mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-29 18:58:30 +00:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a83c57a2f2 | ||
|
|
08e15ab267 | ||
|
|
9728388ea7 | ||
|
|
4371cf5690 |
@@ -12,7 +12,7 @@ dependencies = [
|
||||
"pytube>=15.0.0",
|
||||
"requests>=2.32.5",
|
||||
"docker>=7.1.0",
|
||||
"crewai==1.1.0",
|
||||
"crewai==1.2.0",
|
||||
"lancedb>=0.5.4",
|
||||
"tiktoken>=0.8.0",
|
||||
"beautifulsoup4>=4.13.4",
|
||||
|
||||
@@ -287,4 +287,4 @@ __all__ = [
|
||||
"ZapierActionTools",
|
||||
]
|
||||
|
||||
__version__ = "1.1.0"
|
||||
__version__ = "1.2.0"
|
||||
|
||||
@@ -49,7 +49,7 @@ Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = [
|
||||
"crewai-tools==1.1.0",
|
||||
"crewai-tools==1.2.0",
|
||||
]
|
||||
embeddings = [
|
||||
"tiktoken~=0.8.0"
|
||||
@@ -66,11 +66,6 @@ openpyxl = [
|
||||
mem0 = ["mem0ai>=0.1.94"]
|
||||
docling = [
|
||||
"docling>=2.12.0",
|
||||
]
|
||||
aisuite = [
|
||||
"aisuite>=0.1.11",
|
||||
|
||||
|
||||
]
|
||||
qdrant = [
|
||||
"qdrant-client[fastembed]>=1.14.3",
|
||||
@@ -137,13 +132,3 @@ build-backend = "hatchling.build"
|
||||
|
||||
[tool.hatch.version]
|
||||
path = "src/crewai/__init__.py"
|
||||
|
||||
# Declare mutually exclusive extras due to conflicting httpx requirements
|
||||
# a2a requires httpx>=0.28.1, while aisuite requires httpx>=0.27.0,<0.28.0
|
||||
# [tool.uv]
|
||||
# conflicts = [
|
||||
# [
|
||||
# { extra = "a2a" },
|
||||
# { extra = "aisuite" },
|
||||
# ],
|
||||
# ]
|
||||
|
||||
@@ -40,7 +40,7 @@ def _suppress_pydantic_deprecation_warnings() -> None:
|
||||
|
||||
_suppress_pydantic_deprecation_warnings()
|
||||
|
||||
__version__ = "1.1.0"
|
||||
__version__ = "1.2.0"
|
||||
_telemetry_submitted = False
|
||||
|
||||
|
||||
|
||||
@@ -322,7 +322,7 @@ MODELS = {
|
||||
],
|
||||
}
|
||||
|
||||
DEFAULT_LLM_MODEL = "gpt-4o-mini"
|
||||
DEFAULT_LLM_MODEL = "gpt-4.1-mini"
|
||||
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.14"
|
||||
dependencies = [
|
||||
"crewai[tools]==1.1.0"
|
||||
"crewai[tools]==1.2.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.14"
|
||||
dependencies = [
|
||||
"crewai[tools]==1.1.0"
|
||||
"crewai[tools]==1.2.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from typing import TYPE_CHECKING
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from pyvis.network import Network # type: ignore[import-untyped]
|
||||
|
||||
@@ -29,7 +29,7 @@ _printer = Printer()
|
||||
class FlowPlot:
|
||||
"""Handles the creation and rendering of flow visualization diagrams."""
|
||||
|
||||
def __init__(self, flow: Flow) -> None:
|
||||
def __init__(self, flow: Flow[Any]) -> None:
|
||||
"""
|
||||
Initialize FlowPlot with a flow object.
|
||||
|
||||
@@ -136,7 +136,7 @@ class FlowPlot:
|
||||
f"Unexpected error during flow visualization: {e!s}"
|
||||
) from e
|
||||
finally:
|
||||
self._cleanup_pyvis_lib()
|
||||
self._cleanup_pyvis_lib(filename)
|
||||
|
||||
def _generate_final_html(self, network_html: str) -> str:
|
||||
"""
|
||||
@@ -186,26 +186,33 @@ class FlowPlot:
|
||||
raise IOError(f"Failed to generate visualization HTML: {e!s}") from e
|
||||
|
||||
@staticmethod
|
||||
def _cleanup_pyvis_lib() -> None:
|
||||
def _cleanup_pyvis_lib(filename: str) -> None:
|
||||
"""
|
||||
Clean up the generated lib folder from pyvis.
|
||||
|
||||
This method safely removes the temporary lib directory created by pyvis
|
||||
during network visualization generation.
|
||||
during network visualization generation. The lib folder is created in the
|
||||
same directory as the output HTML file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filename : str
|
||||
The output filename (without .html extension) used for the visualization.
|
||||
"""
|
||||
try:
|
||||
lib_folder = safe_path_join("lib", root=os.getcwd())
|
||||
if os.path.exists(lib_folder) and os.path.isdir(lib_folder):
|
||||
import shutil
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(lib_folder)
|
||||
except ValueError as e:
|
||||
_printer.print(f"Error validating lib folder path: {e}", color="red")
|
||||
output_dir = os.path.dirname(os.path.abspath(filename)) or os.getcwd()
|
||||
lib_folder = os.path.join(output_dir, "lib")
|
||||
if os.path.exists(lib_folder) and os.path.isdir(lib_folder):
|
||||
vis_js = os.path.join(lib_folder, "vis-network.min.js")
|
||||
if os.path.exists(vis_js):
|
||||
shutil.rmtree(lib_folder)
|
||||
except Exception as e:
|
||||
_printer.print(f"Error cleaning up lib folder: {e}", color="red")
|
||||
|
||||
|
||||
def plot_flow(flow: Flow, filename: str = "flow_plot") -> None:
|
||||
def plot_flow(flow: Flow[Any], filename: str = "flow_plot") -> None:
|
||||
"""
|
||||
Convenience function to create and save a flow visualization.
|
||||
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
"""HTML template processing and generation for flow visualization diagrams."""
|
||||
|
||||
import base64
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from crewai.flow.path_utils import validate_path_exists
|
||||
|
||||
@@ -7,7 +10,7 @@ from crewai.flow.path_utils import validate_path_exists
|
||||
class HTMLTemplateHandler:
|
||||
"""Handles HTML template processing and generation for flow visualization diagrams."""
|
||||
|
||||
def __init__(self, template_path, logo_path):
|
||||
def __init__(self, template_path: str, logo_path: str) -> None:
|
||||
"""
|
||||
Initialize HTMLTemplateHandler with validated template and logo paths.
|
||||
|
||||
@@ -29,23 +32,23 @@ class HTMLTemplateHandler:
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Invalid template or logo path: {e}") from e
|
||||
|
||||
def read_template(self):
|
||||
def read_template(self) -> str:
|
||||
"""Read and return the HTML template file contents."""
|
||||
with open(self.template_path, "r", encoding="utf-8") as f:
|
||||
return f.read()
|
||||
|
||||
def encode_logo(self):
|
||||
def encode_logo(self) -> str:
|
||||
"""Convert the logo SVG file to base64 encoded string."""
|
||||
with open(self.logo_path, "rb") as logo_file:
|
||||
logo_svg_data = logo_file.read()
|
||||
return base64.b64encode(logo_svg_data).decode("utf-8")
|
||||
|
||||
def extract_body_content(self, html):
|
||||
def extract_body_content(self, html: str) -> str:
|
||||
"""Extract and return content between body tags from HTML string."""
|
||||
match = re.search("<body.*?>(.*?)</body>", html, re.DOTALL)
|
||||
return match.group(1) if match else ""
|
||||
|
||||
def generate_legend_items_html(self, legend_items):
|
||||
def generate_legend_items_html(self, legend_items: list[dict[str, Any]]) -> str:
|
||||
"""Generate HTML markup for the legend items."""
|
||||
legend_items_html = ""
|
||||
for item in legend_items:
|
||||
@@ -73,7 +76,9 @@ class HTMLTemplateHandler:
|
||||
"""
|
||||
return legend_items_html
|
||||
|
||||
def generate_final_html(self, network_body, legend_items_html, title="Flow Plot"):
|
||||
def generate_final_html(
|
||||
self, network_body: str, legend_items_html: str, title: str = "Flow Plot"
|
||||
) -> str:
|
||||
"""Combine all components into final HTML document with network visualization."""
|
||||
html_template = self.read_template()
|
||||
logo_svg_base64 = self.encode_logo()
|
||||
|
||||
@@ -1,4 +1,23 @@
|
||||
def get_legend_items(colors):
|
||||
"""Legend generation for flow visualization diagrams."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from crewai.flow.config import FlowColors
|
||||
|
||||
|
||||
def get_legend_items(colors: FlowColors) -> list[dict[str, Any]]:
|
||||
"""Generate legend items based on flow colors.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
colors : FlowColors
|
||||
Dictionary containing color definitions for flow elements.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list[dict[str, Any]]
|
||||
List of legend item dictionaries with labels and styling.
|
||||
"""
|
||||
return [
|
||||
{"label": "Start Method", "color": colors["start"]},
|
||||
{"label": "Method", "color": colors["method"]},
|
||||
@@ -24,7 +43,19 @@ def get_legend_items(colors):
|
||||
]
|
||||
|
||||
|
||||
def generate_legend_items_html(legend_items):
|
||||
def generate_legend_items_html(legend_items: list[dict[str, Any]]) -> str:
|
||||
"""Generate HTML markup for legend items.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
legend_items : list[dict[str, Any]]
|
||||
List of legend item dictionaries containing labels and styling.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
HTML string containing formatted legend items.
|
||||
"""
|
||||
legend_items_html = ""
|
||||
for item in legend_items:
|
||||
if "border" in item:
|
||||
|
||||
@@ -36,28 +36,29 @@ from crewai.flow.utils import (
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
|
||||
_printer = Printer()
|
||||
|
||||
|
||||
def method_calls_crew(method: Any) -> bool:
|
||||
"""
|
||||
Check if the method contains a call to `.crew()`.
|
||||
Check if the method contains a call to `.crew()`, `.kickoff()`, or `.kickoff_async()`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
method : Any
|
||||
The method to analyze for crew() calls.
|
||||
The method to analyze for crew or agent execution calls.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if the method calls .crew(), False otherwise.
|
||||
True if the method calls .crew(), .kickoff(), or .kickoff_async(), False otherwise.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Uses AST analysis to detect method calls, specifically looking for
|
||||
attribute access of 'crew'.
|
||||
attribute access of 'crew', 'kickoff', or 'kickoff_async'.
|
||||
This includes both traditional Crew execution (.crew()) and Agent/LiteAgent
|
||||
execution (.kickoff() or .kickoff_async()).
|
||||
"""
|
||||
try:
|
||||
source = inspect.getsource(method)
|
||||
@@ -68,14 +69,14 @@ def method_calls_crew(method: Any) -> bool:
|
||||
return False
|
||||
|
||||
class CrewCallVisitor(ast.NodeVisitor):
|
||||
"""AST visitor to detect .crew() method calls."""
|
||||
"""AST visitor to detect .crew(), .kickoff(), or .kickoff_async() method calls."""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self.found = False
|
||||
|
||||
def visit_Call(self, node):
|
||||
def visit_Call(self, node: ast.Call) -> None:
|
||||
if isinstance(node.func, ast.Attribute):
|
||||
if node.func.attr == "crew":
|
||||
if node.func.attr in ("crew", "kickoff", "kickoff_async"):
|
||||
self.found = True
|
||||
self.generic_visit(node)
|
||||
|
||||
@@ -113,7 +114,7 @@ def add_nodes_to_network(
|
||||
- Regular methods
|
||||
"""
|
||||
|
||||
def human_friendly_label(method_name):
|
||||
def human_friendly_label(method_name: str) -> str:
|
||||
return method_name.replace("_", " ").title()
|
||||
|
||||
node_style: (
|
||||
|
||||
@@ -1,99 +0,0 @@
|
||||
"""AI Suite LLM integration for CrewAI.
|
||||
|
||||
This module provides integration with AI Suite for LLM capabilities.
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import aisuite as ai # type: ignore
|
||||
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
|
||||
|
||||
class AISuiteLLM(BaseLLM):
|
||||
"""AI Suite LLM implementation.
|
||||
|
||||
This class provides integration with AI Suite models through the BaseLLM interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
temperature: float | None = None,
|
||||
stop: list[str] | None = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize the AI Suite LLM.
|
||||
|
||||
Args:
|
||||
model: The model identifier for AI Suite.
|
||||
temperature: Optional temperature setting for response generation.
|
||||
stop: Optional list of stop sequences for generation.
|
||||
**kwargs: Additional keyword arguments passed to the AI Suite client.
|
||||
"""
|
||||
super().__init__(model=model, temperature=temperature, stop=stop)
|
||||
self.client = ai.Client()
|
||||
self.kwargs = kwargs
|
||||
|
||||
def call( # type: ignore[override]
|
||||
self,
|
||||
messages: str | list[dict[str, str]],
|
||||
tools: list[dict] | None = None,
|
||||
callbacks: list[Any] | None = None,
|
||||
available_functions: dict[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
) -> str | Any:
|
||||
"""Call the AI Suite LLM with the given messages.
|
||||
|
||||
Args:
|
||||
messages: Input messages for the LLM.
|
||||
tools: Optional list of tool schemas for function calling.
|
||||
callbacks: Optional list of callback functions.
|
||||
available_functions: Optional dict mapping function names to callables.
|
||||
from_task: Optional task caller.
|
||||
from_agent: Optional agent caller.
|
||||
|
||||
Returns:
|
||||
The text response from the LLM.
|
||||
"""
|
||||
completion_params = self._prepare_completion_params(messages, tools)
|
||||
response = self.client.chat.completions.create(**completion_params)
|
||||
|
||||
return response.choices[0].message.content
|
||||
|
||||
def _prepare_completion_params(
|
||||
self,
|
||||
messages: str | list[dict[str, str]],
|
||||
tools: list[dict] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Prepare parameters for the AI Suite completion call.
|
||||
|
||||
Args:
|
||||
messages: Input messages for the LLM.
|
||||
tools: Optional list of tool schemas.
|
||||
|
||||
Returns:
|
||||
Dictionary of parameters for the completion API.
|
||||
"""
|
||||
params: dict[str, Any] = {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
"temperature": self.temperature,
|
||||
"tools": tools,
|
||||
**self.kwargs,
|
||||
}
|
||||
|
||||
if self.stop:
|
||||
params["stop"] = self.stop
|
||||
|
||||
return params
|
||||
|
||||
@staticmethod
|
||||
def supports_function_calling() -> bool:
|
||||
"""Check if the LLM supports function calling.
|
||||
|
||||
Returns:
|
||||
False, as AI Suite does not currently support function calling.
|
||||
"""
|
||||
return False
|
||||
@@ -29,8 +29,8 @@ def create_llm(
|
||||
try:
|
||||
return LLM(model=llm_value)
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to instantiate LLM with model='{llm_value}': {e}")
|
||||
return None
|
||||
logger.error(f"Error instantiating LLM from string: {e}")
|
||||
raise e
|
||||
|
||||
if llm_value is None:
|
||||
return _llm_via_environment_or_fallback()
|
||||
@@ -62,8 +62,8 @@ def create_llm(
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Error instantiating LLM from unknown object type: {e}")
|
||||
return None
|
||||
logger.error(f"Error instantiating LLM from unknown object type: {e}")
|
||||
raise e
|
||||
|
||||
|
||||
UNACCEPTED_ATTRIBUTES: Final[list[str]] = [
|
||||
@@ -176,10 +176,10 @@ def _llm_via_environment_or_fallback() -> LLM | None:
|
||||
try:
|
||||
return LLM(**llm_params)
|
||||
except Exception as e:
|
||||
logger.debug(
|
||||
logger.error(
|
||||
f"Error instantiating LLM from environment/fallback: {type(e).__name__}: {e}"
|
||||
)
|
||||
return None
|
||||
raise e
|
||||
|
||||
|
||||
def _normalize_key_name(key_name: str) -> str:
|
||||
|
||||
@@ -6,6 +6,7 @@ from unittest import mock
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
|
||||
from crewai.cli.constants import DEFAULT_LLM_MODEL
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.tool_usage_events import ToolUsageFinishedEvent
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
@@ -135,7 +136,7 @@ def test_agent_with_missing_response_template():
|
||||
|
||||
def test_agent_default_values():
|
||||
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
|
||||
assert agent.llm.model == "gpt-4o-mini"
|
||||
assert agent.llm.model == DEFAULT_LLM_MODEL
|
||||
assert agent.allow_delegation is False
|
||||
|
||||
|
||||
@@ -225,7 +226,7 @@ def test_logging_tool_usage():
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
assert agent.llm.model == "gpt-4o-mini"
|
||||
assert agent.llm.model == DEFAULT_LLM_MODEL
|
||||
assert agent.tools_handler.last_used_tool is None
|
||||
task = Task(
|
||||
description="What is 3 times 4?",
|
||||
|
||||
@@ -850,6 +850,31 @@ def test_flow_plotting():
|
||||
assert isinstance(received_events[0].timestamp, datetime)
|
||||
|
||||
|
||||
def test_method_calls_crew_detection():
|
||||
"""Test that method_calls_crew() detects .crew(), .kickoff(), and .kickoff_async() calls."""
|
||||
from crewai.flow.visualization_utils import method_calls_crew
|
||||
from crewai import Agent
|
||||
|
||||
# Test with a real Flow that uses agent.kickoff()
|
||||
class FlowWithAgentKickoff(Flow):
|
||||
@start()
|
||||
def run_agent(self):
|
||||
agent = Agent(role="test", goal="test", backstory="test")
|
||||
return agent.kickoff("query")
|
||||
|
||||
flow = FlowWithAgentKickoff()
|
||||
assert method_calls_crew(flow.run_agent) is True
|
||||
|
||||
# Test with a Flow that has no crew/agent calls
|
||||
class FlowWithoutCrewCalls(Flow):
|
||||
@start()
|
||||
def simple_method(self):
|
||||
return "Just a regular method"
|
||||
|
||||
flow2 = FlowWithoutCrewCalls()
|
||||
assert method_calls_crew(flow2.simple_method) is False
|
||||
|
||||
|
||||
def test_multiple_routers_from_same_trigger():
|
||||
"""Test that multiple routers triggered by the same method all activate their listeners."""
|
||||
execution_order = []
|
||||
|
||||
@@ -1,77 +1,79 @@
|
||||
import os
|
||||
from typing import Any
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai.cli.constants import DEFAULT_LLM_MODEL
|
||||
from crewai.llm import LLM
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
import pytest
|
||||
|
||||
|
||||
try:
|
||||
from litellm.exceptions import BadRequestError
|
||||
except ImportError:
|
||||
BadRequestError = Exception
|
||||
|
||||
|
||||
def test_create_llm_with_llm_instance():
|
||||
existing_llm = LLM(model="gpt-4o")
|
||||
llm = create_llm(llm_value=existing_llm)
|
||||
assert llm is existing_llm
|
||||
|
||||
|
||||
def test_create_llm_with_valid_model_string():
|
||||
llm = create_llm(llm_value="gpt-4o")
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "gpt-4o"
|
||||
|
||||
|
||||
def test_create_llm_with_invalid_model_string():
|
||||
# For invalid model strings, create_llm succeeds but call() fails with API error
|
||||
llm = create_llm(llm_value="invalid-model")
|
||||
assert llm is not None
|
||||
assert isinstance(llm, BaseLLM)
|
||||
|
||||
# The error should occur when making the actual API call
|
||||
# We expect some kind of API error (NotFoundError, etc.)
|
||||
with pytest.raises(Exception): # noqa: B017
|
||||
llm.call(messages=[{"role": "user", "content": "Hello, world!"}])
|
||||
|
||||
|
||||
def test_create_llm_with_unknown_object_missing_attributes():
|
||||
class UnknownObject:
|
||||
pass
|
||||
|
||||
unknown_obj = UnknownObject()
|
||||
llm = create_llm(llm_value=unknown_obj)
|
||||
|
||||
# Should succeed because str(unknown_obj) provides a model name
|
||||
assert llm is not None
|
||||
assert isinstance(llm, BaseLLM)
|
||||
|
||||
|
||||
def test_create_llm_with_none_uses_default_model():
|
||||
def test_create_llm_with_llm_instance() -> None:
|
||||
with patch.dict(os.environ, {"OPENAI_API_KEY": "fake-key"}, clear=True):
|
||||
with patch("crewai.utilities.llm_utils.DEFAULT_LLM_MODEL", "gpt-4o-mini"):
|
||||
existing_llm = LLM(model="gpt-4o")
|
||||
llm = create_llm(llm_value=existing_llm)
|
||||
assert llm is existing_llm
|
||||
|
||||
|
||||
def test_create_llm_with_valid_model_string() -> None:
|
||||
with patch.dict(os.environ, {"OPENAI_API_KEY": "fake-key"}, clear=True):
|
||||
llm = create_llm(llm_value="gpt-4o")
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "gpt-4o"
|
||||
|
||||
|
||||
def test_create_llm_with_invalid_model_string() -> None:
|
||||
with patch.dict(os.environ, {"OPENAI_API_KEY": "fake-key"}, clear=True):
|
||||
# For invalid model strings, create_llm succeeds but call() fails with API error
|
||||
llm = create_llm(llm_value="invalid-model")
|
||||
assert llm is not None
|
||||
assert isinstance(llm, BaseLLM)
|
||||
|
||||
# The error should occur when making the actual API call
|
||||
# We expect some kind of API error (NotFoundError, etc.)
|
||||
with pytest.raises(Exception): # noqa: B017
|
||||
llm.call(messages=[{"role": "user", "content": "Hello, world!"}])
|
||||
|
||||
|
||||
def test_create_llm_with_unknown_object_missing_attributes() -> None:
|
||||
with patch.dict(os.environ, {"OPENAI_API_KEY": "fake-key"}, clear=True):
|
||||
class UnknownObject:
|
||||
pass
|
||||
|
||||
unknown_obj = UnknownObject()
|
||||
llm = create_llm(llm_value=unknown_obj)
|
||||
|
||||
# Should succeed because str(unknown_obj) provides a model name
|
||||
assert llm is not None
|
||||
assert isinstance(llm, BaseLLM)
|
||||
|
||||
|
||||
def test_create_llm_with_none_uses_default_model() -> None:
|
||||
with patch.dict(os.environ, {"OPENAI_API_KEY": "fake-key"}, clear=True):
|
||||
with patch("crewai.utilities.llm_utils.DEFAULT_LLM_MODEL", DEFAULT_LLM_MODEL):
|
||||
llm = create_llm(llm_value=None)
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "gpt-4o-mini"
|
||||
assert llm.model == DEFAULT_LLM_MODEL
|
||||
|
||||
|
||||
def test_create_llm_with_unknown_object():
|
||||
class UnknownObject:
|
||||
model_name = "gpt-4o"
|
||||
temperature = 0.7
|
||||
max_tokens = 1500
|
||||
def test_create_llm_with_unknown_object() -> None:
|
||||
with patch.dict(os.environ, {"OPENAI_API_KEY": "fake-key"}, clear=True):
|
||||
class UnknownObject:
|
||||
model_name = "gpt-4o"
|
||||
temperature = 0.7
|
||||
max_tokens = 1500
|
||||
|
||||
unknown_obj = UnknownObject()
|
||||
llm = create_llm(llm_value=unknown_obj)
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "gpt-4o"
|
||||
assert llm.temperature == 0.7
|
||||
assert llm.max_tokens == 1500
|
||||
unknown_obj = UnknownObject()
|
||||
llm = create_llm(llm_value=unknown_obj)
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "gpt-4o"
|
||||
assert llm.temperature == 0.7
|
||||
if hasattr(llm, 'max_tokens'):
|
||||
assert llm.max_tokens == 1500
|
||||
|
||||
|
||||
def test_create_llm_from_env_with_unaccepted_attributes():
|
||||
def test_create_llm_from_env_with_unaccepted_attributes() -> None:
|
||||
with patch.dict(
|
||||
os.environ,
|
||||
{
|
||||
@@ -90,25 +92,47 @@ def test_create_llm_from_env_with_unaccepted_attributes():
|
||||
assert not hasattr(llm, "AWS_REGION_NAME")
|
||||
|
||||
|
||||
def test_create_llm_with_partial_attributes():
|
||||
class PartialAttributes:
|
||||
model_name = "gpt-4o"
|
||||
# temperature is missing
|
||||
def test_create_llm_with_partial_attributes() -> None:
|
||||
with patch.dict(os.environ, {"OPENAI_API_KEY": "fake-key"}, clear=True):
|
||||
class PartialAttributes:
|
||||
model_name = "gpt-4o"
|
||||
# temperature is missing
|
||||
|
||||
obj = PartialAttributes()
|
||||
llm = create_llm(llm_value=obj)
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "gpt-4o"
|
||||
assert llm.temperature is None # Should handle missing attributes gracefully
|
||||
obj = PartialAttributes()
|
||||
llm = create_llm(llm_value=obj)
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "gpt-4o"
|
||||
assert llm.temperature is None # Should handle missing attributes gracefully
|
||||
|
||||
|
||||
def test_create_llm_with_invalid_type():
|
||||
# For integers, create_llm succeeds because str(42) becomes "42"
|
||||
llm = create_llm(llm_value=42)
|
||||
assert llm is not None
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "42"
|
||||
def test_create_llm_with_invalid_type() -> None:
|
||||
with patch.dict(os.environ, {"OPENAI_API_KEY": "fake-key"}, clear=True):
|
||||
# For integers, create_llm succeeds because str(42) becomes "42"
|
||||
llm = create_llm(llm_value=42)
|
||||
assert llm is not None
|
||||
assert isinstance(llm, BaseLLM)
|
||||
assert llm.model == "42"
|
||||
|
||||
# The error should occur when making the actual API call
|
||||
with pytest.raises(Exception): # noqa: B017
|
||||
llm.call(messages=[{"role": "user", "content": "Hello, world!"}])
|
||||
# The error should occur when making the actual API call
|
||||
with pytest.raises(Exception): # noqa: B017
|
||||
llm.call(messages=[{"role": "user", "content": "Hello, world!"}])
|
||||
|
||||
|
||||
def test_create_llm_openai_missing_api_key() -> None:
|
||||
"""Test that create_llm raises error when OpenAI API key is missing"""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
with pytest.raises((ValueError, ImportError)) as exc_info:
|
||||
create_llm(llm_value="gpt-4o")
|
||||
|
||||
error_message = str(exc_info.value).lower()
|
||||
assert "openai_api_key" in error_message or "api_key" in error_message
|
||||
|
||||
|
||||
def test_create_llm_anthropic_missing_dependency() -> None:
|
||||
"""Test that create_llm raises error when Anthropic dependency is missing"""
|
||||
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "fake-key"}, clear=True):
|
||||
with patch("crewai.llm.LLM.__new__", side_effect=ImportError('Anthropic native provider not available, to install: uv add "crewai[anthropic]"')):
|
||||
with pytest.raises(ImportError) as exc_info:
|
||||
create_llm(llm_value="anthropic/claude-3-sonnet")
|
||||
|
||||
assert "Anthropic native provider not available, to install: uv add \"crewai[anthropic]\"" in str(exc_info.value)
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
"""CrewAI development tools."""
|
||||
|
||||
__version__ = "1.1.0"
|
||||
__version__ = "1.2.0"
|
||||
|
||||
56
uv.lock
generated
56
uv.lock
generated
@@ -204,18 +204,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl", hash = "sha256:053243f8b92b990551949e63930a839ff0cf0b0ebbe0597b0f3fb19e1a0fe82e", size = 7490, upload-time = "2025-07-03T22:54:42.156Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "aisuite"
|
||||
version = "0.1.11"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "httpx" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/17/07/129a68a6f74a80fc1d189064a2f576a84a1a05f14f211fde9352668d1c25/aisuite-0.1.11.tar.gz", hash = "sha256:27260075f8502b9cb40ef476cae29544e39316bbf4b4318464eb4c728e72146a", size = 27533, upload-time = "2025-03-26T12:04:44.068Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d0/f7/a2799bf017d0303bb2f6c10f55f9c85619a0c8b9cf77fb8a9579961bfe88/aisuite-0.1.11-py3-none-any.whl", hash = "sha256:14293e9b7d81268dabe9b1cbb41cab64ca6c0272b52166213a7fa80196140d7c", size = 41222, upload-time = "2025-03-26T12:04:42.472Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
version = "0.7.0"
|
||||
@@ -1098,9 +1086,6 @@ dependencies = [
|
||||
]
|
||||
|
||||
[package.optional-dependencies]
|
||||
aisuite = [
|
||||
{ name = "aisuite" },
|
||||
]
|
||||
anthropic = [
|
||||
{ name = "anthropic" },
|
||||
]
|
||||
@@ -1153,7 +1138,6 @@ watson = [
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "aisuite", marker = "extra == 'aisuite'", specifier = ">=0.1.11" },
|
||||
{ name = "anthropic", marker = "extra == 'anthropic'", specifier = ">=0.69.0" },
|
||||
{ name = "appdirs", specifier = ">=1.4.4" },
|
||||
{ name = "azure-ai-inference", marker = "extra == 'azure-ai-inference'", specifier = ">=1.0.0b9" },
|
||||
@@ -1196,7 +1180,7 @@ requires-dist = [
|
||||
{ name = "uv", specifier = ">=0.4.25" },
|
||||
{ name = "voyageai", marker = "extra == 'voyageai'", specifier = ">=0.3.5" },
|
||||
]
|
||||
provides-extras = ["aisuite", "anthropic", "aws", "azure-ai-inference", "bedrock", "docling", "embeddings", "google-genai", "litellm", "mem0", "openpyxl", "pandas", "pdfplumber", "qdrant", "tools", "voyageai", "watson"]
|
||||
provides-extras = ["anthropic", "aws", "azure-ai-inference", "bedrock", "docling", "embeddings", "google-genai", "litellm", "mem0", "openpyxl", "pandas", "pdfplumber", "qdrant", "tools", "voyageai", "watson"]
|
||||
|
||||
[[package]]
|
||||
name = "crewai-devtools"
|
||||
@@ -1810,7 +1794,7 @@ name = "exceptiongroup"
|
||||
version = "1.3.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "typing-extensions", marker = "python_full_version < '3.13'" },
|
||||
{ name = "typing-extensions", marker = "python_full_version < '3.11'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/0b/9f/a65090624ecf468cdca03533906e7c69ed7588582240cfe7cc9e770b50eb/exceptiongroup-1.3.0.tar.gz", hash = "sha256:b241f5885f560bc56a59ee63ca4c6a8bfa46ae4ad651af316d4e81817bb9fd88", size = 29749, upload-time = "2025-05-10T17:42:51.123Z" }
|
||||
wheels = [
|
||||
@@ -4445,7 +4429,7 @@ name = "nvidia-cudnn-cu12"
|
||||
version = "9.10.2.21"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-cublas-cu12" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ba/51/e123d997aa098c61d029f76663dedbfb9bc8dcf8c60cbd6adbe42f76d049/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8", size = 706758467, upload-time = "2025-06-06T21:54:08.597Z" },
|
||||
@@ -4456,7 +4440,7 @@ name = "nvidia-cufft-cu12"
|
||||
version = "11.3.3.83"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-nvjitlink-cu12" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/1f/13/ee4e00f30e676b66ae65b4f08cb5bcbb8392c03f54f2d5413ea99a5d1c80/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4d2dd21ec0b88cf61b62e6b43564355e5222e4a3fb394cac0db101f2dd0d4f74", size = 193118695, upload-time = "2025-03-07T01:45:27.821Z" },
|
||||
@@ -4483,9 +4467,9 @@ name = "nvidia-cusolver-cu12"
|
||||
version = "11.7.3.90"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-cublas-cu12" },
|
||||
{ name = "nvidia-cusparse-cu12" },
|
||||
{ name = "nvidia-nvjitlink-cu12" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/85/48/9a13d2975803e8cf2777d5ed57b87a0b6ca2cc795f9a4f59796a910bfb80/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:4376c11ad263152bd50ea295c05370360776f8c3427b30991df774f9fb26c450", size = 267506905, upload-time = "2025-03-07T01:47:16.273Z" },
|
||||
@@ -4496,7 +4480,7 @@ name = "nvidia-cusparse-cu12"
|
||||
version = "12.5.8.93"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-nvjitlink-cu12" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c2/f5/e1854cb2f2bcd4280c44736c93550cc300ff4b8c95ebe370d0aa7d2b473d/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1ec05d76bbbd8b61b06a80e1eaf8cf4959c3d4ce8e711b65ebd0443bb0ebb13b", size = 288216466, upload-time = "2025-03-07T01:48:13.779Z" },
|
||||
@@ -4556,9 +4540,9 @@ name = "ocrmac"
|
||||
version = "1.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "click" },
|
||||
{ name = "pillow" },
|
||||
{ name = "pyobjc-framework-vision" },
|
||||
{ name = "click", marker = "sys_platform == 'darwin'" },
|
||||
{ name = "pillow", marker = "sys_platform == 'darwin'" },
|
||||
{ name = "pyobjc-framework-vision", marker = "sys_platform == 'darwin'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/dd/dc/de3e9635774b97d9766f6815bbb3f5ec9bce347115f10d9abbf2733a9316/ocrmac-1.0.0.tar.gz", hash = "sha256:5b299e9030c973d1f60f82db000d6c2e5ff271601878c7db0885e850597d1d2e", size = 1463997, upload-time = "2024-11-07T12:00:00.197Z" }
|
||||
wheels = [
|
||||
@@ -6183,7 +6167,7 @@ name = "pyobjc-framework-cocoa"
|
||||
version = "11.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pyobjc-core" },
|
||||
{ name = "pyobjc-core", marker = "sys_platform == 'darwin'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/4b/c5/7a866d24bc026f79239b74d05e2cf3088b03263da66d53d1b4cf5207f5ae/pyobjc_framework_cocoa-11.1.tar.gz", hash = "sha256:87df76b9b73e7ca699a828ff112564b59251bb9bbe72e610e670a4dc9940d038", size = 5565335, upload-time = "2025-06-14T20:56:59.683Z" }
|
||||
wheels = [
|
||||
@@ -6199,8 +6183,8 @@ name = "pyobjc-framework-coreml"
|
||||
version = "11.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pyobjc-core" },
|
||||
{ name = "pyobjc-framework-cocoa" },
|
||||
{ name = "pyobjc-core", marker = "sys_platform == 'darwin'" },
|
||||
{ name = "pyobjc-framework-cocoa", marker = "sys_platform == 'darwin'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/0d/5d/4309f220981d769b1a2f0dcb2c5c104490d31389a8ebea67e5595ce1cb74/pyobjc_framework_coreml-11.1.tar.gz", hash = "sha256:775923eefb9eac2e389c0821b10564372de8057cea89f1ea1cdaf04996c970a7", size = 82005, upload-time = "2025-06-14T20:57:12.004Z" }
|
||||
wheels = [
|
||||
@@ -6216,8 +6200,8 @@ name = "pyobjc-framework-quartz"
|
||||
version = "11.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pyobjc-core" },
|
||||
{ name = "pyobjc-framework-cocoa" },
|
||||
{ name = "pyobjc-core", marker = "sys_platform == 'darwin'" },
|
||||
{ name = "pyobjc-framework-cocoa", marker = "sys_platform == 'darwin'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c7/ac/6308fec6c9ffeda9942fef72724f4094c6df4933560f512e63eac37ebd30/pyobjc_framework_quartz-11.1.tar.gz", hash = "sha256:a57f35ccfc22ad48c87c5932818e583777ff7276605fef6afad0ac0741169f75", size = 3953275, upload-time = "2025-06-14T20:58:17.924Z" }
|
||||
wheels = [
|
||||
@@ -6233,10 +6217,10 @@ name = "pyobjc-framework-vision"
|
||||
version = "11.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pyobjc-core" },
|
||||
{ name = "pyobjc-framework-cocoa" },
|
||||
{ name = "pyobjc-framework-coreml" },
|
||||
{ name = "pyobjc-framework-quartz" },
|
||||
{ name = "pyobjc-core", marker = "sys_platform == 'darwin'" },
|
||||
{ name = "pyobjc-framework-cocoa", marker = "sys_platform == 'darwin'" },
|
||||
{ name = "pyobjc-framework-coreml", marker = "sys_platform == 'darwin'" },
|
||||
{ name = "pyobjc-framework-quartz", marker = "sys_platform == 'darwin'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/40/a8/7128da4d0a0103cabe58910a7233e2f98d18c590b1d36d4b3efaaedba6b9/pyobjc_framework_vision-11.1.tar.gz", hash = "sha256:26590512ee7758da3056499062a344b8a351b178be66d4b719327884dde4216b", size = 133721, upload-time = "2025-06-14T20:58:46.095Z" }
|
||||
wheels = [
|
||||
|
||||
Reference in New Issue
Block a user