Compare commits

..

4 Commits

216 changed files with 2532 additions and 12879 deletions

View File

@@ -15,19 +15,8 @@ jobs:
- name: Fetch Target Branch
run: git fetch origin $TARGET_BRANCH --depth=1
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
cache-dependency-glob: |
**/pyproject.toml
**/uv.lock
- name: Set up Python
run: uv python install 3.11
- name: Install dependencies
run: uv sync --dev --no-install-project
- name: Install Ruff
run: pip install ruff
- name: Get Changed Python Files
id: changed-files
@@ -44,4 +33,4 @@ jobs:
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
| xargs -I{} ruff check "{}"

View File

@@ -10,20 +10,14 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
cache-dependency-glob: |
**/pyproject.toml
**/uv.lock
- name: Set up Python
run: uv python install 3.11
uses: actions/setup-python@v5
with:
python-version: "3.11.9"
- name: Install dependencies
run: uv sync --dev --no-install-project
run: pip install bandit
- name: Run Bandit
run: uv run bandit -c pyproject.toml -r src/ -ll
run: bandit -c pyproject.toml -r src/ -ll

View File

@@ -24,7 +24,7 @@ jobs:
uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
uses: astral-sh/setup-uv@v3
with:
enable-cache: true
cache-dependency-glob: |

View File

@@ -6,78 +6,21 @@ permissions:
contents: write
jobs:
type-checker-matrix:
name: type-checker (${{ matrix.python-version }})
type-checker:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v5
with:
fetch-depth: 0 # Fetch all history for proper diff
python-version: "3.11.9"
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
cache-dependency-glob: |
**/pyproject.toml
**/uv.lock
- name: Set up Python ${{ matrix.python-version }}
run: uv python install ${{ matrix.python-version }}
- name: Install dependencies
run: uv sync --dev --no-install-project
- name: Get changed Python files
id: changed-files
- name: Install Requirements
run: |
# Get the list of changed Python files compared to the base branch
echo "Fetching changed files..."
git diff --name-only --diff-filter=ACMRT origin/${{ github.base_ref }}...HEAD -- '*.py' > changed_files.txt
pip install mypy
# Filter for files in src/ and tests/ directories
grep -E "^(src/|tests/)" changed_files.txt > filtered_changed_files.txt || true
# Check if there are any changed files
if [ -s filtered_changed_files.txt ]; then
echo "Changed Python files in src/ and tests/:"
cat filtered_changed_files.txt
echo "has_changes=true" >> $GITHUB_OUTPUT
# Convert newlines to spaces for mypy command
echo "files=$(cat filtered_changed_files.txt | tr '\n' ' ')" >> $GITHUB_OUTPUT
else
echo "No Python files changed in src/ or tests/"
echo "has_changes=false" >> $GITHUB_OUTPUT
fi
- name: Run type checks on changed files
if: steps.changed-files.outputs.has_changes == 'true'
run: |
echo "Running mypy on changed files with Python ${{ matrix.python-version }}..."
uv run mypy ${{ steps.changed-files.outputs.files }}
- name: No files to check
if: steps.changed-files.outputs.has_changes == 'false'
run: echo "No Python files in src/ or tests/ were modified - skipping type checks"
# Summary job to provide single status for branch protection
type-checker:
name: type-checker
runs-on: ubuntu-latest
needs: type-checker-matrix
if: always()
steps:
- name: Check matrix results
run: |
if [ "${{ needs.type-checker-matrix.result }}" == "success" ] || [ "${{ needs.type-checker-matrix.result }}" == "skipped" ]; then
echo "✅ All type checks passed"
else
echo "❌ Type checks failed"
exit 1
fi
- name: Run type checks
run: mypy src

View File

@@ -1,14 +1,7 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.12.11
rev: v0.8.2
hooks:
- id: ruff
args: ["--config", "pyproject.toml"]
args: ["--fix"]
- id: ruff-format
args: ["--config", "pyproject.toml"]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.17.1
hooks:
- id: mypy
args: ["--config-file", "pyproject.toml"]

4
.ruff.toml Normal file
View File

@@ -0,0 +1,4 @@
exclude = [
"templates",
"__init__.py",
]

View File

@@ -418,10 +418,10 @@ Choose CrewAI to easily build powerful, adaptable, and production-ready AI autom
You can test different real life examples of AI crews in the [CrewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/landing_page_generator)
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/landing_page_generator)
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis)
### Quick Tutorial
@@ -429,19 +429,19 @@ You can test different real life examples of AI crews in the [CrewAI-examples re
### Write Job Descriptions
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting) or watch a video below:
[![Jobs postings](https://img.youtube.com/vi/u98wEMz-9to/maxresdefault.jpg)](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
### Trip Planner
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner) or watch a video below:
[![Trip Planner](https://img.youtube.com/vi/xis7rWp-hjs/maxresdefault.jpg)](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
### Stock Analysis
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis) or watch a video below:
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")

View File

@@ -320,7 +320,6 @@
"en/enterprise/guides/update-crew",
"en/enterprise/guides/enable-crew-studio",
"en/enterprise/guides/azure-openai-setup",
"en/enterprise/guides/automation-triggers",
"en/enterprise/guides/hubspot-trigger",
"en/enterprise/guides/react-component-export",
"en/enterprise/guides/salesforce-trigger",
@@ -659,7 +658,6 @@
"pt-BR/enterprise/guides/update-crew",
"pt-BR/enterprise/guides/enable-crew-studio",
"pt-BR/enterprise/guides/azure-openai-setup",
"pt-BR/enterprise/guides/automation-triggers",
"pt-BR/enterprise/guides/hubspot-trigger",
"pt-BR/enterprise/guides/react-component-export",
"pt-BR/enterprise/guides/salesforce-trigger",
@@ -1009,7 +1007,6 @@
"ko/enterprise/guides/update-crew",
"ko/enterprise/guides/enable-crew-studio",
"ko/enterprise/guides/azure-openai-setup",
"ko/enterprise/guides/automation-triggers",
"ko/enterprise/guides/hubspot-trigger",
"ko/enterprise/guides/react-component-export",
"ko/enterprise/guides/salesforce-trigger",

View File

@@ -282,25 +282,7 @@ Watch this video tutorial for a step-by-step demonstration of deploying your cre
allowfullscreen
></iframe>
### 12. Login
Authenticate with CrewAI Enterprise using a secure device code flow (no email entry required).
```shell Terminal
crewai login
```
What happens:
- A verification URL and short code are displayed in your terminal
- Your browser opens to the verification URL
- Enter/confirm the code to complete authentication
Notes:
- The OAuth2 provider and domain are configured via `crewai config` (defaults use `login.crewai.com`)
- After successful login, the CLI also attempts to authenticate to the Tool Repository automatically
- If you reset your configuration, run `crewai login` again to re-authenticate
### 13. API Keys
### 11. API Keys
When running ```crewai create crew``` command, the CLI will show you a list of available LLM providers to choose from, followed by model selection for your chosen provider.
@@ -328,7 +310,7 @@ See the following link for each provider's key name:
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)
### 14. Configuration Management
### 12. Configuration Management
Manage CLI configuration settings for CrewAI.
@@ -403,10 +385,6 @@ Reset all configuration to defaults:
crewai config reset
```
<Tip>
After resetting configuration, re-run `crewai login` to authenticate again.
</Tip>
<Note>
Configuration settings are stored in `~/.config/crewai/settings.json`. Some settings like organization name and UUID are read-only and managed through authentication and organization commands. Tool repository related settings are hidden and cannot be set directly by users.
</Note>

View File

@@ -44,12 +44,12 @@ To create a custom event listener, you need to:
Here's a simple example of a custom event listener class:
```python
from crewai.events import (
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
@@ -146,7 +146,7 @@ my_project/
```python
# my_custom_listener.py
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
@@ -279,7 +279,7 @@ Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` i
For temporary event handling (useful for testing or specific operations), you can use the `scoped_handlers` context manager:
```python
from crewai.events import crewai_event_bus, CrewKickoffStartedEvent
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)

View File

@@ -97,13 +97,7 @@ The state's unique ID and stored data can be useful for tracking flow executions
### @start()
The `@start()` decorator marks entry points for a Flow. You can:
- Declare multiple unconditional starts: `@start()`
- Gate a start on a prior method or router label: `@start("method_or_label")`
- Provide a callable condition to control when a start should fire
All satisfied `@start()` methods will execute (often in parallel) when the Flow begins or resumes.
The `@start()` decorator is used to mark a method as the starting point of a Flow. When a Flow is started, all the methods decorated with `@start()` are executed in parallel. You can have multiple start methods in a Flow, and they will all be executed when the Flow is started.
### @listen()

View File

@@ -24,41 +24,6 @@ For file-based Knowledge Sources, make sure to place your files in a `knowledge`
Also, use relative paths from the `knowledge` directory when creating the source.
</Tip>
### Vector store (RAG) client configuration
CrewAI exposes a provider-neutral RAG client abstraction for vector stores. The default provider is ChromaDB, and Qdrant is supported as well. You can switch providers using configuration utilities.
Supported today:
- ChromaDB (default)
- Qdrant
```python Code
from crewai.rag.config.utils import set_rag_config, get_rag_client, clear_rag_config
# ChromaDB (default)
from crewai.rag.chromadb.config import ChromaDBConfig
set_rag_config(ChromaDBConfig())
chromadb_client = get_rag_client()
# Qdrant
from crewai.rag.qdrant.config import QdrantConfig
set_rag_config(QdrantConfig())
qdrant_client = get_rag_client()
# Example operations (same API for any provider)
client = qdrant_client # or chromadb_client
client.create_collection(collection_name="docs")
client.add_documents(
collection_name="docs",
documents=[{"id": "1", "content": "CrewAI enables collaborative AI agents."}],
)
results = client.search(collection_name="docs", query="collaborative agents", limit=3)
clear_rag_config() # optional reset
```
This RAG client is separate from Knowledges built-in storage. Use it when you need direct vector-store control or custom retrieval pipelines.
### Basic String Knowledge Example
```python Code
@@ -716,11 +681,11 @@ CrewAI emits events during the knowledge retrieval process that you can listen f
#### Example: Monitoring Knowledge Retrieval
```python
from crewai.events import (
from crewai.utilities.events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
BaseEventListener,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class KnowledgeMonitorListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -733,10 +733,10 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
CrewAI emits events for each chunk received during streaming:
```python
from crewai.events import (
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@@ -758,8 +758,8 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
```python
from crewai import LLM, Agent, Task, Crew
from crewai.events import LLMStreamChunkEvent
from crewai.events import BaseEventListener
from crewai.utilities.events import LLMStreamChunkEvent
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -738,17 +738,6 @@ print(f"OpenAI: {openai_time:.2f}s")
print(f"Ollama: {ollama_time:.2f}s")
```
### Entity Memory batching behavior
Entity Memory supports batching when saving multiple entities at once. When you pass a list of `EntityMemoryItem`, the system:
- Emits a single MemorySaveStartedEvent with `entity_count`
- Saves each entity internally, collecting any partial errors
- Emits MemorySaveCompletedEvent with aggregate metadata (saved count, errors)
- Raises a partial-save exception if some entities failed (includes counts)
This improves performance and observability when writing many entities in one operation.
## 2. External Memory
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
@@ -1052,8 +1041,8 @@ CrewAI emits the following memory-related events:
Track memory operation timing to optimize your application:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)
@@ -1087,8 +1076,8 @@ memory_monitor = MemoryPerformanceMonitor()
Log memory operations for debugging and insights:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemorySaveStartedEvent,
MemoryQueryStartedEvent,
MemoryRetrievalCompletedEvent
@@ -1128,8 +1117,8 @@ memory_logger = MemoryLogger()
Capture and respond to memory errors:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemorySaveFailedEvent,
MemoryQueryFailedEvent
)
@@ -1178,8 +1167,8 @@ error_tracker = MemoryErrorTracker(notify_email="admin@example.com")
Memory events can be forwarded to analytics and monitoring platforms to track performance metrics, detect anomalies, and visualize memory usage patterns:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)

View File

@@ -59,12 +59,6 @@ crew = Crew(
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
| **Guardrail Max Retries** _(optional)_ | `guardrail_max_retries` | `Optional[int]` | Maximum number of retries when guardrail validation fails. Defaults to 3. |
<Note type="warning" title="Deprecated: max_retries">
The task attribute `max_retries` is deprecated and will be removed in v1.0.0.
Use `guardrail_max_retries` instead to control retry attempts when a guardrail fails.
</Note>
## Creating Tasks
@@ -437,7 +431,7 @@ When a guardrail returns `(False, error)`:
2. The agent attempts to fix the issue
3. The process repeats until:
- The guardrail returns `(True, result)`
- Maximum retries are reached (`guardrail_max_retries`)
- Maximum retries are reached
Example with retry handling:
```python Code
@@ -458,7 +452,7 @@ task = Task(
expected_output="A valid JSON object",
agent=analyst,
guardrail=validate_json_output,
guardrail_max_retries=3 # Limit retry attempts
max_retries=3 # Limit retry attempts
)
```

View File

@@ -59,7 +59,7 @@ Before using Authentication Integrations, ensure you have:
3. Click **Connect** on your desired service from the Authentication Integrations section
4. Complete the OAuth authentication flow
5. Grant necessary permissions for your use case
6. All set! Get your Enterprise Token from your [CrewAI Enterprise](https://app.crewai.com) in **Integration** tab
6. Get your Enterprise Token from your [CrewAI Enterprise](https://app.crewai.com) account page - https://app.crewai.com/crewai_plus/settings/account
<Frame>
![Integrations](/images/enterprise/enterprise_action_auth_token.png)

View File

@@ -141,16 +141,6 @@ Traces are invaluable for troubleshooting issues with your crews:
</Step>
</Steps>
## Performance and batching
CrewAI batches trace uploads to reduce overhead on high-volume runs:
- A TraceBatchManager buffers events and sends them in batches via the Plus API client
- Reduces network chatter and improves reliability on flaky connections
- Automatically enabled in the default trace listener; no configuration needed
This yields more stable tracing under load while preserving detailed task/agent telemetry.
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with trace analysis or any other CrewAI Enterprise features.
</Card>

View File

@@ -1,178 +0,0 @@
---
title: "Automation Triggers"
description: "Automatically execute your CrewAI workflows when specific events occur in connected integrations"
icon: "bolt"
---
Automation triggers enable you to automatically run your CrewAI deployments when specific events occur in your connected integrations, creating powerful event-driven workflows that respond to real-time changes in your business systems.
## Overview
With automation triggers, you can:
- **Respond to real-time events** - Automatically execute workflows when specific conditions are met
- **Integrate with external systems** - Connect with platforms like Gmail, Outlook, OneDrive, JIRA, Slack, Stripe and more
- **Scale your automation** - Handle high-volume events without manual intervention
- **Maintain context** - Access trigger data within your crews and flows
## Managing Automation Triggers
### Viewing Available Triggers
To access and manage your automation triggers:
1. Navigate to your deployment in the CrewAI dashboard
2. Click on the **Triggers** tab to view all available trigger integrations
<Frame>
<img src="/images/enterprise/list-available-triggers.png" alt="List of available automation triggers" />
</Frame>
This view shows all the trigger integrations available for your deployment, along with their current connection status.
### Enabling and Disabling Triggers
Each trigger can be easily enabled or disabled using the toggle switch:
<Frame>
<img src="/images/enterprise/trigger-selected.png" alt="Enable or disable triggers with toggle" />
</Frame>
- **Enabled (blue toggle)**: The trigger is active and will automatically execute your deployment when the specified events occur
- **Disabled (gray toggle)**: The trigger is inactive and will not respond to events
Simply click the toggle to change the trigger state. Changes take effect immediately.
### Monitoring Trigger Executions
Track the performance and history of your triggered executions:
<Frame>
<img src="/images/enterprise/list-executions.png" alt="List of executions triggered by automation" />
</Frame>
## Building Automation
Before building your automation, it's helpful to understand the structure of trigger payloads that your crews and flows will receive.
### Payload Samples Repository
We maintain a comprehensive repository with sample payloads from various trigger sources to help you build and test your automations:
**🔗 [CrewAI Enterprise Trigger Payload Samples](https://github.com/crewAIInc/crewai-enterprise-trigger-payload-samples)**
This repository contains:
- **Real payload examples** from different trigger sources (Gmail, Google Drive, etc.)
- **Payload structure documentation** showing the format and available fields
### Triggers with Crew
Your existing crew definitions work seamlessly with triggers, you just need to have a task to parse the received payload:
```python
@CrewBase
class MyAutomatedCrew:
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
)
@task
def parse_trigger_payload(self) -> Task:
return Task(
config=self.tasks_config['parse_trigger_payload'],
agent=self.researcher(),
)
@task
def analyze_trigger_content(self) -> Task:
return Task(
config=self.tasks_config['analyze_trigger_data'],
agent=self.researcher(),
)
```
The crew will automatically receive and can access the trigger payload through the standard CrewAI context mechanisms.
<Note>
Crew and Flow inputs can include `crewai_trigger_payload`. CrewAI automatically injects this payload:
- Tasks: appended to the first task's description by default ("Trigger Payload: {crewai_trigger_payload}")
- Control via `allow_crewai_trigger_context`: set `True` to always inject, `False` to never inject
- Flows: any `@start()` method that accepts a `crewai_trigger_payload` parameter will receive it
</Note>
### Integration with Flows
For flows, you have more control over how trigger data is handled:
#### Accessing Trigger Payload
All `@start()` methods in your flows will accept an additional parameter called `crewai_trigger_payload`:
```python
from crewai.flow import Flow, start, listen
class MyAutomatedFlow(Flow):
@start()
def handle_trigger(self, crewai_trigger_payload: dict = None):
"""
This start method can receive trigger data
"""
if crewai_trigger_payload:
# Process the trigger data
trigger_id = crewai_trigger_payload.get('id')
event_data = crewai_trigger_payload.get('payload', {})
# Store in flow state for use by other methods
self.state.trigger_id = trigger_id
self.state.trigger_type = event_data
return event_data
# Handle manual execution
return None
@listen(handle_trigger)
def process_data(self, trigger_data):
"""
Process the data from the trigger
"""
# ... process the trigger
```
#### Triggering Crews from Flows
When kicking off a crew within a flow that was triggered, pass the trigger payload as it:
```python
@start()
def delegate_to_crew(self, crewai_trigger_payload: dict = None):
"""
Delegate processing to a specialized crew
"""
crew = MySpecializedCrew()
# Pass the trigger payload to the crew
result = crew.crew().kickoff(
inputs={
'a_custom_parameter': "custom_value",
'crewai_trigger_payload': crewai_trigger_payload
},
)
return result
```
## Troubleshooting
**Trigger not firing:**
- Verify the trigger is enabled
- Check integration connection status
**Execution failures:**
- Check the execution logs for error details
- If you are developing, make sure the inputs include the `crewai_trigger_payload` parameter with the correct payload
Automation triggers transform your CrewAI deployments into responsive, event-driven systems that can seamlessly integrate with your existing business processes and tools.

View File

@@ -348,31 +348,6 @@ class SelectivePersistFlow(Flow):
## Advanced State Patterns
### Conditional starts and resumable execution
Flows support conditional `@start()` and resumable execution for HITL/cyclic scenarios:
```python
from crewai.flow.flow import Flow, start, listen, and_, or_
class ResumableFlow(Flow):
@start() # unconditional start
def init(self):
...
# Conditional start: run after "init" or external trigger name
@start("init")
def maybe_begin(self):
...
@listen(and_(init, maybe_begin))
def proceed(self):
...
```
- Conditional `@start()` accepts a method name, a router label, or a callable condition.
- During resume, listeners continue from prior checkpoints; cycle/router branches honor resumption flags.
### State-Based Conditional Logic
You can use state to implement complex conditional logic in your flows:

View File

@@ -30,12 +30,6 @@ Watch this video tutorial for a step-by-step demonstration of the installation p
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
</Note>
<Note>
**OpenAI SDK Requirement**
CrewAI 0.175.0 requires `openai >= 1.13.3`. If you manage dependencies yourself, ensure your environment satisfies this constraint to avoid import/runtime issues.
</Note>
CrewAI uses the `uv` as its dependency management and package handling tool. It simplifies project setup and execution, offering a seamless experience.
If you haven't installed `uv` yet, follow **step 1** to quickly get it set up on your system, else you can skip to **step 2**.

View File

@@ -1,13 +1,13 @@
---
title: Weaviate Vector Search
description: The `WeaviateVectorSearchTool` is designed to search a Weaviate vector database for semantically similar documents using hybrid search.
description: The `WeaviateVectorSearchTool` is designed to search a Weaviate vector database for semantically similar documents.
icon: network-wired
---
## Overview
The `WeaviateVectorSearchTool` is specifically crafted for conducting semantic searches within documents stored in a Weaviate vector database. This tool allows you to find semantically similar documents to a given query, leveraging the power of vector and keyword search for more accurate and contextually relevant search results.
The `WeaviateVectorSearchTool` is specifically crafted for conducting semantic searches within documents stored in a Weaviate vector database. This tool allows you to find semantically similar documents to a given query, leveraging the power of vector embeddings for more accurate and contextually relevant search results.
[Weaviate](https://weaviate.io/) is a vector database that stores and queries vector embeddings, enabling semantic search capabilities.
@@ -39,7 +39,6 @@ from crewai_tools import WeaviateVectorSearchTool
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
alpha=0.75,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
@@ -64,7 +63,6 @@ The `WeaviateVectorSearchTool` accepts the following parameters:
- **weaviate_cluster_url**: Required. The URL of the Weaviate cluster.
- **weaviate_api_key**: Required. The API key for the Weaviate cluster.
- **limit**: Optional. The number of results to return. Default is `3`.
- **alpha**: Optional. Controls the weighting between vector and keyword (BM25) search. alpha = 0 -> BM25 only, alpha = 1 -> vector search only. Default is `0.75`.
- **vectorizer**: Optional. The vectorizer to use. If not provided, it will use `text2vec_openai` with the `nomic-embed-text` model.
- **generative_model**: Optional. The generative model to use. If not provided, it will use OpenAI's `gpt-4o`.
@@ -80,7 +78,6 @@ from weaviate.classes.config import Configure
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
alpha=0.75,
vectorizer=Configure.Vectorizer.text2vec_openai(model="nomic-embed-text"),
generative_model=Configure.Generative.openai(model="gpt-4o-mini"),
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
@@ -131,7 +128,6 @@ with test_docs.batch.dynamic() as batch:
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
alpha=0.75,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
@@ -149,7 +145,6 @@ from crewai_tools import WeaviateVectorSearchTool
weaviate_tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
alpha=0.75,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 330 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

View File

@@ -44,12 +44,12 @@ Prompt Tracing을 통해 다음과 같은 작업이 가능합니다:
아래는 커스텀 이벤트 리스너 클래스의 간단한 예시입니다:
```python
from crewai.events import (
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
@@ -146,7 +146,7 @@ my_project/
```python
# my_custom_listener.py
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
@@ -279,7 +279,7 @@ CrewAI는 여러분이 청취할 수 있는 다양한 이벤트를 제공합니
임시 이벤트 처리가 필요한 경우(테스트 또는 특정 작업에 유용함), `scoped_handlers` 컨텍스트 관리자를 사용할 수 있습니다:
```python
from crewai.events import crewai_event_bus, CrewKickoffStartedEvent
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)

View File

@@ -683,11 +683,11 @@ CrewAI는 knowledge 검색 과정에서 이벤트를 발생시키며, 이벤트
#### 예시: Knowledge Retrieval 모니터링
```python
from crewai.events import (
from crewai.utilities.events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
BaseEventListener,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class KnowledgeMonitorListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -731,10 +731,10 @@ CrewAI는 LLM의 스트리밍 응답을 지원하여, 애플리케이션이 출
CrewAI는 스트리밍 중 수신되는 각 청크에 대해 이벤트를 발생시킵니다:
```python
from crewai.events import (
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@@ -756,8 +756,8 @@ CrewAI는 LLM의 스트리밍 응답을 지원하여, 애플리케이션이 출
```python
from crewai import LLM, Agent, Task, Crew
from crewai.events import LLMStreamChunkEvent
from crewai.events import BaseEventListener
from crewai.utilities.events import LLMStreamChunkEvent
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -985,8 +985,8 @@ CrewAI는 다음과 같은 메모리 관련 이벤트를 발생시킵니다:
애플리케이션을 최적화하기 위해 메모리 작업 타이밍을 추적하세요:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)
@@ -1020,8 +1020,8 @@ memory_monitor = MemoryPerformanceMonitor()
디버깅 및 인사이트를 위해 메모리 작업을 로깅합니다:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemorySaveStartedEvent,
MemoryQueryStartedEvent,
MemoryRetrievalCompletedEvent
@@ -1061,8 +1061,8 @@ memory_logger = MemoryLogger()
메모리 오류를 캡처하고 대응합니다:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemorySaveFailedEvent,
MemoryQueryFailedEvent
)
@@ -1111,8 +1111,8 @@ error_tracker = MemoryErrorTracker(notify_email="admin@example.com")
메모리 이벤트는 분석 및 모니터링 플랫폼으로 전달되어 성능 지표를 추적하고, 이상 징후를 감지하며, 메모리 사용 패턴을 시각화할 수 있습니다:
```python
from crewai.events import (
BaseEventListener,
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)

View File

@@ -59,7 +59,6 @@ crew = Crew(
| **Pydantic 출력** _(선택 사항)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | 태스크 출력용 Pydantic 모델입니다. |
| **콜백** _(선택 사항)_ | `callback` | `Optional[Any]` | 태스크 완료 후 실행할 함수/객체입니다. |
| **가드레일** _(선택 사항)_ | `guardrail` | `Optional[Callable]` | 다음 태스크로 진행하기 전에 태스크 출력을 검증하는 함수입니다. |
| **가드레일 최대 재시도** _(선택 사항)_ | `guardrail_max_retries` | `Optional[int]` | 가드레일 검증 실패 시 최대 재시도 횟수입니다. 기본값은 3입니다. |
## 작업 생성하기
@@ -449,7 +448,7 @@ task = Task(
expected_output="A valid JSON object",
agent=analyst,
guardrail=validate_json_output,
guardrail_max_retries=3 # 재시도 횟수 제한
max_retries=3 # Limit retry attempts
)
```
@@ -900,4 +899,4 @@ except RuntimeError as e:
작업(task)은 CrewAI 에이전트의 행동을 이끄는 원동력입니다.
작업과 그 결과를 적절하게 정의함으로써, 에이전트가 독립적으로 또는 협업 단위로 효과적으로 작동할 수 있는 기반을 마련할 수 있습니다.
작업에 적합한 도구를 장착하고, 실행 과정을 이해하며, 견고한 검증 절차를 따르는 것은 CrewAI의 잠재력을 극대화하는 데 필수적입니다.
이를 통해 에이전트가 할당된 작업에 효과적으로 준비되고, 작업이 의도대로 수행될 수 있습니다.
이를 통해 에이전트가 할당된 작업에 효과적으로 준비되고, 작업이 의도대로 수행될 수 있습니다.

View File

@@ -58,7 +58,7 @@ Authentication Integrations를 사용하기 전에 다음이 준비되어 있는
3. Authentication Integrations 섹션에서 원하는 서비스의 **Connect** 버튼을 클릭합니다.
4. OAuth 인증 과정을 완료합니다.
5. 사용 사례에 필요한 권한을 부여합니다.
6. 완료! [CrewAI Enterprise](https://app.crewai.com)의 **Integration** 탭에서 Enterprise Token을 받습니다.
6. [CrewAI Enterprise](https://app.crewai.com) 계정 페이지 - https://app.crewai.com/crewai_plus/settings/account 에서 Enterprise Token을 받습니다.
<Frame>
![Integrations](/images/enterprise/enterprise_action_auth_token.png)
@@ -176,4 +176,4 @@ crew를 배포하고 각 통합을 특정 사용자에게 범위 지정할 수
<Card title="도움이 필요하신가요?" icon="headset" href="mailto:support@crewai.com">
통합 설정이나 문제 해결에 대한 지원이 필요하시면 저희 지원팀에 문의하세요.
</Card>
</Card>

View File

@@ -1,171 +0,0 @@
---
title: "자동화 트리거"
description: "연결된 통합에서 특정 이벤트가 발생할 때 CrewAI 워크플로우를 자동으로 실행합니다"
icon: "bolt"
---
자동화 트리거를 사용하면 연결된 통합에서 특정 이벤트가 발생할 때 CrewAI 배포를 자동으로 실행할 수 있어, 비즈니스 시스템의 실시간 변화에 반응하는 강력한 이벤트 기반 워크플로우를 만들 수 있습니다.
## 개요
자동화 트리거를 사용하면 다음을 수행할 수 있습니다:
- **실시간 이벤트에 응답** - 특정 조건이 충족될 때 워크플로우를 자동으로 실행
- **외부 시스템과 통합** - Gmail, Outlook, OneDrive, JIRA, Slack, Stripe 등의 플랫폼과 연결
- **자동화 확장** - 수동 개입 없이 대용량 이벤트 처리
- **컨텍스트 유지** - crew와 flow 내에서 트리거 데이터에 액세스
## 자동화 트리거 관리
### 사용 가능한 트리거 보기
자동화 트리거에 액세스하고 관리하려면:
1. CrewAI 대시보드에서 배포로 이동
2. **트리거** 탭을 클릭하여 사용 가능한 모든 트리거 통합 보기
<Frame>
<img src="/images/enterprise/list-available-triggers.png" alt="사용 가능한 자동화 트리거 목록" />
</Frame>
이 보기는 배포에 사용 가능한 모든 트리거 통합과 현재 연결 상태를 보여줍니다.
### 트리거 활성화 및 비활성화
각 트리거는 토글 스위치를 사용하여 쉽게 활성화하거나 비활성화할 수 있습니다:
<Frame>
<img src="/images/enterprise/trigger-selected.png" alt="토글로 트리거 활성화 또는 비활성화" />
</Frame>
- **활성화됨 (파란색 토글)**: 트리거가 활성 상태이며 지정된 이벤트가 발생할 때 배포를 자동으로 실행합니다
- **비활성화됨 (회색 토글)**: 트리거가 비활성 상태이며 이벤트에 응답하지 않습니다
토글을 클릭하기만 하면 트리거 상태를 변경할 수 있습니다. 변경 사항은 즉시 적용됩니다.
### 트리거 실행 모니터링
트리거된 실행의 성능과 기록을 추적합니다:
<Frame>
<img src="/images/enterprise/list-executions.png" alt="자동화에 의해 트리거된 실행 목록" />
</Frame>
## 자동화 구축
자동화를 구축하기 전에 crew와 flow가 받을 트리거 페이로드의 구조를 이해하는 것이 도움이 됩니다.
### 페이로드 샘플 저장소
자동화를 구축하고 테스트하는 데 도움이 되도록 다양한 트리거 소스의 샘플 페이로드가 포함된 포괄적인 저장소를 유지 관리하고 있습니다:
**🔗 [CrewAI Enterprise 트리거 페이로드 샘플](https://github.com/crewAIInc/crewai-enterprise-trigger-payload-samples)**
이 저장소에는 다음이 포함되어 있습니다:
- **실제 페이로드 예제** - 다양한 트리거 소스(Gmail, Google Drive 등)에서 가져온 예제
- **페이로드 구조 문서** - 형식과 사용 가능한 필드를 보여주는 문서
### Crew와 트리거
기존 crew 정의는 트리거와 완벽하게 작동하며, 받은 페이로드를 분석하는 작업만 있으면 됩니다:
```python
@CrewBase
class MyAutomatedCrew:
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
)
@task
def parse_trigger_payload(self) -> Task:
return Task(
config=self.tasks_config['parse_trigger_payload'],
agent=self.researcher(),
)
@task
def analyze_trigger_content(self) -> Task:
return Task(
config=self.tasks_config['analyze_trigger_data'],
agent=self.researcher(),
)
```
crew는 자동으로 트리거 페이로드를 받고 표준 CrewAI 컨텍스트 메커니즘을 통해 액세스할 수 있습니다.
### Flow와의 통합
flow의 경우 트리거 데이터 처리 방법을 더 세밀하게 제어할 수 있습니다:
#### 트리거 페이로드 액세스
flow의 모든 `@start()` 메서드는 `crewai_trigger_payload`라는 추가 매개변수를 허용합니다:
```python
from crewai.flow import Flow, start, listen
class MyAutomatedFlow(Flow):
@start()
def handle_trigger(self, crewai_trigger_payload: dict = None):
"""
이 start 메서드는 트리거 데이터를 받을 수 있습니다
"""
if crewai_trigger_payload:
# 트리거 데이터 처리
trigger_id = crewai_trigger_payload.get('id')
event_data = crewai_trigger_payload.get('payload', {})
# 다른 메서드에서 사용할 수 있도록 flow 상태에 저장
self.state.trigger_id = trigger_id
self.state.trigger_type = event_data
return event_data
# 수동 실행 처리
return None
@listen(handle_trigger)
def process_data(self, trigger_data):
"""
트리거 데이터 처리
"""
# ... 트리거 처리
```
#### Flow에서 Crew 트리거하기
트리거된 flow 내에서 crew를 시작할 때 트리거 페이로드를 전달합니다:
```python
@start()
def delegate_to_crew(self, crewai_trigger_payload: dict = None):
"""
전문 crew에 처리 위임
"""
crew = MySpecializedCrew()
# crew에 트리거 페이로드 전달
result = crew.crew().kickoff(
inputs={
'a_custom_parameter': "custom_value",
'crewai_trigger_payload': crewai_trigger_payload
},
)
return result
```
## 문제 해결
**트리거가 작동하지 않는 경우:**
- 트리거가 활성화되어 있는지 확인
- 통합 연결 상태 확인
**실행 실패:**
- 오류 세부 정보는 실행 로그 확인
- 개발 중인 경우 입력에 올바른 페이로드가 포함된 `crewai_trigger_payload` 매개변수가 포함되어 있는지 확인
자동화 트리거는 CrewAI 배포를 기존 비즈니스 프로세스 및 도구와 완벽하게 통합할 수 있는 반응형 이벤트 기반 시스템으로 변환합니다.

View File

@@ -44,12 +44,12 @@ Para criar um listener de evento personalizado, você precisa:
Veja um exemplo simples de uma classe de listener de evento personalizado:
```python
from crewai.events import (
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MeuListenerPersonalizado(BaseEventListener):
def __init__(self):
@@ -146,7 +146,7 @@ my_project/
```python
# my_custom_listener.py
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... importe events ...
class MyCustomListener(BaseEventListener):
@@ -268,7 +268,7 @@ Campos adicionais variam pelo tipo de evento. Por exemplo, `CrewKickoffCompleted
Para lidar temporariamente com eventos (útil para testes ou operações específicas), você pode usar o context manager `scoped_handlers`:
```python
from crewai.events import crewai_event_bus, CrewKickoffStartedEvent
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)

View File

@@ -681,11 +681,11 @@ O CrewAI emite eventos durante o processo de recuperação de knowledge que voc
#### Exemplo: Monitorando Recuperação de Knowledge
```python
from crewai.events import (
from crewai.utilities.events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
BaseEventListener,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class KnowledgeMonitorListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -708,10 +708,10 @@ O CrewAI suporta respostas em streaming de LLMs, permitindo que sua aplicação
O CrewAI emite eventos para cada chunk recebido durante o streaming:
```python
from crewai.events import (
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -59,7 +59,6 @@ crew = Crew(
| **Output Pydantic** _(opcional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | Um modelo Pydantic para a saída da tarefa. |
| **Callback** _(opcional)_ | `callback` | `Optional[Any]` | Função/objeto a ser executado após a conclusão da tarefa. |
| **Guardrail** _(opcional)_ | `guardrail` | `Optional[Callable]` | Função para validar a saída da tarefa antes de prosseguir para a próxima tarefa. |
| **Max Tentativas Guardrail** _(opcional)_ | `guardrail_max_retries` | `Optional[int]` | Número máximo de tentativas quando a validação do guardrail falha. Padrão é 3. |
## Criando Tarefas
@@ -451,7 +450,7 @@ task = Task(
expected_output="Um objeto JSON válido",
agent=analyst,
guardrail=validate_json_output,
guardrail_max_retries=3 # Limite de tentativas
max_retries=3 # Limite de tentativas
)
```
@@ -936,7 +935,7 @@ task = Task(
description="Gerar dados",
expected_output="Dados válidos",
guardrail=validate_data,
guardrail_max_retries=5 # Sobrescreve o limite padrão de tentativas
max_retries=5 # Sobrescreve o limite padrão de tentativas
)
```

View File

@@ -58,7 +58,7 @@ Antes de usar as Integrações de Autenticação, certifique-se de que você pos
3. Clique em **Conectar** no serviço desejado na seção Integrações de Autenticação
4. Complete o fluxo de autenticação OAuth
5. Conceda as permissões necessárias para seu caso de uso
6. Pronto! Obtenha seu Token Enterprise do [CrewAI Enterprise](https://app.crewai.com) na aba **Integration**
6. Obtenha seu Token Enterprise na sua página de conta do [CrewAI Enterprise](https://app.crewai.com) - https://app.crewai.com/crewai_plus/settings/account
<Frame>
![Integrações](/images/enterprise/enterprise_action_auth_token.png)
@@ -176,4 +176,4 @@ Use o `user_bearer_token` para direcionar a integração a um usuário específi
<Card title="Precisa de ajuda?" icon="headset" href="mailto:support@crewai.com">
Entre em contato com nosso time de suporte para assistência com a configuração de integrações ou solução de problemas.
</Card>
</Card>

View File

@@ -1,171 +0,0 @@
---
title: "Triggers de Automação"
description: "Execute automaticamente seus workflows CrewAI quando eventos específicos ocorrem em integrações conectadas"
icon: "bolt"
---
Os triggers de automação permitem executar automaticamente suas implantações CrewAI quando eventos específicos ocorrem em suas integrações conectadas, criando workflows poderosos orientados por eventos que respondem a mudanças em tempo real em seus sistemas de negócio.
## Visão Geral
Com triggers de automação, você pode:
- **Responder a eventos em tempo real** - Execute workflows automaticamente quando condições específicas forem atendidas
- **Integrar com sistemas externos** - Conecte com plataformas como Gmail, Outlook, OneDrive, JIRA, Slack, Stripe e muito mais
- **Escalar sua automação** - Lide com eventos de alto volume sem intervenção manual
- **Manter contexto** - Acesse dados do trigger dentro de suas crews e flows
## Gerenciando Triggers de Automação
### Visualizando Triggers Disponíveis
Para acessar e gerenciar seus triggers de automação:
1. Navegue até sua implantação no painel do CrewAI
2. Clique na aba **Triggers** para visualizar todas as integrações de trigger disponíveis
<Frame>
<img src="/images/enterprise/list-available-triggers.png" alt="Lista de triggers de automação disponíveis" />
</Frame>
Esta visualização mostra todas as integrações de trigger disponíveis para sua implantação, junto com seus status de conexão atuais.
### Habilitando e Desabilitando Triggers
Cada trigger pode ser facilmente habilitado ou desabilitado usando o botão de alternância:
<Frame>
<img src="/images/enterprise/trigger-selected.png" alt="Habilitar ou desabilitar triggers com alternância" />
</Frame>
- **Habilitado (alternância azul)**: O trigger está ativo e executará automaticamente sua implantação quando os eventos especificados ocorrerem
- **Desabilitado (alternância cinza)**: O trigger está inativo e não responderá a eventos
Simplesmente clique na alternância para mudar o estado do trigger. As alterações entram em vigor imediatamente.
### Monitorando Execuções de Trigger
Acompanhe o desempenho e histórico de suas execuções acionadas:
<Frame>
<img src="/images/enterprise/list-executions.png" alt="Lista de execuções acionadas por automação" />
</Frame>
## Construindo Automação
Antes de construir sua automação, é útil entender a estrutura dos payloads de trigger que suas crews e flows receberão.
### Repositório de Amostras de Payload
Mantemos um repositório abrangente com amostras de payload de várias fontes de trigger para ajudá-lo a construir e testar suas automações:
**🔗 [Amostras de Payload de Trigger CrewAI Enterprise](https://github.com/crewAIInc/crewai-enterprise-trigger-payload-samples)**
Este repositório contém:
- **Exemplos reais de payload** de diferentes fontes de trigger (Gmail, Google Drive, etc.)
- **Documentação da estrutura de payload** mostrando o formato e campos disponíveis
### Triggers com Crew
Suas definições de crew existentes funcionam perfeitamente com triggers, você só precisa ter uma tarefa para analisar o payload recebido:
```python
@CrewBase
class MinhaCrewAutomatizada:
@agent
def pesquisador(self) -> Agent:
return Agent(
config=self.agents_config['pesquisador'],
)
@task
def analisar_payload_trigger(self) -> Task:
return Task(
config=self.tasks_config['analisar_payload_trigger'],
agent=self.pesquisador(),
)
@task
def analisar_conteudo_trigger(self) -> Task:
return Task(
config=self.tasks_config['analisar_dados_trigger'],
agent=self.pesquisador(),
)
```
A crew receberá automaticamente e pode acessar o payload do trigger através dos mecanismos de contexto padrão do CrewAI.
### Integração com Flows
Para flows, você tem mais controle sobre como os dados do trigger são tratados:
#### Acessando Payload do Trigger
Todos os métodos `@start()` em seus flows aceitarão um parâmetro adicional chamado `crewai_trigger_payload`:
```python
from crewai.flow import Flow, start, listen
class MeuFlowAutomatizado(Flow):
@start()
def lidar_com_trigger(self, crewai_trigger_payload: dict = None):
"""
Este método start pode receber dados do trigger
"""
if crewai_trigger_payload:
# Processa os dados do trigger
trigger_id = crewai_trigger_payload.get('id')
dados_evento = crewai_trigger_payload.get('payload', {})
# Armazena no estado do flow para uso por outros métodos
self.state.trigger_id = trigger_id
self.state.trigger_type = dados_evento
return dados_evento
# Lida com execução manual
return None
@listen(lidar_com_trigger)
def processar_dados(self, dados_trigger):
"""
Processa os dados do trigger
"""
# ... processa o trigger
```
#### Acionando Crews a partir de Flows
Ao iniciar uma crew dentro de um flow que foi acionado, passe o payload do trigger conforme ele:
```python
@start()
def delegar_para_crew(self, crewai_trigger_payload: dict = None):
"""
Delega processamento para uma crew especializada
"""
crew = MinhaCrewEspecializada()
# Passa o payload do trigger para a crew
resultado = crew.crew().kickoff(
inputs={
'parametro_personalizado': "valor_personalizado",
'crewai_trigger_payload': crewai_trigger_payload
},
)
return resultado
```
## Solução de Problemas
**Trigger não está sendo disparado:**
- Verifique se o trigger está habilitado
- Verifique o status de conexão da integração
**Falhas de execução:**
- Verifique os logs de execução para detalhes do erro
- Se você está desenvolvendo, certifique-se de que as entradas incluem o parâmetro `crewai_trigger_payload` com o payload correto
Os triggers de automação transformam suas implantações CrewAI em sistemas responsivos orientados por eventos que podem se integrar perfeitamente com seus processos de negócio e ferramentas existentes.

View File

@@ -48,7 +48,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.69.0"]
tools = ["crewai-tools~=0.62.1"]
embeddings = [
"tiktoken~=0.8.0"
]
@@ -68,16 +68,12 @@ docling = [
aisuite = [
"aisuite>=0.1.10",
]
qdrant = [
"qdrant-client[fastembed]>=1.14.3",
]
[tool.uv]
dev-dependencies = [
"ruff>=0.12.11",
"mypy>=1.17.1",
"pre-commit>=4.3.0",
"bandit>=1.8.6",
"ruff>=0.8.2",
"mypy>=1.10.0",
"pre-commit>=3.6.0",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"pytest>=8.0.0",
@@ -89,41 +85,15 @@ dev-dependencies = [
"pytest-timeout>=2.3.1",
"pytest-xdist>=3.6.1",
"pytest-split>=0.9.0",
"types-requests==2.32.*",
"types-pyyaml==6.0.*",
"types-regex==2024.11.6.*",
"types-appdirs==1.4.*",
]
[project.scripts]
crewai = "crewai.cli.cli:crewai"
[tool.ruff]
exclude = [
"src/crewai/cli/templates",
]
fix = true
[tool.ruff.lint]
select = [
"B006",
"UP006",
"UP007",
"UP035",
"UP037",
"UP004",
"UP008",
"UP010",
"UP018",
"UP031",
"UP032",
"I001",
"I002",
]
[tool.mypy]
strict = true
exclude = ["src/crewai/cli/templates"]
ignore_missing_imports = true
disable_error_code = 'import-untyped'
exclude = ["cli/templates"]
[tool.bandit]
exclude_dirs = ["src/crewai/cli/templates"]

View File

@@ -1,30 +1,4 @@
import warnings
from typing import Any
def _suppress_pydantic_deprecation_warnings() -> None:
"""Suppress Pydantic deprecation warnings using targeted monkey patch."""
original_warn = warnings.warn
def filtered_warn(
message: Any,
category: type | None = None,
stacklevel: int = 1,
source: Any = None,
) -> Any:
if (
category
and hasattr(category, "__module__")
and category.__module__ == "pydantic.warnings"
):
return None
return original_warn(message, category, stacklevel + 1, source)
setattr(warnings, "warn", filtered_warn)
_suppress_pydantic_deprecation_warnings()
import threading
import urllib.request
@@ -41,10 +15,17 @@ from crewai.tasks.llm_guardrail import LLMGuardrail
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
warnings.filterwarnings(
"ignore",
message="Pydantic serializer warnings:",
category=UserWarning,
module="pydantic.main",
)
_telemetry_submitted = False
def _track_install() -> None:
def _track_install():
"""Track package installation/first-use via Scarf analytics."""
global _telemetry_submitted
@@ -55,7 +36,7 @@ def _track_install() -> None:
pixel_url = "https://api.scarf.sh/v2/packages/CrewAI/crewai/docs/00f2dad1-8334-4a39-934e-003b2e1146db"
req = urllib.request.Request(pixel_url)
req.add_header("User-Agent", f"CrewAI-Python/{__version__}")
req.add_header('User-Agent', f'CrewAI-Python/{__version__}')
with urllib.request.urlopen(req, timeout=2): # nosec B310
_telemetry_submitted = True
@@ -64,7 +45,7 @@ def _track_install() -> None:
pass
def _track_install_async() -> None:
def _track_install_async():
"""Track installation in background thread to avoid blocking imports."""
if not Telemetry._is_telemetry_disabled():
thread = threading.Thread(target=_track_install, daemon=True)
@@ -73,7 +54,7 @@ def _track_install_async() -> None:
_track_install_async()
__version__ = "0.177.0"
__version__ = "0.165.1"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,18 +1,7 @@
import shutil
import subprocess
import time
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Tuple,
Type,
Union,
)
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -38,17 +27,17 @@ from crewai.utilities.agent_utils import (
)
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.events.types.agent_events import (
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.memory_events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.memory_events import (
MemoryRetrievalStartedEvent,
MemoryRetrievalCompletedEvent,
)
from crewai.events.types.knowledge_events import (
from crewai.utilities.events.knowledge_events import (
KnowledgeQueryCompletedEvent,
KnowledgeQueryFailedEvent,
KnowledgeQueryStartedEvent,
@@ -173,7 +162,7 @@ class Agent(BaseAgent):
)
guardrail: Optional[Union[Callable[[Any], Tuple[bool, Any]], str]] = Field(
default=None,
description="Function or string description of a guardrail to validate agent output",
description="Function or string description of a guardrail to validate agent output"
)
guardrail_max_retries: int = Field(
default=3, description="Maximum number of retries when guardrail fails"
@@ -287,7 +276,7 @@ class Agent(BaseAgent):
self._inject_date_to_task(task)
if self.tools_handler:
self.tools_handler.last_used_tool = None
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
task_prompt = task.prompt()
@@ -320,20 +309,15 @@ class Agent(BaseAgent):
event=MemoryRetrievalStartedEvent(
task_id=str(task.id) if task else None,
source_type="agent",
from_agent=self,
from_task=task,
),
)
start_time = time.time()
contextual_memory = ContextualMemory(
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._external_memory,
agent=self,
task=task,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
@@ -346,14 +330,13 @@ class Agent(BaseAgent):
memory_content=memory,
retrieval_time_ms=(time.time() - start_time) * 1000,
source_type="agent",
from_agent=self,
from_task=task,
),
)
knowledge_config = (
self.knowledge_config.model_dump() if self.knowledge_config else {}
)
if self.knowledge or (self.crew and self.crew.knowledge):
crewai_event_bus.emit(
self,

View File

@@ -1,5 +1,5 @@
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.parser import parse, AgentAction, AgentFinish, OutputParserException
from crewai.agents.tools_handler import ToolsHandler
from .cache.cache_handler import CacheHandler
from .parser import CrewAgentParser
from .tools_handler import ToolsHandler
__all__ = ["CacheHandler", "parse", "AgentAction", "AgentFinish", "OutputParserException", "ToolsHandler"]
__all__ = ["CacheHandler", "CrewAgentParser", "ToolsHandler"]

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict, List, Optional
from typing import Any, AsyncIterable, Dict, List, Optional
from pydantic import Field, PrivateAttr
@@ -14,14 +14,15 @@ from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import BaseTool
from crewai.utilities import Logger
from crewai.utilities.converter import Converter
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.agent_events import (
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
try:
from langchain_core.messages import ToolMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent

View File

@@ -10,8 +10,8 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities import Logger
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.agent_events import (
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,

View File

@@ -7,7 +7,7 @@ from crewai.utilities import I18N
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.printer import Printer
from crewai.events.event_listener import event_listener
from crewai.utilities.events.event_listener import event_listener
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -43,6 +43,7 @@ class CrewAgentExecutorMixin:
metadata={
"observation": self.task.description,
},
agent=self.agent.role,
)
except Exception as e:
print(f"Failed to add to short term memory: {e}")
@@ -64,6 +65,7 @@ class CrewAgentExecutorMixin:
"description": self.task.description,
"messages": self.messages,
},
agent=self.agent.role,
)
except Exception as e:
print(f"Failed to add to external memory: {e}")
@@ -98,8 +100,8 @@ class CrewAgentExecutorMixin:
)
self.crew._long_term_memory.save(long_term_memory)
entity_memories = [
EntityMemoryItem(
for entity in evaluation.entities:
entity_memory = EntityMemoryItem(
name=entity.name,
type=entity.type,
description=entity.description,
@@ -107,10 +109,7 @@ class CrewAgentExecutorMixin:
[f"- {r}" for r in entity.relationships]
),
)
for entity in evaluation.entities
]
if entity_memories:
self.crew._entity_memory.save(entity_memories)
self.crew._entity_memory.save(entity_memory)
except AttributeError as e:
print(f"Missing attributes for long term memory: {e}")
pass
@@ -159,9 +158,7 @@ class CrewAgentExecutorMixin:
self._printer.print(content=prompt, color="bold_yellow")
response = input()
if response.strip() != "":
self._printer.print(
content="\nProcessing your feedback...", color="cyan"
)
self._printer.print(content="\nProcessing your feedback...", color="cyan")
return response
finally:
event_listener.formatter.resume_live_updates()

View File

@@ -1,27 +0,0 @@
"""Constants for agent-related modules."""
import re
from typing import Final
# crewai.agents.parser constants
FINAL_ANSWER_ACTION: Final[str] = "Final Answer:"
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE: Final[str] = (
"I did it wrong. Invalid Format: I missed the 'Action:' after 'Thought:'. I will do right next, and don't use a tool I have already used.\n"
)
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE: Final[str] = (
"I did it wrong. Invalid Format: I missed the 'Action Input:' after 'Action:'. I will do right next, and don't use a tool I have already used.\n"
)
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE: Final[str] = (
"I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other"
)
UNABLE_TO_REPAIR_JSON_RESULTS: Final[list[str]] = ['""', "{}"]
ACTION_INPUT_REGEX: Final[re.Pattern[str]] = re.compile(
r"Action\s*\d*\s*:\s*(.*?)\s*Action\s*\d*\s*Input\s*\d*\s*:\s*(.*)", re.DOTALL
)
ACTION_REGEX: Final[re.Pattern[str]] = re.compile(
r"Action\s*\d*\s*:\s*(.*?)", re.DOTALL
)
ACTION_INPUT_ONLY_REGEX: Final[re.Pattern[str]] = re.compile(
r"\s*Action\s*\d*\s*Input\s*\d*\s*:\s*(.*)", re.DOTALL
)

View File

@@ -30,11 +30,11 @@ from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.logger import Logger
from crewai.utilities.tool_utils import execute_tool_and_check_finality
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.events.types.logging_events import (
from crewai.utilities.events.agent_events import (
AgentLogsStartedEvent,
AgentLogsExecutionEvent,
)
from crewai.events.event_bus import crewai_event_bus
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
class CrewAgentExecutor(CrewAgentExecutorMixin):
@@ -54,11 +54,11 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
tools_description: str,
tools_handler: ToolsHandler,
step_callback: Any = None,
original_tools: List[Any] | None = None,
original_tools: List[Any] = [],
function_calling_llm: Any = None,
respect_context_window: bool = False,
request_within_rpm_limit: Optional[Callable[[], bool]] = None,
callbacks: List[Any] | None = None,
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm: BaseLLM = llm
@@ -70,10 +70,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.tools_names = tools_names
self.stop = stop_words
self.max_iter = max_iter
self.callbacks = callbacks or []
self.callbacks = callbacks
self._printer: Printer = Printer()
self.tools_handler = tools_handler
self.original_tools = original_tools or []
self.original_tools = original_tools
self.step_callback = step_callback
self.use_stop_words = self.llm.supports_stop_words()
self.tools_description = tools_description
@@ -122,6 +122,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
handle_unknown_error(self._printer, e)
raise
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
@@ -155,7 +156,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
messages=self.messages,
callbacks=self.callbacks,
printer=self._printer,
from_task=self.task,
from_task=self.task
)
formatted_answer = process_llm_response(answer, self.use_stop_words)

View File

@@ -1,67 +1,50 @@
"""Agent output parsing module for ReAct-style LLM responses.
This module provides parsing functionality for agent outputs that follow
the ReAct (Reasoning and Acting) format, converting them into structured
AgentAction or AgentFinish objects.
"""
from dataclasses import dataclass
import re
from typing import Any, Optional, Union
from json_repair import repair_json
from crewai.agents.constants import (
ACTION_INPUT_REGEX,
ACTION_REGEX,
ACTION_INPUT_ONLY_REGEX,
FINAL_ANSWER_ACTION,
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE,
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
UNABLE_TO_REPAIR_JSON_RESULTS,
)
from crewai.utilities import I18N
_I18N = I18N()
FINAL_ANSWER_ACTION = "Final Answer:"
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = "I did it wrong. Invalid Format: I missed the 'Action:' after 'Thought:'. I will do right next, and don't use a tool I have already used.\n"
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = "I did it wrong. Invalid Format: I missed the 'Action Input:' after 'Action:'. I will do right next, and don't use a tool I have already used.\n"
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other"
@dataclass
class AgentAction:
"""Represents an action to be taken by an agent."""
thought: str
tool: str
tool_input: str
text: str
result: str | None = None
result: str
def __init__(self, thought: str, tool: str, tool_input: str, text: str):
self.thought = thought
self.tool = tool
self.tool_input = tool_input
self.text = text
@dataclass
class AgentFinish:
"""Represents the final answer from an agent."""
thought: str
output: str
text: str
def __init__(self, thought: str, output: str, text: str):
self.thought = thought
self.output = output
self.text = text
class OutputParserException(Exception):
"""Exception raised when output parsing fails.
error: str
Attributes:
error: The error message.
"""
def __init__(self, error: str) -> None:
"""Initialize OutputParserException.
Args:
error: The error message.
"""
def __init__(self, error: str):
self.error = error
super().__init__(error)
def parse(text: str) -> AgentAction | AgentFinish:
"""Parse agent output text into AgentAction or AgentFinish.
class CrewAgentParser:
"""Parses ReAct-style LLM calls that have a single tool input.
Expects output to be in one of two formats.
@@ -79,117 +62,108 @@ def parse(text: str) -> AgentAction | AgentFinish:
Thought: agent thought here
Final Answer: The temperature is 100 degrees
Args:
text: The agent output text to parse.
Returns:
AgentAction or AgentFinish based on the content.
Raises:
OutputParserException: If the text format is invalid.
"""
thought = _extract_thought(text)
includes_answer = FINAL_ANSWER_ACTION in text
action_match = ACTION_INPUT_REGEX.search(text)
if includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought=thought, output=final_answer, text=text)
_i18n: I18N = I18N()
agent: Any = None
elif action_match:
action = action_match.group(1)
clean_action = _clean_action(action)
def __init__(self, agent: Optional[Any] = None):
self.agent = agent
action_input = action_match.group(2).strip()
@staticmethod
def parse_text(text: str) -> Union[AgentAction, AgentFinish]:
"""
Static method to parse text into an AgentAction or AgentFinish without needing to instantiate the class.
tool_input = action_input.strip(" ").strip('"')
safe_tool_input = _safe_repair_json(tool_input)
Args:
text: The text to parse.
return AgentAction(
thought=thought, tool=clean_action, tool_input=safe_tool_input, text=text
Returns:
Either an AgentAction or AgentFinish based on the parsed content.
"""
parser = CrewAgentParser()
return parser.parse(text)
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
thought = self._extract_thought(text)
includes_answer = FINAL_ANSWER_ACTION in text
regex = (
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
)
action_match = re.search(regex, text, re.DOTALL)
if includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
if not ACTION_REGEX.search(text):
raise OutputParserException(
f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{_I18N.slice('final_answer_format')}",
)
elif not ACTION_INPUT_ONLY_REGEX.search(text):
raise OutputParserException(
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
)
else:
err_format = _I18N.slice("format_without_tools")
error = f"{err_format}"
raise OutputParserException(
error,
)
elif action_match:
action = action_match.group(1)
clean_action = self._clean_action(action)
action_input = action_match.group(2).strip()
def _extract_thought(text: str) -> str:
"""Extract the thought portion from the text.
tool_input = action_input.strip(" ").strip('"')
safe_tool_input = self._safe_repair_json(tool_input)
Args:
text: The full agent output text.
return AgentAction(thought, clean_action, safe_tool_input, text)
Returns:
The extracted thought string.
"""
thought_index = text.find("\nAction")
if thought_index == -1:
thought_index = text.find("\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
raise OutputParserException(
f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}",
)
elif not re.search(
r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL
):
raise OutputParserException(
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
)
else:
format = self._i18n.slice("format_without_tools")
error = f"{format}"
raise OutputParserException(
error,
)
def _extract_thought(self, text: str) -> str:
thought_index = text.find("\nAction")
if thought_index == -1:
thought_index = text.find("\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
def _clean_action(text: str) -> str:
"""Clean action string by removing non-essential formatting characters.
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""
return text.strip().strip("*").strip()
Args:
text: The action text to clean.
def _safe_repair_json(self, tool_input: str) -> str:
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]
Returns:
The cleaned action string.
"""
return text.strip().strip("*").strip()
# Skip repair if the input starts and ends with square brackets
# Explanation: The JSON parser has issues handling inputs that are enclosed in square brackets ('[]').
# These are typically valid JSON arrays or strings that do not require repair. Attempting to repair such inputs
# might lead to unintended alterations, such as wrapping the entire input in additional layers or modifying
# the structure in a way that changes its meaning. By skipping the repair for inputs that start and end with
# square brackets, we preserve the integrity of these valid JSON structures and avoid unnecessary modifications.
if tool_input.startswith("[") and tool_input.endswith("]"):
return tool_input
# Before repair, handle common LLM issues:
# 1. Replace """ with " to avoid JSON parser errors
def _safe_repair_json(tool_input: str) -> str:
"""Safely repair JSON input.
tool_input = tool_input.replace('"""', '"')
Args:
tool_input: The tool input string to repair.
result = repair_json(tool_input)
if result in UNABLE_TO_REPAIR_JSON_RESULTS:
return tool_input
Returns:
The repaired JSON string or original if repair fails.
"""
# Skip repair if the input starts and ends with square brackets
# Explanation: The JSON parser has issues handling inputs that are enclosed in square brackets ('[]').
# These are typically valid JSON arrays or strings that do not require repair. Attempting to repair such inputs
# might lead to unintended alterations, such as wrapping the entire input in additional layers or modifying
# the structure in a way that changes its meaning. By skipping the repair for inputs that start and end with
# square brackets, we preserve the integrity of these valid JSON structures and avoid unnecessary modifications.
if tool_input.startswith("[") and tool_input.endswith("]"):
return tool_input
# Before repair, handle common LLM issues:
# 1. Replace """ with " to avoid JSON parser errors
tool_input = tool_input.replace('"""', '"')
result = repair_json(tool_input)
if result in UNABLE_TO_REPAIR_JSON_RESULTS:
return tool_input
return str(result)
return str(result)

View File

@@ -1,41 +1,29 @@
"""Tools handler for managing tool execution and caching."""
from typing import Any, Optional, Union
from crewai.tools.cache_tools.cache_tools import CacheTools
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.agents.cache.cache_handler import CacheHandler
from ..tools.cache_tools.cache_tools import CacheTools
from ..tools.tool_calling import InstructorToolCalling, ToolCalling
from .cache.cache_handler import CacheHandler
class ToolsHandler:
"""Callback handler for tool usage.
"""Callback handler for tool usage."""
Attributes:
last_used_tool: The most recently used tool calling instance.
cache: Optional cache handler for storing tool outputs.
"""
last_used_tool: ToolCalling = {} # type: ignore # BUG?: Incompatible types in assignment (expression has type "Dict[...]", variable has type "ToolCalling")
cache: Optional[CacheHandler]
def __init__(self, cache: CacheHandler | None = None) -> None:
"""Initialize the callback handler.
Args:
cache: Optional cache handler for storing tool outputs.
"""
self.cache: CacheHandler | None = cache
self.last_used_tool: ToolCalling | InstructorToolCalling | None = None
def __init__(self, cache: Optional[CacheHandler] = None):
"""Initialize the callback handler."""
self.cache = cache
self.last_used_tool = {} # type: ignore # BUG?: same as above
def on_tool_use(
self,
calling: ToolCalling | InstructorToolCalling,
calling: Union[ToolCalling, InstructorToolCalling],
output: str,
should_cache: bool = True,
) -> None:
"""Run when tool ends running.
Args:
calling: The tool calling instance.
output: The output from the tool execution.
should_cache: Whether to cache the tool output.
"""
self.last_used_tool = calling
) -> Any:
"""Run when tool ends running."""
self.last_used_tool = calling # type: ignore # BUG?: Incompatible types in assignment (expression has type "Union[ToolCalling, InstructorToolCalling]", variable has type "ToolCalling")
if self.cache and should_cache and calling.tool_name != CacheTools().name:
self.cache.add(
tool=calling.tool_name,

View File

@@ -1 +1,6 @@
ALGORITHMS = ["RS256"]
#TODO: The AUTH0 constants should be removed after WorkOS migration is completed
AUTH0_DOMAIN = "crewai.us.auth0.com"
AUTH0_CLIENT_ID = "DEVC5Fw6NlRoSzmDCcOhVq85EfLBjKa8"
AUTH0_AUDIENCE = "https://crewai.us.auth0.com/api/v2/"

View File

@@ -7,27 +7,24 @@ from rich.console import Console
from pydantic import BaseModel, Field
from .utils import validate_jwt_token
from crewai.cli.shared.token_manager import TokenManager
from .utils import TokenManager, validate_jwt_token
from urllib.parse import quote
from crewai.cli.plus_api import PlusAPI
from crewai.cli.config import Settings
from crewai.cli.authentication.constants import (
AUTH0_AUDIENCE,
AUTH0_CLIENT_ID,
AUTH0_DOMAIN,
)
console = Console()
class Oauth2Settings(BaseModel):
provider: str = Field(
description="OAuth2 provider used for authentication (e.g., workos, okta, auth0)."
)
client_id: str = Field(
description="OAuth2 client ID issued by the provider, used during authentication requests."
)
domain: str = Field(
description="OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens."
)
audience: Optional[str] = Field(
description="OAuth2 audience value, typically used to identify the target API or resource.",
default=None,
)
provider: str = Field(description="OAuth2 provider used for authentication (e.g., workos, okta, auth0).")
client_id: str = Field(description="OAuth2 client ID issued by the provider, used during authentication requests.")
domain: str = Field(description="OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens.")
audience: Optional[str] = Field(description="OAuth2 audience value, typically used to identify the target API or resource.", default=None)
@classmethod
def from_settings(cls):
@@ -47,15 +44,11 @@ class ProviderFactory:
settings = settings or Oauth2Settings.from_settings()
import importlib
module = importlib.import_module(
f"crewai.cli.authentication.providers.{settings.provider.lower()}"
)
module = importlib.import_module(f"crewai.cli.authentication.providers.{settings.provider.lower()}")
provider = getattr(module, f"{settings.provider.capitalize()}Provider")
return provider(settings)
class AuthenticationCommand:
def __init__(self):
self.token_manager = TokenManager()
@@ -65,12 +58,26 @@ class AuthenticationCommand:
"""Sign up to CrewAI+"""
console.print("Signing in to CrewAI Enterprise...\n", style="bold blue")
# TODO: WORKOS - Next line and conditional are temporary until migration to WorkOS is complete.
user_provider = self._determine_user_provider()
if user_provider == "auth0":
settings = Oauth2Settings(
provider="auth0",
client_id=AUTH0_CLIENT_ID,
domain=AUTH0_DOMAIN,
audience=AUTH0_AUDIENCE
)
self.oauth2_provider = ProviderFactory.from_settings(settings)
# End of temporary code.
device_code_data = self._get_device_code()
self._display_auth_instructions(device_code_data)
return self._poll_for_token(device_code_data)
def _get_device_code(self) -> Dict[str, Any]:
def _get_device_code(
self
) -> Dict[str, Any]:
"""Get the device code to authenticate the user."""
device_code_payload = {
@@ -79,9 +86,7 @@ class AuthenticationCommand:
"audience": self.oauth2_provider.get_audience(),
}
response = requests.post(
url=self.oauth2_provider.get_authorize_url(),
data=device_code_payload,
timeout=20,
url=self.oauth2_provider.get_authorize_url(), data=device_code_payload, timeout=20
)
response.raise_for_status()
return response.json()
@@ -92,7 +97,9 @@ class AuthenticationCommand:
console.print("2. Enter the following code: ", device_code_data["user_code"])
webbrowser.open(device_code_data["verification_uri_complete"])
def _poll_for_token(self, device_code_data: Dict[str, Any]) -> None:
def _poll_for_token(
self, device_code_data: Dict[str, Any]
) -> None:
"""Polls the server for the token until it is received, or max attempts are reached."""
token_payload = {
@@ -105,9 +112,7 @@ class AuthenticationCommand:
attempts = 0
while True and attempts < 10:
response = requests.post(
self.oauth2_provider.get_token_url(), data=token_payload, timeout=30
)
response = requests.post(self.oauth2_provider.get_token_url(), data=token_payload, timeout=30)
token_data = response.json()
if response.status_code == 200:
@@ -187,3 +192,30 @@ class AuthenticationCommand:
"\nRun [bold]crewai login[/bold] to try logging in again.\n",
style="yellow",
)
# TODO: WORKOS - This method is temporary until migration to WorkOS is complete.
def _determine_user_provider(self) -> str:
"""Determine which provider to use for authentication."""
console.print(
"Enter your CrewAI Enterprise account email: ", style="bold blue", end=""
)
email = input()
email_encoded = quote(email)
# It's not correct to call this method directly, but it's temporary until migration is complete.
response = PlusAPI("")._make_request(
"GET", f"/crewai_plus/api/v1/me/provider?email={email_encoded}"
)
if response.status_code == 200:
if response.json().get("provider") == "auth0":
return "auth0"
else:
return "workos"
else:
console.print(
"Error: Failed to authenticate with crewai enterprise. Ensure that you are using the latest crewai version and please try again. If the problem persists, contact support@crewai.com.",
style="red",
)
raise SystemExit

View File

@@ -1,4 +1,4 @@
from crewai.cli.shared.token_manager import TokenManager
from .utils import TokenManager
class AuthError(Exception):

View File

@@ -1,5 +1,12 @@
import json
import os
import sys
from datetime import datetime
from pathlib import Path
from typing import Optional
import jwt
from jwt import PyJWKClient
from cryptography.fernet import Fernet
def validate_jwt_token(
@@ -60,3 +67,118 @@ def validate_jwt_token(
raise Exception(f"JWKS or key processing error: {str(e)}")
except jwt.InvalidTokenError as e:
raise Exception(f"Invalid token: {str(e)}")
class TokenManager:
def __init__(self, file_path: str = "tokens.enc") -> None:
"""
Initialize the TokenManager class.
:param file_path: The file path to store the encrypted tokens. Default is "tokens.enc".
"""
self.file_path = file_path
self.key = self._get_or_create_key()
self.fernet = Fernet(self.key)
def _get_or_create_key(self) -> bytes:
"""
Get or create the encryption key.
:return: The encryption key.
"""
key_filename = "secret.key"
key = self.read_secure_file(key_filename)
if key is not None:
return key
new_key = Fernet.generate_key()
self.save_secure_file(key_filename, new_key)
return new_key
def save_tokens(self, access_token: str, expires_at: int) -> None:
"""
Save the access token and its expiration time.
:param access_token: The access token to save.
:param expires_at: The UNIX timestamp of the expiration time.
"""
expiration_time = datetime.fromtimestamp(expires_at)
data = {
"access_token": access_token,
"expiration": expiration_time.isoformat(),
}
encrypted_data = self.fernet.encrypt(json.dumps(data).encode())
self.save_secure_file(self.file_path, encrypted_data)
def get_token(self) -> Optional[str]:
"""
Get the access token if it is valid and not expired.
:return: The access token if valid and not expired, otherwise None.
"""
encrypted_data = self.read_secure_file(self.file_path)
decrypted_data = self.fernet.decrypt(encrypted_data) # type: ignore
data = json.loads(decrypted_data)
expiration = datetime.fromisoformat(data["expiration"])
if expiration <= datetime.now():
return None
return data["access_token"]
def get_secure_storage_path(self) -> Path:
"""
Get the secure storage path based on the operating system.
:return: The secure storage path.
"""
if sys.platform == "win32":
# Windows: Use %LOCALAPPDATA%
base_path = os.environ.get("LOCALAPPDATA")
elif sys.platform == "darwin":
# macOS: Use ~/Library/Application Support
base_path = os.path.expanduser("~/Library/Application Support")
else:
# Linux and other Unix-like: Use ~/.local/share
base_path = os.path.expanduser("~/.local/share")
app_name = "crewai/credentials"
storage_path = Path(base_path) / app_name
storage_path.mkdir(parents=True, exist_ok=True)
return storage_path
def save_secure_file(self, filename: str, content: bytes) -> None:
"""
Save the content to a secure file.
:param filename: The name of the file.
:param content: The content to save.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
with open(file_path, "wb") as f:
f.write(content)
# Set appropriate permissions (read/write for owner only)
os.chmod(file_path, 0o600)
def read_secure_file(self, filename: str) -> Optional[bytes]:
"""
Read the content of a secure file.
:param filename: The name of the file.
:return: The content of the file if it exists, otherwise None.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
if not file_path.exists():
return None
with open(file_path, "rb") as f:
return f.read()

View File

@@ -11,7 +11,6 @@ from crewai.cli.constants import (
CREWAI_ENTERPRISE_DEFAULT_OAUTH2_CLIENT_ID,
CREWAI_ENTERPRISE_DEFAULT_OAUTH2_DOMAIN,
)
from crewai.cli.shared.token_manager import TokenManager
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
@@ -54,7 +53,6 @@ HIDDEN_SETTINGS_KEYS = [
"tool_repository_password",
]
class Settings(BaseModel):
enterprise_base_url: Optional[str] = Field(
default=DEFAULT_CLI_SETTINGS["enterprise_base_url"],
@@ -76,12 +74,12 @@ class Settings(BaseModel):
oauth2_provider: str = Field(
description="OAuth2 provider used for authentication (e.g., workos, okta, auth0).",
default=DEFAULT_CLI_SETTINGS["oauth2_provider"],
default=DEFAULT_CLI_SETTINGS["oauth2_provider"]
)
oauth2_audience: Optional[str] = Field(
description="OAuth2 audience value, typically used to identify the target API or resource.",
default=DEFAULT_CLI_SETTINGS["oauth2_audience"],
default=DEFAULT_CLI_SETTINGS["oauth2_audience"]
)
oauth2_client_id: str = Field(
@@ -91,7 +89,7 @@ class Settings(BaseModel):
oauth2_domain: str = Field(
description="OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens.",
default=DEFAULT_CLI_SETTINGS["oauth2_domain"],
default=DEFAULT_CLI_SETTINGS["oauth2_domain"]
)
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
@@ -118,7 +116,6 @@ class Settings(BaseModel):
"""Reset all settings to default values"""
self._reset_user_settings()
self._reset_cli_settings()
self._clear_auth_tokens()
self.dump()
def dump(self) -> None:
@@ -142,7 +139,3 @@ class Settings(BaseModel):
"""Reset all CLI settings to default values"""
for key in CLI_SETTINGS_KEYS:
setattr(self, key, DEFAULT_CLI_SETTINGS.get(key))
def _clear_auth_tokens(self) -> None:
"""Clear all authentication tokens"""
TokenManager().clear_tokens()

View File

@@ -117,19 +117,17 @@ class PlusAPI:
def get_organizations(self) -> requests.Response:
return self._make_request("GET", self.ORGANIZATIONS_RESOURCE)
def send_trace_batch(self, payload) -> requests.Response:
return self._make_request("POST", self.TRACING_RESOURCE, json=payload)
def initialize_trace_batch(self, payload) -> requests.Response:
return self._make_request(
"POST",
f"{self.TRACING_RESOURCE}/batches",
json=payload,
timeout=30,
"POST", f"{self.TRACING_RESOURCE}/batches", json=payload
)
def initialize_ephemeral_trace_batch(self, payload) -> requests.Response:
return self._make_request(
"POST",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches",
json=payload,
"POST", f"{self.EPHEMERAL_TRACING_RESOURCE}/batches", json=payload
)
def send_trace_events(self, trace_batch_id: str, payload) -> requests.Response:
@@ -137,7 +135,6 @@ class PlusAPI:
"POST",
f"{self.TRACING_RESOURCE}/batches/{trace_batch_id}/events",
json=payload,
timeout=30,
)
def send_ephemeral_trace_events(
@@ -147,7 +144,6 @@ class PlusAPI:
"POST",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches/{trace_batch_id}/events",
json=payload,
timeout=30,
)
def finalize_trace_batch(self, trace_batch_id: str, payload) -> requests.Response:
@@ -155,7 +151,6 @@ class PlusAPI:
"PATCH",
f"{self.TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
timeout=30,
)
def finalize_ephemeral_trace_batch(
@@ -165,5 +160,4 @@ class PlusAPI:
"PATCH",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
timeout=30,
)

View File

@@ -10,9 +10,8 @@ console = Console()
class SettingsCommand(BaseCommand):
"""A class to handle CLI configuration commands."""
def __init__(self, settings_kwargs: dict[str, Any] | None = None):
def __init__(self, settings_kwargs: dict[str, Any] = {}):
super().__init__()
settings_kwargs = settings_kwargs or {}
self.settings = Settings(**settings_kwargs)
def list(self) -> None:

View File

@@ -1,141 +0,0 @@
import json
import os
import sys
from datetime import datetime
from pathlib import Path
from typing import Optional
from cryptography.fernet import Fernet
class TokenManager:
def __init__(self, file_path: str = "tokens.enc") -> None:
"""
Initialize the TokenManager class.
:param file_path: The file path to store the encrypted tokens. Default is "tokens.enc".
"""
self.file_path = file_path
self.key = self._get_or_create_key()
self.fernet = Fernet(self.key)
def _get_or_create_key(self) -> bytes:
"""
Get or create the encryption key.
:return: The encryption key.
"""
key_filename = "secret.key"
key = self.read_secure_file(key_filename)
if key is not None:
return key
new_key = Fernet.generate_key()
self.save_secure_file(key_filename, new_key)
return new_key
def save_tokens(self, access_token: str, expires_at: int) -> None:
"""
Save the access token and its expiration time.
:param access_token: The access token to save.
:param expires_at: The UNIX timestamp of the expiration time.
"""
expiration_time = datetime.fromtimestamp(expires_at)
data = {
"access_token": access_token,
"expiration": expiration_time.isoformat(),
}
encrypted_data = self.fernet.encrypt(json.dumps(data).encode())
self.save_secure_file(self.file_path, encrypted_data)
def get_token(self) -> Optional[str]:
"""
Get the access token if it is valid and not expired.
:return: The access token if valid and not expired, otherwise None.
"""
encrypted_data = self.read_secure_file(self.file_path)
if encrypted_data is None:
return None
decrypted_data = self.fernet.decrypt(encrypted_data) # type: ignore
data = json.loads(decrypted_data)
expiration = datetime.fromisoformat(data["expiration"])
if expiration <= datetime.now():
return None
return data["access_token"]
def clear_tokens(self) -> None:
"""
Clear the tokens.
"""
self.delete_secure_file(self.file_path)
def get_secure_storage_path(self) -> Path:
"""
Get the secure storage path based on the operating system.
:return: The secure storage path.
"""
if sys.platform == "win32":
# Windows: Use %LOCALAPPDATA%
base_path = os.environ.get("LOCALAPPDATA")
elif sys.platform == "darwin":
# macOS: Use ~/Library/Application Support
base_path = os.path.expanduser("~/Library/Application Support")
else:
# Linux and other Unix-like: Use ~/.local/share
base_path = os.path.expanduser("~/.local/share")
app_name = "crewai/credentials"
storage_path = Path(base_path) / app_name
storage_path.mkdir(parents=True, exist_ok=True)
return storage_path
def save_secure_file(self, filename: str, content: bytes) -> None:
"""
Save the content to a secure file.
:param filename: The name of the file.
:param content: The content to save.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
with open(file_path, "wb") as f:
f.write(content)
# Set appropriate permissions (read/write for owner only)
os.chmod(file_path, 0o600)
def read_secure_file(self, filename: str) -> Optional[bytes]:
"""
Read the content of a secure file.
:param filename: The name of the file.
:return: The content of the file if it exists, otherwise None.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
if not file_path.exists():
return None
with open(file_path, "rb") as f:
return f.read()
def delete_secure_file(self, filename: str) -> None:
"""
Delete the secure file.
:param filename: The name of the file.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
if file_path.exists():
file_path.unlink(missing_ok=True)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.177.0,<1.0.0"
"crewai[tools]>=0.165.1,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.177.0,<1.0.0",
"crewai[tools]>=0.165.1,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.177.0"
"crewai[tools]>=0.165.1"
]
[tool.crewai]

View File

@@ -59,7 +59,7 @@ from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import NOT_SPECIFIED, TRAINING_DATA_FILE
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.events.types.crew_events import (
from crewai.utilities.events.crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
@@ -70,14 +70,14 @@ from crewai.events.types.crew_events import (
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from crewai.events.event_bus import crewai_event_bus
from crewai.events.event_listener import EventListener
from crewai.events.listeners.tracing.trace_listener import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.event_listener import EventListener
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
from crewai.events.listeners.tracing.utils import (
from crewai.utilities.events.listeners.tracing.utils import (
is_tracing_enabled,
)
from crewai.utilities.formatter import (
@@ -559,10 +559,9 @@ class Crew(FlowTrackable, BaseModel):
CrewTrainingHandler(filename).initialize_file()
def train(
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = None
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None:
"""Trains the crew for a given number of iterations."""
inputs = inputs or {}
try:
crewai_event_bus.emit(
self,
@@ -703,11 +702,8 @@ class Crew(FlowTrackable, BaseModel):
self._task_output_handler.reset()
return results
async def kickoff_async(
self, inputs: Optional[Dict[str, Any]] = None
) -> CrewOutput:
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = {}) -> CrewOutput:
"""Asynchronous kickoff method to start the crew execution."""
inputs = inputs or {}
return await asyncio.to_thread(self.kickoff, inputs)
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[CrewOutput]:

View File

@@ -1,56 +0,0 @@
"""CrewAI events system for monitoring and extending agent behavior.
This module provides the event infrastructure that allows users to:
- Monitor agent, task, and crew execution
- Track memory operations and performance
- Build custom logging and analytics
- Extend CrewAI with custom event handlers
"""
from crewai.events.base_event_listener import BaseEventListener
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.memory_events import (
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent,
MemorySaveStartedEvent,
MemoryQueryStartedEvent,
MemoryRetrievalCompletedEvent,
MemorySaveFailedEvent,
MemoryQueryFailedEvent,
)
from crewai.events.types.knowledge_events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
)
from crewai.events.types.crew_events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
)
from crewai.events.types.agent_events import (
AgentExecutionCompletedEvent,
)
from crewai.events.types.llm_events import (
LLMStreamChunkEvent,
)
__all__ = [
"BaseEventListener",
"crewai_event_bus",
"MemoryQueryCompletedEvent",
"MemorySaveCompletedEvent",
"MemorySaveStartedEvent",
"MemoryQueryStartedEvent",
"MemoryRetrievalCompletedEvent",
"MemorySaveFailedEvent",
"MemoryQueryFailedEvent",
"KnowledgeRetrievalStartedEvent",
"KnowledgeRetrievalCompletedEvent",
"CrewKickoffStartedEvent",
"CrewKickoffCompletedEvent",
"AgentExecutionCompletedEvent",
"LLMStreamChunkEvent",
]

View File

@@ -1,15 +0,0 @@
from abc import ABC, abstractmethod
from crewai.events.event_bus import CrewAIEventsBus, crewai_event_bus
class BaseEventListener(ABC):
verbose: bool = False
def __init__(self):
super().__init__()
self.setup_listeners(crewai_event_bus)
@abstractmethod
def setup_listeners(self, crewai_event_bus: CrewAIEventsBus):
pass

View File

@@ -1,117 +0,0 @@
from __future__ import annotations
import threading
from contextlib import contextmanager
from typing import Any, Callable, Dict, List, Type, TypeVar, cast
from blinker import Signal
from crewai.events.base_events import BaseEvent
from crewai.events.event_types import EventTypes
EventT = TypeVar("EventT", bound=BaseEvent)
class CrewAIEventsBus:
"""
A singleton event bus that uses blinker signals for event handling.
Allows both internal (Flow/Crew) and external event handling.
"""
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None: # prevent race condition
cls._instance = super(CrewAIEventsBus, cls).__new__(cls)
cls._instance._initialize()
return cls._instance
def _initialize(self) -> None:
"""Initialize the event bus internal state"""
self._signal = Signal("crewai_event_bus")
self._handlers: Dict[Type[BaseEvent], List[Callable]] = {}
def on(
self, event_type: Type[EventT]
) -> Callable[[Callable[[Any, EventT], None]], Callable[[Any, EventT], None]]:
"""
Decorator to register an event handler for a specific event type.
Usage:
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(
source: Any, event: AgentExecutionCompletedEvent
):
print(f"👍 Agent '{event.agent}' completed task")
print(f" Output: {event.output}")
"""
def decorator(
handler: Callable[[Any, EventT], None],
) -> Callable[[Any, EventT], None]:
if event_type not in self._handlers:
self._handlers[event_type] = []
self._handlers[event_type].append(
cast(Callable[[Any, EventT], None], handler)
)
return handler
return decorator
def emit(self, source: Any, event: BaseEvent) -> None:
"""
Emit an event to all registered handlers
Args:
source: The object emitting the event
event: The event instance to emit
"""
for event_type, handlers in self._handlers.items():
if isinstance(event, event_type):
for handler in handlers:
try:
handler(source, event)
except Exception as e:
print(
f"[EventBus Error] Handler '{handler.__name__}' failed for event '{event_type.__name__}': {e}"
)
self._signal.send(source, event=event)
def register_handler(
self, event_type: Type[EventTypes], handler: Callable[[Any, EventTypes], None]
) -> None:
"""Register an event handler for a specific event type"""
if event_type not in self._handlers:
self._handlers[event_type] = []
self._handlers[event_type].append(
cast(Callable[[Any, EventTypes], None], handler)
)
@contextmanager
def scoped_handlers(self):
"""
Context manager for temporary event handling scope.
Useful for testing or temporary event handling.
Usage:
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStarted)
def temp_handler(source, event):
print("Temporary handler")
# Do stuff...
# Handlers are cleared after the context
"""
previous_handlers = self._handlers.copy()
self._handlers.clear()
try:
yield
finally:
self._handlers = previous_handlers
# Global instance
crewai_event_bus = CrewAIEventsBus()

View File

@@ -1,5 +0,0 @@
"""Event listener implementations for CrewAI.
This module contains various event listener implementations
for handling memory, tracing, and other event-driven functionality.
"""

View File

@@ -1,5 +0,0 @@
"""Event type definitions for CrewAI.
This module contains all event types used throughout the CrewAI system
for monitoring and extending agent, crew, task, and tool execution.
"""

View File

@@ -1,25 +0,0 @@
"""Agent logging events that don't reference BaseAgent to avoid circular imports."""
from typing import Any, Optional
from crewai.events.base_events import BaseEvent
class AgentLogsStartedEvent(BaseEvent):
"""Event emitted when agent logs should be shown at start"""
agent_role: str
task_description: Optional[str] = None
verbose: bool = False
type: str = "agent_logs_started"
class AgentLogsExecutionEvent(BaseEvent):
"""Event emitted when agent logs should be shown during execution"""
agent_role: str
formatted_answer: Any
verbose: bool = False
type: str = "agent_logs_execution"
model_config = {"arbitrary_types_allowed": True}

View File

@@ -1,47 +0,0 @@
from crewai.events.base_events import BaseEvent
from typing import Any, Optional
class ReasoningEvent(BaseEvent):
"""Base event for reasoning events."""
type: str
attempt: int = 1
agent_role: str
task_id: str
task_name: Optional[str] = None
from_task: Optional[Any] = None
agent_id: Optional[str] = None
from_agent: Optional[Any] = None
def __init__(self, **data):
super().__init__(**data)
self._set_task_params(data)
self._set_agent_params(data)
class AgentReasoningStartedEvent(ReasoningEvent):
"""Event emitted when an agent starts reasoning about a task."""
type: str = "agent_reasoning_started"
agent_role: str
task_id: str
class AgentReasoningCompletedEvent(ReasoningEvent):
"""Event emitted when an agent finishes its reasoning process."""
type: str = "agent_reasoning_completed"
agent_role: str
task_id: str
plan: str
ready: bool
class AgentReasoningFailedEvent(ReasoningEvent):
"""Event emitted when the reasoning process fails."""
type: str = "agent_reasoning_failed"
agent_role: str
task_id: str
error: str

View File

@@ -1,42 +1,28 @@
import threading
from typing import Any, Optional
from typing import Any
from crewai.experimental.evaluation.base_evaluator import (
AgentEvaluationResult,
AggregationStrategy,
)
from crewai.experimental.evaluation.base_evaluator import AgentEvaluationResult, AggregationStrategy
from crewai.agent import Agent
from crewai.task import Task
from crewai.experimental.evaluation.evaluation_display import EvaluationDisplayFormatter
from crewai.events.types.agent_events import (
AgentEvaluationStartedEvent,
AgentEvaluationCompletedEvent,
AgentEvaluationFailedEvent,
)
from crewai.utilities.events.agent_events import AgentEvaluationStartedEvent, AgentEvaluationCompletedEvent, AgentEvaluationFailedEvent
from crewai.experimental.evaluation import BaseEvaluator, create_evaluation_callbacks
from collections.abc import Sequence
from crewai.events.event_bus import crewai_event_bus
from crewai.events.utils.console_formatter import ConsoleFormatter
from crewai.events.types.task_events import TaskCompletedEvent
from crewai.events.types.agent_events import LiteAgentExecutionCompletedEvent
from crewai.experimental.evaluation.base_evaluator import (
AgentAggregatedEvaluationResult,
EvaluationScore,
MetricCategory,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
from crewai.utilities.events.task_events import TaskCompletedEvent
from crewai.utilities.events.agent_events import LiteAgentExecutionCompletedEvent
from crewai.experimental.evaluation.base_evaluator import AgentAggregatedEvaluationResult, EvaluationScore, MetricCategory
class ExecutionState:
current_agent_id: Optional[str] = None
current_task_id: Optional[str] = None
def __init__(self):
self.traces = {}
self.current_agent_id: str | None = None
self.current_task_id: str | None = None
self.iteration = 1
self.iterations_results = {}
self.agent_evaluators = {}
class AgentEvaluator:
def __init__(
self,
@@ -59,45 +45,27 @@ class AgentEvaluator:
@property
def _execution_state(self) -> ExecutionState:
if not hasattr(self._thread_local, "execution_state"):
if not hasattr(self._thread_local, 'execution_state'):
self._thread_local.execution_state = ExecutionState()
return self._thread_local.execution_state
def _subscribe_to_events(self) -> None:
from typing import cast
crewai_event_bus.register_handler(
TaskCompletedEvent, cast(Any, self._handle_task_completed)
)
crewai_event_bus.register_handler(
LiteAgentExecutionCompletedEvent,
cast(Any, self._handle_lite_agent_completed),
)
crewai_event_bus.register_handler(TaskCompletedEvent, cast(Any, self._handle_task_completed))
crewai_event_bus.register_handler(LiteAgentExecutionCompletedEvent, cast(Any, self._handle_lite_agent_completed))
def _handle_task_completed(self, source: Any, event: TaskCompletedEvent) -> None:
assert event.task is not None
agent = event.task.agent
if (
agent
and str(getattr(agent, "id", "unknown"))
in self._execution_state.agent_evaluators
):
self.emit_evaluation_started_event(
agent_role=agent.role,
agent_id=str(agent.id),
task_id=str(event.task.id),
)
if agent and str(getattr(agent, 'id', 'unknown')) in self._execution_state.agent_evaluators:
self.emit_evaluation_started_event(agent_role=agent.role, agent_id=str(agent.id), task_id=str(event.task.id))
state = ExecutionState()
state.current_agent_id = str(agent.id)
state.current_task_id = str(event.task.id)
assert (
state.current_agent_id is not None and state.current_task_id is not None
)
trace = self.callback.get_trace(
state.current_agent_id, state.current_task_id
)
assert state.current_agent_id is not None and state.current_task_id is not None
trace = self.callback.get_trace(state.current_agent_id, state.current_task_id)
if not trace:
return
@@ -107,28 +75,19 @@ class AgentEvaluator:
task=event.task,
execution_trace=trace,
final_output=event.output,
state=state,
state=state
)
current_iteration = self._execution_state.iteration
if current_iteration not in self._execution_state.iterations_results:
self._execution_state.iterations_results[current_iteration] = {}
if (
agent.role
not in self._execution_state.iterations_results[current_iteration]
):
self._execution_state.iterations_results[current_iteration][
agent.role
] = []
if agent.role not in self._execution_state.iterations_results[current_iteration]:
self._execution_state.iterations_results[current_iteration][agent.role] = []
self._execution_state.iterations_results[current_iteration][
agent.role
].append(result)
self._execution_state.iterations_results[current_iteration][agent.role].append(result)
def _handle_lite_agent_completed(
self, source: object, event: LiteAgentExecutionCompletedEvent
) -> None:
def _handle_lite_agent_completed(self, source: object, event: LiteAgentExecutionCompletedEvent) -> None:
agent_info = event.agent_info
agent_id = str(agent_info["id"])
@@ -146,12 +105,8 @@ class AgentEvaluator:
if not target_agent:
return
assert (
state.current_agent_id is not None and state.current_task_id is not None
)
trace = self.callback.get_trace(
state.current_agent_id, state.current_task_id
)
assert state.current_agent_id is not None and state.current_task_id is not None
trace = self.callback.get_trace(state.current_agent_id, state.current_task_id)
if not trace:
return
@@ -160,7 +115,7 @@ class AgentEvaluator:
agent=target_agent,
execution_trace=trace,
final_output=event.output,
state=state,
state=state
)
current_iteration = self._execution_state.iteration
@@ -168,17 +123,10 @@ class AgentEvaluator:
self._execution_state.iterations_results[current_iteration] = {}
agent_role = target_agent.role
if (
agent_role
not in self._execution_state.iterations_results[current_iteration]
):
self._execution_state.iterations_results[current_iteration][
agent_role
] = []
if agent_role not in self._execution_state.iterations_results[current_iteration]:
self._execution_state.iterations_results[current_iteration][agent_role] = []
self._execution_state.iterations_results[current_iteration][
agent_role
].append(result)
self._execution_state.iterations_results[current_iteration][agent_role].append(result)
def set_iteration(self, iteration: int) -> None:
self._execution_state.iteration = iteration
@@ -187,26 +135,14 @@ class AgentEvaluator:
self._execution_state.iterations_results = {}
def get_evaluation_results(self) -> dict[str, list[AgentEvaluationResult]]:
if (
self._execution_state.iterations_results
and self._execution_state.iteration
in self._execution_state.iterations_results
):
return self._execution_state.iterations_results[
self._execution_state.iteration
]
if self._execution_state.iterations_results and self._execution_state.iteration in self._execution_state.iterations_results:
return self._execution_state.iterations_results[self._execution_state.iteration]
return {}
def display_results_with_iterations(self) -> None:
self.display_formatter.display_summary_results(
self._execution_state.iterations_results
)
self.display_formatter.display_summary_results(self._execution_state.iterations_results)
def get_agent_evaluation(
self,
strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE,
include_evaluation_feedback: bool = True,
) -> dict[str, AgentAggregatedEvaluationResult]:
def get_agent_evaluation(self, strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE, include_evaluation_feedback: bool = True) -> dict[str, AgentAggregatedEvaluationResult]:
agent_results = {}
with crewai_event_bus.scoped_handlers():
task_results = self.get_evaluation_results()
@@ -220,16 +156,13 @@ class AgentEvaluator:
agent_id=agent_id,
agent_role=agent_role,
results=results,
strategy=strategy,
strategy=strategy
)
agent_results[agent_role] = aggregated_result
if (
self._execution_state.iterations_results
and self._execution_state.iteration
== max(self._execution_state.iterations_results.keys(), default=0)
):
if self._execution_state.iterations_results and self._execution_state.iteration == max(self._execution_state.iterations_results.keys(), default=0):
self.display_results_with_iterations()
if include_evaluation_feedback:
@@ -238,9 +171,7 @@ class AgentEvaluator:
return agent_results
def display_evaluation_with_feedback(self) -> None:
self.display_formatter.display_evaluation_with_feedback(
self._execution_state.iterations_results
)
self.display_formatter.display_evaluation_with_feedback(self._execution_state.iterations_results)
def evaluate(
self,
@@ -252,91 +183,46 @@ class AgentEvaluator:
) -> AgentEvaluationResult:
result = AgentEvaluationResult(
agent_id=state.current_agent_id or str(agent.id),
task_id=state.current_task_id or (str(task.id) if task else "unknown_task"),
task_id=state.current_task_id or (str(task.id) if task else "unknown_task")
)
assert self.evaluators is not None
task_id = str(task.id) if task else None
for evaluator in self.evaluators:
try:
self.emit_evaluation_started_event(
agent_role=agent.role, agent_id=str(agent.id), task_id=task_id
)
self.emit_evaluation_started_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id)
score = evaluator.evaluate(
agent=agent,
task=task,
execution_trace=execution_trace,
final_output=final_output,
final_output=final_output
)
result.metrics[evaluator.metric_category] = score
self.emit_evaluation_completed_event(
agent_role=agent.role,
agent_id=str(agent.id),
task_id=task_id,
metric_category=evaluator.metric_category,
score=score,
)
self.emit_evaluation_completed_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id, metric_category=evaluator.metric_category, score=score)
except Exception as e:
self.emit_evaluation_failed_event(
agent_role=agent.role,
agent_id=str(agent.id),
task_id=task_id,
error=str(e),
)
self.console_formatter.print(
f"Error in {evaluator.metric_category.value} evaluator: {str(e)}"
)
self.emit_evaluation_failed_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id, error=str(e))
self.console_formatter.print(f"Error in {evaluator.metric_category.value} evaluator: {str(e)}")
return result
def emit_evaluation_started_event(
self, agent_role: str, agent_id: str, task_id: str | None = None
):
def emit_evaluation_started_event(self, agent_role: str, agent_id: str, task_id: str | None = None):
crewai_event_bus.emit(
self,
AgentEvaluationStartedEvent(
agent_role=agent_role,
agent_id=agent_id,
task_id=task_id,
iteration=self._execution_state.iteration,
),
AgentEvaluationStartedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration)
)
def emit_evaluation_completed_event(
self,
agent_role: str,
agent_id: str,
task_id: str | None = None,
metric_category: MetricCategory | None = None,
score: EvaluationScore | None = None,
):
def emit_evaluation_completed_event(self, agent_role: str, agent_id: str, task_id: str | None = None, metric_category: MetricCategory | None = None, score: EvaluationScore | None = None):
crewai_event_bus.emit(
self,
AgentEvaluationCompletedEvent(
agent_role=agent_role,
agent_id=agent_id,
task_id=task_id,
iteration=self._execution_state.iteration,
metric_category=metric_category,
score=score,
),
AgentEvaluationCompletedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration, metric_category=metric_category, score=score)
)
def emit_evaluation_failed_event(
self, agent_role: str, agent_id: str, error: str, task_id: str | None = None
):
def emit_evaluation_failed_event(self, agent_role: str, agent_id: str, error: str, task_id: str | None = None):
crewai_event_bus.emit(
self,
AgentEvaluationFailedEvent(
agent_role=agent_role,
agent_id=agent_id,
task_id=task_id,
iteration=self._execution_state.iteration,
error=error,
),
AgentEvaluationFailedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration, error=error)
)
def create_default_evaluator(agents: list[Agent], llm: None = None):
from crewai.experimental.evaluation import (
GoalAlignmentEvaluator,
@@ -344,7 +230,7 @@ def create_default_evaluator(agents: list[Agent], llm: None = None):
ToolSelectionEvaluator,
ParameterExtractionEvaluator,
ToolInvocationEvaluator,
ReasoningEfficiencyEvaluator,
ReasoningEfficiencyEvaluator
)
evaluators = [

View File

@@ -3,28 +3,18 @@ from typing import Dict, Any, List
from rich.table import Table
from rich.box import HEAVY_EDGE, ROUNDED
from collections.abc import Sequence
from crewai.experimental.evaluation.base_evaluator import (
AgentAggregatedEvaluationResult,
AggregationStrategy,
AgentEvaluationResult,
MetricCategory,
)
from crewai.experimental.evaluation.base_evaluator import AgentAggregatedEvaluationResult, AggregationStrategy, AgentEvaluationResult, MetricCategory
from crewai.experimental.evaluation import EvaluationScore
from crewai.events.utils.console_formatter import ConsoleFormatter
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
from crewai.utilities.llm_utils import create_llm
class EvaluationDisplayFormatter:
def __init__(self):
self.console_formatter = ConsoleFormatter()
def display_evaluation_with_feedback(
self, iterations_results: Dict[int, Dict[str, List[Any]]]
):
def display_evaluation_with_feedback(self, iterations_results: Dict[int, Dict[str, List[Any]]]):
if not iterations_results:
self.console_formatter.print(
"[yellow]No evaluation results to display[/yellow]"
)
self.console_formatter.print("[yellow]No evaluation results to display[/yellow]")
return
all_agent_roles: set[str] = set()
@@ -32,9 +22,7 @@ class EvaluationDisplayFormatter:
all_agent_roles.update(iter_results.keys())
for agent_role in sorted(all_agent_roles):
self.console_formatter.print(
f"\n[bold cyan]Agent: {agent_role}[/bold cyan]"
)
self.console_formatter.print(f"\n[bold cyan]Agent: {agent_role}[/bold cyan]")
for iter_num, results in sorted(iterations_results.items()):
if agent_role not in results or not results[agent_role]:
@@ -74,7 +62,9 @@ class EvaluationDisplayFormatter:
table.add_section()
table.add_row(
metric.title(), score_text, evaluation_score.feedback or ""
metric.title(),
score_text,
evaluation_score.feedback or ""
)
if aggregated_result.overall_score is not None:
@@ -92,26 +82,19 @@ class EvaluationDisplayFormatter:
table.add_row(
"Overall Score",
f"[{overall_color}]{overall_score:.1f}[/]",
"Overall agent evaluation score",
"Overall agent evaluation score"
)
self.console_formatter.print(table)
def display_summary_results(
self,
iterations_results: Dict[int, Dict[str, List[AgentAggregatedEvaluationResult]]],
):
def display_summary_results(self, iterations_results: Dict[int, Dict[str, List[AgentAggregatedEvaluationResult]]]):
if not iterations_results:
self.console_formatter.print(
"[yellow]No evaluation results to display[/yellow]"
)
self.console_formatter.print("[yellow]No evaluation results to display[/yellow]")
return
self.console_formatter.print("\n")
table = Table(
title="Agent Performance Scores \n (1-10 Higher is better)", box=HEAVY_EDGE
)
table = Table(title="Agent Performance Scores \n (1-10 Higher is better)", box=HEAVY_EDGE)
table.add_column("Agent/Metric", style="cyan")
@@ -140,14 +123,11 @@ class EvaluationDisplayFormatter:
agent_id=agent_id,
agent_role=agent_role,
results=agent_results,
strategy=AggregationStrategy.SIMPLE_AVERAGE,
strategy=AggregationStrategy.SIMPLE_AVERAGE
)
valid_scores = [
score.score
for score in aggregated_result.metrics.values()
if score.score is not None
]
valid_scores = [score.score for score in aggregated_result.metrics.values()
if score.score is not None]
if valid_scores:
avg_score = sum(valid_scores) / len(valid_scores)
agent_scores_by_iteration[iter_num] = avg_score
@@ -157,9 +137,7 @@ class EvaluationDisplayFormatter:
if not agent_scores_by_iteration:
continue
avg_across_iterations = sum(agent_scores_by_iteration.values()) / len(
agent_scores_by_iteration
)
avg_across_iterations = sum(agent_scores_by_iteration.values()) / len(agent_scores_by_iteration)
row = [f"[bold]{agent_role}[/bold]"]
@@ -200,13 +178,9 @@ class EvaluationDisplayFormatter:
row = [f" - {metric.title()}"]
for iter_num in sorted(iterations_results.keys()):
if (
iter_num in agent_metrics_by_iteration
and metric in agent_metrics_by_iteration[iter_num]
):
metric_score = agent_metrics_by_iteration[iter_num][
metric
].score
if (iter_num in agent_metrics_by_iteration and
metric in agent_metrics_by_iteration[iter_num]):
metric_score = agent_metrics_by_iteration[iter_num][metric].score
if metric_score is not None:
metric_scores.append(metric_score)
if metric_score >= 8.0:
@@ -251,9 +225,7 @@ class EvaluationDisplayFormatter:
results: Sequence[AgentEvaluationResult],
strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE,
) -> AgentAggregatedEvaluationResult:
metrics_by_category: dict[MetricCategory, list[EvaluationScore]] = defaultdict(
list
)
metrics_by_category: dict[MetricCategory, list[EvaluationScore]] = defaultdict(list)
for result in results:
for metric_name, evaluation_score in result.metrics.items():
@@ -274,20 +246,19 @@ class EvaluationDisplayFormatter:
metric=category.title(),
feedbacks=feedbacks,
scores=[s.score for s in scores],
strategy=strategy,
strategy=strategy
)
else:
feedback_summary = feedbacks[0]
aggregated_metrics[category] = EvaluationScore(
score=avg_score, feedback=feedback_summary
score=avg_score,
feedback=feedback_summary
)
overall_score = None
if aggregated_metrics:
valid_scores = [
m.score for m in aggregated_metrics.values() if m.score is not None
]
valid_scores = [m.score for m in aggregated_metrics.values() if m.score is not None]
if valid_scores:
overall_score = sum(valid_scores) / len(valid_scores)
@@ -297,7 +268,7 @@ class EvaluationDisplayFormatter:
metrics=aggregated_metrics,
overall_score=overall_score,
task_count=len(results),
aggregation_strategy=strategy,
aggregation_strategy=strategy
)
def _summarize_feedbacks(
@@ -306,12 +277,10 @@ class EvaluationDisplayFormatter:
metric: str,
feedbacks: List[str],
scores: List[float | None],
strategy: AggregationStrategy,
strategy: AggregationStrategy
) -> str:
if len(feedbacks) <= 2 and all(len(fb) < 200 for fb in feedbacks):
return "\n\n".join(
[f"Feedback {i+1}: {fb}" for i, fb in enumerate(feedbacks)]
)
return "\n\n".join([f"Feedback {i+1}: {fb}" for i, fb in enumerate(feedbacks)])
try:
llm = create_llm()
@@ -321,26 +290,20 @@ class EvaluationDisplayFormatter:
if len(feedback) > 500:
feedback = feedback[:500] + "..."
score_text = f"{score:.1f}" if score is not None else "N/A"
formatted_feedbacks.append(
f"Feedback #{i+1} (Score: {score_text}):\n{feedback}"
)
formatted_feedbacks.append(f"Feedback #{i+1} (Score: {score_text}):\n{feedback}")
all_feedbacks = "\n\n" + "\n\n---\n\n".join(formatted_feedbacks)
strategy_guidance = ""
if strategy == AggregationStrategy.BEST_PERFORMANCE:
strategy_guidance = (
"Focus on the highest-scoring aspects and strengths demonstrated."
)
strategy_guidance = "Focus on the highest-scoring aspects and strengths demonstrated."
elif strategy == AggregationStrategy.WORST_PERFORMANCE:
strategy_guidance = "Focus on areas that need improvement and common issues across tasks."
else:
strategy_guidance = "Provide a balanced analysis of strengths and weaknesses across all tasks."
prompt = [
{
"role": "system",
"content": f"""You are an expert evaluator creating a comprehensive summary of agent performance feedback.
{"role": "system", "content": f"""You are an expert evaluator creating a comprehensive summary of agent performance feedback.
Your job is to synthesize multiple feedback points about the same metric across different tasks.
Create a concise, insightful summary that captures the key patterns and themes from all feedback.
@@ -352,18 +315,14 @@ class EvaluationDisplayFormatter:
3. Highlighting patterns across tasks
4. 150-250 words in length
The summary should be directly usable as final feedback for the agent's performance on this metric.""",
},
{
"role": "user",
"content": f"""I need a synthesized summary of the following feedback for:
The summary should be directly usable as final feedback for the agent's performance on this metric."""},
{"role": "user", "content": f"""I need a synthesized summary of the following feedback for:
Agent Role: {agent_role}
Metric: {metric.title()}
{all_feedbacks}
""",
},
"""}
]
assert llm is not None
response = llm.call(prompt)
@@ -371,6 +330,4 @@ class EvaluationDisplayFormatter:
return response
except Exception:
return "Synthesized from multiple tasks: " + "\n\n".join(
[f"- {fb[:500]}..." for fb in feedbacks]
)
return "Synthesized from multiple tasks: " + "\n\n".join([f"- {fb[:500]}..." for fb in feedbacks])

View File

@@ -5,23 +5,25 @@ from collections.abc import Sequence
from crewai.agent import Agent
from crewai.task import Task
from crewai.events.base_event_listener import BaseEventListener
from crewai.events.event_bus import CrewAIEventsBus
from crewai.events.types.agent_events import (
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crewai_event_bus import CrewAIEventsBus
from crewai.utilities.events.agent_events import (
AgentExecutionStartedEvent,
AgentExecutionCompletedEvent,
LiteAgentExecutionStartedEvent,
LiteAgentExecutionCompletedEvent,
LiteAgentExecutionCompletedEvent
)
from crewai.events.types.tool_usage_events import (
from crewai.utilities.events.tool_usage_events import (
ToolUsageFinishedEvent,
ToolUsageErrorEvent,
ToolExecutionErrorEvent,
ToolSelectionErrorEvent,
ToolValidateInputErrorEvent,
ToolValidateInputErrorEvent
)
from crewai.utilities.events.llm_events import (
LLMCallStartedEvent,
LLMCallCompletedEvent
)
from crewai.events.types.llm_events import LLMCallStartedEvent, LLMCallCompletedEvent
class EvaluationTraceCallback(BaseEventListener):
"""Event listener for collecting execution traces for evaluation.
@@ -66,49 +68,27 @@ class EvaluationTraceCallback(BaseEventListener):
@event_bus.on(ToolUsageFinishedEvent)
def on_tool_completed(source, event: ToolUsageFinishedEvent):
self.on_tool_use(
event.tool_name, event.tool_args, event.output, success=True
)
self.on_tool_use(event.tool_name, event.tool_args, event.output, success=True)
@event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
self.on_tool_use(
event.tool_name,
event.tool_args,
event.error,
success=False,
error_type="usage_error",
)
self.on_tool_use(event.tool_name, event.tool_args, event.error,
success=False, error_type="usage_error")
@event_bus.on(ToolExecutionErrorEvent)
def on_tool_execution_error(source, event: ToolExecutionErrorEvent):
self.on_tool_use(
event.tool_name,
event.tool_args,
event.error,
success=False,
error_type="execution_error",
)
self.on_tool_use(event.tool_name, event.tool_args, event.error,
success=False, error_type="execution_error")
@event_bus.on(ToolSelectionErrorEvent)
def on_tool_selection_error(source, event: ToolSelectionErrorEvent):
self.on_tool_use(
event.tool_name,
event.tool_args,
event.error,
success=False,
error_type="selection_error",
)
self.on_tool_use(event.tool_name, event.tool_args, event.error,
success=False, error_type="selection_error")
@event_bus.on(ToolValidateInputErrorEvent)
def on_tool_validate_input_error(source, event: ToolValidateInputErrorEvent):
self.on_tool_use(
event.tool_name,
event.tool_args,
event.error,
success=False,
error_type="validation_error",
)
self.on_tool_use(event.tool_name, event.tool_args, event.error,
success=False, error_type="validation_error")
@event_bus.on(LLMCallStartedEvent)
def on_llm_call_started(source, event: LLMCallStartedEvent):
@@ -119,7 +99,7 @@ class EvaluationTraceCallback(BaseEventListener):
self.on_llm_call_end(event.messages, event.response)
def on_lite_agent_start(self, agent_info: dict[str, Any]):
self.current_agent_id = agent_info["id"]
self.current_agent_id = agent_info['id']
self.current_task_id = "lite_task"
trace_key = f"{self.current_agent_id}_{self.current_task_id}"
@@ -130,7 +110,7 @@ class EvaluationTraceCallback(BaseEventListener):
tool_uses=[],
llm_calls=[],
start_time=datetime.now(),
final_output=None,
final_output=None
)
def _init_trace(self, trace_key: str, **kwargs: Any):
@@ -148,7 +128,7 @@ class EvaluationTraceCallback(BaseEventListener):
tool_uses=[],
llm_calls=[],
start_time=datetime.now(),
final_output=None,
final_output=None
)
def on_agent_finish(self, agent: Agent, task: Task, output: Any):
@@ -171,14 +151,8 @@ class EvaluationTraceCallback(BaseEventListener):
self._reset_current()
def on_tool_use(
self,
tool_name: str,
tool_args: dict[str, Any] | str,
result: Any,
success: bool = True,
error_type: str | None = None,
):
def on_tool_use(self, tool_name: str, tool_args: dict[str, Any] | str, result: Any,
success: bool = True, error_type: str | None = None):
if not self.current_agent_id or not self.current_task_id:
return
@@ -189,7 +163,7 @@ class EvaluationTraceCallback(BaseEventListener):
"args": tool_args,
"result": result,
"success": success,
"timestamp": datetime.now(),
"timestamp": datetime.now()
}
# Add error information if applicable
@@ -199,11 +173,7 @@ class EvaluationTraceCallback(BaseEventListener):
self.traces[trace_key]["tool_uses"].append(tool_use)
def on_llm_call_start(
self,
messages: str | Sequence[dict[str, Any]] | None,
tools: Sequence[dict[str, Any]] | None = None,
):
def on_llm_call_start(self, messages: str | Sequence[dict[str, Any]] | None, tools: Sequence[dict[str, Any]] | None = None):
if not self.current_agent_id or not self.current_task_id:
return
@@ -216,12 +186,10 @@ class EvaluationTraceCallback(BaseEventListener):
"tools": tools,
"start_time": datetime.now(),
"response": None,
"end_time": None,
"end_time": None
}
def on_llm_call_end(
self, messages: str | list[dict[str, Any]] | None, response: Any
):
def on_llm_call_end(self, messages: str | list[dict[str, Any]] | None, response: Any):
if not self.current_agent_id or not self.current_task_id:
return
@@ -245,7 +213,7 @@ class EvaluationTraceCallback(BaseEventListener):
"response": response,
"start_time": start_time,
"end_time": current_time,
"total_tokens": total_tokens,
"total_tokens": total_tokens
}
self.traces[trace_key]["llm_calls"].append(llm_call)
@@ -259,7 +227,7 @@ class EvaluationTraceCallback(BaseEventListener):
def create_evaluation_callbacks() -> EvaluationTraceCallback:
from crewai.events.event_bus import crewai_event_bus
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
callback = EvaluationTraceCallback()
callback.setup_listeners(crewai_event_bus)

View File

@@ -25,8 +25,8 @@ from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.types import FlowExecutionData
from crewai.flow.utils import get_possible_return_constants
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.flow_events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.flow_events import (
FlowCreatedEvent,
FlowFinishedEvent,
FlowPlotEvent,
@@ -35,10 +35,10 @@ from crewai.events.types.flow_events import (
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.events.listeners.tracing.trace_listener import (
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
from crewai.events.listeners.tracing.utils import (
from crewai.utilities.events.listeners.tracing.utils import (
is_tracing_enabled,
)
from crewai.utilities.printer import Printer
@@ -474,7 +474,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._method_outputs: List[Any] = [] # List to store all method outputs
self._completed_methods: Set[str] = set() # Track completed methods for reload
self._persistence: Optional[FlowPersistence] = persistence
self._is_execution_resuming: bool = False
# Initialize state with initial values
self._state = self._create_initial_state()
@@ -830,9 +829,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
# Clear completed methods and outputs for a fresh start
self._completed_methods.clear()
self._method_outputs.clear()
else:
# We're restoring from persistence, set the flag
self._is_execution_resuming = True
if inputs:
# Override the id in the state if it exists in inputs
@@ -884,9 +880,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
]
await asyncio.gather(*tasks)
# Clear the resumption flag after initial execution completes
self._is_execution_resuming = False
final_output = self._method_outputs[-1] if self._method_outputs else None
crewai_event_bus.emit(
@@ -923,23 +916,19 @@ class Flow(Generic[T], metaclass=FlowMeta):
- Automatically injects crewai_trigger_payload if available in flow inputs
"""
if start_method_name in self._completed_methods:
if self._is_execution_resuming:
# During resumption, skip execution but continue listeners
last_output = self._method_outputs[-1] if self._method_outputs else None
await self._execute_listeners(start_method_name, last_output)
return
# For cyclic flows, clear from completed to allow re-execution
self._completed_methods.discard(start_method_name)
last_output = self._method_outputs[-1] if self._method_outputs else None
await self._execute_listeners(start_method_name, last_output)
return
method = self._methods[start_method_name]
enhanced_method = self._inject_trigger_payload_for_start_method(method)
result = await self._execute_method(start_method_name, enhanced_method)
result = await self._execute_method(
start_method_name, enhanced_method
)
await self._execute_listeners(start_method_name, result)
def _inject_trigger_payload_for_start_method(
self, original_method: Callable
) -> Callable:
def _inject_trigger_payload_for_start_method(self, original_method: Callable) -> Callable:
def prepare_kwargs(*args, **kwargs):
inputs = baggage.get_baggage("flow_inputs") or {}
trigger_payload = inputs.get("crewai_trigger_payload")
@@ -952,17 +941,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
elif trigger_payload is not None:
self._log_flow_event(
f"Trigger payload available but {original_method.__name__} doesn't accept crewai_trigger_payload parameter",
color="yellow",
color="yellow"
)
return args, kwargs
if asyncio.iscoroutinefunction(original_method):
async def enhanced_method(*args, **kwargs):
args, kwargs = prepare_kwargs(*args, **kwargs)
return await original_method(*args, **kwargs)
else:
def enhanced_method(*args, **kwargs):
args, kwargs = prepare_kwargs(*args, **kwargs)
return original_method(*args, **kwargs)
@@ -1063,15 +1050,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
for router_name in routers_triggered:
await self._execute_single_listener(router_name, result)
# After executing router, the router's result is the path
router_result = (
self._method_outputs[-1] if self._method_outputs else None
)
router_result = self._method_outputs[-1]
if router_result: # Only add non-None results
router_results.append(router_result)
current_trigger = (
str(router_result)
if router_result is not None
else "" # Update for next iteration of router chain
router_result # Update for next iteration of router chain
)
# Now execute normal listeners for all router results and the original trigger
@@ -1089,24 +1072,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
]
await asyncio.gather(*tasks)
if current_trigger in router_results:
# Find start methods triggered by this router result
for method_name in self._start_methods:
# Check if this start method is triggered by the current trigger
if method_name in self._listeners:
condition_type, trigger_methods = self._listeners[
method_name
]
if current_trigger in trigger_methods:
# Only execute if this is a cycle (method was already completed)
if method_name in self._completed_methods:
# For router-triggered start methods in cycles, temporarily clear resumption flag
# to allow cyclic execution
was_resuming = self._is_execution_resuming
self._is_execution_resuming = False
await self._execute_start_method(method_name)
self._is_execution_resuming = was_resuming
def _find_triggered_methods(
self, trigger_method: str, router_only: bool
) -> List[str]:
@@ -1144,9 +1109,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
if router_only != is_router:
continue
if not router_only and listener_name in self._start_methods:
continue
if condition_type == "OR":
# If the trigger_method matches any in methods, run this
if trigger_method in methods:
@@ -1196,13 +1158,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
Catches and logs any exceptions during execution, preventing
individual listener failures from breaking the entire flow.
"""
if listener_name in self._completed_methods:
if self._is_execution_resuming:
# During resumption, skip execution but continue listeners
await self._execute_listeners(listener_name, None)
return
# For cyclic flows, clear from completed to allow re-execution
self._completed_methods.discard(listener_name)
# TODO: greyson fix
# if listener_name in self._completed_methods:
# await self._execute_listeners(listener_name, None)
# return
try:
method = self._methods[listener_name]

View File

@@ -1,4 +1,6 @@
import contextlib
import hashlib
import io
import logging
import os
import shutil
@@ -18,7 +20,23 @@ from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
from crewai.utilities.paths import db_storage_path
from crewai.utilities.chromadb import create_persistent_client
from crewai.utilities.logger_utils import suppress_logging
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
class KnowledgeStorage(BaseKnowledgeStorage):
@@ -46,9 +64,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
with suppress_logging(
"chromadb.segment.impl.vector.local_persistent_hnsw", logging.ERROR
):
with suppress_logging():
if self.collection:
fetched = self.collection.query(
query_texts=query,

View File

@@ -62,14 +62,19 @@ from crewai.utilities.agent_utils import (
render_text_description_and_args,
)
from crewai.utilities.converter import generate_model_description
from crewai.events.types.logging_events import AgentLogsExecutionEvent
from crewai.events.types.agent_events import (
from crewai.utilities.events.agent_events import (
AgentLogsExecutionEvent,
LiteAgentExecutionCompletedEvent,
LiteAgentExecutionErrorEvent,
LiteAgentExecutionStartedEvent,
)
from crewai.events.event_bus import crewai_event_bus
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
)
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.printer import Printer
from crewai.utilities.token_counter_callback import TokenCalcHandler
@@ -514,6 +519,19 @@ class LiteAgent(FlowTrackable, BaseModel):
enforce_rpm_limit(self.request_within_rpm_limit)
llm = cast(LLM, self.llm)
model = llm.model if hasattr(llm, "model") else "unknown"
crewai_event_bus.emit(
self,
event=LLMCallStartedEvent(
messages=self._messages,
tools=None,
callbacks=self._callbacks,
from_agent=self,
model=model,
),
)
try:
answer = get_llm_response(
llm=cast(LLM, self.llm),
@@ -523,7 +541,23 @@ class LiteAgent(FlowTrackable, BaseModel):
from_agent=self,
)
# Emit LLM call completed event
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(
messages=self._messages,
response=answer,
call_type=LLMCallType.LLM_CALL,
from_agent=self,
model=model,
),
)
except Exception as e:
# Emit LLM call failed event
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e), from_agent=self),
)
raise e
formatted_answer = process_llm_response(answer, self.use_stop_words)

View File

@@ -23,14 +23,14 @@ from dotenv import load_dotenv
from litellm.types.utils import ChatCompletionDeltaToolCall
from pydantic import BaseModel, Field
from crewai.events.types.llm_events import (
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
LLMStreamChunkEvent,
)
from crewai.events.types.tool_usage_events import (
from crewai.utilities.events.tool_usage_events import (
ToolUsageStartedEvent,
ToolUsageFinishedEvent,
ToolUsageErrorEvent,
@@ -52,7 +52,7 @@ import io
from typing import TextIO
from crewai.llms.base_llm import BaseLLM
from crewai.events.event_bus import crewai_event_bus
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -311,7 +311,7 @@ class LLM(BaseLLM):
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
callbacks: List[Any] | None = None,
callbacks: List[Any] = [],
reasoning_effort: Optional[Literal["none", "low", "medium", "high"]] = None,
stream: bool = False,
**kwargs,
@@ -351,7 +351,7 @@ class LLM(BaseLLM):
else:
self.stop = stop
self.set_callbacks(callbacks or [])
self.set_callbacks(callbacks)
self.set_env_callbacks()
def _is_anthropic_model(self, model: str) -> bool:
@@ -851,9 +851,7 @@ class LLM(BaseLLM):
return tool_calls
# --- 7) Handle tool calls if present
tool_result = self._handle_tool_call(
tool_calls, available_functions, from_task, from_agent
)
tool_result = self._handle_tool_call(tool_calls, available_functions)
if tool_result is not None:
return tool_result
# --- 8) If tool call handling didn't return a result, emit completion event and return text response
@@ -870,8 +868,6 @@ class LLM(BaseLLM):
self,
tool_calls: List[Any],
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> Optional[str]:
"""Handle a tool call from the LLM.
@@ -906,8 +902,6 @@ class LLM(BaseLLM):
event=ToolUsageStartedEvent(
tool_name=function_name,
tool_args=function_args,
from_agent=from_agent,
from_task=from_task,
),
)
@@ -920,17 +914,12 @@ class LLM(BaseLLM):
tool_args=function_args,
started_at=started_at,
finished_at=datetime.now(),
from_task=from_task,
from_agent=from_agent,
),
)
# --- 3.3) Emit success event
self._handle_emit_call_events(
response=result,
call_type=LLMCallType.TOOL_CALL,
from_task=from_task,
from_agent=from_agent,
response=result, call_type=LLMCallType.TOOL_CALL
)
return result
except Exception as e:
@@ -950,8 +939,6 @@ class LLM(BaseLLM):
tool_name=function_name,
tool_args=function_args,
error=f"Tool execution error: {str(e)}",
from_task=from_task,
from_agent=from_agent,
),
)
return None
@@ -1152,11 +1139,7 @@ class LLM(BaseLLM):
# TODO: Remove this code after merging PR https://github.com/BerriAI/litellm/pull/10917
# Ollama doesn't supports last message to be 'assistant'
if (
"ollama" in self.model.lower()
and messages
and messages[-1]["role"] == "assistant"
):
if "ollama" in self.model.lower() and messages and messages[-1]["role"] == "assistant":
return messages + [{"role": "user", "content": ""}]
# Handle Anthropic models

View File

@@ -1,4 +1,4 @@
from typing import Optional, TYPE_CHECKING
from typing import Optional
from crewai.memory import (
EntityMemory,
@@ -7,10 +7,6 @@ from crewai.memory import (
ShortTermMemory,
)
if TYPE_CHECKING:
from crewai.agent import Agent
from crewai.task import Task
class ContextualMemory:
def __init__(
@@ -19,28 +15,11 @@ class ContextualMemory:
ltm: LongTermMemory,
em: EntityMemory,
exm: ExternalMemory,
agent: Optional["Agent"] = None,
task: Optional["Task"] = None,
):
self.stm = stm
self.ltm = ltm
self.em = em
self.exm = exm
self.agent = agent
self.task = task
if self.stm is not None:
self.stm.agent = self.agent
self.stm.task = self.task
if self.ltm is not None:
self.ltm.agent = self.agent
self.ltm.task = self.task
if self.em is not None:
self.em.agent = self.agent
self.em.task = self.task
if self.exm is not None:
self.exm.agent = self.agent
self.exm.task = self.task
def build_context_for_task(self, task, context) -> str:
"""
@@ -70,7 +49,10 @@ class ContextualMemory:
stm_results = self.stm.search(query)
formatted_results = "\n".join(
[f"- {result['context']}" for result in stm_results]
[
f"- {result['context']}"
for result in stm_results
]
)
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
@@ -107,7 +89,10 @@ class ContextualMemory:
em_results = self.em.search(query)
formatted_results = "\n".join(
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
[
f"- {result['context']}"
for result in em_results
] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
)
return f"Entities:\n{formatted_results}" if em_results else ""

View File

@@ -1,4 +1,4 @@
from typing import Any
from typing import Optional
import time
from pydantic import PrivateAttr
@@ -6,8 +6,8 @@ from pydantic import PrivateAttr
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.memory import Memory
from crewai.memory.storage.rag_storage import RAGStorage
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.memory_events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.memory_events import (
MemoryQueryStartedEvent,
MemoryQueryCompletedEvent,
MemoryQueryFailedEvent,
@@ -24,7 +24,7 @@ class EntityMemory(Memory):
Inherits from the Memory class.
"""
_memory_provider: str | None = PrivateAttr()
_memory_provider: Optional[str] = PrivateAttr()
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
memory_provider = embedder_config.get("provider") if embedder_config else None
@@ -35,7 +35,7 @@ class EntityMemory(Memory):
raise ImportError(
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
config = embedder_config.get("config") if embedder_config else None
config = embedder_config.get("config")
storage = Mem0Storage(type="short_term", crew=crew, config=config)
else:
storage = (
@@ -53,99 +53,47 @@ class EntityMemory(Memory):
super().__init__(storage=storage)
self._memory_provider = memory_provider
def save(
self,
value: EntityMemoryItem | list[EntityMemoryItem],
metadata: dict[str, Any] | None = None,
) -> None:
"""Saves one or more entity items into the SQLite storage.
Args:
value: Single EntityMemoryItem or list of EntityMemoryItems to save.
metadata: Optional metadata dict (included for supertype compatibility but not used).
Notes:
The metadata parameter is included to satisfy the supertype signature but is not
used - entity metadata is extracted from the EntityMemoryItem objects themselves.
"""
if not value:
return
items = value if isinstance(value, list) else [value]
is_batch = len(items) > 1
metadata = {"entity_count": len(items)} if is_batch else items[0].metadata
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
"""Saves an entity item into the SQLite storage."""
crewai_event_bus.emit(
self,
event=MemorySaveStartedEvent(
metadata=metadata,
metadata=item.metadata,
source_type="entity_memory",
from_agent=self.agent,
from_task=self.task,
),
)
start_time = time.time()
saved_count = 0
errors = []
try:
for item in items:
try:
if self._memory_provider == "mem0":
data = f"""
Remember details about the following entity:
Name: {item.name}
Type: {item.type}
Entity Description: {item.description}
"""
else:
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)
saved_count += 1
except Exception as e:
errors.append(f"{item.name}: {str(e)}")
if is_batch:
emit_value = f"Saved {saved_count} entities"
metadata = {"entity_count": saved_count, "errors": errors}
if self._memory_provider == "mem0":
data = f"""
Remember details about the following entity:
Name: {item.name}
Type: {item.type}
Entity Description: {item.description}
"""
else:
emit_value = f"{items[0].name}({items[0].type}): {items[0].description}"
metadata = items[0].metadata
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)
# Emit memory save completed event
crewai_event_bus.emit(
self,
event=MemorySaveCompletedEvent(
value=emit_value,
metadata=metadata,
value=data,
metadata=item.metadata,
save_time_ms=(time.time() - start_time) * 1000,
source_type="entity_memory",
from_agent=self.agent,
from_task=self.task,
),
)
if errors:
raise Exception(
f"Partial save: {len(errors)} failed out of {len(items)}"
)
except Exception as e:
fail_metadata = (
{"entity_count": len(items), "saved": saved_count}
if is_batch
else items[0].metadata
)
crewai_event_bus.emit(
self,
event=MemorySaveFailedEvent(
metadata=fail_metadata,
metadata=item.metadata,
error=str(e),
source_type="entity_memory",
from_agent=self.agent,
from_task=self.task,
),
)
raise
@@ -163,8 +111,6 @@ class EntityMemory(Memory):
limit=limit,
score_threshold=score_threshold,
source_type="entity_memory",
from_agent=self.agent,
from_task=self.task,
),
)
@@ -183,8 +129,6 @@ class EntityMemory(Memory):
score_threshold=score_threshold,
query_time_ms=(time.time() - start_time) * 1000,
source_type="entity_memory",
from_agent=self.agent,
from_task=self.task,
),
)

View File

@@ -4,8 +4,8 @@ import time
from crewai.memory.external.external_memory_item import ExternalMemoryItem
from crewai.memory.memory import Memory
from crewai.memory.storage.interface import Storage
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.memory_events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.memory_events import (
MemoryQueryStartedEvent,
MemoryQueryCompletedEvent,
MemoryQueryFailedEvent,
@@ -53,6 +53,7 @@ class ExternalMemory(Memory):
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
"""Saves a value into the external storage."""
crewai_event_bus.emit(
@@ -60,30 +61,24 @@ class ExternalMemory(Memory):
event=MemorySaveStartedEvent(
value=value,
metadata=metadata,
agent_role=agent,
source_type="external_memory",
from_agent=self.agent,
from_task=self.task,
),
)
start_time = time.time()
try:
item = ExternalMemoryItem(
value=value,
metadata=metadata,
agent=self.agent.role if self.agent else None,
)
super().save(value=item.value, metadata=item.metadata)
item = ExternalMemoryItem(value=value, metadata=metadata, agent=agent)
super().save(value=item.value, metadata=item.metadata, agent=item.agent)
crewai_event_bus.emit(
self,
event=MemorySaveCompletedEvent(
value=value,
metadata=metadata,
agent_role=agent,
save_time_ms=(time.time() - start_time) * 1000,
source_type="external_memory",
from_agent=self.agent,
from_task=self.task,
),
)
except Exception as e:
@@ -92,10 +87,9 @@ class ExternalMemory(Memory):
event=MemorySaveFailedEvent(
value=value,
metadata=metadata,
agent_role=agent,
error=str(e),
source_type="external_memory",
from_agent=self.agent,
from_task=self.task,
),
)
raise
@@ -113,8 +107,6 @@ class ExternalMemory(Memory):
limit=limit,
score_threshold=score_threshold,
source_type="external_memory",
from_agent=self.agent,
from_task=self.task,
),
)
@@ -133,8 +125,6 @@ class ExternalMemory(Memory):
score_threshold=score_threshold,
query_time_ms=(time.time() - start_time) * 1000,
source_type="external_memory",
from_agent=self.agent,
from_task=self.task,
),
)

View File

@@ -3,8 +3,8 @@ import time
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.memory import Memory
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.memory_events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.memory_events import (
MemoryQueryStartedEvent,
MemoryQueryCompletedEvent,
MemoryQueryFailedEvent,
@@ -37,17 +37,13 @@ class LongTermMemory(Memory):
metadata=item.metadata,
agent_role=item.agent,
source_type="long_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)
start_time = time.time()
try:
metadata = item.metadata
metadata.update(
{"agent": item.agent, "expected_output": item.expected_output}
)
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
task_description=item.task,
score=metadata["quality"],
@@ -63,8 +59,6 @@ class LongTermMemory(Memory):
agent_role=item.agent,
save_time_ms=(time.time() - start_time) * 1000,
source_type="long_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)
except Exception as e:
@@ -80,19 +74,13 @@ class LongTermMemory(Memory):
)
raise
def search( # type: ignore # signature of "search" incompatible with supertype "Memory"
self,
task: str,
latest_n: int = 3,
) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
def search(self, task: str, latest_n: int = 3) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
crewai_event_bus.emit(
self,
event=MemoryQueryStartedEvent(
query=task,
limit=latest_n,
source_type="long_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)
@@ -108,8 +96,6 @@ class LongTermMemory(Memory):
limit=latest_n,
query_time_ms=(time.time() - start_time) * 1000,
source_type="long_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)

View File

@@ -1,11 +1,7 @@
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from typing import Any, Dict, List, Optional
from pydantic import BaseModel
if TYPE_CHECKING:
from crewai.agent import Agent
from crewai.task import Task
class Memory(BaseModel):
"""
@@ -16,38 +12,19 @@ class Memory(BaseModel):
crew: Optional[Any] = None
storage: Any
_agent: Optional["Agent"] = None
_task: Optional["Task"] = None
def __init__(self, storage: Any, **data: Any):
super().__init__(storage=storage, **data)
@property
def task(self) -> Optional["Task"]:
"""Get the current task associated with this memory."""
return self._task
@task.setter
def task(self, task: Optional["Task"]) -> None:
"""Set the current task associated with this memory."""
self._task = task
@property
def agent(self) -> Optional["Agent"]:
"""Get the current agent associated with this memory."""
return self._agent
@agent.setter
def agent(self, agent: Optional["Agent"]) -> None:
"""Set the current agent associated with this memory."""
self._agent = agent
def save(
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
metadata = metadata or {}
if agent:
metadata["agent"] = agent
self.storage.save(value, metadata)

View File

@@ -6,8 +6,8 @@ from pydantic import PrivateAttr
from crewai.memory.memory import Memory
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.memory.storage.rag_storage import RAGStorage
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.memory_events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.memory_events import (
MemoryQueryStartedEvent,
MemoryQueryCompletedEvent,
MemoryQueryFailedEvent,
@@ -37,7 +37,7 @@ class ShortTermMemory(Memory):
raise ImportError(
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
config = embedder_config.get("config") if embedder_config else None
config = embedder_config.get("config")
storage = Mem0Storage(type="short_term", crew=crew, config=config)
else:
storage = (
@@ -57,42 +57,34 @@ class ShortTermMemory(Memory):
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
crewai_event_bus.emit(
self,
event=MemorySaveStartedEvent(
value=value,
metadata=metadata,
agent_role=agent,
source_type="short_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)
start_time = time.time()
try:
item = ShortTermMemoryItem(
data=value,
metadata=metadata,
agent=self.agent.role if self.agent else None,
)
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
if self._memory_provider == "mem0":
item.data = (
f"Remember the following insights from Agent run: {item.data}"
)
item.data = f"Remember the following insights from Agent run: {item.data}"
super().save(value=item.data, metadata=item.metadata)
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
crewai_event_bus.emit(
self,
event=MemorySaveCompletedEvent(
value=value,
metadata=metadata,
# agent_role=agent,
agent_role=agent,
save_time_ms=(time.time() - start_time) * 1000,
source_type="short_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)
except Exception as e:
@@ -101,10 +93,9 @@ class ShortTermMemory(Memory):
event=MemorySaveFailedEvent(
value=value,
metadata=metadata,
agent_role=agent,
error=str(e),
source_type="short_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)
raise
@@ -122,8 +113,6 @@ class ShortTermMemory(Memory):
limit=limit,
score_threshold=score_threshold,
source_type="short_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)
@@ -142,8 +131,6 @@ class ShortTermMemory(Memory):
score_threshold=score_threshold,
query_time_ms=(time.time() - start_time) * 1000,
source_type="short_term_memory",
from_agent=self.agent,
from_task=self.task,
),
)

View File

@@ -18,7 +18,9 @@ class KickoffTaskOutputsSQLiteStorage:
An updated SQLite storage class for kickoff task outputs storage.
"""
def __init__(self, db_path: Optional[str] = None) -> None:
def __init__(
self, db_path: Optional[str] = None
) -> None:
if db_path is None:
# Get the parent directory of the default db path and create our db file there
db_path = str(Path(db_storage_path()) / "latest_kickoff_task_outputs.db")
@@ -65,7 +67,7 @@ class KickoffTaskOutputsSQLiteStorage:
output: Dict[str, Any],
task_index: int,
was_replayed: bool = False,
inputs: Dict[str, Any] | None = None,
inputs: Dict[str, Any] = {},
) -> None:
"""Add a new task output record to the database.
@@ -79,7 +81,6 @@ class KickoffTaskOutputsSQLiteStorage:
Raises:
DatabaseOperationError: If saving the task output fails due to SQLite errors.
"""
inputs = inputs or {}
try:
with sqlite3.connect(self.db_path) as conn:
conn.execute("BEGIN TRANSACTION")
@@ -145,9 +146,7 @@ class KickoffTaskOutputsSQLiteStorage:
conn.commit()
if cursor.rowcount == 0:
logger.warning(
f"No row found with task_index {task_index}. No update performed."
)
logger.warning(f"No row found with task_index {task_index}. No update performed.")
except sqlite3.Error as e:
error_msg = DatabaseError.format_error(DatabaseError.UPDATE_ERROR, e)
logger.error(error_msg)

View File

@@ -1,3 +1,5 @@
import contextlib
import io
import logging
import os
import shutil
@@ -10,10 +12,26 @@ from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities.chromadb import create_persistent_client
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.paths import db_storage_path
from crewai.utilities.logger_utils import suppress_logging
import warnings
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
class RAGStorage(BaseRAGStorage):
"""
Extends Storage to handle embeddings for memory entries, improving
@@ -104,9 +122,7 @@ class RAGStorage(BaseRAGStorage):
self._initialize_app()
try:
with suppress_logging(
"chromadb.segment.impl.vector.local_persistent_hnsw", logging.ERROR
):
with suppress_logging():
response = self.collection.query(query_texts=query, n_results=limit)
results = []

View File

@@ -1,58 +1 @@
"""RAG (Retrieval-Augmented Generation) infrastructure for CrewAI."""
import sys
import importlib
from types import ModuleType
from typing import Any
from crewai.rag.config.types import RagConfigType
from crewai.rag.config.utils import set_rag_config
_module_path = __path__
_module_file = __file__
class _RagModule(ModuleType):
"""Module wrapper to intercept attribute setting for config."""
__path__ = _module_path
__file__ = _module_file
def __init__(self, module_name: str):
"""Initialize the module wrapper.
Args:
module_name: Name of the module.
"""
super().__init__(module_name)
def __setattr__(self, name: str, value: RagConfigType) -> None:
"""Set module attributes.
Args:
name: Attribute name.
value: Attribute value.
"""
if name == "config":
return set_rag_config(value)
raise AttributeError(f"Setting attribute '{name}' is not allowed.")
def __getattr__(self, name: str) -> Any:
"""Get module attributes.
Args:
name: Attribute name.
Returns:
The requested attribute.
Raises:
AttributeError: If attribute doesn't exist.
"""
try:
return importlib.import_module(f"{self.__name__}.{name}")
except ImportError:
raise AttributeError(f"module '{self.__name__}' has no attribute '{name}'")
sys.modules[__name__] = _RagModule(__name__)
"""RAG (Retrieval-Augmented Generation) infrastructure for CrewAI."""

View File

@@ -1,578 +0,0 @@
"""ChromaDB client implementation."""
import logging
from typing import Any
from chromadb.api.types import (
Embeddable,
EmbeddingFunction as ChromaEmbeddingFunction,
QueryResult,
)
from typing_extensions import Unpack
from crewai.rag.chromadb.types import (
ChromaDBClientType,
ChromaDBCollectionCreateParams,
ChromaDBCollectionSearchParams,
)
from crewai.rag.chromadb.utils import (
_extract_search_params,
_is_async_client,
_is_sync_client,
_prepare_documents_for_chromadb,
_process_query_results,
_sanitize_collection_name,
)
from crewai.utilities.logger_utils import suppress_logging
from crewai.rag.core.base_client import (
BaseClient,
BaseCollectionParams,
BaseCollectionAddParams,
)
from crewai.rag.types import SearchResult
class ChromaDBClient(BaseClient):
"""ChromaDB implementation of the BaseClient protocol.
Provides vector database operations for ChromaDB, supporting both
synchronous and asynchronous clients.
Attributes:
client: ChromaDB client instance (ClientAPI or AsyncClientAPI).
embedding_function: Function to generate embeddings for documents.
"""
def __init__(
self,
client: ChromaDBClientType,
embedding_function: ChromaEmbeddingFunction[Embeddable],
) -> None:
"""Initialize ChromaDBClient with client and embedding function.
Args:
client: Pre-configured ChromaDB client instance.
embedding_function: Embedding function for text to vector conversion.
"""
self.client = client
self.embedding_function = embedding_function
def create_collection(
self, **kwargs: Unpack[ChromaDBCollectionCreateParams]
) -> None:
"""Create a new collection in ChromaDB.
Uses the client's default embedding function if none provided.
Keyword Args:
collection_name: Name of the collection to create. Must be unique.
configuration: Optional collection configuration specifying distance metrics,
HNSW parameters, or other backend-specific settings.
metadata: Optional metadata dictionary to attach to the collection.
embedding_function: Optional custom embedding function. If not provided,
uses the client's default embedding function.
data_loader: Optional data loader for batch loading data into the collection.
get_or_create: If True, returns existing collection if it already exists
instead of raising an error. Defaults to False.
Raises:
TypeError: If AsyncClientAPI is used instead of ClientAPI for sync operations.
ValueError: If collection with the same name already exists and get_or_create
is False.
ConnectionError: If unable to connect to ChromaDB server.
Example:
>>> client = ChromaDBClient()
>>> client.create_collection(
... collection_name="documents",
... metadata={"description": "Product documentation"},
... get_or_create=True
... )
"""
if not _is_sync_client(self.client):
raise TypeError(
"Synchronous method create_collection() requires a ClientAPI. "
"Use acreate_collection() for AsyncClientAPI."
)
metadata = kwargs.get("metadata", {})
if "hnsw:space" not in metadata:
metadata["hnsw:space"] = "cosine"
self.client.create_collection(
name=_sanitize_collection_name(kwargs["collection_name"]),
configuration=kwargs.get("configuration"),
metadata=metadata,
embedding_function=kwargs.get(
"embedding_function", self.embedding_function
),
data_loader=kwargs.get("data_loader"),
get_or_create=kwargs.get("get_or_create", False),
)
async def acreate_collection(
self, **kwargs: Unpack[ChromaDBCollectionCreateParams]
) -> None:
"""Create a new collection in ChromaDB asynchronously.
Creates a new collection with the specified name and optional configuration.
If an embedding function is not provided, uses the client's default embedding function.
Keyword Args:
collection_name: Name of the collection to create. Must be unique.
configuration: Optional collection configuration specifying distance metrics,
HNSW parameters, or other backend-specific settings.
metadata: Optional metadata dictionary to attach to the collection.
embedding_function: Optional custom embedding function. If not provided,
uses the client's default embedding function.
data_loader: Optional data loader for batch loading data into the collection.
get_or_create: If True, returns existing collection if it already exists
instead of raising an error. Defaults to False.
Raises:
TypeError: If ClientAPI is used instead of AsyncClientAPI for async operations.
ValueError: If collection with the same name already exists and get_or_create
is False.
ConnectionError: If unable to connect to ChromaDB server.
Example:
>>> import asyncio
>>> async def main():
... client = ChromaDBClient()
... await client.acreate_collection(
... collection_name="documents",
... metadata={"description": "Product documentation"},
... get_or_create=True
... )
>>> asyncio.run(main())
"""
if not _is_async_client(self.client):
raise TypeError(
"Asynchronous method acreate_collection() requires an AsyncClientAPI. "
"Use create_collection() for ClientAPI."
)
metadata = kwargs.get("metadata", {})
if "hnsw:space" not in metadata:
metadata["hnsw:space"] = "cosine"
await self.client.create_collection(
name=_sanitize_collection_name(kwargs["collection_name"]),
configuration=kwargs.get("configuration"),
metadata=metadata,
embedding_function=kwargs.get(
"embedding_function", self.embedding_function
),
data_loader=kwargs.get("data_loader"),
get_or_create=kwargs.get("get_or_create", False),
)
def get_or_create_collection(
self, **kwargs: Unpack[ChromaDBCollectionCreateParams]
) -> Any:
"""Get an existing collection or create it if it doesn't exist.
Returns existing collection if found, otherwise creates a new one.
Keyword Args:
collection_name: Name of the collection to get or create.
configuration: Optional collection configuration specifying distance metrics,
HNSW parameters, or other backend-specific settings.
metadata: Optional metadata dictionary to attach to the collection.
embedding_function: Optional custom embedding function. If not provided,
uses the client's default embedding function.
data_loader: Optional data loader for batch loading data into the collection.
Returns:
A ChromaDB Collection object.
Raises:
TypeError: If AsyncClientAPI is used instead of ClientAPI for sync operations.
ConnectionError: If unable to connect to ChromaDB server.
Example:
>>> client = ChromaDBClient()
>>> collection = client.get_or_create_collection(
... collection_name="documents",
... metadata={"description": "Product documentation"}
... )
"""
if not _is_sync_client(self.client):
raise TypeError(
"Synchronous method get_or_create_collection() requires a ClientAPI. "
"Use aget_or_create_collection() for AsyncClientAPI."
)
metadata = kwargs.get("metadata", {})
if "hnsw:space" not in metadata:
metadata["hnsw:space"] = "cosine"
return self.client.get_or_create_collection(
name=_sanitize_collection_name(kwargs["collection_name"]),
configuration=kwargs.get("configuration"),
metadata=metadata,
embedding_function=kwargs.get(
"embedding_function", self.embedding_function
),
data_loader=kwargs.get("data_loader"),
)
async def aget_or_create_collection(
self, **kwargs: Unpack[ChromaDBCollectionCreateParams]
) -> Any:
"""Get an existing collection or create it if it doesn't exist asynchronously.
Returns existing collection if found, otherwise creates a new one.
Keyword Args:
collection_name: Name of the collection to get or create.
configuration: Optional collection configuration specifying distance metrics,
HNSW parameters, or other backend-specific settings.
metadata: Optional metadata dictionary to attach to the collection.
embedding_function: Optional custom embedding function. If not provided,
uses the client's default embedding function.
data_loader: Optional data loader for batch loading data into the collection.
Returns:
A ChromaDB AsyncCollection object.
Raises:
TypeError: If ClientAPI is used instead of AsyncClientAPI for async operations.
ConnectionError: If unable to connect to ChromaDB server.
Example:
>>> import asyncio
>>> async def main():
... client = ChromaDBClient()
... collection = await client.aget_or_create_collection(
... collection_name="documents",
... metadata={"description": "Product documentation"}
... )
>>> asyncio.run(main())
"""
if not _is_async_client(self.client):
raise TypeError(
"Asynchronous method aget_or_create_collection() requires an AsyncClientAPI. "
"Use get_or_create_collection() for ClientAPI."
)
metadata = kwargs.get("metadata", {})
if "hnsw:space" not in metadata:
metadata["hnsw:space"] = "cosine"
return await self.client.get_or_create_collection(
name=_sanitize_collection_name(kwargs["collection_name"]),
configuration=kwargs.get("configuration"),
metadata=metadata,
embedding_function=kwargs.get(
"embedding_function", self.embedding_function
),
data_loader=kwargs.get("data_loader"),
)
def add_documents(self, **kwargs: Unpack[BaseCollectionAddParams]) -> None:
"""Add documents with their embeddings to a collection.
Performs an upsert operation - documents with existing IDs are updated.
Generates embeddings automatically using the configured embedding function.
Keyword Args:
collection_name: The name of the collection to add documents to.
documents: List of BaseRecord dicts containing:
- content: The text content (required)
- doc_id: Optional unique identifier (auto-generated if missing)
- metadata: Optional metadata dictionary
Raises:
TypeError: If AsyncClientAPI is used instead of ClientAPI for sync operations.
ValueError: If collection doesn't exist or documents list is empty.
ConnectionError: If unable to connect to ChromaDB server.
"""
if not _is_sync_client(self.client):
raise TypeError(
"Synchronous method add_documents() requires a ClientAPI. "
"Use aadd_documents() for AsyncClientAPI."
)
collection_name = kwargs["collection_name"]
documents = kwargs["documents"]
if not documents:
raise ValueError("Documents list cannot be empty")
collection = self.client.get_collection(
name=_sanitize_collection_name(collection_name),
embedding_function=self.embedding_function,
)
prepared = _prepare_documents_for_chromadb(documents)
collection.upsert(
ids=prepared.ids,
documents=prepared.texts,
metadatas=prepared.metadatas,
)
async def aadd_documents(self, **kwargs: Unpack[BaseCollectionAddParams]) -> None:
"""Add documents with their embeddings to a collection asynchronously.
Performs an upsert operation - documents with existing IDs are updated.
Generates embeddings automatically using the configured embedding function.
Keyword Args:
collection_name: The name of the collection to add documents to.
documents: List of BaseRecord dicts containing:
- content: The text content (required)
- doc_id: Optional unique identifier (auto-generated if missing)
- metadata: Optional metadata dictionary
Raises:
TypeError: If ClientAPI is used instead of AsyncClientAPI for async operations.
ValueError: If collection doesn't exist or documents list is empty.
ConnectionError: If unable to connect to ChromaDB server.
"""
if not _is_async_client(self.client):
raise TypeError(
"Asynchronous method aadd_documents() requires an AsyncClientAPI. "
"Use add_documents() for ClientAPI."
)
collection_name = kwargs["collection_name"]
documents = kwargs["documents"]
if not documents:
raise ValueError("Documents list cannot be empty")
collection = await self.client.get_collection(
name=_sanitize_collection_name(collection_name),
embedding_function=self.embedding_function,
)
prepared = _prepare_documents_for_chromadb(documents)
await collection.upsert(
ids=prepared.ids,
documents=prepared.texts,
metadatas=prepared.metadatas,
)
def search(
self, **kwargs: Unpack[ChromaDBCollectionSearchParams]
) -> list[SearchResult]:
"""Search for similar documents using a query.
Performs semantic search to find documents similar to the query text.
Uses the configured embedding function to generate query embeddings.
Keyword Args:
collection_name: Name of the collection to search in.
query: The text query to search for.
limit: Maximum number of results to return (default: 10).
metadata_filter: Optional filter for metadata fields.
score_threshold: Optional minimum similarity score (0-1) for results.
where: Optional ChromaDB where clause for metadata filtering.
where_document: Optional ChromaDB where clause for document content filtering.
include: Optional list of fields to include in results.
Returns:
List of SearchResult dicts containing id, content, metadata, and score.
Raises:
TypeError: If AsyncClientAPI is used instead of ClientAPI for sync operations.
ValueError: If collection doesn't exist.
ConnectionError: If unable to connect to ChromaDB server.
"""
if not _is_sync_client(self.client):
raise TypeError(
"Synchronous method search() requires a ClientAPI. "
"Use asearch() for AsyncClientAPI."
)
params = _extract_search_params(kwargs)
collection = self.client.get_collection(
name=_sanitize_collection_name(params.collection_name),
embedding_function=self.embedding_function,
)
where = params.where if params.where is not None else params.metadata_filter
with suppress_logging(
"chromadb.segment.impl.vector.local_persistent_hnsw", logging.ERROR
):
results: QueryResult = collection.query(
query_texts=[params.query],
n_results=params.limit,
where=where,
where_document=params.where_document,
include=params.include,
)
return _process_query_results(
collection=collection,
results=results,
params=params,
)
async def asearch(
self, **kwargs: Unpack[ChromaDBCollectionSearchParams]
) -> list[SearchResult]:
"""Search for similar documents using a query asynchronously.
Performs semantic search to find documents similar to the query text.
Uses the configured embedding function to generate query embeddings.
Keyword Args:
collection_name: Name of the collection to search in.
query: The text query to search for.
limit: Maximum number of results to return (default: 10).
metadata_filter: Optional filter for metadata fields.
score_threshold: Optional minimum similarity score (0-1) for results.
where: Optional ChromaDB where clause for metadata filtering.
where_document: Optional ChromaDB where clause for document content filtering.
include: Optional list of fields to include in results.
Returns:
List of SearchResult dicts containing id, content, metadata, and score.
Raises:
TypeError: If ClientAPI is used instead of AsyncClientAPI for async operations.
ValueError: If collection doesn't exist.
ConnectionError: If unable to connect to ChromaDB server.
"""
if not _is_async_client(self.client):
raise TypeError(
"Asynchronous method asearch() requires an AsyncClientAPI. "
"Use search() for ClientAPI."
)
params = _extract_search_params(kwargs)
collection = await self.client.get_collection(
name=_sanitize_collection_name(params.collection_name),
embedding_function=self.embedding_function,
)
where = params.where if params.where is not None else params.metadata_filter
with suppress_logging(
"chromadb.segment.impl.vector.local_persistent_hnsw", logging.ERROR
):
results: QueryResult = await collection.query(
query_texts=[params.query],
n_results=params.limit,
where=where,
where_document=params.where_document,
include=params.include,
)
return _process_query_results(
collection=collection,
results=results,
params=params,
)
def delete_collection(self, **kwargs: Unpack[BaseCollectionParams]) -> None:
"""Delete a collection and all its data.
Permanently removes a collection and all documents, embeddings, and metadata it contains.
This operation cannot be undone.
Keyword Args:
collection_name: Name of the collection to delete.
Raises:
TypeError: If AsyncClientAPI is used instead of ClientAPI for sync operations.
ValueError: If collection doesn't exist.
ConnectionError: If unable to connect to ChromaDB server.
Example:
>>> client = ChromaDBClient()
>>> client.delete_collection(collection_name="old_documents")
"""
if not _is_sync_client(self.client):
raise TypeError(
"Synchronous method delete_collection() requires a ClientAPI. "
"Use adelete_collection() for AsyncClientAPI."
)
collection_name = kwargs["collection_name"]
self.client.delete_collection(name=_sanitize_collection_name(collection_name))
async def adelete_collection(self, **kwargs: Unpack[BaseCollectionParams]) -> None:
"""Delete a collection and all its data asynchronously.
Permanently removes a collection and all documents, embeddings, and metadata it contains.
This operation cannot be undone.
Keyword Args:
collection_name: Name of the collection to delete.
Raises:
TypeError: If ClientAPI is used instead of AsyncClientAPI for async operations.
ValueError: If collection doesn't exist.
ConnectionError: If unable to connect to ChromaDB server.
Example:
>>> import asyncio
>>> async def main():
... client = ChromaDBClient()
... await client.adelete_collection(collection_name="old_documents")
>>> asyncio.run(main())
"""
if not _is_async_client(self.client):
raise TypeError(
"Asynchronous method adelete_collection() requires an AsyncClientAPI. "
"Use delete_collection() for ClientAPI."
)
collection_name = kwargs["collection_name"]
await self.client.delete_collection(
name=_sanitize_collection_name(collection_name)
)
def reset(self) -> None:
"""Reset the vector database by deleting all collections and data.
Completely clears the ChromaDB instance, removing all collections,
documents, embeddings, and metadata. This operation cannot be undone.
Use with extreme caution in production environments.
Raises:
TypeError: If AsyncClientAPI is used instead of ClientAPI for sync operations.
ConnectionError: If unable to connect to ChromaDB server.
Example:
>>> client = ChromaDBClient()
>>> client.reset() # Removes ALL data from ChromaDB
"""
if not _is_sync_client(self.client):
raise TypeError(
"Synchronous method reset() requires a ClientAPI. "
"Use areset() for AsyncClientAPI."
)
self.client.reset()
async def areset(self) -> None:
"""Reset the vector database by deleting all collections and data asynchronously.
Completely clears the ChromaDB instance, removing all collections,
documents, embeddings, and metadata. This operation cannot be undone.
Use with extreme caution in production environments.
Raises:
TypeError: If ClientAPI is used instead of AsyncClientAPI for async operations.
ConnectionError: If unable to connect to ChromaDB server.
Example:
>>> import asyncio
>>> async def main():
... client = ChromaDBClient()
... await client.areset() # Removes ALL data from ChromaDB
>>> asyncio.run(main())
"""
if not _is_async_client(self.client):
raise TypeError(
"Asynchronous method areset() requires an AsyncClientAPI. "
"Use reset() for ClientAPI."
)
await self.client.reset()

View File

@@ -1,65 +0,0 @@
"""ChromaDB configuration model."""
import warnings
from dataclasses import field
from typing import Literal, cast
from pydantic.dataclasses import dataclass as pyd_dataclass
from chromadb.config import Settings
from chromadb.utils.embedding_functions import DefaultEmbeddingFunction
from crewai.rag.chromadb.types import ChromaEmbeddingFunctionWrapper
from crewai.rag.config.base import BaseRagConfig
from crewai.rag.chromadb.constants import (
DEFAULT_TENANT,
DEFAULT_DATABASE,
DEFAULT_STORAGE_PATH,
)
warnings.filterwarnings(
"ignore",
message=".*Mixing V1 models and V2 models.*",
category=UserWarning,
module="pydantic._internal._generate_schema",
)
warnings.filterwarnings(
"ignore",
message=r".*'model_fields'.*is deprecated.*",
module=r"^chromadb(\.|$)",
)
def _default_settings() -> Settings:
"""Create default ChromaDB settings.
Returns:
Settings with persistent storage and reset enabled.
"""
return Settings(
persist_directory=DEFAULT_STORAGE_PATH,
allow_reset=True,
is_persistent=True,
)
def _default_embedding_function() -> ChromaEmbeddingFunctionWrapper:
"""Create default ChromaDB embedding function.
Returns:
Default embedding function using all-MiniLM-L6-v2 via ONNX.
"""
return cast(ChromaEmbeddingFunctionWrapper, DefaultEmbeddingFunction())
@pyd_dataclass(frozen=True)
class ChromaDBConfig(BaseRagConfig):
"""Configuration for ChromaDB client."""
provider: Literal["chromadb"] = field(default="chromadb", init=False)
tenant: str = DEFAULT_TENANT
database: str = DEFAULT_DATABASE
settings: Settings = field(default_factory=_default_settings)
embedding_function: ChromaEmbeddingFunctionWrapper = field(
default_factory=_default_embedding_function
)

View File

@@ -1,17 +0,0 @@
"""Constants for ChromaDB configuration."""
import re
from typing import Final
from crewai.utilities.paths import db_storage_path
DEFAULT_TENANT: Final[str] = "default_tenant"
DEFAULT_DATABASE: Final[str] = "default_database"
DEFAULT_STORAGE_PATH: Final[str] = db_storage_path()
MIN_COLLECTION_LENGTH: Final[int] = 3
MAX_COLLECTION_LENGTH: Final[int] = 63
DEFAULT_COLLECTION: Final[str] = "default_collection"
INVALID_CHARS_PATTERN: Final[re.Pattern[str]] = re.compile(r"[^a-zA-Z0-9_-]")
IPV4_PATTERN: Final[re.Pattern[str]] = re.compile(r"^(\d{1,3}\.){3}\d{1,3}$")

View File

@@ -1,40 +0,0 @@
"""Factory functions for creating ChromaDB clients."""
import os
from hashlib import md5
import portalocker
from chromadb import PersistentClient
from crewai.rag.chromadb.config import ChromaDBConfig
from crewai.rag.chromadb.client import ChromaDBClient
def create_client(config: ChromaDBConfig) -> ChromaDBClient:
"""Create a ChromaDBClient from configuration.
Args:
config: ChromaDB configuration object.
Returns:
Configured ChromaDBClient instance.
Notes:
Need to update to use chromadb.Client to support more client types in the near future.
"""
persist_dir = config.settings.persist_directory
lock_id = md5(persist_dir.encode(), usedforsecurity=False).hexdigest()
lockfile = os.path.join(persist_dir, f"chromadb-{lock_id}.lock")
with portalocker.Lock(lockfile):
client = PersistentClient(
path=persist_dir,
settings=config.settings,
tenant=config.tenant,
database=config.database,
)
return ChromaDBClient(
client=client,
embedding_function=config.embedding_function,
)

View File

@@ -1,102 +0,0 @@
"""Type definitions specific to ChromaDB implementation."""
from collections.abc import Mapping
from typing import Any, NamedTuple
from pydantic import GetCoreSchemaHandler
from pydantic_core import CoreSchema, core_schema
from chromadb.api import ClientAPI, AsyncClientAPI
from chromadb.api.configuration import CollectionConfigurationInterface
from chromadb.api.types import (
CollectionMetadata,
DataLoader,
Embeddable,
EmbeddingFunction as ChromaEmbeddingFunction,
Include,
Loadable,
Where,
WhereDocument,
)
from crewai.rag.core.base_client import BaseCollectionParams, BaseCollectionSearchParams
ChromaDBClientType = ClientAPI | AsyncClientAPI
class ChromaEmbeddingFunctionWrapper(ChromaEmbeddingFunction[Embeddable]):
"""Base class for ChromaDB EmbeddingFunction to work with Pydantic validation."""
@classmethod
def __get_pydantic_core_schema__(
cls, _source_type: Any, _handler: GetCoreSchemaHandler
) -> CoreSchema:
"""Generate Pydantic core schema for ChromaDB EmbeddingFunction.
This allows Pydantic to handle ChromaDB's EmbeddingFunction type
without requiring arbitrary_types_allowed=True.
"""
return core_schema.any_schema()
class PreparedDocuments(NamedTuple):
"""Prepared documents ready for ChromaDB insertion.
Attributes:
ids: List of document IDs
texts: List of document texts
metadatas: List of document metadata mappings
"""
ids: list[str]
texts: list[str]
metadatas: list[Mapping[str, str | int | float | bool]]
class ExtractedSearchParams(NamedTuple):
"""Extracted search parameters for ChromaDB queries.
Attributes:
collection_name: Name of the collection to search
query: Search query text
limit: Maximum number of results
metadata_filter: Optional metadata filter
score_threshold: Optional minimum similarity score
where: Optional ChromaDB where clause
where_document: Optional ChromaDB document filter
include: Fields to include in results
"""
collection_name: str
query: str
limit: int
metadata_filter: dict[str, Any] | None
score_threshold: float | None
where: Where | None
where_document: WhereDocument | None
include: Include
class ChromaDBCollectionCreateParams(BaseCollectionParams, total=False):
"""Parameters for creating a ChromaDB collection.
This class extends BaseCollectionParams to include any additional
parameters specific to ChromaDB collection creation.
"""
configuration: CollectionConfigurationInterface
metadata: CollectionMetadata
embedding_function: ChromaEmbeddingFunction[Embeddable]
data_loader: DataLoader[Loadable]
get_or_create: bool
class ChromaDBCollectionSearchParams(BaseCollectionSearchParams, total=False):
"""Parameters for searching a ChromaDB collection.
This class extends BaseCollectionSearchParams to include ChromaDB-specific
search parameters like where clauses and include options.
"""
where: Where
where_document: WhereDocument
include: Include

View File

@@ -1,280 +0,0 @@
"""Utility functions for ChromaDB client implementation."""
import hashlib
from collections.abc import Mapping
from typing import Literal, TypeGuard, cast
from chromadb.api import AsyncClientAPI, ClientAPI
from chromadb.api.types import (
Include,
IncludeEnum,
QueryResult,
)
from chromadb.api.models.AsyncCollection import AsyncCollection
from chromadb.api.models.Collection import Collection
from crewai.rag.chromadb.constants import (
DEFAULT_COLLECTION,
INVALID_CHARS_PATTERN,
IPV4_PATTERN,
MAX_COLLECTION_LENGTH,
MIN_COLLECTION_LENGTH,
)
from crewai.rag.chromadb.types import (
ChromaDBClientType,
ChromaDBCollectionSearchParams,
ExtractedSearchParams,
PreparedDocuments,
)
from crewai.rag.types import BaseRecord, SearchResult
def _is_sync_client(client: ChromaDBClientType) -> TypeGuard[ClientAPI]:
"""Type guard to check if the client is a synchronous ClientAPI.
Args:
client: The client to check.
Returns:
True if the client is a ClientAPI, False otherwise.
"""
return isinstance(client, ClientAPI)
def _is_async_client(client: ChromaDBClientType) -> TypeGuard[AsyncClientAPI]:
"""Type guard to check if the client is an asynchronous AsyncClientAPI.
Args:
client: The client to check.
Returns:
True if the client is an AsyncClientAPI, False otherwise.
"""
return isinstance(client, AsyncClientAPI)
def _prepare_documents_for_chromadb(
documents: list[BaseRecord],
) -> PreparedDocuments:
"""Prepare documents for ChromaDB by extracting IDs, texts, and metadata.
Args:
documents: List of BaseRecord documents to prepare.
Returns:
PreparedDocuments with ids, texts, and metadatas ready for ChromaDB.
"""
ids: list[str] = []
texts: list[str] = []
metadatas: list[Mapping[str, str | int | float | bool]] = []
for doc in documents:
if "doc_id" in doc:
ids.append(doc["doc_id"])
else:
content_hash = hashlib.sha256(doc["content"].encode()).hexdigest()[:16]
ids.append(content_hash)
texts.append(doc["content"])
metadata = doc.get("metadata")
if metadata:
if isinstance(metadata, list):
metadatas.append(metadata[0] if metadata else {})
else:
metadatas.append(metadata)
else:
metadatas.append({})
return PreparedDocuments(ids, texts, metadatas)
def _extract_search_params(
kwargs: ChromaDBCollectionSearchParams,
) -> ExtractedSearchParams:
"""Extract search parameters from kwargs.
Args:
kwargs: Keyword arguments containing search parameters.
Returns:
ExtractedSearchParams with all extracted parameters.
"""
return ExtractedSearchParams(
collection_name=kwargs["collection_name"],
query=kwargs["query"],
limit=kwargs.get("limit", 10),
metadata_filter=kwargs.get("metadata_filter"),
score_threshold=kwargs.get("score_threshold"),
where=kwargs.get("where"),
where_document=kwargs.get("where_document"),
include=kwargs.get(
"include",
[IncludeEnum.metadatas, IncludeEnum.documents, IncludeEnum.distances],
),
)
def _convert_distance_to_score(
distance: float,
distance_metric: Literal["l2", "cosine", "ip"],
) -> float:
"""Convert ChromaDB distance to similarity score.
Notes:
Assuming all embedding are unit-normalized for now, including custom embeddings.
Args:
distance: The distance value from ChromaDB.
distance_metric: The distance metric used ("l2", "cosine", or "ip").
Returns:
Similarity score in range [0, 1] where 1 is most similar.
"""
if distance_metric == "cosine":
score = 1.0 - 0.5 * distance
return max(0.0, min(1.0, score))
raise ValueError(f"Unsupported distance metric: {distance_metric}")
def _convert_chromadb_results_to_search_results(
results: QueryResult,
include: Include,
distance_metric: Literal["l2", "cosine", "ip"],
score_threshold: float | None = None,
) -> list[SearchResult]:
"""Convert ChromaDB query results to SearchResult format.
Args:
results: ChromaDB query results.
include: List of fields that were included in the query.
distance_metric: The distance metric used by the collection.
score_threshold: Optional minimum similarity score (0-1) for results.
Returns:
List of SearchResult dicts containing id, content, metadata, and score.
"""
search_results: list[SearchResult] = []
include_strings = [item.value for item in include]
ids = results["ids"][0] if results.get("ids") else []
documents_list = results.get("documents")
documents = (
documents_list[0] if documents_list and "documents" in include_strings else []
)
metadatas_list = results.get("metadatas")
metadatas = (
metadatas_list[0] if metadatas_list and "metadatas" in include_strings else []
)
distances_list = results.get("distances")
distances = (
distances_list[0] if distances_list and "distances" in include_strings else []
)
for i, doc_id in enumerate(ids):
if not distances or i >= len(distances):
continue
distance = distances[i]
score = _convert_distance_to_score(
distance=distance, distance_metric=distance_metric
)
if score_threshold and score < score_threshold:
continue
result: SearchResult = {
"id": doc_id,
"content": documents[i] if documents and i < len(documents) else "",
"metadata": dict(metadatas[i]) if metadatas and i < len(metadatas) else {},
"score": score,
}
search_results.append(result)
return search_results
def _process_query_results(
collection: Collection | AsyncCollection,
results: QueryResult,
params: ExtractedSearchParams,
) -> list[SearchResult]:
"""Process ChromaDB query results and convert to SearchResult format.
Args:
collection: The ChromaDB collection (sync or async) that was queried.
results: Raw query results from ChromaDB.
params: The search parameters used for the query.
Returns:
List of SearchResult dicts containing id, content, metadata, and score.
"""
distance_metric = cast(
Literal["l2", "cosine", "ip"],
collection.metadata.get("hnsw:space", "l2") if collection.metadata else "l2",
)
return _convert_chromadb_results_to_search_results(
results=results,
include=params.include,
distance_metric=distance_metric,
score_threshold=params.score_threshold,
)
def _is_ipv4_pattern(name: str) -> bool:
"""Check if a string matches an IPv4 address pattern.
Args:
name: The string to check
Returns:
True if the string matches an IPv4 pattern, False otherwise
"""
return bool(IPV4_PATTERN.match(name))
def _sanitize_collection_name(
name: str | None, max_collection_length: int = MAX_COLLECTION_LENGTH
) -> str:
"""Sanitize a collection name to meet ChromaDB requirements.
Requirements:
1. 3-63 characters long
2. Starts and ends with alphanumeric character
3. Contains only alphanumeric characters, underscores, or hyphens
4. No consecutive periods
5. Not a valid IPv4 address
Args:
name: The original collection name to sanitize
max_collection_length: Maximum allowed length for the collection name
Returns:
A sanitized collection name that meets ChromaDB requirements
"""
if not name:
return DEFAULT_COLLECTION
if _is_ipv4_pattern(name):
name = f"ip_{name}"
sanitized = INVALID_CHARS_PATTERN.sub("_", name)
if not sanitized[0].isalnum():
sanitized = "a" + sanitized
if not sanitized[-1].isalnum():
sanitized = sanitized[:-1] + "z"
if len(sanitized) < MIN_COLLECTION_LENGTH:
sanitized = sanitized + "x" * (MIN_COLLECTION_LENGTH - len(sanitized))
if len(sanitized) > max_collection_length:
sanitized = sanitized[:max_collection_length]
if not sanitized[-1].isalnum():
sanitized = sanitized[:-1] + "z"
return sanitized

View File

@@ -1 +0,0 @@
"""RAG client configuration management using ContextVars for thread-safe provider switching."""

View File

@@ -1,16 +0,0 @@
"""Base configuration class for RAG providers."""
from dataclasses import field
from typing import Any
from pydantic.dataclasses import dataclass as pyd_dataclass
from crewai.rag.config.optional_imports.types import SupportedProvider
@pyd_dataclass(frozen=True)
class BaseRagConfig:
"""Base class for RAG configuration with Pydantic serialization support."""
provider: SupportedProvider = field(init=False)
embedding_function: Any | None = field(default=None)

View File

@@ -1,8 +0,0 @@
"""Constants for RAG configuration."""
from typing import Final
DISCRIMINATOR: Final[str] = "provider"
DEFAULT_RAG_CONFIG_PATH: Final[str] = "crewai.rag.chromadb.config"
DEFAULT_RAG_CONFIG_CLASS: Final[str] = "ChromaDBConfig"

View File

@@ -1 +0,0 @@
"""Optional imports for RAG configuration providers."""

View File

@@ -1,26 +0,0 @@
"""Base classes for missing provider configurations."""
from typing import Literal
from dataclasses import field
from pydantic import ConfigDict
from pydantic.dataclasses import dataclass as pyd_dataclass
@pyd_dataclass(config=ConfigDict(extra="forbid"))
class _MissingProvider:
"""Base class for missing provider configurations.
Raises RuntimeError when instantiated to indicate missing dependencies.
"""
provider: Literal["chromadb", "qdrant", "__missing__"] = field(
default="__missing__"
)
def __post_init__(self) -> None:
"""Raises error indicating the provider is not installed."""
raise RuntimeError(
f"provider '{self.provider}' requested but not installed. "
f"Install the extra: `uv add crewai'[{self.provider}]'`."
)

View File

@@ -1,27 +0,0 @@
"""Protocol definitions for RAG factory modules."""
from __future__ import annotations
from typing import Protocol, TYPE_CHECKING
if TYPE_CHECKING:
from crewai.rag.chromadb.client import ChromaDBClient
from crewai.rag.chromadb.config import ChromaDBConfig
from crewai.rag.qdrant.client import QdrantClient
from crewai.rag.qdrant.config import QdrantConfig
class ChromaFactoryModule(Protocol):
"""Protocol for ChromaDB factory module."""
def create_client(self, config: ChromaDBConfig) -> ChromaDBClient:
"""Creates a ChromaDB client from configuration."""
...
class QdrantFactoryModule(Protocol):
"""Protocol for Qdrant factory module."""
def create_client(self, config: QdrantConfig) -> QdrantClient:
"""Creates a Qdrant client from configuration."""
...

View File

@@ -1,22 +0,0 @@
"""Provider-specific missing configuration classes."""
from typing import Literal
from dataclasses import field
from pydantic import ConfigDict
from pydantic.dataclasses import dataclass as pyd_dataclass
from crewai.rag.config.optional_imports.base import _MissingProvider
@pyd_dataclass(config=ConfigDict(extra="forbid"))
class MissingChromaDBConfig(_MissingProvider):
"""Placeholder for missing ChromaDB configuration."""
provider: Literal["chromadb"] = field(default="chromadb")
@pyd_dataclass(config=ConfigDict(extra="forbid"))
class MissingQdrantConfig(_MissingProvider):
"""Placeholder for missing Qdrant configuration."""
provider: Literal["qdrant"] = field(default="qdrant")

View File

@@ -1,8 +0,0 @@
"""Type definitions for optional imports."""
from typing import Annotated, Literal
SupportedProvider = Annotated[
Literal["chromadb", "qdrant"],
"Supported RAG provider types, add providers here as they become available",
]

View File

@@ -1,34 +0,0 @@
"""Type definitions for RAG configuration."""
from typing import Annotated, TypeAlias, TYPE_CHECKING
from pydantic import Field
from crewai.rag.config.constants import DISCRIMINATOR
# Linter freaks out on conditional imports, assigning in the type checking fixes it
if TYPE_CHECKING:
from crewai.rag.chromadb.config import ChromaDBConfig as ChromaDBConfig_
ChromaDBConfig = ChromaDBConfig_
from crewai.rag.qdrant.config import QdrantConfig as QdrantConfig_
QdrantConfig = QdrantConfig_
else:
try:
from crewai.rag.chromadb.config import ChromaDBConfig
except ImportError:
from crewai.rag.config.optional_imports.providers import (
MissingChromaDBConfig as ChromaDBConfig,
)
try:
from crewai.rag.qdrant.config import QdrantConfig
except ImportError:
from crewai.rag.config.optional_imports.providers import (
MissingQdrantConfig as QdrantConfig,
)
SupportedProviderConfig: TypeAlias = ChromaDBConfig | QdrantConfig
RagConfigType: TypeAlias = Annotated[
SupportedProviderConfig, Field(discriminator=DISCRIMINATOR)
]

Some files were not shown because too many files have changed in this diff Show More