result = tool_calling.message
|
||||
else:
|
||||
if tool_calling.tool_name.casefold().strip() in [
|
||||
name.casefold().strip() for name in self.name_to_tool_map
|
||||
] or tool_calling.tool_name.casefold().replace("_", " ") in [
|
||||
name.casefold().strip() for name in self.name_to_tool_map
|
||||
]:
|
||||
tool_result = tool_usage.use(tool_calling, agent_action.text)
|
||||
else:
|
||||
tool_result = self._i18n.errors("wrong_tool_name").format(
|
||||
tool=tool_calling.tool_name,
|
||||
tools=", ".join([tool.name.casefold() for tool in self.tools]),
|
||||
)
|
||||
return tool_result
|
||||
|
||||
def _summarize_messages(self) -> None:
|
||||
messages_groups = []
|
||||
for message in self.messages:
|
||||
content = message["content"]
|
||||
cut_size = self.llm.get_context_window_size()
|
||||
for i in range(0, len(content), cut_size):
|
||||
messages_groups.append(content[i : i + cut_size])
|
||||
|
||||
summarized_contents = []
|
||||
for group in messages_groups:
|
||||
summary = self.llm.call(
|
||||
[
|
||||
self._format_msg(
|
||||
self._i18n.slice("summarizer_system_message"), role="system"
|
||||
),
|
||||
self._format_msg(
|
||||
self._i18n.slice("sumamrize_instruction").format(group=group),
|
||||
),
|
||||
],
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
summarized_contents.append(summary)
|
||||
|
||||
merged_summary = " ".join(str(content) for content in summarized_contents)
|
||||
|
||||
self.messages = [
|
||||
self._format_msg(
|
||||
self._i18n.slice("summary").format(merged_summary=merged_summary)
|
||||
)
|
||||
]
|
||||
|
||||
def _handle_context_length(self) -> None:
|
||||
if self.respect_context_window:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Summarizing content to fit the model context window.",
|
||||
color="yellow",
|
||||
)
|
||||
self._summarize_messages()
|
||||
else:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
|
||||
color="red",
|
||||
)
|
||||
raise SystemExit(
|
||||
"Context length exceeded and user opted not to summarize. Consider using smaller text or RAG tools from crewai_tools."
|
||||
)
|
||||
|
||||
def _handle_crew_training_output(
|
||||
self, result: AgentFinish, human_feedback: str | None = None
|
||||
) -> None:
|
||||
"""Function to handle the process of the training data."""
|
||||
agent_id = str(self.agent.id)
|
||||
if (
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
and not self.ask_for_human_input
|
||||
):
|
||||
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
if training_data.get(agent_id):
|
||||
training_data[agent_id][self.crew._train_iteration][
|
||||
"improved_output"
|
||||
] = result.output
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).save(training_data)
|
||||
|
||||
if self.ask_for_human_input and human_feedback is not None:
|
||||
training_data = {
|
||||
"initial_output": result.output,
|
||||
"human_feedback": human_feedback,
|
||||
"agent": agent_id,
|
||||
"agent_role": self.agent.role,
|
||||
}
|
||||
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
|
||||
train_iteration = self.crew._train_iteration
|
||||
if isinstance(train_iteration, int):
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).append(
|
||||
train_iteration, agent_id, training_data
|
||||
)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Invalid train iteration type. Expected int.",
|
||||
color="red",
|
||||
)
|
||||
else:
|
||||
self._logger.log(
|
||||
"error",
|
||||
"Crew is None or does not have _train_iteration attribute.",
|
||||
color="red",
|
||||
)
|
||||
|
||||
def _format_prompt(self, prompt: str, inputs: Dict[str, str]) -> str:
|
||||
prompt = prompt.replace("{input}", inputs["input"])
|
||||
prompt = prompt.replace("{tool_names}", inputs["tool_names"])
|
||||
prompt = prompt.replace("{tools}", inputs["tools"])
|
||||
return prompt
|
||||
|
||||
def _format_answer(self, answer: str) -> Union[AgentAction, AgentFinish]:
|
||||
return CrewAgentParser(agent=self.agent).parse(answer)
|
||||
|
||||
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
|
||||
return {"role": role, "content": prompt}
|
||||
@@ -1,397 +0,0 @@
|
||||
import threading
|
||||
import time
|
||||
from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union
|
||||
|
||||
import click
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.agent import ExceptionTool
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils.input import get_color_mapping
|
||||
from pydantic import InstanceOf
|
||||
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
|
||||
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
_i18n: I18N = I18N()
|
||||
should_ask_for_human_input: bool = False
|
||||
llm: Any = None
|
||||
iterations: int = 0
|
||||
task: Any = None
|
||||
tools_description: str = ""
|
||||
tools_names: str = ""
|
||||
original_tools: List[Any] = []
|
||||
crew_agent: Any = None
|
||||
crew: Any = None
|
||||
function_calling_llm: Any = None
|
||||
request_within_rpm_limit: Any = None
|
||||
tools_handler: Optional[InstanceOf[ToolsHandler]] = None
|
||||
max_iterations: Optional[int] = 15
|
||||
have_forced_answer: bool = False
|
||||
force_answer_max_iterations: Optional[int] = None # type: ignore # Incompatible types in assignment (expression has type "int | None", base class "CrewAgentExecutorMixin" defined the type as "int")
|
||||
step_callback: Optional[Any] = None
|
||||
system_template: Optional[str] = None
|
||||
prompt_template: Optional[str] = None
|
||||
response_template: Optional[str] = None
|
||||
_logger: Logger = Logger()
|
||||
_fit_context_window_strategy: Optional[Literal["summarize"]] = "summarize"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, str],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""Run text through and get agent response."""
|
||||
# Construct a mapping of tool name to tool for easy lookup
|
||||
name_to_tool_map = {tool.name: tool for tool in self.tools}
|
||||
# We construct a mapping from each tool to a color, used for logging.
|
||||
color_mapping = get_color_mapping(
|
||||
[tool.name.casefold() for tool in self.tools],
|
||||
excluded_colors=["green", "red"],
|
||||
)
|
||||
intermediate_steps: List[Tuple[AgentAction, str]] = []
|
||||
# Allowing human input given task setting
|
||||
if self.task and self.task.human_input:
|
||||
self.should_ask_for_human_input = True
|
||||
|
||||
# Let's start tracking the number of iterations and time elapsed
|
||||
self.iterations = 0
|
||||
time_elapsed = 0.0
|
||||
start_time = time.time()
|
||||
|
||||
# We now enter the agent loop (until it returns something).
|
||||
while self._should_continue(self.iterations, time_elapsed):
|
||||
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
|
||||
next_step_output = self._take_next_step(
|
||||
name_to_tool_map,
|
||||
color_mapping,
|
||||
inputs,
|
||||
intermediate_steps,
|
||||
run_manager=run_manager,
|
||||
)
|
||||
|
||||
if self.step_callback:
|
||||
self.step_callback(next_step_output)
|
||||
|
||||
if isinstance(next_step_output, AgentFinish):
|
||||
# Creating long term memory
|
||||
create_long_term_memory = threading.Thread(
|
||||
target=self._create_long_term_memory, args=(next_step_output,)
|
||||
)
|
||||
create_long_term_memory.start()
|
||||
|
||||
return self._return(
|
||||
next_step_output, intermediate_steps, run_manager=run_manager
|
||||
)
|
||||
|
||||
intermediate_steps.extend(next_step_output)
|
||||
|
||||
if len(next_step_output) == 1:
|
||||
next_step_action = next_step_output[0]
|
||||
# See if tool should return directly
|
||||
tool_return = self._get_tool_return(next_step_action)
|
||||
if tool_return is not None:
|
||||
return self._return(
|
||||
tool_return, intermediate_steps, run_manager=run_manager
|
||||
)
|
||||
|
||||
self.iterations += 1
|
||||
time_elapsed = time.time() - start_time
|
||||
output = self.agent.return_stopped_response(
|
||||
self.early_stopping_method, intermediate_steps, **inputs
|
||||
)
|
||||
|
||||
return self._return(output, intermediate_steps, run_manager=run_manager)
|
||||
|
||||
def _iter_next_step(
|
||||
self,
|
||||
name_to_tool_map: Dict[str, BaseTool],
|
||||
color_mapping: Dict[str, str],
|
||||
inputs: Dict[str, str],
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Iterator[Union[AgentFinish, AgentAction, AgentStep]]:
|
||||
"""Take a single step in the thought-action-observation loop.
|
||||
|
||||
Override this to take control of how the agent makes and acts on choices.
|
||||
"""
|
||||
try:
|
||||
if self._should_force_answer():
|
||||
error = self._i18n.errors("force_final_answer")
|
||||
output = AgentAction("_Exception", error, error)
|
||||
self.have_forced_answer = True
|
||||
yield AgentStep(action=output, observation=error)
|
||||
return
|
||||
|
||||
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
|
||||
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan(
|
||||
intermediate_steps,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**inputs,
|
||||
)
|
||||
|
||||
except OutputParserException as e:
|
||||
if isinstance(self.handle_parsing_errors, bool):
|
||||
raise_error = not self.handle_parsing_errors
|
||||
else:
|
||||
raise_error = False
|
||||
if raise_error:
|
||||
raise ValueError(
|
||||
"An output parsing error occurred. "
|
||||
"In order to pass this error back to the agent and have it try "
|
||||
"again, pass `handle_parsing_errors=True` to the AgentExecutor. "
|
||||
f"This is the error: {str(e)}"
|
||||
)
|
||||
str(e)
|
||||
if isinstance(self.handle_parsing_errors, bool):
|
||||
if e.send_to_llm:
|
||||
observation = f"\n{str(e.observation)}"
|
||||
str(e.llm_output)
|
||||
else:
|
||||
observation = ""
|
||||
elif isinstance(self.handle_parsing_errors, str):
|
||||
observation = f"\n{self.handle_parsing_errors}"
|
||||
elif callable(self.handle_parsing_errors):
|
||||
observation = f"\n{self.handle_parsing_errors(e)}"
|
||||
else:
|
||||
raise ValueError("Got unexpected type of `handle_parsing_errors`")
|
||||
output = AgentAction("_Exception", observation, "")
|
||||
|
||||
if run_manager:
|
||||
run_manager.on_agent_action(output, color="green")
|
||||
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
observation = ExceptionTool().run(
|
||||
output.tool_input,
|
||||
verbose=False,
|
||||
color=None,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**tool_run_kwargs,
|
||||
)
|
||||
|
||||
if self._should_force_answer():
|
||||
error = self._i18n.errors("force_final_answer")
|
||||
output = AgentAction("_Exception", error, error)
|
||||
yield AgentStep(action=output, observation=error)
|
||||
return
|
||||
|
||||
yield AgentStep(action=output, observation=observation)
|
||||
return
|
||||
|
||||
except Exception as e:
|
||||
if LLMContextLengthExceededException(str(e))._is_context_limit_error(
|
||||
str(e)
|
||||
):
|
||||
output = self._handle_context_length_error(
|
||||
intermediate_steps, run_manager, inputs
|
||||
)
|
||||
|
||||
if isinstance(output, AgentFinish):
|
||||
yield output
|
||||
elif isinstance(output, list):
|
||||
for step in output:
|
||||
yield step
|
||||
return
|
||||
|
||||
raise e
|
||||
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
if self.should_ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(output.return_values["output"])
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(output, human_feedback)
|
||||
|
||||
# Making sure we only ask for it once, so disabling for the next thought loop
|
||||
self.should_ask_for_human_input = False
|
||||
action = AgentAction(
|
||||
tool="Human Input", tool_input=human_feedback, log=output.log
|
||||
)
|
||||
|
||||
yield AgentStep(
|
||||
action=action,
|
||||
observation=self._i18n.slice("human_feedback").format(
|
||||
human_feedback=human_feedback
|
||||
),
|
||||
)
|
||||
return
|
||||
|
||||
else:
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(output)
|
||||
|
||||
yield output
|
||||
return
|
||||
|
||||
self._create_short_term_memory(output)
|
||||
|
||||
actions: List[AgentAction]
|
||||
actions = [output] if isinstance(output, AgentAction) else output
|
||||
yield from actions
|
||||
|
||||
for agent_action in actions:
|
||||
if run_manager:
|
||||
run_manager.on_agent_action(agent_action, color="green")
|
||||
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=self.tools_handler, # type: ignore # Argument "tools_handler" to "ToolUsage" has incompatible type "ToolsHandler | None"; expected "ToolsHandler"
|
||||
tools=self.tools, # type: ignore # Argument "tools" to "ToolUsage" has incompatible type "Sequence[BaseTool]"; expected "list[BaseTool]"
|
||||
original_tools=self.original_tools,
|
||||
tools_description=self.tools_description,
|
||||
tools_names=self.tools_names,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
task=self.task,
|
||||
agent=self.crew_agent,
|
||||
action=agent_action,
|
||||
)
|
||||
|
||||
tool_calling = tool_usage.parse(agent_action.log)
|
||||
|
||||
if isinstance(tool_calling, ToolUsageErrorException):
|
||||
observation = tool_calling.message
|
||||
else:
|
||||
if tool_calling.tool_name.casefold().strip() in [
|
||||
name.casefold().strip() for name in name_to_tool_map
|
||||
] or tool_calling.tool_name.casefold().replace("_", " ") in [
|
||||
name.casefold().strip() for name in name_to_tool_map
|
||||
]:
|
||||
observation = tool_usage.use(tool_calling, agent_action.log)
|
||||
else:
|
||||
observation = self._i18n.errors("wrong_tool_name").format(
|
||||
tool=tool_calling.tool_name,
|
||||
tools=", ".join([tool.name.casefold() for tool in self.tools]),
|
||||
)
|
||||
yield AgentStep(action=agent_action, observation=observation)
|
||||
|
||||
def _handle_crew_training_output(
|
||||
self, output: AgentFinish, human_feedback: str | None = None
|
||||
) -> None:
|
||||
"""Function to handle the process of the training data."""
|
||||
agent_id = str(self.crew_agent.id)
|
||||
|
||||
if (
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
and not self.should_ask_for_human_input
|
||||
):
|
||||
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
if training_data.get(agent_id):
|
||||
training_data[agent_id][self.crew._train_iteration][
|
||||
"improved_output"
|
||||
] = output.return_values["output"]
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).save(training_data)
|
||||
|
||||
if self.should_ask_for_human_input and human_feedback is not None:
|
||||
training_data = {
|
||||
"initial_output": output.return_values["output"],
|
||||
"human_feedback": human_feedback,
|
||||
"agent": agent_id,
|
||||
"agent_role": self.crew_agent.role,
|
||||
}
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).append(
|
||||
self.crew._train_iteration, agent_id, training_data
|
||||
)
|
||||
|
||||
def _handle_context_length(
|
||||
self, intermediate_steps: List[Tuple[AgentAction, str]]
|
||||
) -> List[Tuple[AgentAction, str]]:
|
||||
text = intermediate_steps[0][1]
|
||||
original_action = intermediate_steps[0][0]
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
separators=["\n\n", "\n"],
|
||||
chunk_size=8000,
|
||||
chunk_overlap=500,
|
||||
)
|
||||
|
||||
if self._fit_context_window_strategy == "summarize":
|
||||
docs = text_splitter.create_documents([text])
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Summarizing Content, it is recommended to use a RAG tool",
|
||||
color="bold_blue",
|
||||
)
|
||||
summarize_chain = load_summarize_chain(
|
||||
self.llm, chain_type="map_reduce", verbose=True
|
||||
)
|
||||
summarized_docs = []
|
||||
for doc in docs:
|
||||
summary = summarize_chain.invoke(
|
||||
{"input_documents": [doc]}, return_only_outputs=True
|
||||
)
|
||||
|
||||
summarized_docs.append(summary["output_text"])
|
||||
|
||||
formatted_results = "\n\n".join(summarized_docs)
|
||||
summary_step = AgentStep(
|
||||
action=AgentAction(
|
||||
tool=original_action.tool,
|
||||
tool_input=original_action.tool_input,
|
||||
log=original_action.log,
|
||||
),
|
||||
observation=formatted_results,
|
||||
)
|
||||
summary_tuple = (summary_step.action, summary_step.observation)
|
||||
return [summary_tuple]
|
||||
|
||||
return intermediate_steps
|
||||
|
||||
def _handle_context_length_error(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
run_manager: Optional[CallbackManagerForChainRun],
|
||||
inputs: Dict[str, str],
|
||||
) -> Union[AgentFinish, List[AgentStep]]:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Asking user if they want to use summarize prompt to fit, this will reduce context length.",
|
||||
color="yellow",
|
||||
)
|
||||
user_choice = click.confirm(
|
||||
"Context length exceeded. Do you want to summarize the text to fit models context window?"
|
||||
)
|
||||
if user_choice:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Using summarize prompt to fit, this will reduce context length.",
|
||||
color="bold_blue",
|
||||
)
|
||||
intermediate_steps = self._handle_context_length(intermediate_steps)
|
||||
|
||||
output = self.agent.plan(
|
||||
intermediate_steps,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**inputs,
|
||||
)
|
||||
|
||||
if isinstance(output, AgentFinish):
|
||||
return output
|
||||
elif isinstance(output, AgentAction):
|
||||
return [AgentStep(action=output, observation=None)]
|
||||
else:
|
||||
return [AgentStep(action=action, observation=None) for action in output]
|
||||
else:
|
||||
self._logger.log(
|
||||
"debug",
|
||||
"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
|
||||
color="red",
|
||||
)
|
||||
raise SystemExit(
|
||||
"Context length exceeded and user opted not to summarize. Consider using smaller text or RAG tools from crewai_tools."
|
||||
)
|
||||
@@ -1,10 +1,6 @@
|
||||
import re
|
||||
from typing import Any, Union
|
||||
|
||||
from json_repair import repair_json
|
||||
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
|
||||
from crewai.utilities import I18N
|
||||
|
||||
@@ -14,7 +10,39 @@ MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = "I did it wrong. Invalid Forma
|
||||
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other"
|
||||
|
||||
|
||||
class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
class AgentAction:
|
||||
thought: str
|
||||
tool: str
|
||||
tool_input: str
|
||||
text: str
|
||||
result: str
|
||||
|
||||
def __init__(self, thought: str, tool: str, tool_input: str, text: str):
|
||||
self.thought = thought
|
||||
self.tool = tool
|
||||
self.tool_input = tool_input
|
||||
self.text = text
|
||||
|
||||
|
||||
class AgentFinish:
|
||||
thought: str
|
||||
output: str
|
||||
text: str
|
||||
|
||||
def __init__(self, thought: str, output: str, text: str):
|
||||
self.thought = thought
|
||||
self.output = output
|
||||
self.text = text
|
||||
|
||||
|
||||
class OutputParserException(Exception):
|
||||
error: str
|
||||
|
||||
def __init__(self, error: str):
|
||||
self.error = error
|
||||
|
||||
|
||||
class CrewAgentParser:
|
||||
"""Parses ReAct-style LLM calls that have a single tool input.
|
||||
|
||||
Expects output to be in one of two formats.
|
||||
@@ -38,7 +66,11 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
_i18n: I18N = I18N()
|
||||
agent: Any = None
|
||||
|
||||
def __init__(self, agent: Any):
|
||||
self.agent = agent
|
||||
|
||||
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
||||
thought = self._extract_thought(text)
|
||||
includes_answer = FINAL_ANSWER_ACTION in text
|
||||
regex = (
|
||||
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
|
||||
@@ -47,7 +79,7 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
if action_match:
|
||||
if includes_answer:
|
||||
raise OutputParserException(
|
||||
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}"
|
||||
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}"
|
||||
)
|
||||
action = action_match.group(1)
|
||||
clean_action = self._clean_action(action)
|
||||
@@ -57,30 +89,23 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
tool_input = action_input.strip(" ").strip('"')
|
||||
safe_tool_input = self._safe_repair_json(tool_input)
|
||||
|
||||
return AgentAction(clean_action, safe_tool_input, text)
|
||||
return AgentAction(thought, clean_action, safe_tool_input, text)
|
||||
|
||||
elif includes_answer:
|
||||
return AgentFinish(
|
||||
{"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text
|
||||
)
|
||||
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
|
||||
return AgentFinish(thought, final_answer, text)
|
||||
|
||||
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
f"Could not parse LLM output: `{text}`",
|
||||
observation=f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}",
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}",
|
||||
)
|
||||
elif not re.search(
|
||||
r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL
|
||||
):
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
f"Could not parse LLM output: `{text}`",
|
||||
observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
|
||||
)
|
||||
else:
|
||||
format = self._i18n.slice("format_without_tools")
|
||||
@@ -88,11 +113,15 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
error,
|
||||
observation=error,
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
|
||||
def _extract_thought(self, text: str) -> str:
|
||||
regex = r"(.*?)(?:\n\nAction|\n\nFinal Answer)"
|
||||
thought_match = re.search(regex, text, re.DOTALL)
|
||||
if thought_match:
|
||||
return thought_match.group(1).strip()
|
||||
return ""
|
||||
|
||||
def _clean_action(self, text: str) -> str:
|
||||
"""Clean action string by removing non-essential formatting characters."""
|
||||
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()
|
||||
|
||||
@@ -79,7 +79,7 @@ class TokenManager:
|
||||
"""
|
||||
encrypted_data = self.read_secure_file(self.file_path)
|
||||
|
||||
decrypted_data = self.fernet.decrypt(encrypted_data)
|
||||
decrypted_data = self.fernet.decrypt(encrypted_data) # type: ignore
|
||||
data = json.loads(decrypted_data)
|
||||
|
||||
expiration = datetime.fromisoformat(data["expiration"])
|
||||
|
||||
@@ -4,6 +4,7 @@ import click
|
||||
import pkg_resources
|
||||
|
||||
from crewai.cli.create_crew import create_crew
|
||||
from crewai.cli.create_flow import create_flow
|
||||
from crewai.cli.create_pipeline import create_pipeline
|
||||
from crewai.memory.storage.kickoff_task_outputs_storage import (
|
||||
KickoffTaskOutputsSQLiteStorage,
|
||||
@@ -13,9 +14,12 @@ from .authentication.main import AuthenticationCommand
|
||||
from .deploy.main import DeployCommand
|
||||
from .evaluate_crew import evaluate_crew
|
||||
from .install_crew import install_crew
|
||||
from .plot_flow import plot_flow
|
||||
from .replay_from_task import replay_task_command
|
||||
from .reset_memories_command import reset_memories_command
|
||||
from .run_crew import run_crew
|
||||
from .run_flow import run_flow
|
||||
from .tools.main import ToolCommand
|
||||
from .train_crew import train_crew
|
||||
|
||||
|
||||
@@ -25,19 +29,20 @@ def crewai():
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.argument("type", type=click.Choice(["crew", "pipeline"]))
|
||||
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
|
||||
@click.argument("name")
|
||||
@click.option(
|
||||
"--router", is_flag=True, help="Create a pipeline with router functionality"
|
||||
)
|
||||
def create(type, name, router):
|
||||
"""Create a new crew or pipeline."""
|
||||
def create(type, name):
|
||||
"""Create a new crew, pipeline, or flow."""
|
||||
if type == "crew":
|
||||
create_crew(name)
|
||||
elif type == "pipeline":
|
||||
create_pipeline(name, router)
|
||||
create_pipeline(name)
|
||||
elif type == "flow":
|
||||
create_flow(name)
|
||||
else:
|
||||
click.secho("Error: Invalid type. Must be 'crew' or 'pipeline'.", fg="red")
|
||||
click.secho(
|
||||
"Error: Invalid type. Must be 'crew', 'pipeline', or 'flow'.", fg="red"
|
||||
)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@@ -202,6 +207,12 @@ def deploy():
|
||||
pass
|
||||
|
||||
|
||||
@crewai.group()
|
||||
def tool():
|
||||
"""Tool Repository related commands."""
|
||||
pass
|
||||
|
||||
|
||||
@deploy.command(name="create")
|
||||
@click.option("-y", "--yes", is_flag=True, help="Skip the confirmation prompt")
|
||||
def deploy_create(yes: bool):
|
||||
@@ -249,5 +260,50 @@ def deploy_remove(uuid: Optional[str]):
|
||||
deploy_cmd.remove_crew(uuid=uuid)
|
||||
|
||||
|
||||
@tool.command(name="create")
|
||||
@click.argument("handle")
|
||||
def tool_create(handle: str):
|
||||
tool_cmd = ToolCommand()
|
||||
tool_cmd.create(handle)
|
||||
|
||||
|
||||
@tool.command(name="install")
|
||||
@click.argument("handle")
|
||||
def tool_install(handle: str):
|
||||
tool_cmd = ToolCommand()
|
||||
tool_cmd.login()
|
||||
tool_cmd.install(handle)
|
||||
|
||||
|
||||
@tool.command(name="publish")
|
||||
@click.option("--force", is_flag=True, show_default=True, default=False, help="Bypasses Git remote validations")
|
||||
@click.option("--public", "is_public", flag_value=True, default=False)
|
||||
@click.option("--private", "is_public", flag_value=False)
|
||||
def tool_publish(is_public: bool, force: bool):
|
||||
tool_cmd = ToolCommand()
|
||||
tool_cmd.login()
|
||||
tool_cmd.publish(is_public, force)
|
||||
|
||||
|
||||
@crewai.group()
|
||||
def flow():
|
||||
"""Flow related commands."""
|
||||
pass
|
||||
|
||||
|
||||
@flow.command(name="run")
|
||||
def flow_run():
|
||||
"""Run the Flow."""
|
||||
click.echo("Running the Flow")
|
||||
run_flow()
|
||||
|
||||
|
||||
@flow.command(name="plot")
|
||||
def flow_plot():
|
||||
"""Plot the Flow."""
|
||||
click.echo("Plotting the Flow")
|
||||
plot_flow()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
crewai()
|
||||
|
||||
71
src/crewai/cli/command.py
Normal file
71
src/crewai/cli/command.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import requests
|
||||
from requests.exceptions import JSONDecodeError
|
||||
from rich.console import Console
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
from crewai.cli.utils import get_auth_token
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
class BaseCommand:
|
||||
def __init__(self):
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
|
||||
|
||||
class PlusAPIMixin:
|
||||
def __init__(self, telemetry):
|
||||
try:
|
||||
telemetry.set_tracer()
|
||||
self.plus_api_client = PlusAPI(api_key=get_auth_token())
|
||||
except Exception:
|
||||
self._deploy_signup_error_span = telemetry.deploy_signup_error_span()
|
||||
console.print(
|
||||
"Please sign up/login to CrewAI+ before using the CLI.",
|
||||
style="bold red",
|
||||
)
|
||||
console.print("Run 'crewai signup' to sign up/login.", style="bold green")
|
||||
raise SystemExit
|
||||
|
||||
def _validate_response(self, response: requests.Response) -> None:
|
||||
"""
|
||||
Handle and display error messages from API responses.
|
||||
|
||||
Args:
|
||||
response (requests.Response): The response from the Plus API
|
||||
"""
|
||||
try:
|
||||
json_response = response.json()
|
||||
except (JSONDecodeError, ValueError):
|
||||
console.print(
|
||||
"Failed to parse response from Enterprise API failed. Details:",
|
||||
style="bold red",
|
||||
)
|
||||
console.print(f"Status Code: {response.status_code}")
|
||||
console.print(f"Response:\n{response.content}")
|
||||
raise SystemExit
|
||||
|
||||
if response.status_code == 422:
|
||||
console.print(
|
||||
"Failed to complete operation. Please fix the following errors:",
|
||||
style="bold red",
|
||||
)
|
||||
for field, messages in json_response.items():
|
||||
for message in messages:
|
||||
console.print(
|
||||
f"* [bold red]{field.capitalize()}[/bold red] {message}"
|
||||
)
|
||||
raise SystemExit
|
||||
|
||||
if not response.ok:
|
||||
console.print(
|
||||
"Request to Enterprise API failed. Details:", style="bold red"
|
||||
)
|
||||
details = (
|
||||
json_response.get("error")
|
||||
or json_response.get("message")
|
||||
or response.content
|
||||
)
|
||||
console.print(f"{details}")
|
||||
raise SystemExit
|
||||
99
src/crewai/cli/create_flow.py
Normal file
99
src/crewai/cli/create_flow.py
Normal file
@@ -0,0 +1,99 @@
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
from crewai.telemetry import Telemetry
|
||||
|
||||
|
||||
def create_flow(name):
|
||||
"""Create a new flow."""
|
||||
folder_name = name.replace(" ", "_").replace("-", "_").lower()
|
||||
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
|
||||
|
||||
click.secho(f"Creating flow {folder_name}...", fg="green", bold=True)
|
||||
|
||||
project_root = Path(folder_name)
|
||||
if project_root.exists():
|
||||
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
|
||||
return
|
||||
|
||||
# Initialize telemetry
|
||||
telemetry = Telemetry()
|
||||
telemetry.flow_creation_span(class_name)
|
||||
|
||||
# Create directory structure
|
||||
(project_root / "src" / folder_name).mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
|
||||
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(project_root / "tests").mkdir(exist_ok=True)
|
||||
|
||||
# Create .env file
|
||||
with open(project_root / ".env", "w") as file:
|
||||
file.write("OPENAI_API_KEY=YOUR_API_KEY")
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
templates_dir = package_dir / "templates" / "flow"
|
||||
|
||||
# List of template files to copy
|
||||
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
|
||||
src_template_files = ["__init__.py", "main.py"]
|
||||
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
|
||||
|
||||
crew_folders = [
|
||||
"poem_crew",
|
||||
]
|
||||
|
||||
def process_file(src_file, dst_file):
|
||||
if src_file.suffix in [".pyc", ".pyo", ".pyd"]:
|
||||
return
|
||||
|
||||
try:
|
||||
with open(src_file, "r", encoding="utf-8") as file:
|
||||
content = file.read()
|
||||
except Exception as e:
|
||||
click.secho(f"Error processing file {src_file}: {e}", fg="red")
|
||||
return
|
||||
|
||||
content = content.replace("{{name}}", name)
|
||||
content = content.replace("{{flow_name}}", class_name)
|
||||
content = content.replace("{{folder_name}}", folder_name)
|
||||
|
||||
with open(dst_file, "w") as file:
|
||||
file.write(content)
|
||||
|
||||
# Copy and process root template files
|
||||
for file_name in root_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy and process src template files
|
||||
for file_name in src_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy tools files
|
||||
for file_name in tools_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = project_root / "src" / folder_name / file_name
|
||||
process_file(src_file, dst_file)
|
||||
|
||||
# Copy crew folders
|
||||
for crew_folder in crew_folders:
|
||||
src_crew_folder = templates_dir / "crews" / crew_folder
|
||||
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
|
||||
if src_crew_folder.exists():
|
||||
for src_file in src_crew_folder.rglob("*"):
|
||||
if src_file.is_file():
|
||||
relative_path = src_file.relative_to(src_crew_folder)
|
||||
dst_file = dst_crew_folder / relative_path
|
||||
dst_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
process_file(src_file, dst_file)
|
||||
else:
|
||||
click.secho(
|
||||
f"Warning: Crew folder {crew_folder} not found in template.",
|
||||
fg="yellow",
|
||||
)
|
||||
|
||||
click.secho(f"Flow {name} created successfully!", fg="green", bold=True)
|
||||
@@ -1,66 +0,0 @@
|
||||
from os import getenv
|
||||
|
||||
import requests
|
||||
|
||||
from crewai.cli.deploy.utils import get_crewai_version
|
||||
|
||||
|
||||
class CrewAPI:
|
||||
"""
|
||||
CrewAPI class to interact with the crewAI+ API.
|
||||
"""
|
||||
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self.api_key = api_key
|
||||
self.headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": f"CrewAI-CLI/{get_crewai_version()}",
|
||||
}
|
||||
self.base_url = getenv(
|
||||
"CREWAI_BASE_URL", "https://crewai.com/crewai_plus/api/v1/crews"
|
||||
)
|
||||
|
||||
def _make_request(self, method: str, endpoint: str, **kwargs) -> requests.Response:
|
||||
url = f"{self.base_url}/{endpoint}"
|
||||
return requests.request(method, url, headers=self.headers, **kwargs)
|
||||
|
||||
# Deploy
|
||||
def deploy_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("POST", f"by-name/{project_name}/deploy")
|
||||
|
||||
def deploy_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("POST", f"{uuid}/deploy")
|
||||
|
||||
# Status
|
||||
def status_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("GET", f"by-name/{project_name}/status")
|
||||
|
||||
def status_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("GET", f"{uuid}/status")
|
||||
|
||||
# Logs
|
||||
def logs_by_name(
|
||||
self, project_name: str, log_type: str = "deployment"
|
||||
) -> requests.Response:
|
||||
return self._make_request("GET", f"by-name/{project_name}/logs/{log_type}")
|
||||
|
||||
def logs_by_uuid(
|
||||
self, uuid: str, log_type: str = "deployment"
|
||||
) -> requests.Response:
|
||||
return self._make_request("GET", f"{uuid}/logs/{log_type}")
|
||||
|
||||
# Delete
|
||||
def delete_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request("DELETE", f"by-name/{project_name}")
|
||||
|
||||
def delete_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("DELETE", f"{uuid}")
|
||||
|
||||
# List
|
||||
def list_crews(self) -> requests.Response:
|
||||
return self._make_request("GET", "")
|
||||
|
||||
# Create
|
||||
def create_crew(self, payload) -> requests.Response:
|
||||
return self._make_request("POST", "", json=payload)
|
||||
@@ -2,19 +2,14 @@ from typing import Any, Dict, List, Optional
|
||||
|
||||
from rich.console import Console
|
||||
|
||||
from crewai.telemetry import Telemetry
|
||||
from .api import CrewAPI
|
||||
from .utils import (
|
||||
fetch_and_json_env_file,
|
||||
get_auth_token,
|
||||
get_git_remote_url,
|
||||
get_project_name,
|
||||
)
|
||||
from crewai.cli import git
|
||||
from crewai.cli.command import BaseCommand, PlusAPIMixin
|
||||
from crewai.cli.utils import fetch_and_json_env_file, get_project_name
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
class DeployCommand:
|
||||
class DeployCommand(BaseCommand, PlusAPIMixin):
|
||||
"""
|
||||
A class to handle deployment-related operations for CrewAI projects.
|
||||
"""
|
||||
@@ -23,40 +18,10 @@ class DeployCommand:
|
||||
"""
|
||||
Initialize the DeployCommand with project name and API client.
|
||||
"""
|
||||
try:
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
access_token = get_auth_token()
|
||||
except Exception:
|
||||
self._deploy_signup_error_span = self._telemetry.deploy_signup_error_span()
|
||||
console.print(
|
||||
"Please sign up/login to CrewAI+ before using the CLI.",
|
||||
style="bold red",
|
||||
)
|
||||
console.print("Run 'crewai signup' to sign up/login.", style="bold green")
|
||||
raise SystemExit
|
||||
|
||||
self.project_name = get_project_name()
|
||||
if self.project_name is None:
|
||||
console.print(
|
||||
"No project name found. Please ensure your project has a valid pyproject.toml file.",
|
||||
style="bold red",
|
||||
)
|
||||
raise SystemExit
|
||||
|
||||
self.client = CrewAPI(api_key=access_token)
|
||||
|
||||
def _handle_error(self, json_response: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Handle and display error messages from API responses.
|
||||
|
||||
Args:
|
||||
json_response (Dict[str, Any]): The JSON response containing error information.
|
||||
"""
|
||||
error = json_response.get("error", "Unknown error")
|
||||
message = json_response.get("message", "No message provided")
|
||||
console.print(f"Error: {error}", style="bold red")
|
||||
console.print(f"Message: {message}", style="bold red")
|
||||
BaseCommand.__init__(self)
|
||||
PlusAPIMixin.__init__(self, telemetry=self._telemetry)
|
||||
self.project_name = get_project_name(require=True)
|
||||
|
||||
def _standard_no_param_error_message(self) -> None:
|
||||
"""
|
||||
@@ -104,20 +69,17 @@ class DeployCommand:
|
||||
self._start_deployment_span = self._telemetry.start_deployment_span(uuid)
|
||||
console.print("Starting deployment...", style="bold blue")
|
||||
if uuid:
|
||||
response = self.client.deploy_by_uuid(uuid)
|
||||
response = self.plus_api_client.deploy_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.deploy_by_name(self.project_name)
|
||||
response = self.plus_api_client.deploy_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_deployment_info(json_response)
|
||||
else:
|
||||
self._handle_error(json_response)
|
||||
self._validate_response(response)
|
||||
self._display_deployment_info(response.json())
|
||||
|
||||
def create_crew(self, confirm: bool) -> None:
|
||||
def create_crew(self, confirm: bool = False) -> None:
|
||||
"""
|
||||
Create a new crew deployment.
|
||||
"""
|
||||
@@ -126,7 +88,11 @@ class DeployCommand:
|
||||
)
|
||||
console.print("Creating deployment...", style="bold blue")
|
||||
env_vars = fetch_and_json_env_file()
|
||||
remote_repo_url = get_git_remote_url()
|
||||
|
||||
try:
|
||||
remote_repo_url = git.Repository().origin_url()
|
||||
except ValueError:
|
||||
remote_repo_url = None
|
||||
|
||||
if remote_repo_url is None:
|
||||
console.print("No remote repository URL found.", style="bold red")
|
||||
@@ -138,12 +104,10 @@ class DeployCommand:
|
||||
|
||||
self._confirm_input(env_vars, remote_repo_url, confirm)
|
||||
payload = self._create_payload(env_vars, remote_repo_url)
|
||||
response = self.plus_api_client.create_crew(payload)
|
||||
|
||||
response = self.client.create_crew(payload)
|
||||
if response.status_code == 201:
|
||||
self._display_creation_success(response.json())
|
||||
else:
|
||||
self._handle_error(response.json())
|
||||
self._validate_response(response)
|
||||
self._display_creation_success(response.json())
|
||||
|
||||
def _confirm_input(
|
||||
self, env_vars: Dict[str, str], remote_repo_url: str, confirm: bool
|
||||
@@ -208,7 +172,7 @@ class DeployCommand:
|
||||
"""
|
||||
console.print("Listing all Crews\n", style="bold blue")
|
||||
|
||||
response = self.client.list_crews()
|
||||
response = self.plus_api_client.list_crews()
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_crews(json_response)
|
||||
@@ -243,18 +207,15 @@ class DeployCommand:
|
||||
"""
|
||||
console.print("Fetching deployment status...", style="bold blue")
|
||||
if uuid:
|
||||
response = self.client.status_by_uuid(uuid)
|
||||
response = self.plus_api_client.crew_status_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.status_by_name(self.project_name)
|
||||
response = self.plus_api_client.crew_status_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
json_response = response.json()
|
||||
if response.status_code == 200:
|
||||
self._display_crew_status(json_response)
|
||||
else:
|
||||
self._handle_error(json_response)
|
||||
self._validate_response(response)
|
||||
self._display_crew_status(response.json())
|
||||
|
||||
def _display_crew_status(self, status_data: Dict[str, str]) -> None:
|
||||
"""
|
||||
@@ -278,17 +239,15 @@ class DeployCommand:
|
||||
console.print(f"Fetching {log_type} logs...", style="bold blue")
|
||||
|
||||
if uuid:
|
||||
response = self.client.logs_by_uuid(uuid, log_type)
|
||||
response = self.plus_api_client.crew_by_uuid(uuid, log_type)
|
||||
elif self.project_name:
|
||||
response = self.client.logs_by_name(self.project_name, log_type)
|
||||
response = self.plus_api_client.crew_by_name(self.project_name, log_type)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
if response.status_code == 200:
|
||||
self._display_logs(response.json())
|
||||
else:
|
||||
self._handle_error(response.json())
|
||||
self._validate_response(response)
|
||||
self._display_logs(response.json())
|
||||
|
||||
def remove_crew(self, uuid: Optional[str]) -> None:
|
||||
"""
|
||||
@@ -301,9 +260,9 @@ class DeployCommand:
|
||||
console.print("Removing deployment...", style="bold blue")
|
||||
|
||||
if uuid:
|
||||
response = self.client.delete_by_uuid(uuid)
|
||||
response = self.plus_api_client.delete_crew_by_uuid(uuid)
|
||||
elif self.project_name:
|
||||
response = self.client.delete_by_name(self.project_name)
|
||||
response = self.plus_api_client.delete_crew_by_name(self.project_name)
|
||||
else:
|
||||
self._standard_no_param_error_message()
|
||||
return
|
||||
|
||||
@@ -1,155 +0,0 @@
|
||||
import sys
|
||||
import re
|
||||
import subprocess
|
||||
|
||||
from rich.console import Console
|
||||
|
||||
from ..authentication.utils import TokenManager
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
import tomllib
|
||||
|
||||
|
||||
# Drop the simple_toml_parser when we move to python3.11
|
||||
def simple_toml_parser(content):
|
||||
result = {}
|
||||
current_section = result
|
||||
for line in content.split('\n'):
|
||||
line = line.strip()
|
||||
if line.startswith('[') and line.endswith(']'):
|
||||
# New section
|
||||
section = line[1:-1].split('.')
|
||||
current_section = result
|
||||
for key in section:
|
||||
current_section = current_section.setdefault(key, {})
|
||||
elif '=' in line:
|
||||
key, value = line.split('=', 1)
|
||||
key = key.strip()
|
||||
value = value.strip().strip('"')
|
||||
current_section[key] = value
|
||||
return result
|
||||
|
||||
|
||||
def parse_toml(content):
|
||||
if sys.version_info >= (3, 11):
|
||||
return tomllib.loads(content)
|
||||
else:
|
||||
return simple_toml_parser(content)
|
||||
|
||||
|
||||
def get_git_remote_url() -> str | None:
|
||||
"""Get the Git repository's remote URL."""
|
||||
try:
|
||||
# Run the git remote -v command
|
||||
result = subprocess.run(
|
||||
["git", "remote", "-v"], capture_output=True, text=True, check=True
|
||||
)
|
||||
|
||||
# Get the output
|
||||
output = result.stdout
|
||||
|
||||
# Parse the output to find the origin URL
|
||||
matches = re.findall(r"origin\s+(.*?)\s+\(fetch\)", output)
|
||||
|
||||
if matches:
|
||||
return matches[0] # Return the first match (origin URL)
|
||||
else:
|
||||
console.print("No origin remote found.", style="bold red")
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
console.print(f"Error running trying to fetch the Git Repository: {e}", style="bold red")
|
||||
except FileNotFoundError:
|
||||
console.print("Git command not found. Make sure Git is installed and in your PATH.", style="bold red")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_project_name(pyproject_path: str = "pyproject.toml") -> str | None:
|
||||
"""Get the project name from the pyproject.toml file."""
|
||||
try:
|
||||
# Read the pyproject.toml file
|
||||
with open(pyproject_path, "r") as f:
|
||||
pyproject_content = parse_toml(f.read())
|
||||
|
||||
# Extract the project name
|
||||
project_name = pyproject_content["tool"]["poetry"]["name"]
|
||||
|
||||
if "crewai" not in pyproject_content["tool"]["poetry"]["dependencies"]:
|
||||
raise Exception("crewai is not in the dependencies.")
|
||||
|
||||
return project_name
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {pyproject_path} not found.")
|
||||
except KeyError:
|
||||
print(f"Error: {pyproject_path} is not a valid pyproject.toml file.")
|
||||
except tomllib.TOMLDecodeError if sys.version_info >= (3, 11) else Exception as e: # type: ignore
|
||||
print(
|
||||
f"Error: {pyproject_path} is not a valid TOML file."
|
||||
if sys.version_info >= (3, 11)
|
||||
else f"Error reading the pyproject.toml file: {e}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error reading the pyproject.toml file: {e}")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_crewai_version(poetry_lock_path: str = "poetry.lock") -> str:
|
||||
"""Get the version number of crewai from the poetry.lock file."""
|
||||
try:
|
||||
with open(poetry_lock_path, "r") as f:
|
||||
lock_content = f.read()
|
||||
|
||||
match = re.search(
|
||||
r'\[\[package\]\]\s*name\s*=\s*"crewai"\s*version\s*=\s*"([^"]+)"',
|
||||
lock_content,
|
||||
re.DOTALL,
|
||||
)
|
||||
if match:
|
||||
return match.group(1)
|
||||
else:
|
||||
print("crewai package not found in poetry.lock")
|
||||
return "no-version-found"
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {poetry_lock_path} not found.")
|
||||
except Exception as e:
|
||||
print(f"Error reading the poetry.lock file: {e}")
|
||||
|
||||
return "no-version-found"
|
||||
|
||||
|
||||
def fetch_and_json_env_file(env_file_path: str = ".env") -> dict:
|
||||
"""Fetch the environment variables from a .env file and return them as a dictionary."""
|
||||
try:
|
||||
# Read the .env file
|
||||
with open(env_file_path, "r") as f:
|
||||
env_content = f.read()
|
||||
|
||||
# Parse the .env file content to a dictionary
|
||||
env_dict = {}
|
||||
for line in env_content.splitlines():
|
||||
if line.strip() and not line.strip().startswith("#"):
|
||||
key, value = line.split("=", 1)
|
||||
env_dict[key.strip()] = value.strip()
|
||||
|
||||
return env_dict
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {env_file_path} not found.")
|
||||
except Exception as e:
|
||||
print(f"Error reading the .env file: {e}")
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
return access_token
|
||||
80
src/crewai/cli/git.py
Normal file
80
src/crewai/cli/git.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import subprocess
|
||||
|
||||
|
||||
class Repository:
|
||||
def __init__(self, path="."):
|
||||
self.path = path
|
||||
|
||||
if not self.is_git_installed():
|
||||
raise ValueError("Git is not installed or not found in your PATH.")
|
||||
|
||||
if not self.is_git_repo():
|
||||
raise ValueError(f"{self.path} is not a Git repository.")
|
||||
|
||||
self.fetch()
|
||||
|
||||
def is_git_installed(self) -> bool:
|
||||
"""Check if Git is installed and available in the system."""
|
||||
try:
|
||||
subprocess.run(
|
||||
["git", "--version"], capture_output=True, check=True, text=True
|
||||
)
|
||||
return True
|
||||
except (subprocess.CalledProcessError, FileNotFoundError):
|
||||
return False
|
||||
|
||||
def fetch(self) -> None:
|
||||
"""Fetch latest updates from the remote."""
|
||||
subprocess.run(["git", "fetch"], cwd=self.path, check=True)
|
||||
|
||||
def status(self) -> str:
|
||||
"""Get the git status in porcelain format."""
|
||||
return subprocess.check_output(
|
||||
["git", "status", "--branch", "--porcelain"],
|
||||
cwd=self.path,
|
||||
encoding="utf-8",
|
||||
).strip()
|
||||
|
||||
def is_git_repo(self) -> bool:
|
||||
"""Check if the current directory is a git repository."""
|
||||
try:
|
||||
subprocess.check_output(
|
||||
["git", "rev-parse", "--is-inside-work-tree"],
|
||||
cwd=self.path,
|
||||
encoding="utf-8",
|
||||
)
|
||||
return True
|
||||
except subprocess.CalledProcessError:
|
||||
return False
|
||||
|
||||
def has_uncommitted_changes(self) -> bool:
|
||||
"""Check if the repository has uncommitted changes."""
|
||||
return len(self.status().splitlines()) > 1
|
||||
|
||||
def is_ahead_or_behind(self) -> bool:
|
||||
"""Check if the repository is ahead or behind the remote."""
|
||||
for line in self.status().splitlines():
|
||||
if line.startswith("##") and ("ahead" in line or "behind" in line):
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_synced(self) -> bool:
|
||||
"""Return True if the Git repository is fully synced with the remote, False otherwise."""
|
||||
if self.has_uncommitted_changes() or self.is_ahead_or_behind():
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
def origin_url(self) -> str | None:
|
||||
"""Get the Git repository's remote URL."""
|
||||
try:
|
||||
result = subprocess.run(
|
||||
["git", "remote", "get-url", "origin"],
|
||||
cwd=self.path,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
check=True,
|
||||
)
|
||||
return result.stdout.strip()
|
||||
except subprocess.CalledProcessError:
|
||||
return None
|
||||
23
src/crewai/cli/plot_flow.py
Normal file
23
src/crewai/cli/plot_flow.py
Normal file
@@ -0,0 +1,23 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def plot_flow() -> None:
|
||||
"""
|
||||
Plot the flow by running a command in the Poetry environment.
|
||||
"""
|
||||
command = ["poetry", "run", "plot_flow"]
|
||||
|
||||
try:
|
||||
result = subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
|
||||
if result.stderr:
|
||||
click.echo(result.stderr, err=True)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while plotting the flow: {e}", err=True)
|
||||
click.echo(e.output, err=True)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
95
src/crewai/cli/plus_api.py
Normal file
95
src/crewai/cli/plus_api.py
Normal file
@@ -0,0 +1,95 @@
|
||||
from typing import Optional
|
||||
import requests
|
||||
from os import getenv
|
||||
from crewai.cli.utils import get_crewai_version
|
||||
from urllib.parse import urljoin
|
||||
|
||||
|
||||
class PlusAPI:
|
||||
"""
|
||||
This class exposes methods for working with the CrewAI+ API.
|
||||
"""
|
||||
|
||||
TOOLS_RESOURCE = "/crewai_plus/api/v1/tools"
|
||||
CREWS_RESOURCE = "/crewai_plus/api/v1/crews"
|
||||
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self.api_key = api_key
|
||||
self.headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": f"CrewAI-CLI/{get_crewai_version()}",
|
||||
"X-Crewai-Version": get_crewai_version(),
|
||||
}
|
||||
self.base_url = getenv("CREWAI_BASE_URL", "https://app.crewai.com")
|
||||
|
||||
def _make_request(self, method: str, endpoint: str, **kwargs) -> requests.Response:
|
||||
url = urljoin(self.base_url, endpoint)
|
||||
return requests.request(method, url, headers=self.headers, **kwargs)
|
||||
|
||||
def login_to_tool_repository(self):
|
||||
return self._make_request("POST", f"{self.TOOLS_RESOURCE}/login")
|
||||
|
||||
def get_tool(self, handle: str):
|
||||
return self._make_request("GET", f"{self.TOOLS_RESOURCE}/{handle}")
|
||||
|
||||
def publish_tool(
|
||||
self,
|
||||
handle: str,
|
||||
is_public: bool,
|
||||
version: str,
|
||||
description: Optional[str],
|
||||
encoded_file: str,
|
||||
):
|
||||
params = {
|
||||
"handle": handle,
|
||||
"public": is_public,
|
||||
"version": version,
|
||||
"file": encoded_file,
|
||||
"description": description,
|
||||
}
|
||||
return self._make_request("POST", f"{self.TOOLS_RESOURCE}", json=params)
|
||||
|
||||
def deploy_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request(
|
||||
"POST", f"{self.CREWS_RESOURCE}/by-name/{project_name}/deploy"
|
||||
)
|
||||
|
||||
def deploy_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("POST", f"{self.CREWS_RESOURCE}/{uuid}/deploy")
|
||||
|
||||
def crew_status_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request(
|
||||
"GET", f"{self.CREWS_RESOURCE}/by-name/{project_name}/status"
|
||||
)
|
||||
|
||||
def crew_status_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("GET", f"{self.CREWS_RESOURCE}/{uuid}/status")
|
||||
|
||||
def crew_by_name(
|
||||
self, project_name: str, log_type: str = "deployment"
|
||||
) -> requests.Response:
|
||||
return self._make_request(
|
||||
"GET", f"{self.CREWS_RESOURCE}/by-name/{project_name}/logs/{log_type}"
|
||||
)
|
||||
|
||||
def crew_by_uuid(
|
||||
self, uuid: str, log_type: str = "deployment"
|
||||
) -> requests.Response:
|
||||
return self._make_request(
|
||||
"GET", f"{self.CREWS_RESOURCE}/{uuid}/logs/{log_type}"
|
||||
)
|
||||
|
||||
def delete_crew_by_name(self, project_name: str) -> requests.Response:
|
||||
return self._make_request(
|
||||
"DELETE", f"{self.CREWS_RESOURCE}/by-name/{project_name}"
|
||||
)
|
||||
|
||||
def delete_crew_by_uuid(self, uuid: str) -> requests.Response:
|
||||
return self._make_request("DELETE", f"{self.CREWS_RESOURCE}/{uuid}")
|
||||
|
||||
def list_crews(self) -> requests.Response:
|
||||
return self._make_request("GET", self.CREWS_RESOURCE)
|
||||
|
||||
def create_crew(self, payload) -> requests.Response:
|
||||
return self._make_request("POST", self.CREWS_RESOURCE, json=payload)
|
||||
23
src/crewai/cli/run_flow.py
Normal file
23
src/crewai/cli/run_flow.py
Normal file
@@ -0,0 +1,23 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def run_flow() -> None:
|
||||
"""
|
||||
Run the flow by running a command in the Poetry environment.
|
||||
"""
|
||||
command = ["poetry", "run", "run_flow"]
|
||||
|
||||
try:
|
||||
result = subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
|
||||
if result.stderr:
|
||||
click.echo(result.stderr, err=True)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while running the flow: {e}", err=True)
|
||||
click.echo(e.output, err=True)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
@@ -10,8 +10,6 @@ from crewai.project import CrewBase, agent, crew, task
|
||||
@CrewBase
|
||||
class {{crew_name}}Crew():
|
||||
"""{{crew_name}} crew"""
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.55.2,<1.0.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.67.1,<1.0.0" }
|
||||
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
||||
3
src/crewai/cli/templates/flow/.gitignore
vendored
Normal file
3
src/crewai/cli/templates/flow/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
.env
|
||||
__pycache__/
|
||||
lib/
|
||||
57
src/crewai/cli/templates/flow/README.md
Normal file
57
src/crewai/cli/templates/flow/README.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# {{crew_name}} Crew
|
||||
|
||||
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
|
||||
```bash
|
||||
crewai install
|
||||
```
|
||||
|
||||
### Customizing
|
||||
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
|
||||
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
|
||||
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
|
||||
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
|
||||
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
|
||||
|
||||
## Running the Project
|
||||
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
crewai run
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
|
||||
|
||||
## Understanding Your Crew
|
||||
|
||||
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
|
||||
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat with our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
0
src/crewai/cli/templates/flow/__init__.py
Normal file
0
src/crewai/cli/templates/flow/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
poem_writer:
|
||||
role: >
|
||||
CrewAI Poem Writer
|
||||
goal: >
|
||||
Generate a funny, light heartedpoem about how CrewAI
|
||||
is awesome with a sentence count of {sentence_count}
|
||||
backstory: >
|
||||
You're a creative poet with a talent for capturing the essence of any topic
|
||||
in a beautiful and engaging way. Known for your ability to craft poems that
|
||||
resonate with readers, you bring a unique perspective and artistic flair to
|
||||
every piece you write.
|
||||
@@ -0,0 +1,7 @@
|
||||
write_poem:
|
||||
description: >
|
||||
Write a poem about how CrewAI is awesome.
|
||||
Ensure the poem is engaging and adheres to the specified sentence count of {sentence_count}.
|
||||
expected_output: >
|
||||
A beautifully crafted poem about CrewAI, with exactly {sentence_count} sentences.
|
||||
agent: poem_writer
|
||||
31
src/crewai/cli/templates/flow/crews/poem_crew/poem_crew.py
Normal file
31
src/crewai/cli/templates/flow/crews/poem_crew/poem_crew.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
@CrewBase
|
||||
class PoemCrew():
|
||||
"""Poem Crew"""
|
||||
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def poem_writer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['poem_writer'],
|
||||
)
|
||||
|
||||
@task
|
||||
def write_poem(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['write_poem'],
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the Research Crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
65
src/crewai/cli/templates/flow/main.py
Normal file
65
src/crewai/cli/templates/flow/main.py
Normal file
@@ -0,0 +1,65 @@
|
||||
#!/usr/bin/env python
|
||||
import asyncio
|
||||
from random import randint
|
||||
|
||||
from pydantic import BaseModel
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from .crews.poem_crew.poem_crew import PoemCrew
|
||||
|
||||
class PoemState(BaseModel):
|
||||
sentence_count: int = 1
|
||||
poem: str = ""
|
||||
|
||||
class PoemFlow(Flow[PoemState]):
|
||||
|
||||
@start()
|
||||
def generate_sentence_count(self):
|
||||
print("Generating sentence count")
|
||||
# Generate a number between 1 and 5
|
||||
self.state.sentence_count = randint(1, 5)
|
||||
|
||||
@listen(generate_sentence_count)
|
||||
def generate_poem(self):
|
||||
print("Generating poem")
|
||||
print(f"State before poem: {self.state}")
|
||||
result = PoemCrew().crew().kickoff(inputs={"sentence_count": self.state.sentence_count})
|
||||
|
||||
print("Poem generated", result.raw)
|
||||
self.state.poem = result.raw
|
||||
|
||||
print(f"State after generate_poem: {self.state}")
|
||||
|
||||
@listen(generate_poem)
|
||||
def save_poem(self):
|
||||
print("Saving poem")
|
||||
print(f"State before save_poem: {self.state}")
|
||||
with open("poem.txt", "w") as f:
|
||||
f.write(self.state.poem)
|
||||
print(f"State after save_poem: {self.state}")
|
||||
|
||||
async def run_flow():
|
||||
"""
|
||||
Run the flow.
|
||||
"""
|
||||
poem_flow = PoemFlow()
|
||||
await poem_flow.kickoff()
|
||||
|
||||
async def plot_flow():
|
||||
"""
|
||||
Plot the flow.
|
||||
"""
|
||||
poem_flow = PoemFlow()
|
||||
poem_flow.plot()
|
||||
|
||||
|
||||
def main():
|
||||
asyncio.run(run_flow())
|
||||
|
||||
|
||||
def plot():
|
||||
asyncio.run(plot_flow())
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
19
src/crewai/cli/templates/flow/pyproject.toml
Normal file
19
src/crewai/cli/templates/flow/pyproject.toml
Normal file
@@ -0,0 +1,19 @@
|
||||
[tool.poetry]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.67.1,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
run_flow = "{{folder_name}}.main:main"
|
||||
plot_flow = "{{folder_name}}.main:plot"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
0
src/crewai/cli/templates/flow/tools/__init__.py
Normal file
0
src/crewai/cli/templates/flow/tools/__init__.py
Normal file
12
src/crewai/cli/templates/flow/tools/custom_tool.py
Normal file
12
src/crewai/cli/templates/flow/tools/custom_tool.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from crewai_tools import BaseTool
|
||||
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "this is an example of a tool output, ignore it and move along."
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.55.2,<1.0.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.67.1,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.55.2,<1.0.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.67.1,<1.0.0" }
|
||||
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
||||
48
src/crewai/cli/templates/tool/README.md
Normal file
48
src/crewai/cli/templates/tool/README.md
Normal file
@@ -0,0 +1,48 @@
|
||||
# {{folder_name}}
|
||||
|
||||
{{folder_name}} is a CrewAI Tool. This template is designed to help you create
|
||||
custom tools to power up your crews.
|
||||
|
||||
## Installing
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project
|
||||
uses [Poetry](https://python-poetry.org/) for dependency management and package
|
||||
handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, navigate to your project directory and install the dependencies with:
|
||||
|
||||
```bash
|
||||
crewai install
|
||||
```
|
||||
|
||||
## Publishing
|
||||
|
||||
Collaborate by sharing tools within your organization, or publish them publicly
|
||||
to contribute with the community.
|
||||
|
||||
```bash
|
||||
crewai tool publish {{tool_name}}
|
||||
```
|
||||
|
||||
Others may install your tool in their crews running:
|
||||
|
||||
```bash
|
||||
crewai tool install {{tool_name}}
|
||||
```
|
||||
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} tool or CrewAI.
|
||||
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat with our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
14
src/crewai/cli/templates/tool/pyproject.toml
Normal file
14
src/crewai/cli/templates/tool/pyproject.toml
Normal file
@@ -0,0 +1,14 @@
|
||||
[tool.poetry]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "Power up your crews with {{folder_name}}"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
readme = "README.md"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.64.0,<1.0.0" }
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
@@ -0,0 +1,9 @@
|
||||
from crewai_tools import BaseTool
|
||||
|
||||
class {{class_name}}(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = "What this tool does. It's vital for effective utilization."
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Your tool's logic here
|
||||
return "Tool's result"
|
||||
0
src/crewai/cli/tools/__init__.py
Normal file
0
src/crewai/cli/tools/__init__.py
Normal file
229
src/crewai/cli/tools/main.py
Normal file
229
src/crewai/cli/tools/main.py
Normal file
@@ -0,0 +1,229 @@
|
||||
import base64
|
||||
from pathlib import Path
|
||||
import click
|
||||
import os
|
||||
import subprocess
|
||||
import tempfile
|
||||
|
||||
from crewai.cli.command import BaseCommand, PlusAPIMixin
|
||||
from crewai.cli import git
|
||||
from crewai.cli.utils import (
|
||||
get_project_name,
|
||||
get_project_description,
|
||||
get_project_version,
|
||||
tree_copy,
|
||||
tree_find_and_replace,
|
||||
)
|
||||
from rich.console import Console
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
"""
|
||||
A class to handle tool repository related operations for CrewAI projects.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
BaseCommand.__init__(self)
|
||||
PlusAPIMixin.__init__(self, telemetry=self._telemetry)
|
||||
|
||||
def create(self, handle: str):
|
||||
self._ensure_not_in_project()
|
||||
|
||||
folder_name = handle.replace(" ", "_").replace("-", "_").lower()
|
||||
class_name = handle.replace("_", " ").replace("-", " ").title().replace(" ", "")
|
||||
|
||||
project_root = Path(folder_name)
|
||||
if project_root.exists():
|
||||
click.secho(f"Folder {folder_name} already exists.", fg="red")
|
||||
raise SystemExit
|
||||
else:
|
||||
os.makedirs(project_root)
|
||||
|
||||
click.secho(f"Creating custom tool {folder_name}...", fg="green", bold=True)
|
||||
|
||||
template_dir = Path(__file__).parent.parent / "templates" / "tool"
|
||||
tree_copy(template_dir, project_root)
|
||||
tree_find_and_replace(project_root, "{{folder_name}}", folder_name)
|
||||
tree_find_and_replace(project_root, "{{class_name}}", class_name)
|
||||
|
||||
old_directory = os.getcwd()
|
||||
os.chdir(project_root)
|
||||
try:
|
||||
self.login()
|
||||
subprocess.run(["git", "init"], check=True)
|
||||
console.print(
|
||||
f"[green]Created custom tool [bold]{folder_name}[/bold]. Run [bold]cd {project_root}[/bold] to start working.[/green]"
|
||||
)
|
||||
finally:
|
||||
os.chdir(old_directory)
|
||||
|
||||
def publish(self, is_public: bool, force: bool = False):
|
||||
if not git.Repository().is_synced() and not force:
|
||||
console.print(
|
||||
"[bold red]Failed to publish tool.[/bold red]\n"
|
||||
"Local changes need to be resolved before publishing. Please do the following:\n"
|
||||
"* [bold]Commit[/bold] your changes.\n"
|
||||
"* [bold]Push[/bold] to sync with the remote.\n"
|
||||
"* [bold]Pull[/bold] the latest changes from the remote.\n"
|
||||
"\nOnce your repository is up-to-date, retry publishing the tool."
|
||||
)
|
||||
raise SystemExit()
|
||||
|
||||
project_name = get_project_name(require=True)
|
||||
assert isinstance(project_name, str)
|
||||
|
||||
project_version = get_project_version(require=True)
|
||||
assert isinstance(project_version, str)
|
||||
|
||||
project_description = get_project_description(require=False)
|
||||
encoded_tarball = None
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_build_dir:
|
||||
subprocess.run(
|
||||
["poetry", "build", "-f", "sdist", "--output", temp_build_dir],
|
||||
check=True,
|
||||
capture_output=False,
|
||||
)
|
||||
|
||||
tarball_filename = next(
|
||||
(f for f in os.listdir(temp_build_dir) if f.endswith(".tar.gz")), None
|
||||
)
|
||||
if not tarball_filename:
|
||||
console.print(
|
||||
"Project build failed. Please ensure that the command `poetry build -f sdist` completes successfully.",
|
||||
style="bold red",
|
||||
)
|
||||
raise SystemExit
|
||||
|
||||
tarball_path = os.path.join(temp_build_dir, tarball_filename)
|
||||
with open(tarball_path, "rb") as file:
|
||||
tarball_contents = file.read()
|
||||
|
||||
encoded_tarball = base64.b64encode(tarball_contents).decode("utf-8")
|
||||
|
||||
publish_response = self.plus_api_client.publish_tool(
|
||||
handle=project_name,
|
||||
is_public=is_public,
|
||||
version=project_version,
|
||||
description=project_description,
|
||||
encoded_file=f"data:application/x-gzip;base64,{encoded_tarball}",
|
||||
)
|
||||
|
||||
self._validate_response(publish_response)
|
||||
|
||||
published_handle = publish_response.json()["handle"]
|
||||
console.print(
|
||||
f"Succesfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
|
||||
style="bold green",
|
||||
)
|
||||
|
||||
def install(self, handle: str):
|
||||
get_response = self.plus_api_client.get_tool(handle)
|
||||
|
||||
if get_response.status_code == 404:
|
||||
console.print(
|
||||
"No tool found with this name. Please ensure the tool was published and you have access to it.",
|
||||
style="bold red",
|
||||
)
|
||||
raise SystemExit
|
||||
elif get_response.status_code != 200:
|
||||
console.print(
|
||||
"Failed to get tool details. Please try again later.", style="bold red"
|
||||
)
|
||||
raise SystemExit
|
||||
|
||||
self._add_package(get_response.json())
|
||||
|
||||
console.print(f"Succesfully installed {handle}", style="bold green")
|
||||
|
||||
def login(self):
|
||||
login_response = self.plus_api_client.login_to_tool_repository()
|
||||
|
||||
if login_response.status_code != 200:
|
||||
console.print(
|
||||
"Failed to authenticate to the tool repository. Make sure you have the access to tools.",
|
||||
style="bold red",
|
||||
)
|
||||
raise SystemExit
|
||||
|
||||
login_response_json = login_response.json()
|
||||
for repository in login_response_json["repositories"]:
|
||||
self._add_repository_to_poetry(
|
||||
repository, login_response_json["credential"]
|
||||
)
|
||||
|
||||
console.print(
|
||||
"Succesfully authenticated to the tool repository.", style="bold green"
|
||||
)
|
||||
|
||||
def _add_repository_to_poetry(self, repository, credentials):
|
||||
repository_handle = f"crewai-{repository['handle']}"
|
||||
|
||||
add_repository_command = [
|
||||
"poetry",
|
||||
"source",
|
||||
"add",
|
||||
"--priority=explicit",
|
||||
repository_handle,
|
||||
repository["url"],
|
||||
]
|
||||
add_repository_result = subprocess.run(
|
||||
add_repository_command, text=True, check=True
|
||||
)
|
||||
|
||||
if add_repository_result.stderr:
|
||||
click.echo(add_repository_result.stderr, err=True)
|
||||
raise SystemExit
|
||||
|
||||
add_repository_credentials_command = [
|
||||
"poetry",
|
||||
"config",
|
||||
f"http-basic.{repository_handle}",
|
||||
credentials["username"],
|
||||
credentials["password"],
|
||||
]
|
||||
add_repository_credentials_result = subprocess.run(
|
||||
add_repository_credentials_command,
|
||||
capture_output=False,
|
||||
text=True,
|
||||
check=True,
|
||||
)
|
||||
|
||||
if add_repository_credentials_result.stderr:
|
||||
click.echo(add_repository_credentials_result.stderr, err=True)
|
||||
raise SystemExit
|
||||
|
||||
def _add_package(self, tool_details):
|
||||
tool_handle = tool_details["handle"]
|
||||
repository_handle = tool_details["repository"]["handle"]
|
||||
pypi_index_handle = f"crewai-{repository_handle}"
|
||||
|
||||
add_package_command = [
|
||||
"poetry",
|
||||
"add",
|
||||
"--source",
|
||||
pypi_index_handle,
|
||||
tool_handle,
|
||||
]
|
||||
add_package_result = subprocess.run(
|
||||
add_package_command, capture_output=False, text=True, check=True
|
||||
)
|
||||
|
||||
if add_package_result.stderr:
|
||||
click.echo(add_package_result.stderr, err=True)
|
||||
raise SystemExit
|
||||
|
||||
def _ensure_not_in_project(self):
|
||||
if os.path.isfile("./pyproject.toml"):
|
||||
console.print(
|
||||
"[bold red]Oops! It looks like you're inside a project.[/bold red]"
|
||||
)
|
||||
console.print(
|
||||
"You can't create a new tool while inside an existing project."
|
||||
)
|
||||
console.print(
|
||||
"[bold yellow]Tip:[/bold yellow] Navigate to a different directory and try again."
|
||||
)
|
||||
raise SystemExit
|
||||
@@ -1,4 +1,18 @@
|
||||
import os
|
||||
import shutil
|
||||
import click
|
||||
import sys
|
||||
import importlib.metadata
|
||||
|
||||
from crewai.cli.authentication.utils import TokenManager
|
||||
from functools import reduce
|
||||
from rich.console import Console
|
||||
from typing import Any, Dict, List
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
import tomllib
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
def copy_template(src, dst, name, class_name, folder_name):
|
||||
@@ -16,3 +30,176 @@ def copy_template(src, dst, name, class_name, folder_name):
|
||||
file.write(content)
|
||||
|
||||
click.secho(f" - Created {dst}", fg="green")
|
||||
|
||||
|
||||
# Drop the simple_toml_parser when we move to python3.11
|
||||
def simple_toml_parser(content):
|
||||
result = {}
|
||||
current_section = result
|
||||
for line in content.split("\n"):
|
||||
line = line.strip()
|
||||
if line.startswith("[") and line.endswith("]"):
|
||||
# New section
|
||||
section = line[1:-1].split(".")
|
||||
current_section = result
|
||||
for key in section:
|
||||
current_section = current_section.setdefault(key, {})
|
||||
elif "=" in line:
|
||||
key, value = line.split("=", 1)
|
||||
key = key.strip()
|
||||
value = value.strip().strip('"')
|
||||
current_section[key] = value
|
||||
return result
|
||||
|
||||
|
||||
def parse_toml(content):
|
||||
if sys.version_info >= (3, 11):
|
||||
return tomllib.loads(content)
|
||||
else:
|
||||
return simple_toml_parser(content)
|
||||
|
||||
|
||||
def get_project_name(
|
||||
pyproject_path: str = "pyproject.toml", require: bool = False
|
||||
) -> str | None:
|
||||
"""Get the project name from the pyproject.toml file."""
|
||||
return _get_project_attribute(
|
||||
pyproject_path, ["tool", "poetry", "name"], require=require
|
||||
)
|
||||
|
||||
|
||||
def get_project_version(
|
||||
pyproject_path: str = "pyproject.toml", require: bool = False
|
||||
) -> str | None:
|
||||
"""Get the project version from the pyproject.toml file."""
|
||||
return _get_project_attribute(
|
||||
pyproject_path, ["tool", "poetry", "version"], require=require
|
||||
)
|
||||
|
||||
|
||||
def get_project_description(
|
||||
pyproject_path: str = "pyproject.toml", require: bool = False
|
||||
) -> str | None:
|
||||
"""Get the project description from the pyproject.toml file."""
|
||||
return _get_project_attribute(
|
||||
pyproject_path, ["tool", "poetry", "description"], require=require
|
||||
)
|
||||
|
||||
|
||||
def _get_project_attribute(
|
||||
pyproject_path: str, keys: List[str], require: bool
|
||||
) -> Any | None:
|
||||
"""Get an attribute from the pyproject.toml file."""
|
||||
attribute = None
|
||||
|
||||
try:
|
||||
with open(pyproject_path, "r") as f:
|
||||
pyproject_content = parse_toml(f.read())
|
||||
|
||||
dependencies = (
|
||||
_get_nested_value(pyproject_content, ["tool", "poetry", "dependencies"])
|
||||
or {}
|
||||
)
|
||||
if "crewai" not in dependencies:
|
||||
raise Exception("crewai is not in the dependencies.")
|
||||
|
||||
attribute = _get_nested_value(pyproject_content, keys)
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {pyproject_path} not found.")
|
||||
except KeyError:
|
||||
print(f"Error: {pyproject_path} is not a valid pyproject.toml file.")
|
||||
except tomllib.TOMLDecodeError if sys.version_info >= (3, 11) else Exception as e: # type: ignore
|
||||
print(
|
||||
f"Error: {pyproject_path} is not a valid TOML file."
|
||||
if sys.version_info >= (3, 11)
|
||||
else f"Error reading the pyproject.toml file: {e}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error reading the pyproject.toml file: {e}")
|
||||
|
||||
if require and not attribute:
|
||||
console.print(
|
||||
f"Unable to read '{'.'.join(keys)}' in the pyproject.toml file. Please verify that the file exists and contains the specified attribute.",
|
||||
style="bold red",
|
||||
)
|
||||
raise SystemExit
|
||||
|
||||
return attribute
|
||||
|
||||
|
||||
def _get_nested_value(data: Dict[str, Any], keys: List[str]) -> Any:
|
||||
return reduce(dict.__getitem__, keys, data)
|
||||
|
||||
|
||||
def get_crewai_version() -> str:
|
||||
"""Get the version number of CrewAI running the CLI"""
|
||||
return importlib.metadata.version("crewai")
|
||||
|
||||
|
||||
def fetch_and_json_env_file(env_file_path: str = ".env") -> dict:
|
||||
"""Fetch the environment variables from a .env file and return them as a dictionary."""
|
||||
try:
|
||||
# Read the .env file
|
||||
with open(env_file_path, "r") as f:
|
||||
env_content = f.read()
|
||||
|
||||
# Parse the .env file content to a dictionary
|
||||
env_dict = {}
|
||||
for line in env_content.splitlines():
|
||||
if line.strip() and not line.strip().startswith("#"):
|
||||
key, value = line.split("=", 1)
|
||||
env_dict[key.strip()] = value.strip()
|
||||
|
||||
return env_dict
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {env_file_path} not found.")
|
||||
except Exception as e:
|
||||
print(f"Error reading the .env file: {e}")
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
return access_token
|
||||
|
||||
|
||||
def tree_copy(source, destination):
|
||||
"""Copies the entire directory structure from the source to the destination."""
|
||||
for item in os.listdir(source):
|
||||
source_item = os.path.join(source, item)
|
||||
destination_item = os.path.join(destination, item)
|
||||
if os.path.isdir(source_item):
|
||||
shutil.copytree(source_item, destination_item)
|
||||
else:
|
||||
shutil.copy2(source_item, destination_item)
|
||||
|
||||
|
||||
def tree_find_and_replace(directory, find, replace):
|
||||
"""Recursively searches through a directory, replacing a target string in
|
||||
both file contents and filenames with a specified replacement string.
|
||||
"""
|
||||
for path, dirs, files in os.walk(os.path.abspath(directory), topdown=False):
|
||||
for filename in files:
|
||||
filepath = os.path.join(path, filename)
|
||||
|
||||
with open(filepath, "r") as file:
|
||||
contents = file.read()
|
||||
with open(filepath, "w") as file:
|
||||
file.write(contents.replace(find, replace))
|
||||
|
||||
if find in filename:
|
||||
new_filename = filename.replace(find, replace)
|
||||
new_filepath = os.path.join(path, new_filename)
|
||||
os.rename(filepath, new_filepath)
|
||||
|
||||
for dirname in dirs:
|
||||
if find in dirname:
|
||||
new_dirname = dirname.replace(find, replace)
|
||||
new_dirpath = os.path.join(path, new_dirname)
|
||||
old_dirpath = os.path.join(path, dirname)
|
||||
os.rename(old_dirpath, new_dirpath)
|
||||
|
||||
@@ -6,7 +6,6 @@ from concurrent.futures import Future
|
||||
from hashlib import md5
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
@@ -23,6 +22,7 @@ from crewai.agent import Agent
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
@@ -68,7 +68,6 @@ class Crew(BaseModel):
|
||||
manager_llm: The language model that will run manager agent.
|
||||
manager_agent: Custom agent that will be used as manager.
|
||||
memory: Whether the crew should use memory to store memories of it's execution.
|
||||
manager_callbacks: The callback handlers to be executed by the manager agent when hierarchical process is used
|
||||
cache: Whether the crew should use a cache to store the results of the tools execution.
|
||||
function_calling_llm: The language model that will run the tool calling for all the agents.
|
||||
process: The process flow that the crew will follow (e.g., sequential, hierarchical).
|
||||
@@ -112,6 +111,18 @@ class Crew(BaseModel):
|
||||
default=False,
|
||||
description="Whether the crew should use memory to store memories of it's execution",
|
||||
)
|
||||
short_term_memory: Optional[InstanceOf[ShortTermMemory]] = Field(
|
||||
default=None,
|
||||
description="An Instance of the ShortTermMemory to be used by the Crew",
|
||||
)
|
||||
long_term_memory: Optional[InstanceOf[LongTermMemory]] = Field(
|
||||
default=None,
|
||||
description="An Instance of the LongTermMemory to be used by the Crew",
|
||||
)
|
||||
entity_memory: Optional[InstanceOf[EntityMemory]] = Field(
|
||||
default=None,
|
||||
description="An Instance of the EntityMemory to be used by the Crew",
|
||||
)
|
||||
embedder: Optional[dict] = Field(
|
||||
default={"provider": "openai"},
|
||||
description="Configuration for the embedder to be used for the crew.",
|
||||
@@ -126,10 +137,6 @@ class Crew(BaseModel):
|
||||
manager_agent: Optional[BaseAgent] = Field(
|
||||
description="Custom agent that will be used as manager.", default=None
|
||||
)
|
||||
manager_callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
|
||||
default=None,
|
||||
description="A list of callback handlers to be executed by the manager agent when hierarchical process is used",
|
||||
)
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
@@ -205,6 +212,15 @@ class Crew(BaseModel):
|
||||
if self.output_log_file:
|
||||
self._file_handler = FileHandler(self.output_log_file)
|
||||
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
|
||||
if self.function_calling_llm:
|
||||
if isinstance(self.function_calling_llm, str):
|
||||
self.function_calling_llm = LLM(model=self.function_calling_llm)
|
||||
elif not isinstance(self.function_calling_llm, LLM):
|
||||
self.function_calling_llm = LLM(
|
||||
model=getattr(self.function_calling_llm, "model_name", None)
|
||||
or getattr(self.function_calling_llm, "deployment_name", None)
|
||||
or str(self.function_calling_llm)
|
||||
)
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
return self
|
||||
@@ -213,11 +229,19 @@ class Crew(BaseModel):
|
||||
def create_crew_memory(self) -> "Crew":
|
||||
"""Set private attributes."""
|
||||
if self.memory:
|
||||
self._long_term_memory = LongTermMemory()
|
||||
self._short_term_memory = ShortTermMemory(
|
||||
crew=self, embedder_config=self.embedder
|
||||
self._long_term_memory = (
|
||||
self.long_term_memory if self.long_term_memory else LongTermMemory()
|
||||
)
|
||||
self._short_term_memory = (
|
||||
self.short_term_memory
|
||||
if self.short_term_memory
|
||||
else ShortTermMemory(crew=self, embedder_config=self.embedder)
|
||||
)
|
||||
self._entity_memory = (
|
||||
self.entity_memory
|
||||
if self.entity_memory
|
||||
else EntityMemory(crew=self, embedder_config=self.embedder)
|
||||
)
|
||||
self._entity_memory = EntityMemory(crew=self, embedder_config=self.embedder)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
@@ -514,10 +538,6 @@ class Crew(BaseModel):
|
||||
asyncio.create_task(run_crew(crew_copies[i], inputs[i]))
|
||||
for i in range(len(inputs))
|
||||
]
|
||||
tasks = [
|
||||
asyncio.create_task(run_crew(crew_copies[i], inputs[i]))
|
||||
for i in range(len(inputs))
|
||||
]
|
||||
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
@@ -588,8 +608,14 @@ class Crew(BaseModel):
|
||||
"warning", "Manager agent should not have tools", color="orange"
|
||||
)
|
||||
manager.tools = []
|
||||
raise Exception("Manager agent should not have tools")
|
||||
manager.tools = self.manager_agent.get_delegation_tools(self.agents)
|
||||
else:
|
||||
self.manager_llm = (
|
||||
getattr(self.manager_llm, "model_name", None)
|
||||
or getattr(self.manager_llm, "deployment_name", None)
|
||||
or self.manager_llm
|
||||
)
|
||||
manager = Agent(
|
||||
role=i18n.retrieve("hierarchical_manager_agent", "role"),
|
||||
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
||||
@@ -599,6 +625,7 @@ class Crew(BaseModel):
|
||||
verbose=self.verbose,
|
||||
)
|
||||
self.manager_agent = manager
|
||||
manager.crew = self
|
||||
|
||||
def _execute_tasks(
|
||||
self,
|
||||
@@ -743,9 +770,6 @@ class Crew(BaseModel):
|
||||
task.tools.append(new_tool)
|
||||
|
||||
def _log_task_start(self, task: Task, role: str = "None"):
|
||||
color = self._logging_color
|
||||
self._logger.log("debug", f"== Working Agent: {role}", color=color)
|
||||
self._logger.log("info", f"== Starting Task: {task.description}", color=color)
|
||||
if self.output_log_file:
|
||||
self._file_handler.log(agent=role, task=task.description, status="started")
|
||||
|
||||
@@ -768,7 +792,6 @@ class Crew(BaseModel):
|
||||
|
||||
def _process_task_result(self, task: Task, output: TaskOutput) -> None:
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"== [{role}] Task output: {output}\n\n")
|
||||
if self.output_log_file:
|
||||
self._file_handler.log(agent=role, task=output, status="completed")
|
||||
|
||||
@@ -877,7 +900,22 @@ class Crew(BaseModel):
|
||||
}
|
||||
|
||||
cloned_agents = [agent.copy() for agent in self.agents]
|
||||
cloned_tasks = [task.copy(cloned_agents) for task in self.tasks]
|
||||
|
||||
task_mapping = {}
|
||||
|
||||
cloned_tasks = []
|
||||
for task in self.tasks:
|
||||
cloned_task = task.copy(cloned_agents, task_mapping)
|
||||
cloned_tasks.append(cloned_task)
|
||||
task_mapping[task.key] = cloned_task
|
||||
|
||||
for cloned_task, original_task in zip(cloned_tasks, self.tasks):
|
||||
if original_task.context:
|
||||
cloned_context = [
|
||||
task_mapping[context_task.key]
|
||||
for context_task in original_task.context
|
||||
]
|
||||
cloned_task.context = cloned_context
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
@@ -921,29 +959,30 @@ class Crew(BaseModel):
|
||||
def calculate_usage_metrics(self) -> UsageMetrics:
|
||||
"""Calculates and returns the usage metrics."""
|
||||
total_usage_metrics = UsageMetrics()
|
||||
|
||||
for agent in self.agents:
|
||||
if hasattr(agent, "_token_process"):
|
||||
token_sum = agent._token_process.get_summary()
|
||||
total_usage_metrics.add_usage_metrics(token_sum)
|
||||
|
||||
if self.manager_agent and hasattr(self.manager_agent, "_token_process"):
|
||||
token_sum = self.manager_agent._token_process.get_summary()
|
||||
total_usage_metrics.add_usage_metrics(token_sum)
|
||||
|
||||
self.usage_metrics = total_usage_metrics
|
||||
return total_usage_metrics
|
||||
|
||||
def test(
|
||||
self,
|
||||
n_iterations: int,
|
||||
openai_model_name: str,
|
||||
openai_model_name: Optional[str] = None,
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations."""
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
|
||||
self._test_execution_span = self._telemetry.test_execution_span(
|
||||
self, n_iterations, inputs, openai_model_name
|
||||
)
|
||||
evaluator = CrewEvaluator(self, openai_model_name)
|
||||
self,
|
||||
n_iterations,
|
||||
inputs,
|
||||
openai_model_name, # type: ignore[arg-type]
|
||||
) # type: ignore[arg-type]
|
||||
evaluator = CrewEvaluator(self, openai_model_name) # type: ignore[arg-type]
|
||||
|
||||
for i in range(1, n_iterations + 1):
|
||||
evaluator.set_iteration(i)
|
||||
|
||||
@@ -41,6 +41,14 @@ class CrewOutput(BaseModel):
|
||||
output_dict.update(self.pydantic.model_dump())
|
||||
return output_dict
|
||||
|
||||
def __getitem__(self, key):
|
||||
if self.pydantic and hasattr(self.pydantic, key):
|
||||
return getattr(self.pydantic, key)
|
||||
elif self.json_dict and key in self.json_dict:
|
||||
return self.json_dict[key]
|
||||
else:
|
||||
raise KeyError(f"Key '{key}' not found in CrewOutput.")
|
||||
|
||||
def __str__(self):
|
||||
if self.pydantic:
|
||||
return str(self.pydantic)
|
||||
|
||||
3
src/crewai/flow/__init__.py
Normal file
3
src/crewai/flow/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from crewai.flow.flow import Flow
|
||||
|
||||
__all__ = ["Flow"]
|
||||
93
src/crewai/flow/assets/crewai_flow_visual_template.html
Normal file
93
src/crewai/flow/assets/crewai_flow_visual_template.html
Normal file
@@ -0,0 +1,93 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<title>{{ title }}</title>
|
||||
<script
|
||||
src="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.2/dist/vis-network.min.js"
|
||||
integrity="sha512-LnvoEWDFrqGHlHmDD2101OrLcbsfkrzoSpvtSQtxK3RMnRV0eOkhhBN2dXHKRrUU8p2DGRTk35n4O8nWSVe1mQ=="
|
||||
crossorigin="anonymous"
|
||||
referrerpolicy="no-referrer"
|
||||
></script>
|
||||
<link
|
||||
rel="stylesheet"
|
||||
href="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.2/dist/dist/vis-network.min.css"
|
||||
integrity="sha512-WgxfT5LWjfszlPHXRmBWHkV2eceiWTOBvrKCNbdgDYTHrT2AeLCGbF4sZlZw3UMN3WtL0tGUoIAKsu8mllg/XA=="
|
||||
crossorigin="anonymous"
|
||||
referrerpolicy="no-referrer"
|
||||
/>
|
||||
<style type="text/css">
|
||||
body {
|
||||
font-family: verdana;
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
.container {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
height: 100vh;
|
||||
}
|
||||
#mynetwork {
|
||||
flex-grow: 1;
|
||||
width: 100%;
|
||||
height: 750px;
|
||||
background-color: #ffffff;
|
||||
}
|
||||
.card {
|
||||
border: none;
|
||||
}
|
||||
.legend-container {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
padding: 10px;
|
||||
background-color: #f8f9fa;
|
||||
position: fixed; /* Make the legend fixed */
|
||||
bottom: 0; /* Position it at the bottom */
|
||||
width: 100%; /* Make it span the full width */
|
||||
}
|
||||
.legend-item {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
margin-right: 20px;
|
||||
}
|
||||
.legend-color-box {
|
||||
width: 20px;
|
||||
height: 20px;
|
||||
margin-right: 5px;
|
||||
}
|
||||
.logo {
|
||||
height: 50px;
|
||||
margin-right: 20px;
|
||||
}
|
||||
.legend-dashed {
|
||||
border-bottom: 2px dashed #666666;
|
||||
width: 20px;
|
||||
height: 0;
|
||||
margin-right: 5px;
|
||||
}
|
||||
.legend-solid {
|
||||
border-bottom: 2px solid #666666;
|
||||
width: 20px;
|
||||
height: 0;
|
||||
margin-right: 5px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="container">
|
||||
<div class="card" style="width: 100%">
|
||||
<div id="mynetwork" class="card-body"></div>
|
||||
</div>
|
||||
<div class="legend-container">
|
||||
<img
|
||||
src="data:image/svg+xml;base64,{{ logo_svg_base64 }}"
|
||||
alt="CrewAI logo"
|
||||
class="logo"
|
||||
/>
|
||||
<!-- LEGEND_ITEMS_PLACEHOLDER -->
|
||||
</div>
|
||||
</div>
|
||||
{{ network_content }}
|
||||
</body>
|
||||
</html>
|
||||
12
src/crewai/flow/assets/crewai_logo.svg
Normal file
12
src/crewai/flow/assets/crewai_logo.svg
Normal file
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 27 KiB |
59
src/crewai/flow/config.py
Normal file
59
src/crewai/flow/config.py
Normal file
@@ -0,0 +1,59 @@
|
||||
DARK_GRAY = "#333333"
|
||||
CREWAI_ORANGE = "#FF5A50"
|
||||
GRAY = "#666666"
|
||||
WHITE = "#FFFFFF"
|
||||
BLACK = "#000000"
|
||||
|
||||
COLORS = {
|
||||
"bg": WHITE,
|
||||
"start": CREWAI_ORANGE,
|
||||
"method": DARK_GRAY,
|
||||
"router": DARK_GRAY,
|
||||
"router_border": CREWAI_ORANGE,
|
||||
"edge": GRAY,
|
||||
"router_edge": CREWAI_ORANGE,
|
||||
"text": WHITE,
|
||||
}
|
||||
|
||||
NODE_STYLES = {
|
||||
"start": {
|
||||
"color": CREWAI_ORANGE,
|
||||
"shape": "box",
|
||||
"font": {"color": WHITE},
|
||||
"margin": {"top": 10, "bottom": 8, "left": 10, "right": 10},
|
||||
},
|
||||
"method": {
|
||||
"color": DARK_GRAY,
|
||||
"shape": "box",
|
||||
"font": {"color": WHITE},
|
||||
"margin": {"top": 10, "bottom": 8, "left": 10, "right": 10},
|
||||
},
|
||||
"router": {
|
||||
"color": {
|
||||
"background": DARK_GRAY,
|
||||
"border": CREWAI_ORANGE,
|
||||
"highlight": {
|
||||
"border": CREWAI_ORANGE,
|
||||
"background": DARK_GRAY,
|
||||
},
|
||||
},
|
||||
"shape": "box",
|
||||
"font": {"color": WHITE},
|
||||
"borderWidth": 3,
|
||||
"borderWidthSelected": 4,
|
||||
"shapeProperties": {"borderDashes": [5, 5]},
|
||||
"margin": {"top": 10, "bottom": 8, "left": 10, "right": 10},
|
||||
},
|
||||
"crew": {
|
||||
"color": {
|
||||
"background": WHITE,
|
||||
"border": CREWAI_ORANGE,
|
||||
},
|
||||
"shape": "box",
|
||||
"font": {"color": BLACK},
|
||||
"borderWidth": 3,
|
||||
"borderWidthSelected": 4,
|
||||
"shapeProperties": {"borderDashes": False},
|
||||
"margin": {"top": 10, "bottom": 8, "left": 10, "right": 10},
|
||||
},
|
||||
}
|
||||
286
src/crewai/flow/flow.py
Normal file
286
src/crewai/flow/flow.py
Normal file
@@ -0,0 +1,286 @@
|
||||
# flow.py
|
||||
|
||||
import asyncio
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, Generic, List, Set, Type, TypeVar, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
from crewai.telemetry import Telemetry
|
||||
|
||||
T = TypeVar("T", bound=Union[BaseModel, Dict[str, Any]])
|
||||
|
||||
|
||||
def start(condition=None):
|
||||
def decorator(func):
|
||||
func.__is_start_method__ = True
|
||||
if condition is not None:
|
||||
if isinstance(condition, str):
|
||||
func.__trigger_methods__ = [condition]
|
||||
func.__condition_type__ = "OR"
|
||||
elif (
|
||||
isinstance(condition, dict)
|
||||
and "type" in condition
|
||||
and "methods" in condition
|
||||
):
|
||||
func.__trigger_methods__ = condition["methods"]
|
||||
func.__condition_type__ = condition["type"]
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
func.__trigger_methods__ = [condition.__name__]
|
||||
func.__condition_type__ = "OR"
|
||||
else:
|
||||
raise ValueError(
|
||||
"Condition must be a method, string, or a result of or_() or and_()"
|
||||
)
|
||||
return func
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def listen(condition):
|
||||
def decorator(func):
|
||||
if isinstance(condition, str):
|
||||
func.__trigger_methods__ = [condition]
|
||||
func.__condition_type__ = "OR"
|
||||
elif (
|
||||
isinstance(condition, dict)
|
||||
and "type" in condition
|
||||
and "methods" in condition
|
||||
):
|
||||
func.__trigger_methods__ = condition["methods"]
|
||||
func.__condition_type__ = condition["type"]
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
func.__trigger_methods__ = [condition.__name__]
|
||||
func.__condition_type__ = "OR"
|
||||
else:
|
||||
raise ValueError(
|
||||
"Condition must be a method, string, or a result of or_() or and_()"
|
||||
)
|
||||
return func
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def router(method):
|
||||
def decorator(func):
|
||||
func.__is_router__ = True
|
||||
func.__router_for__ = method.__name__
|
||||
return func
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def or_(*conditions):
|
||||
methods = []
|
||||
for condition in conditions:
|
||||
if isinstance(condition, dict) and "methods" in condition:
|
||||
methods.extend(condition["methods"])
|
||||
elif isinstance(condition, str):
|
||||
methods.append(condition)
|
||||
elif callable(condition):
|
||||
methods.append(getattr(condition, "__name__", repr(condition)))
|
||||
else:
|
||||
raise ValueError("Invalid condition in or_()")
|
||||
return {"type": "OR", "methods": methods}
|
||||
|
||||
|
||||
def and_(*conditions):
|
||||
methods = []
|
||||
for condition in conditions:
|
||||
if isinstance(condition, dict) and "methods" in condition:
|
||||
methods.extend(condition["methods"])
|
||||
elif isinstance(condition, str):
|
||||
methods.append(condition)
|
||||
elif callable(condition):
|
||||
methods.append(getattr(condition, "__name__", repr(condition)))
|
||||
else:
|
||||
raise ValueError("Invalid condition in and_()")
|
||||
return {"type": "AND", "methods": methods}
|
||||
|
||||
|
||||
class FlowMeta(type):
|
||||
def __new__(mcs, name, bases, dct):
|
||||
cls = super().__new__(mcs, name, bases, dct)
|
||||
|
||||
start_methods = []
|
||||
listeners = {}
|
||||
routers = {}
|
||||
router_paths = {}
|
||||
|
||||
for attr_name, attr_value in dct.items():
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
start_methods.append(attr_name)
|
||||
if hasattr(attr_value, "__trigger_methods__"):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
elif hasattr(attr_value, "__trigger_methods__"):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
elif hasattr(attr_value, "__is_router__"):
|
||||
routers[attr_value.__router_for__] = attr_name
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
# Register router as a listener to its triggering method
|
||||
trigger_method_name = attr_value.__router_for__
|
||||
methods = [trigger_method_name]
|
||||
condition_type = "OR"
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
|
||||
setattr(cls, "_start_methods", start_methods)
|
||||
setattr(cls, "_listeners", listeners)
|
||||
setattr(cls, "_routers", routers)
|
||||
setattr(cls, "_router_paths", router_paths)
|
||||
|
||||
return cls
|
||||
|
||||
|
||||
class Flow(Generic[T], metaclass=FlowMeta):
|
||||
_telemetry = Telemetry()
|
||||
|
||||
_start_methods: List[str] = []
|
||||
_listeners: Dict[str, tuple[str, List[str]]] = {}
|
||||
_routers: Dict[str, str] = {}
|
||||
_router_paths: Dict[str, List[str]] = {}
|
||||
initial_state: Union[Type[T], T, None] = None
|
||||
|
||||
def __class_getitem__(cls, item: Type[T]) -> Type["Flow"]:
|
||||
class _FlowGeneric(cls):
|
||||
_initial_state_T: Type[T] = item
|
||||
|
||||
_FlowGeneric.__name__ = f"{cls.__name__}[{item.__name__}]"
|
||||
return _FlowGeneric
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._methods: Dict[str, Callable] = {}
|
||||
self._state: T = self._create_initial_state()
|
||||
self._completed_methods: Set[str] = set()
|
||||
self._pending_and_listeners: Dict[str, Set[str]] = {}
|
||||
self._method_outputs: List[Any] = [] # List to store all method outputs
|
||||
|
||||
self._telemetry.flow_creation_span(self.__class__.__name__)
|
||||
|
||||
for method_name in dir(self):
|
||||
if callable(getattr(self, method_name)) and not method_name.startswith(
|
||||
"__"
|
||||
):
|
||||
self._methods[method_name] = getattr(self, method_name)
|
||||
|
||||
def _create_initial_state(self) -> T:
|
||||
if self.initial_state is None and hasattr(self, "_initial_state_T"):
|
||||
return self._initial_state_T() # type: ignore
|
||||
if self.initial_state is None:
|
||||
return {} # type: ignore
|
||||
elif isinstance(self.initial_state, type):
|
||||
return self.initial_state()
|
||||
else:
|
||||
return self.initial_state
|
||||
|
||||
@property
|
||||
def state(self) -> T:
|
||||
return self._state
|
||||
|
||||
@property
|
||||
def method_outputs(self) -> List[Any]:
|
||||
"""Returns the list of all outputs from executed methods."""
|
||||
return self._method_outputs
|
||||
|
||||
async def kickoff(self) -> Any:
|
||||
if not self._start_methods:
|
||||
raise ValueError("No start method defined")
|
||||
|
||||
self._telemetry.flow_execution_span(
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
)
|
||||
|
||||
# Create tasks for all start methods
|
||||
tasks = [
|
||||
self._execute_start_method(start_method)
|
||||
for start_method in self._start_methods
|
||||
]
|
||||
|
||||
# Run all start methods concurrently
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
# Return the final output (from the last executed method)
|
||||
if self._method_outputs:
|
||||
return self._method_outputs[-1]
|
||||
else:
|
||||
return None # Or raise an exception if no methods were executed
|
||||
|
||||
async def _execute_start_method(self, start_method: str) -> None:
|
||||
result = await self._execute_method(self._methods[start_method])
|
||||
await self._execute_listeners(start_method, result)
|
||||
|
||||
async def _execute_method(self, method: Callable, *args: Any, **kwargs: Any) -> Any:
|
||||
result = (
|
||||
await method(*args, **kwargs)
|
||||
if asyncio.iscoroutinefunction(method)
|
||||
else method(*args, **kwargs)
|
||||
)
|
||||
self._method_outputs.append(result) # Store the output
|
||||
return result
|
||||
|
||||
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
|
||||
listener_tasks = []
|
||||
|
||||
if trigger_method in self._routers:
|
||||
router_method = self._methods[self._routers[trigger_method]]
|
||||
path = await self._execute_method(router_method)
|
||||
# Use the path as the new trigger method
|
||||
trigger_method = path
|
||||
|
||||
for listener, (condition_type, methods) in self._listeners.items():
|
||||
if condition_type == "OR":
|
||||
if trigger_method in methods:
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener, result)
|
||||
)
|
||||
elif condition_type == "AND":
|
||||
if listener not in self._pending_and_listeners:
|
||||
self._pending_and_listeners[listener] = set()
|
||||
self._pending_and_listeners[listener].add(trigger_method)
|
||||
if set(methods) == self._pending_and_listeners[listener]:
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener, result)
|
||||
)
|
||||
del self._pending_and_listeners[listener]
|
||||
|
||||
# Run all listener tasks concurrently and wait for them to complete
|
||||
await asyncio.gather(*listener_tasks)
|
||||
|
||||
async def _execute_single_listener(self, listener: str, result: Any) -> None:
|
||||
try:
|
||||
method = self._methods[listener]
|
||||
sig = inspect.signature(method)
|
||||
params = list(sig.parameters.values())
|
||||
|
||||
# Exclude 'self' parameter
|
||||
method_params = [p for p in params if p.name != "self"]
|
||||
|
||||
if method_params:
|
||||
# If listener expects parameters, pass the result
|
||||
listener_result = await self._execute_method(method, result)
|
||||
else:
|
||||
# If listener does not expect parameters, call without arguments
|
||||
listener_result = await self._execute_method(method)
|
||||
|
||||
# Execute listeners of this listener
|
||||
await self._execute_listeners(listener, listener_result)
|
||||
except Exception as e:
|
||||
print(f"[Flow._execute_single_listener] Error in method {listener}: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
def plot(self, filename: str = "crewai_flow") -> None:
|
||||
self._telemetry.flow_plotting_span(
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
)
|
||||
|
||||
plot_flow(self, filename)
|
||||
104
src/crewai/flow/flow_visualizer.py
Normal file
104
src/crewai/flow/flow_visualizer.py
Normal file
@@ -0,0 +1,104 @@
|
||||
# flow_visualizer.py
|
||||
|
||||
import os
|
||||
|
||||
from pyvis.network import Network
|
||||
|
||||
from crewai.flow.config import COLORS, NODE_STYLES
|
||||
from crewai.flow.html_template_handler import HTMLTemplateHandler
|
||||
from crewai.flow.legend_generator import generate_legend_items_html, get_legend_items
|
||||
from crewai.flow.utils import calculate_node_levels
|
||||
from crewai.flow.visualization_utils import (
|
||||
add_edges,
|
||||
add_nodes_to_network,
|
||||
compute_positions,
|
||||
)
|
||||
|
||||
|
||||
class FlowPlot:
|
||||
def __init__(self, flow):
|
||||
self.flow = flow
|
||||
self.colors = COLORS
|
||||
self.node_styles = NODE_STYLES
|
||||
|
||||
def plot(self, filename):
|
||||
net = Network(
|
||||
directed=True,
|
||||
height="750px",
|
||||
width="100%",
|
||||
bgcolor=self.colors["bg"],
|
||||
layout=None,
|
||||
)
|
||||
|
||||
# Set options to disable physics
|
||||
net.set_options(
|
||||
"""
|
||||
var options = {
|
||||
"nodes": {
|
||||
"font": {
|
||||
"multi": "html"
|
||||
}
|
||||
},
|
||||
"physics": {
|
||||
"enabled": false
|
||||
}
|
||||
}
|
||||
"""
|
||||
)
|
||||
|
||||
# Calculate levels for nodes
|
||||
node_levels = calculate_node_levels(self.flow)
|
||||
|
||||
# Compute positions
|
||||
node_positions = compute_positions(self.flow, node_levels)
|
||||
|
||||
# Add nodes to the network
|
||||
add_nodes_to_network(net, self.flow, node_positions, self.node_styles)
|
||||
|
||||
# Add edges to the network
|
||||
add_edges(net, self.flow, node_positions, self.colors)
|
||||
|
||||
network_html = net.generate_html()
|
||||
final_html_content = self._generate_final_html(network_html)
|
||||
|
||||
# Save the final HTML content to the file
|
||||
with open(f"{filename}.html", "w", encoding="utf-8") as f:
|
||||
f.write(final_html_content)
|
||||
print(f"Plot saved as {filename}.html")
|
||||
|
||||
self._cleanup_pyvis_lib()
|
||||
|
||||
def _generate_final_html(self, network_html):
|
||||
# Extract just the body content from the generated HTML
|
||||
current_dir = os.path.dirname(__file__)
|
||||
template_path = os.path.join(
|
||||
current_dir, "assets", "crewai_flow_visual_template.html"
|
||||
)
|
||||
logo_path = os.path.join(current_dir, "assets", "crewai_logo.svg")
|
||||
|
||||
html_handler = HTMLTemplateHandler(template_path, logo_path)
|
||||
network_body = html_handler.extract_body_content(network_html)
|
||||
|
||||
# Generate the legend items HTML
|
||||
legend_items = get_legend_items(self.colors)
|
||||
legend_items_html = generate_legend_items_html(legend_items)
|
||||
final_html_content = html_handler.generate_final_html(
|
||||
network_body, legend_items_html
|
||||
)
|
||||
return final_html_content
|
||||
|
||||
def _cleanup_pyvis_lib(self):
|
||||
# Clean up the generated lib folder
|
||||
lib_folder = os.path.join(os.getcwd(), "lib")
|
||||
try:
|
||||
if os.path.exists(lib_folder) and os.path.isdir(lib_folder):
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(lib_folder)
|
||||
except Exception as e:
|
||||
print(f"Error cleaning up {lib_folder}: {e}")
|
||||
|
||||
|
||||
def plot_flow(flow, filename="flow_plot"):
|
||||
visualizer = FlowPlot(flow)
|
||||
visualizer.plot(filename)
|
||||
65
src/crewai/flow/html_template_handler.py
Normal file
65
src/crewai/flow/html_template_handler.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import base64
|
||||
import re
|
||||
|
||||
|
||||
class HTMLTemplateHandler:
|
||||
def __init__(self, template_path, logo_path):
|
||||
self.template_path = template_path
|
||||
self.logo_path = logo_path
|
||||
|
||||
def read_template(self):
|
||||
with open(self.template_path, "r", encoding="utf-8") as f:
|
||||
return f.read()
|
||||
|
||||
def encode_logo(self):
|
||||
with open(self.logo_path, "rb") as logo_file:
|
||||
logo_svg_data = logo_file.read()
|
||||
return base64.b64encode(logo_svg_data).decode("utf-8")
|
||||
|
||||
def extract_body_content(self, html):
|
||||
match = re.search("<body.*?>(.*?)</body>", html, re.DOTALL)
|
||||
return match.group(1) if match else ""
|
||||
|
||||
def generate_legend_items_html(self, legend_items):
|
||||
legend_items_html = ""
|
||||
for item in legend_items:
|
||||
if "border" in item:
|
||||
legend_items_html += f"""
|
||||
<div class="legend-item">
|
||||
<div class="legend-color-box" style="background-color: {item['color']}; border: 2px dashed {item['border']};"></div>
|
||||
<div>{item['label']}</div>
|
||||
</div>
|
||||
"""
|
||||
elif item.get("dashed") is not None:
|
||||
style = "dashed" if item["dashed"] else "solid"
|
||||
legend_items_html += f"""
|
||||
<div class="legend-item">
|
||||
<div class="legend-{style}" style="border-bottom: 2px {style} {item['color']};"></div>
|
||||
<div>{item['label']}</div>
|
||||
</div>
|
||||
"""
|
||||
else:
|
||||
legend_items_html += f"""
|
||||
<div class="legend-item">
|
||||
<div class="legend-color-box" style="background-color: {item['color']};"></div>
|
||||
<div>{item['label']}</div>
|
||||
</div>
|
||||
"""
|
||||
return legend_items_html
|
||||
|
||||
def generate_final_html(self, network_body, legend_items_html, title="Flow Plot"):
|
||||
html_template = self.read_template()
|
||||
logo_svg_base64 = self.encode_logo()
|
||||
|
||||
final_html_content = html_template.replace("{{ title }}", title)
|
||||
final_html_content = final_html_content.replace(
|
||||
"{{ network_content }}", network_body
|
||||
)
|
||||
final_html_content = final_html_content.replace(
|
||||
"{{ logo_svg_base64 }}", logo_svg_base64
|
||||
)
|
||||
final_html_content = final_html_content.replace(
|
||||
"<!-- LEGEND_ITEMS_PLACEHOLDER -->", legend_items_html
|
||||
)
|
||||
|
||||
return final_html_content
|
||||
53
src/crewai/flow/legend_generator.py
Normal file
53
src/crewai/flow/legend_generator.py
Normal file
@@ -0,0 +1,53 @@
|
||||
def get_legend_items(colors):
|
||||
return [
|
||||
{"label": "Start Method", "color": colors["start"]},
|
||||
{"label": "Method", "color": colors["method"]},
|
||||
{
|
||||
"label": "Crew Method",
|
||||
"color": colors["bg"],
|
||||
"border": colors["start"],
|
||||
"dashed": False,
|
||||
},
|
||||
{
|
||||
"label": "Router",
|
||||
"color": colors["router"],
|
||||
"border": colors["router_border"],
|
||||
"dashed": True,
|
||||
},
|
||||
{"label": "Trigger", "color": colors["edge"], "dashed": False},
|
||||
{"label": "AND Trigger", "color": colors["edge"], "dashed": True},
|
||||
{
|
||||
"label": "Router Trigger",
|
||||
"color": colors["router_edge"],
|
||||
"dashed": True,
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
def generate_legend_items_html(legend_items):
|
||||
legend_items_html = ""
|
||||
for item in legend_items:
|
||||
if "border" in item:
|
||||
style = "dashed" if item["dashed"] else "solid"
|
||||
legend_items_html += f"""
|
||||
<div class="legend-item">
|
||||
<div class="legend-color-box" style="background-color: {item['color']}; border: 2px {style} {item['border']}; border-radius: 5px;"></div>
|
||||
<div>{item['label']}</div>
|
||||
</div>
|
||||
"""
|
||||
elif item.get("dashed") is not None:
|
||||
style = "dashed" if item["dashed"] else "solid"
|
||||
legend_items_html += f"""
|
||||
<div class="legend-item">
|
||||
<div class="legend-{style}" style="border-bottom: 2px {style} {item['color']}; border-radius: 5px;"></div>
|
||||
<div>{item['label']}</div>
|
||||
</div>
|
||||
"""
|
||||
else:
|
||||
legend_items_html += f"""
|
||||
<div class="legend-item">
|
||||
<div class="legend-color-box" style="background-color: {item['color']}; border-radius: 5px;"></div>
|
||||
<div>{item['label']}</div>
|
||||
</div>
|
||||
"""
|
||||
return legend_items_html
|
||||
188
src/crewai/flow/utils.py
Normal file
188
src/crewai/flow/utils.py
Normal file
@@ -0,0 +1,188 @@
|
||||
import ast
|
||||
import inspect
|
||||
import textwrap
|
||||
|
||||
|
||||
def get_possible_return_constants(function):
|
||||
try:
|
||||
source = inspect.getsource(function)
|
||||
except OSError:
|
||||
# Can't get source code
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"Error retrieving source code for function {function.__name__}: {e}")
|
||||
return None
|
||||
|
||||
try:
|
||||
# Remove leading indentation
|
||||
source = textwrap.dedent(source)
|
||||
# Parse the source code into an AST
|
||||
code_ast = ast.parse(source)
|
||||
except IndentationError as e:
|
||||
print(f"IndentationError while parsing source code of {function.__name__}: {e}")
|
||||
print(f"Source code:\n{source}")
|
||||
return None
|
||||
except SyntaxError as e:
|
||||
print(f"SyntaxError while parsing source code of {function.__name__}: {e}")
|
||||
print(f"Source code:\n{source}")
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"Unexpected error while parsing source code of {function.__name__}: {e}")
|
||||
print(f"Source code:\n{source}")
|
||||
return None
|
||||
|
||||
return_values = []
|
||||
|
||||
class ReturnVisitor(ast.NodeVisitor):
|
||||
def visit_Return(self, node):
|
||||
# Check if the return value is a constant (Python 3.8+)
|
||||
if isinstance(node.value, ast.Constant):
|
||||
return_values.append(node.value.value)
|
||||
|
||||
ReturnVisitor().visit(code_ast)
|
||||
return return_values
|
||||
|
||||
|
||||
def calculate_node_levels(flow):
|
||||
levels = {}
|
||||
queue = []
|
||||
visited = set()
|
||||
pending_and_listeners = {}
|
||||
|
||||
# Make all start methods at level 0
|
||||
for method_name, method in flow._methods.items():
|
||||
if hasattr(method, "__is_start_method__"):
|
||||
levels[method_name] = 0
|
||||
queue.append(method_name)
|
||||
|
||||
# Breadth-first traversal to assign levels
|
||||
while queue:
|
||||
current = queue.pop(0)
|
||||
current_level = levels[current]
|
||||
visited.add(current)
|
||||
|
||||
for listener_name, (
|
||||
condition_type,
|
||||
trigger_methods,
|
||||
) in flow._listeners.items():
|
||||
if condition_type == "OR":
|
||||
if current in trigger_methods:
|
||||
if (
|
||||
listener_name not in levels
|
||||
or levels[listener_name] > current_level + 1
|
||||
):
|
||||
levels[listener_name] = current_level + 1
|
||||
if listener_name not in visited:
|
||||
queue.append(listener_name)
|
||||
elif condition_type == "AND":
|
||||
if listener_name not in pending_and_listeners:
|
||||
pending_and_listeners[listener_name] = set()
|
||||
if current in trigger_methods:
|
||||
pending_and_listeners[listener_name].add(current)
|
||||
if set(trigger_methods) == pending_and_listeners[listener_name]:
|
||||
if (
|
||||
listener_name not in levels
|
||||
or levels[listener_name] > current_level + 1
|
||||
):
|
||||
levels[listener_name] = current_level + 1
|
||||
if listener_name not in visited:
|
||||
queue.append(listener_name)
|
||||
|
||||
# Handle router connections
|
||||
if current in flow._routers.values():
|
||||
router_method_name = current
|
||||
paths = flow._router_paths.get(router_method_name, [])
|
||||
for path in paths:
|
||||
for listener_name, (
|
||||
condition_type,
|
||||
trigger_methods,
|
||||
) in flow._listeners.items():
|
||||
if path in trigger_methods:
|
||||
if (
|
||||
listener_name not in levels
|
||||
or levels[listener_name] > current_level + 1
|
||||
):
|
||||
levels[listener_name] = current_level + 1
|
||||
if listener_name not in visited:
|
||||
queue.append(listener_name)
|
||||
return levels
|
||||
|
||||
|
||||
def count_outgoing_edges(flow):
|
||||
counts = {}
|
||||
for method_name in flow._methods:
|
||||
counts[method_name] = 0
|
||||
for method_name in flow._listeners:
|
||||
_, trigger_methods = flow._listeners[method_name]
|
||||
for trigger in trigger_methods:
|
||||
if trigger in flow._methods:
|
||||
counts[trigger] += 1
|
||||
return counts
|
||||
|
||||
|
||||
def build_ancestor_dict(flow):
|
||||
ancestors = {node: set() for node in flow._methods}
|
||||
visited = set()
|
||||
for node in flow._methods:
|
||||
if node not in visited:
|
||||
dfs_ancestors(node, ancestors, visited, flow)
|
||||
return ancestors
|
||||
|
||||
|
||||
def dfs_ancestors(node, ancestors, visited, flow):
|
||||
if node in visited:
|
||||
return
|
||||
visited.add(node)
|
||||
|
||||
# Handle regular listeners
|
||||
for listener_name, (_, trigger_methods) in flow._listeners.items():
|
||||
if node in trigger_methods:
|
||||
ancestors[listener_name].add(node)
|
||||
ancestors[listener_name].update(ancestors[node])
|
||||
dfs_ancestors(listener_name, ancestors, visited, flow)
|
||||
|
||||
# Handle router methods separately
|
||||
if node in flow._routers.values():
|
||||
router_method_name = node
|
||||
paths = flow._router_paths.get(router_method_name, [])
|
||||
for path in paths:
|
||||
for listener_name, (_, trigger_methods) in flow._listeners.items():
|
||||
if path in trigger_methods:
|
||||
# Only propagate the ancestors of the router method, not the router method itself
|
||||
ancestors[listener_name].update(ancestors[node])
|
||||
dfs_ancestors(listener_name, ancestors, visited, flow)
|
||||
|
||||
|
||||
def is_ancestor(node, ancestor_candidate, ancestors):
|
||||
return ancestor_candidate in ancestors.get(node, set())
|
||||
|
||||
|
||||
def build_parent_children_dict(flow):
|
||||
parent_children = {}
|
||||
|
||||
# Map listeners to their trigger methods
|
||||
for listener_name, (_, trigger_methods) in flow._listeners.items():
|
||||
for trigger in trigger_methods:
|
||||
if trigger not in parent_children:
|
||||
parent_children[trigger] = []
|
||||
if listener_name not in parent_children[trigger]:
|
||||
parent_children[trigger].append(listener_name)
|
||||
|
||||
# Map router methods to their paths and to listeners
|
||||
for router_method_name, paths in flow._router_paths.items():
|
||||
for path in paths:
|
||||
# Map router method to listeners of each path
|
||||
for listener_name, (_, trigger_methods) in flow._listeners.items():
|
||||
if path in trigger_methods:
|
||||
if router_method_name not in parent_children:
|
||||
parent_children[router_method_name] = []
|
||||
if listener_name not in parent_children[router_method_name]:
|
||||
parent_children[router_method_name].append(listener_name)
|
||||
|
||||
return parent_children
|
||||
|
||||
|
||||
def get_child_index(parent, child, parent_children):
|
||||
children = parent_children.get(parent, [])
|
||||
children.sort()
|
||||
return children.index(child)
|
||||
178
src/crewai/flow/visualization_utils.py
Normal file
178
src/crewai/flow/visualization_utils.py
Normal file
@@ -0,0 +1,178 @@
|
||||
import ast
|
||||
import inspect
|
||||
|
||||
from .utils import (
|
||||
build_ancestor_dict,
|
||||
build_parent_children_dict,
|
||||
get_child_index,
|
||||
is_ancestor,
|
||||
)
|
||||
|
||||
|
||||
def method_calls_crew(method):
|
||||
"""Check if the method calls `.crew()`."""
|
||||
try:
|
||||
source = inspect.getsource(method)
|
||||
source = inspect.cleandoc(source)
|
||||
tree = ast.parse(source)
|
||||
except Exception as e:
|
||||
print(f"Could not parse method {method.__name__}: {e}")
|
||||
return False
|
||||
|
||||
class CrewCallVisitor(ast.NodeVisitor):
|
||||
def __init__(self):
|
||||
self.found = False
|
||||
|
||||
def visit_Call(self, node):
|
||||
if isinstance(node.func, ast.Attribute):
|
||||
if node.func.attr == "crew":
|
||||
self.found = True
|
||||
self.generic_visit(node)
|
||||
|
||||
visitor = CrewCallVisitor()
|
||||
visitor.visit(tree)
|
||||
return visitor.found
|
||||
|
||||
|
||||
def add_nodes_to_network(net, flow, node_positions, node_styles):
|
||||
def human_friendly_label(method_name):
|
||||
return method_name.replace("_", " ").title()
|
||||
|
||||
for method_name, (x, y) in node_positions.items():
|
||||
method = flow._methods.get(method_name)
|
||||
if hasattr(method, "__is_start_method__"):
|
||||
node_style = node_styles["start"]
|
||||
elif hasattr(method, "__is_router__"):
|
||||
node_style = node_styles["router"]
|
||||
elif method_calls_crew(method):
|
||||
node_style = node_styles["crew"]
|
||||
else:
|
||||
node_style = node_styles["method"]
|
||||
|
||||
node_style = node_style.copy()
|
||||
label = human_friendly_label(method_name)
|
||||
|
||||
node_style.update(
|
||||
{
|
||||
"label": label,
|
||||
"shape": "box",
|
||||
"font": {
|
||||
"multi": "html",
|
||||
"color": node_style.get("font", {}).get("color", "#FFFFFF"),
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
net.add_node(
|
||||
method_name,
|
||||
x=x,
|
||||
y=y,
|
||||
fixed=True,
|
||||
physics=False,
|
||||
**node_style,
|
||||
)
|
||||
|
||||
|
||||
def compute_positions(flow, node_levels, y_spacing=150, x_spacing=150):
|
||||
level_nodes = {}
|
||||
node_positions = {}
|
||||
|
||||
for method_name, level in node_levels.items():
|
||||
level_nodes.setdefault(level, []).append(method_name)
|
||||
|
||||
for level, nodes in level_nodes.items():
|
||||
x_offset = -(len(nodes) - 1) * x_spacing / 2 # Center nodes horizontally
|
||||
for i, method_name in enumerate(nodes):
|
||||
x = x_offset + i * x_spacing
|
||||
y = level * y_spacing
|
||||
node_positions[method_name] = (x, y)
|
||||
|
||||
return node_positions
|
||||
|
||||
|
||||
def add_edges(net, flow, node_positions, colors):
|
||||
ancestors = build_ancestor_dict(flow)
|
||||
parent_children = build_parent_children_dict(flow)
|
||||
|
||||
for method_name in flow._listeners:
|
||||
condition_type, trigger_methods = flow._listeners[method_name]
|
||||
is_and_condition = condition_type == "AND"
|
||||
|
||||
for trigger in trigger_methods:
|
||||
if trigger in flow._methods or trigger in flow._routers.values():
|
||||
is_router_edge = any(
|
||||
trigger in paths for paths in flow._router_paths.values()
|
||||
)
|
||||
edge_color = colors["router_edge"] if is_router_edge else colors["edge"]
|
||||
|
||||
is_cycle_edge = is_ancestor(trigger, method_name, ancestors)
|
||||
parent_has_multiple_children = len(parent_children.get(trigger, [])) > 1
|
||||
needs_curvature = is_cycle_edge or parent_has_multiple_children
|
||||
|
||||
if needs_curvature:
|
||||
source_pos = node_positions.get(trigger)
|
||||
target_pos = node_positions.get(method_name)
|
||||
|
||||
if source_pos and target_pos:
|
||||
dx = target_pos[0] - source_pos[0]
|
||||
smooth_type = "curvedCCW" if dx <= 0 else "curvedCW"
|
||||
index = get_child_index(trigger, method_name, parent_children)
|
||||
edge_smooth = {
|
||||
"type": smooth_type,
|
||||
"roundness": 0.2 + (0.1 * index),
|
||||
}
|
||||
else:
|
||||
edge_smooth = {"type": "cubicBezier"}
|
||||
else:
|
||||
edge_smooth = False
|
||||
|
||||
edge_style = {
|
||||
"color": edge_color,
|
||||
"width": 2,
|
||||
"arrows": "to",
|
||||
"dashes": True if is_router_edge or is_and_condition else False,
|
||||
"smooth": edge_smooth,
|
||||
}
|
||||
|
||||
net.add_edge(trigger, method_name, **edge_style)
|
||||
|
||||
for router_method_name, paths in flow._router_paths.items():
|
||||
for path in paths:
|
||||
for listener_name, (
|
||||
condition_type,
|
||||
trigger_methods,
|
||||
) in flow._listeners.items():
|
||||
if path in trigger_methods:
|
||||
is_cycle_edge = is_ancestor(trigger, method_name, ancestors)
|
||||
parent_has_multiple_children = (
|
||||
len(parent_children.get(router_method_name, [])) > 1
|
||||
)
|
||||
needs_curvature = is_cycle_edge or parent_has_multiple_children
|
||||
|
||||
if needs_curvature:
|
||||
source_pos = node_positions.get(router_method_name)
|
||||
target_pos = node_positions.get(listener_name)
|
||||
|
||||
if source_pos and target_pos:
|
||||
dx = target_pos[0] - source_pos[0]
|
||||
smooth_type = "curvedCCW" if dx <= 0 else "curvedCW"
|
||||
index = get_child_index(
|
||||
router_method_name, listener_name, parent_children
|
||||
)
|
||||
edge_smooth = {
|
||||
"type": smooth_type,
|
||||
"roundness": 0.2 + (0.1 * index),
|
||||
}
|
||||
else:
|
||||
edge_smooth = {"type": "cubicBezier"}
|
||||
else:
|
||||
edge_smooth = False
|
||||
|
||||
edge_style = {
|
||||
"color": colors["router_edge"],
|
||||
"width": 2,
|
||||
"arrows": "to",
|
||||
"dashes": True,
|
||||
"smooth": edge_smooth,
|
||||
}
|
||||
net.add_edge(router_method_name, listener_name, **edge_style)
|
||||
183
src/crewai/llm.py
Normal file
183
src/crewai/llm.py
Normal file
@@ -0,0 +1,183 @@
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
import logging
|
||||
import warnings
|
||||
import litellm
|
||||
from litellm import get_supported_openai_params
|
||||
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
|
||||
import sys
|
||||
import io
|
||||
|
||||
|
||||
class FilteredStream(io.StringIO):
|
||||
def write(self, s):
|
||||
if (
|
||||
"Give Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new"
|
||||
in s
|
||||
or "LiteLLM.Info: If you need to debug this error, use `litellm.set_verbose=True`"
|
||||
in s
|
||||
):
|
||||
return
|
||||
super().write(s)
|
||||
|
||||
|
||||
LLM_CONTEXT_WINDOW_SIZES = {
|
||||
# openai
|
||||
"gpt-4": 8192,
|
||||
"gpt-4o": 128000,
|
||||
"gpt-4o-mini": 128000,
|
||||
"gpt-4-turbo": 128000,
|
||||
"o1-preview": 128000,
|
||||
"o1-mini": 128000,
|
||||
# deepseek
|
||||
"deepseek-chat": 128000,
|
||||
# groq
|
||||
"gemma2-9b-it": 8192,
|
||||
"gemma-7b-it": 8192,
|
||||
"llama3-groq-70b-8192-tool-use-preview": 8192,
|
||||
"llama3-groq-8b-8192-tool-use-preview": 8192,
|
||||
"llama-3.1-70b-versatile": 131072,
|
||||
"llama-3.1-8b-instant": 131072,
|
||||
"llama-3.2-1b-preview": 8192,
|
||||
"llama-3.2-3b-preview": 8192,
|
||||
"llama-3.2-11b-text-preview": 8192,
|
||||
"llama-3.2-90b-text-preview": 8192,
|
||||
"llama3-70b-8192": 8192,
|
||||
"llama3-8b-8192": 8192,
|
||||
"mixtral-8x7b-32768": 32768,
|
||||
}
|
||||
|
||||
|
||||
@contextmanager
|
||||
def suppress_warnings():
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
# Redirect stdout and stderr
|
||||
old_stdout = sys.stdout
|
||||
old_stderr = sys.stderr
|
||||
sys.stdout = FilteredStream()
|
||||
sys.stderr = FilteredStream()
|
||||
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
# Restore stdout and stderr
|
||||
sys.stdout = old_stdout
|
||||
sys.stderr = old_stderr
|
||||
|
||||
|
||||
class LLM:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
timeout: Optional[Union[float, int]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
n: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[int, float]] = None,
|
||||
response_format: Optional[Dict[str, Any]] = None,
|
||||
seed: Optional[int] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
base_url: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
callbacks: List[Any] = [],
|
||||
**kwargs,
|
||||
):
|
||||
self.model = model
|
||||
self.timeout = timeout
|
||||
self.temperature = temperature
|
||||
self.top_p = top_p
|
||||
self.n = n
|
||||
self.stop = stop
|
||||
self.max_completion_tokens = max_completion_tokens
|
||||
self.max_tokens = max_tokens
|
||||
self.presence_penalty = presence_penalty
|
||||
self.frequency_penalty = frequency_penalty
|
||||
self.logit_bias = logit_bias
|
||||
self.response_format = response_format
|
||||
self.seed = seed
|
||||
self.logprobs = logprobs
|
||||
self.top_logprobs = top_logprobs
|
||||
self.base_url = base_url
|
||||
self.api_version = api_version
|
||||
self.api_key = api_key
|
||||
self.callbacks = callbacks
|
||||
self.kwargs = kwargs
|
||||
|
||||
litellm.drop_params = True
|
||||
litellm.set_verbose = False
|
||||
litellm.callbacks = callbacks
|
||||
|
||||
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
|
||||
with suppress_warnings():
|
||||
if callbacks and len(callbacks) > 0:
|
||||
litellm.callbacks = callbacks
|
||||
|
||||
try:
|
||||
params = {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
"timeout": self.timeout,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"n": self.n,
|
||||
"stop": self.stop,
|
||||
"max_tokens": self.max_tokens or self.max_completion_tokens,
|
||||
"presence_penalty": self.presence_penalty,
|
||||
"frequency_penalty": self.frequency_penalty,
|
||||
"logit_bias": self.logit_bias,
|
||||
"response_format": self.response_format,
|
||||
"seed": self.seed,
|
||||
"logprobs": self.logprobs,
|
||||
"top_logprobs": self.top_logprobs,
|
||||
"api_base": self.base_url,
|
||||
"api_version": self.api_version,
|
||||
"api_key": self.api_key,
|
||||
"stream": False,
|
||||
**self.kwargs,
|
||||
}
|
||||
|
||||
# Remove None values to avoid passing unnecessary parameters
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
response = litellm.completion(**params)
|
||||
return response["choices"][0]["message"]["content"]
|
||||
except Exception as e:
|
||||
if not LLMContextLengthExceededException(
|
||||
str(e)
|
||||
)._is_context_limit_error(str(e)):
|
||||
logging.error(f"LiteLLM call failed: {str(e)}")
|
||||
|
||||
raise # Re-raise the exception after logging
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
try:
|
||||
params = get_supported_openai_params(model=self.model)
|
||||
return "response_format" in params
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to get supported params: {str(e)}")
|
||||
return False
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
try:
|
||||
params = get_supported_openai_params(model=self.model)
|
||||
return "stop" in params
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to get supported params: {str(e)}")
|
||||
return False
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
# Only using 75% of the context window size to avoid cutting the message in the middle
|
||||
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
|
||||
@@ -10,12 +10,13 @@ class EntityMemory(Memory):
|
||||
Inherits from the Memory class.
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None):
|
||||
storage = RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=False,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None):
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="entities", allow_reset=False, embedder_config=embedder_config, crew=crew
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
|
||||
@@ -14,8 +14,8 @@ class LongTermMemory(Memory):
|
||||
LongTermMemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
storage = LTMSQLiteStorage()
|
||||
def __init__(self, storage=None):
|
||||
storage = storage if storage else LTMSQLiteStorage()
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
|
||||
@@ -13,9 +13,13 @@ class ShortTermMemory(Memory):
|
||||
MemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None):
|
||||
storage = RAGStorage(
|
||||
type="short_term", embedder_config=embedder_config, crew=crew
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None):
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="short_term", embedder_config=embedder_config, crew=crew
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
|
||||
@@ -5,11 +5,6 @@ import os
|
||||
import shutil
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from embedchain import App
|
||||
from embedchain.llm.base import BaseLlm
|
||||
from embedchain.models.data_type import DataType
|
||||
from embedchain.vectordb.chroma import InvalidDimensionException
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
@@ -29,10 +24,6 @@ def suppress_logging(
|
||||
logger.setLevel(original_level)
|
||||
|
||||
|
||||
class FakeLLM(BaseLlm):
|
||||
pass
|
||||
|
||||
|
||||
class RAGStorage(Storage):
|
||||
"""
|
||||
Extends Storage to handle embeddings for memory entries, improving
|
||||
@@ -74,9 +65,19 @@ class RAGStorage(Storage):
|
||||
if embedder_config:
|
||||
config["embedder"] = embedder_config
|
||||
self.type = type
|
||||
self.app = App.from_config(config=config)
|
||||
self.config = config
|
||||
self.allow_reset = allow_reset
|
||||
|
||||
def _initialize_app(self):
|
||||
from embedchain import App
|
||||
from embedchain.llm.base import BaseLlm
|
||||
|
||||
class FakeLLM(BaseLlm):
|
||||
pass
|
||||
|
||||
self.app = App.from_config(config=self.config)
|
||||
self.app.llm = FakeLLM()
|
||||
if allow_reset:
|
||||
if self.allow_reset:
|
||||
self.app.reset()
|
||||
|
||||
def _sanitize_role(self, role: str) -> str:
|
||||
@@ -86,6 +87,8 @@ class RAGStorage(Storage):
|
||||
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
if not hasattr(self, "app"):
|
||||
self._initialize_app()
|
||||
self._generate_embedding(value, metadata)
|
||||
|
||||
def search( # type: ignore # BUG?: Signature of "search" incompatible with supertype "Storage"
|
||||
@@ -95,6 +98,10 @@ class RAGStorage(Storage):
|
||||
filter: Optional[dict] = None,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
if not hasattr(self, "app"):
|
||||
self._initialize_app()
|
||||
from embedchain.vectordb.chroma import InvalidDimensionException
|
||||
|
||||
with suppress_logging():
|
||||
try:
|
||||
results = (
|
||||
@@ -108,6 +115,10 @@ class RAGStorage(Storage):
|
||||
return [r for r in results if r["metadata"]["score"] >= score_threshold]
|
||||
|
||||
def _generate_embedding(self, text: str, metadata: Dict[str, Any]) -> Any:
|
||||
if not hasattr(self, "app"):
|
||||
self._initialize_app()
|
||||
from embedchain.models.data_type import DataType
|
||||
|
||||
self.app.add(text, data_type=DataType.TEXT, metadata=metadata)
|
||||
|
||||
def reset(self) -> None:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from functools import wraps
|
||||
|
||||
from crewai.project.utils import memoize
|
||||
from crewai import Crew
|
||||
|
||||
|
||||
def task(func):
|
||||
@@ -72,7 +73,7 @@ def pipeline(func):
|
||||
return memoize(func)
|
||||
|
||||
|
||||
def crew(func):
|
||||
def crew(func) -> "Crew":
|
||||
def wrapper(self, *args, **kwargs):
|
||||
instantiated_tasks = []
|
||||
instantiated_agents = []
|
||||
|
||||
@@ -1,14 +1,16 @@
|
||||
import inspect
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict
|
||||
from typing import Any, Callable, Dict, Type, TypeVar
|
||||
|
||||
import yaml
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
T = TypeVar("T", bound=Type[Any])
|
||||
|
||||
def CrewBase(cls):
|
||||
|
||||
def CrewBase(cls: T) -> T:
|
||||
class WrappedClass(cls):
|
||||
is_crew_class: bool = True # type: ignore
|
||||
|
||||
@@ -35,7 +37,7 @@ def CrewBase(cls):
|
||||
@staticmethod
|
||||
def load_yaml(config_path: Path):
|
||||
try:
|
||||
with open(config_path, "r") as file:
|
||||
with open(config_path, "r", encoding="utf-8") as file:
|
||||
return yaml.safe_load(file)
|
||||
except FileNotFoundError:
|
||||
print(f"File not found: {config_path}")
|
||||
@@ -89,7 +91,10 @@ def CrewBase(cls):
|
||||
callbacks: Dict[str, Callable],
|
||||
) -> None:
|
||||
if llm := agent_info.get("llm"):
|
||||
self.agents_config[agent_name]["llm"] = llms[llm]()
|
||||
try:
|
||||
self.agents_config[agent_name]["llm"] = llms[llm]()
|
||||
except KeyError:
|
||||
self.agents_config[agent_name]["llm"] = llm
|
||||
|
||||
if tools := agent_info.get("tools"):
|
||||
self.agents_config[agent_name]["tools"] = [
|
||||
|
||||
@@ -317,7 +317,9 @@ class Task(BaseModel):
|
||||
self.processed_by_agents.add(agent_name)
|
||||
self.delegations += 1
|
||||
|
||||
def copy(self, agents: List["BaseAgent"]) -> "Task":
|
||||
def copy(
|
||||
self, agents: List["BaseAgent"], task_mapping: Dict[str, "Task"]
|
||||
) -> "Task":
|
||||
"""Create a deep copy of the Task."""
|
||||
exclude = {
|
||||
"id",
|
||||
@@ -330,7 +332,9 @@ class Task(BaseModel):
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
cloned_context = (
|
||||
[task.copy(agents) for task in self.context] if self.context else None
|
||||
[task_mapping[context_task.key] for context_task in self.context]
|
||||
if self.context
|
||||
else None
|
||||
)
|
||||
|
||||
def get_agent_by_role(role: str) -> Union["BaseAgent", None]:
|
||||
|
||||
@@ -4,15 +4,28 @@ import asyncio
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
import pkg_resources
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
||||
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor
|
||||
from opentelemetry.trace import Span, Status, StatusCode
|
||||
|
||||
@contextmanager
|
||||
def suppress_warnings():
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore")
|
||||
yield
|
||||
|
||||
|
||||
with suppress_warnings():
|
||||
import pkg_resources
|
||||
|
||||
|
||||
from opentelemetry import trace # noqa: E402
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter # noqa: E402
|
||||
from opentelemetry.sdk.resources import SERVICE_NAME, Resource # noqa: E402
|
||||
from opentelemetry.sdk.trace import TracerProvider # noqa: E402
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor # noqa: E402
|
||||
from opentelemetry.trace import Span, Status, StatusCode # noqa: E402
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.crew import Crew
|
||||
@@ -40,7 +53,8 @@ class Telemetry:
|
||||
self.resource = Resource(
|
||||
attributes={SERVICE_NAME: "crewAI-telemetry"},
|
||||
)
|
||||
self.provider = TracerProvider(resource=self.resource)
|
||||
with suppress_warnings():
|
||||
self.provider = TracerProvider(resource=self.resource)
|
||||
|
||||
processor = BatchSpanProcessor(
|
||||
OTLPSpanExporter(
|
||||
@@ -62,8 +76,9 @@ class Telemetry:
|
||||
def set_tracer(self):
|
||||
if self.ready and not self.trace_set:
|
||||
try:
|
||||
trace.set_tracer_provider(self.provider)
|
||||
self.trace_set = True
|
||||
with suppress_warnings():
|
||||
trace.set_tracer_provider(self.provider)
|
||||
self.trace_set = True
|
||||
except Exception:
|
||||
self.ready = False
|
||||
self.trace_set = False
|
||||
@@ -102,14 +117,12 @@ class Telemetry:
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"i18n": agent.i18n.prompt_file,
|
||||
"function_calling_llm": json.dumps(
|
||||
self._safe_llm_attributes(
|
||||
agent.function_calling_llm
|
||||
)
|
||||
),
|
||||
"llm": json.dumps(
|
||||
self._safe_llm_attributes(agent.llm)
|
||||
"function_calling_llm": (
|
||||
agent.function_calling_llm.model
|
||||
if agent.function_calling_llm
|
||||
else ""
|
||||
),
|
||||
"llm": agent.llm.model,
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"allow_code_execution?": agent.allow_code_execution,
|
||||
"max_retry_limit": agent.max_retry_limit,
|
||||
@@ -134,9 +147,9 @@ class Telemetry:
|
||||
"expected_output": task.expected_output,
|
||||
"async_execution?": task.async_execution,
|
||||
"human_input?": task.human_input,
|
||||
"agent_role": task.agent.role
|
||||
if task.agent
|
||||
else "None",
|
||||
"agent_role": (
|
||||
task.agent.role if task.agent else "None"
|
||||
),
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"context": (
|
||||
[task.description for task in task.context]
|
||||
@@ -173,14 +186,12 @@ class Telemetry:
|
||||
"verbose?": agent.verbose,
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"function_calling_llm": json.dumps(
|
||||
self._safe_llm_attributes(
|
||||
agent.function_calling_llm
|
||||
)
|
||||
),
|
||||
"llm": json.dumps(
|
||||
self._safe_llm_attributes(agent.llm)
|
||||
"function_calling_llm": (
|
||||
agent.function_calling_llm.model
|
||||
if agent.function_calling_llm
|
||||
else ""
|
||||
),
|
||||
"llm": agent.llm.model,
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"allow_code_execution?": agent.allow_code_execution,
|
||||
"max_retry_limit": agent.max_retry_limit,
|
||||
@@ -203,9 +214,9 @@ class Telemetry:
|
||||
"id": str(task.id),
|
||||
"async_execution?": task.async_execution,
|
||||
"human_input?": task.human_input,
|
||||
"agent_role": task.agent.role
|
||||
if task.agent
|
||||
else "None",
|
||||
"agent_role": (
|
||||
task.agent.role if task.agent else "None"
|
||||
),
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"tools_names": [
|
||||
tool.name.casefold()
|
||||
@@ -294,9 +305,7 @@ class Telemetry:
|
||||
self._add_attribute(span, "tool_name", tool_name)
|
||||
self._add_attribute(span, "attempts", attempts)
|
||||
if llm:
|
||||
self._add_attribute(
|
||||
span, "llm", json.dumps(self._safe_llm_attributes(llm))
|
||||
)
|
||||
self._add_attribute(span, "llm", llm.model)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
@@ -316,9 +325,7 @@ class Telemetry:
|
||||
self._add_attribute(span, "tool_name", tool_name)
|
||||
self._add_attribute(span, "attempts", attempts)
|
||||
if llm:
|
||||
self._add_attribute(
|
||||
span, "llm", json.dumps(self._safe_llm_attributes(llm))
|
||||
)
|
||||
self._add_attribute(span, "llm", llm.model)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
@@ -336,9 +343,7 @@ class Telemetry:
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
)
|
||||
if llm:
|
||||
self._add_attribute(
|
||||
span, "llm", json.dumps(self._safe_llm_attributes(llm))
|
||||
)
|
||||
self._add_attribute(span, "llm", llm.model)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
@@ -491,7 +496,7 @@ class Telemetry:
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"i18n": agent.i18n.prompt_file,
|
||||
"llm": json.dumps(self._safe_llm_attributes(agent.llm)),
|
||||
"llm": agent.llm.model,
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"tools_names": [
|
||||
tool.name.casefold() for tool in agent.tools or []
|
||||
@@ -568,10 +573,37 @@ class Telemetry:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def _safe_llm_attributes(self, llm):
|
||||
attributes = ["name", "model_name", "model", "top_k", "temperature"]
|
||||
if llm:
|
||||
safe_attributes = {k: v for k, v in vars(llm).items() if k in attributes}
|
||||
safe_attributes["class"] = llm.__class__.__name__
|
||||
return safe_attributes
|
||||
return {}
|
||||
def flow_creation_span(self, flow_name: str):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Flow Creation")
|
||||
self._add_attribute(span, "flow_name", flow_name)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def flow_plotting_span(self, flow_name: str, node_names: list[str]):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Flow Plotting")
|
||||
self._add_attribute(span, "flow_name", flow_name)
|
||||
self._add_attribute(span, "node_names", json.dumps(node_names))
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def flow_execution_span(self, flow_name: str, node_names: list[str]):
|
||||
if self.ready:
|
||||
try:
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Flow Execution")
|
||||
self._add_attribute(span, "flow_name", flow_name)
|
||||
self._add_attribute(span, "node_names", json.dumps(node_names))
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
span.end()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
from langchain.tools import StructuredTool
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_agent_tool import BaseAgentTools
|
||||
|
||||
|
||||
@@ -7,6 +5,8 @@ class AgentTools(BaseAgentTools):
|
||||
"""Default tools around agent delegation"""
|
||||
|
||||
def tools(self):
|
||||
from langchain.tools import StructuredTool
|
||||
|
||||
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
|
||||
tools = [
|
||||
StructuredTool.from_function(
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
from langchain.tools import StructuredTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agents.cache import CacheHandler
|
||||
@@ -14,6 +13,8 @@ class CacheTools(BaseModel):
|
||||
)
|
||||
|
||||
def tool(self):
|
||||
from langchain.tools import StructuredTool
|
||||
|
||||
return StructuredTool.from_function(
|
||||
func=self.hit_cache,
|
||||
name=self.name,
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user