mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-17 12:58:31 +00:00
Compare commits
31 Commits
0.75.1
...
feat/add-i
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9be9d7d61c | ||
|
|
3878daffd6 | ||
|
|
d2db938d50 | ||
|
|
cf90bd3105 | ||
|
|
34954e6f74 | ||
|
|
e66a135d5d | ||
|
|
66698503b8 | ||
|
|
ec2967c362 | ||
|
|
4ae07468f3 | ||
|
|
6193eb13fa | ||
|
|
55cd15bfc6 | ||
|
|
5f46ff8836 | ||
|
|
cdfbd5f62b | ||
|
|
b43f3987ec | ||
|
|
240527d06c | ||
|
|
276cb7b7e8 | ||
|
|
048aa6cbcc | ||
|
|
fa9949b9d0 | ||
|
|
500072d855 | ||
|
|
04bcfa6e2d | ||
|
|
26afee9bed | ||
|
|
f29f4abdd7 | ||
|
|
4589d6fe9d | ||
|
|
201e652fa2 | ||
|
|
8bc07e6071 | ||
|
|
6baaad045a | ||
|
|
74c1703310 | ||
|
|
a921828e51 | ||
|
|
e1fd83e6a7 | ||
|
|
7d68e287cc | ||
|
|
f39a975e20 |
19
.github/security.md
vendored
Normal file
19
.github/security.md
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
CrewAI takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organization.
|
||||
If you believe you have found a security vulnerability in any CrewAI product or service, please report it to us as described below.
|
||||
|
||||
## Reporting a Vulnerability
|
||||
Please do not report security vulnerabilities through public GitHub issues.
|
||||
To report a vulnerability, please email us at security@crewai.com.
|
||||
Please include the requested information listed below so that we can triage your report more quickly
|
||||
|
||||
- Type of issue (e.g. SQL injection, cross-site scripting, etc.)
|
||||
- Full paths of source file(s) related to the manifestation of the issue
|
||||
- The location of the affected source code (tag/branch/commit or direct URL)
|
||||
- Any special configuration required to reproduce the issue
|
||||
- Step-by-step instructions to reproduce the issue (please include screenshots if needed)
|
||||
- Proof-of-concept or exploit code (if possible)
|
||||
- Impact of the issue, including how an attacker might exploit the issue
|
||||
|
||||
Once we have received your report, we will respond to you at the email address you provide. If the issue is confirmed, we will release a patch as soon as possible depending on the complexity of the issue.
|
||||
|
||||
At this time, we are not offering a bug bounty program. Any rewards will be at our discretion.
|
||||
@@ -351,7 +351,7 @@ pre-commit install
|
||||
### Running Tests
|
||||
|
||||
```bash
|
||||
uvx pytest
|
||||
uv run pytest .
|
||||
```
|
||||
|
||||
### Running static type checks
|
||||
|
||||
@@ -31,16 +31,17 @@ Think of an agent as a member of a team, with specific skills and a particular j
|
||||
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
|
||||
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
|
||||
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
|
||||
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`.
|
||||
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`. |
|
||||
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
|
||||
| **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. |
|
||||
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
|
||||
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
|
||||
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
|
||||
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
|
||||
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`.
|
||||
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`. |
|
||||
| **Use System Prompt** *(optional)* | `use_system_prompt` | Adds the ability to not use system prompt (to support o1 models). Default is `True`. |
|
||||
| **Respect Context Window** *(optional)* | `respect_context_window` | Summary strategy to avoid overflowing the context window. Default is `True`. |
|
||||
| **Code Execution Mode** *(optional)* | `code_execution_mode` | Determines the mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution on the host machine). Default is `safe`. |
|
||||
|
||||
## Creating an agent
|
||||
|
||||
@@ -83,6 +84,7 @@ agent = Agent(
|
||||
max_retry_limit=2, # Optional
|
||||
use_system_prompt=True, # Optional
|
||||
respect_context_window=True, # Optional
|
||||
code_execution_mode='safe', # Optional, defaults to 'safe'
|
||||
)
|
||||
```
|
||||
|
||||
@@ -156,4 +158,4 @@ crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
|
||||
## Conclusion
|
||||
|
||||
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents,
|
||||
you can create sophisticated AI systems that leverage the power of collaborative intelligence.
|
||||
you can create sophisticated AI systems that leverage the power of collaborative intelligence. The `code_execution_mode` attribute provides flexibility in how agents execute code, allowing for both secure and direct execution options.
|
||||
|
||||
@@ -6,7 +6,7 @@ icon: terminal
|
||||
|
||||
# CrewAI CLI Documentation
|
||||
|
||||
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews and pipelines.
|
||||
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews & flows.
|
||||
|
||||
## Installation
|
||||
|
||||
@@ -146,3 +146,34 @@ crewai run
|
||||
Make sure to run these commands from the directory where your CrewAI project is set up.
|
||||
Some commands may require additional configuration or setup within your project structure.
|
||||
</Note>
|
||||
|
||||
|
||||
### 9. API Keys
|
||||
|
||||
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.
|
||||
|
||||
Once you've selected an LLM provider, you will be prompted for API keys.
|
||||
|
||||
#### Initial API key providers
|
||||
|
||||
The CLI will initially prompt for API keys for the following services:
|
||||
|
||||
* OpenAI
|
||||
* Groq
|
||||
* Anthropic
|
||||
* Google Gemini
|
||||
|
||||
When you select a provider, the CLI will prompt you to enter your API key.
|
||||
|
||||
#### Other Options
|
||||
|
||||
If you select option 6, you will be able to select from a list of LiteLLM supported providers.
|
||||
|
||||
When you select a provider, the CLI will prompt you to enter the Key name and the API key.
|
||||
|
||||
See the following link for each provider's key name:
|
||||
|
||||
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -18,60 +18,63 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
|
||||
|
||||
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
|
||||
|
||||
5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
|
||||
|
||||
## Getting Started
|
||||
|
||||
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
|
||||
|
||||
```python Code
|
||||
### Passing Inputs to Flows
|
||||
|
||||
Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
|
||||
|
||||
#### Structured State Management
|
||||
|
||||
In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from dotenv import load_dotenv
|
||||
from litellm import completion
|
||||
from pydantic import BaseModel
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
class ExampleFlow(Flow):
|
||||
model = "gpt-4o-mini"
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
@start()
|
||||
def generate_city(self):
|
||||
print("Starting flow")
|
||||
def first_method(self):
|
||||
# Implementation
|
||||
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Return the name of a random city in the world.",
|
||||
},
|
||||
],
|
||||
)
|
||||
flow = StructuredExampleFlow()
|
||||
flow.kickoff(inputs={"counter": 10})
|
||||
```
|
||||
|
||||
random_city = response["choices"][0]["message"]["content"]
|
||||
print(f"Random City: {random_city}")
|
||||
In this example, the `counter` is initialized to `10`, while `message` retains its default value.
|
||||
|
||||
return random_city
|
||||
#### Unstructured State Management
|
||||
|
||||
@listen(generate_city)
|
||||
def generate_fun_fact(self, random_city):
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"Tell me a fun fact about {random_city}",
|
||||
},
|
||||
],
|
||||
)
|
||||
In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
|
||||
|
||||
fun_fact = response["choices"][0]["message"]["content"]
|
||||
return fun_fact
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class UnstructuredExampleFlow(Flow):
|
||||
@start()
|
||||
def first_method(self):
|
||||
# Implementation
|
||||
|
||||
flow = UnstructuredExampleFlow()
|
||||
flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
|
||||
```
|
||||
|
||||
flow = ExampleFlow()
|
||||
result = flow.kickoff()
|
||||
Here, both `counter` and `message` are updated based on the provided inputs.
|
||||
|
||||
print(f"Generated fun fact: {result}")
|
||||
**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
|
||||
|
||||
### Example Flow
|
||||
|
||||
```python
|
||||
# Existing example code
|
||||
```
|
||||
|
||||
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
|
||||
@@ -94,14 +97,14 @@ The `@listen()` decorator can be used in several ways:
|
||||
|
||||
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
@listen("generate_city")
|
||||
def generate_fun_fact(self, random_city):
|
||||
# Implementation
|
||||
```
|
||||
|
||||
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
|
||||
```python Code
|
||||
```python
|
||||
@listen(generate_city)
|
||||
def generate_fun_fact(self, random_city):
|
||||
# Implementation
|
||||
@@ -118,7 +121,7 @@ When you run a Flow, the final output is determined by the last method that comp
|
||||
Here's how you can access the final output:
|
||||
|
||||
<CodeGroup>
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class OutputExampleFlow(Flow):
|
||||
@@ -130,18 +133,17 @@ class OutputExampleFlow(Flow):
|
||||
def second_method(self, first_output):
|
||||
return f"Second method received: {first_output}"
|
||||
|
||||
|
||||
flow = OutputExampleFlow()
|
||||
final_output = flow.kickoff()
|
||||
|
||||
print("---- Final Output ----")
|
||||
print(final_output)
|
||||
````
|
||||
```
|
||||
|
||||
``` text Output
|
||||
```text
|
||||
---- Final Output ----
|
||||
Second method received: Output from first_method
|
||||
````
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
@@ -156,7 +158,7 @@ Here's an example of how to update and access the state:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -184,7 +186,7 @@ print("Final State:")
|
||||
print(flow.state)
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Final Output: Hello from first_method - updated by second_method
|
||||
Final State:
|
||||
counter=2 message='Hello from first_method - updated by second_method'
|
||||
@@ -208,10 +210,10 @@ allowing developers to choose the approach that best fits their application's ne
|
||||
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
|
||||
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class UntructuredExampleFlow(Flow):
|
||||
class UnstructuredExampleFlow(Flow):
|
||||
|
||||
@start()
|
||||
def first_method(self):
|
||||
@@ -230,8 +232,7 @@ class UntructuredExampleFlow(Flow):
|
||||
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
flow = UntructuredExampleFlow()
|
||||
flow = UnstructuredExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
@@ -245,16 +246,14 @@ flow.kickoff()
|
||||
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
|
||||
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
@start()
|
||||
@@ -273,7 +272,6 @@ class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
flow = StructuredExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
@@ -307,7 +305,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, or_, start
|
||||
|
||||
class OrExampleFlow(Flow):
|
||||
@@ -324,13 +322,11 @@ class OrExampleFlow(Flow):
|
||||
def logger(self, result):
|
||||
print(f"Logger: {result}")
|
||||
|
||||
|
||||
|
||||
flow = OrExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Logger: Hello from the start method
|
||||
Logger: Hello from the second method
|
||||
```
|
||||
@@ -346,7 +342,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, and_, listen, start
|
||||
|
||||
class AndExampleFlow(Flow):
|
||||
@@ -368,7 +364,7 @@ flow = AndExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
---- Logger ----
|
||||
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
|
||||
```
|
||||
@@ -385,7 +381,7 @@ You can specify different routes based on the output of the method, allowing you
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
import random
|
||||
from crewai.flow.flow import Flow, listen, router, start
|
||||
from pydantic import BaseModel
|
||||
@@ -416,12 +412,11 @@ class RouterFlow(Flow[ExampleState]):
|
||||
def fourth_method(self):
|
||||
print("Fourth method running")
|
||||
|
||||
|
||||
flow = RouterFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Starting the structured flow
|
||||
Third method running
|
||||
Fourth method running
|
||||
@@ -484,7 +479,7 @@ The `main.py` file is where you create your flow and connect the crews together.
|
||||
|
||||
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
|
||||
|
||||
```python Code
|
||||
```python
|
||||
#!/usr/bin/env python
|
||||
from random import randint
|
||||
|
||||
@@ -560,6 +555,42 @@ uv run kickoff
|
||||
|
||||
The flow will execute, and you should see the output in the console.
|
||||
|
||||
|
||||
### Adding Additional Crews Using the CLI
|
||||
|
||||
Once you have created your initial flow, you can easily add additional crews to your project using the CLI. This allows you to expand your flow's capabilities by integrating new crews without starting from scratch.
|
||||
|
||||
To add a new crew to your existing flow, use the following command:
|
||||
|
||||
```bash
|
||||
crewai flow add-crew <crew_name>
|
||||
```
|
||||
|
||||
This command will create a new directory for your crew within the `crews` folder of your flow project. It will include the necessary configuration files and a crew definition file, similar to the initial setup.
|
||||
|
||||
#### Folder Structure
|
||||
|
||||
After adding a new crew, your folder structure will look like this:
|
||||
|
||||
| Directory/File | Description |
|
||||
| :--------------------- | :----------------------------------------------------------------- |
|
||||
| `name_of_flow/` | Root directory for the flow. |
|
||||
| ├── `crews/` | Contains directories for specific crews. |
|
||||
| │ ├── `poem_crew/` | Directory for the "poem_crew" with its configurations and scripts. |
|
||||
| │ │ ├── `config/` | Configuration files directory for the "poem_crew". |
|
||||
| │ │ │ ├── `agents.yaml` | YAML file defining the agents for "poem_crew". |
|
||||
| │ │ │ └── `tasks.yaml` | YAML file defining the tasks for "poem_crew". |
|
||||
| │ │ └── `poem_crew.py` | Script for "poem_crew" functionality. |
|
||||
| └── `name_of_crew/` | Directory for the new crew. |
|
||||
| ├── `config/` | Configuration files directory for the new crew. |
|
||||
| │ ├── `agents.yaml` | YAML file defining the agents for the new crew. |
|
||||
| │ └── `tasks.yaml` | YAML file defining the tasks for the new crew. |
|
||||
| └── `name_of_crew.py` | Script for the new crew functionality. |
|
||||
|
||||
You can then customize the `agents.yaml` and `tasks.yaml` files to define the agents and tasks for your new crew. The `name_of_crew.py` file will contain the crew's logic, which you can modify to suit your needs.
|
||||
|
||||
By using the CLI to add additional crews, you can efficiently build complex AI workflows that leverage multiple crews working together.
|
||||
|
||||
## Plot Flows
|
||||
|
||||
Visualizing your AI workflows can provide valuable insights into the structure and execution paths of your flows. CrewAI offers a powerful visualization tool that allows you to generate interactive plots of your flows, making it easier to understand and optimize your AI workflows.
|
||||
@@ -576,7 +607,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
|
||||
|
||||
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
# Assuming you have a flow instance
|
||||
flow.plot("my_flow_plot")
|
||||
```
|
||||
@@ -599,13 +630,114 @@ The generated plot will display nodes representing the tasks in your flow, with
|
||||
|
||||
By visualizing your flows, you can gain a clearer understanding of the workflow's structure, making it easier to debug, optimize, and communicate your AI processes to others.
|
||||
|
||||
### Conclusion
|
||||
|
||||
Plotting your flows is a powerful feature of CrewAI that enhances your ability to design and manage complex AI workflows. Whether you choose to use the `plot()` method or the command line, generating plots will provide you with a visual representation of your workflows, aiding in both development and presentation.
|
||||
## Advanced
|
||||
|
||||
In this section, we explore more complex use cases of CrewAI Flows, starting with a self-evaluation loop. This pattern is crucial for developing AI systems that can iteratively improve their outputs through feedback.
|
||||
|
||||
### 1) Self-Evaluation Loop
|
||||
|
||||
The self-evaluation loop is a powerful pattern that allows AI workflows to automatically assess and refine their outputs. This example demonstrates how to set up a flow that generates content, evaluates it, and iterates based on feedback until the desired quality is achieved.
|
||||
|
||||
#### Overview
|
||||
|
||||
The self-evaluation loop involves two main Crews:
|
||||
|
||||
1. **ShakespeareanXPostCrew**: Generates a Shakespearean-style post on a given topic.
|
||||
2. **XPostReviewCrew**: Evaluates the generated post, providing feedback on its validity and quality.
|
||||
|
||||
The process iterates until the post meets the criteria or a maximum retry limit is reached. This approach ensures high-quality outputs through iterative refinement.
|
||||
|
||||
#### Importance
|
||||
|
||||
This pattern is essential for building robust AI systems that can adapt and improve over time. By automating the evaluation and feedback loop, developers can ensure that their AI workflows produce reliable and high-quality results.
|
||||
|
||||
#### Main Code Highlights
|
||||
|
||||
Below is the `main.py` file for the self-evaluation loop flow:
|
||||
|
||||
```python
|
||||
from typing import Optional
|
||||
from crewai.flow.flow import Flow, listen, router, start
|
||||
from pydantic import BaseModel
|
||||
from self_evaluation_loop_flow.crews.shakespeare_crew.shakespeare_crew import (
|
||||
ShakespeareanXPostCrew,
|
||||
)
|
||||
from self_evaluation_loop_flow.crews.x_post_review_crew.x_post_review_crew import (
|
||||
XPostReviewCrew,
|
||||
)
|
||||
|
||||
class ShakespeareXPostFlowState(BaseModel):
|
||||
x_post: str = ""
|
||||
feedback: Optional[str] = None
|
||||
valid: bool = False
|
||||
retry_count: int = 0
|
||||
|
||||
class ShakespeareXPostFlow(Flow[ShakespeareXPostFlowState]):
|
||||
|
||||
@start("retry")
|
||||
def generate_shakespeare_x_post(self):
|
||||
print("Generating Shakespearean X post")
|
||||
topic = "Flying cars"
|
||||
result = (
|
||||
ShakespeareanXPostCrew()
|
||||
.crew()
|
||||
.kickoff(inputs={"topic": topic, "feedback": self.state.feedback})
|
||||
)
|
||||
print("X post generated", result.raw)
|
||||
self.state.x_post = result.raw
|
||||
|
||||
@router(generate_shakespeare_x_post)
|
||||
def evaluate_x_post(self):
|
||||
if self.state.retry_count > 3:
|
||||
return "max_retry_exceeded"
|
||||
result = XPostReviewCrew().crew().kickoff(inputs={"x_post": self.state.x_post})
|
||||
self.state.valid = result["valid"]
|
||||
self.state.feedback = result["feedback"]
|
||||
print("valid", self.state.valid)
|
||||
print("feedback", self.state.feedback)
|
||||
self.state.retry_count += 1
|
||||
if self.state.valid:
|
||||
return "complete"
|
||||
return "retry"
|
||||
|
||||
@listen("complete")
|
||||
def save_result(self):
|
||||
print("X post is valid")
|
||||
print("X post:", self.state.x_post)
|
||||
with open("x_post.txt", "w") as file:
|
||||
file.write(self.state.x_post)
|
||||
|
||||
@listen("max_retry_exceeded")
|
||||
def max_retry_exceeded_exit(self):
|
||||
print("Max retry count exceeded")
|
||||
print("X post:", self.state.x_post)
|
||||
print("Feedback:", self.state.feedback)
|
||||
|
||||
def kickoff():
|
||||
shakespeare_flow = ShakespeareXPostFlow()
|
||||
shakespeare_flow.kickoff()
|
||||
|
||||
def plot():
|
||||
shakespeare_flow = ShakespeareXPostFlow()
|
||||
shakespeare_flow.plot()
|
||||
|
||||
if __name__ == "__main__":
|
||||
kickoff()
|
||||
```
|
||||
|
||||
#### Code Highlights
|
||||
|
||||
- **Retry Mechanism**: The flow uses a retry mechanism to regenerate the post if it doesn't meet the criteria, up to a maximum of three retries.
|
||||
- **Feedback Loop**: Feedback from the `XPostReviewCrew` is used to refine the post iteratively.
|
||||
- **State Management**: The flow maintains state using a Pydantic model, ensuring type safety and clarity.
|
||||
|
||||
For a complete example and further details, please refer to the [Self Evaluation Loop Flow repository](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow).
|
||||
|
||||
|
||||
## Next Steps
|
||||
|
||||
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are four specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
|
||||
If you're interested in exploring additional examples of flows, we have a variety of recommendations in our examples repository. Here are five specific flow examples, each showcasing unique use cases to help you match your current problem type to a specific example:
|
||||
|
||||
1. **Email Auto Responder Flow**: This example demonstrates an infinite loop where a background job continually runs to automate email responses. It's a great use case for tasks that need to be performed repeatedly without manual intervention. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/email_auto_responder_flow)
|
||||
|
||||
@@ -615,6 +747,8 @@ If you're interested in exploring additional examples of flows, we have a variet
|
||||
|
||||
4. **Meeting Assistant Flow**: This flow demonstrates how to broadcast one event to trigger multiple follow-up actions. For instance, after a meeting is completed, the flow can update a Trello board, send a Slack message, and save the results. It's a great example of handling multiple outcomes from a single event, making it ideal for comprehensive task management and notification systems. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/meeting_assistant_flow)
|
||||
|
||||
5. **Self Evaluation Loop Flow**: This flow demonstrates a self-evaluation loop where AI workflows automatically assess and refine their outputs through feedback. It involves generating content, evaluating it, and iterating until the desired quality is achieved. This pattern is crucial for developing robust AI systems that can adapt and improve over time. [View Example](https://github.com/crewAIInc/crewAI-examples/tree/main/self_evaluation_loop_flow)
|
||||
|
||||
By exploring these examples, you can gain insights into how to leverage CrewAI Flows for various use cases, from automating repetitive tasks to managing complex, multi-step processes with dynamic decision-making and human feedback.
|
||||
|
||||
Also, check out our YouTube video on how to use flows in CrewAI below!
|
||||
|
||||
@@ -25,52 +25,55 @@ By default, CrewAI uses the `gpt-4o-mini` model. It uses environment variables i
|
||||
- `OPENAI_API_BASE`
|
||||
- `OPENAI_API_KEY`
|
||||
|
||||
### 2. String Identifier
|
||||
|
||||
```python Code
|
||||
agent = Agent(llm="gpt-4o", ...)
|
||||
```
|
||||
|
||||
### 3. LLM Instance
|
||||
|
||||
List of [more providers](https://docs.litellm.ai/docs/providers).
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(model="gpt-4", temperature=0.7)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
|
||||
### 4. Custom LLM Objects
|
||||
### 2. Custom LLM Objects
|
||||
|
||||
Pass a custom LLM implementation or object from another library.
|
||||
|
||||
See below for examples.
|
||||
|
||||
<Tabs>
|
||||
<Tab title="String Identifier">
|
||||
```python Code
|
||||
agent = Agent(llm="gpt-4o", ...)
|
||||
```
|
||||
</Tab>
|
||||
|
||||
<Tab title="LLM Instance">
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(model="gpt-4", temperature=0.7)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Connecting to OpenAI-Compatible LLMs
|
||||
|
||||
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
|
||||
|
||||
1. Using environment variables:
|
||||
<Tabs>
|
||||
<Tab title="Using Environment Variables">
|
||||
```python Code
|
||||
import os
|
||||
|
||||
```python Code
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="Using LLM Class Attributes">
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
|
||||
```
|
||||
|
||||
2. Using LLM class attributes:
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="custom-model-name",
|
||||
api_key="your-api-key",
|
||||
base_url="https://api.your-provider.com/v1"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
llm = LLM(
|
||||
model="custom-model-name",
|
||||
api_key="your-api-key",
|
||||
base_url="https://api.your-provider.com/v1"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## LLM Configuration Options
|
||||
|
||||
@@ -97,55 +100,157 @@ When configuring an LLM for your agent, you have access to a wide range of param
|
||||
| **api_key** | `str` | Your API key for authentication. |
|
||||
|
||||
|
||||
## OpenAI Example Configuration
|
||||
These are examples of how to configure LLMs for your agent.
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
<AccordionGroup>
|
||||
<Accordion title="OpenAI">
|
||||
|
||||
llm = LLM(
|
||||
model="gpt-4",
|
||||
temperature=0.8,
|
||||
max_tokens=150,
|
||||
top_p=0.9,
|
||||
frequency_penalty=0.1,
|
||||
presence_penalty=0.1,
|
||||
stop=["END"],
|
||||
seed=42,
|
||||
base_url="https://api.openai.com/v1",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
## Cerebras Example Configuration
|
||||
llm = LLM(
|
||||
model="gpt-4",
|
||||
temperature=0.8,
|
||||
max_tokens=150,
|
||||
top_p=0.9,
|
||||
frequency_penalty=0.1,
|
||||
presence_penalty=0.1,
|
||||
stop=["END"],
|
||||
seed=42,
|
||||
base_url="https://api.openai.com/v1",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
<Accordion title="Cerebras">
|
||||
|
||||
llm = LLM(
|
||||
model="cerebras/llama-3.1-70b",
|
||||
base_url="https://api.cerebras.ai/v1",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
## Using Ollama (Local LLMs)
|
||||
llm = LLM(
|
||||
model="cerebras/llama-3.1-70b",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Ollama (Local LLMs)">
|
||||
|
||||
CrewAI supports using Ollama for running open-source models locally:
|
||||
CrewAI supports using Ollama for running open-source models locally:
|
||||
|
||||
1. Install Ollama: [ollama.ai](https://ollama.ai/)
|
||||
2. Run a model: `ollama run llama2`
|
||||
3. Configure agent:
|
||||
1. Install Ollama: [ollama.ai](https://ollama.ai/)
|
||||
2. Run a model: `ollama run llama2`
|
||||
3. Configure agent:
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
agent = Agent(
|
||||
llm=LLM(model="ollama/llama3.1", base_url="http://localhost:11434"),
|
||||
...
|
||||
)
|
||||
```
|
||||
agent = Agent(
|
||||
llm=LLM(
|
||||
model="ollama/llama3.1",
|
||||
base_url="http://localhost:11434"
|
||||
),
|
||||
...
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Groq">
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="groq/llama3-8b-8192",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Anthropic">
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="anthropic/claude-3-5-sonnet-20241022",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Fireworks AI">
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Gemini">
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="gemini/gemini-1.5-pro-002",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Perplexity AI (pplx-api)">
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="perplexity/mistral-7b-instruct",
|
||||
base_url="https://api.perplexity.ai/v1",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="IBM watsonx.ai">
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="watsonx/ibm/granite-13b-chat-v2",
|
||||
base_url="https://api.watsonx.ai/v1",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Hugging Face">
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
api_key="your-api-key-here",
|
||||
base_url="your_api_endpoint"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## Changing the Base API URL
|
||||
|
||||
|
||||
@@ -118,7 +118,7 @@ Alternatively, you can directly pass the OpenAIEmbeddingFunction to the embedder
|
||||
Example:
|
||||
```python Code
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import OpenAIEmbeddingFunction
|
||||
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
@@ -174,6 +174,7 @@ my_crew = Crew(
|
||||
### Using Azure OpenAI embeddings
|
||||
|
||||
```python Code
|
||||
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
@@ -182,7 +183,7 @@ my_crew = Crew(
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder=embedding_functions.OpenAIEmbeddingFunction(
|
||||
embedder=OpenAIEmbeddingFunction(
|
||||
api_key="YOUR_API_KEY",
|
||||
api_base="YOUR_API_BASE_PATH",
|
||||
api_type="azure",
|
||||
@@ -195,6 +196,7 @@ my_crew = Crew(
|
||||
### Using Vertex AI embeddings
|
||||
|
||||
```python Code
|
||||
from chromadb.utils.embedding_functions import GoogleVertexEmbeddingFunction
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
@@ -203,7 +205,7 @@ my_crew = Crew(
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder=embedding_functions.GoogleVertexEmbeddingFunction(
|
||||
embedder=GoogleVertexEmbeddingFunction(
|
||||
project_id="YOUR_PROJECT_ID",
|
||||
region="YOUR_REGION",
|
||||
api_key="YOUR_API_KEY",
|
||||
@@ -252,6 +254,31 @@ my_crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
### Using Watson embeddings
|
||||
|
||||
```python Code
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
# Note: Ensure you have installed and imported `ibm_watsonx_ai` for Watson embeddings to work.
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "watson",
|
||||
"config": {
|
||||
"model": "<model_name>",
|
||||
"api_url": "<api_url>",
|
||||
"api_key": "<YOUR_API_KEY>",
|
||||
"project_id": "<YOUR_PROJECT_ID>",
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Resetting Memory
|
||||
|
||||
```shell
|
||||
|
||||
@@ -5,13 +5,14 @@ icon: screwdriver-wrench
|
||||
---
|
||||
|
||||
## Introduction
|
||||
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
|
||||
|
||||
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
|
||||
This documentation outlines how to create, integrate, and leverage these tools within the CrewAI framework, including a new focus on collaboration tools.
|
||||
|
||||
## What is a Tool?
|
||||
|
||||
A tool in CrewAI is a skill or function that agents can utilize to perform various actions.
|
||||
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
|
||||
A tool in CrewAI is a skill or function that agents can utilize to perform various actions.
|
||||
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
|
||||
enabling everything from simple searches to complex interactions and effective teamwork among agents.
|
||||
|
||||
## Key Characteristics of Tools
|
||||
@@ -103,57 +104,53 @@ crew.kickoff()
|
||||
|
||||
Here is a list of the available tools and their descriptions:
|
||||
|
||||
| Tool | Description |
|
||||
| :-------------------------- | :-------------------------------------------------------------------------------------------- |
|
||||
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
|
||||
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
|
||||
| **CodeInterpreterTool** | A tool for interpreting python code. |
|
||||
| **ComposioTool** | Enables use of Composio tools. |
|
||||
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
|
||||
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
|
||||
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
|
||||
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
|
||||
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
|
||||
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
|
||||
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
|
||||
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
|
||||
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
|
||||
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
|
||||
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
|
||||
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
|
||||
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
|
||||
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
|
||||
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
|
||||
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
|
||||
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
|
||||
| **Vision Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
|
||||
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
|
||||
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
|
||||
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
|
||||
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
|
||||
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
|
||||
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
|
||||
| Tool | Description |
|
||||
| :------------------------------- | :--------------------------------------------------------------------------------------------- |
|
||||
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
|
||||
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
|
||||
| **CodeInterpreterTool** | A tool for interpreting python code. |
|
||||
| **ComposioTool** | Enables use of Composio tools. |
|
||||
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
|
||||
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
|
||||
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
|
||||
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
|
||||
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
|
||||
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
|
||||
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
|
||||
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
|
||||
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
|
||||
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search. |
|
||||
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
|
||||
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
|
||||
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
|
||||
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
|
||||
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
|
||||
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
|
||||
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
|
||||
| **Vision Tool** | A tool for generating images using the DALL-E API. |
|
||||
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
|
||||
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
|
||||
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
|
||||
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
|
||||
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
|
||||
| **YoutubeChannelSearchTool** | A RAG tool for searching within YouTube channels, useful for video content analysis. |
|
||||
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
|
||||
|
||||
## Creating your own Tools
|
||||
|
||||
<Tip>
|
||||
Developers can craft `custom tools` tailored for their agent’s needs or utilize pre-built options.
|
||||
Developers can craft `custom tools` tailored for their agent’s needs or
|
||||
utilize pre-built options.
|
||||
</Tip>
|
||||
|
||||
To create your own CrewAI tools you will need to install our extra tools package:
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
Once you do that there are two main ways for one to create a CrewAI tool:
|
||||
There are two main ways for one to create a CrewAI tool:
|
||||
|
||||
### Subclassing `BaseTool`
|
||||
|
||||
```python Code
|
||||
from crewai_tools import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
@@ -167,7 +164,7 @@ class MyCustomTool(BaseTool):
|
||||
### Utilizing the `tool` Decorator
|
||||
|
||||
```python Code
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
@tool("Name of my tool")
|
||||
def my_tool(question: str) -> str:
|
||||
"""Clear description for what this tool is useful for, your agent will need this information to use it."""
|
||||
@@ -178,11 +175,13 @@ def my_tool(question: str) -> str:
|
||||
### Custom Caching Mechanism
|
||||
|
||||
<Tip>
|
||||
Tools can optionally implement a `cache_function` to fine-tune caching behavior. This function determines when to cache results based on specific conditions, offering granular control over caching logic.
|
||||
Tools can optionally implement a `cache_function` to fine-tune caching
|
||||
behavior. This function determines when to cache results based on specific
|
||||
conditions, offering granular control over caching logic.
|
||||
</Tip>
|
||||
|
||||
```python Code
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def multiplication_tool(first_number: int, second_number: int) -> str:
|
||||
@@ -208,6 +207,6 @@ writer1 = Agent(
|
||||
|
||||
## Conclusion
|
||||
|
||||
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
|
||||
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling,
|
||||
caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.
|
||||
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
|
||||
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling,
|
||||
caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.
|
||||
|
||||
@@ -6,28 +6,27 @@ icon: hammer
|
||||
|
||||
## Creating and Utilizing Tools in CrewAI
|
||||
|
||||
This guide provides detailed instructions on creating custom tools for the CrewAI framework and how to efficiently manage and utilize these tools,
|
||||
incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools,
|
||||
This guide provides detailed instructions on creating custom tools for the CrewAI framework and how to efficiently manage and utilize these tools,
|
||||
incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools,
|
||||
enabling agents to perform a wide range of actions.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Before creating your own tools, ensure you have the crewAI extra tools package installed:
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
### Subclassing `BaseTool`
|
||||
|
||||
To create a personalized tool, inherit from `BaseTool` and define the necessary attributes and the `_run` method.
|
||||
To create a personalized tool, inherit from `BaseTool` and define the necessary attributes, including the `args_schema` for input validation, and the `_run` method.
|
||||
|
||||
```python Code
|
||||
from crewai_tools import BaseTool
|
||||
from typing import Type
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class MyToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = "What this tool does. It's vital for effective utilization."
|
||||
args_schema: Type[BaseModel] = MyToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Your tool's logic here
|
||||
@@ -40,7 +39,7 @@ Alternatively, you can use the tool decorator `@tool`. This approach allows you
|
||||
offering a concise and efficient way to create specialized tools tailored to your needs.
|
||||
|
||||
```python Code
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool("Tool Name")
|
||||
def my_simple_tool(question: str) -> str:
|
||||
@@ -66,5 +65,5 @@ def my_cache_strategy(arguments: dict, result: str) -> bool:
|
||||
cached_tool.cache_function = my_cache_strategy
|
||||
```
|
||||
|
||||
By adhering to these guidelines and incorporating new functionalities and collaboration tools into your tool creation and management processes,
|
||||
By adhering to these guidelines and incorporating new functionalities and collaboration tools into your tool creation and management processes,
|
||||
you can leverage the full capabilities of the CrewAI framework, enhancing both the development experience and the efficiency of your AI agents.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.75.1"
|
||||
version = "0.76.9"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
@@ -16,7 +16,7 @@ dependencies = [
|
||||
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
|
||||
"instructor>=1.3.3",
|
||||
"regex>=2024.9.11",
|
||||
"crewai-tools>=0.13.2",
|
||||
"crewai-tools>=0.13.4",
|
||||
"click>=8.1.7",
|
||||
"python-dotenv>=1.0.0",
|
||||
"appdirs>=1.4.4",
|
||||
@@ -28,6 +28,7 @@ dependencies = [
|
||||
"uv>=0.4.25",
|
||||
"tomli-w>=1.1.0",
|
||||
"chromadb>=0.4.24",
|
||||
"tomli>=2.0.2",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
@@ -36,7 +37,7 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools>=0.13.2"]
|
||||
tools = ["crewai-tools>=0.13.4"]
|
||||
agentops = ["agentops>=0.3.0"]
|
||||
|
||||
[tool.uv]
|
||||
@@ -51,7 +52,7 @@ dev-dependencies = [
|
||||
"mkdocs-material-extensions>=1.3.1",
|
||||
"pillow>=10.2.0",
|
||||
"cairosvg>=2.7.1",
|
||||
"crewai-tools>=0.13.2",
|
||||
"crewai-tools>=0.13.4",
|
||||
"pytest>=8.0.0",
|
||||
"pytest-vcr>=1.0.2",
|
||||
"python-dotenv>=1.0.0",
|
||||
|
||||
@@ -14,5 +14,5 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.75.1"
|
||||
__version__ = "0.76.9"
|
||||
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
from inspect import signature
|
||||
from typing import Any, List, Optional, Union
|
||||
import shutil
|
||||
import subprocess
|
||||
from typing import Any, List, Literal, Optional, Union
|
||||
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
@@ -9,7 +10,8 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
@@ -112,6 +114,10 @@ class Agent(BaseAgent):
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
)
|
||||
code_execution_mode: Literal["safe", "unsafe"] = Field(
|
||||
default="safe",
|
||||
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
@@ -173,6 +179,9 @@ class Agent(BaseAgent):
|
||||
if not self.agent_executor:
|
||||
self._setup_agent_executor()
|
||||
|
||||
if self.allow_code_execution:
|
||||
self._validate_docker_installation()
|
||||
|
||||
return self
|
||||
|
||||
def _setup_agent_executor(self):
|
||||
@@ -184,7 +193,7 @@ class Agent(BaseAgent):
|
||||
self,
|
||||
task: Any,
|
||||
context: Optional[str] = None,
|
||||
tools: Optional[List[Any]] = None,
|
||||
tools: Optional[List[BaseTool]] = None,
|
||||
) -> str:
|
||||
"""Execute a task with the agent.
|
||||
|
||||
@@ -251,7 +260,9 @@ class Agent(BaseAgent):
|
||||
|
||||
return result
|
||||
|
||||
def create_agent_executor(self, tools=None, task=None) -> None:
|
||||
def create_agent_executor(
|
||||
self, tools: Optional[List[BaseTool]] = None, task=None
|
||||
) -> None:
|
||||
"""Create an agent executor for the agent.
|
||||
|
||||
Returns:
|
||||
@@ -308,7 +319,9 @@ class Agent(BaseAgent):
|
||||
try:
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
return [CodeInterpreterTool()]
|
||||
# Set the unsafe_mode based on the code_execution_mode attribute
|
||||
unsafe_mode = self.code_execution_mode == "unsafe"
|
||||
return [CodeInterpreterTool(unsafe_mode=unsafe_mode)]
|
||||
except ModuleNotFoundError:
|
||||
self._logger.log(
|
||||
"info", "Coding tools not available. Install crewai_tools. "
|
||||
@@ -322,7 +335,7 @@ class Agent(BaseAgent):
|
||||
tools_list = []
|
||||
try:
|
||||
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
|
||||
from crewai_tools import BaseTool as CrewAITool
|
||||
from crewai.tools import BaseTool as CrewAITool
|
||||
|
||||
for tool in tools:
|
||||
if isinstance(tool, CrewAITool):
|
||||
@@ -381,33 +394,42 @@ class Agent(BaseAgent):
|
||||
|
||||
return description
|
||||
|
||||
def _render_text_description_and_args(self, tools: List[Any]) -> str:
|
||||
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
|
||||
"""Render the tool name, description, and args in plain text.
|
||||
|
||||
Output will be in the format of:
|
||||
Output will be in the format of:
|
||||
|
||||
.. code-block:: markdown
|
||||
.. code-block:: markdown
|
||||
|
||||
search: This tool is used for search, args: {"query": {"type": "string"}}
|
||||
calculator: This tool is used for math, \
|
||||
args: {"expression": {"type": "string"}}
|
||||
args: {"expression": {"type": "string"}}
|
||||
"""
|
||||
tool_strings = []
|
||||
for tool in tools:
|
||||
args_schema = str(tool.model_fields)
|
||||
if hasattr(tool, "func") and tool.func:
|
||||
sig = signature(tool.func)
|
||||
description = (
|
||||
f"Tool Name: {tool.name}{sig}\nTool Description: {tool.description}"
|
||||
)
|
||||
else:
|
||||
description = (
|
||||
f"Tool Name: {tool.name}\nTool Description: {tool.description}"
|
||||
)
|
||||
tool_strings.append(f"{description}\nTool Arguments: {args_schema}")
|
||||
tool_strings.append(tool.description)
|
||||
|
||||
return "\n".join(tool_strings)
|
||||
|
||||
def _validate_docker_installation(self) -> None:
|
||||
"""Check if Docker is installed and running."""
|
||||
if not shutil.which("docker"):
|
||||
raise RuntimeError(
|
||||
f"Docker is not installed. Please install Docker to use code execution with agent: {self.role}"
|
||||
)
|
||||
|
||||
try:
|
||||
subprocess.run(
|
||||
["docker", "info"],
|
||||
check=True,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
)
|
||||
except subprocess.CalledProcessError:
|
||||
raise RuntimeError(
|
||||
f"Docker is not running. Please start Docker to use code execution with agent: {self.role}"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def __tools_names(tools) -> str:
|
||||
return ", ".join([t.name for t in tools])
|
||||
|
||||
@@ -18,6 +18,7 @@ from pydantic_core import PydanticCustomError
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
from crewai.utilities.config import process_config
|
||||
|
||||
@@ -49,11 +50,11 @@ class BaseAgent(ABC, BaseModel):
|
||||
|
||||
|
||||
Methods:
|
||||
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[Any]] = None) -> str:
|
||||
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[BaseTool]] = None) -> str:
|
||||
Abstract method to execute a task.
|
||||
create_agent_executor(tools=None) -> None:
|
||||
Abstract method to create an agent executor.
|
||||
_parse_tools(tools: List[Any]) -> List[Any]:
|
||||
_parse_tools(tools: List[BaseTool]) -> List[Any]:
|
||||
Abstract method to parse tools.
|
||||
get_delegation_tools(agents: List["BaseAgent"]):
|
||||
Abstract method to set the agents task tools for handling delegation and question asking to other agents in crew.
|
||||
@@ -105,7 +106,7 @@ class BaseAgent(ABC, BaseModel):
|
||||
default=False,
|
||||
description="Enable agent to delegate and ask questions among each other.",
|
||||
)
|
||||
tools: Optional[List[Any]] = Field(
|
||||
tools: Optional[List[BaseTool]] = Field(
|
||||
default_factory=list, description="Tools at agents' disposal"
|
||||
)
|
||||
max_iter: Optional[int] = Field(
|
||||
@@ -188,7 +189,7 @@ class BaseAgent(ABC, BaseModel):
|
||||
self,
|
||||
task: Any,
|
||||
context: Optional[str] = None,
|
||||
tools: Optional[List[Any]] = None,
|
||||
tools: Optional[List[BaseTool]] = None,
|
||||
) -> str:
|
||||
pass
|
||||
|
||||
@@ -197,11 +198,11 @@ class BaseAgent(ABC, BaseModel):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _parse_tools(self, tools: List[Any]) -> List[Any]:
|
||||
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[Any]:
|
||||
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[BaseTool]:
|
||||
"""Set the task tools that init BaseAgenTools class."""
|
||||
pass
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from ..tools.cache_tools import CacheTools
|
||||
from ..tools.cache_tools.cache_tools import CacheTools
|
||||
from ..tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from .cache.cache_handler import CacheHandler
|
||||
|
||||
|
||||
70
src/crewai/cli/add_crew_to_flow.py
Normal file
70
src/crewai/cli/add_crew_to_flow.py
Normal file
@@ -0,0 +1,70 @@
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
from crewai.cli.utils import copy_template
|
||||
|
||||
|
||||
def add_crew_to_flow(crew_name: str) -> None:
|
||||
"""Add a new crew to the current flow."""
|
||||
# Check if pyproject.toml exists in the current directory
|
||||
if not Path("pyproject.toml").exists():
|
||||
print("This command must be run from the root of a flow project.")
|
||||
raise click.ClickException(
|
||||
"This command must be run from the root of a flow project."
|
||||
)
|
||||
|
||||
# Determine the flow folder based on the current directory
|
||||
flow_folder = Path.cwd()
|
||||
crews_folder = flow_folder / "src" / flow_folder.name / "crews"
|
||||
|
||||
if not crews_folder.exists():
|
||||
print("Crews folder does not exist in the current flow.")
|
||||
raise click.ClickException("Crews folder does not exist in the current flow.")
|
||||
|
||||
# Create the crew within the flow's crews directory
|
||||
create_embedded_crew(crew_name, parent_folder=crews_folder)
|
||||
|
||||
click.echo(
|
||||
f"Crew {crew_name} added to the current flow successfully!",
|
||||
)
|
||||
|
||||
|
||||
def create_embedded_crew(crew_name: str, parent_folder: Path) -> None:
|
||||
"""Create a new crew within an existing flow project."""
|
||||
folder_name = crew_name.replace(" ", "_").replace("-", "_").lower()
|
||||
class_name = crew_name.replace("_", " ").replace("-", " ").title().replace(" ", "")
|
||||
|
||||
crew_folder = parent_folder / folder_name
|
||||
|
||||
if crew_folder.exists():
|
||||
if not click.confirm(
|
||||
f"Crew {folder_name} already exists. Do you want to override it?"
|
||||
):
|
||||
click.secho("Operation cancelled.", fg="yellow")
|
||||
return
|
||||
click.secho(f"Overriding crew {folder_name}...", fg="green", bold=True)
|
||||
else:
|
||||
click.secho(f"Creating crew {folder_name}...", fg="green", bold=True)
|
||||
crew_folder.mkdir(parents=True)
|
||||
|
||||
# Create config and crew.py files
|
||||
config_folder = crew_folder / "config"
|
||||
config_folder.mkdir(exist_ok=True)
|
||||
|
||||
templates_dir = Path(__file__).parent / "templates" / "crew"
|
||||
config_template_files = ["agents.yaml", "tasks.yaml"]
|
||||
crew_template_file = f"{folder_name}_crew.py" # Updated file name
|
||||
|
||||
for file_name in config_template_files:
|
||||
src_file = templates_dir / "config" / file_name
|
||||
dst_file = config_folder / file_name
|
||||
copy_template(src_file, dst_file, crew_name, class_name, folder_name)
|
||||
|
||||
src_file = templates_dir / "crew.py"
|
||||
dst_file = crew_folder / crew_template_file
|
||||
copy_template(src_file, dst_file, crew_name, class_name, folder_name)
|
||||
|
||||
click.secho(
|
||||
f"Crew {crew_name} added to the flow successfully!", fg="green", bold=True
|
||||
)
|
||||
@@ -3,6 +3,7 @@ from typing import Optional
|
||||
import click
|
||||
import pkg_resources
|
||||
|
||||
from crewai.cli.add_crew_to_flow import add_crew_to_flow
|
||||
from crewai.cli.create_crew import create_crew
|
||||
from crewai.cli.create_flow import create_flow
|
||||
from crewai.cli.create_pipeline import create_pipeline
|
||||
@@ -33,10 +34,11 @@ def crewai():
|
||||
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
|
||||
@click.argument("name")
|
||||
@click.option("--provider", type=str, help="The provider to use for the crew")
|
||||
def create(type, name, provider):
|
||||
@click.option("--skip_provider", is_flag=True, help="Skip provider validation")
|
||||
def create(type, name, provider, skip_provider=False):
|
||||
"""Create a new crew, pipeline, or flow."""
|
||||
if type == "crew":
|
||||
create_crew(name, provider)
|
||||
create_crew(name, provider, skip_provider)
|
||||
elif type == "pipeline":
|
||||
create_pipeline(name)
|
||||
elif type == "flow":
|
||||
@@ -177,10 +179,16 @@ def test(n_iterations: int, model: str):
|
||||
evaluate_crew(n_iterations, model)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def install():
|
||||
@crewai.command(
|
||||
context_settings=dict(
|
||||
ignore_unknown_options=True,
|
||||
allow_extra_args=True,
|
||||
)
|
||||
)
|
||||
@click.pass_context
|
||||
def install(context):
|
||||
"""Install the Crew."""
|
||||
install_crew()
|
||||
install_crew(context.args)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@@ -319,5 +327,13 @@ def flow_plot():
|
||||
plot_flow()
|
||||
|
||||
|
||||
@flow.command(name="add-crew")
|
||||
@click.argument("crew_name")
|
||||
def flow_add_crew(crew_name):
|
||||
"""Add a crew to an existing flow."""
|
||||
click.echo(f"Adding crew {crew_name} to the flow")
|
||||
add_crew_to_flow(crew_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
crewai()
|
||||
|
||||
38
src/crewai/cli/config.py
Normal file
38
src/crewai/cli/config.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional
|
||||
|
||||
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
|
||||
|
||||
class Settings(BaseModel):
|
||||
tool_repository_username: Optional[str] = Field(None, description="Username for interacting with the Tool Repository")
|
||||
tool_repository_password: Optional[str] = Field(None, description="Password for interacting with the Tool Repository")
|
||||
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
|
||||
|
||||
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
|
||||
"""Load Settings from config path"""
|
||||
config_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
file_data = {}
|
||||
if config_path.is_file():
|
||||
try:
|
||||
with config_path.open("r") as f:
|
||||
file_data = json.load(f)
|
||||
except json.JSONDecodeError:
|
||||
file_data = {}
|
||||
|
||||
merged_data = {**file_data, **data}
|
||||
super().__init__(config_path=config_path, **merged_data)
|
||||
|
||||
def dump(self) -> None:
|
||||
"""Save current settings to settings.json"""
|
||||
if self.config_path.is_file():
|
||||
with self.config_path.open("r") as f:
|
||||
existing_data = json.load(f)
|
||||
else:
|
||||
existing_data = {}
|
||||
|
||||
updated_data = {**existing_data, **self.model_dump(exclude_unset=True)}
|
||||
with self.config_path.open("w") as f:
|
||||
json.dump(updated_data, f, indent=4)
|
||||
@@ -1,8 +1,16 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
from crewai.cli.utils import copy_template, load_env_vars, write_env_file
|
||||
from crewai.cli.provider import get_provider_data, select_provider, PROVIDERS
|
||||
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.cli.provider import (
|
||||
PROVIDERS,
|
||||
get_provider_data,
|
||||
select_model,
|
||||
select_provider,
|
||||
)
|
||||
from crewai.cli.utils import copy_template, load_env_vars, write_env_file
|
||||
|
||||
|
||||
def create_folder_structure(name, parent_folder=None):
|
||||
@@ -14,11 +22,19 @@ def create_folder_structure(name, parent_folder=None):
|
||||
else:
|
||||
folder_path = Path(folder_name)
|
||||
|
||||
click.secho(
|
||||
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
|
||||
fg="green",
|
||||
bold=True,
|
||||
)
|
||||
if folder_path.exists():
|
||||
if not click.confirm(
|
||||
f"Folder {folder_name} already exists. Do you want to override it?"
|
||||
):
|
||||
click.secho("Operation cancelled.", fg="yellow")
|
||||
sys.exit(0)
|
||||
click.secho(f"Overriding folder {folder_name}...", fg="green", bold=True)
|
||||
else:
|
||||
click.secho(
|
||||
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
|
||||
fg="green",
|
||||
bold=True,
|
||||
)
|
||||
|
||||
if not folder_path.exists():
|
||||
folder_path.mkdir(parents=True)
|
||||
@@ -27,11 +43,6 @@ def create_folder_structure(name, parent_folder=None):
|
||||
(folder_path / "src" / folder_name).mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
|
||||
else:
|
||||
click.secho(
|
||||
f"\tFolder {folder_name} already exists.",
|
||||
fg="yellow",
|
||||
)
|
||||
|
||||
return folder_path, folder_name, class_name
|
||||
|
||||
@@ -70,38 +81,84 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
|
||||
copy_template(src_file, dst_file, name, class_name, folder_path.name)
|
||||
|
||||
|
||||
def create_crew(name, provider=None, parent_folder=None):
|
||||
def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
|
||||
folder_path, folder_name, class_name = create_folder_structure(name, parent_folder)
|
||||
env_vars = load_env_vars(folder_path)
|
||||
if not skip_provider:
|
||||
if not provider:
|
||||
provider_models = get_provider_data()
|
||||
if not provider_models:
|
||||
return
|
||||
|
||||
existing_provider = None
|
||||
for provider, env_keys in ENV_VARS.items():
|
||||
if any(key in env_vars for key in env_keys):
|
||||
existing_provider = provider
|
||||
break
|
||||
|
||||
if existing_provider:
|
||||
if not click.confirm(
|
||||
f"Found existing environment variable configuration for {existing_provider.capitalize()}. Do you want to override it?"
|
||||
):
|
||||
click.secho("Keeping existing provider configuration.", fg="yellow")
|
||||
return
|
||||
|
||||
if not provider:
|
||||
provider_models = get_provider_data()
|
||||
if not provider_models:
|
||||
return
|
||||
|
||||
selected_provider = select_provider(provider_models)
|
||||
if not selected_provider:
|
||||
return
|
||||
provider = selected_provider
|
||||
while True:
|
||||
selected_provider = select_provider(provider_models)
|
||||
if selected_provider is None: # User typed 'q'
|
||||
click.secho("Exiting...", fg="yellow")
|
||||
sys.exit(0)
|
||||
if selected_provider: # Valid selection
|
||||
break
|
||||
click.secho(
|
||||
"No provider selected. Please try again or press 'q' to exit.", fg="red"
|
||||
)
|
||||
|
||||
# selected_model = select_model(provider, provider_models)
|
||||
# if not selected_model:
|
||||
# return
|
||||
# model = selected_model
|
||||
while True:
|
||||
selected_model = select_model(selected_provider, provider_models)
|
||||
if selected_model is None: # User typed 'q'
|
||||
click.secho("Exiting...", fg="yellow")
|
||||
sys.exit(0)
|
||||
if selected_model: # Valid selection
|
||||
break
|
||||
click.secho(
|
||||
"No model selected. Please try again or press 'q' to exit.", fg="red"
|
||||
)
|
||||
|
||||
if provider in PROVIDERS:
|
||||
api_key_var = ENV_VARS[provider][0]
|
||||
else:
|
||||
api_key_var = click.prompt(
|
||||
f"Enter the environment variable name for your {provider.capitalize()} API key",
|
||||
type=str,
|
||||
if selected_provider in PROVIDERS:
|
||||
api_key_var = ENV_VARS[selected_provider][0]
|
||||
else:
|
||||
api_key_var = click.prompt(
|
||||
f"Enter the environment variable name for your {selected_provider.capitalize()} API key",
|
||||
type=str,
|
||||
default="",
|
||||
)
|
||||
|
||||
api_key_value = ""
|
||||
click.echo(
|
||||
f"Enter your {selected_provider.capitalize()} API key (press Enter to skip): ",
|
||||
nl=False,
|
||||
)
|
||||
try:
|
||||
api_key_value = input()
|
||||
except (KeyboardInterrupt, EOFError):
|
||||
api_key_value = ""
|
||||
|
||||
env_vars = {api_key_var: "YOUR_API_KEY_HERE"}
|
||||
write_env_file(folder_path, env_vars)
|
||||
if api_key_value.strip():
|
||||
env_vars = {api_key_var: api_key_value}
|
||||
write_env_file(folder_path, env_vars)
|
||||
click.secho("API key saved to .env file", fg="green")
|
||||
else:
|
||||
click.secho(
|
||||
"No API key provided. Skipping .env file creation.", fg="yellow"
|
||||
)
|
||||
|
||||
# env_vars['MODEL'] = model
|
||||
# click.secho(f"Selected model: {model}", fg="green")
|
||||
env_vars["MODEL"] = selected_model
|
||||
click.secho(f"Selected model: {selected_model}", fg="green")
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
templates_dir = package_dir / "templates" / "crew"
|
||||
|
||||
@@ -3,12 +3,13 @@ import subprocess
|
||||
import click
|
||||
|
||||
|
||||
def install_crew() -> None:
|
||||
def install_crew(proxy_options: list[str]) -> None:
|
||||
"""
|
||||
Install the crew by running the UV command to lock and install.
|
||||
"""
|
||||
try:
|
||||
subprocess.run(["uv", "sync"], check=True, capture_output=False, text=True)
|
||||
command = ["uv", "sync"] + proxy_options
|
||||
subprocess.run(command, check=True, capture_output=False, text=True)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while running the crew: {e}", err=True)
|
||||
|
||||
@@ -7,7 +7,7 @@ def plot_flow() -> None:
|
||||
"""
|
||||
Plot the flow by running a command in the UV environment.
|
||||
"""
|
||||
command = ["uv", "run", "plot_flow"]
|
||||
command = ["uv", "run", "plot"]
|
||||
|
||||
try:
|
||||
result = subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
|
||||
@@ -1,67 +1,91 @@
|
||||
import json
|
||||
import time
|
||||
import requests
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
from pathlib import Path
|
||||
from crewai.cli.constants import PROVIDERS, MODELS, JSON_URL
|
||||
import requests
|
||||
|
||||
from crewai.cli.constants import JSON_URL, MODELS, PROVIDERS
|
||||
|
||||
|
||||
def select_choice(prompt_message, choices):
|
||||
"""
|
||||
Presents a list of choices to the user and prompts them to select one.
|
||||
|
||||
|
||||
Args:
|
||||
- prompt_message (str): The message to display to the user before presenting the choices.
|
||||
- choices (list): A list of options to present to the user.
|
||||
|
||||
|
||||
Returns:
|
||||
- str: The selected choice from the list, or None if the operation is aborted or an invalid selection is made.
|
||||
- str: The selected choice from the list, or None if the user chooses to quit.
|
||||
"""
|
||||
|
||||
provider_models = get_provider_data()
|
||||
if not provider_models:
|
||||
return
|
||||
click.secho(prompt_message, fg="cyan")
|
||||
for idx, choice in enumerate(choices, start=1):
|
||||
click.secho(f"{idx}. {choice}", fg="cyan")
|
||||
try:
|
||||
selected_index = click.prompt("Enter the number of your choice", type=int) - 1
|
||||
except click.exceptions.Abort:
|
||||
click.secho("Operation aborted by the user.", fg="red")
|
||||
return None
|
||||
if not (0 <= selected_index < len(choices)):
|
||||
click.secho("Invalid selection.", fg="red")
|
||||
return None
|
||||
return choices[selected_index]
|
||||
click.secho("q. Quit", fg="cyan")
|
||||
|
||||
while True:
|
||||
choice = click.prompt(
|
||||
"Enter the number of your choice or 'q' to quit", type=str
|
||||
)
|
||||
|
||||
if choice.lower() == "q":
|
||||
return None
|
||||
|
||||
try:
|
||||
selected_index = int(choice) - 1
|
||||
if 0 <= selected_index < len(choices):
|
||||
return choices[selected_index]
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
click.secho(
|
||||
"Invalid selection. Please select a number between 1 and 6 or 'q' to quit.",
|
||||
fg="red",
|
||||
)
|
||||
|
||||
|
||||
def select_provider(provider_models):
|
||||
"""
|
||||
Presents a list of providers to the user and prompts them to select one.
|
||||
|
||||
|
||||
Args:
|
||||
- provider_models (dict): A dictionary of provider models.
|
||||
|
||||
|
||||
Returns:
|
||||
- str: The selected provider, or None if the operation is aborted or an invalid selection is made.
|
||||
- str: The selected provider
|
||||
- None: If user explicitly quits
|
||||
"""
|
||||
predefined_providers = [p.lower() for p in PROVIDERS]
|
||||
all_providers = sorted(set(predefined_providers + list(provider_models.keys())))
|
||||
|
||||
provider = select_choice("Select a provider to set up:", predefined_providers + ['other'])
|
||||
if not provider:
|
||||
provider = select_choice(
|
||||
"Select a provider to set up:", predefined_providers + ["other"]
|
||||
)
|
||||
if provider is None: # User typed 'q'
|
||||
return None
|
||||
provider = provider.lower()
|
||||
|
||||
if provider == 'other':
|
||||
if provider == "other":
|
||||
provider = select_choice("Select a provider from the full list:", all_providers)
|
||||
if not provider:
|
||||
if provider is None: # User typed 'q'
|
||||
return None
|
||||
return provider
|
||||
|
||||
return provider.lower() if provider else False
|
||||
|
||||
|
||||
def select_model(provider, provider_models):
|
||||
"""
|
||||
Presents a list of models for a given provider to the user and prompts them to select one.
|
||||
|
||||
|
||||
Args:
|
||||
- provider (str): The provider for which to select a model.
|
||||
- provider_models (dict): A dictionary of provider models.
|
||||
|
||||
|
||||
Returns:
|
||||
- str: The selected model, or None if the operation is aborted or an invalid selection is made.
|
||||
"""
|
||||
@@ -76,37 +100,49 @@ def select_model(provider, provider_models):
|
||||
click.secho(f"No models available for provider '{provider}'.", fg="red")
|
||||
return None
|
||||
|
||||
selected_model = select_choice(f"Select a model to use for {provider.capitalize()}:", available_models)
|
||||
selected_model = select_choice(
|
||||
f"Select a model to use for {provider.capitalize()}:", available_models
|
||||
)
|
||||
return selected_model
|
||||
|
||||
|
||||
def load_provider_data(cache_file, cache_expiry):
|
||||
"""
|
||||
Loads provider data from a cache file if it exists and is not expired. If the cache is expired or corrupted, it fetches the data from the web.
|
||||
|
||||
|
||||
Args:
|
||||
- cache_file (Path): The path to the cache file.
|
||||
- cache_expiry (int): The cache expiry time in seconds.
|
||||
|
||||
|
||||
Returns:
|
||||
- dict or None: The loaded provider data or None if the operation fails.
|
||||
"""
|
||||
current_time = time.time()
|
||||
if cache_file.exists() and (current_time - cache_file.stat().st_mtime) < cache_expiry:
|
||||
if (
|
||||
cache_file.exists()
|
||||
and (current_time - cache_file.stat().st_mtime) < cache_expiry
|
||||
):
|
||||
data = read_cache_file(cache_file)
|
||||
if data:
|
||||
return data
|
||||
click.secho("Cache is corrupted. Fetching provider data from the web...", fg="yellow")
|
||||
click.secho(
|
||||
"Cache is corrupted. Fetching provider data from the web...", fg="yellow"
|
||||
)
|
||||
else:
|
||||
click.secho("Cache expired or not found. Fetching provider data from the web...", fg="cyan")
|
||||
click.secho(
|
||||
"Cache expired or not found. Fetching provider data from the web...",
|
||||
fg="cyan",
|
||||
)
|
||||
return fetch_provider_data(cache_file)
|
||||
|
||||
|
||||
def read_cache_file(cache_file):
|
||||
"""
|
||||
Reads and returns the JSON content from a cache file. Returns None if the file contains invalid JSON.
|
||||
|
||||
|
||||
Args:
|
||||
- cache_file (Path): The path to the cache file.
|
||||
|
||||
|
||||
Returns:
|
||||
- dict or None: The JSON content of the cache file or None if the JSON is invalid.
|
||||
"""
|
||||
@@ -116,13 +152,14 @@ def read_cache_file(cache_file):
|
||||
except json.JSONDecodeError:
|
||||
return None
|
||||
|
||||
|
||||
def fetch_provider_data(cache_file):
|
||||
"""
|
||||
Fetches provider data from a specified URL and caches it to a file.
|
||||
|
||||
|
||||
Args:
|
||||
- cache_file (Path): The path to the cache file.
|
||||
|
||||
|
||||
Returns:
|
||||
- dict or None: The fetched provider data or None if the operation fails.
|
||||
"""
|
||||
@@ -139,38 +176,42 @@ def fetch_provider_data(cache_file):
|
||||
click.secho("Error parsing provider data. Invalid JSON format.", fg="red")
|
||||
return None
|
||||
|
||||
|
||||
def download_data(response):
|
||||
"""
|
||||
Downloads data from a given HTTP response and returns the JSON content.
|
||||
|
||||
|
||||
Args:
|
||||
- response (requests.Response): The HTTP response object.
|
||||
|
||||
|
||||
Returns:
|
||||
- dict: The JSON content of the response.
|
||||
"""
|
||||
total_size = int(response.headers.get('content-length', 0))
|
||||
total_size = int(response.headers.get("content-length", 0))
|
||||
block_size = 8192
|
||||
data_chunks = []
|
||||
with click.progressbar(length=total_size, label='Downloading', show_pos=True) as progress_bar:
|
||||
with click.progressbar(
|
||||
length=total_size, label="Downloading", show_pos=True
|
||||
) as progress_bar:
|
||||
for chunk in response.iter_content(block_size):
|
||||
if chunk:
|
||||
data_chunks.append(chunk)
|
||||
progress_bar.update(len(chunk))
|
||||
data_content = b''.join(data_chunks)
|
||||
return json.loads(data_content.decode('utf-8'))
|
||||
data_content = b"".join(data_chunks)
|
||||
return json.loads(data_content.decode("utf-8"))
|
||||
|
||||
|
||||
def get_provider_data():
|
||||
"""
|
||||
Retrieves provider data from a cache file, filters out models based on provider criteria, and returns a dictionary of providers mapped to their models.
|
||||
|
||||
|
||||
Returns:
|
||||
- dict or None: A dictionary of providers mapped to their models or None if the operation fails.
|
||||
"""
|
||||
cache_dir = Path.home() / '.crewai'
|
||||
cache_dir = Path.home() / ".crewai"
|
||||
cache_dir.mkdir(exist_ok=True)
|
||||
cache_file = cache_dir / 'provider_cache.json'
|
||||
cache_expiry = 24 * 3600
|
||||
cache_file = cache_dir / "provider_cache.json"
|
||||
cache_expiry = 24 * 3600
|
||||
|
||||
data = load_provider_data(cache_file, cache_expiry)
|
||||
if not data:
|
||||
@@ -179,8 +220,8 @@ def get_provider_data():
|
||||
provider_models = defaultdict(list)
|
||||
for model_name, properties in data.items():
|
||||
provider = properties.get("litellm_provider", "").strip().lower()
|
||||
if 'http' in provider or provider == 'other':
|
||||
if "http" in provider or provider == "other":
|
||||
continue
|
||||
if provider:
|
||||
provider_models[provider].append(model_name)
|
||||
return provider_models
|
||||
return provider_models
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
import tomllib
|
||||
from packaging import version
|
||||
|
||||
from crewai.cli.utils import get_crewai_version
|
||||
from crewai.cli.utils import get_crewai_version, read_toml
|
||||
|
||||
|
||||
def run_crew() -> None:
|
||||
@@ -15,10 +14,9 @@ def run_crew() -> None:
|
||||
crewai_version = get_crewai_version()
|
||||
min_required_version = "0.71.0"
|
||||
|
||||
with open("pyproject.toml", "rb") as f:
|
||||
data = tomllib.load(f)
|
||||
pyproject_data = read_toml()
|
||||
|
||||
if data.get("tool", {}).get("poetry") and (
|
||||
if pyproject_data.get("tool", {}).get("poetry") and (
|
||||
version.parse(crewai_version) < version.parse(min_required_version)
|
||||
):
|
||||
click.secho(
|
||||
@@ -35,10 +33,7 @@ def run_crew() -> None:
|
||||
click.echo(f"An error occurred while running the crew: {e}", err=True)
|
||||
click.echo(e.output, err=True, nl=True)
|
||||
|
||||
with open("pyproject.toml", "rb") as f:
|
||||
data = tomllib.load(f)
|
||||
|
||||
if data.get("tool", {}).get("poetry"):
|
||||
if pyproject_data.get("tool", {}).get("poetry"):
|
||||
click.secho(
|
||||
"It's possible that you are using an old version of crewAI that uses poetry, please run `crewai update` to update your pyproject.toml to use uv.",
|
||||
fg="yellow",
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.75.1,<1.0.0"
|
||||
"crewai[tools]>=0.76.9,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -1,11 +1,18 @@
|
||||
from crewai_tools import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
from typing import Type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MyCustomToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.75.1,<1.0.0",
|
||||
"crewai[tools]>=0.76.9,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -1,4 +1,13 @@
|
||||
from crewai_tools import BaseTool
|
||||
from typing import Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MyCustomToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
@@ -6,6 +15,7 @@ class MyCustomTool(BaseTool):
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.75.1,<1.0.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.76.9,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
||||
@@ -1,11 +1,18 @@
|
||||
from crewai_tools import BaseTool
|
||||
from typing import Type
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MyCustomToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.75.1,<1.0.0"
|
||||
"crewai[tools]>=0.76.9,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -1,11 +1,18 @@
|
||||
from crewai_tools import BaseTool
|
||||
from typing import Type
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MyCustomToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
|
||||
@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.75.1"
|
||||
"crewai[tools]>=0.76.9"
|
||||
]
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from crewai_tools import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
|
||||
class {{class_name}}(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
|
||||
@@ -1,17 +1,15 @@
|
||||
import base64
|
||||
import os
|
||||
import platform
|
||||
import subprocess
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from netrc import netrc
|
||||
import stat
|
||||
|
||||
import click
|
||||
from rich.console import Console
|
||||
|
||||
from crewai.cli import git
|
||||
from crewai.cli.command import BaseCommand, PlusAPIMixin
|
||||
from crewai.cli.config import Settings
|
||||
from crewai.cli.utils import (
|
||||
get_project_description,
|
||||
get_project_name,
|
||||
@@ -153,26 +151,16 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
raise SystemExit
|
||||
|
||||
login_response_json = login_response.json()
|
||||
self._set_netrc_credentials(login_response_json["credential"])
|
||||
|
||||
settings = Settings()
|
||||
settings.tool_repository_username = login_response_json["credential"]["username"]
|
||||
settings.tool_repository_password = login_response_json["credential"]["password"]
|
||||
settings.dump()
|
||||
|
||||
console.print(
|
||||
"Successfully authenticated to the tool repository.", style="bold green"
|
||||
)
|
||||
|
||||
def _set_netrc_credentials(self, credentials, netrc_path=None):
|
||||
if not netrc_path:
|
||||
netrc_filename = "_netrc" if platform.system() == "Windows" else ".netrc"
|
||||
netrc_path = Path.home() / netrc_filename
|
||||
netrc_path.touch(mode=stat.S_IRUSR | stat.S_IWUSR, exist_ok=True)
|
||||
|
||||
netrc_instance = netrc(file=netrc_path)
|
||||
netrc_instance.hosts["app.crewai.com"] = (credentials["username"], "", credentials["password"])
|
||||
|
||||
with open(netrc_path, 'w') as file:
|
||||
file.write(str(netrc_instance))
|
||||
|
||||
console.print(f"Added credentials to {netrc_path}", style="bold green")
|
||||
|
||||
def _add_package(self, tool_details):
|
||||
tool_handle = tool_details["handle"]
|
||||
repository_handle = tool_details["repository"]["handle"]
|
||||
@@ -187,7 +175,11 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
tool_handle,
|
||||
]
|
||||
add_package_result = subprocess.run(
|
||||
add_package_command, capture_output=False, text=True, check=True
|
||||
add_package_command,
|
||||
capture_output=False,
|
||||
env=self._build_env_with_credentials(repository_handle),
|
||||
text=True,
|
||||
check=True
|
||||
)
|
||||
|
||||
if add_package_result.stderr:
|
||||
@@ -206,3 +198,13 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
"[bold yellow]Tip:[/bold yellow] Navigate to a different directory and try again."
|
||||
)
|
||||
raise SystemExit
|
||||
|
||||
def _build_env_with_credentials(self, repository_handle: str):
|
||||
repository_handle = repository_handle.upper().replace("-", "_")
|
||||
settings = Settings()
|
||||
|
||||
env = os.environ.copy()
|
||||
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(settings.tool_repository_username or "")
|
||||
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(settings.tool_repository_password or "")
|
||||
|
||||
return env
|
||||
|
||||
@@ -2,7 +2,8 @@ import os
|
||||
import shutil
|
||||
|
||||
import tomli_w
|
||||
import tomllib
|
||||
|
||||
from crewai.cli.utils import read_toml
|
||||
|
||||
|
||||
def update_crew() -> None:
|
||||
@@ -18,10 +19,9 @@ def migrate_pyproject(input_file, output_file):
|
||||
And it will be used to migrate the pyproject.toml to the new format when uv is used.
|
||||
When the time comes that uv supports the new format, this function will be deprecated.
|
||||
"""
|
||||
|
||||
poetry_data = {}
|
||||
# Read the input pyproject.toml
|
||||
with open(input_file, "rb") as f:
|
||||
pyproject = tomllib.load(f)
|
||||
pyproject_data = read_toml()
|
||||
|
||||
# Initialize the new project structure
|
||||
new_pyproject = {
|
||||
@@ -30,30 +30,30 @@ def migrate_pyproject(input_file, output_file):
|
||||
}
|
||||
|
||||
# Migrate project metadata
|
||||
if "tool" in pyproject and "poetry" in pyproject["tool"]:
|
||||
poetry = pyproject["tool"]["poetry"]
|
||||
new_pyproject["project"]["name"] = poetry.get("name")
|
||||
new_pyproject["project"]["version"] = poetry.get("version")
|
||||
new_pyproject["project"]["description"] = poetry.get("description")
|
||||
if "tool" in pyproject_data and "poetry" in pyproject_data["tool"]:
|
||||
poetry_data = pyproject_data["tool"]["poetry"]
|
||||
new_pyproject["project"]["name"] = poetry_data.get("name")
|
||||
new_pyproject["project"]["version"] = poetry_data.get("version")
|
||||
new_pyproject["project"]["description"] = poetry_data.get("description")
|
||||
new_pyproject["project"]["authors"] = [
|
||||
{
|
||||
"name": author.split("<")[0].strip(),
|
||||
"email": author.split("<")[1].strip(">").strip(),
|
||||
}
|
||||
for author in poetry.get("authors", [])
|
||||
for author in poetry_data.get("authors", [])
|
||||
]
|
||||
new_pyproject["project"]["requires-python"] = poetry.get("python")
|
||||
new_pyproject["project"]["requires-python"] = poetry_data.get("python")
|
||||
else:
|
||||
# If it's already in the new format, just copy the project section
|
||||
new_pyproject["project"] = pyproject.get("project", {})
|
||||
new_pyproject["project"] = pyproject_data.get("project", {})
|
||||
|
||||
# Migrate or copy dependencies
|
||||
if "dependencies" in new_pyproject["project"]:
|
||||
# If dependencies are already in the new format, keep them as is
|
||||
pass
|
||||
elif "dependencies" in poetry:
|
||||
elif poetry_data and "dependencies" in poetry_data:
|
||||
new_pyproject["project"]["dependencies"] = []
|
||||
for dep, version in poetry["dependencies"].items():
|
||||
for dep, version in poetry_data["dependencies"].items():
|
||||
if isinstance(version, dict): # Handle extras
|
||||
extras = ",".join(version.get("extras", []))
|
||||
new_dep = f"{dep}[{extras}]"
|
||||
@@ -67,10 +67,10 @@ def migrate_pyproject(input_file, output_file):
|
||||
new_pyproject["project"]["dependencies"].append(new_dep)
|
||||
|
||||
# Migrate or copy scripts
|
||||
if "scripts" in poetry:
|
||||
new_pyproject["project"]["scripts"] = poetry["scripts"]
|
||||
elif "scripts" in pyproject.get("project", {}):
|
||||
new_pyproject["project"]["scripts"] = pyproject["project"]["scripts"]
|
||||
if poetry_data and "scripts" in poetry_data:
|
||||
new_pyproject["project"]["scripts"] = poetry_data["scripts"]
|
||||
elif pyproject_data.get("project", {}) and "scripts" in pyproject_data["project"]:
|
||||
new_pyproject["project"]["scripts"] = pyproject_data["project"]["scripts"]
|
||||
else:
|
||||
new_pyproject["project"]["scripts"] = {}
|
||||
|
||||
@@ -87,8 +87,8 @@ def migrate_pyproject(input_file, output_file):
|
||||
new_pyproject["project"]["scripts"]["run_crew"] = f"{module_name}.main:run"
|
||||
|
||||
# Migrate optional dependencies
|
||||
if "extras" in poetry:
|
||||
new_pyproject["project"]["optional-dependencies"] = poetry["extras"]
|
||||
if poetry_data and "extras" in poetry_data:
|
||||
new_pyproject["project"]["optional-dependencies"] = poetry_data["extras"]
|
||||
|
||||
# Backup the old pyproject.toml
|
||||
backup_file = "pyproject-old.toml"
|
||||
|
||||
@@ -6,6 +6,7 @@ from functools import reduce
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import click
|
||||
import tomli
|
||||
from rich.console import Console
|
||||
|
||||
from crewai.cli.authentication.utils import TokenManager
|
||||
@@ -54,6 +55,13 @@ def simple_toml_parser(content):
|
||||
return result
|
||||
|
||||
|
||||
def read_toml(file_path: str = "pyproject.toml"):
|
||||
"""Read the content of a TOML file and return it as a dictionary."""
|
||||
with open(file_path, "rb") as f:
|
||||
toml_dict = tomli.load(f)
|
||||
return toml_dict
|
||||
|
||||
|
||||
def parse_toml(content):
|
||||
if sys.version_info >= (3, 11):
|
||||
return tomllib.loads(content)
|
||||
|
||||
@@ -32,7 +32,7 @@ from crewai.task import Task
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import (
|
||||
|
||||
@@ -1,10 +1,20 @@
|
||||
# flow.py
|
||||
|
||||
import asyncio
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, Generic, List, Set, Type, TypeVar, Union
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Generic,
|
||||
List,
|
||||
Optional,
|
||||
Set,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
@@ -120,6 +130,8 @@ class FlowMeta(type):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
|
||||
# TODO: should we add a check for __condition_type__ 'AND'?
|
||||
elif hasattr(attr_value, "__is_router__"):
|
||||
routers[attr_value.__router_for__] = attr_name
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
@@ -159,7 +171,8 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
def __init__(self) -> None:
|
||||
self._methods: Dict[str, Callable] = {}
|
||||
self._state: T = self._create_initial_state()
|
||||
self._completed_methods: Set[str] = set()
|
||||
self._executed_methods: Set[str] = set()
|
||||
self._scheduled_tasks: Set[str] = set()
|
||||
self._pending_and_listeners: Dict[str, Set[str]] = {}
|
||||
self._method_outputs: List[Any] = [] # List to store all method outputs
|
||||
|
||||
@@ -190,10 +203,74 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
"""Returns the list of all outputs from executed methods."""
|
||||
return self._method_outputs
|
||||
|
||||
def kickoff(self) -> Any:
|
||||
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Initializes or updates the state with the provided inputs.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of inputs to initialize or update the state.
|
||||
|
||||
Raises:
|
||||
ValueError: If inputs do not match the structured state model.
|
||||
TypeError: If state is neither a BaseModel instance nor a dictionary.
|
||||
"""
|
||||
if isinstance(self._state, BaseModel):
|
||||
# Structured state management
|
||||
try:
|
||||
# Define a function to create the dynamic class
|
||||
def create_model_with_extra_forbid(
|
||||
base_model: Type[BaseModel],
|
||||
) -> Type[BaseModel]:
|
||||
class ModelWithExtraForbid(base_model): # type: ignore
|
||||
model_config = base_model.model_config.copy()
|
||||
model_config["extra"] = "forbid"
|
||||
|
||||
return ModelWithExtraForbid
|
||||
|
||||
# Create the dynamic class
|
||||
ModelWithExtraForbid = create_model_with_extra_forbid(
|
||||
self._state.__class__
|
||||
)
|
||||
|
||||
# Create a new instance using the combined state and inputs
|
||||
self._state = cast(
|
||||
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
|
||||
)
|
||||
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
||||
elif isinstance(self._state, dict):
|
||||
# Unstructured state management
|
||||
self._state.update(inputs)
|
||||
else:
|
||||
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow synchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
return asyncio.run(self.kickoff_async())
|
||||
|
||||
async def kickoff_async(self) -> Any:
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow asynchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
if not self._start_methods:
|
||||
raise ValueError("No start method defined")
|
||||
|
||||
@@ -216,17 +293,24 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
else:
|
||||
return None # Or raise an exception if no methods were executed
|
||||
|
||||
async def _execute_start_method(self, start_method: str) -> None:
|
||||
result = await self._execute_method(self._methods[start_method])
|
||||
await self._execute_listeners(start_method, result)
|
||||
async def _execute_start_method(self, start_method_name: str) -> None:
|
||||
result = await self._execute_method(
|
||||
start_method_name, self._methods[start_method_name]
|
||||
)
|
||||
await self._execute_listeners(start_method_name, result)
|
||||
|
||||
async def _execute_method(self, method: Callable, *args: Any, **kwargs: Any) -> Any:
|
||||
async def _execute_method(
|
||||
self, method_name: str, method: Callable, *args: Any, **kwargs: Any
|
||||
) -> Any:
|
||||
result = (
|
||||
await method(*args, **kwargs)
|
||||
if asyncio.iscoroutinefunction(method)
|
||||
else method(*args, **kwargs)
|
||||
)
|
||||
self._method_outputs.append(result) # Store the output
|
||||
|
||||
self._executed_methods.add(method_name)
|
||||
|
||||
return result
|
||||
|
||||
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
|
||||
@@ -234,32 +318,40 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
if trigger_method in self._routers:
|
||||
router_method = self._methods[self._routers[trigger_method]]
|
||||
path = await self._execute_method(router_method)
|
||||
path = await self._execute_method(
|
||||
trigger_method, router_method
|
||||
) # TODO: Change or not?
|
||||
# Use the path as the new trigger method
|
||||
trigger_method = path
|
||||
|
||||
for listener, (condition_type, methods) in self._listeners.items():
|
||||
for listener_name, (condition_type, methods) in self._listeners.items():
|
||||
if condition_type == "OR":
|
||||
if trigger_method in methods:
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener, result)
|
||||
)
|
||||
if (
|
||||
listener_name not in self._executed_methods
|
||||
and listener_name not in self._scheduled_tasks
|
||||
):
|
||||
self._scheduled_tasks.add(listener_name)
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
elif condition_type == "AND":
|
||||
if listener not in self._pending_and_listeners:
|
||||
self._pending_and_listeners[listener] = set()
|
||||
self._pending_and_listeners[listener].add(trigger_method)
|
||||
if set(methods) == self._pending_and_listeners[listener]:
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener, result)
|
||||
)
|
||||
del self._pending_and_listeners[listener]
|
||||
if all(method in self._executed_methods for method in methods):
|
||||
if (
|
||||
listener_name not in self._executed_methods
|
||||
and listener_name not in self._scheduled_tasks
|
||||
):
|
||||
self._scheduled_tasks.add(listener_name)
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
|
||||
# Run all listener tasks concurrently and wait for them to complete
|
||||
await asyncio.gather(*listener_tasks)
|
||||
|
||||
async def _execute_single_listener(self, listener: str, result: Any) -> None:
|
||||
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
|
||||
try:
|
||||
method = self._methods[listener]
|
||||
method = self._methods[listener_name]
|
||||
sig = inspect.signature(method)
|
||||
params = list(sig.parameters.values())
|
||||
|
||||
@@ -268,15 +360,22 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
if method_params:
|
||||
# If listener expects parameters, pass the result
|
||||
listener_result = await self._execute_method(method, result)
|
||||
listener_result = await self._execute_method(
|
||||
listener_name, method, result
|
||||
)
|
||||
else:
|
||||
# If listener does not expect parameters, call without arguments
|
||||
listener_result = await self._execute_method(method)
|
||||
listener_result = await self._execute_method(listener_name, method)
|
||||
|
||||
# Remove from scheduled tasks after execution
|
||||
self._scheduled_tasks.discard(listener_name)
|
||||
|
||||
# Execute listeners of this listener
|
||||
await self._execute_listeners(listener, listener_result)
|
||||
await self._execute_listeners(listener_name, listener_result)
|
||||
except Exception as e:
|
||||
print(f"[Flow._execute_single_listener] Error in method {listener}: {e}")
|
||||
print(
|
||||
f"[Flow._execute_single_listener] Error in method {listener_name}: {e}"
|
||||
)
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
@@ -34,6 +34,7 @@ class ContextualMemory:
|
||||
formatted_results = "\n".join(
|
||||
[f"- {result['context']}" for result in stm_results]
|
||||
)
|
||||
print("formatted_results stm", formatted_results)
|
||||
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
|
||||
|
||||
def _fetch_ltm_context(self, task) -> Optional[str]:
|
||||
@@ -53,6 +54,8 @@ class ContextualMemory:
|
||||
formatted_results = list(dict.fromkeys(formatted_results))
|
||||
formatted_results = "\n".join([f"- {result}" for result in formatted_results]) # type: ignore # Incompatible types in assignment (expression has type "str", variable has type "list[str]")
|
||||
|
||||
print("formatted_results ltm", formatted_results)
|
||||
|
||||
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
|
||||
|
||||
def _fetch_entity_context(self, query) -> str:
|
||||
@@ -64,4 +67,5 @@ class ContextualMemory:
|
||||
formatted_results = "\n".join(
|
||||
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
)
|
||||
print("formatted_results em", formatted_results)
|
||||
return f"Entities:\n{formatted_results}" if em_results else ""
|
||||
|
||||
@@ -70,7 +70,7 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
task.expected_output,
|
||||
json.dumps(output, cls=CrewJSONEncoder),
|
||||
task_index,
|
||||
json.dumps(inputs),
|
||||
json.dumps(inputs, cls=CrewJSONEncoder),
|
||||
was_replayed,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -4,13 +4,13 @@ import logging
|
||||
import os
|
||||
import shutil
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional
|
||||
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
from typing import Any, Dict, List, Optional, cast
|
||||
|
||||
from chromadb import Documents, EmbeddingFunction, Embeddings
|
||||
from chromadb.api import ClientAPI
|
||||
from chromadb.api.types import validate_embedding_function
|
||||
from chromadb import Documents, EmbeddingFunction, Embeddings
|
||||
from typing import cast
|
||||
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
@@ -21,9 +21,11 @@ def suppress_logging(
|
||||
logger = logging.getLogger(logger_name)
|
||||
original_level = logger.getEffectiveLevel()
|
||||
logger.setLevel(level)
|
||||
with contextlib.redirect_stdout(io.StringIO()), contextlib.redirect_stderr(
|
||||
io.StringIO()
|
||||
), contextlib.suppress(UserWarning):
|
||||
with (
|
||||
contextlib.redirect_stdout(io.StringIO()),
|
||||
contextlib.redirect_stderr(io.StringIO()),
|
||||
contextlib.suppress(UserWarning),
|
||||
):
|
||||
yield
|
||||
logger.setLevel(original_level)
|
||||
|
||||
@@ -113,12 +115,52 @@ class RAGStorage(BaseRAGStorage):
|
||||
self.embedder_config = embedding_functions.HuggingFaceEmbeddingServer(
|
||||
url=config.get("api_url"),
|
||||
)
|
||||
elif provider == "watson":
|
||||
try:
|
||||
import ibm_watsonx_ai.foundation_models as watson_models
|
||||
from ibm_watsonx_ai import Credentials
|
||||
from ibm_watsonx_ai.metanames import (
|
||||
EmbedTextParamsMetaNames as EmbedParams,
|
||||
)
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"IBM Watson dependencies are not installed. Please install them to use Watson embedding."
|
||||
) from e
|
||||
|
||||
class WatsonEmbeddingFunction(EmbeddingFunction):
|
||||
def __call__(self, input: Documents) -> Embeddings:
|
||||
if isinstance(input, str):
|
||||
input = [input]
|
||||
|
||||
embed_params = {
|
||||
EmbedParams.TRUNCATE_INPUT_TOKENS: 3,
|
||||
EmbedParams.RETURN_OPTIONS: {"input_text": True},
|
||||
}
|
||||
|
||||
embedding = watson_models.Embeddings(
|
||||
model_id=config.get("model"),
|
||||
params=embed_params,
|
||||
credentials=Credentials(
|
||||
api_key=config.get("api_key"), url=config.get("api_url")
|
||||
),
|
||||
project_id=config.get("project_id"),
|
||||
)
|
||||
|
||||
try:
|
||||
embeddings = embedding.embed_documents(input)
|
||||
return cast(Embeddings, embeddings)
|
||||
|
||||
except Exception as e:
|
||||
print("Error during Watson embedding:", e)
|
||||
raise e
|
||||
|
||||
self.embedder_config = WatsonEmbeddingFunction()
|
||||
else:
|
||||
raise Exception(
|
||||
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface]"
|
||||
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface, watson]"
|
||||
)
|
||||
else:
|
||||
validate_embedding_function(self.embedder_config) # type: ignore # used for validating embedder_config if defined a embedding function/class
|
||||
validate_embedding_function(self.embedder_config)
|
||||
self.embedder_config = self.embedder_config
|
||||
|
||||
def _initialize_app(self):
|
||||
|
||||
@@ -20,6 +20,7 @@ from pydantic import (
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
@@ -91,7 +92,7 @@ class Task(BaseModel):
|
||||
output: Optional[TaskOutput] = Field(
|
||||
description="Task output, it's final result after being executed", default=None
|
||||
)
|
||||
tools: Optional[List[Any]] = Field(
|
||||
tools: Optional[List[BaseTool]] = Field(
|
||||
default_factory=list,
|
||||
description="Tools the agent is limited to use for this task.",
|
||||
)
|
||||
@@ -185,7 +186,7 @@ class Task(BaseModel):
|
||||
self,
|
||||
agent: Optional[BaseAgent] = None,
|
||||
context: Optional[str] = None,
|
||||
tools: Optional[List[Any]] = None,
|
||||
tools: Optional[List[BaseTool]] = None,
|
||||
) -> TaskOutput:
|
||||
"""Execute the task synchronously."""
|
||||
return self._execute_core(agent, context, tools)
|
||||
@@ -202,7 +203,7 @@ class Task(BaseModel):
|
||||
self,
|
||||
agent: BaseAgent | None = None,
|
||||
context: Optional[str] = None,
|
||||
tools: Optional[List[Any]] = None,
|
||||
tools: Optional[List[BaseTool]] = None,
|
||||
) -> Future[TaskOutput]:
|
||||
"""Execute the task asynchronously."""
|
||||
future: Future[TaskOutput] = Future()
|
||||
|
||||
@@ -21,7 +21,7 @@ with suppress_warnings():
|
||||
|
||||
|
||||
from opentelemetry import trace # noqa: E402
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter # noqa: E402
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter # noqa: E402
|
||||
from opentelemetry.sdk.resources import SERVICE_NAME, Resource # noqa: E402
|
||||
from opentelemetry.sdk.trace import TracerProvider # noqa: E402
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor # noqa: E402
|
||||
@@ -48,6 +48,10 @@ class Telemetry:
|
||||
def __init__(self):
|
||||
self.ready = False
|
||||
self.trace_set = False
|
||||
|
||||
if os.getenv("OTEL_SDK_DISABLED", "false").lower() == "true":
|
||||
return
|
||||
|
||||
try:
|
||||
telemetry_endpoint = "https://telemetry.crewai.com:4319"
|
||||
self.resource = Resource(
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
from .base_tool import BaseTool, tool
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
from crewai.agents.agent_builder.utilities.base_agent_tool import BaseAgentTools
|
||||
|
||||
|
||||
class AgentTools(BaseAgentTools):
|
||||
"""Default tools around agent delegation"""
|
||||
|
||||
def tools(self):
|
||||
from langchain.tools import StructuredTool
|
||||
|
||||
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
|
||||
tools = [
|
||||
StructuredTool.from_function(
|
||||
func=self.delegate_work,
|
||||
name="Delegate work to coworker",
|
||||
description=self.i18n.tools("delegate_work").format(
|
||||
coworkers=coworkers
|
||||
),
|
||||
),
|
||||
StructuredTool.from_function(
|
||||
func=self.ask_question,
|
||||
name="Ask question to coworker",
|
||||
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
|
||||
),
|
||||
]
|
||||
return tools
|
||||
32
src/crewai/tools/agent_tools/agent_tools.py
Normal file
32
src/crewai/tools/agent_tools/agent_tools.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.utilities import I18N
|
||||
|
||||
from .delegate_work_tool import DelegateWorkTool
|
||||
from .ask_question_tool import AskQuestionTool
|
||||
|
||||
|
||||
class AgentTools:
|
||||
"""Manager class for agent-related tools"""
|
||||
|
||||
def __init__(self, agents: list[BaseAgent], i18n: I18N = I18N()):
|
||||
self.agents = agents
|
||||
self.i18n = i18n
|
||||
|
||||
def tools(self) -> list[BaseTool]:
|
||||
"""Get all available agent tools"""
|
||||
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
|
||||
|
||||
delegate_tool = DelegateWorkTool(
|
||||
agents=self.agents,
|
||||
i18n=self.i18n,
|
||||
description=self.i18n.tools("delegate_work").format(coworkers=coworkers),
|
||||
)
|
||||
|
||||
ask_tool = AskQuestionTool(
|
||||
agents=self.agents,
|
||||
i18n=self.i18n,
|
||||
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
|
||||
)
|
||||
|
||||
return [delegate_tool, ask_tool]
|
||||
26
src/crewai/tools/agent_tools/ask_question_tool.py
Normal file
26
src/crewai/tools/agent_tools/ask_question_tool.py
Normal file
@@ -0,0 +1,26 @@
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
from typing import Optional
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class AskQuestionToolSchema(BaseModel):
|
||||
question: str = Field(..., description="The question to ask")
|
||||
context: str = Field(..., description="The context for the question")
|
||||
coworker: str = Field(..., description="The role/name of the coworker to ask")
|
||||
|
||||
|
||||
class AskQuestionTool(BaseAgentTool):
|
||||
"""Tool for asking questions to coworkers"""
|
||||
|
||||
name: str = "Ask question to coworker"
|
||||
args_schema: type[BaseModel] = AskQuestionToolSchema
|
||||
|
||||
def _run(
|
||||
self,
|
||||
question: str,
|
||||
context: str,
|
||||
coworker: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
coworker = self._get_coworker(coworker, **kwargs)
|
||||
return self._execute(coworker, question, context)
|
||||
@@ -1,22 +1,19 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, Union
|
||||
from pydantic import Field
|
||||
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.task import Task
|
||||
from crewai.utilities import I18N
|
||||
|
||||
|
||||
class BaseAgentTools(BaseModel, ABC):
|
||||
"""Default tools around agent delegation"""
|
||||
class BaseAgentTool(BaseTool):
|
||||
"""Base class for agent-related tools"""
|
||||
|
||||
agents: List[BaseAgent] = Field(description="List of agents in this crew.")
|
||||
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
|
||||
|
||||
@abstractmethod
|
||||
def tools(self):
|
||||
pass
|
||||
agents: list[BaseAgent] = Field(description="List of available agents")
|
||||
i18n: I18N = Field(
|
||||
default_factory=I18N, description="Internationalization settings"
|
||||
)
|
||||
|
||||
def _get_coworker(self, coworker: Optional[str], **kwargs) -> Optional[str]:
|
||||
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
|
||||
@@ -24,27 +21,11 @@ class BaseAgentTools(BaseModel, ABC):
|
||||
is_list = coworker.startswith("[") and coworker.endswith("]")
|
||||
if is_list:
|
||||
coworker = coworker[1:-1].split(",")[0]
|
||||
|
||||
return coworker
|
||||
|
||||
def delegate_work(
|
||||
self, task: str, context: str, coworker: Optional[str] = None, **kwargs
|
||||
):
|
||||
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
|
||||
coworker = self._get_coworker(coworker, **kwargs)
|
||||
return self._execute(coworker, task, context)
|
||||
|
||||
def ask_question(
|
||||
self, question: str, context: str, coworker: Optional[str] = None, **kwargs
|
||||
):
|
||||
"""Useful to ask a question, opinion or take from a coworker passing all necessary context and names."""
|
||||
coworker = self._get_coworker(coworker, **kwargs)
|
||||
return self._execute(coworker, question, context)
|
||||
|
||||
def _execute(
|
||||
self, agent_name: Union[str, None], task: str, context: Union[str, None]
|
||||
):
|
||||
"""Execute the command."""
|
||||
) -> str:
|
||||
try:
|
||||
if agent_name is None:
|
||||
agent_name = ""
|
||||
@@ -57,7 +38,6 @@ class BaseAgentTools(BaseModel, ABC):
|
||||
# when it should look like this:
|
||||
# {"task": "....", "coworker": "...."}
|
||||
agent_name = agent_name.casefold().replace('"', "").replace("\n", "")
|
||||
|
||||
agent = [ # type: ignore # Incompatible types in assignment (expression has type "list[BaseAgent]", variable has type "str | None")
|
||||
available_agent
|
||||
for available_agent in self.agents
|
||||
29
src/crewai/tools/agent_tools/delegate_work_tool.py
Normal file
29
src/crewai/tools/agent_tools/delegate_work_tool.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class DelegateWorkToolSchema(BaseModel):
|
||||
task: str = Field(..., description="The task to delegate")
|
||||
context: str = Field(..., description="The context for the task")
|
||||
coworker: str = Field(
|
||||
..., description="The role/name of the coworker to delegate to"
|
||||
)
|
||||
|
||||
|
||||
class DelegateWorkTool(BaseAgentTool):
|
||||
"""Tool for delegating work to coworkers"""
|
||||
|
||||
name: str = "Delegate work to coworker"
|
||||
args_schema: type[BaseModel] = DelegateWorkToolSchema
|
||||
|
||||
def _run(
|
||||
self,
|
||||
task: str,
|
||||
context: str,
|
||||
coworker: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
coworker = self._get_coworker(coworker, **kwargs)
|
||||
return self._execute(coworker, task, context)
|
||||
186
src/crewai/tools/base_tool.py
Normal file
186
src/crewai/tools/base_tool.py
Normal file
@@ -0,0 +1,186 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Callable, Type, get_args, get_origin
|
||||
|
||||
from langchain_core.tools import StructuredTool
|
||||
from pydantic import BaseModel, ConfigDict, Field, validator
|
||||
from pydantic import BaseModel as PydanticBaseModel
|
||||
|
||||
|
||||
class BaseTool(BaseModel, ABC):
|
||||
class _ArgsSchemaPlaceholder(PydanticBaseModel):
|
||||
pass
|
||||
|
||||
model_config = ConfigDict()
|
||||
|
||||
name: str
|
||||
"""The unique name of the tool that clearly communicates its purpose."""
|
||||
description: str
|
||||
"""Used to tell the model how/when/why to use the tool."""
|
||||
args_schema: Type[PydanticBaseModel] = Field(default_factory=_ArgsSchemaPlaceholder)
|
||||
"""The schema for the arguments that the tool accepts."""
|
||||
description_updated: bool = False
|
||||
"""Flag to check if the description has been updated."""
|
||||
cache_function: Callable = lambda _args=None, _result=None: True
|
||||
"""Function that will be used to determine if the tool should be cached, should return a boolean. If None, the tool will be cached."""
|
||||
result_as_answer: bool = False
|
||||
"""Flag to check if the tool should be the final agent answer."""
|
||||
|
||||
@validator("args_schema", always=True, pre=True)
|
||||
def _default_args_schema(
|
||||
cls, v: Type[PydanticBaseModel]
|
||||
) -> Type[PydanticBaseModel]:
|
||||
if not isinstance(v, cls._ArgsSchemaPlaceholder):
|
||||
return v
|
||||
|
||||
return type(
|
||||
f"{cls.__name__}Schema",
|
||||
(PydanticBaseModel,),
|
||||
{
|
||||
"__annotations__": {
|
||||
k: v for k, v in cls._run.__annotations__.items() if k != "return"
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
def model_post_init(self, __context: Any) -> None:
|
||||
self._generate_description()
|
||||
|
||||
super().model_post_init(__context)
|
||||
|
||||
def run(
|
||||
self,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
print(f"Using Tool: {self.name}")
|
||||
return self._run(*args, **kwargs)
|
||||
|
||||
@abstractmethod
|
||||
def _run(
|
||||
self,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
"""Here goes the actual implementation of the tool."""
|
||||
|
||||
def to_langchain(self) -> StructuredTool:
|
||||
self._set_args_schema()
|
||||
return StructuredTool(
|
||||
name=self.name,
|
||||
description=self.description,
|
||||
args_schema=self.args_schema,
|
||||
func=self._run,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_langchain(cls, tool: StructuredTool) -> "BaseTool":
|
||||
if cls == Tool:
|
||||
if tool.func is None:
|
||||
raise ValueError("StructuredTool must have a callable 'func'")
|
||||
return Tool(
|
||||
name=tool.name,
|
||||
description=tool.description,
|
||||
args_schema=tool.args_schema,
|
||||
func=tool.func,
|
||||
)
|
||||
raise NotImplementedError(f"from_langchain not implemented for {cls.__name__}")
|
||||
|
||||
def _set_args_schema(self):
|
||||
if self.args_schema is None:
|
||||
class_name = f"{self.__class__.__name__}Schema"
|
||||
self.args_schema = type(
|
||||
class_name,
|
||||
(PydanticBaseModel,),
|
||||
{
|
||||
"__annotations__": {
|
||||
k: v
|
||||
for k, v in self._run.__annotations__.items()
|
||||
if k != "return"
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
def _generate_description(self):
|
||||
args_schema = {
|
||||
name: {
|
||||
"description": field.description,
|
||||
"type": BaseTool._get_arg_annotations(field.annotation),
|
||||
}
|
||||
for name, field in self.args_schema.model_fields.items()
|
||||
}
|
||||
|
||||
self.description = f"Tool Name: {self.name}\nTool Arguments: {args_schema}\nTool Description: {self.description}"
|
||||
|
||||
@staticmethod
|
||||
def _get_arg_annotations(annotation: type[Any] | None) -> str:
|
||||
if annotation is None:
|
||||
return "None"
|
||||
|
||||
origin = get_origin(annotation)
|
||||
args = get_args(annotation)
|
||||
|
||||
if origin is None:
|
||||
return (
|
||||
annotation.__name__
|
||||
if hasattr(annotation, "__name__")
|
||||
else str(annotation)
|
||||
)
|
||||
|
||||
if args:
|
||||
args_str = ", ".join(BaseTool._get_arg_annotations(arg) for arg in args)
|
||||
return f"{origin.__name__}[{args_str}]"
|
||||
|
||||
return origin.__name__
|
||||
|
||||
|
||||
class Tool(BaseTool):
|
||||
func: Callable
|
||||
"""The function that will be executed when the tool is called."""
|
||||
|
||||
def _run(self, *args: Any, **kwargs: Any) -> Any:
|
||||
return self.func(*args, **kwargs)
|
||||
|
||||
|
||||
def to_langchain(
|
||||
tools: list[BaseTool | StructuredTool],
|
||||
) -> list[StructuredTool]:
|
||||
return [t.to_langchain() if isinstance(t, BaseTool) else t for t in tools]
|
||||
|
||||
|
||||
def tool(*args):
|
||||
"""
|
||||
Decorator to create a tool from a function.
|
||||
"""
|
||||
|
||||
def _make_with_name(tool_name: str) -> Callable:
|
||||
def _make_tool(f: Callable) -> BaseTool:
|
||||
if f.__doc__ is None:
|
||||
raise ValueError("Function must have a docstring")
|
||||
if f.__annotations__ is None:
|
||||
raise ValueError("Function must have type annotations")
|
||||
|
||||
class_name = "".join(tool_name.split()).title()
|
||||
args_schema = type(
|
||||
class_name,
|
||||
(PydanticBaseModel,),
|
||||
{
|
||||
"__annotations__": {
|
||||
k: v for k, v in f.__annotations__.items() if k != "return"
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
return Tool(
|
||||
name=tool_name,
|
||||
description=f.__doc__,
|
||||
func=f,
|
||||
args_schema=args_schema,
|
||||
)
|
||||
|
||||
return _make_tool
|
||||
|
||||
if len(args) == 1 and callable(args[0]):
|
||||
return _make_with_name(args[0].__name__)(args[0])
|
||||
if len(args) == 1 and isinstance(args[0], str):
|
||||
return _make_with_name(args[0])
|
||||
raise ValueError("Invalid arguments")
|
||||
@@ -10,6 +10,7 @@ import crewai.utilities.events as events
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.task import Task
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
|
||||
from crewai.utilities import I18N, Converter, ConverterError, Printer
|
||||
@@ -49,7 +50,7 @@ class ToolUsage:
|
||||
def __init__(
|
||||
self,
|
||||
tools_handler: ToolsHandler,
|
||||
tools: List[Any],
|
||||
tools: List[BaseTool],
|
||||
original_tools: List[Any],
|
||||
tools_description: str,
|
||||
tools_names: str,
|
||||
@@ -298,22 +299,7 @@ class ToolUsage:
|
||||
"""Render the tool name and description in plain text."""
|
||||
descriptions = []
|
||||
for tool in self.tools:
|
||||
args = {
|
||||
name: {
|
||||
"description": field.description,
|
||||
"type": field.annotation.__name__,
|
||||
}
|
||||
for name, field in tool.args_schema.model_fields.items()
|
||||
}
|
||||
descriptions.append(
|
||||
"\n".join(
|
||||
[
|
||||
f"Tool Name: {tool.name.lower()}",
|
||||
f"Tool Description: {tool.description}",
|
||||
f"Tool Arguments: {args}",
|
||||
]
|
||||
)
|
||||
)
|
||||
descriptions.append(tool.description)
|
||||
return "\n--\n".join(descriptions)
|
||||
|
||||
def _function_calling(self, tool_string: str):
|
||||
|
||||
@@ -2,13 +2,14 @@ from datetime import datetime, date
|
||||
import json
|
||||
from uuid import UUID
|
||||
from pydantic import BaseModel
|
||||
from decimal import Decimal
|
||||
|
||||
|
||||
class CrewJSONEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, BaseModel):
|
||||
return self._handle_pydantic_model(obj)
|
||||
elif isinstance(obj, UUID):
|
||||
elif isinstance(obj, UUID) or isinstance(obj, Decimal):
|
||||
return str(obj)
|
||||
|
||||
elif isinstance(obj, datetime) or isinstance(obj, date):
|
||||
|
||||
@@ -5,7 +5,6 @@ from unittest import mock
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from crewai_tools import tool
|
||||
|
||||
from crewai import Agent, Crew, Task
|
||||
from crewai.agents.cache import CacheHandler
|
||||
@@ -14,6 +13,7 @@ from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserExcep
|
||||
from crewai.llm import LLM
|
||||
from crewai.tools.tool_calling import InstructorToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.tools import tool
|
||||
from crewai.tools.tool_usage_events import ToolUsageFinished
|
||||
from crewai.utilities import RPMController
|
||||
from crewai.utilities.events import Emitter
|
||||
@@ -277,9 +277,10 @@ def test_cache_hitting():
|
||||
"multiplier-{'first_number': 12, 'second_number': 3}": 36,
|
||||
}
|
||||
|
||||
with patch.object(CacheHandler, "read") as read, patch.object(
|
||||
Emitter, "emit"
|
||||
) as emit:
|
||||
with (
|
||||
patch.object(CacheHandler, "read") as read,
|
||||
patch.object(Emitter, "emit") as emit,
|
||||
):
|
||||
read.return_value = "0"
|
||||
task = Task(
|
||||
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
|
||||
@@ -604,7 +605,7 @@ def test_agent_respect_the_max_rpm_set(capsys):
|
||||
def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def get_final_answer() -> float:
|
||||
@@ -642,7 +643,7 @@ def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
|
||||
def test_agent_without_max_rpm_respet_crew_rpm(capsys):
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def get_final_answer() -> float:
|
||||
@@ -696,7 +697,7 @@ def test_agent_without_max_rpm_respet_crew_rpm(capsys):
|
||||
def test_agent_error_on_parsing_tool(capsys):
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def get_final_answer() -> float:
|
||||
@@ -739,7 +740,7 @@ def test_agent_error_on_parsing_tool(capsys):
|
||||
def test_agent_remembers_output_format_after_using_tools_too_many_times():
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def get_final_answer() -> float:
|
||||
@@ -863,11 +864,16 @@ def test_agent_function_calling_llm():
|
||||
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
|
||||
with patch.object(
|
||||
instructor, "from_litellm", wraps=instructor.from_litellm
|
||||
) as mock_from_litellm, patch.object(
|
||||
ToolUsage, "_original_tool_calling", side_effect=Exception("Forced exception")
|
||||
) as mock_original_tool_calling:
|
||||
with (
|
||||
patch.object(
|
||||
instructor, "from_litellm", wraps=instructor.from_litellm
|
||||
) as mock_from_litellm,
|
||||
patch.object(
|
||||
ToolUsage,
|
||||
"_original_tool_calling",
|
||||
side_effect=Exception("Forced exception"),
|
||||
) as mock_original_tool_calling,
|
||||
):
|
||||
crew.kickoff()
|
||||
mock_from_litellm.assert_called()
|
||||
mock_original_tool_calling.assert_called()
|
||||
@@ -894,7 +900,7 @@ def test_agent_count_formatting_error():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
|
||||
from crewai_tools import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Get Greetings"
|
||||
@@ -924,7 +930,7 @@ def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_tool_usage_information_is_appended_to_agent():
|
||||
from crewai_tools import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Decide Greetings"
|
||||
|
||||
@@ -2,6 +2,7 @@ import hashlib
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@@ -10,13 +11,13 @@ class TestAgent(BaseAgent):
|
||||
self,
|
||||
task: Any,
|
||||
context: Optional[str] = None,
|
||||
tools: Optional[List[Any]] = None,
|
||||
tools: Optional[List[BaseTool]] = None,
|
||||
) -> str:
|
||||
return ""
|
||||
|
||||
def create_agent_executor(self, tools=None) -> None: ...
|
||||
|
||||
def _parse_tools(self, tools: List[Any]) -> List[Any]:
|
||||
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
|
||||
return []
|
||||
|
||||
def get_delegation_tools(self, agents: List["BaseAgent"]): ...
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
from pathlib import Path
|
||||
from unittest import mock
|
||||
|
||||
import pytest
|
||||
from click.testing import CliRunner
|
||||
|
||||
from crewai.cli.cli import (
|
||||
deploy_create,
|
||||
deploy_list,
|
||||
@@ -9,6 +11,7 @@ from crewai.cli.cli import (
|
||||
deploy_push,
|
||||
deploy_remove,
|
||||
deply_status,
|
||||
flow_add_crew,
|
||||
reset_memories,
|
||||
signup,
|
||||
test,
|
||||
@@ -277,3 +280,42 @@ def test_deploy_remove_no_uuid(command, runner):
|
||||
|
||||
assert result.exit_code == 0
|
||||
mock_deploy.remove_crew.assert_called_once_with(uuid=None)
|
||||
|
||||
|
||||
@mock.patch("crewai.cli.add_crew_to_flow.create_embedded_crew")
|
||||
@mock.patch("pathlib.Path.exists", return_value=True) # Mock the existence check
|
||||
def test_flow_add_crew(mock_path_exists, mock_create_embedded_crew, runner):
|
||||
crew_name = "new_crew"
|
||||
result = runner.invoke(flow_add_crew, [crew_name])
|
||||
|
||||
# Log the output for debugging
|
||||
print(result.output)
|
||||
|
||||
assert result.exit_code == 0, f"Command failed with output: {result.output}"
|
||||
assert f"Adding crew {crew_name} to the flow" in result.output
|
||||
|
||||
# Verify that create_embedded_crew was called with the correct arguments
|
||||
mock_create_embedded_crew.assert_called_once()
|
||||
call_args, call_kwargs = mock_create_embedded_crew.call_args
|
||||
assert call_args[0] == crew_name
|
||||
assert "parent_folder" in call_kwargs
|
||||
assert isinstance(call_kwargs["parent_folder"], Path)
|
||||
|
||||
|
||||
def test_add_crew_to_flow_not_in_root(runner):
|
||||
# Simulate not being in the root of a flow project
|
||||
with mock.patch("pathlib.Path.exists", autospec=True) as mock_exists:
|
||||
# Mock Path.exists to return False when checking for pyproject.toml
|
||||
def exists_side_effect(self):
|
||||
if self.name == "pyproject.toml":
|
||||
return False # Simulate that pyproject.toml does not exist
|
||||
return True # All other paths exist
|
||||
|
||||
mock_exists.side_effect = exists_side_effect
|
||||
|
||||
result = runner.invoke(flow_add_crew, ["new_crew"])
|
||||
|
||||
assert result.exit_code != 0
|
||||
assert "This command must be run from the root of a flow project." in str(
|
||||
result.output
|
||||
)
|
||||
|
||||
109
tests/cli/config_test.py
Normal file
109
tests/cli/config_test.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import unittest
|
||||
import json
|
||||
import tempfile
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from crewai.cli.config import Settings
|
||||
|
||||
class TestSettings(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.test_dir = Path(tempfile.mkdtemp())
|
||||
self.config_path = self.test_dir / "settings.json"
|
||||
|
||||
def tearDown(self):
|
||||
shutil.rmtree(self.test_dir)
|
||||
|
||||
def test_empty_initialization(self):
|
||||
settings = Settings(config_path=self.config_path)
|
||||
self.assertIsNone(settings.tool_repository_username)
|
||||
self.assertIsNone(settings.tool_repository_password)
|
||||
|
||||
def test_initialization_with_data(self):
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username="user1"
|
||||
)
|
||||
self.assertEqual(settings.tool_repository_username, "user1")
|
||||
self.assertIsNone(settings.tool_repository_password)
|
||||
|
||||
def test_initialization_with_existing_file(self):
|
||||
self.config_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with self.config_path.open("w") as f:
|
||||
json.dump({"tool_repository_username": "file_user"}, f)
|
||||
|
||||
settings = Settings(config_path=self.config_path)
|
||||
self.assertEqual(settings.tool_repository_username, "file_user")
|
||||
|
||||
def test_merge_file_and_input_data(self):
|
||||
self.config_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with self.config_path.open("w") as f:
|
||||
json.dump({
|
||||
"tool_repository_username": "file_user",
|
||||
"tool_repository_password": "file_pass"
|
||||
}, f)
|
||||
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username="new_user"
|
||||
)
|
||||
self.assertEqual(settings.tool_repository_username, "new_user")
|
||||
self.assertEqual(settings.tool_repository_password, "file_pass")
|
||||
|
||||
def test_dump_new_settings(self):
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username="user1"
|
||||
)
|
||||
settings.dump()
|
||||
|
||||
with self.config_path.open("r") as f:
|
||||
saved_data = json.load(f)
|
||||
|
||||
self.assertEqual(saved_data["tool_repository_username"], "user1")
|
||||
|
||||
def test_update_existing_settings(self):
|
||||
self.config_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with self.config_path.open("w") as f:
|
||||
json.dump({"existing_setting": "value"}, f)
|
||||
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username="user1"
|
||||
)
|
||||
settings.dump()
|
||||
|
||||
with self.config_path.open("r") as f:
|
||||
saved_data = json.load(f)
|
||||
|
||||
self.assertEqual(saved_data["existing_setting"], "value")
|
||||
self.assertEqual(saved_data["tool_repository_username"], "user1")
|
||||
|
||||
def test_none_values(self):
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username=None
|
||||
)
|
||||
settings.dump()
|
||||
|
||||
with self.config_path.open("r") as f:
|
||||
saved_data = json.load(f)
|
||||
|
||||
self.assertIsNone(saved_data.get("tool_repository_username"))
|
||||
|
||||
def test_invalid_json_in_config(self):
|
||||
self.config_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with self.config_path.open("w") as f:
|
||||
f.write("invalid json")
|
||||
|
||||
try:
|
||||
settings = Settings(config_path=self.config_path)
|
||||
self.assertIsNone(settings.tool_repository_username)
|
||||
except json.JSONDecodeError:
|
||||
self.fail("Settings initialization should handle invalid JSON")
|
||||
|
||||
def test_empty_config_file(self):
|
||||
self.config_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
self.config_path.touch()
|
||||
|
||||
settings = Settings(config_path=self.config_path)
|
||||
self.assertIsNone(settings.tool_repository_username)
|
||||
@@ -82,6 +82,7 @@ def test_install_success(mock_get, mock_subprocess_run):
|
||||
capture_output=False,
|
||||
text=True,
|
||||
check=True,
|
||||
env=unittest.mock.ANY
|
||||
)
|
||||
|
||||
assert "Succesfully installed sample-tool" in output
|
||||
|
||||
@@ -456,7 +456,7 @@ def test_crew_verbose_output(capsys):
|
||||
def test_cache_hitting_between_agents():
|
||||
from unittest.mock import call, patch
|
||||
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def multiplier(first_number: int, second_number: int) -> float:
|
||||
@@ -499,7 +499,7 @@ def test_cache_hitting_between_agents():
|
||||
def test_api_calls_throttling(capsys):
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def get_final_answer() -> float:
|
||||
@@ -1111,7 +1111,7 @@ def test_dont_set_agents_step_callback_if_already_set():
|
||||
def test_crew_function_calling_llm():
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
llm = "gpt-4o"
|
||||
|
||||
@@ -1146,7 +1146,7 @@ def test_crew_function_calling_llm():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_task_with_no_arguments():
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def return_data() -> str:
|
||||
@@ -1309,8 +1309,9 @@ def test_hierarchical_crew_creation_tasks_with_agents():
|
||||
|
||||
assert crew.manager_agent is not None
|
||||
assert crew.manager_agent.tools is not None
|
||||
assert crew.manager_agent.tools[0].description.startswith(
|
||||
"Delegate a specific task to one of the following coworkers: Senior Writer"
|
||||
assert (
|
||||
"Delegate a specific task to one of the following coworkers: Senior Writer\n"
|
||||
in crew.manager_agent.tools[0].description
|
||||
)
|
||||
|
||||
|
||||
@@ -1337,8 +1338,9 @@ def test_hierarchical_crew_creation_tasks_with_async_execution():
|
||||
crew.kickoff()
|
||||
assert crew.manager_agent is not None
|
||||
assert crew.manager_agent.tools is not None
|
||||
assert crew.manager_agent.tools[0].description.startswith(
|
||||
assert (
|
||||
"Delegate a specific task to one of the following coworkers: Senior Writer\n"
|
||||
in crew.manager_agent.tools[0].description
|
||||
)
|
||||
|
||||
|
||||
@@ -1370,8 +1372,9 @@ def test_hierarchical_crew_creation_tasks_with_sync_last():
|
||||
crew.kickoff()
|
||||
assert crew.manager_agent is not None
|
||||
assert crew.manager_agent.tools is not None
|
||||
assert crew.manager_agent.tools[0].description.startswith(
|
||||
assert (
|
||||
"Delegate a specific task to one of the following coworkers: Senior Writer, Researcher, CEO\n"
|
||||
in crew.manager_agent.tools[0].description
|
||||
)
|
||||
|
||||
|
||||
@@ -1494,7 +1497,7 @@ def test_task_callback_on_crew():
|
||||
def test_tools_with_custom_caching():
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def multiplcation_tool(first_number: int, second_number: int) -> int:
|
||||
@@ -1696,7 +1699,7 @@ def test_manager_agent_in_agents_raises_exception():
|
||||
|
||||
|
||||
def test_manager_agent_with_tools_raises_exception():
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def testing_tool(first_number: int, second_number: int) -> int:
|
||||
|
||||
@@ -15,7 +15,7 @@ from pydantic_core import ValidationError
|
||||
|
||||
|
||||
def test_task_tool_reflect_agent_tools():
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def fake_tool() -> None:
|
||||
@@ -39,7 +39,7 @@ def test_task_tool_reflect_agent_tools():
|
||||
|
||||
|
||||
def test_task_tool_takes_precedence_over_agent_tools():
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def fake_tool() -> None:
|
||||
@@ -656,7 +656,7 @@ def test_increment_delegations_for_sequential_process():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_increment_tool_errors():
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def scoring_examples() -> None:
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
import pytest
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
|
||||
researcher = Agent(
|
||||
role="researcher",
|
||||
@@ -11,12 +11,14 @@ researcher = Agent(
|
||||
backstory="You're an expert researcher, specialized in technology",
|
||||
allow_delegation=False,
|
||||
)
|
||||
tools = AgentTools(agents=[researcher])
|
||||
tools = AgentTools(agents=[researcher]).tools()
|
||||
delegate_tool = tools[0]
|
||||
ask_tool = tools[1]
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_delegate_work():
|
||||
result = tools.delegate_work(
|
||||
result = delegate_tool.run(
|
||||
coworker="researcher",
|
||||
task="share your take on AI Agents",
|
||||
context="I heard you hate them",
|
||||
@@ -30,8 +32,8 @@ def test_delegate_work():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_delegate_work_with_wrong_co_worker_variable():
|
||||
result = tools.delegate_work(
|
||||
co_worker="researcher",
|
||||
result = delegate_tool.run(
|
||||
coworker="researcher",
|
||||
task="share your take on AI Agents",
|
||||
context="I heard you hate them",
|
||||
)
|
||||
@@ -44,7 +46,7 @@ def test_delegate_work_with_wrong_co_worker_variable():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_ask_question():
|
||||
result = tools.ask_question(
|
||||
result = ask_tool.run(
|
||||
coworker="researcher",
|
||||
question="do you hate AI Agents?",
|
||||
context="I heard you LOVE them",
|
||||
@@ -58,8 +60,8 @@ def test_ask_question():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_ask_question_with_wrong_co_worker_variable():
|
||||
result = tools.ask_question(
|
||||
co_worker="researcher",
|
||||
result = ask_tool.run(
|
||||
coworker="researcher",
|
||||
question="do you hate AI Agents?",
|
||||
context="I heard you LOVE them",
|
||||
)
|
||||
@@ -72,8 +74,8 @@ def test_ask_question_with_wrong_co_worker_variable():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_delegate_work_withwith_coworker_as_array():
|
||||
result = tools.delegate_work(
|
||||
co_worker="[researcher]",
|
||||
result = delegate_tool.run(
|
||||
coworker="[researcher]",
|
||||
task="share your take on AI Agents",
|
||||
context="I heard you hate them",
|
||||
)
|
||||
@@ -86,8 +88,8 @@ def test_delegate_work_withwith_coworker_as_array():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_ask_question_with_coworker_as_array():
|
||||
result = tools.ask_question(
|
||||
co_worker="[researcher]",
|
||||
result = ask_tool.run(
|
||||
coworker="[researcher]",
|
||||
question="do you hate AI Agents?",
|
||||
context="I heard you LOVE them",
|
||||
)
|
||||
@@ -99,7 +101,7 @@ def test_ask_question_with_coworker_as_array():
|
||||
|
||||
|
||||
def test_delegate_work_to_wrong_agent():
|
||||
result = tools.ask_question(
|
||||
result = ask_tool.run(
|
||||
coworker="writer",
|
||||
question="share your take on AI Agents",
|
||||
context="I heard you hate them",
|
||||
@@ -112,7 +114,7 @@ def test_delegate_work_to_wrong_agent():
|
||||
|
||||
|
||||
def test_ask_question_to_wrong_agent():
|
||||
result = tools.ask_question(
|
||||
result = ask_tool.run(
|
||||
coworker="writer",
|
||||
question="do you hate AI Agents?",
|
||||
context="I heard you LOVE them",
|
||||
109
tests/tools/test_base_tool.py
Normal file
109
tests/tools/test_base_tool.py
Normal file
@@ -0,0 +1,109 @@
|
||||
from typing import Callable
|
||||
from crewai.tools import BaseTool, tool
|
||||
|
||||
|
||||
def test_creating_a_tool_using_annotation():
|
||||
@tool("Name of my tool")
|
||||
def my_tool(question: str) -> str:
|
||||
"""Clear description for what this tool is useful for, you agent will need this information to use it."""
|
||||
return question
|
||||
|
||||
# Assert all the right attributes were defined
|
||||
assert my_tool.name == "Name of my tool"
|
||||
assert (
|
||||
my_tool.description
|
||||
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
assert my_tool.args_schema.schema()["properties"] == {
|
||||
"question": {"title": "Question", "type": "string"}
|
||||
}
|
||||
assert (
|
||||
my_tool.func("What is the meaning of life?") == "What is the meaning of life?"
|
||||
)
|
||||
|
||||
# Assert the langchain tool conversion worked as expected
|
||||
converted_tool = my_tool.to_langchain()
|
||||
assert converted_tool.name == "Name of my tool"
|
||||
|
||||
assert (
|
||||
converted_tool.description
|
||||
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
assert converted_tool.args_schema.schema()["properties"] == {
|
||||
"question": {"title": "Question", "type": "string"}
|
||||
}
|
||||
assert (
|
||||
converted_tool.func("What is the meaning of life?")
|
||||
== "What is the meaning of life?"
|
||||
)
|
||||
|
||||
|
||||
def test_creating_a_tool_using_baseclass():
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
|
||||
def _run(self, question: str) -> str:
|
||||
return question
|
||||
|
||||
my_tool = MyCustomTool()
|
||||
# Assert all the right attributes were defined
|
||||
assert my_tool.name == "Name of my tool"
|
||||
|
||||
assert (
|
||||
my_tool.description
|
||||
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
assert my_tool.args_schema.schema()["properties"] == {
|
||||
"question": {"title": "Question", "type": "string"}
|
||||
}
|
||||
assert my_tool.run("What is the meaning of life?") == "What is the meaning of life?"
|
||||
|
||||
# Assert the langchain tool conversion worked as expected
|
||||
converted_tool = my_tool.to_langchain()
|
||||
assert converted_tool.name == "Name of my tool"
|
||||
|
||||
assert (
|
||||
converted_tool.description
|
||||
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
assert converted_tool.args_schema.schema()["properties"] == {
|
||||
"question": {"title": "Question", "type": "string"}
|
||||
}
|
||||
assert (
|
||||
converted_tool.run("What is the meaning of life?")
|
||||
== "What is the meaning of life?"
|
||||
)
|
||||
|
||||
|
||||
def test_setting_cache_function():
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
cache_function: Callable = lambda: False
|
||||
|
||||
def _run(self, question: str) -> str:
|
||||
return question
|
||||
|
||||
my_tool = MyCustomTool()
|
||||
# Assert all the right attributes were defined
|
||||
assert not my_tool.cache_function()
|
||||
|
||||
|
||||
def test_default_cache_function_is_true():
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
|
||||
def _run(self, question: str) -> str:
|
||||
return question
|
||||
|
||||
my_tool = MyCustomTool()
|
||||
# Assert all the right attributes were defined
|
||||
assert my_tool.cache_function()
|
||||
@@ -3,11 +3,11 @@ import random
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from crewai_tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai import Agent, Task
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
|
||||
class RandomNumberToolInput(BaseModel):
|
||||
@@ -103,11 +103,7 @@ def test_tool_usage_render():
|
||||
rendered = tool_usage._render()
|
||||
|
||||
# Updated checks to match the actual output
|
||||
assert "Tool Name: random number generator" in rendered
|
||||
assert (
|
||||
"Random Number Generator(min_value: 'integer', max_value: 'integer') - Generates a random number within a specified range min_value: 'The minimum value of the range (inclusive)', max_value: 'The maximum value of the range (inclusive)'"
|
||||
in rendered
|
||||
)
|
||||
assert "Tool Name: Random Number Generator" in rendered
|
||||
assert "Tool Arguments:" in rendered
|
||||
assert (
|
||||
"'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}"
|
||||
@@ -117,3 +113,11 @@ def test_tool_usage_render():
|
||||
"'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}"
|
||||
in rendered
|
||||
)
|
||||
assert (
|
||||
"Tool Description: Generates a random number within a specified range"
|
||||
in rendered
|
||||
)
|
||||
assert (
|
||||
"Tool Name: Random Number Generator\nTool Arguments: {'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}, 'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}}\nTool Description: Generates a random number within a specified range"
|
||||
in rendered
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user