Compare commits

...

67 Commits

Author SHA1 Message Date
Eduardo Chiarotti
dc4291996e Merge branch 'main' into fix/pre-commit-all-files 2024-08-23 10:50:51 -03:00
Eduardo Chiarotti
d1aee5450f fix: All files pre commit 2024-08-23 10:49:58 -03:00
Paul Nugent
782ce22d99 Update LLM-Connections.md (#1190)
Added missing quotes around os.environ

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-08-23 10:39:06 -03:00
Eduardo Chiarotti
f5246039e5 Feat/cli deploy (#1240)
* feat: set basic structure deploy commands

* feat: add first iteration of CLI Deploy

* feat: some minor refactor

* feat: Add api, Deploy command and update cli

* feat: Remove test token

* feat: add auth0 lib, update cli and improve code

* feat: update code and decouple auth

* fix: parts of the code

* feat: Add token manager to encrypt access token and get and save tokens

* feat: add audience to costants

* feat: add subsystem saving credentials and remove comment of type hinting

* feat: add get crew version to send on header of request

* feat: add docstrings

* feat: add tests for authentication module

* feat: add tests for utils

* feat: add unit tests for cl

* feat: add tests

* feat: add deploy man tests

* feat: fix type checking issue

* feat: rename tests to pass ci

* feat: fix pr issues

* feat: fix get crewai versoin

* fix: add timeout for tests.yml
2024-08-23 10:20:03 -03:00
Rip&Tear
4736604b4d Merge pull request #1239 from ShuHuang/patch-1
Bugfix: Update LLM-Connections.md
2024-08-23 09:49:46 +08:00
Shu Huang
09cba0135e Bugfix: Update LLM-Connections.md
The original code doesn't work due to a comma
2024-08-22 14:39:15 +01:00
Brandon Hancock (bhancock_ai)
8119edb495 Brandon/cre 211 fix agent and task config for yaml based projects (#1211)
* Fixed agents. Now need to fix tasks.

* Add type fixes and fix task decorator

* Clean up logs

* fix more type errors

* Revert back to required

* Undo changes.

* Remove default none for properties that cannot be none

* Clean up comments

* Implement all of Guis feedback
2024-08-20 09:31:02 -04:00
William Espegren
17bffb0803 docs: add spider docs (#1165)
* docs: add spider docs

* chore: add "Spider scraper" to mkdocs.yml
2024-08-20 07:53:04 -03:00
Rip&Tear
cbe139fced Merge pull request #1216 from theCyberTech/main 2024-08-20 18:32:04 +08:00
Eduardo Chiarotti
946d8567fe feat: Add only on release to deploy docs (#1212) 2024-08-20 07:26:50 -03:00
Rip&Tear
7b5d5bdeef Merge pull request #2 from theCyberTech/theCyberTech-operations-per-run
Update operations-per-run in stale.yml
2024-08-20 12:54:55 +08:00
Rip&Tear
a1551bcf2b Update operations-per-run in stale.yml
operations-per-run: 1200

this will allow for complete cleanup of all exiting issues
2024-08-20 12:54:26 +08:00
Rip&Tear
5495825b1d Merge pull request #1206 from theCyberTech/main
Create Cli.md
2024-08-17 21:51:13 +08:00
Rip&Tear
6e36f84cc6 Update Cli.md 2024-08-17 20:55:46 +08:00
Rip&Tear
cddf2d8f7c Create Cli.md
Added initial Cli.md to help users get info on Cli commands
2024-08-17 20:06:31 +08:00
Rip&Tear
5f17e35c5a Merge pull request #1205 from theCyberTech/theCyberTech-stale-fix
Update stale.yml
2024-08-17 20:00:43 +08:00
Eduardo Chiarotti
231a833ad0 feat: Add crewai install CLI command (#1203)
* feat: Add crewai install CLI command

* feat: Add crewai install to the docs and force now crewai run
2024-08-17 08:41:53 -03:00
Rip&Tear
a870295d42 Update stale.yml
Added  
operations-per-run: 500
2024-08-17 19:16:31 +08:00
Rip&Tear
ddda8f6bda Merge pull request #1194 from crewAIInc/docs_update
Updated Documentation to fix minor issues + minor .github fixes
2024-08-17 08:14:17 +08:00
Brandon Hancock (bhancock_ai)
bf7372fefa Adding Autocomplete to OSS (#1198)
* Cleaned up model_config

* Fix pydantic issues

* 99% done with autocomplete

* fixed test issues

* Fix type checking issues
2024-08-16 15:04:21 -04:00
Brandon Hancock (bhancock_ai)
3451b6fc7a Clean up pipeline (#1187)
* Clean up pipeline

* Make versioning dynamic in templates

* fix .env issues when openai is trying to use invalid keys

* Fix type checker issue in pipeline

* Fix tests.
2024-08-16 14:47:28 -04:00
Vini Brasil
dbf2570353 Add name and expected_output to TaskOutput (#1199)
* Add name and expected_output to TaskOutput

This commit adds task information to the TaskOutput class. This is
useful to provide extra context to callbacks.

* Populate task name from function names

This commit populates task name from function names when using
annotations.
2024-08-15 22:24:41 +01:00
Eduardo Chiarotti
d0707fac91 feat: Add bandit ci pipeline (#1200)
* feat: Add bandit ci pipeline

* feat: add useforsecurty false for bandit pipeline

* feat: Add report only for High severity issues
2024-08-15 18:19:57 -03:00
theCyberTech
35ebdd6022 Updated Documentaion to fix navigation link for pipelin feature, removed legacy md fiel from .github & added missing config.yml config to remove custom issues from user access 2024-08-15 16:35:05 +08:00
Rip&Tear
92a77e5cac Merge pull request #1183 from crewAIInc/feature-templates
Feature templates
2024-08-15 11:29:36 +08:00
Rip&Tear
a2922c9ad5 Merge pull request #1182 from crewAIInc/git-temaplates
updated bug report template to yml for more control
2024-08-15 11:28:31 +08:00
Eduardo Chiarotti
9f9b52dd26 fix: Fix planning_llm issue (#1189)
* fix: Fix planning_llm issue

* fix: add poetry.lock updated version

* fix: type checking issues

* fix: tests
2024-08-14 18:54:53 -03:00
theCyberTech
2482c7ab68 Addded feature request template in YAML format
Added config .yml to remove blank template
2024-08-14 15:49:55 +08:00
theCyberTech
7fdabda97e updated bug report template to yml for more control 2024-08-14 15:08:59 +08:00
Eduardo Chiarotti
7306414de7 docs: fix references to annotations (#1176) 2024-08-13 12:58:12 -03:00
Eduardo Chiarotti
97d7bfb52a docs: Update Dalle, FileWrite, Nl2Sql and Side menu Tools (#1175)
* docs: Update Dalle, FileWrite, Nl2Sql and Side menu Tools

* docs: remove unused phrase

* docs: fix identation
2024-08-13 12:29:34 -03:00
Rafael Miller
9f85a2a011 Added Firecrawl tools to docs (#628) 2024-08-13 12:09:11 -03:00
João Moura
ab47d276db preparing new version 2024-08-11 22:07:54 -03:00
João Moura
44e38b1d5e Fixing telemetry condition that was missing 2024-08-11 22:07:45 -03:00
João Moura
e9fa2bb556 fix broken link 2024-08-11 15:52:25 -03:00
João Moura
183f466ac4 adding new docs 2024-08-11 15:50:42 -03:00
João Moura
cc7b7e2b79 adding testing link 2024-08-11 15:39:30 -03:00
João Moura
a17fa70b1b Updating docs 2024-08-11 15:04:45 -03:00
João Moura
7b63b6f485 preparing new version 2024-08-11 01:33:20 -03:00
João Moura
ed5d81fa1a Fixing evaluator reporter 2024-08-11 01:32:40 -03:00
João Moura
c2d12b2de2 Updating templates to new versions 2024-08-11 01:02:47 -03:00
João Moura
8966dc2f2f Preparing new version 2024-08-11 00:58:41 -03:00
João Moura
59ab1ef9f4 adding docs for new tools 2024-08-11 00:07:00 -03:00
João Moura
227cca00a2 preparing new verion 2024-08-10 17:59:17 -03:00
João Moura
16dab8e583 missing arg 2024-08-10 17:58:54 -03:00
João Moura
1c97b916d9 fixing mock_agent_ops_provider 2024-08-10 17:26:45 -03:00
João Moura
94b52cfd87 fixing mock_agent_ops_provider 2024-08-10 17:21:21 -03:00
Abebe M.
82b1db1711 Handle minor issue: tools name shouldn't contain space for openai (#961)
As per (https://github.com/langchain-ai/langchain/pull/16395), OpenAI functions don't accept tool names with space. Therefore, I added an exception handling snippet to raise an issue if a custom tool name has a space.
2024-08-10 16:51:08 -03:00
Joshua Harper
638a8f03f0 Sanitize agent roles to ensure valid directory names (#1037) 2024-08-10 09:50:38 -03:00
Vikram Guhan Subbiah
dbce944934 AgentOps ENG-525: Decouple CrewAI and AgentOps (#1033)
* Make AgentOps import optional upon AGENTOPS_API_KEY
    being set

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-08-10 09:47:13 -03:00
David
f1ad137fb7 remove broken links (#1043) 2024-08-10 09:45:21 -03:00
Jason Wu
5eb1cff9b5 Update AgentOps-Observability.md (#1044)
Fix the incorrectly formatted external link
2024-08-10 09:43:22 -03:00
Thiago Moretto
b074138e39 Increase test coverage for output to file (#1049) 2024-08-10 09:42:47 -03:00
Constantin Schreiber
6ca051e5f3 Update Start-a-New-CrewAI-Project-Template-Method.md (#1054)
Fixed grammar and typo

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-08-10 09:39:49 -03:00
fastali
fd87d930a7 Update LLM-Connections.md (#1071)
ollama integration example code bug fixed.
2024-08-10 08:56:30 -03:00
Chris Johnston
95a9691a8b Update Start-a-New-CrewAI-Project-Template-Method.md (#1081)
I helped 💚
2024-08-10 08:55:39 -03:00
maf-rnmourao
e2d6e2649e Fix misplaced task info from process doc (#1098)
Co-authored-by: rnmourao <robertonunesmourao@yahoo.com.br>
2024-08-10 08:55:18 -03:00
Giulio De Luise
d3ff1bf01d Fix documentation typo. (#1153) 2024-08-10 08:54:40 -03:00
Muhammad Hakim Asy'ari
d68b8cf6e4 Remove orphan links (#1163)
Remove deprecated links, related to #1019
2024-08-10 08:54:12 -03:00
João Moura
6615ab2fba preparing new verison 2024-08-10 03:28:53 -07:00
João Moura
5e83a36009 adding test results telemetry 2024-08-10 03:13:11 -07:00
Eduardo Chiarotti
51ee483e9d feat: add ability to train on custom file (#1161)
* feat: add ability to train on custom file

* feat: add pkl file validation

* feat: fix tests

* feat: fix tests

* feat: fix tests
2024-08-09 19:41:58 -03:00
Lorenze Jay
62f5b2fb2e Brandon/cre 130 pipeline project structure (#1066)
* WIP. Procedure appears to be working well. Working on mocking properly for tests

* All tests are passing now

* rshift working

* Add back in Gui's tool_usage fix

* WIP

* Going to start refactoring for pipeline_output

* Update terminology

* new pipeline flow with traces and usage metrics working. need to add more tests and make sure PipelineOutput behaves likew CrewOutput

* Fix pipelineoutput to look more like crewoutput and taskoutput

* Implemented additional tests for pipeline. One test is failing. Need team support

* Update docs for pipeline

* Update pipeline to properly process input and ouput dictionary

* Update Pipeline docs

* Add back in commentary at top of pipeline file

* Starting to work on router

* Drop router for now. will add in separately

* In the middle of fixing router. A ton of circular dependencies. Moving over to a new design.

* WIP.

* Fix circular dependencies and updated PipelineRouter

* Add in Eduardo feedback. Still need to add in more commentary describing the design decisions for pipeline

* Add developer notes to explain what is going on in pipelines.

* Add doc strings

* Fix missing rag datatype

* WIP. Converting usage metrics from a dict to an object

* Fix tests that were checking usage metrics

* Drop todo

* Fix 1 type error in pipeline

* Update pipeline to use UsageMetric

* Add missing doc string

* WIP.

* Change names

* Rename variables based on joaos feedback

* Fix critical circular dependency issues. Now needing to fix trace issue.

* Tests working now!

* Add more tests which showed underlying issue with traces

* Fix tests

* Remove overly complicated test

* Add router example to docs

* Clean up end of docs

* Clean up docs

* Working on creating Crew templates and pipeline templates

* WIP.

* WIP

* Fix poetry install from templates

* WIP

* Restructure

* changes for lorenze

* more todos

* WIP: create pipelines cli working

* wrapped up router

* ignore mypy src on templates

* ignored signature of copy

* fix all verbose

* rm print statements

* brought back correct folders

* fixes missing folders and then rm print statements

* fixed tests

* fixed broken test

* fixed type checker

* fixed type ignore

* ignore types for templates

* needed

* revert

* exclude only required

* rm type errors on templates

* rm excluding type checks for template files on github action

* fixed missing quotes

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-08-09 14:13:29 -07:00
Eduardo Chiarotti
6583f31459 Update issue templates (#1076)
* Update issue templates

* Update custom.md
2024-08-08 20:10:41 -03:00
Eduardo Chiarotti
217f5fc5ac Create stale.yml (#1158) 2024-08-08 11:54:13 -03:00
Eduardo Chiarotti
297dc93fb4 feat: add cli to run the crew (#1080)
* feat: add cli to run the crew

* feat: change command to run_crew

* feat: change pyprojet to run_Crew

* docs: change docs to address crewai run
2024-08-08 10:48:22 -03:00
Lorenze Jay
86c6760f58 Fix logging types to bool (#1051)
* fixes pydantic validations hierarchical

* more tests

* logger logs everything or not

* verbose rm levels to bool

* updated readme verbose levels
2024-08-07 10:31:18 -07:00
187 changed files with 36715 additions and 216839 deletions

View File

@@ -1,35 +0,0 @@
---
name: Bug report
about: Create a report to help us improve CrewAI
title: "[BUG]"
labels: bug
assignees: ''
---
**Description**
Provide a clear and concise description of what the bug is.
**Steps to Reproduce**
Provide a step-by-step process to reproduce the behavior:
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots/Code snippets**
If applicable, add screenshots or code snippets to help explain your problem.
**Environment Details:**
- **Operating System**: [e.g., Ubuntu 20.04, macOS Catalina, Windows 10]
- **Python Version**: [e.g., 3.8, 3.9, 3.10]
- **crewAI Version**: [e.g., 0.30.11]
- **crewAI Tools Version**: [e.g., 0.2.6]
**Logs**
Include relevant logs or error messages if applicable.
**Possible Solution**
Have a solution in mind? Please suggest it here, or write "None".
**Additional context**
Add any other context about the problem here.

116
.github/ISSUE_TEMPLATE/bug_report.yml vendored Normal file
View File

@@ -0,0 +1,116 @@
name: Bug report
description: Create a report to help us improve CrewAI
title: "[BUG]"
labels: ["bug"]
assignees: []
body:
- type: textarea
id: description
attributes:
label: Description
description: Provide a clear and concise description of what the bug is.
validations:
required: true
- type: textarea
id: steps-to-reproduce
attributes:
label: Steps to Reproduce
description: Provide a step-by-step process to reproduce the behavior.
placeholder: |
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
validations:
required: true
- type: textarea
id: expected-behavior
attributes:
label: Expected behavior
description: A clear and concise description of what you expected to happen.
validations:
required: true
- type: textarea
id: screenshots-code
attributes:
label: Screenshots/Code snippets
description: If applicable, add screenshots or code snippets to help explain your problem.
validations:
required: true
- type: dropdown
id: os
attributes:
label: Operating System
description: Select the operating system you're using
options:
- Ubuntu 20.04
- Ubuntu 22.04
- Ubuntu 24.04
- macOS Catalina
- macOS Big Sur
- macOS Monterey
- macOS Ventura
- macOS Sonoma
- Windows 10
- Windows 11
- Other (specify in additional context)
validations:
required: true
- type: dropdown
id: python-version
attributes:
label: Python Version
description: Version of Python your Crew is running on
options:
- '3.10'
- '3.11'
- '3.12'
- '3.13'
validations:
required: true
- type: input
id: crewai-version
attributes:
label: crewAI Version
description: What version of CrewAI are you using
validations:
required: true
- type: input
id: crewai-tools-version
attributes:
label: crewAI Tools Version
description: What version of CrewAI Tools are you using
validations:
required: true
- type: dropdown
id: virtual-environment
attributes:
label: Virtual Environment
description: What Virtual Environment are you running your crew in.
options:
- Venv
- Conda
- Poetry
validations:
required: true
- type: textarea
id: evidence
attributes:
label: Evidence
description: Include relevant information, logs or error messages. These can be screenshots.
validations:
required: true
- type: textarea
id: possible-solution
attributes:
label: Possible Solution
description: Have a solution in mind? Please suggest it here, or write "None".
validations:
required: true
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Add any other context about the problem here.
validations:
required: true

1
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1 @@
blank_issues_enabled: false

View File

@@ -1,21 +0,0 @@
---
name: Feature request
about: Suggest a Feature to improve CrewAI
title: "[FEAT]"
labels: feature-request, improvement
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
If possible attach the Issue related to it
**Describe the solution you'd like / Use-case**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@@ -0,0 +1,65 @@
name: Feature request
description: Suggest a new feature for CrewAI
title: "[FEATURE]"
labels: ["feature-request"]
assignees: []
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this feature request!
- type: dropdown
id: feature-area
attributes:
label: Feature Area
description: Which area of CrewAI does this feature primarily relate to?
options:
- Core functionality
- Agent capabilities
- Task management
- Integration with external tools
- Performance optimization
- Documentation
- Other (please specify in additional context)
validations:
required: true
- type: textarea
id: problem
attributes:
label: Is your feature request related to a an existing bug? Please link it here.
description: A link to the bug or NA if not related to an existing bug.
validations:
required: true
- type: textarea
id: solution
attributes:
label: Describe the solution you'd like
description: A clear and concise description of what you want to happen.
validations:
required: true
- type: textarea
id: alternatives
attributes:
label: Describe alternatives you've considered
description: A clear and concise description of any alternative solutions or features you've considered.
validations:
required: false
- type: textarea
id: context
attributes:
label: Additional context
description: Add any other context, screenshots, or examples about the feature request here.
validations:
required: false
- type: dropdown
id: willingness-to-contribute
attributes:
label: Willingness to Contribute
description: Would you be willing to contribute to the implementation of this feature?
options:
- Yes, I'd be happy to submit a pull request
- I could provide more detailed specifications
- I can test the feature once it's implemented
- No, I'm just suggesting the idea
validations:
required: true

View File

@@ -1,10 +1,8 @@
name: Deploy MkDocs
on:
workflow_dispatch:
push:
branches:
- main
release:
types: [published]
permissions:
contents: write

23
.github/workflows/security-checker.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: Security Checker
on: [pull_request]
jobs:
security-check:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.11.9"
- name: Install dependencies
run: pip install bandit
- name: Run Bandit
run: bandit -c pyproject.toml -r src/ -lll

27
.github/workflows/stale.yml vendored Normal file
View File

@@ -0,0 +1,27 @@
name: Mark stale issues and pull requests
on:
schedule:
- cron: '10 12 * * *'
workflow_dispatch:
jobs:
stale:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v9
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-label: 'no-issue-activity'
stale-issue-message: 'This issue is stale because it has been open for 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
days-before-issue-stale: 30
days-before-issue-close: 5
stale-pr-label: 'no-pr-activity'
stale-pr-message: 'This PR is stale because it has been open for 45 days with no activity.'
days-before-pr-stale: 45
days-before-pr-close: -1
operations-per-run: 1200

View File

@@ -11,6 +11,7 @@ env:
jobs:
deploy:
runs-on: ubuntu-latest
timeout-minutes: 15
steps:
- name: Checkout code

View File

@@ -126,7 +126,7 @@ task2 = Task(
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2, # You can set it to 1 or 2 to different logging levels
verbose=True,
process = Process.sequential
)

View File

@@ -26,7 +26,7 @@ description: What are crewAI Agents and how to use them.
| **Function Calling LLM** *(optional)* | `function_calling_llm` | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
| **Max Iter** *(optional)* | `max_iter` | Max Iter is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the Maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `True`. |
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
@@ -34,6 +34,8 @@ description: What are crewAI Agents and how to use them.
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`. |
## Creating an Agent
@@ -72,7 +74,8 @@ agent = Agent(
tools_handler=my_tools_handler, # Optional
cache_handler=my_cache_handler, # Optional
callbacks=[callback1, callback2], # Optional
agent_executor=my_agent_executor # Optional
allow_code_execution=True, # Optiona
max_retry_limit=2, # Optional
)
```
@@ -144,6 +147,5 @@ my_crew = Crew(agents=[agent1, agent2], tasks=[task1, task2])
crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
```
## Conclusion
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.

142
docs/core-concepts/Cli.md Normal file
View File

@@ -0,0 +1,142 @@
# CrewAI CLI Documentation
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews and pipelines.
## Installation
To use the CrewAI CLI, make sure you have CrewAI & Poetry installed:
```
pip install crewai poetry
```
## Basic Usage
The basic structure of a CrewAI CLI command is:
```
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
```
## Available Commands
### 1. create
Create a new crew or pipeline.
```
crewai create [OPTIONS] TYPE NAME
```
- `TYPE`: Choose between "crew" or "pipeline"
- `NAME`: Name of the crew or pipeline
- `--router`: (Optional) Create a pipeline with router functionality
Example:
```
crewai create crew my_new_crew
crewai create pipeline my_new_pipeline --router
```
### 2. version
Show the installed version of CrewAI.
```
crewai version [OPTIONS]
```
- `--tools`: (Optional) Show the installed version of CrewAI tools
Example:
```
crewai version
crewai version --tools
```
### 3. train
Train the crew for a specified number of iterations.
```
crewai train [OPTIONS]
```
- `-n, --n_iterations INTEGER`: Number of iterations to train the crew (default: 5)
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
Example:
```
crewai train -n 10 -f my_training_data.pkl
```
### 4. replay
Replay the crew execution from a specific task.
```
crewai replay [OPTIONS]
```
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
Example:
```
crewai replay -t task_123456
```
### 5. log_tasks_outputs
Retrieve your latest crew.kickoff() task outputs.
```
crewai log_tasks_outputs
```
### 6. reset_memories
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
```
crewai reset_memories [OPTIONS]
```
- `-l, --long`: Reset LONG TERM memory
- `-s, --short`: Reset SHORT TERM memory
- `-e, --entities`: Reset ENTITIES memory
- `-k, --kickoff-outputs`: Reset LATEST KICKOFF TASK OUTPUTS
- `-a, --all`: Reset ALL memories
Example:
```
crewai reset_memories --long --short
crewai reset_memories --all
```
### 7. test
Test the crew and evaluate the results.
```
crewai test [OPTIONS]
```
- `-n, --n_iterations INTEGER`: Number of iterations to test the crew (default: 3)
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
Example:
```
crewai test -n 5 -m gpt-3.5-turbo
```
### 8. run
Run the crew.
```
crewai run
```
## Note
Make sure to run these commands from the directory where your CrewAI project is set up. Some commands may require additional configuration or setup within your project structure.

View File

@@ -28,6 +28,8 @@ The `Crew` class has been enriched with several attributes to support advanced f
- **Embedder Configuration (`embedder`)**: Specifies the configuration for the embedder to be used by the crew for understanding and generating language. This attribute supports customization of the language model provider.
- **Cache Management (`cache`)**: Determines whether the crew should use a cache to store the results of tool executions, optimizing performance.
- **Output Logging (`output_log_file`)**: Specifies the file path for logging the output of the crew execution.
- **Planning Mode (`planning`)**: Allows crews to plan their actions before executing tasks by setting `planning=True` when creating the `Crew` instance. This feature enhances coordination and efficiency.
- **Replay Feature**: Introduces a new CLI for listing tasks from the last run and replaying from a specific task, enhancing task management and troubleshooting.
## Delegation: Dividing to Conquer
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.

View File

@@ -32,8 +32,8 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description.
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
!!! note "Crew Max RPM"
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
@@ -134,7 +134,7 @@ Once a crew has been executed, its output can be accessed through the `output` a
crew = Crew(
agents=[research_agent, writer_agent],
tasks=[research_task, write_article_task],
verbose=2
verbose=True
)
crew_output = crew.kickoff()
@@ -183,14 +183,14 @@ result = my_crew.kickoff()
print(result)
```
### Different ways to Kicking Off a Crew
### Different Ways to Kick Off a Crew
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
`kickoff()`: Starts the execution process according to the defined process flow.
`kickoff_for_each()`: Executes tasks for each agent individually.
`kickoff_async()`: Initiates the workflow asynchronously.
`kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
- `kickoff()`: Starts the execution process according to the defined process flow.
- `kickoff_for_each()`: Executes tasks for each agent individually.
- `kickoff_async()`: Initiates the workflow asynchronously.
- `kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
```python
# Start the crew's task execution
@@ -215,33 +215,34 @@ for async_result in async_results:
print(async_result)
```
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs.
### Replaying from a Specific Task
### Replaying from specific task:
You can now replay from a specific task using our cli command replay.
You can now replay from a specific task using our CLI command `replay`.
The replay feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process.
Kickoffs will now save the latest kickoffs returned task outputs locally for you to be able to replay from.
### Replaying from a Specific Task Using the CLI
### Replaying from specific task Using the CLI
To use the replay feature, follow these steps:
1. Open your terminal or command prompt.
2. Navigate to the directory where your CrewAI project is located.
3. Run the following command:
To view latest kickoff task_ids use:
To view the latest kickoff task IDs, use:
```shell
crewai log-tasks-outputs
```
Then, to replay from a specific task, use:
```shell
crewai replay -t <task_id>
```
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.

View File

@@ -29,9 +29,9 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform.
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using EmbedChain package.
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using EmbedChain package.
The **Long-Term Memory** uses SQLLite3 to store task results. Currently, there is no way to override these storage implementations.
The data storage files are saved into a platform specific location found using the appdirs package
The data storage files are saved into a platform specific location found using the appdirs package
and the name of the project which can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
### Example: Configuring Memory for a Crew
@@ -105,7 +105,7 @@ my_crew = Crew(
"provider": "azure_openai",
"config":{
"model": 'text-embedding-ada-002',
"deployment_name": "you_embedding_model_deployment_name"
"deployment_name": "your_embedding_model_deployment_name"
}
}
)
@@ -159,8 +159,8 @@ my_crew = Crew(
embedder={
"provider": "cohere",
"config":{
"model": "embed-english-v3.0"
"vector_dimension": 1024
"model": "embed-english-v3.0",
"vector_dimension": 1024
}
}
)
@@ -197,12 +197,10 @@ crewai reset_memories [OPTIONS]
- **Type:** Flag (boolean)
- **Default:** False
## Benefits of Using crewAI's Memory System
- **Adaptive Learning:** Crews become more efficient over time, adapting to new information and refining their approach to tasks.
- **Enhanced Personalization:** Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences.
- **Improved Problem Solving:** Access to a rich memory store aids agents in making more informed decisions, drawing on past learnings and contextual insights.
## Getting Started
Integrating crewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations, you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.
Integrating crewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations, you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.

View File

@@ -0,0 +1,267 @@
---
title: crewAI Pipelines
description: Understanding and utilizing pipelines in the crewAI framework for efficient multi-stage task processing.
---
## What is a Pipeline?
A pipeline in crewAI represents a structured workflow that allows for the sequential or parallel execution of multiple crews. It provides a way to organize complex processes involving multiple stages, where the output of one stage can serve as input for subsequent stages.
## Key Terminology
Understanding the following terms is crucial for working effectively with pipelines:
- **Stage**: A distinct part of the pipeline, which can be either sequential (a single crew) or parallel (multiple crews executing concurrently).
- **Run**: A specific execution of the pipeline for a given set of inputs, representing a single instance of processing through the pipeline.
- **Branch**: Parallel executions within a stage (e.g., concurrent crew operations).
- **Trace**: The journey of an individual input through the entire pipeline, capturing the path and transformations it undergoes.
Example pipeline structure:
```
crew1 >> [crew2, crew3] >> crew4
```
This represents a pipeline with three stages:
1. A sequential stage (crew1)
2. A parallel stage with two branches (crew2 and crew3 executing concurrently)
3. Another sequential stage (crew4)
Each input creates its own run, flowing through all stages of the pipeline. Multiple runs can be processed concurrently, each following the defined pipeline structure.
## Pipeline Attributes
| Attribute | Parameters | Description |
| :--------- | :--------- | :------------------------------------------------------------------------------------ |
| **Stages** | `stages` | A list of crews, lists of crews, or routers representing the stages to be executed in sequence. |
## Creating a Pipeline
When creating a pipeline, you define a series of stages, each consisting of either a single crew or a list of crews for parallel execution. The pipeline ensures that each stage is executed in order, with the output of one stage feeding into the next.
### Example: Assembling a Pipeline
```python
from crewai import Crew, Agent, Task, Pipeline
# Define your crews
research_crew = Crew(
agents=[researcher],
tasks=[research_task],
process=Process.sequential
)
analysis_crew = Crew(
agents=[analyst],
tasks=[analysis_task],
process=Process.sequential
)
writing_crew = Crew(
agents=[writer],
tasks=[writing_task],
process=Process.sequential
)
# Assemble the pipeline
my_pipeline = Pipeline(
stages=[research_crew, analysis_crew, writing_crew]
)
```
## Pipeline Methods
| Method | Description |
| :--------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **process_runs** | Executes the pipeline, processing all stages and returning the results. This method initiates one or more runs through the pipeline, handling the flow of data between stages. |
## Pipeline Output
!!! note "Understanding Pipeline Outputs"
The output of a pipeline in the crewAI framework is encapsulated within the `PipelineKickoffResult` class. This class provides a structured way to access the results of the pipeline's execution, including various formats such as raw strings, JSON, and Pydantic models.
### Pipeline Output Attributes
| Attribute | Parameters | Type | Description |
| :-------------- | :------------ | :------------------------ | :-------------------------------------------------------------------------------------------------------- |
| **ID** | `id` | `UUID4` | A unique identifier for the pipeline output. |
| **Run Results** | `run_results` | `List[PipelineRunResult]` | A list of `PipelineRunResult` objects, each representing the output of a single run through the pipeline. |
### Pipeline Output Methods
| Method/Property | Description |
| :----------------- | :----------------------------------------------------- |
| **add_run_result** | Adds a `PipelineRunResult` to the list of run results. |
### Pipeline Run Result Attributes
| Attribute | Parameters | Type | Description |
| :---------------- | :-------------- | :------------------------- | :-------------------------------------------------------------------------------------------- |
| **ID** | `id` | `UUID4` | A unique identifier for the run result. |
| **Raw** | `raw` | `str` | The raw output of the final stage in the pipeline run. |
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the final stage, if applicable. |
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the final stage, if applicable. |
| **Token Usage** | `token_usage` | `Dict[str, Any]` | A summary of token usage across all stages of the pipeline run. |
| **Trace** | `trace` | `List[Any]` | A trace of the journey of inputs through the pipeline run. |
| **Crews Outputs** | `crews_outputs` | `List[CrewOutput]` | A list of `CrewOutput` objects, representing the outputs from each crew in the pipeline run. |
### Pipeline Run Result Methods and Properties
| Method/Property | Description |
| :-------------- | :------------------------------------------------------------------------------------------------------- |
| **json** | Returns the JSON string representation of the run result if the output format of the final task is JSON. |
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
| \***\*str\*\*** | Returns the string representation of the run result, prioritizing Pydantic, then JSON, then raw. |
### Accessing Pipeline Outputs
Once a pipeline has been executed, its output can be accessed through the `PipelineOutput` object returned by the `process_runs` method. The `PipelineOutput` class provides access to individual `PipelineRunResult` objects, each representing a single run through the pipeline.
#### Example
```python
# Define input data for the pipeline
input_data = [{"initial_query": "Latest advancements in AI"}, {"initial_query": "Future of robotics"}]
# Execute the pipeline
pipeline_output = await my_pipeline.process_runs(input_data)
# Access the results
for run_result in pipeline_output.run_results:
print(f"Run ID: {run_result.id}")
print(f"Final Raw Output: {run_result.raw}")
if run_result.json_dict:
print(f"JSON Output: {json.dumps(run_result.json_dict, indent=2)}")
if run_result.pydantic:
print(f"Pydantic Output: {run_result.pydantic}")
print(f"Token Usage: {run_result.token_usage}")
print(f"Trace: {run_result.trace}")
print("Crew Outputs:")
for crew_output in run_result.crews_outputs:
print(f" Crew: {crew_output.raw}")
print("\n")
```
This example demonstrates how to access and work with the pipeline output, including individual run results and their associated data.
## Using Pipelines
Pipelines are particularly useful for complex workflows that involve multiple stages of processing, analysis, or content generation. They allow you to:
1. **Sequence Operations**: Execute crews in a specific order, ensuring that the output of one crew is available as input to the next.
2. **Parallel Processing**: Run multiple crews concurrently within a stage for increased efficiency.
3. **Manage Complex Workflows**: Break down large tasks into smaller, manageable steps executed by specialized crews.
### Example: Running a Pipeline
```python
# Define input data for the pipeline
input_data = [{"initial_query": "Latest advancements in AI"}]
# Execute the pipeline, initiating a run for each input
results = await my_pipeline.process_runs(input_data)
# Access the results
for result in results:
print(f"Final Output: {result.raw}")
print(f"Token Usage: {result.token_usage}")
print(f"Trace: {result.trace}") # Shows the path of the input through all stages
```
## Advanced Features
### Parallel Execution within Stages
You can define parallel execution within a stage by providing a list of crews, creating multiple branches:
```python
parallel_analysis_crew = Crew(agents=[financial_analyst], tasks=[financial_analysis_task])
market_analysis_crew = Crew(agents=[market_analyst], tasks=[market_analysis_task])
my_pipeline = Pipeline(
stages=[
research_crew,
[parallel_analysis_crew, market_analysis_crew], # Parallel execution (branching)
writing_crew
]
)
```
### Routers in Pipelines
Routers are a powerful feature in crewAI pipelines that allow for dynamic decision-making and branching within your workflow. They enable you to direct the flow of execution based on specific conditions or criteria, making your pipelines more flexible and adaptive.
#### What is a Router?
A router in crewAI is a special component that can be included as a stage in your pipeline. It evaluates the input data and determines which path the execution should take next. This allows for conditional branching in your pipeline, where different crews or sub-pipelines can be executed based on the router's decision.
#### Key Components of a Router
1. **Routes**: A dictionary of named routes, each associated with a condition and a pipeline to execute if the condition is met.
2. **Default Route**: A fallback pipeline that is executed if none of the defined route conditions are met.
#### Creating a Router
Here's an example of how to create a router:
```python
from crewai import Router, Route, Pipeline, Crew, Agent, Task
# Define your agents
classifier = Agent(name="Classifier", role="Email Classifier")
urgent_handler = Agent(name="Urgent Handler", role="Urgent Email Processor")
normal_handler = Agent(name="Normal Handler", role="Normal Email Processor")
# Define your tasks
classify_task = Task(description="Classify the email based on its content and metadata.")
urgent_task = Task(description="Process and respond to urgent email quickly.")
normal_task = Task(description="Process and respond to normal email thoroughly.")
# Define your crews
classification_crew = Crew(agents=[classifier], tasks=[classify_task]) # classify email between high and low urgency 1-10
urgent_crew = Crew(agents=[urgent_handler], tasks=[urgent_task])
normal_crew = Crew(agents=[normal_handler], tasks=[normal_task])
# Create pipelines for different urgency levels
urgent_pipeline = Pipeline(stages=[urgent_crew])
normal_pipeline = Pipeline(stages=[normal_crew])
# Create a router
email_router = Router(
routes={
"high_urgency": Route(
condition=lambda x: x.get("urgency_score", 0) > 7,
pipeline=urgent_pipeline
),
"low_urgency": Route(
condition=lambda x: x.get("urgency_score", 0) <= 7,
pipeline=normal_pipeline
)
},
default=Pipeline(stages=[normal_pipeline]) # Default to just classification if no urgency score
)
# Use the router in a main pipeline
main_pipeline = Pipeline(stages=[classification_crew, email_router])
inputs = [{"email": "..."}, {"email": "..."}] # List of email data
main_pipeline.kickoff(inputs=inputs)
```
In this example, the router decides between an urgent pipeline and a normal pipeline based on the urgency score of the email. If the urgency score is greater than 7, it routes to the urgent pipeline; otherwise, it uses the normal pipeline. If the input doesn't include an urgency score, it defaults to just the classification crew.
#### Benefits of Using Routers
1. **Dynamic Workflow**: Adapt your pipeline's behavior based on input characteristics or intermediate results.
2. **Efficiency**: Route urgent tasks to quicker processes, reserving more thorough pipelines for less time-sensitive inputs.
3. **Flexibility**: Easily modify or extend your pipeline's logic without changing the core structure.
4. **Scalability**: Handle a wide range of email types and urgency levels with a single pipeline structure.
### Error Handling and Validation
The Pipeline class includes validation mechanisms to ensure the robustness of the pipeline structure:
- Validates that stages contain only Crew instances or lists of Crew instances.
- Prevents double nesting of stages to maintain a clear structure.

View File

@@ -41,13 +41,11 @@ my_crew = Crew(
)
```
### Example
When running the base case example, you will see something like the following output, which represents the output of the AgentPlanner responsible for creating the step-by-step logic to add to the Agents tasks.
```bash
```
[2024-07-15 16:49:11][INFO]: Planning the crew execution
**Step-by-Step Plan for Task Execution**
@@ -133,6 +131,4 @@ A list with 10 bullet points of the most relevant information about AI LLMs.
**Expected Output:**
A fully-fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'.
---
```
```

View File

@@ -55,10 +55,5 @@ Emulates a corporate hierarchy, CrewAI allows specifying a custom manager agent
## Process Class: Detailed Overview
The `Process` class is implemented as an enumeration (`Enum`), ensuring type safety and restricting process values to the defined types (`sequential`, `hierarchical`). The consensual process is planned for future inclusion, emphasizing our commitment to continuous development and innovation.
## Additional Task Features
- **Asynchronous Execution**: Tasks can now be executed asynchronously, allowing for parallel processing and efficiency improvements. This feature is designed to enable tasks to be carried out concurrently, enhancing the overall productivity of the crew.
- **Human Input Review**: An optional feature that enables the review of task outputs by humans to ensure quality and accuracy before finalization. This additional step introduces a layer of oversight, providing an opportunity for human intervention and validation.
- **Output Customization**: Tasks support various output formats, including JSON (`output_json`), Pydantic models (`output_pydantic`), and file outputs (`output_file`), providing flexibility in how task results are captured and utilized. This allows for a wide range of output possibilities, catering to different needs and requirements.
## Conclusion
The structured collaboration facilitated by processes within CrewAI is crucial for enabling systematic teamwork among agents. This documentation has been updated to reflect the latest features, enhancements, and the planned integration of the Consensual Process, ensuring users have access to the most current and comprehensive information.

View File

@@ -17,16 +17,17 @@ Tasks within crewAI can be collaborative, requiring multiple agents to work toge
| **Description** | `description` | A clear, concise statement of what the task entails. |
| **Agent** | `agent` | The agent responsible for the task, assigned either directly or by the crew's process. |
| **Expected Output** | `expected_output` | A detailed description of what the task's completion looks like. |
| **Tools** _(optional)_ | `tools` | The functions or capabilities the agent can utilize to perform the task. |
| **Async Execution** _(optional)_ | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion. |
| **Tools** _(optional)_ | `tools` | The functions or capabilities the agent can utilize to perform the task. Defaults to an empty list. |
| **Async Execution** _(optional)_ | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion. Defaults to False. |
| **Context** _(optional)_ | `context` | Specifies tasks whose outputs are used as context for this task. |
| **Config** _(optional)_ | `config` | Additional configuration details for the agent executing the task, allowing further customization. |
| **Config** _(optional)_ | `config` | Additional configuration details for the agent executing the task, allowing further customization. Defaults to None. |
| **Output JSON** _(optional)_ | `output_json` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
| **Output File** _(optional)_ | `output_file` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
| **Output** _(optional)_ | `output` | The output of the task, containing the raw, JSON, and Pydantic output plus additional details. |
| **Callback** _(optional)_ | `callback` | A Python callable that is executed with the task's output upon completion. |
| **Human Input** _(optional)_ | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. |
| **Output** _(optional)_ | `output` | An instance of `TaskOutput`, containing the raw, JSON, and Pydantic output plus additional details. |
| **Callback** _(optional)_ | `callback` | A callable that is executed with the task's output upon completion. |
| **Human Input** _(optional)_ | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. Defaults to False.|
| **Converter Class** _(optional)_ | `converter_cls` | A converter class used to export structured output. Defaults to None. |
## Creating a Task
@@ -56,7 +57,7 @@ By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput`
| Attribute | Parameters | Type | Description |
| :---------------- | :-------------- | :------------------------- | :------------------------------------------------------------------------------------------------- |
| **Description** | `description` | `str` | A brief description of the task. |
| **Summary** | `summary` | `Optional[str]` | A short summary of the task, auto-generated from the description. |
| **Summary** | `summary` | `Optional[str]` | A short summary of the task, auto-generated from the first 10 words of the description. |
| **Raw** | `raw` | `str` | The raw output of the task. This is the default format for the output. |
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the task. |
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
@@ -90,7 +91,7 @@ task = Task(
crew = Crew(
agents=[research_agent],
tasks=[task],
verbose=2
verbose=True
)
result = crew.kickoff()
@@ -142,7 +143,7 @@ task = Task(
crew = Crew(
agents=[research_agent],
tasks=[task],
verbose=2
verbose=True
)
result = crew.kickoff()
@@ -264,7 +265,7 @@ task1 = Task(
crew = Crew(
agents=[research_agent],
tasks=[task1, task2, task3],
verbose=2
verbose=True
)
result = crew.kickoff()
@@ -311,4 +312,4 @@ save_output_task = Task(
## Conclusion
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.

View File

@@ -5,12 +5,11 @@ description: Learn how to test your crewAI Crew and evaluate their performance.
## Introduction
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. And with crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. With crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
### Using the Testing Feature
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics.
The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now the only provider available is OpenAI.
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics. The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now, the only provider available is OpenAI.
```bash
crewai test
@@ -22,9 +21,10 @@ If you want to run more iterations or use a different model, you can specify the
crewai test --n_iterations 5 --model gpt-4o
```
What happens when you run the `crewai test` command is that the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
When you run the `crewai test` command, the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
A table of scores at the end will show the performance of the crew in terms of the following metrics:
```
Task Scores
(1-10 Higher is better)
@@ -38,4 +38,3 @@ A table of scores at the end will show the performance of the crew in terms of t
```
The example above shows the test results for two runs of the crew with two tasks, with the average total score for each task and the crew as a whole.

View File

@@ -80,11 +80,12 @@ write = Task(
output_file='blog-posts/new_post.md' # The final blog post will be saved here
)
# Assemble a crew
# Assemble a crew with planning enabled
crew = Crew(
agents=[researcher, writer],
tasks=[research, write],
verbose=2
verbose=True,
planning=True, # Enable planning feature
)
# Execute tasks
@@ -105,6 +106,7 @@ Here is a list of the available tools and their descriptions:
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
@@ -121,6 +123,7 @@ Here is a list of the available tools and their descriptions:
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
| **Vision Tool** | A tool for generating images using the DALL-E API. |
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
@@ -195,6 +198,5 @@ writer1 = Agent(
#...
```
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -16,9 +16,11 @@ To use the training feature, follow these steps:
3. Run the following command:
```shell
crewai train -n <n_iterations>
crewai train -n <n_iterations> <filename>
```
!!! note "Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`."
### Training Your Crew Programmatically
To train your crew programmatically, use the following steps:
@@ -27,21 +29,20 @@ To train your crew programmatically, use the following steps:
3. Execute the training command within a try-except block to handle potential errors.
```python
n_iterations = 2
inputs = {"topic": "CrewAI Training"}
n_iterations = 2
inputs = {"topic": "CrewAI Training"}
filename = "your_model.pkl"
try:
YourCrewName_Crew().crew().train(n_iterations= n_iterations, inputs=inputs)
try:
YourCrewName_Crew().crew().train(n_iterations=n_iterations, inputs=inputs, filename=filename)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
```
!!! note "Replace `<n_iterations>` with the desired number of training iterations. This determines how many times the agents will go through the training process."
### Key Points to Note:
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.

View File

@@ -0,0 +1,129 @@
# Creating a CrewAI Pipeline Project
Welcome to the comprehensive guide for creating a new CrewAI pipeline project. This document will walk you through the steps to create, customize, and run your CrewAI pipeline project, ensuring you have everything you need to get started.
To learn more about CrewAI pipelines, visit the [CrewAI documentation](https://docs.crewai.com/core-concepts/Pipeline/).
## Prerequisites
Before getting started with CrewAI pipelines, make sure that you have installed CrewAI via pip:
```shell
$ pip install crewai crewai-tools
```
The same prerequisites for virtual environments and Code IDEs apply as in regular CrewAI projects.
## Creating a New Pipeline Project
To create a new CrewAI pipeline project, you have two options:
1. For a basic pipeline template:
```shell
$ crewai create pipeline <project_name>
```
2. For a pipeline example that includes a router:
```shell
$ crewai create pipeline --router <project_name>
```
These commands will create a new project folder with the following structure:
```
<project_name>/
├── README.md
├── poetry.lock
├── pyproject.toml
├── src/
│ └── <project_name>/
│ ├── __init__.py
│ ├── main.py
│ ├── crews/
│ │ ├── crew1/
│ │ │ ├── crew1.py
│ │ │ └── config/
│ │ │ ├── agents.yaml
│ │ │ └── tasks.yaml
│ │ ├── crew2/
│ │ │ ├── crew2.py
│ │ │ └── config/
│ │ │ ├── agents.yaml
│ │ │ └── tasks.yaml
│ ├── pipelines/
│ │ ├── __init__.py
│ │ ├── pipeline1.py
│ │ └── pipeline2.py
│ └── tools/
│ ├── __init__.py
│ └── custom_tool.py
└── tests/
```
## Customizing Your Pipeline Project
To customize your pipeline project, you can:
1. Modify the crew files in `src/<project_name>/crews/` to define your agents and tasks for each crew.
2. Modify the pipeline files in `src/<project_name>/pipelines/` to define your pipeline structure.
3. Modify `src/<project_name>/main.py` to set up and run your pipelines.
4. Add your environment variables into the `.env` file.
### Example: Defining a Pipeline
Here's an example of how to define a pipeline in `src/<project_name>/pipelines/normal_pipeline.py`:
```python
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.normal_crew import NormalCrew
@PipelineBase
class NormalPipeline:
def __init__(self):
# Initialize crews
self.normal_crew = NormalCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.normal_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results
```
### Annotations
The main annotation you'll use for pipelines is `@PipelineBase`. This annotation is used to decorate your pipeline classes, similar to how `@CrewBase` is used for crews.
## Installing Dependencies
To install the dependencies for your project, use Poetry:
```shell
$ cd <project_name>
$ crewai install
```
## Running Your Pipeline Project
To run your pipeline project, use the following command:
```shell
$ crewai run
```
This will initialize your pipeline and begin task execution as defined in your `main.py` file.
## Deploying Your Pipeline Project
Pipelines can be deployed in the same way as regular CrewAI projects. The easiest way is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your pipeline in a few clicks.
Remember, when working with pipelines, you're orchestrating multiple crews to work together in a sequence or parallel fashion. This allows for more complex workflows and information processing tasks.

View File

@@ -7,10 +7,10 @@ description: A comprehensive guide to starting a new CrewAI project, including t
Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started.
Beforre we start there are a couple of things to note:
Before we start, there are a couple of things to note:
1. CrewAI is a Python package and requires Python >=3.10 and <=3.13 to run.
2. The preferred way of setting up CrewAI is using the `crewai create` command.This will create a new project folder and install a skeleton template for you to work on.
2. The preferred way of setting up CrewAI is using the `crewai create crew` command. This will create a new project folder and install a skeleton template for you to work on.
## Prerequisites
@@ -35,11 +35,11 @@ It is highly recommended that you use virtual environments to ensure that your C
3. Use Poetry (A Python package manager and dependency management tool):
Poetry is an open-source Python package manager that simplifies the installation of packages and their dependencies. Poetry offers a convenient way to manage virtual environments and dependencies.
Poetry is CrewAI's prefered tool for package / dependancy management in CrewAI.
Poetry is CrewAI's preferred tool for package / dependency management in CrewAI.
### Code IDEs
Most users of CrewAI a Code Editor / Integrated Development Environment (IDE) for building there Crews. You can use any code IDE of your choice. Seee below for some popular options for Code Editors / Integrated Development Environments (IDE):
Most users of CrewAI use a Code Editor / Integrated Development Environment (IDE) for building their Crews. You can use any code IDE of your choice. See below for some popular options for Code Editors / Integrated Development Environments (IDE):
- [Visual Studio Code](https://code.visualstudio.com/) - Most popular
- [PyCharm](https://www.jetbrains.com/pycharm/)
@@ -48,24 +48,13 @@ Most users of CrewAI a Code Editor / Integrated Development Environment (IDE) fo
Pick one that suits your style and needs.
## Creating a New Project
In this example we will be using Venv as our virtual environment manager.
In this example, we will be using Venv as our virtual environment manager.
To setup a virtual environment, run the following CLI command:
To set up a virtual environment, run the following CLI command:
To create a new CrewAI project, run the following CLI command:
```shell
$ python3 -m venv <venv-name>
```
Activate your virtual environment by running the following CLI command:
```shell
$ source <venv-name>/bin/activate
```
Now, to create a new CrewAI project, run the following CLI command:
```shell
$ crewai create <project_name>
$ crewai create crew <project_name>
```
This command will create a new project folder with the following structure:
@@ -128,13 +117,13 @@ research_candidates_task:
{job_requirements}
expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE Crew.PY FILE
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE Crew.PY FILE
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE crew.py FILE
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE crew.py FILE
- researcher
```
### Referencing Variables:
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task wont recognize the reference properly.
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task won't recognize the reference properly.
#### Example References
agent.yaml
@@ -162,23 +151,22 @@ email_summarizer_task:
- research_task
```
Use the annotations are used to properly reference the agent and task in the crew.py file.
Use the annotations to properly reference the agent and task in the crew.py file.
### Annotations include:
* @agent
* @task
* @crew
* @llm
* @tool
* @callback
* @output_json
* @output_pydantic
* @cache_handler
* [@agent](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L17)
* [@task](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L4)
* [@crew](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L69)
* [@llm](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L23)
* [@tool](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L39)
* [@callback](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L44)
* [@output_json](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L29)
* [@output_pydantic](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L34)
* [@cache_handler](https://github.com/crewAIInc/crewAI/blob/97d7bfb52ad49a9f04db360e1b6612d98c91971e/src/crewai/project/annotations.py#L49)
crew.py
```py
...
# ...
@llm
def mixtal_llm(self):
return ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
@@ -194,19 +182,16 @@ crew.py
return Task(
config=self.tasks_config["email_summarizer_task"],
)
...
# ...
```
## Installing Dependencies
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:
```shell
$ cd my_project
$ poetry lock
$ poetry install
$ crewai install
```
This will install the dependencies specified in the `pyproject.toml` file.
@@ -245,10 +230,29 @@ def run():
To run your project, use the following command:
```shell
$ poetry run my_project
$ crewai run
```
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
### Replay Tasks from Latest Crew Kickoff
CrewAI now includes a replay feature that allows you to list the tasks from the last run and replay from a specific one. To use this feature, run:
```shell
$ crewai replay <task_id>
```
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
Replace `<task_id>` with the ID of the task you want to replay.
### Reset Crew Memory
If you need to reset the memory of your crew before running it again, you can do so by calling the reset memory feature:
```shell
$ crewai reset-memory
```
This will clear the crew's memory, allowing for a fresh start.
## Deploying Your Project

View File

@@ -36,7 +36,7 @@ Additionally, AgentOps provides session drilldowns for viewing Crew agent intera
### Using AgentOps
1. **Create an API Key:**
Create a user API key here: [Create API Key](app.agentops.ai/account)
Create a user API key here: [Create API Key](https://app.agentops.ai/account)
2. **Configure Your Environment:**
Add your API key to your environment variables
@@ -83,4 +83,4 @@ For feature requests or bug reports, please reach out to the AgentOps team on th
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>

View File

@@ -22,11 +22,13 @@ coding_agent = Agent(
)
```
**Note**: The `allow_code_execution` parameter defaults to `False`.
## Important Considerations
1. **Model Selection**: It is strongly recommended to use more capable models like Claude 3.5 Sonnet and GPT-4 when enabling code execution. These models have a better understanding of programming concepts and are more likely to generate correct and efficient code.
2. **Error Handling**: The code execution feature includes error handling. If executed code raises an exception, the agent will receive the error message and can attempt to correct the code or provide alternative solutions.
2. **Error Handling**: The code execution feature includes error handling. If executed code raises an exception, the agent will receive the error message and can attempt to correct the code or provide alternative solutions. The `max_retry_limit` parameter, which defaults to 2, controls the maximum number of retries for a task.
3. **Dependencies**: To use the code execution feature, you need to install the `crewai_tools` package. If not installed, the agent will log an info message: "Coding tools not available. Install crewai_tools."
@@ -73,4 +75,4 @@ result = analysis_crew.kickoff()
print(result)
```
In this example, the `coding_agent` can write and execute Python code to perform data analysis tasks.
In this example, the `coding_agent` can write and execute Python code to perform data analysis tasks.

View File

@@ -7,9 +7,10 @@ description: Learn how to use conditional tasks in a crewAI kickoff
Conditional Tasks in crewAI allow for dynamic workflow adaptation based on the outcomes of previous tasks. This powerful feature enables crews to make decisions and execute tasks selectively, enhancing the flexibility and efficiency of your AI-driven processes.
## Example Usage
```python
from typing import List
from pydantic import BaseModel
from crewai import Agent, Crew
from crewai.tasks.conditional_task import ConditionalTask
@@ -17,11 +18,10 @@ from crewai.tasks.task_output import TaskOutput
from crewai.task import Task
from crewai_tools import SerperDevTool
# Define a condition function for the conditional task
# if false task will be skipped, true, then execute task
def is_data_missing(output: TaskOutput) -> bool:
return len(output.pydantic.events) < 10: # this will skip this task
return len(output.pydantic.events) < 10 # this will skip this task
# Define the agents
data_fetcher_agent = Agent(
@@ -46,11 +46,9 @@ summary_generator_agent = Agent(
verbose=True,
)
class EventOutput(BaseModel):
events: List[str]
task1 = Task(
description="Fetch data about events in San Francisco using Serper tool",
expected_output="List of 10 things to do in SF this week",
@@ -64,7 +62,7 @@ conditional_task = ConditionalTask(
fetch more events using Serper tool so that
we have a total of 10 events in SF this week..
""",
expected_output="List of 10 Things to do in SF this week ",
expected_output="List of 10 Things to do in SF this week",
condition=is_data_missing,
agent=data_processor_agent,
)
@@ -79,9 +77,11 @@ task3 = Task(
crew = Crew(
agents=[data_fetcher_agent, data_processor_agent, summary_generator_agent],
tasks=[task1, conditional_task, task3],
verbose=2,
verbose=True,
planning=True # Enable planning feature
)
# Run the crew
result = crew.kickoff()
print("results", result)
```
```

View File

@@ -1,6 +1,6 @@
---
title: Forcing Tool Output as Result
description: Learn how to force tool output as the result in of an Agent's task in crewAI.
description: Learn how to force tool output as the result in of an Agent's task in CrewAI.
---
## Introduction
@@ -13,19 +13,20 @@ Here's an example of how to force the tool output as the result of an agent's ta
```python
# ...
from crewai.agent import Agent
# Define a custom tool that returns the result as the answer
coding_agent =Agent(
coding_agent = Agent(
role="Data Scientist",
goal="Product amazing reports on AI",
goal="Produce amazing reports on AI",
backstory="You work with data and AI",
tools=[MyCustomTool(result_as_answer=True)],
)
# ...
```
### Workflow in Action
## Workflow in Action
1. **Task Execution**: The agent executes the task using the tool provided.
2. **Tool Output**: The tool generates the output, which is captured as the task result.
3. **Agent Interaction**: The agent my reflect and take learnings from the tool but the output is not modified.
3. **Agent Interaction**: The agent may reflect and take learnings from the tool but the output is not modified.
4. **Result Return**: The tool output is returned as the task result without any modifications.

View File

@@ -56,6 +56,7 @@ project_crew = Crew(
process=Process.hierarchical, # Specifies the hierarchical management approach
memory=True, # Enable memory usage for enhanced task execution
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
planning=True, # Enable planning feature for pre-execution strategy
)
```

View File

@@ -81,8 +81,9 @@ task2 = Task(
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2,
verbose=True,
memory=True,
planning=True # Enable planning feature for the crew
)
# Get your crew to work!

View File

@@ -9,6 +9,21 @@ CrewAI provides the ability to kickoff a crew asynchronously, allowing you to st
## Asynchronous Crew Execution
To kickoff a crew asynchronously, use the `kickoff_async()` method. This method initiates the crew execution in a separate thread, allowing the main thread to continue executing other tasks.
### Method Signature
```python
def kickoff_async(self, inputs: dict) -> CrewOutput:
```
### Parameters
- `inputs` (dict): A dictionary containing the input data required for the tasks.
### Returns
- `CrewOutput`: An object representing the result of the crew execution.
## Example
Here's an example of how to kickoff a crew asynchronously:
```python
@@ -34,7 +49,6 @@ analysis_crew = Crew(
tasks=[data_analysis_task]
)
# Execute the crew
# Execute the crew asynchronously
result = analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
```
```

View File

@@ -9,7 +9,7 @@ description: Comprehensive guide on integrating CrewAI with various Large Langua
By default, CrewAI uses OpenAI's GPT-4o model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4o") for language processing. You can configure your agents to use a different model or API as described in this guide.
By default, CrewAI uses OpenAI's GPT-4 model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4") for language processing. You can configure your agents to use a different model or API as described in this guide.
CrewAI provides extensive versatility in integrating with various Language Models (LLMs), including local options through Ollama such as Llama and Mixtral to cloud-based solutions like Azure. Its compatibility extends to all [LangChain LLM components](https://python.langchain.com/v0.2/docs/integrations/llms/), offering a wide range of integration possibilities for customized AI applications.
CrewAI provides extensive versatility in integrating with various Language Models (LLMs), including local options through Ollama such as Llama and Mixtral to cloud-based solutions like Azure. Its compatibility extends to all [LangChain LLM components](https://python.langchain.com/v0.2/docs/integrations/llms/), offering a wide range of integration possibilities for customized AI applications.
The platform supports connections to an array of Generative AI models, including:
@@ -37,6 +37,7 @@ example_agent = Agent(
verbose=True
)
```
## Ollama Local Integration
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, you will need the `langchain-ollama` package. You can then set the following environment variables to connect to your Ollama instance running locally on port 11434.
@@ -47,8 +48,8 @@ os.environ[OPENAI_API_KEY]='' # No API Key required for Ollama
```
## Ollama Integration Step by Step (ex. for using Llama 3.1 8B locally)
1. [Download and install Ollama](https://ollama.com/download).
2. After setting up the Ollama, Pull the Llama3.1 8B model by typing following lines into your terminal ```ollama run llama3.1```.
1. [Download and install Ollama](https://ollama.com/download).
2. After setting up the Ollama, Pull the Llama3.1 8B model by typing following lines into your terminal ```ollama run llama3.1```.
3. Llama3.1 should now be served locally on `http://localhost:11434`
```
from crewai import Agent, Task, Crew
@@ -56,7 +57,7 @@ from langchain_ollama import ChatOllama
import os
os.environ["OPENAI_API_KEY"] = "NA"
llm = Ollama(
llm = ChatOllama(
model = "llama3.1",
base_url = "http://localhost:11434")
@@ -74,7 +75,7 @@ task = Task(description="""what is 3 + 5""",
crew = Crew(
agents=[general_agent],
tasks=[task],
verbose=2
verbose=True
)
result = crew.kickoff()
@@ -87,7 +88,7 @@ There are a couple of different ways you can use HuggingFace to host your LLM.
### Your own HuggingFace endpoint
```python
from langchain_huggingface import HuggingFaceEndpoint,
from langchain_huggingface import HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
repo_id="microsoft/Phi-3-mini-4k-instruct",
@@ -111,30 +112,30 @@ Switch between APIs and models seamlessly using environment variables, supportin
### Configuration Examples
#### FastChat
```sh
os.environ[OPENAI_API_BASE]="http://localhost:8001/v1"
os.environ[OPENAI_MODEL_NAME]='oh-2.5m7b-q51'
os.environ[OPENAI_API_KEY]=NA
os.environ["OPENAI_API_BASE"]='http://localhost:8001/v1'
os.environ["OPENAI_MODEL_NAME"]='oh-2.5m7b-q51'
os.environ[OPENAI_API_KEY]='NA'
```
#### LM Studio
Launch [LM Studio](https://lmstudio.ai) and go to the Server tab. Then select a model from the dropdown menu and wait for it to load. Once it's loaded, click the green Start Server button and use the URL, port, and API key that's shown (you can modify them). Below is an example of the default settings as of LM Studio 0.2.19:
```sh
os.environ[OPENAI_API_BASE]="http://localhost:1234/v1"
os.environ[OPENAI_API_KEY]="lm-studio"
os.environ["OPENAI_API_BASE"]='http://localhost:1234/v1'
os.environ["OPENAI_API_KEY"]='lm-studio'
```
#### Groq API
```sh
os.environ[OPENAI_API_KEY]=your-groq-api-key
os.environ[OPENAI_MODEL_NAME]='llama3-8b-8192'
os.environ[OPENAI_API_BASE]=https://api.groq.com/openai/v1
os.environ["OPENAI_API_KEY"]='your-groq-api-key'
os.environ["OPENAI_MODEL_NAME"]='llama3-8b-8192'
os.environ["OPENAI_API_BASE"]='https://api.groq.com/openai/v1'
```
#### Mistral API
```sh
os.environ[OPENAI_API_KEY]=your-mistral-api-key
os.environ[OPENAI_API_BASE]=https://api.mistral.ai/v1
os.environ[OPENAI_MODEL_NAME]="mistral-small"
os.environ["OPENAI_API_KEY"]='your-mistral-api-key'
os.environ["OPENAI_API_BASE"]='https://api.mistral.ai/v1'
os.environ["OPENAI_MODEL_NAME"]='mistral-small'
```
### Solar
@@ -142,8 +143,8 @@ os.environ[OPENAI_MODEL_NAME]="mistral-small"
from langchain_community.chat_models.solar import SolarChat
```
```sh
os.environ[SOLAR_API_BASE]="https://api.upstage.ai/v1/solar"
os.environ[SOLAR_API_KEY]="your-solar-api-key"
os.environ["SOLAR_API_BASE"]='https://api.upstage.ai/v1/solar'
os.environ["SOLAR_API_KEY"]='your-solar-api-key'
```
# Free developer API key available here: https://console.upstage.ai/services/solar
@@ -154,7 +155,7 @@ os.environ[SOLAR_API_KEY]="your-solar-api-key"
```python
from langchain_cohere import ChatCohere
# Initialize language model
os.environ["COHERE_API_KEY"] = "your-cohere-api-key"
os.environ["COHERE_API_KEY"]='your-cohere-api-key'
llm = ChatCohere()
# Free developer API key available here: https://cohere.com/
@@ -165,10 +166,10 @@ llm = ChatCohere()
For Azure OpenAI API integration, set the following environment variables:
```sh
os.environ[AZURE_OPENAI_DEPLOYMENT] = "You deployment"
os.environ["OPENAI_API_VERSION"] = "2023-12-01-preview"
os.environ["AZURE_OPENAI_ENDPOINT"] = "Your Endpoint"
os.environ["AZURE_OPENAI_API_KEY"] = "<Your API Key>"
os.environ["AZURE_OPENAI_DEPLOYMENT"]='Your deployment'
os.environ["OPENAI_API_VERSION"]='2023-12-01-preview'
os.environ["AZURE_OPENAI_ENDPOINT"]='Your Endpoint'
os.environ["AZURE_OPENAI_API_KEY"]='Your API Key'
```
### Example Agent with Azure LLM
@@ -191,5 +192,6 @@ azure_agent = Agent(
llm=azure_llm
)
```
## Conclusion
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.

View File

@@ -11,14 +11,13 @@ You must run `crew.kickoff()` before you can replay a task. Currently, only the
Here's an example of how to replay from a task:
### Replaying from specific task Using the CLI
### Replaying from Specific Task Using the CLI
To use the replay feature, follow these steps:
1. Open your terminal or command prompt.
2. Navigate to the directory where your CrewAI project is located.
3. Run the following command:
To view latest kickoff task_ids use:
To view the latest kickoff task_ids use:
```shell
crewai log-tasks-outputs
```
@@ -29,21 +28,25 @@ crewai replay -t <task_id>
```
### Replaying from a task Programmatically
### Replaying from a Task Programmatically
To replay from a task programmatically, use the following steps:
1. Specify the task_id and input parameters for the replay process.
2. Execute the replay command within a try-except block to handle potential errors.
```python
def replay():
def replay():
"""
Replay the crew execution from a specific task.
"""
task_id = '<task_id>'
inputs = {"topic": "CrewAI Training"} # this is optional, you can pass in the inputs you want to replay otherwise uses the previous kickoffs inputs
inputs = {"topic": "CrewAI Training"} # This is optional; you can pass in the inputs you want to replay; otherwise, it uses the previous kickoff's inputs.
try:
YourCrewName_Crew().crew().replay(task_id=task_id, inputs=inputs)
except subprocess.CalledProcessError as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
raise Exception(f"An unexpected error occurred: {e}")
```

View File

@@ -18,7 +18,7 @@ The sequential process ensures tasks are executed one after the other, following
To use the sequential process, assemble your crew and define tasks in the order they need to be executed.
```python
from crewai import Crew, Process, Agent, Task
from crewai import Crew, Process, Agent, Task, TaskOutput, CrewOutput
# Define your agents
researcher = Agent(
@@ -37,6 +37,7 @@ writer = Agent(
backstory='A skilled writer with a talent for crafting compelling narratives'
)
# Define your tasks
research_task = Task(description='Gather relevant data...', agent=researcher, expected_output='Raw Data')
analysis_task = Task(description='Analyze the data...', agent=analyst, expected_output='Data Insights')
writing_task = Task(description='Compose the report...', agent=writer, expected_output='Final Report')
@@ -50,6 +51,10 @@ report_crew = Crew(
# Execute the crew
result = report_crew.kickoff()
# Accessing the type safe output
task_output: TaskOutput = result.tasks[0].output
crew_output: CrewOutput = result.output
```
### Workflow in Action
@@ -82,4 +87,4 @@ CrewAI tracks token usage across all tasks and agents. You can access these metr
1. **Order Matters**: Arrange tasks in a logical sequence where each task builds upon the previous one.
2. **Clear Task Descriptions**: Provide detailed descriptions for each task to guide the agents effectively.
3. **Appropriate Agent Selection**: Match agents' skills and roles to the requirements of each task.
4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones
4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones.

View File

@@ -8,13 +8,20 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
<div style="width:25%">
<h2>Getting Started</h2>
<ul>
<li><a href='./getting-started/Installing-CrewAI'>
<li>
<a href='./getting-started/Installing-CrewAI'>
Installing CrewAI
</a>
</a>
</li>
<li><a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
<li>
<a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
Start a New CrewAI Project: Template Method
</a>
</a>
</li>
<li>
<a href='./getting-started/Create-a-New-CrewAI-Pipeline-Template-Method'>
Create a New CrewAI Pipeline: Template Method
</a>
</li>
</ul>
</div>
@@ -46,6 +53,11 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Crews
</a>
</li>
<li>
<a href="./core-concepts/Pipeline">
Pipeline
</a>
</li>
<li>
<a href="./core-concepts/Training-Crew">
Training
@@ -61,6 +73,11 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Planning
</a>
</li>
<li>
<a href="./core-concepts/Testing">
Testing
</a>
</li>
</ul>
</div>
<div style="width:30%">

41
docs/tools/DALL-ETool.md Normal file
View File

@@ -0,0 +1,41 @@
# DALL-E Tool
## Description
This tool is used to give the Agent the ability to generate images using the DALL-E model. It is a transformer-based model that generates images from textual descriptions. This tool allows the Agent to generate images based on the text input provided by the user.
## Installation
Install the crewai_tools package
```shell
pip install 'crewai[tools]'
```
## Example
Remember that when using this tool, the text must be generated by the Agent itself. The text must be a description of the image you want to generate.
```python
from crewai_tools import DallETool
Agent(
...
tools=[DallETool()],
)
```
If needed you can also tweak the parameters of the DALL-E model by passing them as arguments to the `DallETool` class. For example:
```python
from crewai_tools import DallETool
dalle_tool = DallETool(model="dall-e-3",
size="1024x1024",
quality="standard",
n=1)
Agent(
...
tools=[dalle_tool]
)
```
The parameters are based on the `client.images.generate` method from the OpenAI API. For more information on the parameters, please refer to the [OpenAI API documentation](https://platform.openai.com/docs/guides/images/introduction?lang=python).

View File

@@ -0,0 +1,33 @@
# FileWriterTool Documentation
## Description
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files. It is particularly useful in scenarios such as generating reports, saving logs, creating configuration files, and more. This tool supports creating new directories if they don't exist, making it easier to organize your output.
## Installation
Install the crewai_tools package to use the `FileWriterTool` in your projects:
```shell
pip install 'crewai[tools]'
```
## Example
To get started with the `FileWriterTool`:
```python
from crewai_tools import FileWriterTool
# Initialize the tool
file_writer_tool = FileWriterTool()
# Write content to a file in a specified directory
result = file_writer_tool._run('example.txt', 'This is a test content.', 'test_directory')
print(result)
```
## Arguments
- `filename`: The name of the file you want to create or overwrite.
- `content`: The content to write into the file.
- `directory` (optional): The path to the directory where the file will be created. Defaults to the current directory (`.`). If the directory does not exist, it will be created.
## Conclusion
By integrating the `FileWriterTool` into your crews, the agents can execute the process of writing content to files and creating directories. This tool is essential for tasks that require saving output data, creating structured file systems, and more. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is straightforward and efficient.

View File

@@ -0,0 +1,42 @@
# FirecrawlCrawlWebsiteTool
## Description
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
## Installation
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
```
pip install firecrawl-py 'crewai[tools]'
```
## Example
Utilize the FirecrawlScrapeFromWebsiteTool as follows to allow your agent to load websites:
```python
from crewai_tools import FirecrawlCrawlWebsiteTool
tool = FirecrawlCrawlWebsiteTool(url='firecrawl.dev')
```
## Arguments
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
- `url`: The base URL to start crawling from.
- `page_options`: Optional.
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
- `crawler_options`: Optional. Options for controlling the crawling behavior.
- `includes`: Optional. URL patterns to include in the crawl.
- `exclude`: Optional. URL patterns to exclude from the crawl.
- `generateImgAltText`: Optional. Generate alt text for images using LLMs (requires a paid plan).
- `returnOnlyUrls`: Optional. If true, returns only the URLs as a list in the crawl status. Note: the response will be a list of URLs inside the data, not a list of documents.
- `maxDepth`: Optional. Maximum depth to crawl. Depth 1 is the base URL, depth 2 includes the base URL and its direct children, and so on.
- `mode`: Optional. The crawling mode to use. Fast mode crawls 4x faster on websites without a sitemap but may not be as accurate and shouldn't be used on heavily JavaScript-rendered websites.
- `limit`: Optional. Maximum number of pages to crawl.
- `timeout`: Optional. Timeout in milliseconds for the crawling operation.

View File

@@ -0,0 +1,38 @@
# FirecrawlScrapeWebsiteTool
## Description
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
## Installation
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
```
pip install firecrawl-py 'crewai[tools]'
```
## Example
Utilize the FirecrawlScrapeWebsiteTool as follows to allow your agent to load websites:
```python
from crewai_tools import FirecrawlScrapeWebsiteTool
tool = FirecrawlScrapeWebsiteTool(url='firecrawl.dev')
```
## Arguments
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
- `url`: The URL to scrape.
- `page_options`: Optional.
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
- `extractor_options`: Optional. Options for LLM-based extraction of structured information from the page content
- `mode`: The extraction mode to use, currently supports 'llm-extraction'
- `extractionPrompt`: Optional. A prompt describing what information to extract from the page
- `extractionSchema`: Optional. The schema for the data to be extracted
- `timeout`: Optional. Timeout in milliseconds for the request

View File

@@ -0,0 +1,35 @@
# FirecrawlSearchTool
## Description
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
## Installation
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
```
pip install firecrawl-py 'crewai[tools]'
```
## Example
Utilize the FirecrawlSearchTool as follows to allow your agent to load websites:
```python
from crewai_tools import FirecrawlSearchTool
tool = FirecrawlSearchTool(query='what is firecrawl?')
```
## Arguments
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
- `query`: The search query string to be used for searching.
- `page_options`: Optional. Options for result formatting.
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
- `fetchPageContent`: Optional. Fetch the full content of the page.
- `search_options`: Optional. Options for controlling the crawling behavior.
- `limit`: Optional. Maximum number of pages to crawl.

56
docs/tools/MySQLTool.md Normal file
View File

@@ -0,0 +1,56 @@
# MySQLSearchTool
## Description
This tool is designed to facilitate semantic searches within MySQL database tables. Leveraging the RAG (Retrieve and Generate) technology, the MySQLSearchTool provides users with an efficient means of querying database table content, specifically tailored for MySQL databases. It simplifies the process of finding relevant data through semantic search queries, making it an invaluable resource for users needing to perform advanced queries on extensive datasets within a MySQL database.
## Installation
To install the `crewai_tools` package and utilize the MySQLSearchTool, execute the following command in your terminal:
```shell
pip install 'crewai[tools]'
```
## Example
Below is an example showcasing how to use the MySQLSearchTool to conduct a semantic search on a table within a MySQL database:
```python
from crewai_tools import MySQLSearchTool
# Initialize the tool with the database URI and the target table name
tool = MySQLSearchTool(db_uri='mysql://user:password@localhost:3306/mydatabase', table_name='employees')
```
## Arguments
The MySQLSearchTool requires the following arguments for its operation:
- `db_uri`: A string representing the URI of the MySQL database to be queried. This argument is mandatory and must include the necessary authentication details and the location of the database.
- `table_name`: A string specifying the name of the table within the database on which the semantic search will be performed. This argument is mandatory.
## Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python
tool = MySQLSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google",
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

74
docs/tools/NL2SQLTool.md Normal file
View File

@@ -0,0 +1,74 @@
# NL2SQL Tool
## Description
This tool is used to convert natural language to SQL queries. When passsed to the agent it will generate queries and then use them to interact with the database.
This enables multiple workflows like having an Agent to access the database fetch information based on the goal and then use the information to generate a response, report or any other output. Along with that proivdes the ability for the Agent to update the database based on its goal.
**Attention**: Make sure that the Agent has access to a Read-Replica or that is okay for the Agent to run insert/update queries on the database.
## Requirements
- SqlAlchemy
- Any DB compatible library (e.g. psycopg2, mysql-connector-python)
## Installation
Install the crewai_tools package
```shell
pip install 'crewai[tools]'
```
## Usage
In order to use the NL2SQLTool, you need to pass the database URI to the tool. The URI should be in the format `dialect+driver://username:password@host:port/database`.
```python
from crewai_tools import NL2SQLTool
# psycopg2 was installed to run this example with PostgreSQL
nl2sql = NL2SQLTool(db_uri="postgresql://example@localhost:5432/test_db")
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config["researcher"],
allow_delegation=False,
tools=[nl2sql]
)
```
## Example
The primary task goal was:
"Retrieve the average, maximum, and minimum monthly revenue for each city, but only include cities that have more than one user. Also, count the number of user in each city and sort the results by the average monthly revenue in descending order"
So the Agent tried to get information from the DB, the first one is wrong so the Agent tries again and gets the correct information and passes to the next agent.
![alt text](https://github.com/crewAIInc/crewAI-tools/blob/main/crewai_tools/tools/nl2sql/images/image-2.png?raw=true)
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-3.png)
The second task goal was:
"Review the data and create a detailed report, and then create the table on the database with the fields based on the data provided.
Include information on the average, maximum, and minimum monthly revenue for each city, but only include cities that have more than one user. Also, count the number of users in each city and sort the results by the average monthly revenue in descending order."
Now things start to get interesting, the Agent generates the SQL query to not only create the table but also insert the data into the table. And in the end the Agent still returns the final report which is exactly what was in the database.
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-4.png)
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-5.png)
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-9.png)
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-7.png)
This is a simple example of how the NL2SQLTool can be used to interact with the database and generate reports based on the data in the database.
The Tool provides endless possibilities on the logic of the Agent and how it can interact with the database.
```
DB -> Agent -> ... -> Agent -> DB
```

81
docs/tools/SpiderTool.md Normal file
View File

@@ -0,0 +1,81 @@
# SpiderTool
## Description
[Spider](https://spider.cloud/?ref=crewai) is the [fastest](https://github.com/spider-rs/spider/blob/main/benches/BENCHMARKS.md#benchmark-results) open source scraper and crawler that returns LLM-ready data. It converts any website into pure HTML, markdown, metadata or text while enabling you to crawl with custom actions using AI.
## Installation
To use the Spider API you need to download the [Spider SDK](https://pypi.org/project/spider-client/) and the crewai[tools] SDK too:
```python
pip install spider-client 'crewai[tools]'
```
## Example
This example shows you how you can use the Spider tool to enable your agent to scrape and crawl websites. The data returned from the Spider API is already LLM-ready, so no need to do any cleaning there.
```python
from crewai_tools import SpiderTool
def main():
spider_tool = SpiderTool()
searcher = Agent(
role="Web Research Expert",
goal="Find related information from specific URL's",
backstory="An expert web researcher that uses the web extremely well",
tools=[spider_tool],
verbose=True,
)
return_metadata = Task(
description="Scrape https://spider.cloud with a limit of 1 and enable metadata",
expected_output="Metadata and 10 word summary of spider.cloud",
agent=searcher
)
crew = Crew(
agents=[searcher],
tasks=[
return_metadata,
],
verbose=2
)
crew.kickoff()
if __name__ == "__main__":
main()
```
## Arguments
- `api_key` (string, optional): Specifies Spider API key. If not specified, it looks for `SPIDER_API_KEY` in environment variables.
- `params` (object, optional): Optional parameters for the request. Defaults to `{"return_format": "markdown"}` to return the website's content in a format that fits LLMs better.
- `request` (string): The request type to perform. Possible values are `http`, `chrome`, and `smart`. Use `smart` to perform an HTTP request by default until JavaScript rendering is needed for the HTML.
- `limit` (int): The maximum number of pages allowed to crawl per website. Remove the value or set it to `0` to crawl all pages.
- `depth` (int): The crawl limit for maximum depth. If `0`, no limit will be applied.
- `cache` (bool): Use HTTP caching for the crawl to speed up repeated runs. Default is `true`.
- `budget` (object): Object that has paths with a counter for limiting the amount of pages example `{"*":1}` for only crawling the root page.
- `locale` (string): The locale to use for request, example `en-US`.
- `cookies` (string): Add HTTP cookies to use for request.
- `stealth` (bool): Use stealth mode for headless chrome request to help prevent being blocked. The default is `true` on chrome.
- `headers` (object): Forward HTTP headers to use for all request. The object is expected to be a map of key value pairs.
- `metadata` (bool): Boolean to store metadata about the pages and content found. This could help improve AI interopt. Defaults to `false` unless you have the website already stored with the configuration enabled.
- `viewport` (object): Configure the viewport for chrome. Defaults to `800x600`.
- `encoding` (string): The type of encoding to use like `UTF-8`, `SHIFT_JIS`, or etc.
- `subdomains` (bool): Allow subdomains to be included. Default is `false`.
- `user_agent` (string): Add a custom HTTP user agent to the request. By default this is set to a random agent.
- `store_data` (bool): Boolean to determine if storage should be used. If set this takes precedence over `storageless`. Defaults to `false`.
- `gpt_config` (object): Use AI to generate actions to perform during the crawl. You can pass an array for the `"prompt"` to chain steps.
- `fingerprint` (bool): Use advanced fingerprint for chrome.
- `storageless` (bool): Boolean to prevent storing any type of data for the request including storage and AI vectors embedding. Defaults to `false` unless you have the website already stored.
- `readability` (bool): Use [readability](https://github.com/mozilla/readability) to pre-process the content for reading. This may drastically improve the content for LLM usage.
`return_format` (string): The format to return the data in. Possible values are `markdown`, `raw`, `text`, and `html2text`. Use `raw` to return the default format of the page like HTML etc.
- `proxy_enabled` (bool): Enable high performance premium proxies for the request to prevent being blocked at the network level.
- `query_selector` (string): The CSS query selector to use when extracting content from the markup.
- `full_resources` (bool): Crawl and download all the resources for a website.
- `request_timeout` (int): The timeout to use for request. Timeouts can be from `5-60`. The default is `30` seconds.
- `run_in_background` (bool): Run the request in the background. Useful if storing data and wanting to trigger crawls to the dashboard. This has no effect if storageless is set.

30
docs/tools/VisionTool.md Normal file
View File

@@ -0,0 +1,30 @@
# Vision Tool
## Description
This tool is used to extract text from images. When passed to the agent it will extract the text from the image and then use it to generate a response, report or any other output. The URL or the PATH of the image should be passed to the Agent.
## Installation
Install the crewai_tools package
```shell
pip install 'crewai[tools]'
```
## Usage
In order to use the VisionTool, the OpenAI API key should be set in the environment variable `OPENAI_API_KEY`.
```python
from crewai_tools import VisionTool
vision_tool = VisionTool()
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config["researcher"],
allow_delegation=False,
tools=[vision_tool]
)
```

View File

@@ -129,6 +129,7 @@ nav:
- Processes: 'core-concepts/Processes.md'
- Crews: 'core-concepts/Crews.md'
- Collaboration: 'core-concepts/Collaboration.md'
- Pipeline: 'core-concepts/Pipeline.md'
- Training: 'core-concepts/Training-Crew.md'
- Memory: 'core-concepts/Memory.md'
- Planning: 'core-concepts/Planning.md'
@@ -136,9 +137,6 @@ nav:
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
- How to Guides:
- Starting Your crewAI Project: 'how-to/Start-a-New-CrewAI-Project.md'
- Installing CrewAI: 'how-to/Installing-CrewAI.md'
- Getting Started: 'how-to/Creating-a-Crew-and-kick-it-off.md'
- Create Custom Tools: 'how-to/Create-Custom-Tools.md'
- Using Sequential Process: 'how-to/Sequential.md'
- Using Hierarchical Process: 'how-to/Hierarchical.md'
@@ -155,29 +153,38 @@ nav:
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Tools Docs:
- Google Serper Search: 'tools/SerperDevTool.md'
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- Composio Tools: 'tools/ComposioTool.md'
- Code Interpreter: 'tools/CodeInterpreterTool.md'
- Scrape Website: 'tools/ScrapeWebsiteTool.md'
- Directory Read: 'tools/DirectoryReadTool.md'
- Exa Serch Web Loader: 'tools/EXASearchTool.md'
- File Read: 'tools/FileReadTool.md'
- Selenium Scraper: 'tools/SeleniumScrapingTool.md'
- Directory RAG Search: 'tools/DirectorySearchTool.md'
- PDF RAG Search: 'tools/PDFSearchTool.md'
- TXT RAG Search: 'tools/TXTSearchTool.md'
- CSV RAG Search: 'tools/CSVSearchTool.md'
- XML RAG Search: 'tools/XMLSearchTool.md'
- JSON RAG Search: 'tools/JSONSearchTool.md'
- Docx Rag Search: 'tools/DOCXSearchTool.md'
- MDX RAG Search: 'tools/MDXSearchTool.md'
- PG RAG Search: 'tools/PGSearchTool.md'
- Website RAG Search: 'tools/WebsiteSearchTool.md'
- Github RAG Search: 'tools/GitHubSearchTool.md'
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'
- Youtube Video RAG Search: 'tools/YoutubeVideoSearchTool.md'
- Code Interpreter: 'tools/CodeInterpreterTool.md'
- Composio Tools: 'tools/ComposioTool.md'
- CSV RAG Search: 'tools/CSVSearchTool.md'
- DALL-E Tool: 'tools/DALL-ETool.md'
- Directory RAG Search: 'tools/DirectorySearchTool.md'
- Directory Read: 'tools/DirectoryReadTool.md'
- Docx Rag Search: 'tools/DOCXSearchTool.md'
- EXA Serch Web Loader: 'tools/EXASearchTool.md'
- File Read: 'tools/FileReadTool.md'
- File Write: 'tools/FileWriteTool.md'
- Firecrawl Crawl Website Tool: 'tools/FirecrawlCrawlWebsiteTool.md'
- Firecrawl Scrape Website Tool: 'tools/FirecrawlScrapeWebsiteTool.md'
- Firecrawl Search Tool: 'tools/FirecrgstawlSearchTool.md'
- Github RAG Search: 'tools/GitHubSearchTool.md'
- Google Serper Search: 'tools/SerperDevTool.md'
- JSON RAG Search: 'tools/JSONSearchTool.md'
- MDX RAG Search: 'tools/MDXSearchTool.md'
- MySQL Tool: 'tools/MySQLTool.md'
- NL2SQL Tool: 'tools/NL2SQLTool.md'
- PDF RAG Search: 'tools/PDFSearchTool.md'
- PG RAG Search: 'tools/PGSearchTool.md'
- Scrape Website: 'tools/ScrapeWebsiteTool.md'
- Selenium Scraper: 'tools/SeleniumScrapingTool.md'
- Spider Scraper: 'tools/SpiderTool.md'
- TXT RAG Search: 'tools/TXTSearchTool.md'
- Vision Tool: 'tools/VisionTool.md'
- Website RAG Search: 'tools/WebsiteSearchTool.md'
- XML RAG Search: 'tools/XMLSearchTool.md'
- Youtube Channel RAG Search: 'tools/YoutubeChannelSearchTool.md'
- Youtube Video RAG Search: 'tools/YoutubeVideoSearchTool.md'
- Examples:
- Trip Planner Crew: https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner"
- Create Instagram Post: https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"

1862
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "crewai"
version = "0.46.0"
version = "0.51.1"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
authors = ["Joao Moura <joao@crewai.com>"]
readme = "README.md"
@@ -21,7 +21,7 @@ opentelemetry-sdk = "^1.22.0"
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
instructor = "1.3.3"
regex = "^2023.12.25"
crewai-tools = { version = "^0.4.26", optional = true }
crewai-tools = { version = "^0.8.3", optional = true }
click = "^8.1.7"
python-dotenv = "^1.0.0"
appdirs = "^1.4.4"
@@ -29,6 +29,7 @@ jsonref = "^1.1.0"
agentops = { version = "^0.3.0", optional = true }
embedchain = "^0.1.114"
json-repair = "^0.25.2"
auth0-python = "^4.7.1"
[tool.poetry.extras]
tools = ["crewai-tools"]
@@ -46,12 +47,13 @@ mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
mkdocs-material-extensions = "^1.3.1"
pillow = "^10.2.0"
cairosvg = "^2.7.1"
crewai-tools = "^0.4.26"
crewai-tools = "^0.8.3"
[tool.poetry.group.test.dependencies]
pytest = "^8.0.0"
pytest-vcr = "^1.0.2"
python-dotenv = "1.0.0"
pytest-asyncio = "^0.23.7"
[tool.poetry.scripts]
crewai = "crewai.cli.cli:crewai"
@@ -59,7 +61,10 @@ crewai = "crewai.cli.cli:crewai"
[tool.mypy]
ignore_missing_imports = true
disable_error_code = 'import-untyped'
exclude = ["cli/templates/main.py", "cli/templates/crew.py"]
exclude = ["cli/templates"]
[tool.bandit]
exclude_dirs = ["src/crewai/cli/templates"]
[build-system]
requires = ["poetry-core"]

View File

@@ -1,6 +1,7 @@
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.pipeline import Pipeline
from crewai.process import Process
from crewai.task import Task
__all__ = ["Agent", "Crew", "Process", "Task"]
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline"]

View File

@@ -19,18 +19,28 @@ from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_F
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
try:
import agentops # type: ignore # Name "agentops" already defined on line 21
from agentops import track_agent
except ImportError:
def track_agent():
def mock_agent_ops_provider():
def track_agent(*args, **kwargs):
def noop(f):
return f
return noop
return track_agent
agentops = None
if os.environ.get("AGENTOPS_API_KEY"):
try:
import agentops # type: ignore # Name "agentops" already defined on line 21
from agentops import track_agent
except ImportError:
track_agent = mock_agent_ops_provider()
else:
track_agent = mock_agent_ops_provider()
@track_agent()
class Agent(BaseAgent):
@@ -103,40 +113,41 @@ class Agent(BaseAgent):
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
super().__init__(**config, **data)
__pydantic_self__.agent_ops_agent_name = __pydantic_self__.role
@model_validator(mode="after")
def set_agent_executor(self) -> "Agent":
"""Ensure agent executor and token process are set."""
def post_init_setup(self):
self.agent_ops_agent_name = self.role
if hasattr(self.llm, "model_name"):
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
# Ensure self.llm.callbacks is a list
if not isinstance(self.llm.callbacks, list):
self.llm.callbacks = []
# Check if an instance of TokenCalcHandler already exists in the list
if not any(
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
):
self.llm.callbacks.append(token_handler)
if agentops and not any(
isinstance(handler, agentops.LangchainCallbackHandler)
for handler in self.llm.callbacks
):
agentops.stop_instrumenting()
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
self._setup_llm_callbacks()
if not self.agent_executor:
if not self.cache_handler:
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
self._setup_agent_executor()
return self
def _setup_llm_callbacks(self):
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
if not isinstance(self.llm.callbacks, list):
self.llm.callbacks = []
if not any(
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
):
self.llm.callbacks.append(token_handler)
if agentops and not any(
isinstance(handler, agentops.LangchainCallbackHandler)
for handler in self.llm.callbacks
):
agentops.stop_instrumenting()
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
def _setup_agent_executor(self):
if not self.cache_handler:
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def execute_task(
self,
task: Any,
@@ -203,7 +214,7 @@ class Agent(BaseAgent):
raise e
result = self.execute_task(task, context, tools)
if self.max_rpm:
if self.max_rpm and self._rpm_controller:
self._rpm_controller.stop_rpm_counter()
# If there was any tool in self.tools_results that had result_as_answer

View File

@@ -2,3 +2,5 @@ from .cache.cache_handler import CacheHandler
from .executor import CrewAgentExecutor
from .parser import CrewAgentParser
from .tools_handler import ToolsHandler
__all__ = ["CacheHandler", "CrewAgentExecutor", "CrewAgentParser", "ToolsHandler"]

View File

@@ -7,7 +7,6 @@ from typing import Any, Dict, List, Optional, TypeVar
from pydantic import (
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
PrivateAttr,
@@ -20,6 +19,7 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
T = TypeVar("T", bound="BaseAgent")
@@ -74,21 +74,26 @@ class BaseAgent(ABC, BaseModel):
"""
__hash__ = object.__hash__ # type: ignore
_logger: Logger = PrivateAttr()
_rpm_controller: RPMController = PrivateAttr(default=None)
_logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=False))
_rpm_controller: Optional[RPMController] = PrivateAttr(default=None)
_request_within_rpm_limit: Any = PrivateAttr(default=None)
formatting_errors: int = 0
model_config = ConfigDict(arbitrary_types_allowed=True)
_original_role: Optional[str] = PrivateAttr(default=None)
_original_goal: Optional[str] = PrivateAttr(default=None)
_original_backstory: Optional[str] = PrivateAttr(default=None)
_token_process: TokenProcess = PrivateAttr(default_factory=TokenProcess)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
formatting_errors: int = Field(
default=0, description="Number of formatting errors."
)
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent", default=None, exclude=True
)
cache: bool = Field(
default=True, description="Whether the agent should use a cache for tool usage."
)
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent", default=None
)
verbose: bool = Field(
default=False, description="Verbose mode for the Agent Execution"
)
@@ -123,20 +128,29 @@ class BaseAgent(ABC, BaseModel):
default=None, description="Maximum number of tokens for the agent's execution."
)
_original_role: str | None = None
_original_goal: str | None = None
_original_backstory: str | None = None
_token_process: TokenProcess = TokenProcess()
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
super().__init__(**config, **data)
@model_validator(mode="before")
@classmethod
def process_model_config(cls, values):
return process_config(values, cls)
@model_validator(mode="after")
def set_config_attributes(self):
if self.config:
for key, value in self.config.items():
setattr(self, key, value)
def validate_and_set_attributes(self):
# Validate required fields
for field in ["role", "goal", "backstory"]:
if getattr(self, field) is None:
raise ValueError(
f"{field} must be provided either directly or through config"
)
# Set private attributes
self._logger = Logger(verbose=self.verbose)
if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
if not self._token_process:
self._token_process = TokenProcess()
return self
@field_validator("id", mode="before")
@@ -147,18 +161,10 @@ class BaseAgent(ABC, BaseModel):
"may_not_set_field", "This field is not to be set by the user.", {}
)
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "BaseAgent":
"""Set attributes based on the agent configuration."""
if self.config:
for key, value in self.config.items():
setattr(self, key, value)
return self
@model_validator(mode="after")
def set_private_attrs(self):
"""Set private attributes."""
self._logger = Logger(self.verbose)
self._logger = Logger(verbose=self.verbose)
if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
@@ -170,7 +176,7 @@ class BaseAgent(ABC, BaseModel):
@property
def key(self):
source = [self.role, self.goal, self.backstory]
return md5("|".join(source).encode()).hexdigest()
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
@abstractmethod
def execute_task(

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict
from crewai.types.usage_metrics import UsageMetrics
class TokenProcess:
@@ -18,10 +18,10 @@ class TokenProcess:
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
def get_summary(self) -> Dict[str, Any]:
return {
"total_tokens": self.total_tokens,
"prompt_tokens": self.prompt_tokens,
"completion_tokens": self.completion_tokens,
"successful_requests": self.successful_requests,
}
def get_summary(self) -> UsageMetrics:
return UsageMetrics(
total_tokens=self.total_tokens,
prompt_tokens=self.prompt_tokens,
completion_tokens=self.completion_tokens,
successful_requests=self.successful_requests,
)

View File

@@ -1 +1,3 @@
from .cache_handler import CacheHandler
__all__ = ["CacheHandler"]

View File

@@ -1,13 +1,12 @@
from typing import Optional
from typing import Any, Dict, Optional
from pydantic import BaseModel, PrivateAttr
class CacheHandler:
class CacheHandler(BaseModel):
"""Callback handler for tool usage."""
_cache: dict = {}
def __init__(self):
self._cache = {}
_cache: Dict[str, Any] = PrivateAttr(default_factory=dict)
def add(self, tool, input, output):
self._cache[f"{tool}-{input}"] = output

View File

@@ -1,33 +1,29 @@
import threading
import time
from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union
import click
from langchain.agents import AgentExecutor
from langchain.agents.agent import ExceptionTool
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
from langchain_core.exceptions import OutputParserException
from langchain_core.tools import BaseTool
from langchain_core.utils.input import get_color_mapping
from pydantic import InstanceOf
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.utilities.logger import Logger
from crewai.utilities.training_handler import CrewTrainingHandler
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
@@ -51,7 +47,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
system_template: Optional[str] = None
prompt_template: Optional[str] = None
response_template: Optional[str] = None
_logger: Logger = Logger(verbose_level=2)
_logger: Logger = Logger()
_fit_context_window_strategy: Optional[Literal["summarize"]] = "summarize"
def _call(
@@ -69,7 +65,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Allowing human input given task setting
if self.task.human_input:
if self.task and self.task.human_input:
self.should_ask_for_human_input = True
# Let's start tracking the number of iterations and time elapsed
@@ -213,11 +209,7 @@ class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
yield step
return
yield AgentStep(
action=AgentAction("_Exception", str(e), str(e)),
observation=str(e),
)
return
raise e
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):

View File

@@ -0,0 +1,3 @@
from .main import AuthenticationCommand
__all__ = ["AuthenticationCommand"]

View File

@@ -0,0 +1,4 @@
ALGORITHMS = ["RS256"]
AUTH0_DOMAIN = "dev-jzsr0j8zs0atl5ha.us.auth0.com"
AUTH0_CLIENT_ID = "CZtyRHuVW80HbLSjk4ggXNzjg4KAt7Oe"
AUTH0_AUDIENCE = "https://dev-jzsr0j8zs0atl5ha.us.auth0.com/api/v2/"

View File

@@ -0,0 +1,75 @@
import time
import webbrowser
from typing import Any, Dict
import requests
from rich.console import Console
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
from .utils import TokenManager, validate_token
console = Console()
class AuthenticationCommand:
DEVICE_CODE_URL = f"https://{AUTH0_DOMAIN}/oauth/device/code"
TOKEN_URL = f"https://{AUTH0_DOMAIN}/oauth/token"
def __init__(self):
self.token_manager = TokenManager()
def signup(self) -> None:
"""Sign up to CrewAI+"""
console.print("Signing Up to CrewAI+ \n", style="bold blue")
device_code_data = self._get_device_code()
self._display_auth_instructions(device_code_data)
return self._poll_for_token(device_code_data)
def _get_device_code(self) -> Dict[str, Any]:
"""Get the device code to authenticate the user."""
device_code_payload = {
"client_id": AUTH0_CLIENT_ID,
"scope": "openid",
"audience": AUTH0_AUDIENCE,
}
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
response.raise_for_status()
return response.json()
def _display_auth_instructions(self, device_code_data: Dict[str, str]) -> None:
"""Display the authentication instructions to the user."""
console.print("1. Navigate to: ", device_code_data["verification_uri_complete"])
console.print("2. Enter the following code: ", device_code_data["user_code"])
webbrowser.open(device_code_data["verification_uri_complete"])
def _poll_for_token(self, device_code_data: Dict[str, Any]) -> None:
"""Poll the server for the token."""
token_payload = {
"grant_type": "urn:ietf:params:oauth:grant-type:device_code",
"device_code": device_code_data["device_code"],
"client_id": AUTH0_CLIENT_ID,
}
attempts = 0
while True and attempts < 5:
response = requests.post(self.TOKEN_URL, data=token_payload)
token_data = response.json()
if response.status_code == 200:
validate_token(token_data["id_token"])
expires_in = 360000 # Token expiration time in seconds
self.token_manager.save_tokens(token_data["access_token"], expires_in)
console.print("\nWelcome to CrewAI+ !!", style="green")
return
if token_data["error"] not in ("authorization_pending", "slow_down"):
raise requests.HTTPError(token_data["error_description"])
time.sleep(device_code_data["interval"])
attempts += 1
console.print(
"Timeout: Failed to get the token. Please try again.", style="bold red"
)

View File

@@ -0,0 +1,144 @@
import json
import os
import sys
from datetime import datetime, timedelta
from pathlib import Path
from typing import Optional
from auth0.authentication.token_verifier import (
AsymmetricSignatureVerifier,
TokenVerifier,
)
from cryptography.fernet import Fernet
from .constants import AUTH0_CLIENT_ID, AUTH0_DOMAIN
def validate_token(id_token: str) -> None:
"""
Verify the token and its precedence
:param id_token:
"""
jwks_url = f"https://{AUTH0_DOMAIN}/.well-known/jwks.json"
issuer = f"https://{AUTH0_DOMAIN}/"
signature_verifier = AsymmetricSignatureVerifier(jwks_url)
token_verifier = TokenVerifier(
signature_verifier=signature_verifier, issuer=issuer, audience=AUTH0_CLIENT_ID
)
token_verifier.verify(id_token)
class TokenManager:
def __init__(self, file_path: str = "tokens.enc") -> None:
"""
Initialize the TokenManager class.
:param file_path: The file path to store the encrypted tokens. Default is "tokens.enc".
"""
self.file_path = file_path
self.key = self._get_or_create_key()
self.fernet = Fernet(self.key)
def _get_or_create_key(self) -> bytes:
"""
Get or create the encryption key.
:return: The encryption key.
"""
key_filename = "secret.key"
key = self.read_secure_file(key_filename)
if key is not None:
return key
new_key = Fernet.generate_key()
self.save_secure_file(key_filename, new_key)
return new_key
def save_tokens(self, access_token: str, expires_in: int) -> None:
"""
Save the access token and its expiration time.
:param access_token: The access token to save.
:param expires_in: The expiration time of the access token in seconds.
"""
expiration_time = datetime.now() + timedelta(seconds=expires_in)
data = {
"access_token": access_token,
"expiration": expiration_time.isoformat(),
}
encrypted_data = self.fernet.encrypt(json.dumps(data).encode())
self.save_secure_file(self.file_path, encrypted_data)
def get_token(self) -> Optional[str]:
"""
Get the access token if it is valid and not expired.
:return: The access token if valid and not expired, otherwise None.
"""
encrypted_data = self.read_secure_file(self.file_path)
decrypted_data = self.fernet.decrypt(encrypted_data)
data = json.loads(decrypted_data)
expiration = datetime.fromisoformat(data["expiration"])
if expiration <= datetime.now():
return None
return data["access_token"]
def get_secure_storage_path(self) -> Path:
"""
Get the secure storage path based on the operating system.
:return: The secure storage path.
"""
if sys.platform == "win32":
# Windows: Use %LOCALAPPDATA%
base_path = os.environ.get("LOCALAPPDATA")
elif sys.platform == "darwin":
# macOS: Use ~/Library/Application Support
base_path = os.path.expanduser("~/Library/Application Support")
else:
# Linux and other Unix-like: Use ~/.local/share
base_path = os.path.expanduser("~/.local/share")
app_name = "crewai/credentials"
storage_path = Path(base_path) / app_name
storage_path.mkdir(parents=True, exist_ok=True)
return storage_path
def save_secure_file(self, filename: str, content: bytes) -> None:
"""
Save the content to a secure file.
:param filename: The name of the file.
:param content: The content to save.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
with open(file_path, "wb") as f:
f.write(content)
# Set appropriate permissions (read/write for owner only)
os.chmod(file_path, 0o600)
def read_secure_file(self, filename: str) -> Optional[bytes]:
"""
Read the content of a secure file.
:param filename: The name of the file.
:return: The content of the file if it exists, otherwise None.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
if not file_path.exists():
return None
with open(file_path, "rb") as f:
return f.read()

View File

@@ -1,14 +1,21 @@
from typing import Optional
import click
import pkg_resources
from crewai.cli.create_crew import create_crew
from crewai.cli.create_pipeline import create_pipeline
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
from .create_crew import create_crew
from .authentication.main import AuthenticationCommand
from .deploy.main import DeployCommand
from .evaluate_crew import evaluate_crew
from .install_crew import install_crew
from .replay_from_task import replay_task_command
from .reset_memories_command import reset_memories_command
from .run_crew import run_crew
from .train_crew import train_crew
@@ -18,10 +25,19 @@ def crewai():
@crewai.command()
@click.argument("project_name")
def create(project_name):
"""Create a new crew."""
create_crew(project_name)
@click.argument("type", type=click.Choice(["crew", "pipeline"]))
@click.argument("name")
@click.option(
"--router", is_flag=True, help="Create a pipeline with router functionality"
)
def create(type, name, router):
"""Create a new crew or pipeline."""
if type == "crew":
create_crew(name)
elif type == "pipeline":
create_pipeline(name, router)
else:
click.secho("Error: Invalid type. Must be 'crew' or 'pipeline'.", fg="red")
@crewai.command()
@@ -49,10 +65,17 @@ def version(tools):
default=5,
help="Number of iterations to train the crew",
)
def train(n_iterations: int):
@click.option(
"-f",
"--filename",
type=str,
default="trained_agents_data.pkl",
help="Path to a custom file for training",
)
def train(n_iterations: int, filename: str):
"""Train the crew."""
click.echo(f"Training the crew for {n_iterations} iterations")
train_crew(n_iterations)
click.echo(f"Training the Crew for {n_iterations} iterations")
train_crew(n_iterations, filename)
@crewai.command()
@@ -147,5 +170,83 @@ def test(n_iterations: int, model: str):
evaluate_crew(n_iterations, model)
@crewai.command()
def install():
"""Install the Crew."""
install_crew()
@crewai.command()
def run():
"""Run the Crew."""
click.echo("Running the Crew")
run_crew()
@crewai.command()
def signup():
"""Sign Up/Login to CrewAI+."""
AuthenticationCommand().signup()
@crewai.command()
def login():
"""Sign Up/Login to CrewAI+."""
AuthenticationCommand().signup()
# DEPLOY CREWAI+ COMMANDS
@crewai.group()
def deploy():
"""Deploy the Crew CLI group."""
pass
@deploy.command(name="create")
def deploy_create():
"""Create a Crew deployment."""
deploy_cmd = DeployCommand()
deploy_cmd.create_crew()
@deploy.command(name="list")
def deploy_list():
"""List all deployments."""
deploy_cmd = DeployCommand()
deploy_cmd.list_crews()
@deploy.command(name="push")
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
def deploy_push(uuid: Optional[str]):
"""Deploy the Crew."""
deploy_cmd = DeployCommand()
deploy_cmd.deploy(uuid=uuid)
@deploy.command(name="status")
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
def deply_status(uuid: Optional[str]):
"""Get the status of a deployment."""
deploy_cmd = DeployCommand()
deploy_cmd.get_crew_status(uuid=uuid)
@deploy.command(name="logs")
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
def deploy_logs(uuid: Optional[str]):
"""Get the logs of a deployment."""
deploy_cmd = DeployCommand()
deploy_cmd.get_crew_logs(uuid=uuid)
@deploy.command(name="remove")
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
def deploy_remove(uuid: Optional[str]):
"""Remove a deployment."""
deploy_cmd = DeployCommand()
deploy_cmd.remove_crew(uuid=uuid)
if __name__ == "__main__":
crewai()

View File

@@ -1,25 +1,35 @@
import os
from pathlib import Path
import click
from crewai.cli.utils import copy_template
def create_crew(name):
def create_crew(name, parent_folder=None):
"""Create a new crew."""
folder_name = name.replace(" ", "_").replace("-", "_").lower()
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
click.secho(f"Creating folder {folder_name}...", fg="green", bold=True)
if parent_folder:
folder_path = Path(parent_folder) / folder_name
else:
folder_path = Path(folder_name)
if not os.path.exists(folder_name):
os.mkdir(folder_name)
os.mkdir(folder_name + "/tests")
os.mkdir(folder_name + "/src")
os.mkdir(folder_name + f"/src/{folder_name}")
os.mkdir(folder_name + f"/src/{folder_name}/tools")
os.mkdir(folder_name + f"/src/{folder_name}/config")
with open(folder_name + "/.env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
click.secho(
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
fg="green",
bold=True,
)
if not folder_path.exists():
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
with open(folder_path / ".env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
else:
click.secho(
f"\tFolder {folder_name} already exists. Please choose a different name.",
@@ -28,53 +38,34 @@ def create_crew(name):
return
package_dir = Path(__file__).parent
templates_dir = package_dir / "templates"
templates_dir = package_dir / "templates" / "crew"
# List of template files to copy
root_template_files = [
".gitignore",
"pyproject.toml",
"README.md",
]
root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
)
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
src_template_files = ["__init__.py", "main.py", "crew.py"]
src_template_files = (
["__init__.py", "main.py", "crew.py"] if not parent_folder else ["crew.py"]
)
for file_name in root_template_files:
src_file = templates_dir / file_name
dst_file = Path(folder_name) / file_name
dst_file = folder_path / file_name
copy_template(src_file, dst_file, name, class_name, folder_name)
src_folder = folder_path / "src" / folder_name if not parent_folder else folder_path
for file_name in src_template_files:
src_file = templates_dir / file_name
dst_file = Path(folder_name) / "src" / folder_name / file_name
dst_file = src_folder / file_name
copy_template(src_file, dst_file, name, class_name, folder_name)
for file_name in tools_template_files:
src_file = templates_dir / file_name
dst_file = Path(folder_name) / "src" / folder_name / file_name
copy_template(src_file, dst_file, name, class_name, folder_name)
for file_name in config_template_files:
src_file = templates_dir / file_name
dst_file = Path(folder_name) / "src" / folder_name / file_name
copy_template(src_file, dst_file, name, class_name, folder_name)
if not parent_folder:
for file_name in tools_template_files + config_template_files:
src_file = templates_dir / file_name
dst_file = src_folder / file_name
copy_template(src_file, dst_file, name, class_name, folder_name)
click.secho(f"Crew {name} created successfully!", fg="green", bold=True)
def copy_template(src, dst, name, class_name, folder_name):
"""Copy a file from src to dst."""
with open(src, "r") as file:
content = file.read()
# Interpolate the content
content = content.replace("{{name}}", name)
content = content.replace("{{crew_name}}", class_name)
content = content.replace("{{folder_name}}", folder_name)
# Write the interpolated content to the new file
with open(dst, "w") as file:
file.write(content)
click.secho(f" - Created {dst}", fg="green")

View File

@@ -0,0 +1,107 @@
import shutil
from pathlib import Path
import click
def create_pipeline(name, router=False):
"""Create a new pipeline project."""
folder_name = name.replace(" ", "_").replace("-", "_").lower()
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
click.secho(f"Creating pipeline {folder_name}...", fg="green", bold=True)
project_root = Path(folder_name)
if project_root.exists():
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
return
# Create directory structure
(project_root / "src" / folder_name).mkdir(parents=True)
(project_root / "src" / folder_name / "pipelines").mkdir(parents=True)
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
(project_root / "tests").mkdir(exist_ok=True)
# Create .env file
with open(project_root / ".env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
package_dir = Path(__file__).parent
template_folder = "pipeline_router" if router else "pipeline"
templates_dir = package_dir / "templates" / template_folder
# List of template files to copy
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
src_template_files = ["__init__.py", "main.py"]
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
if router:
crew_folders = [
"classifier_crew",
"normal_crew",
"urgent_crew",
]
pipelines_folders = [
"pipelines/__init__.py",
"pipelines/pipeline_classifier.py",
"pipelines/pipeline_normal.py",
"pipelines/pipeline_urgent.py",
]
else:
crew_folders = [
"research_crew",
"write_linkedin_crew",
"write_x_crew",
]
pipelines_folders = ["pipelines/__init__.py", "pipelines/pipeline.py"]
def process_file(src_file, dst_file):
with open(src_file, "r") as file:
content = file.read()
content = content.replace("{{name}}", name)
content = content.replace("{{crew_name}}", class_name)
content = content.replace("{{folder_name}}", folder_name)
content = content.replace("{{pipeline_name}}", class_name)
with open(dst_file, "w") as file:
file.write(content)
# Copy and process root template files
for file_name in root_template_files:
src_file = templates_dir / file_name
dst_file = project_root / file_name
process_file(src_file, dst_file)
# Copy and process src template files
for file_name in src_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy tools files
for file_name in tools_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
shutil.copy(src_file, dst_file)
# Copy pipelines folders
for file_name in pipelines_folders:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy crew folders
for crew_folder in crew_folders:
src_crew_folder = templates_dir / "crews" / crew_folder
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
if src_crew_folder.exists():
shutil.copytree(src_crew_folder, dst_crew_folder)
else:
click.secho(
f"Warning: Crew folder {crew_folder} not found in template.",
fg="yellow",
)
click.secho(f"Pipeline {name} created successfully!", fg="green", bold=True)

View File

@@ -0,0 +1,63 @@
from os import getenv
import requests
class CrewAPI:
"""
CrewAPI class to interact with the crewAI+ API.
"""
def __init__(self, api_key: str) -> None:
self.api_key = api_key
self.headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
self.base_url = getenv(
"CREWAI_BASE_URL", "https://dev.crewai.com/crewai_plus/api/v1/crews"
)
def _make_request(self, method: str, endpoint: str, **kwargs) -> requests.Response:
url = f"{self.base_url}/{endpoint}"
return requests.request(method, url, headers=self.headers, **kwargs)
# Deploy
def deploy_by_name(self, project_name: str) -> requests.Response:
return self._make_request("POST", f"by-name/{project_name}/deploy")
def deploy_by_uuid(self, uuid: str) -> requests.Response:
return self._make_request("POST", f"{uuid}/deploy")
# Status
def status_by_name(self, project_name: str) -> requests.Response:
return self._make_request("GET", f"by-name/{project_name}/status")
def status_by_uuid(self, uuid: str) -> requests.Response:
return self._make_request("GET", f"{uuid}/status")
# Logs
def logs_by_name(
self, project_name: str, log_type: str = "deployment"
) -> requests.Response:
return self._make_request("GET", f"by-name/{project_name}/logs/{log_type}")
def logs_by_uuid(
self, uuid: str, log_type: str = "deployment"
) -> requests.Response:
return self._make_request("GET", f"{uuid}/logs/{log_type}")
# Delete
def delete_by_name(self, project_name: str) -> requests.Response:
return self._make_request("DELETE", f"by-name/{project_name}")
def delete_by_uuid(self, uuid: str) -> requests.Response:
return self._make_request("DELETE", f"{uuid}")
# List
def list_crews(self) -> requests.Response:
return self._make_request("GET", "")
# Create
def create_crew(self, payload) -> requests.Response:
return self._make_request("POST", "", json=payload)

View File

@@ -0,0 +1,289 @@
from typing import Any, Dict, List, Optional
from rich.console import Console
from .api import CrewAPI
from .utils import (
fetch_and_json_env_file,
get_auth_token,
get_git_remote_url,
get_project_name,
)
console = Console()
class DeployCommand:
"""
A class to handle deployment-related operations for CrewAI projects.
"""
def __init__(self):
"""
Initialize the DeployCommand with project name and API client.
"""
try:
access_token = get_auth_token()
except Exception:
console.print(
"Please sign up/login to CrewAI+ before using the CLI.",
style="bold red",
)
console.print("Run 'crewai signup' to sign up/login.", style="bold green")
raise SystemExit
self.project_name = get_project_name()
self.client = CrewAPI(api_key=access_token)
def _handle_error(self, json_response: Dict[str, Any]) -> None:
"""
Handle and display error messages from API responses.
Args:
json_response (Dict[str, Any]): The JSON response containing error information.
"""
error = json_response.get("error", "Unknown error")
message = json_response.get("message", "No message provided")
console.print(f"Error: {error}", style="bold red")
console.print(f"Message: {message}", style="bold red")
def _standard_no_param_error_message(self) -> None:
"""
Display a standard error message when no UUID or project name is available.
"""
console.print(
"No UUID provided, project pyproject.toml not found or with error.",
style="bold red",
)
def _display_deployment_info(self, json_response: Dict[str, Any]) -> None:
"""
Display deployment information.
Args:
json_response (Dict[str, Any]): The deployment information to display.
"""
console.print("Deploying the crew...\n", style="bold blue")
for key, value in json_response.items():
console.print(f"{key.title()}: [green]{value}[/green]")
console.print("\nTo check the status of the deployment, run:")
console.print("crewai deploy status")
console.print(" or")
console.print(f"crewai deploy status --uuid \"{json_response['uuid']}\"")
def _display_logs(self, log_messages: List[Dict[str, Any]]) -> None:
"""
Display log messages.
Args:
log_messages (List[Dict[str, Any]]): The log messages to display.
"""
for log_message in log_messages:
console.print(
f"{log_message['timestamp']} - {log_message['level']}: {log_message['message']}"
)
def deploy(self, uuid: Optional[str] = None) -> None:
"""
Deploy a crew using either UUID or project name.
Args:
uuid (Optional[str]): The UUID of the crew to deploy.
"""
console.print("Starting deployment...", style="bold blue")
if uuid:
response = self.client.deploy_by_uuid(uuid)
elif self.project_name:
response = self.client.deploy_by_name(self.project_name)
else:
self._standard_no_param_error_message()
return
json_response = response.json()
if response.status_code == 200:
self._display_deployment_info(json_response)
else:
self._handle_error(json_response)
def create_crew(self) -> None:
"""
Create a new crew deployment.
"""
console.print("Creating deployment...", style="bold blue")
env_vars = fetch_and_json_env_file()
remote_repo_url = get_git_remote_url()
self._confirm_input(env_vars, remote_repo_url)
payload = self._create_payload(env_vars, remote_repo_url)
response = self.client.create_crew(payload)
if response.status_code == 201:
self._display_creation_success(response.json())
else:
self._handle_error(response.json())
def _confirm_input(self, env_vars: Dict[str, str], remote_repo_url: str) -> None:
"""
Confirm input parameters with the user.
Args:
env_vars (Dict[str, str]): Environment variables.
remote_repo_url (str): Remote repository URL.
"""
input(f"Press Enter to continue with the following Env vars: {env_vars}")
input(
f"Press Enter to continue with the following remote repository: {remote_repo_url}\n"
)
def _create_payload(
self,
env_vars: Dict[str, str],
remote_repo_url: str,
) -> Dict[str, Any]:
"""
Create the payload for crew creation.
Args:
remote_repo_url (str): Remote repository URL.
env_vars (Dict[str, str]): Environment variables.
Returns:
Dict[str, Any]: The payload for crew creation.
"""
return {
"deploy": {
"name": self.project_name,
"repo_clone_url": remote_repo_url,
"env": env_vars,
}
}
def _display_creation_success(self, json_response: Dict[str, Any]) -> None:
"""
Display success message after crew creation.
Args:
json_response (Dict[str, Any]): The response containing crew information.
"""
console.print("Deployment created successfully!\n", style="bold green")
console.print(
f"Name: {self.project_name} ({json_response['uuid']})", style="bold green"
)
console.print(f"Status: {json_response['status']}", style="bold green")
console.print("\nTo (re)deploy the crew, run:")
console.print("crewai deploy push")
console.print(" or")
console.print(f"crewai deploy push --uuid {json_response['uuid']}")
def list_crews(self) -> None:
"""
List all available crews.
"""
console.print("Listing all Crews\n", style="bold blue")
response = self.client.list_crews()
json_response = response.json()
if response.status_code == 200:
self._display_crews(json_response)
else:
self._display_no_crews_message()
def _display_crews(self, crews_data: List[Dict[str, Any]]) -> None:
"""
Display the list of crews.
Args:
crews_data (List[Dict[str, Any]]): List of crew data to display.
"""
for crew_data in crews_data:
console.print(
f"- {crew_data['name']} ({crew_data['uuid']}) [blue]{crew_data['status']}[/blue]"
)
def _display_no_crews_message(self) -> None:
"""
Display a message when no crews are available.
"""
console.print("You don't have any Crews yet. Let's create one!", style="yellow")
console.print(" crewai create crew <crew_name>", style="green")
def get_crew_status(self, uuid: Optional[str] = None) -> None:
"""
Get the status of a crew.
Args:
uuid (Optional[str]): The UUID of the crew to check.
"""
console.print("Fetching deployment status...", style="bold blue")
if uuid:
response = self.client.status_by_uuid(uuid)
elif self.project_name:
response = self.client.status_by_name(self.project_name)
else:
self._standard_no_param_error_message()
return
json_response = response.json()
if response.status_code == 200:
self._display_crew_status(json_response)
else:
self._handle_error(json_response)
def _display_crew_status(self, status_data: Dict[str, str]) -> None:
"""
Display the status of a crew.
Args:
status_data (Dict[str, str]): The status data to display.
"""
console.print(f"Name:\t {status_data['name']}")
console.print(f"Status:\t {status_data['status']}")
def get_crew_logs(self, uuid: Optional[str], log_type: str = "deployment") -> None:
"""
Get logs for a crew.
Args:
uuid (Optional[str]): The UUID of the crew to get logs for.
log_type (str): The type of logs to retrieve (default: "deployment").
"""
console.print(f"Fetching {log_type} logs...", style="bold blue")
if uuid:
response = self.client.logs_by_uuid(uuid, log_type)
elif self.project_name:
response = self.client.logs_by_name(self.project_name, log_type)
else:
self._standard_no_param_error_message()
return
if response.status_code == 200:
self._display_logs(response.json())
else:
self._handle_error(response.json())
def remove_crew(self, uuid: Optional[str]) -> None:
"""
Remove a crew deployment.
Args:
uuid (Optional[str]): The UUID of the crew to remove.
"""
console.print("Removing deployment...", style="bold blue")
if uuid:
response = self.client.delete_by_uuid(uuid)
elif self.project_name:
response = self.client.delete_by_name(self.project_name)
else:
self._standard_no_param_error_message()
return
if response.status_code == 204:
console.print(
f"Crew '{self.project_name}' removed successfully.", style="green"
)
else:
console.print(
f"Failed to remove crew '{self.project_name}'", style="bold red"
)

View File

@@ -0,0 +1,117 @@
import re
import subprocess
import tomllib
from ..authentication.utils import TokenManager
def get_git_remote_url() -> str:
"""Get the Git repository's remote URL."""
try:
# Run the git remote -v command
result = subprocess.run(
["git", "remote", "-v"], capture_output=True, text=True, check=True
)
# Get the output
output = result.stdout
# Parse the output to find the origin URL
matches = re.findall(r"origin\s+(.*?)\s+\(fetch\)", output)
if matches:
return matches[0] # Return the first match (origin URL)
else:
print("No origin remote found.")
return "No remote URL found"
except subprocess.CalledProcessError as e:
return f"Error running trying to fetch the Git Repository: {e}"
except FileNotFoundError:
return "Git command not found. Make sure Git is installed and in your PATH."
def get_project_name(pyproject_path: str = "pyproject.toml"):
"""Get the project name from the pyproject.toml file."""
try:
# Read the pyproject.toml file
with open(pyproject_path, "rb") as f:
pyproject_content = tomllib.load(f)
# Extract the project name
project_name = pyproject_content["tool"]["poetry"]["name"]
if "crewai" not in pyproject_content["tool"]["poetry"]["dependencies"]:
raise Exception("crewai is not in the dependencies.")
return project_name
except FileNotFoundError:
print(f"Error: {pyproject_path} not found.")
except KeyError:
print(f"Error: {pyproject_path} is not a valid pyproject.toml file.")
except tomllib.TOMLDecodeError:
print(f"Error: {pyproject_path} is not a valid TOML file.")
except Exception as e:
print(f"Error reading the pyproject.toml file: {e}")
return None
def get_crewai_version(pyproject_path: str = "pyproject.toml") -> str:
"""Get the version number of crewai from the pyproject.toml file."""
try:
# Read the pyproject.toml file
with open("pyproject.toml", "rb") as f:
pyproject_content = tomllib.load(f)
# Extract the version number of crewai
crewai_version = pyproject_content["tool"]["poetry"]["dependencies"]["crewai"][
"version"
]
return crewai_version
except FileNotFoundError:
print(f"Error: {pyproject_path} not found.")
except KeyError:
print(f"Error: {pyproject_path} is not a valid pyproject.toml file.")
except tomllib.TOMLDecodeError:
print(f"Error: {pyproject_path} is not a valid TOML file.")
except Exception as e:
print(f"Error reading the pyproject.toml file: {e}")
return "no-version-found"
def fetch_and_json_env_file(env_file_path: str = ".env") -> dict:
"""Fetch the environment variables from a .env file and return them as a dictionary."""
try:
# Read the .env file
with open(env_file_path, "r") as f:
env_content = f.read()
# Parse the .env file content to a dictionary
env_dict = {}
for line in env_content.splitlines():
if line.strip() and not line.strip().startswith("#"):
key, value = line.split("=", 1)
env_dict[key.strip()] = value.strip()
return env_dict
except FileNotFoundError:
print(f"Error: {env_file_path} not found.")
except Exception as e:
print(f"Error reading the .env file: {e}")
return {}
def get_auth_token() -> str:
"""Get the authentication token."""
access_token = TokenManager().get_token()
if not access_token:
raise Exception()
return access_token

View File

@@ -0,0 +1,21 @@
import subprocess
import click
def install_crew() -> None:
"""
Install the crew by running the Poetry command to lock and install.
"""
try:
subprocess.run(["poetry", "lock"], check=True, capture_output=False, text=True)
subprocess.run(
["poetry", "install"], check=True, capture_output=False, text=True
)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -0,0 +1,23 @@
import subprocess
import click
def run_crew() -> None:
"""
Run the crew by running a command in the Poetry environment.
"""
command = ["poetry", "run", "run_crew"]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -0,0 +1,54 @@
# {{crew_name}} Crew
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install Poetry:
```bash
pip install poetry
```
Next, navigate to your project directory and install the dependencies:
1. First lock the dependencies and install them by using the CLI command:
```bash
crewai install
```
### Customizing
**Add your `OPENAI_API_KEY` into the `.env` file**
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
## Running the Project
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
$ crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
## Understanding Your Crew
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
## Support
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
- Visit our [documentation](https://docs.crewai.com)
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
- [Chat with our docs](https://chatg.pt/DWjSBZn)
Let's create wonders together with the power and simplicity of crewAI.

View File

@@ -48,6 +48,6 @@ class {{crew_name}}Crew():
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=2,
verbose=True,
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
)

View File

@@ -25,7 +25,7 @@ def train():
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), inputs=inputs)
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")

View File

@@ -6,10 +6,12 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = "^0.46.0" }
crewai = { extras = ["tools"], version = ">=0.51.0,<1.0.0" }
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:run"
run_crew = "{{folder_name}}.main:run"
train = "{{folder_name}}.main:train"
replay = "{{folder_name}}.main:replay"
test = "{{folder_name}}.main:test"

View File

@@ -0,0 +1,2 @@
.env
__pycache__/

View File

@@ -15,12 +15,11 @@ pip install poetry
Next, navigate to your project directory and install the dependencies:
1. First lock the dependencies and then install them:
```bash
poetry lock
```
```bash
poetry install
crewai install
```
### Customizing
**Add your `OPENAI_API_KEY` into the `.env` file**
@@ -35,7 +34,7 @@ poetry install
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
poetry run {{folder_name}}
crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
@@ -49,6 +48,7 @@ The {{name}} Crew is composed of multiple AI agents, each with unique roles, goa
## Support
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
- Visit our [documentation](https://docs.crewai.com)
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)

View File

@@ -0,0 +1,19 @@
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.

View File

@@ -0,0 +1,16 @@
research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with a title, mains topics, each with a full section of information.
agent: reporting_analyst

View File

@@ -0,0 +1,58 @@
from pydantic import BaseModel
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
class ResearchReport(BaseModel):
"""Research Report"""
title: str
body: str
@CrewBase
class ResearchCrew():
"""Research Crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_pydantic=ResearchReport
)
@crew
def crew(self) -> Crew:
"""Creates the Research Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -0,0 +1,51 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from {{folder_name}}.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class WriteLinkedInCrew():
"""Research Crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_file='report.md'
)
@crew
def crew(self) -> Crew:
"""Creates the {{crew_name}} crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -0,0 +1,14 @@
x_writer_agent:
role: >
Expert Social Media Content Creator specializing in short form written content
goal: >
Create viral-worthy, engaging short form posts that distill complex {topic} information
into compelling 280-character messages
backstory: >
You're a social media virtuoso with a particular talent for short form content. Your posts
consistently go viral due to your ability to craft hooks that stop users mid-scroll.
You've studied the techniques of social media masters like Justin Welsh, Dickie Bush,
Nicolas Cole, and Shaan Puri, incorporating their best practices into your own unique style.
Your superpower is taking intricate {topic} concepts and transforming them into
bite-sized, shareable content that resonates with a wide audience. You know exactly
how to structure a post for maximum impact and engagement.

View File

@@ -0,0 +1,22 @@
write_x_task:
description: >
Using the research report provided, create an engaging short form post about {topic}.
Your post should have a great hook, summarize key points, and be structured for easy
consumption on a digital platform. The post must be under 280 characters.
Follow these guidelines:
1. Start with an attention-grabbing hook
2. Condense the main insights from the research
3. Use clear, concise language
4. Include a call-to-action or thought-provoking question if space allows
5. Ensure the post flows well and is easy to read quickly
Here is the title of the research report you will be using
Title: {title}
Research:
{body}
expected_output: >
A compelling X post under 280 characters that effectively summarizes the key findings
about {topic}, starts with a strong hook, and is optimized for engagement on the platform.
agent: x_writer_agent

View File

@@ -0,0 +1,36 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class WriteXCrew:
"""Research Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def x_writer_agent(self) -> Agent:
return Agent(config=self.agents_config["x_writer_agent"], verbose=True)
@task
def write_x_task(self) -> Task:
return Task(
config=self.tasks_config["write_x_task"],
)
@crew
def crew(self) -> Crew:
"""Creates the Write X Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -0,0 +1,26 @@
#!/usr/bin/env python
import asyncio
from {{folder_name}}.pipelines.pipeline import {{pipeline_name}}Pipeline
async def run():
"""
Run the pipeline.
"""
inputs = [
{"topic": "AI wearables"},
]
pipeline = {{pipeline_name}}Pipeline()
results = await pipeline.kickoff(inputs)
# Process and print results
for result in results:
print(f"Raw output: {result.raw}")
if result.json_dict:
print(f"JSON output: {result.json_dict}")
print("\n")
def main():
asyncio.run(run())
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,87 @@
"""
This pipeline file includes two different examples to demonstrate the flexibility of crewAI pipelines.
Example 1: Two-Stage Pipeline
-----------------------------
This pipeline consists of two crews:
1. ResearchCrew: Performs research on a given topic.
2. WriteXCrew: Generates an X (Twitter) post based on the research findings.
Key features:
- The ResearchCrew's final task uses output_json to store all research findings in a JSON object.
- This JSON object is then passed to the WriteXCrew, where tasks can access the research findings.
Example 2: Two-Stage Pipeline with Parallel Execution
-------------------------------------------------------
This pipeline consists of three crews:
1. ResearchCrew: Performs research on a given topic.
2. WriteXCrew and WriteLinkedInCrew: Run in parallel, using the research findings to generate posts for X and LinkedIn, respectively.
Key features:
- Demonstrates the ability to run multiple crews in parallel.
- Shows how to structure a pipeline with both sequential and parallel stages.
Usage:
- To switch between examples, comment/uncomment the respective code blocks below.
- Ensure that you have implemented all necessary crew classes (ResearchCrew, WriteXCrew, WriteLinkedInCrew) before running.
"""
# Common imports for both examples
from crewai import Pipeline
# Uncomment the crews you need for your chosen example
from ..crews.research_crew.research_crew import ResearchCrew
from ..crews.write_x_crew.write_x_crew import WriteXCrew
# from .crews.write_linkedin_crew.write_linkedin_crew import WriteLinkedInCrew # Uncomment for Example 2
# EXAMPLE 1: Two-Stage Pipeline
# -----------------------------
# Uncomment the following code block to use Example 1
class {{pipeline_name}}Pipeline:
def __init__(self):
# Initialize crews
self.research_crew = ResearchCrew().crew()
self.write_x_crew = WriteXCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.research_crew,
self.write_x_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results
# EXAMPLE 2: Two-Stage Pipeline with Parallel Execution
# -------------------------------------------------------
# Uncomment the following code block to use Example 2
# @PipelineBase
# class {{pipeline_name}}Pipeline:
# def __init__(self):
# # Initialize crews
# self.research_crew = ResearchCrew().crew()
# self.write_x_crew = WriteXCrew().crew()
# self.write_linkedin_crew = WriteLinkedInCrew().crew()
# @pipeline
# def create_pipeline(self):
# return Pipeline(
# stages=[
# self.research_crew,
# [self.write_x_crew, self.write_linkedin_crew] # Parallel execution
# ]
# )
# async def run(self, inputs):
# pipeline = self.create_pipeline()
# results = await pipeline.kickoff(inputs)
# return results

View File

@@ -0,0 +1,17 @@
[tool.poetry]
name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.51.0,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:main"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -0,0 +1,12 @@
from crewai_tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
def _run(self, argument: str) -> str:
# Implementation goes here
return "this is an example of a tool output, ignore it and move along."

View File

@@ -0,0 +1,2 @@
.env
__pycache__/

View File

@@ -0,0 +1,54 @@
# {{crew_name}} Crew
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install Poetry:
```bash
pip install poetry
```
Next, navigate to your project directory and install the dependencies:
1. First lock the dependencies and then install them:
```bash
crewai install
```
### Customizing
**Add your `OPENAI_API_KEY` into the `.env` file**
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
## Running the Project
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
## Understanding Your Crew
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
## Support
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
- Visit our [documentation](https://docs.crewai.com)
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
- [Chat with our docs](https://chatg.pt/DWjSBZn)
Let's create wonders together with the power and simplicity of crewAI.

View File

@@ -0,0 +1,19 @@
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.

Some files were not shown because too many files have changed in this diff Show More